1
|
Hao X, Qian X, Xie C, Wang Z, Wang X, Ji Y, Zhang X, Li Q, Wan B, Cui H, Wang L, Yang N, Qiao L, Yu H, Han F, Zhuang H, Zhou J. CircMFN2/miR-361-3p/ELK1 feedback loop promotes glutaminolysis and the progression of hepatocellular carcinoma. Cancer Lett 2025; 614:217473. [PMID: 39933635 DOI: 10.1016/j.canlet.2025.217473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/23/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
Current evidence indicates that circRNAs are involved in the development of multiple malignancies including hepatocellular carcinoma (HCC). However, the specific functions of circRNAs in HCC metabolism and progression and their underlying regulatory mechanisms remain unclear. We have identified a novel circRNA circMFN2, by bioinformatics analysis of circRNA microarray data from the GEO database. The levels of circMFN2 were assessed in HCC cell lines and tissues, and its clinical relevance was assessed. The effect of circMFN2 on HCC cells was evaluated in vitro and in vivo. The effect of ELK1 on glutaminolysis and HCC progression was also explored. Patients with HCC and high circMFN2 expression exhibited worse survival outcomes. Functionally, downregulation of circMFN2 repressed the proliferation, invasion, and migration of HCC cells in vitro, whereas ectopic expression of circMFN2 had the opposite effects. The effects of tumor enhancement by circMFN2 on HCC were confirmed by in vivo experiments. Mechanistically, circMFN2 acted as a sponge for miR-361-3p, leading to the upregulation of its target ELK1, whereas ELK1 was enriched in the MFN2 promoter to enhance the transcription and expression of MFN2, indirectly leading to the upregulation of circMFN2. Additionally, we found that circMFN2 promotes glutaminolysis in HCC by increasing ELK1 phosphorylation. We concluded that circMFN2 facilitates HCC progression via a circMFN2/miR-361-3p/ELK1 feedback loop, which promotes glutaminolysis mediated by the upregulation of phosphorylated ELK1. Therefore, circMFN2 not only serves as a potential prognostic indicator, but it could also serve as a therapeutic target for HCC. Further studies are warranted.
Collapse
Affiliation(s)
- Xiaopei Hao
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiangjun Qian
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Chenxi Xie
- Department of Hepatobiliary Surgery, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengzheng Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiaoqian Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yang Ji
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Xiaokai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Qingjun Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Baishun Wan
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Hong Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Li Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Nanmu Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Hospital, Westmead, NSW, 2145, Australia.
| | - Haibo Yu
- Department of Hepatobiliary Surgery, People's Hospital of Zhengzhou University, Zhengzhou, China.
| | - Feng Han
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| | - Hao Zhuang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
2
|
Su C, Liu M, Yao X, Hao W, Ma J, Ren Y, Gao X, Xin L, Ge L, Yu Y, Wei M, Yang J. Vascular injury activates the ELK1/SND1/SRF pathway to promote vascular smooth muscle cell proliferative phenotype and neointimal hyperplasia. Cell Mol Life Sci 2024; 81:59. [PMID: 38279051 PMCID: PMC10817852 DOI: 10.1007/s00018-023-05095-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) proliferation is the leading cause of vascular stenosis or restenosis. Therefore, investigating the molecular mechanisms and pivotal regulators of the proliferative VSMC phenotype is imperative for precisely preventing neointimal hyperplasia in vascular disease. METHODS Wire-induced vascular injury and aortic culture models were used to detect the expression of staphylococcal nuclease domain-containing protein 1 (SND1). SMC-specific Snd1 knockout mice were used to assess the potential roles of SND1 after vascular injury. Primary VSMCs were cultured to evaluate SND1 function on VSMC phenotype switching, as well as to investigate the mechanism by which SND1 regulates the VSMC proliferative phenotype. RESULTS Phenotype-switched proliferative VSMCs exhibited higher SND1 protein expression compared to the differentiated VSMCs. This result was replicated in primary VSMCs treated with platelet-derived growth factor (PDGF). In the injury model, specific knockout of Snd1 in mouse VSMCs reduced neointimal hyperplasia. We then revealed that ETS transcription factor ELK1 (ELK1) exhibited upregulation and activation in proliferative VSMCs, and acted as a novel transcription factor to induce the gene transcriptional activation of Snd1. Subsequently, the upregulated SND1 is associated with serum response factor (SRF) by competing with myocardin (MYOCD). As a co-activator of SRF, SND1 recruited the lysine acetyltransferase 2B (KAT2B) to the promoter regions leading to the histone acetylation, consequently promoted SRF to recognize the specific CArG motif, and enhanced the proliferation- and migration-related gene transcriptional activation. CONCLUSIONS The present study identifies ELK1/SND1/SRF as a novel pathway in promoting the proliferative VSMC phenotype and neointimal hyperplasia in vascular injury, predisposing the vessels to pathological remodeling. This provides a potential therapeutic target for vascular stenosis.
Collapse
Affiliation(s)
- Chao Su
- Division of Cardiovascular Surgery, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Mingxia Liu
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xuyang Yao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
- Eye Institute & School of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Wei Hao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Jinzheng Ma
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Ren
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xingjie Gao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lingbiao Xin
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lin Ge
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Minxin Wei
- Division of Cardiovascular Surgery, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China.
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China.
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.
- State Key Laboratory of Experimental Hematology, Tianjin, China.
| |
Collapse
|
3
|
Zhu Z, Guo Y, Liu Y, Ding R, Huang Z, Yu W, Cui L, Du P, Goel A, Liu C. ELK4 Promotes Colorectal Cancer Progression by Activating the Neoangiogenic Factor LRG1 in a Noncanonical SP1/3-Dependent Manner. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303378. [PMID: 37786278 PMCID: PMC10646254 DOI: 10.1002/advs.202303378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/08/2023] [Indexed: 10/04/2023]
Abstract
Although the MAPK/MEK/ERK pathway is prevalently activated in colorectal cancer (CRC), MEK/ERK inhibitors show limited efficiency in clinic. As a downstream target of MAPK, ELK4 is thought to work primarily by forming a complex with SRF. Whether ELK4 can serve as a potential therapeutic target is unclear and the transcriptional regulatory mechanism has not been systemically analyzed. Here, it is shown that ELK4 promotes CRC tumorigenesis. Integrated genomics- and proteomics-based approaches identified SP1 and SP3, instead of SRF, as cooperative functional partners of ELK4 at genome-wide level in CRC. Serum-induced phosphorylation of ELK4 by MAPKs facilitated its interaction with SP1/SP3. The pathological neoangiogenic factor LRG1 is identified as a direct target of the ELK4-SP1/SP3 complex. Furthermore, targeting the ELK4-SP1/SP3 complex by combination treatment with MEK/ERK inhibitor and the relatively specific SP1 inhibitor mithramycin A (MMA) elicited a synergistic antitumor effect on CRC. Clinically, ELK4 is a marker of poor prognosis in CRC. A 9-gene prognostic model based on the ELK4-SP1/3 complex-regulated gene set showed robust prognostic accuracy. The results demonstrate that ELK4 cooperates with SP1 and SP3 to transcriptionally regulate LRG1 to promote CRC tumorigenesis in an SRF-independent manner, identifying the ELK4-SP1/SP3 complex as a potential target for rational combination therapy.
Collapse
Affiliation(s)
- Zhehui Zhu
- Department of Colorectal and Anal SurgeryShanghai Colorectal Cancer Research CenterXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Department of General SurgeryState Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Yuegui Guo
- Department of Colorectal and Anal SurgeryShanghai Colorectal Cancer Research CenterXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Yun Liu
- Department of Colorectal and Anal SurgeryShanghai Colorectal Cancer Research CenterXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Rui Ding
- Department of Colorectal and Anal SurgeryShanghai Colorectal Cancer Research CenterXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Zhenyu Huang
- Department of Colorectal and Anal SurgeryShanghai Colorectal Cancer Research CenterXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Wei Yu
- Department of General SurgeryState Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Long Cui
- Department of Colorectal and Anal SurgeryShanghai Colorectal Cancer Research CenterXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Peng Du
- Department of Colorectal and Anal SurgeryShanghai Colorectal Cancer Research CenterXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Ajay Goel
- Center for Gastrointestinal ResearchBaylor Scott & White Research Institute and Charles A. Sammons Cancer CenterBaylor University Medical CenterDepartment of Molecular Diagnostics and Experimental TherapeuticsBeckman Research Institute of City of Hope Comprehensive Cancer CenterDuarteCA91010USA
| | - Chen‐Ying Liu
- Department of Colorectal and Anal SurgeryShanghai Colorectal Cancer Research CenterXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| |
Collapse
|
4
|
Perurena N, Lock R, Davis RA, Raghavan S, Pilla NF, Ng R, Loi P, Guild CJ, Miller AL, Sicinska E, Cleary JM, Rubinson DA, Wolpin BM, Gray NS, Santagata S, Hahn WC, Morton JP, Sansom OJ, Aguirre AJ, Cichowski K. USP9X mediates an acute adaptive response to MAPK suppression in pancreatic cancer but creates multiple actionable therapeutic vulnerabilities. Cell Rep Med 2023; 4:101007. [PMID: 37030295 PMCID: PMC10140597 DOI: 10.1016/j.xcrm.2023.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/18/2022] [Accepted: 03/17/2023] [Indexed: 04/10/2023]
Abstract
Pancreatic ductal adenocarcinomas (PDACs) frequently harbor KRAS mutations. Although MEK inhibitors represent a plausible therapeutic option, most PDACs are innately resistant to these agents. Here, we identify a critical adaptive response that mediates resistance. Specifically, we show that MEK inhibitors upregulate the anti-apoptotic protein Mcl-1 by triggering an association with its deubiquitinase, USP9X, resulting in acute Mcl-1 stabilization and protection from apoptosis. Notably, these findings contrast the canonical positive regulation of Mcl-1 by RAS/ERK. We further show that Mcl-1 inhibitors and cyclin-dependent kinase (CDK) inhibitors, which suppress Mcl-1 transcription, prevent this protective response and induce tumor regression when combined with MEK inhibitors. Finally, we identify USP9X as an additional potential therapeutic target. Together, these studies (1) demonstrate that USP9X regulates a critical mechanism of resistance in PDAC, (2) reveal an unexpected mechanism of Mcl-1 regulation in response to RAS pathway suppression, and (3) provide multiple distinct promising therapeutic strategies for this deadly malignancy.
Collapse
Affiliation(s)
- Naiara Perurena
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Rebecca Lock
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Rachel A Davis
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Srivatsan Raghavan
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Natalie F Pilla
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Raymond Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Patrick Loi
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Caroline J Guild
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Abigail L Miller
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - James M Cleary
- Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Douglas A Rubinson
- Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Brian M Wolpin
- Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
| | - Sandro Santagata
- Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - William C Hahn
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G11 1QH, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G11 1QH, UK
| | - Andrew J Aguirre
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karen Cichowski
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Lang L, Chen F, Li Y, Shay C, Yang F, Dan H, Chen ZG, Saba NF, Teng Y. Adaptive c-Met-PLXDC2 Signaling Axis Mediates Cancer Stem Cell Plasticity to Confer Radioresistance-associated Aggressiveness in Head and Neck Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:659-671. [PMID: 37089864 PMCID: PMC10114932 DOI: 10.1158/2767-9764.crc-22-0289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/22/2022] [Accepted: 01/03/2023] [Indexed: 04/25/2023]
Abstract
Radiotherapy plays an essential role in the treatment of head and neck squamous cell carcinoma (HNSCC), yet radioresistance remains a major barrier to therapeutic efficacy. A better understanding of the predominant pathways determining radiotherapy response could help develop mechanism-informed therapies to improve cancer management. Here we report that radioresistant HNSCC cells exhibit increased tumor aggressiveness. Using unbiased proteome profiler antibody arrays, we identify that upregulation of c-Met phosphorylation is one of the critical mechanisms for radioresistance in HNSCC cells. We further uncover that radioresistance-associated HNSCC aggressiveness is effectively exacerbated by c-Met but is suppressed by its genetic knockdown and pharmacologic inactivation. Mechanistically, the resulting upregulation of c-Met promotes elevated expression of plexin domain containing 2 (PLXDC2) through activating ERK1/2-ELK1 signaling, which in turn modulates cancer cell plasticity by epithelial-mesenchymal transition (EMT) induction and enrichment of the cancer stem cell (CSC) subpopulation, leading to resistance of HNSCC cells to radiotherapy. Depletion of PLXDC2 overcomes c-Met-mediated radioresistance through reversing the EMT progress and blunting the self-renewal capacity of CSCs. Therapeutically, the addition of SU11274, a selective and potent c-Met inhibitor, to radiation induces tumor shrinkage and limits tumor metastasis to lymph nodes in an orthotopic mouse model. Collectively, these significant findings not only demonstrate a novel mechanism underpinning radioresistance-associated aggressiveness but also provide a possible therapeutic strategy to target radioresistance in patients with HNSCC. Significance This work provides novel insights into c-Met-PLXDC2 signaling in radioresistance-associated aggressiveness and suggests a new mechanism-informed therapeutic strategy to overcome failure of radiotherapy in patients with HNSCC.
