1
|
Tian L, Li X, Zhao Y, Yi H, Liu X, Yao R, Hou X, Zhu X, Huo F, Chen T, Liang L. DNMT3a Downregulation Ttriggered Upregulation of GABA A Receptor in the mPFC Promotes Paclitaxel-Induced Pain and Anxiety in Male Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407387. [PMID: 39679872 PMCID: PMC11791956 DOI: 10.1002/advs.202407387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/25/2024] [Indexed: 12/17/2024]
Abstract
Chemotherapeutic agents, such as paclitaxel (PTX), induce neuroplastic changes and alter gene expression in the prefrontal cortex (PFC), which may be associated with chemotherapy-induced pain and negative emotions. Notably, DNA methylation undergoes adaptive changes in neurological disorders, emerging as a promising target for neuromodulation. In this study, systemic administration of PTX leads to a decrease in the expression of the DNA methyltransferase DNMT3a, while concurrently upregulating the expression of Gabrb1 mRNA and its encoded GABAARβ1 protein in the medial PFC (mPFC) of male mice. Overexpression of DNMT3a in the mPFC alleviates PTX-induced pain hypersensitivity, and anxiety-like behavior in these mice. Additionally, it reverses the PTX-induced increase in inhibitory synaptic transmission in the pyramidal neurons of the mPFC. Mechanistically, the upregulation of GABAARβ1 in the mPFC is linked to the reduced expression of DNMT3a and DNA hypomethylation at the promoter region of the Gabrb1 gene. Furthermore, a long-term diet rich in methyl donors alleviates PTX-induced pain hypersensitivity and anxiety-like behavior in mice. These findings suggest that the DNMT3a-mediated upregulation of GABAARβ1 in the mPFC contributes to PTX-induced neuropathic pain and anxiety, highlighting DNA methylation-dependent epigenetic regulation as a potential therapeutic target for addressing chemotherapy-induced cortical dysfunction.
Collapse
Affiliation(s)
- Lixia Tian
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesInstitute of NeuroscienceTranslational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anShaanxi710061P. R. China
| | - Xu‐Hui Li
- Center for Neuron and DiseaseFrontier Institutes of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710061P. R. China
| | - Yu‐Long Zhao
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesInstitute of NeuroscienceTranslational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anShaanxi710061P. R. China
| | - Hui‐Yuan Yi
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesInstitute of NeuroscienceTranslational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anShaanxi710061P. R. China
| | - Xue‐Ru Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesInstitute of NeuroscienceTranslational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anShaanxi710061P. R. China
| | - Rongrong Yao
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesInstitute of NeuroscienceTranslational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anShaanxi710061P. R. China
| | - Xue‐Mei Hou
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesInstitute of NeuroscienceTranslational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anShaanxi710061P. R. China
| | - Xuan Zhu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesInstitute of NeuroscienceTranslational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anShaanxi710061P. R. China
| | - Fu‐Quan Huo
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesInstitute of NeuroscienceTranslational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anShaanxi710061P. R. China
| | - Tao Chen
- Department of Anatomy and K.K. Leung Brain Research CentreFourth Military Medical UniversityXi'an710032P. R. China
| | - Lingli Liang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesInstitute of NeuroscienceTranslational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anShaanxi710061P. R. China
| |
Collapse
|
2
|
Sansone G, Lombardi G, Maccari M, Gaiola M, Pini L, Cerretti G, Guerriero A, Volpin F, Denaro L, Corbetta M, Salvalaggio A. Relationship between glioblastoma location and O 6-methylguanine-DNA methyltransferase promoter methylation percentage. Brain Commun 2024; 6:fcae415. [PMID: 39713243 PMCID: PMC11660914 DOI: 10.1093/braincomms/fcae415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/03/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024] Open
Abstract
A large literature assessed the relationships between the O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status and glioblastoma location with inconsistent results. Studies assessing this association using the percentage of methylation are lacking. This cross-sectional study aimed at investigating relationships between glioblastoma topology and MGMT promoter methylation, both as categorical (presence/absence) and continuous (percentage) status. We included patients with diagnosis of isocitrate dehydrogenase wild-type glioblastoma [World Health Organization (WHO) 2021 classification], available pre-surgical MRI, known MGMT promoter methylation status. Quantitative methylation assessment was obtained through pyrosequencing. Several analyses were performed for categorical and continuous variables (χ 2, t-tests, ANOVA and Pearson's correlations), investigating relationships between MGMT methylation and glioblastoma location in cortex/white matter/deep grey matter nuclei, lobes, left/right hemispheres and functional grey and white matter network templates. Furthermore, we assessed at the voxel-wise level location differences between (i) methylated and unmethylated glioblastomas and (ii) highly and lowly methylated glioblastomas. Lastly, we investigated the linear relationship between glioblastoma-voxel location and the MGMT methylation percentage. Ninety-three patients were included (66 males; mean age: 62.3 ± 11.3 years), and 42 were MGMT methylated. The mean methylation level was 33.9 ± 18.3%. No differences in glioblastoma volume and location were found between MGMT-methylated and MGMT-unmethylated patients. No specific anatomical regions were associated with MGMT methylation at the voxel-wise level. MGMT methylation percentage positively correlated with cortical localization (R = 0.36, P = 0.021) and negatively with deep grey matter nuclei localization (R = -0.35, P = 0.025). To summarize, we investigated relationships between MGMT methylation status and glioblastoma location through multiple approaches, including voxel-wise analyses. In conclusion, MGMT promoter methylation percentage positively correlated with cortical glioblastoma location, while no specific anatomical regions were associated with MGMT methylation status.
Collapse
Affiliation(s)
- Giulio Sansone
- Department of Neuroscience, University of Padova, 35121 Padova, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Marta Maccari
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Matteo Gaiola
- Department of Neuroscience, University of Padova, 35121 Padova, Italy
| | - Lorenzo Pini
- Department of Neuroscience, University of Padova, 35121 Padova, Italy
| | - Giulia Cerretti
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Angela Guerriero
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, 35121 Padova, Italy
| | - Francesco Volpin
- Division of Neurosurgery, Azienda Ospedaliera Università di Padova, 35128 Padova, Italy
| | - Luca Denaro
- Academic Neurosurgery, Department of Neurosciences, 35121 University of Padova, Padova, Italy
| | - Maurizio Corbetta
- Department of Neuroscience, University of Padova, 35121 Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, 35121 Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Fondazione Biomedica, 35129 Padova, Italy
| | - Alessandro Salvalaggio
- Department of Neuroscience, University of Padova, 35121 Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, 35121 Padova, Italy
| |
Collapse
|
3
|
Pandiloski N, Horváth V, Karlsson O, Koutounidou S, Dorazehi F, Christoforidou G, Matas-Fuentes J, Gerdes P, Garza R, Jönsson ME, Adami A, Atacho DAM, Johansson JG, Englund E, Kokaia Z, Jakobsson J, Douse CH. DNA methylation governs the sensitivity of repeats to restriction by the HUSH-MORC2 corepressor. Nat Commun 2024; 15:7534. [PMID: 39214989 PMCID: PMC11364546 DOI: 10.1038/s41467-024-50765-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
The human silencing hub (HUSH) complex binds to transcripts of LINE-1 retrotransposons (L1s) and other genomic repeats, recruiting MORC2 and other effectors to remodel chromatin. How HUSH and MORC2 operate alongside DNA methylation, a central epigenetic regulator of repeat transcription, remains largely unknown. Here we interrogate this relationship in human neural progenitor cells (hNPCs), a somatic model of brain development that tolerates removal of DNA methyltransferase DNMT1. Upon loss of MORC2 or HUSH subunit TASOR in hNPCs, L1s remain silenced by robust promoter methylation. However, genome demethylation and activation of evolutionarily-young L1s attracts MORC2 binding, and simultaneous depletion of DNMT1 and MORC2 causes massive accumulation of L1 transcripts. We identify the same mechanistic hierarchy at pericentromeric α-satellites and clustered protocadherin genes, repetitive elements important for chromosome structure and neurodevelopment respectively. Our data delineate the epigenetic control of repeats in somatic cells, with implications for understanding the vital functions of HUSH-MORC2 in hypomethylated contexts throughout human development.
Collapse
Affiliation(s)
- Ninoslav Pandiloski
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC B11, Lund University, Lund, Sweden
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Vivien Horváth
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ofelia Karlsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Symela Koutounidou
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC B11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Fereshteh Dorazehi
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC B11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Georgia Christoforidou
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC B11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jon Matas-Fuentes
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC B11, Lund University, Lund, Sweden
| | - Patricia Gerdes
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | - Anita Adami
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Diahann A M Atacho
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jenny G Johansson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
| | - Elisabet Englund
- Division of Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Zaal Kokaia
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Laboratory of Stem Cells and Restorative Neurology, Department of Clinical Sciences, BMC B10, Lund University, Lund, Sweden
| | - Johan Jakobsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC A11, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Christopher H Douse
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center, BMC B11, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Nair VD, Pincas H, Smith GR, Zaslavsky E, Ge Y, Amper MAS, Vasoya M, Chikina M, Sun Y, Raja AN, Mao W, Gay NR, Esser KA, Smith KS, Zhao B, Wiel L, Singh A, Lindholm ME, Amar D, Montgomery S, Snyder MP, Walsh MJ, Sealfon SC. Molecular adaptations in response to exercise training are associated with tissue-specific transcriptomic and epigenomic signatures. CELL GENOMICS 2024; 4:100421. [PMID: 38697122 PMCID: PMC11228891 DOI: 10.1016/j.xgen.2023.100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 05/04/2024]
Abstract
Regular exercise has many physical and brain health benefits, yet the molecular mechanisms mediating exercise effects across tissues remain poorly understood. Here we analyzed 400 high-quality DNA methylation, ATAC-seq, and RNA-seq datasets from eight tissues from control and endurance exercise-trained (EET) rats. Integration of baseline datasets mapped the gene location dependence of epigenetic control features and identified differing regulatory landscapes in each tissue. The transcriptional responses to 8 weeks of EET showed little overlap across tissues and predominantly comprised tissue-type enriched genes. We identified sex differences in the transcriptomic and epigenomic changes induced by EET. However, the sex-biased gene responses were linked to shared signaling pathways. We found that many G protein-coupled receptor-encoding genes are regulated by EET, suggesting a role for these receptors in mediating the molecular adaptations to training across tissues. Our findings provide new insights into the mechanisms underlying EET-induced health benefits across organs.
Collapse
Affiliation(s)
- Venugopalan D Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Hanna Pincas
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gregory R Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mary Anne S Amper
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mital Vasoya
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Chikina
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Weiguang Mao
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicole R Gay
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Kevin S Smith
- Departments of Pathology and Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Bingqing Zhao
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Laurens Wiel
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Aditya Singh
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Malene E Lindholm
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - David Amar
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Stephen Montgomery
- Departments of Pathology and Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Martin J Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
5
|
Klokkaris A, Migdalska-Richards A. An Overview of Epigenetic Changes in the Parkinson's Disease Brain. Int J Mol Sci 2024; 25:6168. [PMID: 38892355 PMCID: PMC11172855 DOI: 10.3390/ijms25116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder, predominantly of the motor system. Although some genetic components and cellular mechanisms of Parkinson's have been identified, much is still unknown. In recent years, emerging evidence has indicated that non-DNA-sequence variation (in particular epigenetic mechanisms) is likely to play a crucial role in the development and progression of the disease. Here, we present an up-to-date overview of epigenetic processes including DNA methylation, DNA hydroxymethylation, histone modifications and non-coding RNAs implicated in the brain of those with Parkinson's disease. We will also discuss the limitations of current epigenetic research in Parkinson's disease, the advantages of simultaneously studying genetics and epigenetics, and putative novel epigenetic therapies.
Collapse
Affiliation(s)
| | - Anna Migdalska-Richards
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK;
| |
Collapse
|
6
|
Du J, Nakachi Y, Murata Y, Kiyota E, Kato T, Bundo M, Iwamoto K. Exploration of cell type-specific somatic mutations in schizophrenia and the impact of maternal immune activation on the somatic mutation profile in the brain. Psychiatry Clin Neurosci 2024; 78:237-247. [PMID: 38334156 DOI: 10.1111/pcn.13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024]
Abstract
AIM Schizophrenia (SZ) is a severe psychiatric disorder caused by the interaction of genetic and environmental factors. Although somatic mutations that occur in the brain after fertilization may play an important role in the cause of SZ, their frequencies and patterns in the brains of patients and related animal models have not been well studied. This study aimed to find somatic mutations related to the pathophysiology of SZ. METHODS We performed whole-exome sequencing (WES) of neuronal and nonneuronal nuclei isolated from the postmortem prefrontal cortex of patients with SZ (n = 10) and controls (n = 10). After detecting somatic mutations, we explored the similarities and differences in shared common mutations between two cell types and cell type-specific mutations. We also performed WES of prefrontal cortex samples from an animal model of SZ based on maternal immune activation (MIA) and explored the possible impact of MIA on the patterns of somatic mutations. RESULTS We did not find quantitative differences in somatic mutations but found higher variant allele fractions of neuron-specific mutations in patients with SZ. In the mouse model, we found a larger variation in the number of somatic mutations in the offspring of MIA mice, with the occurrence of somatic mutations in neurodevelopment-related genes. CONCLUSION Somatic mutations occurring at an earlier stage of brain cell differentiation toward neurons may be important for the cause of SZ. MIA may affect somatic mutation profiles in the brain.