Collapse
Affiliation(s)
- Liwei Lang
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Fanghui Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, School of Medicine, Atlanta, Georgia
| | - Yamin Li
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory, University, Atlanta, Georgia
| | - Fan Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, School of Medicine, Atlanta, Georgia
| | - Hancai Dan
- Department of Pathology, University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Zhuo G Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, School of Medicine, Atlanta, Georgia
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, School of Medicine, Atlanta, Georgia
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, Georgia
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, School of Medicine, Atlanta, Georgia
| |
Collapse
|
6
|
Liu X, Adamo AM, Oteiza PI. Di-2-ethylhexyl phthalate affects zinc metabolism and neurogenesis in the developing rat brain. Arch Biochem Biophys 2022; 727:109351. [PMID: 35841924 DOI: 10.1016/j.abb.2022.109351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/28/2022]
Abstract
We previously observed that developmental marginal zinc deficiency affects neurogenesis. Maternal phthalate exposure could disrupt fetal zinc homeostasis by triggering an acute phase response, causing maternal liver zinc retention that limits zinc availability to the fetus. Thus, we currently investigated whether exposure to di-2-ethylhexyl phthalate (DEHP) during gestation in rats alters fetal brain neurogenesis by impairing zinc homeostasis. Dams consumed an adequate (25 μg zinc/g diet) (C) or a marginal zinc deficient (MZD) (10 μg zinc/g diet) diet, without or with DEHP (300 mg/kg BW) (C + DEHP, MZD + DEHP) from embryonic day (E) 0 to E19. To evaluate neurogenesis we measured parameters of neural progenitor cells (NPC) proliferation and differentiation. Maternal exposure to DEHP and/or zinc deficiency lowered fetal brain cortical tissue (CT) zinc concentrations. Transcription factors involved in NPC proliferation (PAX6, SOX2, EMX1), differentiation (TBR2, TBR1) and mature neurons (NeuN) were lower in MZD, MZD + DEHP and C + DEHP than in C E19 brain CT, being the lowest in the MZD + DEHP group. VGLUT1 levels, a marker of glutamatergic neurons, showed a similar pattern. Levels of a marker of GABAergic neurons, GAD65, did not vary among groups. Phosphorylated ERK1/2 levels were reduced by both MZD and DEHP, and particularly in the MZD + DEHP group. MEHP-treated human neuroblastoma IMR-32 cells and E19 brains from DEHP-treated dams showed that the zinc-regulated phosphatase PP2A can be in part responsible for DEHP-mediated ERK1/2 downregulation and impaired neurogenesis. Overall, gestational exposure to DEHP caused secondary zinc deficiency and impaired neurogenesis. These harmful effects could have long-term consequences on the adult offspring brain structure and function.
Collapse
Affiliation(s)
- Xiuzhen Liu
- Department of Nutrition, University of California, Davis, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, Davis, CA, USA
| | - Ana M Adamo
- Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
7
|
Boschiero C, Gao Y, Baldwin RL, Ma L, Li CJ, Liu GE. Differentially CTCF-Binding Sites in Cattle Rumen Tissue during Weaning. Int J Mol Sci 2022; 23:ijms23169070. [PMID: 36012336 PMCID: PMC9408924 DOI: 10.3390/ijms23169070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The weaning transition in calves is characterized by major structural changes such as an increase in the rumen capacity and surface area due to diet changes. Studies evaluating rumen development in calves are vital to identify genetic mechanisms affected by weaning. This study aimed to provide a genome-wide characterization of CTCF-binding sites and differentially CTCF-binding sites (DCBS) in rumen tissue during the weaning transition of four Holstein calves to uncover regulatory elements in rumen epithelial tissue using ChIP-seq. Our study generated 67,280 CTCF peaks for the before weaning (BW) and 39,891 for after weaning (AW). Then, 7401 DCBS were identified for the AW vs. BW comparison representing 0.15% of the cattle genome, comprising ~54% of induced DCBS and ~46% of repressed DCBS. Most of the induced and repressed DCBS were in distal intergenic regions, showing a potential role as insulators. Gene ontology enrichment revealed many shared GO terms for the induced and the repressed DCBS, mainly related to cellular migration, proliferation, growth, differentiation, cellular adhesion, digestive tract morphogenesis, and response to TGFβ. In addition, shared KEGG pathways were obtained for adherens junction and focal adhesion. Interestingly, other relevant KEGG pathways were observed for the induced DCBS like gastric acid secretion, salivary secretion, bacterial invasion of epithelial cells, apelin signaling, and mucin-type O-glycan biosynthesis. IPA analysis further revealed pathways with potential roles in rumen development during weaning, including TGFβ, Integrin-linked kinase, and Integrin signaling. When DCBS were further integrated with RNA-seq data, 36 putative target genes were identified for the repressed DCBS, including KRT84, COL9A2, MATN3, TSPAN1, and AJM1. This study successfully identified DCBS in cattle rumen tissue after weaning on a genome-wide scale and revealed several candidate target genes that may have a role in rumen development, such as TGFβ, integrins, keratins, and SMADs. The information generated in this preliminary study provides new insights into bovine genome regulation and chromatin landscape.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Ransom L. Baldwin
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Cong-jun Li
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (C.-j.L.); (G.E.L.); Tel.: +1-301-504-7216 (C.-j.L.); +1-301-504-9843 (G.E.L.); Fax: +1-301-504-8414 (C.-j.L. & G.E.L.)
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (C.-j.L.); (G.E.L.); Tel.: +1-301-504-7216 (C.-j.L.); +1-301-504-9843 (G.E.L.); Fax: +1-301-504-8414 (C.-j.L. & G.E.L.)
| |
Collapse
|
8
|
Wei S, Yu Z, Shi R, An L, Zhang Q, Zhang Q, Zhang T, Zhang J, Wang H. GPX4 suppresses ferroptosis to promote malignant progression of endometrial carcinoma via transcriptional activation by ELK1. BMC Cancer 2022; 22:881. [PMID: 35962333 PMCID: PMC9373394 DOI: 10.1186/s12885-022-09986-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/08/2022] [Indexed: 12/21/2022] Open
Abstract
Background Glutathione Peroxidase 4 (GPX4) is a key protein that inhibits ferroptosis. However, its biological regulation and mechanism in endometrial cancer (EC) have not been reported in detail. Methods The expression of GPX4 in EC tissues was determined by TCGA databases, qRT-PCR, Western blot, and immunohistochemistry (IHC). The effects of GPX4 on EC cell proliferation, migration, apoptosis, and tumorigenesis were studied in vivo and in vitro. In addition, ETS Transcription Factor ELK1 (ELK1) was identified by bioinformatics methods, dual-luciferase reporter assay, and chromatin immunoprecipitation (ChIP). Pearson correlation analysis was used to evaluate the association between ELK1 and GPX4 expression. Results The expression of GPX4 was significantly up-regulated in EC tissues and cell lines. Silencing GPX4 significantly inhibited the proliferation, migration ability, induced apoptosis, and arrested the cell cycle of Ishikawa and KLE cells. Knockdown of GPX4 accumulated intracellular ferrous iron and ROS, disrupted MMP, and increased MDA levels. The xenograft tumor model also showed that GPX4 knockdown markedly reduced tumor growth in mice. Mechanically, ELK1 could bind to the promoter of GPX4 to promote its transcription. In addition, the expression of ELK1 in EC was positively correlated with GPX4. Rescue experiments confirmed that GPX4 knockdown could reverse the strengthens of cell proliferation and migration ability and the lower level of Fe2+ and MDA caused by upregulating ELK1. Conclusion The results of the present study suggest that ELK1 / GPX4 axis plays an important role in the progress of EC by promoting the malignant biological behavior and inducing ferroptosis of EC cells, which provides evidence for investigating the potential therapeutic strategies of endometrial cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09986-3.
Collapse
Affiliation(s)
- Sitian Wei
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhicheng Yu
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Rui Shi
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Lanfen An
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qi Zhang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qian Zhang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tangansu Zhang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jun Zhang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Hongbo Wang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
9
|
Du L, Liu Y, Li C, Deng J, Sang Y. The interaction between ETS transcription factor family members and microRNAs: A novel approach to cancer therapy. Biomed Pharmacother 2022; 150:113069. [PMID: 35658214 DOI: 10.1016/j.biopha.2022.113069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
In cancer biology, ETS transcription factors promote tumorigenesis by mediating transcriptional regulation of numerous genes via the conserved ETS DNA-binding domain. MicroRNAs (miRNAs) act as posttranscriptional regulators to regulate various tumor-promoting or tumor-suppressing factors. Interactions between ETS factors and miRNAs regulate complex tumor-promoting and tumor-suppressing networks. This review discusses the progress of ETS factors and miRNAs in cancer research in detail. We focused on characterizing the interaction of the miRNA/ETS axis with competing endogenous RNAs (ceRNAs) and its regulation in posttranslational modifications (PTMs) and the tumor microenvironment (TME). Finally, we explore the prospect of ETS factors and miRNAs in therapeutic intervention. Generally, interactions between ETS factors and miRNAs provide fresh perspectives into tumorigenesis and development and novel therapeutic approaches for malignant tumors.
Collapse
Affiliation(s)
- Liwei Du
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University & The First Hospital of Nanchang, Nanchang 330008, China
| | - Yuchen Liu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University & The First Hospital of Nanchang, Nanchang 330008, China; Stomatology College of Nanchang University, Nanchang, China
| | - Chenxi Li
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University & The First Hospital of Nanchang, Nanchang 330008, China
| | - Jinkuang Deng
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University & The First Hospital of Nanchang, Nanchang 330008, China
| | - Yi Sang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University & The First Hospital of Nanchang, Nanchang 330008, China.
| |
Collapse
|
10
|
Predescu DN, Mokhlesi B, Predescu SA. The Impact of Sex Chromosomes in the Sexual Dimorphism of Pulmonary Arterial Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:582-594. [PMID: 35114193 PMCID: PMC8978209 DOI: 10.1016/j.ajpath.2022.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Accepted: 01/11/2022] [Indexed: 02/09/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a sex-biased disease with a poorly understood female prevalence. Emerging research suggests that nonhormonal factors, such as the XX or XY sex chromosome complement and sex bias in gene expression, may also lead to sex-based differences in PAH incidence, penetrance, and progression. Typically, one of females' two X chromosomes is epigenetically silenced to offer a gender-balanced gene expression. Recent data demonstrate that the long noncoding RNA X-inactive specific transcript, essential for X chromosome inactivation and dosage compensation of X-linked gene expression, shows elevated levels in female PAH lung specimens compared with controls. This molecular event leads to incomplete inactivation of the females' second X chromosome, abnormal expression of X-linked gene(s) involved in PAH pathophysiology, and a pulmonary artery endothelial cell (PAEC) proliferative phenotype. Moreover, the pathogenic proliferative p38 mitogen-activated protein kinase/ETS transcription factor ELK1 (Elk1)/cFos signaling is mechanistically linked to the sexually dimorphic proliferative response of PAECs in PAH. Apprehending the complicated relationship between long noncoding RNA X-inactive specific transcript and X-linked genes and how this relationship integrates into a sexually dimorphic proliferation of PAECs and PAH sex paradox remain challenging. We highlight herein new findings related to how the sex chromosome complement and sex-differentiated epigenetic mechanisms to control gene expression are decisive players in the sexual dimorphism of PAH. Pharmacologic interventions in the light of the newly elucidated mechanisms are discussed.
Collapse
Affiliation(s)
- Dan N Predescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois.
| | - Babak Mokhlesi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Sanda A Predescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
11
|
Marei HE, Althani A, Afifi N, Hasan A, Caceci T, Pozzoli G, Morrione A, Giordano A, Cenciarelli C. p53 signaling in cancer progression and therapy. Cancer Cell Int 2021; 21:703. [PMID: 34952583 PMCID: PMC8709944 DOI: 10.1186/s12935-021-02396-8] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022] Open
Abstract
The p53 protein is a transcription factor known as the "guardian of the genome" because of its critical function in preserving genomic integrity. The TP53 gene is mutated in approximately half of all human malignancies, including those of the breast, colon, lung, liver, prostate, bladder, and skin. When DNA damage occurs, the TP53 gene on human chromosome 17 stops the cell cycle. If p53 protein is mutated, the cell cycle is unrestricted and the damaged DNA is replicated, resulting in uncontrolled cell proliferation and cancer tumours. Tumor-associated p53 mutations are usually associated with phenotypes distinct from those caused by the loss of the tumor-suppressing function exerted by wild-type p53protein. Many of these mutant p53 proteins have oncogenic characteristics, and therefore modulate the ability of cancer cells to proliferate, escape apoptosis, invade and metastasize. Because p53 deficiency is so common in human cancer, this protein is an excellent option for cancer treatment. In this review, we will discuss some of the molecular pathways by which mutant p53 proteins might perform their oncogenic activities, as well as prospective treatment methods based on restoring tumor suppressive p53 functions.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| | - Asmaa Althani
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Thomas Caceci
- Biomedical Sciences, Virginia Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Giacomo Pozzoli
- Pharmacology Unit, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine. Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine. Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | | |
Collapse
|
12
|
Wang S, Zhang H, Liu H, Guo X, Ma R, Zhu W, Gao P. ELK1-induced up-regulation of KIF26B promotes cell cycle progression in breast cancer. Med Oncol 2021; 39:15. [PMID: 34817735 DOI: 10.1007/s12032-021-01607-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
KIF26B is a member of the kinesin superfamily that is up-regulated in various tumors, including breast cancer (BC), which can promote tumor progression. This study aimed to investigate the potential function of KIF26B in BC, and the underlying mechanisms, focusing mainly on cell proliferation. KIF26B expression was examined in BC tissue samples obtained from 99 patients. Then, we performed MTS, EdU and flow cytometry assays to detect cell proliferation, and western blotting to measure the expression of cell cycle-related proteins in MDA-MB-231 and MDA-MB-468 cells following KIF26B knockdown. Promoter analysis was used to study the upstream regulatory mechanism of KIF26B. KIF26B was upregulated in BC tissues. High expression of KIF26B was associated with clinicopathological parameters, such as positive lymph node metastasis, higher tumor grade, and higher proliferative index in BC. Furthermore, knockdown of KIF26B expression inhibited MDA-MB-231 and MDA-MB-468 cell proliferation, arresting cells in the G1 phase of the cell cycle in vitro. Similarly, KIF26B silencing decreased the expression levels of Wnt, β-catenin, and cell cycle-related proteins such as c-Myc, cyclin D1, and cyclin-dependent kinase 4, while increasing the expression of p27. Moreover, ELK1 could bind to the core promoter region of KIF26B and activate its transcription. KIF26B acts as an oncogene in BC by regulating multiple proteins involved in the cell cycle. ELK1 activates KIF26B transcription.
Collapse
Affiliation(s)
- SuXia Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan Wen Hua Xi Road 44, Jinan, 250012, Shandong, China.,Department of Pathology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.,Department of Pathology, Qilu Hospital, Shandong University Jinan, Shandong, 250012, China
| | - Hui Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan Wen Hua Xi Road 44, Jinan, 250012, Shandong, China.,Department of Pathology, Qilu Hospital, Shandong University Jinan, Shandong, 250012, China
| | - HaiTing Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan Wen Hua Xi Road 44, Jinan, 250012, Shandong, China.,Department of Pathology, Qilu Hospital, Shandong University Jinan, Shandong, 250012, China
| | - XiangYu Guo
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan Wen Hua Xi Road 44, Jinan, 250012, Shandong, China
| | - RanRan Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan Wen Hua Xi Road 44, Jinan, 250012, Shandong, China.,Department of Pathology, Qilu Hospital, Shandong University Jinan, Shandong, 250012, China
| | - WenJie Zhu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan Wen Hua Xi Road 44, Jinan, 250012, Shandong, China.
| | - P Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan Wen Hua Xi Road 44, Jinan, 250012, Shandong, China. .,Department of Pathology, Qilu Hospital, Shandong University Jinan, Shandong, 250012, China.
| |
Collapse
|
13
|
Oliveira TT, Fontes-Dantas FL, de Medeiros Oliveira RK, Pinheiro DML, Coutinho LG, da Silva VL, de Souza SJ, Agnez-Lima LF. Chemical Inhibition of Apurinic-Apyrimidinic Endonuclease 1 Redox and DNA Repair Functions Affects the Inflammatory Response via Different but Overlapping Mechanisms. Front Cell Dev Biol 2021; 9:731588. [PMID: 34616737 PMCID: PMC8488223 DOI: 10.3389/fcell.2021.731588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/27/2021] [Indexed: 01/21/2023] Open
Abstract
The presence of oxidized DNA lesions, such as 7,8-dihydro-8-oxoguanine (8-oxoG) and apurinic/apyrimidinic sites (AP sites), has been described as epigenetic signals that are involved in gene expression control. In mammals, Apurinic-apyrimidinic endonuclease 1/Redox factor-1 (APE1/Ref-1) is the main AP endonuclease of the base excision repair (BER) pathway and is involved in active demethylation processes. In addition, APE1/Ref-1, through its redox function, regulates several transcriptional factors. However, the transcriptional control targets of each APE1 function are not completely known. In this study, a transcriptomic approach was used to investigate the effects of chemical inhibition of APE1/Ref-1 redox or DNA repair functions by E3330 or methoxyamine (MX) in an inflammatory cellular model. Under lipopolysaccharide (LPS) stimulation, both E3330 and MX reduced the expression of some cytokines and chemokines. Interestingly, E3330 treatment reduced cell viability after 48 h of the treatment. Genes related to inflammatory response and mitochondrial processes were downregulated in both treatments. In the E3330 treatment, RNA processing and ribosome biogenesis genes were downregulated, while they were upregulated in the MX treatment. Furthermore, in the E3330 treatment, the cellular stress response was the main upregulated process, while the cellular macromolecule metabolic process was observed in MX-upregulated genes. Nuclear respiratory factor 1 (NRF1) was predicted to be a master regulator of the downregulated genes in both treatments, while the ETS transcription factor ELK1 (ELK1) was predicted to be a master regulator only for E3330 treatment. Decreased expression of ELK1 and its target genes and a reduced 28S/18S ratio were observed, suggesting impaired rRNA processing. In addition, both redox and repair functions can affect the expression of NRF1 and GABPA target genes. The master regulators predicted for upregulated genes were YY1 and FLI1 for the E3330 and MX treatments, respectively. In summary, the chemical inhibition of APE1/Ref-1 affects gene expression regulated mainly by transcriptional factors of the ETS family, showing partial overlap of APE1 redox and DNA repair functions, suggesting that these activities are not entirely independent. This work provides a new perspective on the interaction between APE1 redox and DNA repair activity in inflammatory response modulation and transcription.
Collapse
Affiliation(s)
- Thais Teixeira Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil
| | - Fabrícia Lima Fontes-Dantas
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil
| | | | | | - Leonam Gomes Coutinho
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil.,Instituto Federal de Educação Tecnológica do Rio Grande do Norte, IFRN, São Paulo do Potengi, Brazil
| | - Vandeclecio Lira da Silva
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, Brazil.,Bioinformatics Multidisciplinary Environment (BioME), IMD, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Sandro José de Souza
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, Brazil.,Bioinformatics Multidisciplinary Environment (BioME), IMD, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
14
|
Yang GF, Zhang X, Su YG, Zhao R, Wang YY. The role of the deubiquitinating enzyme DUB3/USP17 in cancer: a narrative review. Cancer Cell Int 2021; 21:455. [PMID: 34454495 PMCID: PMC8400843 DOI: 10.1186/s12935-021-02160-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/18/2021] [Indexed: 11/10/2022] Open
Abstract
The balance between ubiquitination and deubiquitination is critical for the degradation, transport, localization, and activity of proteins. Deubiquitinating enzymes (DUBs) greatly contribute to the balance of ubiquitination and deubiquitination, and they have been widely studied due to their fundamental role in cancer. DUB3/ubiquitin-specific protease 17 (USP17) is a type of DUB that has attracted much attention in cancer research. In this review, we summarize the biological functions and regulatory mechanisms of USP17 in central nervous system, head and neck, thoracic, breast, gastrointestinal, genitourinary, and gynecologic cancers as well as bone and soft tissue sarcomas, and we provide new insights into how USP17 can be used in the management of cancer.
Collapse
Affiliation(s)
- Guang-Fei Yang
- Dept. of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xin Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yi-Ge Su
- Graduate School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ren Zhao
- Dept. of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,Cancer Institute, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yan-Yang Wang
- Dept. of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China. .,Cancer Institute, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
15
|
Qin S, Predescu D, Carman B, Patel P, Chen J, Kim M, Lahm T, Geraci M, Predescu SA. Up-Regulation of the Long Noncoding RNA X-Inactive-Specific Transcript and the Sex Bias in Pulmonary Arterial Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1135-1150. [PMID: 33836164 PMCID: PMC8176134 DOI: 10.1016/j.ajpath.2021.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a sex-biased disease. Increased expression and activity of the long-noncoding RNA X-inactive-specific transcript (Xist), essential for X-chromosome inactivation and dosage compensation of X-linked genes, may explain the sex bias of PAH. The present studies used a murine model of plexiform PAH, the intersectin-1s (ITSN) heterozygous knockout (KOITSN+/-) mouse transduced with an ITSN fragment (EHITSN) possessing endothelial cell proliferative activity, in conjunction with molecular, cell biology, biochemical, morphologic, and functional approaches. The data demonstrate significant sex-centered differences with regard to EHITSN-induced alterations in pulmonary artery remodeling, lung hemodynamics, and p38/ETS domain containing protein/c-Fos signaling, altogether leading to a more severe female lung PAH phenotype. Moreover, the long-noncoding RNA-Xist is up-regulated in the lungs of female EHITSN-KOITSN+/- mice compared with that in female wild-type mice, leading to sex-specific modulation of the X-linked gene ETS domain containing protein and its target, two molecular events also characteristic to female human PAH lung. More importantly, cyclin A1 expression in the S and G2/M phases of the cell cycle of synchronized pulmonary artery endothelial cells of female PAH patients is greater versus controls, suggesting functional hyperproliferation. Thus, Xist up-regulation leading to female pulmonary artery endothelial cell sexual dimorphic behavior may provide a better understanding of the origin of sex bias in PAH. Notably, the EHITSN-KOITSN+/- mouse is a unique experimental animal model of PAH that recapitulates most of the sexually dimorphic characteristics of human disease.
Collapse
Affiliation(s)
- Shanshan Qin
- Center for Genetic Medicine, Quantitative Data Science Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Dan Predescu
- Center for Genetic Medicine, Quantitative Data Science Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Brandon Carman
- Center for Genetic Medicine, Quantitative Data Science Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Priyam Patel
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University, Chicago, Illinois
| | - Jiwang Chen
- Pulmonary Critical Care Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Miran Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Tim Lahm
- Health Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark Geraci
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University, Chicago, Illinois
| | - Sanda A Predescu
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University, Chicago, Illinois.
| |
Collapse
|
16
|
Sogut MS, Venugopal C, Kandemir B, Dag U, Mahendram S, Singh S, Gulfidan G, Arga KY, Yilmaz B, Kurnaz IA. ETS-Domain Transcription Factor Elk-1 Regulates Stemness Genes in Brain Tumors and CD133+ BrainTumor-Initiating Cells. J Pers Med 2021; 11:jpm11020125. [PMID: 33672811 PMCID: PMC7917801 DOI: 10.3390/jpm11020125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
Elk-1, a member of the ternary complex factors (TCFs) within the ETS (E26 transformation-specific) domain superfamily, is a transcription factor implicated in neuroprotection, neurodegeneration, and brain tumor proliferation. Except for known targets, c-fos and egr-1, few targets of Elk-1 have been identified. Interestingly, SMN, SOD1, and PSEN1 promoters were shown to be regulated by Elk-1. On the other hand, Elk-1 was shown to regulate the CD133 gene, which is highly expressed in brain-tumor-initiating cells (BTICs) and used as a marker for separating this cancer stem cell population. In this study, we have carried out microarray analysis in SH-SY5Y cells overexpressing Elk-1-VP16, which has revealed a large number of genes significantly regulated by Elk-1 that function in nervous system development, embryonic development, pluripotency, apoptosis, survival, and proliferation. Among these, we have shown that genes related to pluripotency, such as Sox2, Nanog, and Oct4, were indeed regulated by Elk-1, and in the context of brain tumors, we further showed that Elk-1 overexpression in CD133+ BTIC population results in the upregulation of these genes. When Elk-1 expression is silenced, the expression of these stemness genes is decreased. We propose that Elk-1 is a transcription factor upstream of these genes, regulating the self-renewal of CD133+ BTICs.