Collapse
Affiliation(s)
- Jianbin Du
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Nakachi
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yui Murata
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Japan
| | - Emi Kiyota
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Japan
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Japan
| |
Collapse
|
7
|
Delphin N, Aust C, Griffiths L, Fernandez F. Epigenetic Regulation in Schizophrenia: Focus on Methylation and Histone Modifications in Human Studies. Genes (Basel) 2024; 15:272. [PMID: 38540331 PMCID: PMC10970389 DOI: 10.3390/genes15030272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 06/15/2024] Open
Abstract
Despite extensive research over the last few decades, the etiology of schizophrenia (SZ) remains unclear. SZ is a pathological disorder that is highly debilitating and deeply affects the lifestyle and minds of those affected. Several factors (one or in combination) have been reported as contributors to SZ pathogenesis, including neurodevelopmental, environmental, genetic and epigenetic factors. Deoxyribonucleic acid (DNA) methylation and post-translational modification (PTM) of histone proteins are potentially contributing epigenetic processes involved in transcriptional activity, chromatin folding, cell division and apoptotic processes, and DNA damage and repair. After establishing a summary of epigenetic processes in the context of schizophrenia, this review aims to highlight the current understanding of the role of DNA methylation and histone PTMs in this disorder and their potential roles in schizophrenia pathophysiology and pathogenesis.
Collapse
Affiliation(s)
- Natasha Delphin
- School of Health and Behavioural Sciences, Faculty of Health Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, QLD 4014, Australia; (N.D.)
| | - Caitlin Aust
- School of Health and Behavioural Sciences, Faculty of Health Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, QLD 4014, Australia; (N.D.)
| | - Lyn Griffiths
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia;
| | - Francesca Fernandez
- School of Health and Behavioural Sciences, Faculty of Health Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, QLD 4014, Australia; (N.D.)
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia;
- Healthy Brain and Mind Research Centre, Australian Catholic University, Melbourne, VIC 3000, Australia
| |
Collapse
|
8
|
Tooley KB, Chucair-Elliott AJ, Ocañas SR, Machalinski AH, Pham KD, Hoolehan W, Kulpa AM, Stanford DR, Freeman WM. Differential usage of DNA modifications in neurons, astrocytes, and microglia. Epigenetics Chromatin 2023; 16:45. [PMID: 37953264 PMCID: PMC10642035 DOI: 10.1186/s13072-023-00522-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Cellular identity is determined partly by cell type-specific epigenomic profiles that regulate gene expression. In neuroscience, there is a pressing need to isolate and characterize the epigenomes of specific CNS cell types in health and disease. In this study, we developed an in vivo tagging mouse model (Camk2a-NuTRAP) for paired isolation of neuronal DNA and RNA without cell sorting and then used this model to assess epigenomic regulation, DNA modifications in particular, of gene expression between neurons and glia. RESULTS After validating the cell-specificity of the Camk2a-NuTRAP model, we performed TRAP-RNA-Seq and INTACT-whole genome oxidative bisulfite sequencing (WGoxBS) to assess the neuronal translatome and epigenome in the hippocampus of young mice (4 months old). WGoxBS findings were validated with enzymatic methyl-Seq (EM-Seq) and nanopore sequencing. Comparing neuronal data to microglial and astrocytic data from NuTRAP models, microglia had the highest global mCG levels followed by astrocytes and then neurons, with the opposite pattern observed for hmCG and mCH. Differentially modified regions between cell types were predominantly found within gene bodies and distal intergenic regions, rather than proximal promoters. Across cell types there was a negative correlation between DNA modifications (mCG, mCH, hmCG) and gene expression at proximal promoters. In contrast, a negative correlation of gene body mCG and a positive relationship between distal promoter and gene body hmCG with gene expression was observed. Furthermore, we identified a neuron-specific inverse relationship between mCH and gene expression across promoter and gene body regions. CONCLUSIONS Neurons, astrocytes, and microglia demonstrate different genome-wide levels of mCG, hmCG, and mCH that are reproducible across analytical methods. However, modification-gene expression relationships are conserved across cell types. Enrichment of differential modifications across cell types in gene bodies and distal regulatory elements, but not proximal promoters, highlights epigenomic patterning in these regions as potentially greater determinants of cell identity. These findings also demonstrate the importance of differentiating between mC and hmC in neuroepigenomic analyses, as up to 30% of what is conventionally interpreted as mCG can be hmCG, which often has a different relationship to gene expression than mCG.
Collapse
Affiliation(s)
- Kyla B Tooley
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Sarah R Ocañas
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Adeline H Machalinski
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Kevin D Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Walker Hoolehan
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Adam M Kulpa
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - David R Stanford
- Center for Biomedical Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
9
|
Watanabe R, Nakachi Y, Matsubara H, Ueda J, Ishii T, Ukai W, Hashimoto E, Kasai K, Simizu S, Kato T, Bundo M, Iwamoto K. Identification of epigenetically active L1 promoters in the human brain and their relationship with psychiatric disorders. Neurosci Res 2023; 195:37-51. [PMID: 37141946 DOI: 10.1016/j.neures.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/09/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
Long interspersed nuclear element-1 (LINE-1, L1) affects the transcriptome landscape in multiple ways. Promoter activity within its 5'UTR plays a critical role in regulating diverse L1 activities. However, the epigenetic status of L1 promoters in adult brain cells and their relationship with psychiatric disorders remain poorly understood. Here, we examined DNA methylation and hydroxymethylation of the full-length L1s in neurons and nonneurons and identified "epigenetically active" L1s. Notably, some of epigenetically active L1s were retrotransposition competent, which even had chimeric transcripts from the antisense promoters at their 5'UTRs. We also identified differentially methylated L1s in the prefrontal cortices of patients with psychiatric disorders. In nonneurons of bipolar disorder patients, one L1 was significantly hypomethylated and showed an inverse correlation with the expression level of the overlapping gene NREP. Finally, we observed that altered DNA methylation levels of L1 in patients with psychiatric disorders were not affected by the surrounding genomic regions but originated from the L1 sequences. These results suggested that altered epigenetic regulation of the L1 5'UTR in the brain was involved in the pathophysiology of psychiatric disorders.
Collapse
Affiliation(s)
- Risa Watanabe
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Nakachi
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hikari Matsubara
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junko Ueda
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takao Ishii
- Department of Occupational Therapy, Sapporo Medical University School of Health Sciences, Sapporo, Japan
| | - Wataru Ukai
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - Eri Hashimoto
- Department of Neuropsychiatry, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; The International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan; University of Tokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), The University of Tokyo, Tokyo, Japan; UTokyo Center for Integrative Science of Human Behaviour (CiSHuB), The University of Tokyo, Tokyo, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan; Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Saitama, Japan.
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Saitama, Japan.
| |
Collapse
|
10
|
Tooley KB, Chucair-Elliott AJ, Ocañas SR, Machalinski AH, Pham KD, Stanford DR, Freeman WM. Differential usage of DNA modifications in neurons, astrocytes, and microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543497. [PMID: 37333391 PMCID: PMC10274634 DOI: 10.1101/2023.06.05.543497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Cellular identity is determined partly by cell type-specific epigenomic profiles that regulate gene expression. In neuroscience, there is a pressing need to isolate and characterize the epigenomes of specific CNS cell types in health and disease. This is especially true as for DNA modifications where most data are derived from bisulfite sequencing that cannot differentiate between DNA methylation and hydroxymethylation. In this study, we developed an in vivo tagging mouse model (Camk2a-NuTRAP) for paired isolation of neuronal DNA and RNA without cell sorting and then used this model to assess epigenomic regulation of gene expression between neurons and glia. Results After validating the cell-specificity of the Camk2a-NuTRAP model, we performed TRAP-RNA-Seq and INTACT whole genome oxidative bisulfite sequencing to assess the neuronal translatome and epigenome in the hippocampus of young mice (3 months old). These data were then compared to microglial and astrocytic data from NuTRAP models. When comparing the different cell types, microglia had the highest global mCG levels followed by astrocytes and then neurons, with the opposite pattern observed for hmCG and mCH. Differentially modified regions between cell types were predominantly found within gene bodies and distal intergenic regions, with limited differences occurring within proximal promoters. Across cell types there was a negative correlation between DNA modifications (mCG, mCH, hmCG) and gene expression at proximal promoters. In contrast, a negative correlation of mCG with gene expression within the gene body while a positive relationship between distal promoter and gene body hmCG and gene expression was observed. Furthermore, we identified a neuron-specific inverse relationship between mCH and gene expression across promoter and gene body regions. Conclusions In this study, we identified differential usage of DNA modifications across CNS cell types, and assessed the relationship between DNA modifications and gene expression in neurons and glia. Despite having different global levels, the general modification-gene expression relationship was conserved across cell types. The enrichment of differential modifications in gene bodies and distal regulatory elements, but not proximal promoters, across cell types highlights epigenomic patterning in these regions as potentially greater determinants of cell identity.
Collapse
Affiliation(s)
- Kyla B. Tooley
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Ana J. Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Sarah R. Ocañas
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Adeline H. Machalinski
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Kevin D. Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - David R. Stanford
- Center for Biomedical Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Willard M. Freeman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK USA
| |
Collapse
|
11
|
Saviana M, Le P, Micalo L, Del Valle-Morales D, Romano G, Acunzo M, Li H, Nana-Sinkam P. Crosstalk between miRNAs and DNA Methylation in Cancer. Genes (Basel) 2023; 14:1075. [PMID: 37239435 PMCID: PMC10217889 DOI: 10.3390/genes14051075] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
miRNAs are some of the most well-characterized regulators of gene expression. Integral to several physiological processes, their aberrant expression often drives the pathogenesis of both benign and malignant diseases. Similarly, DNA methylation represents an epigenetic modification influencing transcription and playing a critical role in silencing numerous genes. The silencing of tumor suppressor genes through DNA methylation has been reported in many types of cancer and is associated with tumor development and progression. A growing body of literature has described the crosstalk between DNA methylation and miRNAs as an additional layer in the regulation of gene expression. Methylation in miRNA promoter regions inhibits its transcription, while miRNAs can target transcripts and subsequently regulate the proteins responsible for DNA methylation. Such relationships between miRNA and DNA methylation serve an important regulatory role in several tumor types and highlight a novel avenue for potential therapeutic targets. In this review, we discuss the crosstalk between DNA methylation and miRNA expression in the pathogenesis of cancer and describe how miRNAs influence DNA methylation and, conversely, how methylation impacts the expression of miRNAs. Finally, we address how these epigenetic modifications may be leveraged as biomarkers in cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, 1250 E. Marshall Street, Richmond, VA 23298, USA
| |
Collapse
|
12
|
Baker EC, San AE, Cilkiz KZ, Littlejohn BP, Cardoso RC, Ghaffari N, Long CR, Riggs PK, Randel RD, Welsh TH, Riley DG. Inter-Individual Variation in DNA Methylation Patterns across Two Tissues and Leukocytes in Mature Brahman Cattle. BIOLOGY 2023; 12:biology12020252. [PMID: 36829529 PMCID: PMC9953534 DOI: 10.3390/biology12020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Quantifying the natural inter-individual variation in DNA methylation patterns is important for identifying its contribution to phenotypic variation, but also for understanding how the environment affects variability, and for incorporation into statistical analyses. The inter-individual variation in DNA methylation patterns in female cattle and the effect that a prenatal stressor has on such variability have yet to be quantified. Thus, the objective of this study was to utilize methylation data from mature Brahman females to quantify the inter-individual variation in DNA methylation. Pregnant Brahman cows were transported for 2 h durations at days 60 ± 5; 80 ± 5; 100 ± 5; 120 ± 5; and 140 ± 5 of gestation. A non-transport group was maintained as a control. Leukocytes, amygdala, and anterior pituitary glands were harvested from eight cows born from the non-transport group (Control) and six from the transport group (PNS) at 5 years of age. The DNA harvested from the anterior pituitary contained the greatest variability in DNA methylation of cytosine-phosphate-guanine (mCpG) sites from both the PNS and Control groups, and the amygdala had the least. Numerous variable mCpG sites were associated with retrotransposable elements and highly repetitive regions of the genome. Some of the genomic features that had high variation in DNA methylation are involved in immune responses, signaling, responses to stimuli, and metabolic processes. The small overlap of highly variable CpG sites and features between tissues and leukocytes supports the role of variable DNA methylation in regulating tissue-specific gene expression. Many of the CpG sites that exhibited high variability in DNA methylation were common between the PNS and Control groups within a tissue, but there was little overlap in genomic features with high variability. The interaction between the prenatal environment and the genome could be responsible for the differences in location of the variable DNA methylation.