Collapse
Affiliation(s)
- Melis Savasan Sogut
- Institute of Biotechnology, Gebze Technical University, 41400 Kocaeli, Turkey; (M.S.S.); (B.K.)
- Molecular Neurobiology Laboratory (AxanLab), Department of Molecular Biology and Genetics, Gebze Technical University, 41400 Kocaeli, Turkey
- Biotechnology Graduate Program, Graduate School of Sciences, Yeditepe University, 26 Agustos Yerlesimi, Kayisdagi, 34755 Istanbul, Turkey;
| | - Chitra Venugopal
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada; (C.V.); (S.M.); (S.S.)
| | - Basak Kandemir
- Institute of Biotechnology, Gebze Technical University, 41400 Kocaeli, Turkey; (M.S.S.); (B.K.)
- Molecular Neurobiology Laboratory (AxanLab), Department of Molecular Biology and Genetics, Gebze Technical University, 41400 Kocaeli, Turkey
- Biotechnology Graduate Program, Graduate School of Sciences, Yeditepe University, 26 Agustos Yerlesimi, Kayisdagi, 34755 Istanbul, Turkey;
| | - Ugur Dag
- Biotechnology Graduate Program, Graduate School of Sciences, Yeditepe University, 26 Agustos Yerlesimi, Kayisdagi, 34755 Istanbul, Turkey;
| | - Sujeivan Mahendram
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada; (C.V.); (S.M.); (S.S.)
| | - Sheila Singh
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada; (C.V.); (S.M.); (S.S.)
| | - Gizem Gulfidan
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (G.G.); (K.Y.A.)
| | - Kazim Yalcin Arga
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (G.G.); (K.Y.A.)
| | - Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, 26 Agustos Yerlesimi, Kayisdagi, 34755 Istanbul, Turkey
- Correspondence: (B.Y.); (I.A.K.)
| | - Isil Aksan Kurnaz
- Institute of Biotechnology, Gebze Technical University, 41400 Kocaeli, Turkey; (M.S.S.); (B.K.)
- Molecular Neurobiology Laboratory (AxanLab), Department of Molecular Biology and Genetics, Gebze Technical University, 41400 Kocaeli, Turkey
- Correspondence: (B.Y.); (I.A.K.)
| |
Collapse
|
17
|
Quintero-Barceinas RS, Gehringer F, Ducker C, Saxton J, Shaw PE. ELK-1 ubiquitination status and transcriptional activity are modulated independently of F-Box protein FBXO25. J Biol Chem 2020; 296:100214. [PMID: 33428929 PMCID: PMC7948486 DOI: 10.1074/jbc.ra120.014616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 01/12/2023] Open
Abstract
The mitogen-responsive, ETS-domain transcription factor ELK-1 stimulates the expression of immediate early genes at the onset of the cell cycle and participates in early developmental programming. ELK-1 is subject to multiple levels of posttranslational control, including phosphorylation, SUMOylation, and ubiquitination. Recently, removal of monoubiquitin from the ELK-1 ETS domain by the Ubiquitin Specific Protease USP17 was shown to augment ELK-1 transcriptional activity and promote cell proliferation. Here we have used coimmunoprecipitation experiments, protein turnover and ubiquitination assays, RNA-interference and gene expression analyses to examine the possibility that USP17 acts antagonistically with the F-box protein FBXO25, an E3 ubiquitin ligase previously shown to promote ELK-1 ubiquitination and degradation. Our data confirm that FBXO25 and ELK-1 interact in HEK293T cells and that FBXO25 is active toward Hand1 and HAX1, two of its other candidate substrates. However, our data indicate that FBXO25 neither promotes ubiquitination of ELK-1 nor impacts on its transcriptional activity and suggest that an E3 ubiquitin ligase other than FBXO25 regulates ELK-1 ubiquitination and function.
Collapse
Affiliation(s)
- Reyna Sara Quintero-Barceinas
- Transcription and Signal Transduction Lab, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Franziska Gehringer
- Transcription and Signal Transduction Lab, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Charles Ducker
- Transcription and Signal Transduction Lab, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Janice Saxton
- Transcription and Signal Transduction Lab, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Peter E Shaw
- Transcription and Signal Transduction Lab, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
18
|
Montagnani V, Maresca L, Apollo A, Pepe S, Carr RM, Fernandez-Zapico ME, Stecca B. E3 ubiquitin ligase PARK2, an inhibitor of melanoma cell growth, is repressed by the oncogenic ERK1/2-ELK1 transcriptional axis. J Biol Chem 2020; 295:16058-16071. [PMID: 32938713 DOI: 10.1074/jbc.ra120.014615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/09/2020] [Indexed: 12/26/2022] Open
Abstract
Malignant melanoma, the most aggressive form of skin cancer, is characterized by high prevalence of BRAF/NRAS mutations and hyperactivation of extracellular signal-regulated kinase 1 and 2 (ERK1/2), mitogen-activated protein kinases (MAPK), leading to uncontrolled melanoma growth. Efficacy of current targeted therapies against mutant BRAF or MEK1/2 have been hindered by existence of innate or development of acquired resistance. Therefore, a better understanding of the mechanisms controlled by MAPK pathway driving melanogenesis will help develop new treatment approaches targeting this oncogenic cascade. Here, we identify E3 ubiquitin ligase PARK2 as a direct target of ELK1, a known transcriptional effector of MAPK signaling in melanoma cells. We show that pharmacological inhibition of BRAF-V600E or ERK1/2 in melanoma cells increases PARK2 expression. PARK2 overexpression reduces melanoma cell growth in vitro and in vivo and induces apoptosis. Conversely, its genetic silencing increases melanoma cell proliferation and reduces cell death. Further, we demonstrate that ELK1 is required by the BRAF-ERK1/2 pathway to repress PARK2 expression and promoter activity in melanoma cells. Clinically, PARK2 is highly expressed in WT BRAF and NRAS melanomas, but it is expressed at low levels in melanomas carrying BRAF/NRAS mutations. Overall, our data provide new insights into the tumor suppressive role of PARK2 in malignant melanoma and uncover a novel mechanism for the negative regulation of PARK2 via the ERK1/2-ELK1 axis. These findings suggest that reactivation of PARK2 may be a promising therapeutic approach to counteract melanoma growth.
Collapse
Affiliation(s)
- Valentina Montagnani
- Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Luisa Maresca
- Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Alessandro Apollo
- Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Sara Pepe
- Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy; Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ryan M Carr
- Division of Oncology Research, Department of Oncology, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota USA
| | - Martin E Fernandez-Zapico
- Division of Oncology Research, Department of Oncology, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota USA
| | - Barbara Stecca
- Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy.
| |
Collapse
|
19
|
Onuh JO, Qiu H. Serum response factor-cofactor interactions and their implications in disease. FEBS J 2020; 288:3120-3134. [PMID: 32885587 PMCID: PMC7925694 DOI: 10.1111/febs.15544] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/21/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Serum response factor (SRF), a member of the Mcm1, Agamous, Deficiens, and SRF (MADS) box transcription factor, is widely expressed in all cell types and plays a crucial role in the physiological function and development of diseases. SRF regulates its downstream genes by binding to their CArG DNA box by interacting with various cofactors. However, the underlying mechanisms are not fully understood, therefore attracting increasing research attention due to the importance of this topic. This review's objective is to discuss the new progress in the studies of the molecular mechanisms involved in the activation of SRF and its impacts in physiological and pathological conditions. Notably, we summarized the recent studies on the interaction of SRF with its two main types of cofactors belonging to the myocardin families of transcription factors and the members of the ternary complex factors. The knowledge of these mechanisms will create new opportunities for understanding the dynamics of many traits and disease pathogenesis especially, cardiovascular diseases and cancer that could serve as targets for pharmacological control and treatment of these diseases.
Collapse
Affiliation(s)
- John Oloche Onuh
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
20
|
Developmental change in the gene expression of transient receptor potential melastatin channel 3 (TRPM3) in murine lacrimal gland. Ann Anat 2020; 231:151551. [PMID: 32512204 DOI: 10.1016/j.aanat.2020.151551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 11/20/2022]
Abstract
Transient receptor potential (TRP) channels are cation channels with ubiquitous expression. Various TRP channels are functionally active at the ocular surface and are involved in tear secretion and multiple inflammatory processes. So far, the impact of TRP channels regarding the development of the lacrimal gland (LG) is unclear. While investigating TRP channels in the LG, the TRPM3 channel presented itself as a promising candidate to play a role in the development and functioning of the LG. Therefore, Trpm3 expression was analyzed in different embryonic and postembryonic LGs. Thus, gene expression of TRPM channels including Trpm2, Trpm3, Trpm4 and Trpm6 was analyzed by quantitative RT-PCR in murine LGs at different developmental stages. Localization of TRPM3 in LGs was examined by immunohistochemistry. Primary LG epithelial cells (LGEC) and mesenchymal cells (MC) from newborn mice were cultured (either separately or collectively) for three days, and Trpm3 expression was analyzed in LGEC and MC. As a result, gene expression of Trpm2, Trpm4 and Trpm6 showed no significant difference in LGs in the different stages of development. However, Trpm3 gene expression was significantly higher in the embryonic stage than in the postnatal stage with the peak at E18. Postnatal, Trpm3 expression significantly decreased up to 28-fold until two years of age. Immunohistochemistry for TRPM3 revealed apical membranous expression in the excretory ducts, as well as in the acini of up to P7 old mice. Trpm3 expression in LGEC were significantly higher than that of MC. Our results indicate that Trpm3 expression in murine LG is age-dependent and peaks at age E18. Its expression is localized in the apical membrane of the glandular epithelium. However, its functional role still requires additional study in the LG.
Collapse
|
21
|
Lesch A, Backes TM, Langfermann DS, Rössler OG, Laschke MW, Thiel G. Ternary complex factor regulates pancreatic islet size and blood glucose homeostasis in transgenic mice. Pharmacol Res 2020; 159:104983. [PMID: 32504838 DOI: 10.1016/j.phrs.2020.104983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
A hallmark of diabetes mellitus is the inability of pancreatic β-cells to secrete sufficient amounts of insulin for maintaining normoglycemia. The formation of smaller islets may underlie the development of a diabetic phenotype, as a decreased β-cell mass will produce an insufficient amount of insulin. For a pharmacological intervention it is crucial to identify the proteins determining β-cell mass. Here, we identified the ternary complex factor (TCF) Elk-1 as a regulator of the size of pancreatic islets. Elk-1 mediates, together with a dimer of the serum-response factor (SRF), serum response element-regulated gene transcription. Elk-1 is activated in glucose-treated pancreatic β-cells but the biological functions of this protein in β-cells are so far unknown. Elk-1 and homologous TCF proteins are expressed in islets and insulinoma cells. Gene targeting experiments revealed that the TCF proteins show redundant activities. To solve the problem of functional redundancy of these homologous proteins, we generated conditional transgenic mice expressing a dominant-negative mutant of Elk-1 in pancreatic β-cells. The mutant competes with the wild-type TCFs for DNA and SRF-binding. Expression of the Elk-1 mutant in pancreatic β-cells resulted in the generation of significantly smaller islets and increased caspase-3 activity, indicating that apoptosis was responsible for the reduction of the pancreatic islet size. Glucose tolerance tests revealed that transgenic mice expressing the dominant-negative mutant of Elk-1 in pancreatic β-cells displayed impaired glucose tolerance. Thus, we show here for the first time that TCF controls important functions of pancreatic β-cells in vivo. Elk-1 may be considered as a new therapeutic target for the treatment of diabetes.