Collapse
Affiliation(s)
- Emilie C. Baker
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Audrey E. San
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Texas A&M AgriLife Research, College Station, TX 77845, USA
- Texas A&M AgriLife Research & Extension Center at Overton, Overton, TX 75684, USA
| | - Kubra Z. Cilkiz
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Brittni P. Littlejohn
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Texas A&M AgriLife Research & Extension Center at Overton, Overton, TX 75684, USA
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Noushin Ghaffari
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Charles R. Long
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Texas A&M AgriLife Research & Extension Center at Overton, Overton, TX 75684, USA
| | - Penny K. Riggs
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Ronald D. Randel
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Texas A&M AgriLife Research & Extension Center at Overton, Overton, TX 75684, USA
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Texas A&M AgriLife Research, College Station, TX 77845, USA
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Correspondence:
| |
Collapse
|
13
|
Senol H, Ozgun-Acar O, Dağ A, Eken A, Guner H, Aykut ZG, Topcu G, Sen A. Synthesis and Comprehensive in Vivo Activity Profiling of Olean-12-en-28-ol, 3β-Pentacosanoate in Experimental Autoimmune Encephalomyelitis: A Natural Remyelinating and Anti-Inflammatory Agent. JOURNAL OF NATURAL PRODUCTS 2023; 86:103-118. [PMID: 36598820 PMCID: PMC9887603 DOI: 10.1021/acs.jnatprod.2c00798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 06/17/2023]
Abstract
Multiple sclerosis (MS) treatment has received much attention, yet there is still no certain cure. We herein investigate the therapeutic effect of olean-12-en-28-ol, 3β-pentacosanoate (OPCA) on a preclinical model of MS. First, OPCA was synthesized semisynthetically and characterized. Then, the mice with MOG35-55-induced experimental autoimmune/allergic encephalomyelitis (EAE) were given OPCA along with a reference drug (FTY720). Biochemical, cellular, and molecular analyses were performed in serum and brain tissues to measure anti-inflammatory and neuroprotective responses. OPCA treatment protected EAE-induced changes in mouse brains maintaining blood-brain barrier integrity and preventing inflammation. Moreover, the protein and mRNA levels of MS-related genes such as HLD-DR1, CCL5, TNF-α, IL6, and TGFB1 were significantly reduced in OPCA-treated mouse brains. Notably, the expression of genes, including PLP, MBP, and MAG, involved in the development and structure of myelin was significantly elevated in OPCA-treated EAE. Furthermore, therapeutic OPCA effects included a substantial reduction in pro-inflammatory cytokines in the serum of treated EAE animals. Lastly, following OPCA treatment, the promoter regions for most inflammatory regulators were hypermethylated. These data support that OPCA is a valuable and appealing candidate for human MS treatment since OPCA not only normalizes the pro- and anti-inflammatory immunological bias but also stimulates remyelination in EAE.
Collapse
Affiliation(s)
- Halil Senol
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Fatih, Istanbul, Turkey
| | - Ozden Ozgun-Acar
- Seed
Breeding & Genetics Application Research Center, Pamukkale University, 20070 Denizli, Turkey
| | - Aydan Dağ
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Fatih, Istanbul, Turkey
| | - Ahmet Eken
- Department
of Basic Medical Sciences, Faculty of Medicine, Medical Biology Erciyes University, 38039 Kayseri, Turkey
| | - Hüseyin Guner
- Department
of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, University of Abdullah Gul 38080 Kayseri, Turkey
| | | | - Gulacti Topcu
- Department
of Pharmacognosy & Phytochemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Fatih, Istanbul, Turkey
| | - Alaattin Sen
- Department
of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, University of Abdullah Gul 38080 Kayseri, Turkey
- Department
of Biology, Faculty of Arts & Sciences, Pamukkale University, 20070 Kınıklı, Denizli, Turkey
| |
Collapse
|
14
|
Xie J, Xie L, Wei H, Li XJ, Lin L. Dynamic Regulation of DNA Methylation and Brain Functions. BIOLOGY 2023; 12:152. [PMID: 36829430 PMCID: PMC9952911 DOI: 10.3390/biology12020152] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
DNA cytosine methylation is a principal epigenetic mechanism underlying transcription during development and aging. Growing evidence suggests that DNA methylation plays a critical role in brain function, including neurogenesis, neuronal differentiation, synaptogenesis, learning, and memory. However, the mechanisms underlying aberrant DNA methylation in neurodegenerative diseases remain unclear. In this review, we provide an overview of the contribution of 5-methycytosine (5mC) and 5-hydroxylcytosine (5hmC) to brain development and aging, with a focus on the roles of dynamic 5mC and 5hmC changes in the pathogenesis of neurodegenerative diseases, particularly Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Identification of aberrant DNA methylation sites could provide potential candidates for epigenetic-based diagnostic and therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Li Lin
- Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| |
Collapse
|
15
|
Gene Expression and Epigenetic Regulation in the Prefrontal Cortex of Schizophrenia. Genes (Basel) 2023; 14:genes14020243. [PMID: 36833173 PMCID: PMC9957055 DOI: 10.3390/genes14020243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Schizophrenia pathogenesis remains challenging to define; however, there is strong evidence that the interaction of genetic and environmental factors causes the disorder. This paper focuses on transcriptional abnormalities in the prefrontal cortex (PFC), a key anatomical structure that determines functional outcomes in schizophrenia. This review summarises genetic and epigenetic data from human studies to understand the etiological and clinical heterogeneity of schizophrenia. Gene expression studies using microarray and sequencing technologies reported the aberrant transcription of numerous genes in the PFC in patients with schizophrenia. Altered gene expression in schizophrenia is related to several biological pathways and networks (synaptic function, neurotransmission, signalling, myelination, immune/inflammatory mechanisms, energy production and response to oxidative stress). Studies investigating mechanisms driving these transcriptional abnormalities focused on alternations in transcription factors, gene promoter elements, DNA methylation, posttranslational histone modifications or posttranscriptional regulation of gene expression mediated by non-coding RNAs.
Collapse
|
16
|
Sokolov AV, Manu DM, Nordberg DOT, Boström ADE, Jokinen J, Schiöth HB. Methylation in MAD1L1 is associated with the severity of suicide attempt and phenotypes of depression. Clin Epigenetics 2023; 15:1. [PMID: 36600305 PMCID: PMC9811786 DOI: 10.1186/s13148-022-01394-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
Depression is a multifactorial disorder representing a significant public health burden. Previous studies have linked multiple single nucleotide polymorphisms with depressive phenotypes and suicidal behavior. MAD1L1 is a mitosis metaphase checkpoint protein that has been linked to depression in GWAS. Using a longitudinal EWAS approach in an adolescent cohort at two time points (n = 216 and n = 154), we identified differentially methylated sites that were associated with depression-related genetic variants in MAD1L1. Three methylation loci (cg02825527, cg18302629, and cg19624444) were consistently hypomethylated in the minor allele carriers, being cross-dependent on several SNPs. We further investigated whether DNA methylation at these CpGs is associated with depressive psychiatric phenotypes in independent cohorts. The first site (cg02825527) was hypomethylated in blood (exp(β) = 84.521, p value ~ 0.003) in participants with severe suicide attempts (n = 88). The same locus showed increased methylation in glial cells (exp(β) = 0.041, p value ~ 0.004) in the validation cohort, involving 29 depressed patients and 29 controls, and showed a trend for association with suicide (n = 40, p value ~ 0.089) and trend for association with depression treatment (n = 377, p value ~ 0.075). The second CpG (cg18302629) was significantly hypomethylated in depressed participants (exp(β) = 56.374, p value ~ 0.023) in glial cells, but did not show associations in the discovery cohorts. The last methylation site (cg19624444) was hypomethylated in the whole blood of severe suicide attempters; however, this association was at the borderline for statistical significance (p value ~ 0.061). This locus, however, showed a strong association with depression treatment in the validation cohort (exp(β) = 2.237, p value ~ 0.003) with 377 participants. The direction of associations between psychiatric phenotypes appeared to be different in the whole blood in comparison with brain samples for cg02825527 and cg19624444. The association analysis between methylation at cg18302629 and cg19624444 and MAD1L1 transcript levels in CD14+ cells shows a potential link between methylation at these CpGs and MAD1L1 expression. This study suggests evidence that methylation at MAD1L1 is important for psychiatric health as supported by several independent cohorts.
Collapse
Affiliation(s)
- Aleksandr V. Sokolov
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Diana-Maria Manu
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Didi O. T. Nordberg
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Adrian D. E. Boström
- grid.12650.300000 0001 1034 3451Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden ,grid.4714.60000 0004 1937 0626Department of Women’s and Children’s Health/Neuropediatrics, Karolinska Institutet, Stockholm, Sweden
| | - Jussi Jokinen
- grid.12650.300000 0001 1034 3451Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden ,grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Helgi B. Schiöth
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Panov J, Kaphzan H. An Association Study of DNA Methylation and Gene Expression in Angelman Syndrome: A Bioinformatics Approach. Int J Mol Sci 2022; 23:ijms23169139. [PMID: 36012404 PMCID: PMC9409443 DOI: 10.3390/ijms23169139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 12/01/2022] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused by the loss of function of the E3-ligase UBE3A. Despite multiple studies, AS pathophysiology is still obscure and has mostly been explored in rodent models of the disease. In recent years, a growing body of studies has utilized omics datasets in the attempt to focus research regarding the pathophysiology of AS. Here, for the first time, we utilized a multi-omics approach at the epigenomic level and the transcriptome level, for human-derived neurons. Using publicly available datasets for DNA methylation and gene expression, we found genome regions in proximity to gene promoters and intersecting with gene-body regions that were differentially methylated and differentially expressed in AS. We found that overall, the genome in AS postmortem brain tissue was hypo-methylated compared to healthy controls. We also found more upregulated genes than downregulated genes in AS. Many of these dysregulated genes in neurons obtained from AS patients are known to be critical for neuronal development and synaptic functioning. Taken together, our results suggest a list of dysregulated genes that may be involved in AS development and its pathological features. Moreover, these genes might also have a role in neurodevelopmental disorders similar to AS.
Collapse
|
18
|
Pascarella G, Hon CC, Hashimoto K, Busch A, Luginbühl J, Parr C, Hin Yip W, Abe K, Kratz A, Bonetti A, Agostini F, Severin J, Murayama S, Suzuki Y, Gustincich S, Frith M, Carninci P. Recombination of repeat elements generates somatic complexity in human genomes. Cell 2022; 185:3025-3040.e6. [DOI: 10.1016/j.cell.2022.06.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/30/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022]
|
19
|
Kassab A, Rizk N, Prakash S. The Role of Systemic Filtrating Organs in Aging and Their Potential in Rejuvenation Strategies. Int J Mol Sci 2022; 23:ijms23084338. [PMID: 35457154 PMCID: PMC9025381 DOI: 10.3390/ijms23084338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/26/2022] Open
Abstract
Advances in aging studies brought about by heterochronic parabiosis suggest that aging might be a reversable process that is affected by changes in the systemic milieu of organs and cells. Given the broadness of such a systemic approach, research to date has mainly questioned the involvement of “shared organs” versus “circulating factors”. However, in the absence of a clear understanding of the chronological development of aging and a unified platform to evaluate the successes claimed by specific rejuvenation methods, current literature on this topic remains scattered. Herein, aging is assessed from an engineering standpoint to isolate possible aging potentiators via a juxtaposition between biological and mechanical systems. Such a simplification provides a general framework for future research in the field and examines the involvement of various factors in aging. Based on this simplified overview, the kidney as a filtration organ is clearly implicated, for the first time, with the aging phenomenon, necessitating a re-evaluation of current rejuvenation studies to untangle the extent of its involvement and its possible role as a potentiator in aging. Based on these findings, the review concludes with potential translatable and long-term therapeutics for aging while offering a critical view of rejuvenation methods proposed to date.
Collapse
Affiliation(s)
- Amal Kassab
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2BA, Canada
| | - Nasser Rizk
- Department of Biomedical Sciences, College of Health Sciences-QU-Health, Qatar University, Doha 2713, Qatar
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2BA, Canada
| |
Collapse
|
20
|
Rodríguez-Campuzano AG, Hernández-Kelly LC, Ortega A. DNA Methylation-Dependent Gene Expression Regulation of Glutamate Transporters in Cultured Radial Glial Cells. Mol Neurobiol 2022; 59:1912-1924. [PMID: 35032319 DOI: 10.1007/s12035-022-02746-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Abstract
Exposure to xenobiotics has a significant impact in brain physiology that could be liked to an excitotoxic process induced by a massive release of the main excitatory neurotransmitter, L-glutamate. Overstimulation of extra-synaptic glutamate receptors, mainly of the N-methyl-D-aspartate subtype leads to a disturbance of intracellular calcium homeostasis that is critically involved in neuronal death. Hence, glutamate extracellular levels are tightly regulated through its uptake by glial glutamate transporters. It has been observed that glutamate regulates its own removal, both in the short-time frame via a transporter-mediated decrease in the uptake, and in the long-term through the transcriptional control of its gene expression, a process mediated by glutamate receptors that involves the Ca2+/diacylglycerol-dependent protein kinase and the transcription factor Ying Yang 1. Taking into consideration that this transcription factor is a member of the Polycomb complex and thus, part of repressive and activating chromatin remodeling factors, it might direct the interaction of DNA methyltransferases or dioxygenases of methylated cytosines to their target sequences. Here we explored the role of dynamic DNA methylation in the expression and function of glial glutamate transporters. To this end, we used the well-characterized models of primary cultures of chick cerebellar Bergmann glia cells and a human retina-derived Müller glia cell line. A time and dose-dependent increase in global DNA methylation was evident upon glutamate exposure. Under hypomethylation conditions, the glial glutamate transporter protein levels and uptake activity were increased. These results favor the notion that a dynamic DNA methylation program triggered by glutamate in glial cells modulates one of its major functions: glutamate removal.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Zacatenco Ciudad de México, 07360, México
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Zacatenco Ciudad de México, 07360, México
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Zacatenco Ciudad de México, 07360, México.
| |
Collapse
|
21
|
Sugawara H, Bundo M, Kasahara T, Nakachi Y, Ueda J, Kubota-Sakashita M, Iwamoto K, Kato T. Cell-type-specific DNA methylation analysis of the frontal cortices of mutant Polg1 transgenic mice with neuronal accumulation of deleted mitochondrial DNA. Mol Brain 2022; 15:9. [PMID: 34991677 PMCID: PMC8740475 DOI: 10.1186/s13041-021-00894-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/25/2021] [Indexed: 11/15/2022] Open
Abstract
Bipolar disorder (BD) is a severe psychiatric disorder characterized by repeated conflicting manic and depressive states. In addition to genetic factors, complex gene–environment interactions, which alter the epigenetic status in the brain, contribute to the etiology and pathophysiology of BD. Here, we performed a promoter-wide DNA methylation analysis of neurons and nonneurons derived from the frontal cortices of mutant Polg1 transgenic (n = 6) and wild-type mice (n = 6). The mutant mice expressed a proofreading-deficient mitochondrial DNA (mtDNA) polymerase under the neuron-specific CamK2a promoter and showed BD-like behavioral abnormalities, such as activity changes and altered circadian rhythms. We identified a total of 469 differentially methylated regions (DMRs), consisting of 267 neuronal and 202 nonneuronal DMRs. Gene ontology analysis of DMR-associated genes showed that cell cycle-, cell division-, and inhibition of peptide activity-related genes were enriched in neurons, whereas synapse- and GABA-related genes were enriched in nonneurons. Among the DMR-associated genes, Trim2 and Lrpprc showed an inverse relationship between DNA methylation and gene expression status. In addition, we observed that mutant Polg1 transgenic mice shared several features of DNA methylation changes in postmortem brains of patients with BD, such as dominant hypomethylation changes in neurons, which include hypomethylation of the molecular motor gene and altered DNA methylation of synapse-related genes in nonneurons. Taken together, the DMRs identified in this study will contribute to understanding the pathophysiology of BD from an epigenetic perspective.
Collapse
Affiliation(s)
- Hiroko Sugawara
- Department of Psychiatry, Kansai Rosai Hospital, Amagasaki, Japan.,Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-8556, Japan
| | - Takaoki Kasahara
- Career Development Program, RIKEN Center for Brain Science, Saitama, Japan
| | - Yutaka Nakachi
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-8556, Japan
| | - Junko Ueda
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-8556, Japan
| | - Mie Kubota-Sakashita
- Department of Psychiatry and Behavior Science, Graduate School of Medicine, Juntendo University, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-8556, Japan.
| | - Tadafumi Kato
- Department of Psychiatry and Behavior Science, Graduate School of Medicine, Juntendo University, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
| |
Collapse
|
22
|
Ueda J, Bundo M, Nakachi Y, Kasai K, Kato T, Iwamoto K. Cell type-specific DNA methylation analysis of the prefrontal cortex of patients with schizophrenia. Psychiatry Clin Neurosci 2021; 75:297-299. [PMID: 34164871 PMCID: PMC8457163 DOI: 10.1111/pcn.13282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/28/2021] [Accepted: 06/18/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Junko Ueda
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Nakachi
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan.,Department of Psychiatry and Behavioral Science, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
23
|
Labonté B, Abdallah K, Maussion G, Yerko V, Yang J, Bittar T, Quessy F, Golden SA, Navarro L, Checknita D, Gigek C, Lopez JP, Neve RL, Russo SJ, Tremblay RE, Côté G, Meaney MJ, Mechawar N, Nestler EJ, Turecki G. Regulation of impulsive and aggressive behaviours by a novel lncRNA. Mol Psychiatry 2021; 26:3751-3764. [PMID: 31907380 PMCID: PMC7436429 DOI: 10.1038/s41380-019-0637-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Abstract
High impulsive and aggressive traits associate with poor behavioural self-control. Despite their importance in predicting behavioural negative outcomes including suicide, the molecular mechanisms underlying the expression of impulsive and aggressive traits remain poorly understood. Here, we identified and characterized a novel long noncoding RNA (lncRNA), acting as a regulator of the monoamine oxidase A (MAOA) gene in the brain, and named it MAOA-associated lncRNA (MAALIN). Our results show that in the brain of suicide completers, MAALIN is regulated by a combination of epigenetic mechanisms including DNA methylation and chromatin modifications. Elevated MAALIN in the dentate gyrus of impulsive-aggressive suicides was associated with lower MAOA expression. Viral overexpression of MAALIN in neuroprogenitor cells decreased MAOA expression while CRISPR-mediated knock out resulted in elevated MAOA expression. Using viral-mediated gene transfer, we confirmed that MAALIN in the hippocampus significantly decreases MAOA expression and exacerbates the expression of impulsive-aggressive behavioural traits in CD1 aggressive mice. Overall, our findings suggest that variations in DNA methylation mediate the differential expression of a novel lncRNA that acts on MAOA expression to regulate impulsive-aggressive behaviours.
Collapse
Affiliation(s)
- Benoit Labonté
- Centre de Recherche CERVO, Department of Neuroscience and Psychiatry, Laval University, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.
| | - Khaled Abdallah
- Centre de Recherche CERVO, Department of Neuroscience and Psychiatry, Laval University, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Gilles Maussion
- McGill Group for Suicide Studies, Douglas Research Centre, Department of Psychiatry, McGill University, Frank B. Common Pavilion, 6875 LaSalle Blvd., Montreal, QC, H4H 1R3, Canada
| | - Volodymyr Yerko
- McGill Group for Suicide Studies, Douglas Research Centre, Department of Psychiatry, McGill University, Frank B. Common Pavilion, 6875 LaSalle Blvd., Montreal, QC, H4H 1R3, Canada
| | - Jennie Yang
- McGill Group for Suicide Studies, Douglas Research Centre, Department of Psychiatry, McGill University, Frank B. Common Pavilion, 6875 LaSalle Blvd., Montreal, QC, H4H 1R3, Canada
| | - Thibault Bittar
- Centre de Recherche CERVO, Department of Neuroscience and Psychiatry, Laval University, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Francis Quessy
- Centre de Recherche CERVO, Department of Neuroscience and Psychiatry, Laval University, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Sam A Golden
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luis Navarro
- Unitat de Genètica Molecular Institut de Biomedicina de València, Valencia, Spain
| | - Dave Checknita
- McGill Group for Suicide Studies, Douglas Research Centre, Department of Psychiatry, McGill University, Frank B. Common Pavilion, 6875 LaSalle Blvd., Montreal, QC, H4H 1R3, Canada
| | - Carolina Gigek
- McGill Group for Suicide Studies, Douglas Research Centre, Department of Psychiatry, McGill University, Frank B. Common Pavilion, 6875 LaSalle Blvd., Montreal, QC, H4H 1R3, Canada
| | - Juan Pablo Lopez
- McGill Group for Suicide Studies, Douglas Research Centre, Department of Psychiatry, McGill University, Frank B. Common Pavilion, 6875 LaSalle Blvd., Montreal, QC, H4H 1R3, Canada
| | - Rachael L Neve
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richard E Tremblay
- Research Unit on Children's Psychosocial Maladjustment, Université de Montréal, Montreal, QC, Canada
| | - Gilles Côté
- Philippe-Pinel Institute of Montreal, University of Montreal, Montreal, QC, Canada
| | - Michael J Meaney
- McGill Group for Suicide Studies, Douglas Research Centre, Department of Psychiatry, McGill University, Frank B. Common Pavilion, 6875 LaSalle Blvd., Montreal, QC, H4H 1R3, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Research Centre, Department of Psychiatry, McGill University, Frank B. Common Pavilion, 6875 LaSalle Blvd., Montreal, QC, H4H 1R3, Canada
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Research Centre, Department of Psychiatry, McGill University, Frank B. Common Pavilion, 6875 LaSalle Blvd., Montreal, QC, H4H 1R3, Canada.
| |
Collapse
|
24
|
Kawatake-Kuno A, Murai T, Uchida S. The Molecular Basis of Depression: Implications of Sex-Related Differences in Epigenetic Regulation. Front Mol Neurosci 2021; 14:708004. [PMID: 34276306 PMCID: PMC8282210 DOI: 10.3389/fnmol.2021.708004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. Although the etiology and pathophysiology of MDD remain poorly understood, aberrant neuroplasticity mediated by the epigenetic dysregulation of gene expression within the brain, which may occur due to genetic and environmental factors, may increase the risk of this disorder. Evidence has also been reported for sex-related differences in the pathophysiology of MDD, with female patients showing a greater severity of symptoms, higher degree of functional impairment, and more atypical depressive symptoms. Males and females also differ in their responsiveness to antidepressants. These clinical findings suggest that sex-dependent molecular and neural mechanisms may underlie the development of depression and the actions of antidepressant medications. This review discusses recent advances regarding the role of epigenetics in stress and depression. The first section presents a brief introduction of the basic mechanisms of epigenetic regulation, including histone modifications, DNA methylation, and non-coding RNAs. The second section reviews their contributions to neural plasticity, the risk of depression, and resilience against depression, with a particular focus on epigenetic modulators that have causal relationships with stress and depression in both clinical and animal studies. The third section highlights studies exploring sex-dependent epigenetic alterations associated with susceptibility to stress and depression. Finally, we discuss future directions to understand the etiology and pathophysiology of MDD, which would contribute to optimized and personalized therapy.
Collapse
Affiliation(s)
- Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiya Murai
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
25
|
Bundo M, Ueda J, Nakachi Y, Kasai K, Kato T, Iwamoto K. Decreased DNA methylation at promoters and gene-specific neuronal hypermethylation in the prefrontal cortex of patients with bipolar disorder. Mol Psychiatry 2021; 26:3407-3418. [PMID: 33875800 PMCID: PMC8505249 DOI: 10.1038/s41380-021-01079-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/06/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Abstract
Bipolar disorder (BD) is a severe mental disorder characterized by repeated mood swings. Although genetic factors are collectively associated with the etiology of BD, the underlying molecular mechanisms, particularly how environmental factors affect the brain, remain largely unknown. We performed promoter-wide DNA methylation analysis of neuronal and nonneuronal nuclei in the prefrontal cortex of patients with BD (N = 34) and controls (N = 35). We found decreased DNA methylation at promoters in both cell types in the BD patients. Gene Ontology (GO) analysis of differentially methylated region (DMR)-associated genes revealed enrichment of molecular motor-related genes in neurons, chemokines in both cell types, and ion channel- and transporter-related genes in nonneurons. Detailed GO analysis further revealed that growth cone- and dendrite-related genes, including NTRK2 and GRIN1, were hypermethylated in neurons of BD patients. To assess the effect of medication, neuroblastoma cells were cultured under therapeutic concentrations of three mood stabilizers. We observed that up to 37.9% of DMRs detected in BD overlapped with mood stabilizer-induced DMRs. Interestingly, mood stabilizer-induced DMRs showed the opposite direction of changes in DMRs, suggesting the therapeutic effects of mood stabilizers. Among the DMRs, 12 overlapped with loci identified in a genome-wide association study (GWAS) of BD. We also found significant enrichment of neuronal DMRs in the loci reported in another GWAS of BD. Finally, we performed qPCR of DNA methylation-related genes and found that DNMT3B was overexpressed in BD. The cell-type-specific DMRs identified in this study will be useful for understanding the pathophysiology of BD.