Collapse
Affiliation(s)
- Andrea Lesch
- Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66421 Homburg, Germany
| | - Tobias M Backes
- Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66421 Homburg, Germany
| | - Daniel S Langfermann
- Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66421 Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, D-66421, Homburg, Germany
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66421 Homburg, Germany.
| |
Collapse
|
22
|
Alessio N, Squillaro T, Di Bernardo G, Galano G, De Rosa R, Melone MAB, Peluso G, Galderisi U. Increase of circulating IGFBP-4 following genotoxic stress and its implication for senescence. eLife 2020; 9:e54523. [PMID: 32223893 PMCID: PMC7136022 DOI: 10.7554/elife.54523] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/29/2020] [Indexed: 12/13/2022] Open
Abstract
Senescent cells secrete several molecules, collectively named senescence-associated secretory phenotype (SASP). In the SASP of cells that became senescent following several in vitro chemical and physical stress, we identified the IGFBP-4 protein that can be considered a general stress mediator. This factor appeared to play a key role in senescence-paracrine signaling. We provided evidences showing that genotoxic injury, such as low dose irradiation, may promote an IGFBP-4 release in bloodstream both in mice irradiated with 100 mGy X-ray and in human subjects that received Computer Tomography. Increased level of circulating IGFBP-4 may be responsible of pro-aging effect. We found a significant increase of senescent cells in the lungs, heart, and kidneys of mice that were intraperitoneally injected with IGFBP-4 twice a week for two months. We then analyzed how genotoxic stressors may promote the release of IGFBP-4 and the molecular pathways associated with the induction of senescence by this protein.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania “Luigi Vanvitelli,”NaplesItaly
| | - Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania “Luigi Vanvitelli,”NaplesItaly
| | | | | | | | - Mariarosa AB Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania 'Luigi Vanvitelli'NaplesItaly
| | | | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania “Luigi Vanvitelli,”NaplesItaly
- Research Institute of Terrestrial Ecosystems (IRET), CNRNaplesItaly
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple UniversityPhiladelphiaUnited States
| |
Collapse
|
23
|
EGFR activates GDH1 transcription to promote glutamine metabolism through MEK/ERK/ELK1 pathway in glioblastoma. Oncogene 2020; 39:2975-2986. [PMID: 32034306 DOI: 10.1038/s41388-020-1199-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 11/08/2022]
Abstract
Cancer metabolism research has recently been revived and its focus expanded from glucose and the Warburg's effects on other nutrients, such as glutamine. The underlying mechanism of oncogenic alterations of glutaminolysis remains unclear. Genetic alterations of EGFR are observed in ~50% of glioblastoma (GBM) patients, and have been found to play important roles in the metabolic abnormalities of GBM. In this study, we found that glutamine metabolism was upregulated after EGFR activation in a GDH1 (glutamate dehydrogenase 1)-dependent manner. Knockdown of GDH1 significantly reduced the cell proliferation, colony formation and tumorigenesis abilities of glioblastoma cells. Furthermore, we showed that GDH1-mediated glutaminolysis was involved in EGF-promoted cell proliferation. EGFR triggered the phosphorylation of ELK1 at Ser 383 through activating MEK/ERK signaling. Phosphorylated ELK1 enriched in the promoter of GDH1 to activate the transcription of GDH1, which then promoted glutamine metabolism. In addition, EGFR activation did not accelerate glutaminolysis in ELK1 knockdown or ELK1 Ser383-mutated cells. Collectively, our findings indicate that EGFR phosphorylates ELK1 to activate GDH1 transcription and glutaminolysis through MEK/ERK pathway, providing new insight into oncogenic alterations of glutamine metabolism.
Collapse
|
24
|
Ducker C, Chow LKY, Saxton J, Handwerger J, McGregor A, Strahl T, Layfield R, Shaw PE. De-ubiquitination of ELK-1 by USP17 potentiates mitogenic gene expression and cell proliferation. Nucleic Acids Res 2019; 47:4495-4508. [PMID: 30854565 PMCID: PMC6511843 DOI: 10.1093/nar/gkz166] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 01/06/2023] Open
Abstract
ELK-1 is a transcription factor involved in ERK-induced cellular proliferation. Here, we show that its transcriptional activity is modulated by ubiquitination at lysine 35 (K35). The level of ubiquitinated ELK-1 rises in mitogen-deprived cells and falls upon mitogen stimulation or oncogene expression. Ectopic expression of USP17, a cell cycle-dependent deubiquitinase, decreases ELK-1 ubiquitination and up-regulates ELK-1 target-genes with a concomitant increase in cyclin D1 expression. In contrast, USP17 depletion attenuates ELK-1-dependent gene expression and slows cell proliferation. The reduced rate of proliferation upon USP17 depletion appears to be a direct effect of ELK-1 ubiquitination because it is rescued by an ELK-1(K35R) mutant refractory to ubiquitination. Overall, our results show that ubiquitination of ELK-1 at K35, and its reversal by USP17, are important mechanisms in the regulation of nuclear ERK signalling and cellular proliferation. Our findings will be relevant for tumours that exhibit elevated USP17 expression and suggest a new target for intervention.
Collapse
Affiliation(s)
- Charles Ducker
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Leo Kam Yuen Chow
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Janice Saxton
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Jürgen Handwerger
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Alexander McGregor
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Thomas Strahl
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Robert Layfield
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Peter E Shaw
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
25
|
Wang AW, Wang YJ, Zahm AM, Morgan AR, Wangensteen KJ, Kaestner KH. The Dynamic Chromatin Architecture of the Regenerating Liver. Cell Mol Gastroenterol Hepatol 2019; 9:121-143. [PMID: 31629814 PMCID: PMC6909351 DOI: 10.1016/j.jcmgh.2019.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The adult liver is the main detoxification organ and routinely is exposed to environmental insults but retains the ability to restore its mass and function upon tissue damage. However, extensive injury can lead to liver failure, and chronic injury causes fibrosis, cirrhosis, and hepatocellular carcinoma. Currently, the transcriptional regulation of organ repair in the adult liver is incompletely understood. METHODS We isolated nuclei from quiescent as well as repopulating hepatocytes in a mouse model of hereditary tyrosinemia, which recapitulates the injury and repopulation seen in toxic liver injury in human beings. We then performed the assay for transposase accessible chromatin with high-throughput sequencing specifically in repopulating hepatocytes to identify differentially accessible chromatin regions and nucleosome positioning. In addition, we used motif analysis to predict differential transcription factor occupancy and validated the in silico results with chromatin immunoprecipitation followed by sequencing for hepatocyte nuclear factor 4α (HNF4α) and CCCTC-binding factor (CTCF). RESULTS Chromatin accessibility in repopulating hepatocytes was increased in the regulatory regions of genes promoting proliferation and decreased in the regulatory regions of genes involved in metabolism. The epigenetic changes at promoters and liver enhancers correspond with the regulation of gene expression, with enhancers of many liver function genes showing a less accessible state during the regenerative process. Moreover, increased CTCF occupancy at promoters and decreased HNF4α binding at enhancers implicate these factors as key drivers of the transcriptomic changes in replicating hepatocytes that enable liver repopulation. CONCLUSIONS Our analysis of hepatocyte-specific epigenomic changes during liver repopulation identified CTCF and HNF4α as key regulators of hepatocyte proliferation and regulation of metabolic programs. Thus, liver repopulation in the setting of toxic injury makes use of both general transcription factors (CTCF) for promoter activation, and reduced binding by a hepatocyte-enriched factor (HNF4α) to temporarily limit enhancer activity. All sequencing data in this study were deposited to the Gene Expression Omnibus database and can be downloaded with accession number GSE109466.
Collapse
Affiliation(s)
- Amber W Wang
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yue J Wang
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| | - Adam M Zahm
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ashleigh R Morgan
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kirk J Wangensteen
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
26
|
Disser NP, Sugg KB, Talarek JR, Sarver DC, Rourke BJ, Mendias CL. Insulin-like growth factor 1 signaling in tenocytes is required for adult tendon growth. FASEB J 2019; 33:12680-12695. [PMID: 31536390 DOI: 10.1096/fj.201901503r] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tenocytes serve to synthesize and maintain collagen fibrils and other extracellular matrix proteins in tendon. Despite the high prevalence of tendon injury, the underlying biologic mechanisms of postnatal tendon growth and repair are not well understood. IGF1 plays an important role in the growth and remodeling of numerous tissues but less is known about IGF1 in tendon. We hypothesized that IGF1 signaling is required for proper tendon growth in response to mechanical loading through regulation of collagen synthesis and cell proliferation. To test this hypothesis, we conditionally deleted the IGF1 receptor (IGF1R) in scleraxis (Scx)-expressing tenocytes using a tamoxifen-inducible Cre-recombinase system and caused tendon growth in adult mice via mechanical overload of the plantaris tendon. Compared with control Scx-expressing IGF1R-positive (Scx:IGF1R+) mice, in which IGF1R is present in tenocytes, mice that lacked IGF1R in their tenocytes [Scx-expressing IGF1R-negative (Scx:IGF1RΔ) mice] demonstrated reduced cell proliferation and smaller tendons in response to mechanical loading. Additionally, we identified that both the PI3K/protein kinase B and ERK pathways are activated downstream of IGF1 and interact in a coordinated manner to regulate cell proliferation and protein synthesis. These studies indicate that IGF1 signaling is required for proper postnatal tendon growth and support the potential use of IGF1 in the treatment of tendon disorders.-Disser, N. P., Sugg, K. B., Talarek, J. R., Sarver, D. C., Rourke, B. J., Mendias, C. L. Insulin-like growth factor 1 signaling in tenocytes is required for adult tendon growth.
Collapse
Affiliation(s)
| | - Kristoffer B Sugg
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Section of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jeffrey R Talarek
- Hospital for Special Surgery, New York, New York, USA.,Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Dylan C Sarver
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Brennan J Rourke
- Hospital for Special Surgery, New York, New York, USA.,Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Christopher L Mendias
- Hospital for Special Surgery, New York, New York, USA.,Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
27
|
Childers CL, Tessier SN, Storey KB. The heart of a hibernator: EGFR and MAPK signaling in cardiac muscle during the hibernation of thirteen-lined ground squirrels, Ictidomys tridecemlineatus. PeerJ 2019; 7:e7587. [PMID: 31534849 PMCID: PMC6732209 DOI: 10.7717/peerj.7587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) experience dramatic changes in physiological and molecular parameters during winter hibernation. Notably, these animals experience reduced blood circulation during torpor, which can put numerous stresses on their hearts. The present study evaluates the role played by the epidermal growth factor receptor (EGFR) in signal transduction during hibernation at low body temperature to evaluate signaling mechanisms. By investigating the regulation of intracellular mitogen activated protein kinase (MAPK) pathway responses, anti-apoptosis signals, downstream transcription factors, and heat shock proteins in cardiac muscle we aim to determine the correlation between upstream tyrosine phosphorylation events and downstream outcomes. Methods Protein abundance of phosphorylated EGFR, MAPKs and downstream effector proteins were quantified using immunoblotting and Luminex® multiplex assays. Results Monitoring five time points over the torpor/arousal cycle, EGFR phosphorylation on T654, Y1068, Y1086 was found to increase significantly compared with euthermic control values particularly during the arousal process from torpor, whereas phosphorylation at Y1045 was reduced during torpor. Phosphorylation of intracellular MAPK targets (p-ERK 1/2, p-JNK, p-p38) also increased strongly during the early arousal stage with p-p38 levels also rising during prolonged torpor. However, of downstream MAPK effector kinases that were measured, only p-Elk-1 levels changed showing a decrease during interbout arousal (IA). Apoptosis markers revealed a strong reduction of the pro-apoptotic p-BAD protein during entrance into torpor that remained suppressed through torpor and IA. However, active caspase-9 protein rose strongly during IA. Levels of p-AKT were suppressed during the transition phases into and out of torpor. Of four heat shock proteins assessed, only HSP27 protein levels changed significantly (a 40% decrease) during torpor. Conclusion We show evidence of EGFR phosphorylation correlating to activation of MAPK signaling and downstream p-ELK1 suppression during hibernation. We also demonstrate a reduction in p-BAD mediated pro-apoptotic signaling during hibernation with active caspase-9 protein levels increasing only during IA. I. tridecemlineatus has natural mechanisms of tissue protection during hibernation that is largely due to cellular regulation through phosphorylation-mediated signaling cascade. We identify a possible link between EGFR and MAPK signaling via p-ERK, p-p38, and p-JNK in the cardiac muscle of these hibernating mammals that correlates with an apparent reduction in caspase-9 apoptotic signaling. This reveals a piece of the mechanism behind how these mammals are resilient to cardiac stresses during hibernation that would otherwise be damaging.
Collapse
Affiliation(s)
| | - Shannon N Tessier
- BioMEMS Resource Center & Center for Engineering in Medicine, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA, USA
| | - Kenneth B Storey
- Institute of Biochemistry, Department of Biology and Chemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
28
|
Garcia-Alonso L, Holland CH, Ibrahim MM, Turei D, Saez-Rodriguez J. Benchmark and integration of resources for the estimation of human transcription factor activities. Genome Res 2019; 29:1363-1375. [PMID: 31340985 PMCID: PMC6673718 DOI: 10.1101/gr.240663.118] [Citation(s) in RCA: 534] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 05/28/2019] [Indexed: 12/25/2022]
Abstract
The prediction of transcription factor (TF) activities from the gene expression of their targets (i.e., TF regulon) is becoming a widely used approach to characterize the functional status of transcriptional regulatory circuits. Several strategies and data sets have been proposed to link the target genes likely regulated by a TF, each one providing a different level of evidence. The most established ones are (1) manually curated repositories, (2) interactions derived from ChIP-seq binding data, (3) in silico prediction of TF binding on gene promoters, and (4) reverse-engineered regulons from large gene expression data sets. However, it is not known how these different sources of regulons affect the TF activity estimations and, thereby, downstream analysis and interpretation. Here we compared the accuracy and biases of these strategies to define human TF regulons by means of their ability to predict changes in TF activities in three reference benchmark data sets. We assembled a collection of TF-target interactions for 1541 human TFs and evaluated how different molecular and regulatory properties of the TFs, such as the DNA-binding domain, specificities, or mode of interaction with the chromatin, affect the predictions of TF activity. We assessed their coverage and found little overlap on the regulons derived from each strategy and better performance by literature-curated information followed by ChIP-seq data. We provide an integrated resource of all TF-target interactions derived through these strategies, with confidence scores, as a resource for enhanced prediction of TF activities.