Collapse
Affiliation(s)
- Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junko Ueda
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Yutaka Nakachi
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan.
- Department of Psychiatry and Behavioral Science, Graduate School of Medicine, Juntendo University, Tokyo, Japan.
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
26
|
Rygiel CA, Dolinoy DC, Bakulski KM, Aung MT, Perng W, Jones TR, Solano-González M, Hu H, Tellez-Rojo MM, Schnaas L, Marcela E, Peterson KE, Goodrich JM. DNA methylation at birth potentially mediates the association between prenatal lead (Pb) exposure and infant neurodevelopmental outcomes. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab005. [PMID: 34141453 PMCID: PMC8206046 DOI: 10.1093/eep/dvab005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/30/2021] [Accepted: 04/16/2021] [Indexed: 05/08/2023]
Abstract
Early-life lead (Pb) exposure has been linked to adverse neurodevelopmental outcomes. Recent evidence has indicated a critical role of DNA methylation (DNAm) in cognition, and Pb exposure has also been shown to alter DNAm. However, it is unknown whether DNAm is part of the mechanism of Pb neurotoxicity. This longitudinal study investigated the associations between trimester-specific (T1, T2, and T3) maternal blood Pb concentrations, gene-specific DNAm in umbilical cord blood, and infant neurodevelopmental outcomes at 12 and 24 months of age (mental development index, psychomotor development index, and behavioral rating scale of orientation/engagement and emotional regulation) among 85 mother-infant pairs from the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) study. In the mediation analysis for this pilot study, P < 0.1 was considered significant. DNAm at a locus in CCSER1 (probe ID cg02901723) mediated the association between T2 Pb on 24-month orientation/engagement [indirect effect estimate 4.44, 95% confidence interval (-0.09, 10.68), P = 0.06] and emotional regulation [3.62 (-0.05, 8.69), P = 0.05]. Cg18515027 (GCNT1) DNAm mediated the association of T1 Pb [-4.94 (-10.6, -0.77), P = 0.01] and T2 Pb [-3.52 (-8.09, -0.36), P = 0.02] with 24-month EMOCI, but there was a positive indirect effect estimate between T2 Pb and 24-month psychomotor development index [1.25 (-0.11, 3.32), P = 0.09]. The indirect effect was significant for cg19703494 (TRAPPC6A) DNAm in the association between T2 Pb and 24-month mental development index [1.54 (0, 3.87), P = 0.05]. There was also an indirect effect of cg23280166 (VPS11) DNAm on T3 Pb and 24-month EMOCI [2.43 (-0.16, 6.38), P = 0.08]. These associations provide preliminary evidence for gene-specific DNAm as mediators between prenatal Pb and adverse cognitive outcomes in offspring.
Collapse
Affiliation(s)
- Christine A Rygiel
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Max T Aung
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, 490 Illinois Street, San Francisco, CA 94143, USA
| | - Wei Perng
- Department of Nutritional Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Department of Epidemiology and the Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center Colorado School of Public Health, University of Colorado Denver Anschutz Medical Center, 12474 East 19th Avenue, Aurora, CO 80045, USA
| | - Tamara R Jones
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Maritsa Solano-González
- Center for Nutrition and Health Research, National Institute of Public Health, Universidad No. 655 Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera C.P. 62100, Cuernavaca, Morelos, México
| | - Howard Hu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto St., Los Angeles, CA 90033, USA
| | - Martha M Tellez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Universidad No. 655 Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera C.P. 62100, Cuernavaca, Morelos, México
| | - Lourdes Schnaas
- National Institute of Perinatology, Mexico City, Calle Montes Urales 800, Lomas - Virreyes, Lomas de Chapultepec IV Secc, Miguel Hidalgo, 11000 Ciudad de México, CDMX, Mexico
| | - Erika Marcela
- National Institute of Perinatology, Mexico City, Calle Montes Urales 800, Lomas - Virreyes, Lomas de Chapultepec IV Secc, Miguel Hidalgo, 11000 Ciudad de México, CDMX, Mexico
| | - Karen E Peterson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
Gu J, Barrera J, Yun Y, Murphy SK, Beach TG, Woltjer RL, Serrano GE, Kantor B, Chiba-Falek O. Cell-Type Specific Changes in DNA Methylation of SNCA Intron 1 in Synucleinopathy Brains. Front Neurosci 2021; 15:652226. [PMID: 33994928 PMCID: PMC8113398 DOI: 10.3389/fnins.2021.652226] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/06/2021] [Indexed: 11/26/2022] Open
Abstract
Parkinson's disease (PD) and dementia with Lewy body (DLB) are the most common synucleinopathies. SNCA gene is a major genetic risk factor for these diseases group, and dysregulation of its expression has been implicated in the genetic etiologies of several synucleinopathies. DNA methylation at CpG island (CGI) within SNCA intron 1 has been suggested as a regulatory mechanism of SNCA expression, and changes in methylation levels at this region were associated with PD and DLB. However, the role of DNA methylation in the regulation of SNCA expression in a cell-type specific manner and its contribution to the pathogenesis of PD and DLB remain poorly understood, and the data are conflicting. Here, we employed a bisulfite pyrosequencing technique to profile the DNA methylation across SNCA intron 1 CGI in PD and DLB compared to age- and sex-matched normal control subjects. We analyzed homogenates of bulk post-mortem frozen frontal cortex samples and a subset of neuronal and glia nuclei sorted by the fluorescence-activated nuclei sorting (FANS) method. Bulk brain tissues showed no significant difference in the overall DNA methylation across SNCA intron 1 CGI region between the neuropathological groups. Sorted neuronal nuclei from PD frontal cortex showed significant lower levels of DNA methylation at this region compared to normal controls, but no differences between DLB and control, while sorted glia nuclei exhibited trends of decreased overall DNA methylation in DLB only. In conclusion, our data suggested disease-dependent cell-type specific differential DNA methylation within SNCA intron 1 CGI. These changes may affect SNCA dysregulation that presumably mediates disease-specific risk. Our results can be translated into the development of the SNCA intron 1 CGI region as an attractive therapeutics target for gene therapy in patients who suffer from synucleinopathies due to SNCA dysregulation.
Collapse
Affiliation(s)
- Jeffrey Gu
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, United States
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, United States
| | - Julio Barrera
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, United States
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, United States
| | - Young Yun
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, United States
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, United States
| | - Susan K. Murphy
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, United States
| | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Randy L. Woltjer
- Layton Aging and Alzheimer’s Disease Center, Department of Pathology, Oregon Health & Science University, Portland, OR, United States
| | - Geidy E. Serrano
- Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Boris Kantor
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, United States
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
28
|
Samoylova EM, Baklaushev VP. Cell Reprogramming Preserving Epigenetic Age: Advantages and Limitations. BIOCHEMISTRY (MOSCOW) 2021; 85:1035-1047. [PMID: 33050850 DOI: 10.1134/s0006297920090047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our understanding of cell aging advanced significantly since the discovery of this phenomenon by Hayflick and Moorhead in 1961. In addition to the well-known shortening of telomeric regions of chromosomes, cell aging is closely associated with changes of the DNA methylation profile. Establishing, maintaining, or reversing epigenetic age of a cell is central to the technology of cell reprogramming. Two distinct approaches - iPSC- and transdifferentiation-based cell reprogramming - affect differently epigenetic age of the cells. The iPSC-based reprogramming protocols are generally believed to result in the reversion of DNA methylation profiles towards less differentiated states, while the original methylation profiles are preserved in the direct trans-differentiation protocols. Clearly, in order to develop adequate model of CNS pathologies, one has to have thorough understanding of the biological roles of DNA methylation in the development, maintenance of functional activity, tissue and cell diversity, restructuring of neural networks during learning, as well as in aging-associated neuronal decline. Direct cell reprogramming is an excellent alternative and a valuable supplement to the iPSC-based technologies both as a source of mature cells for modeling of neurodegenerative diseases, and as a novel powerful strategy for in vivo cell replacement therapy. Further advancement of the regenerative and personalized medicine will strongly depend on optimization of the production of patient-specific autologous cells involving alternative approaches of direct and indirect cell reprogramming that take into account epigenetic age of the starting cell material.
Collapse
Affiliation(s)
- E M Samoylova
- Federal Research Clinical Center, FMBA of Russia, Moscow, 115682, Russia.
| | - V P Baklaushev
- Federal Research Clinical Center, FMBA of Russia, Moscow, 115682, Russia
| |
Collapse
|
29
|
Berger TC, Vigeland MD, Hjorthaug HS, Nome CG, Taubøll E, Selmer KK, Heuser K. Differential Glial Activation in Early Epileptogenesis-Insights From Cell-Specific Analysis of DNA Methylation and Gene Expression in the Contralateral Hippocampus. Front Neurol 2020; 11:573575. [PMID: 33312155 PMCID: PMC7702971 DOI: 10.3389/fneur.2020.573575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022] Open
Abstract
Background and Aims: Morphological changes in mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE-HS) are well-characterized. Yet, it remains elusive whether these are a consequence of seizures or originate from a hitherto unknown underlying pathology. We recently published data on changes in gene expression and DNA methylation in the ipsilateral hippocampus (ILH) using the intracortical kainate mouse model of mTLE-HS. In order to explore the effects of epileptic activity alone and also to further disentangle what triggers morphological alterations, we investigated glial and neuronal changes in gene expression and DNA methylation in the contralateral hippocampus (CLH). Methods: The intracortical kainic acid mouse model of mTLE-HS was used to elicit status epilepticus. Hippocampi contralateral to the injection site from eight kainate-injected and eight sham mice were extracted and shock frozen at 24 h post-injection. Glial and neuronal nuclei were sorted by flow cytometry. Alterations in gene expression and DNA methylation were assessed using reduced representation bisulfite sequencing and RNA sequencing. The R package edgeR was used for statistical analysis. Results: The CLH featured substantial, mostly cell-specific changes in both gene expression and DNA methylation in glia and neurons. While changes in gene expression overlapped to a great degree between CLH and ILH, alterations in DNA methylation did not. In the CLH, we found a significantly lower number of glial genes up- and downregulated compared to previous results from the ILH. Furthermore, several genes and pathways potentially involved in anti-epileptogenic effects were upregulated in the CLH. By comparing gene expression data from the CLH to previous results from the ILH (featuring hippocampal sclerosis), we derive potential upstream targets for epileptogenesis, including glial Cox2 and Cxcl10. Conclusion: Despite the absence of morphological changes, the CLH displays substantial changes in gene expression and DNA methylation. We find that gene expression changes related to potential anti-epileptogenic effects seem to dominate compared to the pro-epileptogenic effects in the CLH and speculate whether this imbalance contributes to prevent morphological alterations like neuronal death and reactive gliosis.
Collapse
Affiliation(s)
- Toni C Berger
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,University of Oslo, Oslo, Norway
| | - Magnus D Vigeland
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Hanne S Hjorthaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - Erik Taubøll
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,University of Oslo, Oslo, Norway
| | - Kaja K Selmer
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway.,National Centre for Epilepsy, Oslo University Hospital, Sandvika, Norway
| | - Kjell Heuser
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Mahaq O, P. Rameli MA, Jaoi Edward M, Mohd Hanafi N, Abdul Aziz S, Abu Hassim H, Mohd Noor MH, Ahmad H. The effects of dietary edible bird nest supplementation on learning and memory functions of multigenerational mice. Brain Behav 2020; 10:e01817. [PMID: 32886435 PMCID: PMC7667319 DOI: 10.1002/brb3.1817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Edible bird nest (EBN) is a natural food product produced from edible nest swiftlet's saliva which consists of glycoproteins as one of its main components; these glycoproteins contain an abundant of sialic acid. The dietary EBN supplementation has been reported to enhance brain functions in mammals and that the bioactivities and nutritional value of EBN are important during periods of rapid brain growth particularly for preterm infant. However, the effects of EBN in maternal on multigeneration learning and memory function still remain unclear. Thus, the present study aimed to determine the effects of maternal EBN supplementation on learning and memory function of their first (F1)- and second (F2)-generation mice. METHODS CJ57BL/6 breeder F0 mice were fed with EBN (10 mg/kg) from different sources. After 6 weeks of diet supplementations, the F0 animals were bred to produce F1 and F2 animals. At 6 weeks of age, the F1 and F2 animals were tested for spatial recognition memory using a Y-maze test. The sialic acid content from EBN and brain gene expression were analyzed using HPLC and PCR, respectively. RESULTS All EBN samples contained glycoprotein with high level of sialic acid. Dietary EBN supplementation also showed an upregulation of GNE, ST8SiaIV, SLC17A5, and BDNF mRNA associated with an improvement in Y-maze cognitive performance in both generations of animal. Qualitatively, the densities of synaptic vesicles in the presynaptic terminal were higher in the F1 and F2 animals which might derive from maternal EBN supplementation. CONCLUSION This study provided a solid foundation toward the growing research on nutritional intervention from dietary EBN supplementation on cognitive and neurological development in the generation of mammals.
Collapse
Affiliation(s)
- Obaidullah Mahaq
- Department of Veterinary Preclinical SciencesFaculty of Veterinary MedicineUniversiti Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
- Department of Veterinary Preclinical ScienceFaculty of Veterinary MedicineShaikh Zayed UniversityKhostAfghanistan
| | - Mohd Adha P. Rameli
- Department of Veterinary Preclinical SciencesFaculty of Veterinary MedicineUniversiti Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
| | - Marilyn Jaoi Edward
- Agro‐Biotechnology Institute (ABI)National Institutes of Biotechnology Malaysia (NIBM), c/o MARDI HeadquartersSerdangMalaysia
| | - Nursyuhaida Mohd Hanafi
- Agro‐Biotechnology Institute (ABI)National Institutes of Biotechnology Malaysia (NIBM), c/o MARDI HeadquartersSerdangMalaysia
| | - Saleha Abdul Aziz
- Department of Veterinary Pathology and MicrobiologyFaculty of Veterinary MedicineUniversiti Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
| | - Hasliza Abu Hassim
- Department of Veterinary Preclinical SciencesFaculty of Veterinary MedicineUniversiti Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
- Laboratory of Sustainable Animal Production and BiodiversityInstitute of Tropical Agriculture and Food SecurityUniversity Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
| | - Mohd Hezmee Mohd Noor
- Department of Veterinary Preclinical SciencesFaculty of Veterinary MedicineUniversiti Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
- University Agriculture ParkUniversiti Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
| | - Hafandi Ahmad
- Department of Veterinary Preclinical SciencesFaculty of Veterinary MedicineUniversiti Putra MalaysiaUPM SerdangSelangor Darul EhsanMalaysia
| |
Collapse
|
31
|
Shen J, Lin L, Liao L, Liang W, Yang X, Lin K, Ke L, Zhang L, Kang J, Ding S, Li C, Zheng Z. The involvement of Notch1 signaling pathway in mid-aged female rats under chronic restraint stress. Neurosci Lett 2020; 738:135313. [PMID: 32827575 DOI: 10.1016/j.neulet.2020.135313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Women are vulnerable to adverse stress events, especially during perimenopause. Substantial evidence has associated the impaired neuronal plasticity with abnormal behaviors under stressful conditions in animals. The Notch signaling pathway is critical for neuronal plasticity in the structure and function of brain areas. In this study, the mid-aged female rats were subjected to chronic restraint stress(CRS) in combination with isolated rearing for 6 weeks. The behavior tests and HPA activity were conducted to evaluate the model. The mRNA and protein levels of Notch1 signaling related genes in the hippocampus(HIP) and prefrontal cortex(PFC) were analyzed by RT-qPCR and western blotting. The promoter methylation levels were measured by bisulfite sequencing PCR analysis. CRS induced depression-like and anxiety-like behaviors in mid-aged stressed females, as shown by decreased locomotor activity, sucrose consumption and increased HPA activity. Moreover, after CRS, the rats exhibited decreased mRNA and protein levels in Jagged1, Notch1 and Hes5 in the HIP and Notch1, Hes1 and Hes5 in the PFC. However, there were no significant promotor methylation changes between the stressed and control female rats. These findings suggest that Notch1 signaling pathway may contribute to the behavioral changes following CRS in mid-aged female rats and the upstream cause of the gene expression changes needs to be further investigated.
Collapse
Affiliation(s)
- Jianying Shen
- Research Center of Neurobiology, Department of Biochemistry and Molecular Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, 350122, China
| | - Ling Lin
- Research Center of Neurobiology, Department of Biochemistry and Molecular Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, 350122, China
| | - Linghong Liao
- Fujian Key Laboratory of TCM Health State, Research Base of TCM Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China
| | - Wenna Liang
- Fujian Key Laboratory of TCM Health State, Research Base of TCM Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China
| | - Xiaoting Yang
- Fujian Key Laboratory of TCM Health State, Research Base of TCM Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China
| | - Kaimin Lin
- Fujian Key Laboratory of TCM Health State, Research Base of TCM Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China
| | - Long Ke
- Fujian Key Laboratory of TCM Health State, Research Base of TCM Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China
| | - Lingyuan Zhang
- Fujian Key Laboratory of TCM Health State, Research Base of TCM Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China
| | - Jie Kang
- Fujian Key Laboratory of TCM Health State, Research Base of TCM Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China
| | - Shanshan Ding
- Fujian Key Laboratory of TCM Health State, Research Base of TCM Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China
| | - Candong Li
- Fujian Key Laboratory of TCM Health State, Research Base of TCM Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, China
| | - Zhihong Zheng
- Research Center of Neurobiology, Department of Biochemistry and Molecular Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, 350122, China.
| |
Collapse
|
32
|
Nakachi Y, Ishii K, Bundo M, Masuda T, Iwamoto K. Use of the Illumina EPIC methylation array for epigenomic research in the crab-eating macaque (Macaca fascicularis). Neuropsychopharmacol Rep 2020; 40:423-426. [PMID: 33037870 PMCID: PMC7722662 DOI: 10.1002/npr2.12145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 11/24/2022] Open
Abstract
Background Commercially available Illumina DNA methylation arrays (HumanMethylation 27K, HumanMethylation450, and MethylationEPIC BeadChip) can be used for comprehensive DNA methylation analyses of not only the human genome but also other mammalian genomes, ranging from those of nonhuman primates to those of rodents. However, practical application of the EPIC array to the crab‐eating macaque has not been reported. Methods Through bioinformatic analyses involving cross‐species comparison and consideration of probe performance, we selected array probes that can be reliably used for the crab‐eating macaque genome. A DNA methylation assay using an EPIC array was performed on genomic DNA extracted from the brains of five crab‐eating macaques. The obtained DNA methylation data were compared with a publicly available dataset. Results Among the 865 918 probes in the EPIC array, a total of 183 509 probes (21.2%) were selected as high‐confidence array probes in the crab‐eating macaque. Subsequent comparisons revealed that the data from these probes showed good concordance with other DNA methylation datasets of the crab‐eating macaque. Conclusion The selected high‐confidence array probes would be useful for high‐throughput DNA methylation assays of the crab‐eating macaque. Epigenetic research in the non‐human primates, such as crab‐eating macaque, will be important to understand the pathophysiology of psychiatric disorders. Among the methylation array probes for human genome, the probes that can reliably measure DNA methylation levels of the crab‐eating macaque are reported.![]()
Collapse
Affiliation(s)
- Yutaka Nakachi
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhiro Ishii
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoyuki Masuda
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
33
|
Ma D, Fetahu IS, Wang M, Fang R, Li J, Liu H, Gramyk T, Iwanicki I, Gu S, Xu W, Tan L, Wu F, Shi YG. The fusiform gyrus exhibits an epigenetic signature for Alzheimer's disease. Clin Epigenetics 2020; 12:129. [PMID: 32854783 PMCID: PMC7457273 DOI: 10.1186/s13148-020-00916-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
Background Alzheimer’s disease (AD) is the most common type of dementia, and patients with advanced AD frequently lose the ability to identify family members. The fusiform gyrus (FUS) of the brain is critical in facial recognition. However, AD etiology in the FUS of AD patients is poorly understood. New analytical strategies are needed to reveal the genetic and epigenetic basis of AD in FUS. Results A complex of new analytical paradigms that integrates an array of transcriptomes and methylomes of normal controls, AD patients, and “AD-in-dish” models were used to identify genetic and epigenetic signatures of AD in FUS. Here we identified changes in gene expression that are specific to the FUS in brains of AD patients. These changes are closely linked to key genes in the AD network. Profiling of the methylome (5mC/5hmC/5fC/5caC) at base resolution identified 5 signature genes (COL2A1, CAPN3, COL14A1, STAT5A, SPOCK3) that exhibit perturbed expression, specifically in the FUS and display altered DNA methylome profiles that are common across AD-associated brain regions. Moreover, we demonstrate proof-of-principle that AD-associated methylome changes in these genes effectively predict the disease prognosis with enhanced sensitivity compared to presently used clinical criteria. Conclusions This study identified a set of previously unexplored FUS-specific AD genes and their epigenetic characteristics, which may provide new insights into the molecular pathology of AD, attributing the genetic and epigenetic basis of FUS to AD development.
Collapse
Affiliation(s)
- Dingailu Ma
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, 201102, China.,Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Irfete S Fetahu
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mei Wang
- Department of Geriatrics, Shanghai General Hospital, Shanghai, 200080, China
| | - Rui Fang
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jiahui Li
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Hang Liu
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Tobin Gramyk
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Isabella Iwanicki
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sophie Gu
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Winnie Xu
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Li Tan
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Feizhen Wu
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Yujiang G Shi
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
34
|
Shen J, Lin L, Liao L, Liang W, Yang X, Lin K, Ke L, Zhang L, Kang J, Ding S, Li C, Zheng Z. WITHDRAWN: The Involvement of Notch1 Signaling Pathway in Mid-aged Female Rats under Chronic Restraint Stress. Neurosci Lett 2020:135244. [PMID: 32652209 DOI: 10.1016/j.neulet.2020.135244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/18/2020] [Accepted: 07/07/2020] [Indexed: 11/26/2022]
Abstract
This article has been withdrawn at the request of the Editor-in-Chief. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Jianying Shen
- Research Center of Neurobiology, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Ling Lin
- Research Center of Neurobiology, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Linghong Liao
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Wenna Liang
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Xiaoting Yang
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Kaimin Lin
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Long Ke
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Lingyuan Zhang
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Jie Kang
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Shanshan Ding
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Candong Li
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Zhihong Zheng
- Research Center of Neurobiology, Fujian Medical University, Fuzhou 350122, Fujian Province, China.
| |
Collapse
|
35
|
Koshi-Mano K, Mano T, Morishima M, Murayama S, Tamaoka A, Tsuji S, Toda T, Iwata A. Neuron-specific analysis of histone modifications with post-mortem brains. Sci Rep 2020; 10:3767. [PMID: 32111906 PMCID: PMC7048733 DOI: 10.1038/s41598-020-60775-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/17/2020] [Indexed: 01/25/2023] Open
Abstract
Histone modifications govern chromatin structures and regulate gene expression to orchestrate cellular functions in the central nervous system, where neuronal cells are postmitotic and developmentally inactive, the functional and age-dependent changes also accumulate in the epigenetic states. Because the brain is composed of several types of cells, such as the neurons, glial cells, and vascular cells, the analysis of histone modifications using bulk brain tissue might obscure alterations specific to neuronal cells. Furthermore, among the various epigenetic traits, analysis of the genome-wide distribution of DNA methylation in the bulk brain is predominantly a reflection of DNA methylation of the non-neuronal cells, which may be a potential caveat of previous studies on neurodegenerative diseases using bulk brains. In this study, we established a method of neuron-specific ChIP-seq assay, which allows for the analysis of genome-wide distribution of histone modifications specifically in the neuronal cells derived from post-mortem brains. We successfully enriched neuronal information with high reproducibility and high signal-to-noise ratio. Our method will further facilitate the understanding of neurodegeneration.
Collapse
Affiliation(s)
- Kagari Koshi-Mano
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsuo Mano
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Maho Morishima
- Department of Neuropathology, Tokyo Metropolitan Geriatric Hospital, 35-2 Sakaecho, Itabashi, Tokyo, 173-0015, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Geriatric Hospital, 35-2 Sakaecho, Itabashi, Tokyo, 173-0015, Japan
| | - Akira Tamaoka
- Department of Neurology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Atsushi Iwata
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
36
|
Schiele MA, Gottschalk MG, Domschke K. The applied implications of epigenetics in anxiety, affective and stress-related disorders - A review and synthesis on psychosocial stress, psychotherapy and prevention. Clin Psychol Rev 2020; 77:101830. [PMID: 32163803 DOI: 10.1016/j.cpr.2020.101830] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022]
Abstract
Mental disorders are highly complex and multifactorial in origin, comprising an elaborate interplay of genetic and environmental factors. Epigenetic mechanisms such as DNA modifications (e.g. CpG methylation), histone modifications (e.g. acetylation) and microRNAs function as a translator between genes and the environment. Indeed, environmental influences such as exposure to stress shape epigenetic patterns, and lifetime experiences continue to alter the function of the genome throughout the lifespan. Here, we summarize the recently burgeoning body of research regarding the involvement of aberrant epigenetic signatures in mediating an increased vulnerability to a wide range of mental disorders. We review the current knowledge of epigenetic changes to constitute useful markers predicting the clinical response to psychotherapeutic interventions, and of psychotherapy to alter - and potentially reverse - epigenetic risk patterns. Given first evidence pointing to a transgenerational transmission of epigenetic information, epigenetic alterations arising from successful psychotherapy might be transferred to future generations and thus contribute to the prevention of mental disorders. Findings are integrated into a multi-level framework highlighting challenges pertaining to the mechanisms of action and clinical implications of epigenetic research. Promising future directions regarding the prediction, prevention, and personalized treatment of mental disorders in line with a 'precision medicine' approach are discussed.