Collapse
Affiliation(s)
- Luz Garcia-Alonso
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD Cambridge, United Kingdom
- Open Targets, Wellcome Genome Campus, CB10 1SD Cambridge, United Kingdom
| | - Christian H Holland
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Faculty of Medicine, 52074 Aachen, Germany
- Institute of Computational Biomedicine, Heidelberg University, Faculty of Medicine, 69120 Heidelberg, Germany
| | - Mahmoud M Ibrahim
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Faculty of Medicine, 52074 Aachen, Germany
- Department of Nephrology, RWTH Aachen University, Faculty of Medicine, 52074 Aachen, Germany
| | - Denes Turei
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Faculty of Medicine, 52074 Aachen, Germany
- Institute of Computational Biomedicine, Heidelberg University, Faculty of Medicine, 69120 Heidelberg, Germany
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD Cambridge, United Kingdom
- Open Targets, Wellcome Genome Campus, CB10 1SD Cambridge, United Kingdom
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Faculty of Medicine, 52074 Aachen, Germany
- Institute of Computational Biomedicine, Heidelberg University, Faculty of Medicine, 69120 Heidelberg, Germany
| |
Collapse
|
29
|
Prise I, Sharrocks AD. ELK1 has a dual activating and repressive role in human embryonic stem cells. Wellcome Open Res 2019; 4:41. [PMID: 31346550 PMCID: PMC6619381 DOI: 10.12688/wellcomeopenres.15091.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
Background: The ERK MAPK pathway plays a pivotal role in regulating numerous cellular processes during normal development and in the adult but is often deregulated in disease scenarios. One of its key nuclear targets is the transcription factor ELK1, which has been shown to play an important role in controlling gene expression in human embryonic stem cells (hESCs). ELK1 is known to act as a transcriptional activator in response to ERK pathway activation but repressive roles have also been uncovered, including a putative interaction with the PRC2 complex. Methods: Here we probe the activity of ELK1 in hESCs by using a combination of gene expression analysis in hESCs and during differentiation following ELK1 depletion and also analysis of chromatin occupancy of transcriptional regulators and histone mark deposition that accompany changes in gene expression. Results: We find that ELK1 can exert its canonical activating activity downstream from the ERK pathway but also possesses additional repressive activities. Despite its co-binding to PRC2 occupied regions, we could not detect any ELK1-mediated repression at these regions. Instead, we find that ELK1 has a repressive role at a subset of co-occupied SRF binding regions. Conclusions: ELK1 should therefore be viewed as a dichotomous transcriptional regulator that can act through SRF to generate both activating and repressing properties at different genomic loci.
Collapse
Affiliation(s)
- Ian Prise
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
30
|
Prise I, Sharrocks AD. ELK1 has a dual activating and repressive role in human embryonic stem cells. Wellcome Open Res 2019; 4:41. [DOI: 10.12688/wellcomeopenres.15091.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2019] [Indexed: 11/20/2022] Open
Abstract
Background: The ERK MAPK pathway plays a pivotal role in regulating numerous cellular processes during normal development and in the adult but is often deregulated in disease scenarios. One of its key nuclear targets is the transcription factor ELK1, which has been shown to play an important role in controlling gene expression in human embryonic stem cells (hESCs). ELK1 is known to act as a transcriptional activator in response to ERK pathway activation but repressive roles have also been uncovered, including a putative interaction with the PRC2 complex. Methods: Here we probe the activity of ELK1 in hESCs by using a combination of gene expression analysis in hESCs and during differentiation following ELK1 depletion and also analysis of chromatin occupancy of transcriptional regulators and histone mark deposition that accompany changes in gene expression. Results: We find that ELK1 can exert its canonical activating activity downstream from the ERK pathway but also possesses additional repressive activities. Despite its co-binding to PRC2 occupied regions, we could not detect any ELK1-mediated repression at these regions. Instead, we find that ELK1 has a repressive role at a subset of co-occupied SRF binding regions. This latter repressive role appears not to be exerted through competition with MRTF family co-activators. Conclusions: ELK1 should therefore be viewed as a dichotomous transcriptional regulator that can act through SRF to generate both activating and repressing properties at different genomic loci.
Collapse
|
31
|
Chowdhury D, Singh A, Gupta A, Tulsawani R, Meena RC, Chakrabarti A. p38 MAPK pathway-dependent SUMOylation of Elk-1 and phosphorylation of PIAS2 correlate with the downregulation of Elk-1 activity in heat-stressed HeLa cells. Cell Stress Chaperones 2019; 24:393-407. [PMID: 30783905 PMCID: PMC6439063 DOI: 10.1007/s12192-019-00974-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 01/01/2023] Open
Abstract
Stress-activated and mitogen-activated protein kinases (MAPKs) regulate gene expression by post-translational modifications of transcription factors. Elk-1, a transcription factor that regulates the expression of immediate early genes, is amenable to regulation by all the three mammalian MAPKs. In the present report, using inhibitors specific for different MAPK pathways, we show that during exposure of HeLa cells to heat stress, Elk-1 is SUMOylated with SUMO1 by p38 MAPK pathway-dependent mechanisms. Elk-1-phosphorylation levels were significantly reduced under similar conditions. We also show that transcriptional activity of Elk-1 as assessed by luciferase reporter expression and qPCR estimation of the expression of genes regulated by Elk-1 was downregulated upon exposure to heat stress; this downregulation was reversed when heat exposure was performed in the presence of either SB203580 (p38 MAPK inhibitor) or ginkgolic acid (inhibitor of SUMOylation). Elk-1 induced transcription is also regulated by PIAS2 which acts as a coactivator upon the activation of extracellular signal-regulated kinases (ERKs) and as a corepressor upon its phosphorylation by p38 MAPK. Since heat stress activates the p38 MAPK pathway, we determined if PIAS2 was phosphorylated in heat-stressed HeLa cells. Our studies indicate that in HeLa cells exposed to heat stress, PIAS2 is phosphorylated by p38 MAPK pathway-dependent mechanisms. Collectively, the results presented demonstrate that in heat-stressed HeLa cells, p38 MAPK pathway-dependent SUMOylation of Elk-1 and phosphorylation of PIAS2 correlate with the downregulation of transactivation by Elk-1.
Collapse
Affiliation(s)
- Daipayan Chowdhury
- Department of Molecular Biology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ajeet Singh
- Department of Molecular Biology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Avinash Gupta
- Department of Molecular Biology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Rajkumar Tulsawani
- Department of Chemistry, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ramesh Chand Meena
- Department of Molecular Biology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Amitabha Chakrabarti
- Department of Molecular Biology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
32
|
Wawro K, Wawro M, Strzelecka M, Czarnek M, Bereta J. The role of NF-κB and Elk-1 in the regulation of mouse ADAM17 expression. Biol Open 2019; 8:8/2/bio039420. [PMID: 30709842 PMCID: PMC6398470 DOI: 10.1242/bio.039420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ADAM17 is a cell membrane metalloproteinase responsible for the release of ectodomains of numerous proteins from the cell surface. Although ADAM17 is often overexpressed in tumours and at sites of inflammation, little is known about the regulation of its expression. Here we investigate the role of NF-κB and Elk-1 transcription factors and upstream signalling pathways, NF-κB and ERK1/2 in ADAM17 expression in mouse brain endothelial cells stimulated with pro-inflammatory factors (TNF, IL-1β, LPS) or a phorbol ester (PMA), a well-known stimulator of ADAM17 activity. Notably, NF-κB inhibitor, IKK VII, interfered with the IL-1β- and LPS-mediated stimulation of ADAM17 expression. Furthermore, Adam17 promoter contains an NF-κB binding site occupied by p65 subunit of NF-κB. The transient increase in Adam17 mRNA in response to PMA was strongly reduced by an inhibitor of ERK1/2 phosphorylation, U0126. Luciferase reporter assay with vectors encoding the ERK1/2 substrate, Elk-1, fused with constitutively activating or repressing domains, indicated Elk-1 involvement in Adam17 expression. The site-directed mutagenesis of potential Elk-1 binding sites pointed to four functional Elk-1 binding sites in Adam17 promoter. All in all, our results indicate that NF-κB and Elk-1 transcription factors via NF-κB and ERK1/2 signalling pathways contribute to the regulation of mouse Adam17 expression. Summary: We show the involvement of ERK1/2 and NF-κB pathways in the stimulation of mouse Adam17 expression and determine functional Elk-1- and NF-κB binding sites in its promoter.
Collapse
Affiliation(s)
- Karolina Wawro
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Mateusz Wawro
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Magdalena Strzelecka
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Maria Czarnek
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Joanna Bereta
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| |
Collapse
|
33
|
Rampias T, Karagiannis D, Avgeris M, Polyzos A, Kokkalis A, Kanaki Z, Kousidou E, Tzetis M, Kanavakis E, Stravodimos K, Manola KN, Pantelias GE, Scorilas A, Klinakis A. The lysine-specific methyltransferase KMT2C/MLL3 regulates DNA repair components in cancer. EMBO Rep 2019; 20:embr.201846821. [PMID: 30665945 PMCID: PMC6399616 DOI: 10.15252/embr.201846821] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022] Open
Abstract
Genome‐wide studies in tumor cells have indicated that chromatin‐modifying proteins are commonly mutated in human cancers. The lysine‐specific methyltransferase 2C (KMT2C/MLL3) is a putative tumor suppressor in several epithelia and in myeloid cells. Here, we show that downregulation of KMT2C in bladder cancer cells leads to extensive changes in the epigenetic status and the expression of DNA damage response and DNA repair genes. More specifically, cells with low KMT2C activity are deficient in homologous recombination‐mediated double‐strand break DNA repair. Consequently, these cells suffer from substantially higher endogenous DNA damage and genomic instability. Finally, these cells seem to rely heavily on PARP1/2 for DNA repair, and treatment with the PARP1/2 inhibitor olaparib leads to synthetic lethality, suggesting that cancer cells with low KMT2C expression are attractive targets for therapies with PARP1/2 inhibitors.
Collapse
Affiliation(s)
| | | | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Antonis Kokkalis
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Zoi Kanaki
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Evgenia Kousidou
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Maria Tzetis
- Department of Medical Genetics, Medical School, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Kanavakis
- Department of Medical Genetics, Medical School, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece.,University Research Institute for the Study and Treatment of Childhood Genetic and Malignant Diseases, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stravodimos
- First Department of Urology, "Laiko" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kalliopi N Manola
- Laboratory of Health Physics, Radiobiology & Cytogenetics, National Center for Scientific Research (NCSR) "Demokritos", Athens, Greece
| | - Gabriel E Pantelias
- Laboratory of Health Physics, Radiobiology & Cytogenetics, National Center for Scientific Research (NCSR) "Demokritos", Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
34
|
Müller S, Glaß M, Singh AK, Haase J, Bley N, Fuchs T, Lederer M, Dahl A, Huang H, Chen J, Posern G, Hüttelmaier S. IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res 2019; 47:375-390. [PMID: 30371874 PMCID: PMC6326824 DOI: 10.1093/nar/gky1012] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/09/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022] Open
Abstract
The oncofetal mRNA-binding protein IGF2BP1 and the transcriptional regulator SRF modulate gene expression in cancer. In cancer cells, we demonstrate that IGF2BP1 promotes the expression of SRF in a conserved and N6-methyladenosine (m6A)-dependent manner by impairing the miRNA-directed decay of the SRF mRNA. This results in enhanced SRF-dependent transcriptional activity and promotes tumor cell growth and invasion. At the post-transcriptional level, IGF2BP1 sustains the expression of various SRF-target genes. The majority of these SRF/IGF2BP1-enhanced genes, including PDLIM7 and FOXK1, show conserved upregulation with SRF and IGF2BP1 synthesis in cancer. PDLIM7 and FOXK1 promote tumor cell growth and were reported to enhance cell invasion. Consistently, 35 SRF/IGF2BP1-dependent genes showing conserved association with SRF and IGF2BP1 expression indicate a poor overall survival probability in ovarian, liver and lung cancer. In conclusion, these findings identify the SRF/IGF2BP1-, miRNome- and m6A-dependent control of gene expression as a conserved oncogenic driver network in cancer.