Collapse
Affiliation(s)
- Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany
| | - Michael G Gottschalk
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany; Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, D-79106 Freiburg, Germany.
| |
Collapse
|
37
|
Urb M, Niinep K, Matsalu T, Kipper K, Herodes K, Zharkovsky A, Timmusk T, Anier K, Kalda A. The role of DNA methyltransferase activity in cocaine treatment and withdrawal in the nucleus accumbens of mice. Addict Biol 2020; 25:e12720. [PMID: 30730091 DOI: 10.1111/adb.12720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/07/2018] [Accepted: 01/08/2019] [Indexed: 01/02/2023]
Abstract
An increasing number of reports have provided crucial evidence that epigenetic modifications, such as DNA methylation, may be involved in initiating and establishing psychostimulant-induced stable changes at the cellular level by coordinating the expression of gene networks, which then manifests as long-term behavioral changes. In this study, we evaluated the enzyme activity of DNA methyltransferases (DNMTs) after cocaine treatment and during withdrawal. Furthermore, we studied how genetic or pharmacological inhibition of DNMTs in mouse nucleus accumbens (NAc) affects the induction and expression of cocaine-induced behavioral sensitization. Our results showed that after silencing Dnmt3a in the NAc during the induction phase of cocaine-induced sensitization, overall DNMT activity decreases, correlating negatively with behavioral sensitization. Reduced Dnmt3a mRNA during this phase was the largest contributing factor for decreased DNMT activity. Cocaine withdrawal and a challenge dose increased DNMT activity in the NAc, which was associated with the expression of behavioral sensitization. Long-term selective Dnmt3a transcription silencing in the NAc did not alter DNMT activity or the expression of cocaine-induced behavioral sensitization. However, bilateral intra-NAc injection of a non-specific inhibitor of DNMT (RG108) during withdrawal from cocaine decreased DNMT activity in the NAc and had a small effect on the expression of cocaine-induced behavioral sensitization. Thus, cocaine treatment and withdrawal is associated with biphasic changes in DNMT activity in the NAc, and the expression of behavioral sensitization decreases with non-selective inhibition of DNMT but not with selective silencing of Dnmt3a.
Collapse
Affiliation(s)
- Mari Urb
- Department of PharmacologyInstitute of Biomedicine and Translational Medicine, University of Tartu Estonia
| | - Kerly Niinep
- Department of PharmacologyInstitute of Biomedicine and Translational Medicine, University of Tartu Estonia
| | - Terje Matsalu
- Department of PharmacologyInstitute of Biomedicine and Translational Medicine, University of Tartu Estonia
| | - Karin Kipper
- Institute of Chemistry, University of Tartu Estonia
| | - Koit Herodes
- Institute of Chemistry, University of Tartu Estonia
| | - Alexander Zharkovsky
- Department of PharmacologyInstitute of Biomedicine and Translational Medicine, University of Tartu Estonia
| | - Tõnis Timmusk
- Institute of Chemistry and Biotechnology, Tallinn University of Technology Estonia
| | - Kaili Anier
- Department of PharmacologyInstitute of Biomedicine and Translational Medicine, University of Tartu Estonia
| | - Anti Kalda
- Department of PharmacologyInstitute of Biomedicine and Translational Medicine, University of Tartu Estonia
| |
Collapse
|
38
|
Berger TC, Vigeland MD, Hjorthaug HS, Etholm L, Nome CG, Taubøll E, Heuser K, Selmer KK. Neuronal and glial DNA methylation and gene expression changes in early epileptogenesis. PLoS One 2019; 14:e0226575. [PMID: 31887157 PMCID: PMC6936816 DOI: 10.1371/journal.pone.0226575] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND AIMS Mesial Temporal Lobe Epilepsy is characterized by progressive changes of both neurons and glia, also referred to as epileptogenesis. No curative treatment options, apart from surgery, are available. DNA methylation (DNAm) is a potential upstream mechanism in epileptogenesis and may serve as a novel therapeutic target. To our knowledge, this is the first study to investigate epilepsy-related DNAm, gene expression (GE) and their relationship, in neurons and glia. METHODS We used the intracortical kainic acid injection model to elicit status epilepticus. At 24 hours post injection, hippocampi from eight kainic acid- (KA) and eight saline-injected (SH) mice were extracted and shock frozen. Separation into neurons and glial nuclei was performed by flow cytometry. Changes in DNAm and gene expression were measured with reduced representation bisulfite sequencing (RRBS) and mRNA-sequencing (mRNAseq). Statistical analyses were performed in R with the edgeR package. RESULTS We observed fulminant DNAm- and GE changes in both neurons and glia at 24 hours after initiation of status epilepticus. The vast majority of these changes were specific for either neurons or glia. At several epilepsy-related genes, like HDAC11, SPP1, GAL, DRD1 and SV2C, significant differential methylation and differential gene expression coincided. CONCLUSION We found neuron- and glia-specific changes in DNAm and gene expression in early epileptogenesis. We detected single genetic loci in several epilepsy-related genes, where DNAm and GE changes coincide, worth further investigation. Further, our results may serve as an information source for neuronal and glial alterations in both DNAm and GE in early epileptogenesis.
Collapse
Affiliation(s)
- Toni C. Berger
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
- * E-mail:
| | - Magnus D. Vigeland
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Hanne S. Hjorthaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Lars Etholm
- National Center for Epilepsy, Oslo University Hospital, Sandvika, Norway
- Department of Neurology, Section for Neurophysiology, Oslo University Hospital, Oslo, Norway
| | | | - Erik Taubøll
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Kjell Heuser
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Kaja K. Selmer
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- National Center for Epilepsy, Oslo University Hospital, Sandvika, Norway
- Division of Clinical Neuroscience, Department of Research and Development, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
39
|
Traxler L, Edenhofer F, Mertens J. Next-generation disease modeling with direct conversion: a new path to old neurons. FEBS Lett 2019; 593:3316-3337. [PMID: 31715002 PMCID: PMC6907729 DOI: 10.1002/1873-3468.13678] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/20/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
Within just over a decade, human reprogramming-based disease modeling has developed from a rather outlandish idea into an essential part of disease research. While iPSCs are a valuable tool for modeling developmental and monogenetic disorders, their rejuvenated identity poses limitations for modeling age-associated diseases. Direct cell-type conversion of fibroblasts into induced neurons (iNs) circumvents rejuvenation and preserves hallmarks of cellular aging. iNs are thus advantageous for modeling diseases that possess strong age-related and epigenetic contributions and can complement iPSC-based strategies for disease modeling. In this review, we provide an overview of the state of the art of direct iN conversion and describe the key epigenetic, transcriptomic, and metabolic changes that occur in converting fibroblasts. Furthermore, we summarize new insights into this fascinating process, particularly focusing on the rapidly changing criteria used to define and characterize in vitro-born human neurons. Finally, we discuss the unique features that distinguish iNs from other reprogramming-based neuronal cell models and how iNs are relevant to disease modeling.
Collapse
Affiliation(s)
- Larissa Traxler
- Department of GenomicsStem Cell Biology & Regenerative MedicineInstitute of Molecular Biology & CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Frank Edenhofer
- Department of GenomicsStem Cell Biology & Regenerative MedicineInstitute of Molecular Biology & CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
| | - Jerome Mertens
- Department of GenomicsStem Cell Biology & Regenerative MedicineInstitute of Molecular Biology & CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| |
Collapse
|
40
|
Kato T. Current understanding of bipolar disorder: Toward integration of biological basis and treatment strategies. Psychiatry Clin Neurosci 2019; 73:526-540. [PMID: 31021488 DOI: 10.1111/pcn.12852] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022]
Abstract
Biological studies of bipolar disorder initially focused on the mechanism of action for antidepressants and antipsychotic drugs, and the roles of monoamines (e.g., serotonin, dopamine) have been extensively studied. Thereafter, based on the mechanism of action of lithium, intracellular signal transduction systems, including inositol metabolism and intracellular calcium signaling, have drawn attention. Involvement of intracellular calcium signaling has been supported by genetics and cellular studies. Elucidation of the neural circuits affected by calcium signaling abnormalities is critical, and our previous study suggested a role of the paraventricular thalamic nucleus. The genetic vulnerability of mitochondria causes calcium dysregulation and results in the hyperexcitability of serotonergic neurons, which are suggested to be susceptible to oxidative stress. Efficacy of anticonvulsants, animal studies of candidate genes, and studies using induced pluripotent stem cell-derived neurons have suggested a relation between bipolar disorder and the hyperexcitability of neurons. Recent genetic findings suggest the roles of polyunsaturated acids. At the systems level, social rhythm therapy targets circadian rhythm abnormalities, and cognitive behavioral therapy may target emotion/cognition (E/C) imbalance. In the future, pharmacological and psychosocial treatments may be combined and optimized based on the biological basis of each patient, which will realize individualized treatment.
Collapse
Affiliation(s)
- Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
41
|
Egervari G, Kozlenkov A, Dracheva S, Hurd YL. Molecular windows into the human brain for psychiatric disorders. Mol Psychiatry 2019; 24:653-673. [PMID: 29955163 PMCID: PMC6310674 DOI: 10.1038/s41380-018-0125-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022]
Abstract
Delineating the pathophysiology of psychiatric disorders has been extremely challenging but technological advances in recent decades have facilitated a deeper interrogation of molecular processes in the human brain. Initial candidate gene expression studies of the postmortem brain have evolved into genome wide profiling of the transcriptome and the epigenome, a critical regulator of gene expression. Here, we review the potential and challenges of direct molecular characterization of the postmortem human brain, and provide a brief overview of recent transcriptional and epigenetic studies with respect to neuropsychiatric disorders. Such information can now be leveraged and integrated with the growing number of genome-wide association databases to provide a functional context of trait-associated genetic variants linked to psychiatric illnesses and related phenotypes. While it is clear that the field is still developing and challenges remain to be surmounted, these recent advances nevertheless hold tremendous promise for delineating the neurobiological underpinnings of mental diseases and accelerating the development of novel medication strategies.
Collapse
Affiliation(s)
- Gabor Egervari
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Addiction Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA
- Epigenetics Institute and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexey Kozlenkov
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Stella Dracheva
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Yasmin L Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Addiction Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
42
|
Hack LM, Fries GR, Eyre HA, Bousman CA, Singh AB, Quevedo J, John VP, Baune BT, Dunlop BW. Moving pharmacoepigenetics tools for depression toward clinical use. J Affect Disord 2019; 249:336-346. [PMID: 30802699 PMCID: PMC6763314 DOI: 10.1016/j.jad.2019.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a leading cause of disability worldwide, and over half of patients do not achieve symptom remission following an initial antidepressant course. Despite evidence implicating a strong genetic basis for the pathophysiology of MDD, there are no adequately validated biomarkers of treatment response routinely used in clinical practice. Pharmacoepigenetics is an emerging field that has the potential to combine both genetic and environmental information into treatment selection and further the goal of precision psychiatry. However, this field is in its infancy compared to the more established pharmacogenetics approaches. METHODS We prepared a narrative review using literature searches of studies in English pertaining to pharmacoepigenetics and treatment of depressive disorders conducted in PubMed, Google Scholar, PsychINFO, and Ovid Medicine from inception through January 2019. We reviewed studies of DNA methylation and histone modifications in both humans and animal models of depression. RESULTS Emerging evidence from human and animal work suggests a key role for epigenetic marks, including DNA methylation and histone modifications, in the prediction of antidepressant response. The challenges of heterogeneity of patient characteristics and loci studied as well as lack of replication that have impacted the field of pharmacogenetics also pose challenges to the development of pharmacoepigenetic tools. Additionally, given the tissue specific nature of epigenetic marks as well as their susceptibility to change in response to environmental factors and aging, pharmacoepigenetic tools face additional challenges to their development. LIMITATIONS This is a narrative and not systematic review of the literature on the pharmacoepigenetics of antidepressant response. We highlight key studies pertaining to pharmacoepigenetics and treatment of depressive disorders in humans and depressive-like behaviors in animal models, regardless of sample size or methodology. While we discuss DNA methylation and histone modifications, we do not cover microRNAs, which have been reviewed elsewhere recently. CONCLUSIONS Utilization of genome-wide approaches and reproducible epigenetic assays, careful selection of the tissue assessed, and integration of genetic and clinical information into pharmacoepigenetic tools will improve the likelihood of developing clinically useful tests.