Collapse
Affiliation(s)
- Simon Müller
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford protein center, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford protein center, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Anurag K Singh
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Jacob Haase
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford protein center, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Nadine Bley
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford protein center, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Tommy Fuchs
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford protein center, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Marcell Lederer
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford protein center, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Andreas Dahl
- Deep Sequencing Group, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden
| | - Huilin Huang
- Department of Systems Biology, City of Hope, Monrovia, CA 91016, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Jianjun Chen
- Department of Systems Biology, City of Hope, Monrovia, CA 91016, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Guido Posern
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford protein center, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| |
Collapse
|
35
|
Nicholas TR, Strittmatter BG, Hollenhorst PC. Oncogenic ETS Factors in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:409-436. [PMID: 31900919 DOI: 10.1007/978-3-030-32656-2_18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostate cancer is unique among carcinomas in that a fusion gene created by a chromosomal rearrangement is a common driver of the disease. The TMPRSS2/ERG rearrangement drives aberrant expression of the ETS family transcription factor ERG in 50% of prostate tumors. Similar rearrangements promote aberrant expression of the ETS family transcription factors ETV1 and ETV4 in another 10% of cases. Together, these three ETS factors are thought to promote tumorigenesis in the majority of prostate cancers. A goal of precision medicine is to be able to apply targeted therapeutics that are specific to disease subtypes. ETS gene rearrangement positive tumors represent the largest molecular subtype of prostate cancer, but to date there is no treatment specific to this marker. In this chapter we will review the latest findings regarding the molecular mechanisms of ETS factor function in the prostate. These molecular details may provide a path towards new therapeutic targets for this subtype of prostate cancer. Further, we will describe efforts to target the oncogenic functions of ETS family transcription factors directly as well as indirectly.
Collapse
Affiliation(s)
| | - Brady G Strittmatter
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA.
| |
Collapse
|
36
|
Rubil S, Thiel G. Stimulation of TRPM3 channels increases the transcriptional activation potential of Elk-1 involving cytosolic Ca 2+, extracellular signal-regulated protein kinase, and calcineurin. Eur J Pharmacol 2018; 844:225-230. [PMID: 30552902 DOI: 10.1016/j.ejphar.2018.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022]
Abstract
Stimulation of transient receptor potential M3 (TRPM3) channels with the steroid pregnenolone sulfate increases the transcriptional activation potential of Elk-1, a transcription factor that regulates serum response element-mediated transcription. Here, we show that an influx of Ca2+ ions into the cells is essential for the activation of Elk-1 following stimulation of TRPM3. Using genetically encoded Ca2+ buffers, we show that a rise in cytoplasmic Ca2+ is required for the upregulation of the transcriptional activation potential of Elk-1, while buffering of Ca2+ in the nucleus had no inhibitory effect on the transcriptional activity of Elk-1. Pharmacological and genetic experiments showed that extracellular signal-regulated protein kinase (ERK1/2) functions as signal transducer connecting TRPM3 channels with the Elk-1 transcription factor. Accordingly, dephosphorylation of ERK1/2 in the nucleus by MAP kinase phosphatase attenuated TRPM3-mediated Elk-1 activation. Moreover, we show that the Ca2+/calmodulin-dependent protein phosphatase calcineurin is part of a shut-off-device for the signaling cascade connecting TRPM3 channels with the activation of Elk-1. The fact that TRPM3 channel stimulation activates Elk-1 connects TRPM3 with the biological functions of Elk-1, including the regulation of proliferation, differentiation, survival, transcription, and cell migration.
Collapse
Affiliation(s)
- Sandra Rubil
- Department of Medical Biochemistry and Molecular Biology Saarland University Medical Faculty, Building 44, D-66421 Homburg, Germany
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology Saarland University Medical Faculty, Building 44, D-66421 Homburg, Germany.
| |
Collapse
|
37
|
Cho CH. Commentary: Antidepressive effects of targeting ELK-1 signal transduction. Front Mol Neurosci 2018; 11:384. [PMID: 30369870 PMCID: PMC6194192 DOI: 10.3389/fnmol.2018.00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/24/2018] [Indexed: 11/24/2022] Open
|
38
|
Zhao ZW, Zhang M, Chen LY, Gong D, Xia XD, Yu XH, Wang SQ, Ou X, Dai XY, Zheng XL, Zhang DW, Tang CK. Heat shock protein 70 accelerates atherosclerosis by downregulating the expression of ABCA1 and ABCG1 through the JNK/Elk-1 pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:806-822. [DOI: 10.1016/j.bbalip.2018.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/30/2018] [Accepted: 04/15/2018] [Indexed: 12/14/2022]
|
39
|
Shen N, Zhao J, Schipper JL, Zhang Y, Bepler T, Leehr D, Bradley J, Horton J, Lapp H, Gordan R. Divergence in DNA Specificity among Paralogous Transcription Factors Contributes to Their Differential In Vivo Binding. Cell Syst 2018; 6:470-483.e8. [PMID: 29605182 DOI: 10.1016/j.cels.2018.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/29/2022]
Abstract
Paralogous transcription factors (TFs) are oftentimes reported to have identical DNA-binding motifs, despite the fact that they perform distinct regulatory functions. Differential genomic targeting by paralogous TFs is generally assumed to be due to interactions with protein co-factors or the chromatin environment. Using a computational-experimental framework called iMADS (integrative modeling and analysis of differential specificity), we show that, contrary to previous assumptions, paralogous TFs bind differently to genomic target sites even in vitro. We used iMADS to quantify, model, and analyze specificity differences between 11 TFs from 4 protein families. We found that paralogous TFs have diverged mainly at medium- and low-affinity sites, which are poorly captured by current motif models. We identify sequence and shape features differentially preferred by paralogous TFs, and we show that the intrinsic differences in specificity among paralogous TFs contribute to their differential in vivo binding. Thus, our study represents a step forward in deciphering the molecular mechanisms of differential specificity in TF families.
Collapse
Affiliation(s)
- Ning Shen
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA
| | - Jingkang Zhao
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA; Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Joshua L Schipper
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA
| | - Yuning Zhang
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Tristan Bepler
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Dan Leehr
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - John Bradley
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - John Horton
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA
| | - Hilmar Lapp
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Raluca Gordan
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA; Department of Computer Science, Duke University, Durham, NC 27708, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
40
|
Whittaker SR, Barlow C, Martin MP, Mancusi C, Wagner S, Self A, Barrie E, Te Poele R, Sharp S, Brown N, Wilson S, Jackson W, Fischer PM, Clarke PA, Walton MI, McDonald E, Blagg J, Noble M, Garrett MD, Workman P. Molecular profiling and combinatorial activity of CCT068127: a potent CDK2 and CDK9 inhibitor. Mol Oncol 2018; 12:287-304. [PMID: 29063678 PMCID: PMC5830651 DOI: 10.1002/1878-0261.12148] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 01/18/2023] Open
Abstract
Deregulation of the cyclin-dependent kinases (CDKs) has been implicated in the pathogenesis of multiple cancer types. Consequently, CDKs have garnered intense interest as therapeutic targets for the treatment of cancer. We describe herein the molecular and cellular effects of CCT068127, a novel inhibitor of CDK2 and CDK9. Optimized from the purine template of seliciclib, CCT068127 exhibits greater potency and selectivity against purified CDK2 and CDK9 and superior antiproliferative activity against human colon cancer and melanoma cell lines. X-ray crystallography studies reveal that hydrogen bonding with the DFG motif of CDK2 is the likely mechanism of greater enzymatic potency. Commensurate with inhibition of CDK activity, CCT068127 treatment results in decreased retinoblastoma protein (RB) phosphorylation, reduced phosphorylation of RNA polymerase II, and induction of cell cycle arrest and apoptosis. The transcriptional signature of CCT068127 shows greatest similarity to other small-molecule CDK and also HDAC inhibitors. CCT068127 caused a dramatic loss in expression of DUSP6 phosphatase, alongside elevated ERK phosphorylation and activation of MAPK pathway target genes. MCL1 protein levels are rapidly decreased by CCT068127 treatment and this associates with synergistic antiproliferative activity after combined treatment with CCT068127 and ABT263, a BCL2 family inhibitor. These findings support the rational combination of this series of CDK2/9 inhibitors and BCL2 family inhibitors for the treatment of human cancer.
Collapse
Affiliation(s)
- Steven R. Whittaker
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Clare Barlow
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Mathew P. Martin
- Northern Institute for Cancer ResearchUniversity of Newcastle upon TyneMedical SchoolNewcastle upon TyneUK
| | - Caterina Mancusi
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Steve Wagner
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Annette Self
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Elaine Barrie
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Robert Te Poele
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Swee Sharp
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Nathan Brown
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Stuart Wilson
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Wayne Jackson
- Cyclacel Ltd.DundeeUK
- Present address:
Samuel Lister AcademyBingleyWest YorkshireBD16 1TZUK
| | - Peter M. Fischer
- Cyclacel Ltd.DundeeUK
- Present address:
School of Pharmacy and Centre for Biomolecular SciencesUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Paul A. Clarke
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Michael I. Walton
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Edward McDonald
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Julian Blagg
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Martin Noble
- Northern Institute for Cancer ResearchUniversity of Newcastle upon TyneMedical SchoolNewcastle upon TyneUK
| | - Michelle D. Garrett
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
- Present address:
School of BiosciencesUniversity of KentCanterburyKentCT2 7NJUK
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
41
|
Lovell MA, Lynn BC, Fister S, Bradley-Whitman M, Murphy MP, Beckett TL, Norris CM. A Novel Small Molecule Modulator of Amyloid Pathology. J Alzheimers Dis 2018; 53:273-87. [PMID: 27163808 DOI: 10.3233/jad-151160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Because traditional approaches to drug development for Alzheimer's disease are becoming increasingly expensive and in many cases disappointingly unsuccessful, alternative approaches are required to shift the paradigm. Following leads from investigations of dihydropyridine calcium channel blockers, we observed unique properties from a class of functionalized naphthyridines and sought to develop these as novel therapeutics that minimize amyloid pathology without the adverse effects associated with current therapeutics. Our data show methyl 2,4-dimethyl-5-oxo-5,6-dihydrobenzo[c][2,7]naphthyridine-1-carboxylate (BNC-1) significantly decreases amyloid burden in a well-established mouse model of amyloid pathology through a unique mechanism mediated by Elk-1, a transcriptional repressor of presenilin-1. Additionally, BNC-1 treatment leads to increased levels of synaptophysin and synapsin, markers of synaptic integrity, but does not adversely impact presenilin-2 or processing of Notch-1, thus avoiding negative off target effects associated with pan-gamma secretase inhibition. Overall, our data show BNC-1 significantly decreases amyloid burden and improves markers of synaptic integrity in a well-established mouse model of amyloid deposition by promoting phosphorylation and activation of Elk-1, a transcriptional repressor of presenilin-1 but not presenilin-2. These data suggest BNC-1 might be a novel, disease-modifying therapeutic that will alter the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Mark A Lovell
- Department of Chemistry, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Bert C Lynn
- Department of Chemistry, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Universisty of Kentucky Mass Spectrometry Center, Lexington, KY, USA
| | - Shuling Fister
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | | | - M Paul Murphy
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Department of Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Tina L Beckett
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Christopher M Norris
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Department of Pharmacology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
42
|
Baumann J, Ignashkova TI, Chirasani SR, Ramírez-Peinado S, Alborzinia H, Gendarme M, Kuhnigk K, Kramer V, Lindemann RK, Reiling JH. Golgi stress-induced transcriptional changes mediated by MAPK signaling and three ETS transcription factors regulate MCL1 splicing. Mol Biol Cell 2018; 29:42-52. [PMID: 29118074 PMCID: PMC5746065 DOI: 10.1091/mbc.e17-06-0418] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/11/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022] Open
Abstract
The secretory pathway is a major determinant of cellular homoeostasis. While research into secretory stress signaling has so far mostly focused on the endoplasmic reticulum (ER), emerging data suggest that the Golgi itself serves as an important signaling hub capable of initiating stress responses. To systematically identify novel Golgi stress mediators, we performed a transcriptomic analysis of cells exposed to three different pharmacological compounds known to elicit Golgi fragmentation: brefeldin A, golgicide A, and monensin. Subsequent gene-set enrichment analysis revealed a significant contribution of the ETS family transcription factors ELK1, GABPA/B, and ETS1 to the control of gene expression following compound treatment. Induction of Golgi stress leads to a late activation of the ETS upstream kinases MEK1/2 and ERK1/2, resulting in enhanced ETS factor activity and the transcription of ETS family target genes related to spliceosome function and cell death induction via alternate MCL1 splicing. Further genetic analyses using loss-of-function and gain-of-function experiments suggest that these transcription factors operate in parallel.
Collapse
Affiliation(s)
- Jan Baumann
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| | | | | | | | | | | | - Kyra Kuhnigk
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| | | | - Ralph K Lindemann
- Translational Innovation Platform Oncology, Merck Biopharma, Merck KGaA, 64293 Darmstadt, Germany
| | - Jan H Reiling
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| |
Collapse
|
43
|
Hipp N, Symington H, Pastoret C, Caron G, Monvoisin C, Tarte K, Fest T, Delaloy C. IL-2 imprints human naive B cell fate towards plasma cell through ERK/ELK1-mediated BACH2 repression. Nat Commun 2017; 8:1443. [PMID: 29129929 PMCID: PMC5682283 DOI: 10.1038/s41467-017-01475-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 09/19/2017] [Indexed: 01/23/2023] Open
Abstract
Plasma cell differentiation is a tightly regulated process that requires appropriate T cell helps to reach the induction threshold. To further understand mechanisms by which T cell inputs regulate B cell fate decision, we investigate the minimal IL-2 stimulation for triggering human plasma cell differentiation in vitro. Here we show that the timed repression of BACH2 through IL-2-mediated ERK/ELK1 signalling pathway directs plasma cell lineage commitment. Enforced BACH2 repression in activated B cells unlocks the plasma cell transcriptional program and induces their differentiation into immunoglobulin M-secreting cells. RNA-seq and ChIP-seq results further identify BACH2 target genes involved in this process. An active regulatory region within the BACH2 super-enhancer, under ELK1 control and differentially regulated upon B-cell activation and cellular divisions, helps integrate IL-2 signal. Our study thus provides insights into the temporal regulation of BACH2 and its targets for controlling the differentiation of human naive B cells. T cells help B cells to differentiate into antibody-producing plasma cells. Here the authors show that T cells produce interleukin-2 to activate ERK/ELK1 and suppress BACH2 expression by modulating the BACH2 super-enhancer, thereby altering BACH2 downstream transcription programs for plasma cell differentiation.
Collapse
Affiliation(s)
- Nicolas Hipp
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France
| | - Hannah Symington
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France
| | - Cédric Pastoret
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033, Rennes Cedex 9, France
| | - Gersende Caron
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033, Rennes Cedex 9, France
| | - Céline Monvoisin
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France
| | - Karin Tarte
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France.,Laboratoire d'Immunologie, Thérapie Cellulaire et Hématopoïèse (ITeCH), Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033, Rennes Cedex 9, France
| | - Thierry Fest
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France. .,Laboratoire d'Hématologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033, Rennes Cedex 9, France.
| | - Céline Delaloy
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France.
| |
Collapse
|
44
|
Tessier SN, Zhang Y, Wijenayake S, Storey KB. MAP kinase signaling and Elk1 transcriptional activity in hibernating thirteen-lined ground squirrels. Biochim Biophys Acta Gen Subj 2017; 1861:2811-2821. [DOI: 10.1016/j.bbagen.2017.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/07/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
|
45
|
Konopko MA, Densmore AL, Krueger BK. Sexually Dimorphic Epigenetic Regulation of Brain-Derived Neurotrophic Factor in Fetal Brain in the Valproic Acid Model of Autism Spectrum Disorder. Dev Neurosci 2017; 39:507-518. [PMID: 29073621 PMCID: PMC6020162 DOI: 10.1159/000481134] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/30/2017] [Indexed: 01/22/2023] Open
Abstract
Prenatal exposure to the antiepileptic, mood-stabilizing drug, valproic acid (VPA), increases the incidence of autism spectrum disorders (ASDs); in utero administration of VPA to pregnant rodents induces ASD-like behaviors such as repetitive, stereotyped activity, and decreased socialization. In both cases, males are more affected than females. We previously reported that VPA, administered to pregnant mice at gestational day 12.5, rapidly induces a transient, 6-fold increase in BDNF (brain-derived neurotrophic factor) protein and mRNA in the fetal brain. Here, we investigate sex differences in the induction of Bdnf expression by VPA as well as the underlying epigenetic mechanisms. We found no sex differences in the VPA stimulation of total brain Bdnf mRNA as indicated by probing for the BDNF protein coding sequence (exon 9); however, stimulation of individual transcripts containing two of the nine 5'-untranslated exons (5'UTEs) in Bdnf (exons 1 and 4) by VPA was greater in female fetal brains. These Bdnf transcripts have been associated with different cell types or subcellular compartments within neurons. Since VPA is a histone deacetylase inhibitor, covalent histone modifications at Bdnf 5'UTEs in the fetal brain were analyzed by chromatin immunoprecipitation. VPA increased the acetylation of multiple H3 and H4 lysine residues in the vicinity of exons 1, 2, 4, and 6; minimal differences between the sexes were observed. H3 lysine 4 trimethylation (H3K4me3) at those exons was also stimulated by VPA. Moreover, the VPA-induced increase in H3K4me3 at exons 1, 4, and 6 was significantly greater in females than in males, i.e., sexually dimorphic stimulation of H3K4me3 by VPA correlated with Bdnf transcripts containing exons 1 and 4, but not 6. Neither H3K27me3 nor cytosine methylation at any of the 117 CpGs in the vicinity of the transcription start sites of exons 1, 4, and 6 was affected by VPA. Thus, of the 6 epigenetic marks analyzed, only H3K4me3 can account for the sexually dimorphic expression of Bdnf transcripts induced by VPA in the fetal brain. Preferential expression of exon 1- and exon 4-Bdnf transcripts in females may contribute to sex differences in ASDs by protecting females from the adverse effects of genetic variants or environmental factors such as VPA on the developing brain.
Collapse
Affiliation(s)
- Melissa A Konopko
- Program in Neuroscience, University of Maryland Baltimore, 655 West Baltimore Street, Baltimore MD 21201
| | | | - Bruce K. Krueger
- Program in Neuroscience, University of Maryland Baltimore, 655 West Baltimore Street, Baltimore MD 21201
| |
Collapse
|
46
|
Luo CT, Osmanbeyoglu HU, Do MH, Bivona MR, Toure A, Kang D, Xie Y, Leslie CS, Li MO. Ets transcription factor GABP controls T cell homeostasis and immunity. Nat Commun 2017; 8:1062. [PMID: 29051483 PMCID: PMC5648787 DOI: 10.1038/s41467-017-01020-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/11/2017] [Indexed: 01/08/2023] Open
Abstract
Peripheral T cells are maintained in the absence of vigorous stimuli, and respond to antigenic stimulation by initiating cell cycle progression and functional differentiation. Here we show that depletion of the Ets family transcription factor GA-binding protein (GABP) in T cells impairs T-cell homeostasis. In addition, GABP is critically required for antigen-stimulated T-cell responses in vitro and in vivo. Transcriptome and genome-wide GABP-binding site analyses identify GABP direct targets encoding proteins involved in cellular redox balance and DNA replication, including the Mcm replicative helicases. These findings show that GABP has a nonredundant role in the control of T-cell homeostasis and immunity.
Collapse
Affiliation(s)
- Chong T Luo
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hatice U Osmanbeyoglu
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mytrang H Do
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Michael R Bivona
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ahmed Toure
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Davina Kang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yuchen Xie
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christina S Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
47
|
Ahmad A, Zhang W, Wu M, Tan S, Zhu T. Tumor-suppressive miRNA-135a inhibits breast cancer cell proliferation by targeting ELK1 and ELK3 oncogenes. Genes Genomics 2017; 40:243-251. [PMID: 29892795 DOI: 10.1007/s13258-017-0624-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/15/2017] [Indexed: 12/19/2022]
Abstract
Breast cancer is the most common malignant disease amongst women. miRNAs are small, non-coding RNAs that regulate gene expression, thus have the potential to play an important role during cancer development. Emerging evidence shows that miR-135a is down-regulated in breast cancer cells, but the functional roles of miR-135a in breast cancer cells remains unexplored. For this purpose, we investigated the expression of miR-135a in breast cancer cells and explored its functional role during breast cancer progression. In vitro study showed that miR-135a may be a novel tumor suppressor. Further studies showed that transcription factors ELK1 and ELK3 are direct target genes of miR-135a that modulates the suppressive function of miR-135a in breast cancer cells. Induced expression of miR-135a significantly downregulated the expression of ELK1 and ELK3 both at mRNA and protein levels. Furthermore, the effect of miR-135a in MCF-7 and T47D cells was investigated by the overexpression of miR-135a mimics. In vitro, induced expression of miR-135a in breast cancer cells inhibited cell Proliferation and clongenicity. Moreover, a luciferase activity assay revealed that miR-135a could directly target the 3'-untranslated region (3' UTRS) of ELK1 and ELK3 oncogenes. In addition, rescue experiment demonstrated that the promoted cell growth by transcription factors ELK1 and ELK3 was attenuated by the over-expression of miR-135a. Our study demonstrates that miR-135a regulates cell proliferation in breast cancer by targeting ELK1 and ELK3 oncogenes, and suggests that miR-135a potentially can act as a tumor suppressor.
Collapse
Affiliation(s)
- Akhlaq Ahmad
- Laboratory of Molecular Tumor Pathology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Weijie Zhang
- Laboratory of Molecular Tumor Pathology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Mingming Wu
- Laboratory of Molecular Tumor Pathology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Sheng Tan
- Laboratory of Molecular Tumor Pathology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Tao Zhu
- Laboratory of Molecular Tumor Pathology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China.
| |
Collapse
|
48
|
Competitive regulation of IPO4 transcription by ELK1 and GABP. Gene 2017; 613:30-38. [DOI: 10.1016/j.gene.2017.02.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/25/2017] [Accepted: 02/24/2017] [Indexed: 11/19/2022]
|
49
|
Abstract
The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. DNA target specificity derives from combinatorial interactions with other proteins as well as intrinsic heterogeneity among ETS domains. Emerging evidence suggests molecular hydration as a fundamental feature that defines the intrinsic heterogeneity in DNA target selection and susceptibility to epigenetic DNA modification. This perspective invokes novel hypotheses in the regulation of ETS proteins in physiologic osmotic stress, their pioneering potential in heterochromatin, and the effects of passive and pharmacologic DNA demethylation on ETS regulation.
Collapse
Affiliation(s)
- Gregory M K Poon
- a Department of Chemistry , Georgia State University , Atlanta , GA , USA.,b Center for Diagnostics and Therapeutics, Georgia State University , Atlanta , GA , USA
| | - Hye Mi Kim
- a Department of Chemistry , Georgia State University , Atlanta , GA , USA
| |
Collapse
|
50
|
Osmanbeyoglu HU, Toska E, Chan C, Baselga J, Leslie CS. Pancancer modelling predicts the context-specific impact of somatic mutations on transcriptional programs. Nat Commun 2017; 8:14249. [PMID: 28139702 PMCID: PMC5290314 DOI: 10.1038/ncomms14249] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
Pancancer studies have identified many genes that are frequently somatically altered across multiple tumour types, suggesting that pathway-targeted therapies can be deployed across diverse cancers. However, the same ‘actionable mutation' impacts distinct context-specific gene regulatory programs and signalling networks—and interacts with different genetic backgrounds of co-occurring alterations—in different cancers. Here we apply a computational strategy for integrating parallel (phospho)proteomic and mRNA sequencing data across 12 TCGA tumour data sets to interpret the context-specific impact of somatic alterations in terms of functional signatures such as (phospho)protein and transcription factor (TF) activities. Our analysis predicts distinct dysregulated transcriptional regulators downstream of somatic alterations in different cancers, and we validate the context-specific differential activity of TFs associated to mutant PIK3CA in isogenic cancer cell line models. These results have implications for the pancancer use of targeted drugs and potentially for the design of combination therapies. Cancer genomic data sets contain a wealth of data that can be used to predict prognosis and further understand disease. Here, the authors integrate multiple genomics data types to identify transcriptional dysregulation in response to somatic mutations.
Collapse
Affiliation(s)
- Hatice U Osmanbeyoglu
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box No. 460, New York, New York 10065, USA
| | - Eneda Toska
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Carmen Chan
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - José Baselga
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box No. 460, New York, New York 10065, USA
| |
Collapse
|