Collapse
Affiliation(s)
- Laura M Hack
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Palo Alto, CA 94305, USA; Sierra Pacific Mental Illness Research Education and Clinical Centers, VA Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Gabriel R Fries
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Harris A Eyre
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Palo Alto, CA 94305, USA; Innovation Institute, Texas Medical Center, Houston, TX, USA; IMPACT SRC, School of Medicine, Deakin University, Geelong, Victoria, Australia; Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Chad A Bousman
- Departments of Medical Genetics, Psychiatry, Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Ajeet B Singh
- IMPACT SRC, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Joao Quevedo
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Vineeth P John
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Bernhard T Baune
- Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
43
|
Dou JF, Farooqui Z, Faulk CD, Barks AK, Jones T, Dolinoy DC, Bakulski KM. Perinatal Lead (Pb) Exposure and Cortical Neuron-Specific DNA Methylation in Male Mice. Genes (Basel) 2019; 10:genes10040274. [PMID: 30987383 PMCID: PMC6523909 DOI: 10.3390/genes10040274] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022] Open
Abstract
: Lead (Pb) exposure is associated with a wide range of neurological deficits. Environmental exposures may impact epigenetic changes, such as DNA methylation, and can affect neurodevelopmental outcomes over the life-course. Mating mice were obtained from a genetically invariant C57BL/6J background agouti viable yellow Avy strain. Virgin dams (a/a) were randomly assigned 0 ppm (control), 2.1 ppm (low), or 32 ppm (high) Pb-acetate water two weeks prior to mating with male mice (Avy/a), and this continued through weaning. At age 10 months, cortex neuronal nuclei were separated with NeuN⁺ antibodies in male mice to investigate neuron-specific genome-wide promoter DNA methylation using the Roche NimbleGen Mouse 3x720K CpG Island Promoter Array in nine pooled samples (three per dose). Several probes reached p-value < 10-5 , all of which were hypomethylated: 12 for high Pb (minimum false discovery rate (FDR) = 0.16, largest intensity ratio difference = -2.1) and 7 for low Pb (minimum FDR = 0.56, largest intensity ratio difference = -2.2). Consistent with previous results in bulk tissue, we observed a weak association between early-life exposure to Pb and DNA hypomethylation, with some affected genes related to neurodevelopment or cognitive function. Although these analyses were limited to males, data indicate that non-dividing cells such as neurons can be carriers of long-term epigenetic changes induced in development.
Collapse
Affiliation(s)
- John F Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Zishaan Farooqui
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Christopher D Faulk
- Department of Animal Science, College of Food, Agricultural, and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA.
| | - Amanda K Barks
- Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, MN 55454, USA.
| | - Tamara Jones
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
44
|
Braun PR, Han S, Hing B, Nagahama Y, Gaul LN, Heinzman JT, Grossbach AJ, Close L, Dlouhy BJ, Howard MA, Kawasaki H, Potash JB, Shinozaki G. Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Transl Psychiatry 2019; 9:47. [PMID: 30705257 PMCID: PMC6355837 DOI: 10.1038/s41398-019-0376-y] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 12/24/2022] Open
Abstract
Differential DNA methylation in the brain is associated with many psychiatric diseases, but access to brain tissues is essentially limited to postmortem samples. The use of surrogate tissues has become common in identifying methylation changes associated with psychiatric disease. In this study, we determined the extent to which peripheral tissues can be used as surrogates for DNA methylation in the brain. Blood, saliva, buccal, and live brain tissue samples from 27 patients with medically intractable epilepsy undergoing brain resection were collected (age range 5-61 years). Genome-wide methylation was assessed with the Infinium HumanMethylation450 (n = 12) and HumanMethylationEPIC BeadChip arrays (n = 21). For the EPIC methylation data averaged for each CpG across subjects, the saliva-brain correlation (r = 0.90) was higher than that for blood-brain (r = 0.86) and buccal-brain (r = 0.85) comparisons. However, within individual CpGs, blood had the highest proportion of CpGs correlated to brain at nominally significant levels (20.8%), as compared to buccal tissue (17.4%) and saliva (15.1%). For each CpG and each gene, levels of brain-peripheral tissue correlation varied widely. This indicates that to determine the most useful surrogate tissue for representing brain DNA methylation, the patterns specific to the genomic region of interest must be considered. To assist in that objective, we have developed a website, IMAGE-CpG, that allows researchers to interrogate DNA methylation levels and degree of cross-tissue correlation in user-defined locations across the genome.
Collapse
Affiliation(s)
- Patricia R Braun
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52246, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Shizhong Han
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52246, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Benjamin Hing
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA
| | - Yasunori Nagahama
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA
| | - Lindsey N Gaul
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA
| | - Jonathan T Heinzman
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA
| | - Andrew J Grossbach
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA
- Department of Neurological Surgery, Ohio State University, Columbus, OH, 43203, USA
| | - Liesl Close
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA
| | - Brian J Dlouhy
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA
| | - James B Potash
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52246, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Gen Shinozaki
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA.
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA.
- Interdisciplinary Graduate Program for Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA.
| |
Collapse
|
45
|
Nishioka M, Bundo M, Iwamoto K, Kato T. Somatic mutations in the human brain: implications for psychiatric research. Mol Psychiatry 2019; 24:839-856. [PMID: 30087451 PMCID: PMC6756205 DOI: 10.1038/s41380-018-0129-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/27/2018] [Accepted: 05/25/2018] [Indexed: 01/18/2023]
Abstract
Psychiatric disorders such as schizophrenia and bipolar disorder are caused by complex gene-environment interactions. While recent advances in genomic technologies have enabled the identification of several risk variants for psychiatric conditions, including single-nucleotide variants and copy-number variations, these factors can explain only a portion of the liability to these disorders. Although non-inherited factors had previously been attributed to environmental causes, recent genomic analyses have demonstrated that de novo mutations are among the main non-inherited risk factors for several psychiatric conditions. Somatic mutations in the brain may also explain how stochastic developmental events and environmental insults confer risk for a psychiatric disorder following fertilization. Here, we review evidence regarding somatic mutations in the brains of individuals with and without neuropsychiatric diseases. We further discuss the potential biological mechanisms underlying somatic mutations in the brain as well as the technical issues associated with the detection of somatic mutations in psychiatric research.
Collapse
Affiliation(s)
- Masaki Nishioka
- 0000 0001 2151 536Xgrid.26999.3dDivision for Counseling and Support, The University of Tokyo, Tokyo, Japan
| | - Miki Bundo
- 0000 0001 0660 6749grid.274841.cDepartment of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan ,0000 0004 1754 9200grid.419082.6PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan.
| |
Collapse
|
46
|
Ziegler C, Schiele MA, Domschke K. Patho- und Therapieepigenetik psychischer Erkrankungen. DER NERVENARZT 2018; 89:1303-1314. [DOI: 10.1007/s00115-018-0625-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Glia-specific APOE epigenetic changes in the Alzheimer's disease brain. Brain Res 2018; 1698:179-186. [PMID: 30081037 DOI: 10.1016/j.brainres.2018.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 07/09/2018] [Accepted: 08/02/2018] [Indexed: 12/29/2022]
Abstract
The apolipoprotein E gene (APOE) is the strongest genetic risk factor for developing Alzheimer's disease (AD). Our recent identification of altered APOE DNA methylation in AD postmortem brain (PMB) prompted this follow-up study. Our goals were to (i) validate the AD-differential methylation of APOE in an independent PMB study cohort and (ii) determine the cellular populations (i.e., neuronal vs. non-neuronal) of AD PMB that contribute to this differential methylation. Here, we obtained an independent cohort of 57 PMB (42 AD and 15 controls) and quantified their APOE methylation levels from frontal lobe and cerebellar tissue. We also applied fluorescence-activated nuclei sorting (FANS) to separate neuronal nuclei from non-neuronal nuclei within the tissue of 15 AD and 14 control subjects. Bisulfite pyrosequencing was used to generate DNA methylation profiles of APOE from both bulk PMB and FANS nuclei. Our results provide independent validation that the APOE CGI holds lower DNA methylation levels in AD compared to control in frontal lobe but not cerebellar tissue. Our data also indicate that the non-neuronal cells of the AD brain, which are mainly composed of glia, are the main contributors to the lower APOE DNA methylation observed in AD PMB. Given that astrocytes are the primary producers of ApoE in the brain our results suggest that alteration of epigenetically regulated APOE expression in glia could be an important part of APOE's strong effect on AD risk.
Collapse
|
48
|
Vieira MS, Santos AK, Vasconcellos R, Goulart VAM, Parreira RC, Kihara AH, Ulrich H, Resende RR. Neural stem cell differentiation into mature neurons: Mechanisms of regulation and biotechnological applications. Biotechnol Adv 2018; 36:1946-1970. [PMID: 30077716 DOI: 10.1016/j.biotechadv.2018.08.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
The abilities of stem cells to self-renew and form different mature cells expand the possibilities of applications in cell-based therapies such as tissue recomposition in regenerative medicine, drug screening, and treatment of neurodegenerative diseases. In addition to stem cells found in the embryo, various adult organs and tissues have niches of stem cells in an undifferentiated state. In the central nervous system of adult mammals, neurogenesis occurs in two regions: the subventricular zone and the dentate gyrus in the hippocampus. The generation of the different neural lines originates in adult neural stem cells that can self-renew or differentiate into astrocytes, oligodendrocytes, or neurons in response to specific stimuli. The regulation of the fate of neural stem cells is a finely controlled process relying on a complex regulatory network that extends from the epigenetic to the translational level and involves extracellular matrix components. Thus, a better understanding of the mechanisms underlying how the process of neurogenesis is induced, regulated, and maintained will provide elues for development of novel for strategies for neurodegenerative therapies. In this review, we focus on describing the mechanisms underlying the regulation of the neuronal differentiation process by transcription factors, microRNAs, and extracellular matrix components.
Collapse
Affiliation(s)
- Mariana S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Anderson K Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rebecca Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Vânia A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo C Parreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Alexandre H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil.
| |
Collapse
|
49
|
DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. Epigenetics Chromatin 2018; 11:41. [PMID: 30045751 PMCID: PMC6058387 DOI: 10.1186/s13072-018-0211-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/17/2018] [Indexed: 12/30/2022] Open
Abstract
Background Epigenome-wide association studies (EWAS) based on human brain samples allow a deep and direct understanding of epigenetic dysregulation in Alzheimer’s disease (AD). However, strong variation of cell-type proportions across brain tissue samples represents a significant source of data noise. Here, we report the first EWAS based on sorted neuronal and non-neuronal (mostly glia) nuclei from postmortem human brain tissues. Results We show that cell sorting strongly enhances the robust detection of disease-related DNA methylation changes even in a relatively small cohort. We identify numerous genes with cell-type-specific methylation signatures and document differential methylation dynamics associated with aging specifically in neurons such as CLU, SYNJ2 and NCOR2 or in glia RAI1,CXXC5 and INPP5A. Further, we found neuron or glia-specific associations with AD Braak stage progression at genes such as MCF2L, ANK1, MAP2, LRRC8B, STK32C and S100B. A comparison of our study with previous tissue-based EWAS validates multiple AD-associated DNA methylation signals and additionally specifies their origin to neuron, e.g., HOXA3 or glia (ANK1). In a meta-analysis, we reveal two novel previously unrecognized methylation changes at the key AD risk genes APP and ADAM17. Conclusions Our data highlight the complex interplay between disease, age and cell-type-specific methylation changes in AD risk genes thus offering new perspectives for the validation and interpretation of large EWAS results. Electronic supplementary material The online version of this article (10.1186/s13072-018-0211-3) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Cariaga-Martinez A, Gutiérrez K, Alelú-Paz R. Rethinking schizophrenia through the lens of evolution: shedding light on the enigma. RESEARCH IDEAS AND OUTCOMES 2018. [DOI: 10.3897/rio.4.e28459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Schizophrenia refers to a complex psychiatric illness characterized by the heterogenic presence of positive, negative and cognitive symptoms occurring in all human societies. The fact that the disorder lacks a unifying neuropathology, presents a decreased fecundity of the affected individuals and has a cross-culturally stable incidence rate, makes it necessary for an evolutionary explanation that fully accounts for the preservation of “schizophrenic genes” in the global human genepool, explaining the potential sex differences and the heterogeneous cognitive symptomatology of the disorder and is consistent with the neuropsychological, developmental and evolutionary findings regarding the human brain. Here we proposed a new evolutionary framework for schizophrenia that is consistent with findings presented in different dimensions, considering the disorder as a form of brain functioning that allows us to adapt to the environment and, ultimately, maintain the survival of the species. We focus on the epigenetic regulation of thalamic interneurons as a major player involved in the development of the clinical picture characteristic of schizophrenia.
Collapse
|