1
|
Mathur D, Díaz SA, Hildebrandt N, Pensack RD, Yurke B, Biaggne A, Li L, Melinger JS, Ancona MG, Knowlton WB, Medintz IL. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chem Soc Rev 2023; 52:7848-7948. [PMID: 37872857 PMCID: PMC10642627 DOI: 10.1039/d0cs00936a] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 10/25/2023]
Abstract
DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Austin Biaggne
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Mario G Ancona
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| |
Collapse
|
2
|
DNA Microsystems for Biodiagnosis. MICROMACHINES 2020; 11:mi11040445. [PMID: 32340280 PMCID: PMC7231314 DOI: 10.3390/mi11040445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022]
Abstract
Researchers are continuously making progress towards diagnosis and treatment of numerous diseases. However, there are still major issues that are presenting many challenges for current medical diagnosis. On the other hand, DNA nanotechnology has evolved significantly over the last three decades and is highly interdisciplinary. With many potential technologies derived from the field, it is natural to begin exploring and incorporating its knowledge to develop DNA microsystems for biodiagnosis in order to help address current obstacles, such as disease detection and drug resistance. Here, current challenges in disease detection are presented along with standard methods for diagnosis. Then, a brief overview of DNA nanotechnology is introduced along with its main attractive features for constructing biodiagnostic microsystems. Lastly, suggested DNA-based microsystems are discussed through proof-of-concept demonstrations with improvement strategies for standard diagnostic approaches.
Collapse
|
3
|
Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, Susumu K, Díaz SA, Delehanty JB, Medintz IL. Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chem Rev 2016; 117:536-711. [DOI: 10.1021/acs.chemrev.6b00030] [Citation(s) in RCA: 457] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Niko Hildebrandt
- NanoBioPhotonics
Institut d’Electronique Fondamentale (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, 91400 Orsay, France
| | | | - W. Russ Algar
- Department
of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Thomas Pons
- LPEM;
ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC, F-75005 Paris, France
| | | | - Eunkeu Oh
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Kimihiro Susumu
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Sebastian A. Díaz
- American Society for Engineering Education, Washington, DC 20036, United States
| | | | | |
Collapse
|
4
|
Samanta A, Medintz IL. Nanoparticles and DNA - a powerful and growing functional combination in bionanotechnology. NANOSCALE 2016; 8:9037-95. [PMID: 27080924 DOI: 10.1039/c5nr08465b] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Functionally integrating DNA and other nucleic acids with nanoparticles in all their different physicochemical forms has produced a rich variety of composite nanomaterials which, in many cases, display unique or augmented properties due to the synergistic activity of both components. These capabilities, in turn, are attracting greater attention from various research communities in search of new nanoscale tools for diverse applications that include (bio)sensing, labeling, targeted imaging, cellular delivery, diagnostics, therapeutics, theranostics, bioelectronics, and biocomputing to name just a few amongst many others. Here, we review this vibrant and growing research area from the perspective of the materials themselves and their unique capabilities. Inorganic nanocrystals such as quantum dots or those made from gold or other (noble) metals along with metal oxides and carbon allotropes are desired as participants in these hybrid materials since they can provide distinctive optical, physical, magnetic, and electrochemical properties. Beyond this, synthetic polymer-based and proteinaceous or viral nanoparticulate materials are also useful in the same role since they can provide a predefined and biocompatible cargo-carrying and targeting capability. The DNA component typically provides sequence-based addressability for probes along with, more recently, unique architectural properties that directly originate from the burgeoning structural DNA field. Additionally, DNA aptamers can also provide specific recognition capabilities against many diverse non-nucleic acid targets across a range of size scales from ions to full protein and cells. In addition to appending DNA to inorganic or polymeric nanoparticles, purely DNA-based nanoparticles have recently surfaced as an excellent assembly platform and have started finding application in areas like sensing, imaging and immunotherapy. We focus on selected and representative nanoparticle-DNA materials and highlight their myriad applications using examples from the literature. Overall, it is clear that this unique functional combination of nanomaterials has far more to offer than what we have seen to date and as new capabilities for each of these materials are developed, so, too, will new applications emerge.
Collapse
Affiliation(s)
- Anirban Samanta
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA. and College of Science, George Mason University, Fairfax, Virginia 22030, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
5
|
Lahiri H, Mishra S, Mana T, Mukhopadhyay R. Discriminating unalike single nucleobase mismatches using a molecularly resolved, label-free, interfacial LNA-based assay. Analyst 2016; 141:4035-43. [DOI: 10.1039/c6an00484a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Molecularly resolved, label-free discrimination of different types of single nucleobase mismatches by LNA probes.
Collapse
Affiliation(s)
- Hiya Lahiri
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Sourav Mishra
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Tanushree Mana
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Rupa Mukhopadhyay
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| |
Collapse
|
6
|
Use of biomolecular scaffolds for assembling multistep light harvesting and energy transfer devices. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2014.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Cho M, Chung S, Jung JH, Rhie GE, Jeon JH, Seo TS. Combination of biobarcode assay with on-chip capillary electrophoresis for ultrasensitive and multiplex biological agent detection. Biosens Bioelectron 2014; 61:172-6. [DOI: 10.1016/j.bios.2014.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/30/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
|
8
|
Handal MI, Ugaz VM. DNA mutation detection and analysis using miniaturized microfluidic systems. Expert Rev Mol Diagn 2014; 6:29-38. [PMID: 16359265 DOI: 10.1586/14737159.6.1.29] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Identification of genetic sequence variations occurring on a population-wide scale is key to unraveling the complex interactions that are the underlying cause of many medical disorders and diseases. A critical need exists, however, for advanced technology to enable DNA mutation analysis to be performed with significantly higher throughput and at significantly lower cost than is currently attainable. Microfluidic systems offer an attractive platform to address these needs by combining the ability to perform rapid analysis with a simplified device format that can be inexpensively mass-produced. This paper will review recent progress toward developing these next-generation systems and discuss challenges associated with adapting these technologies for routine laboratory use.
Collapse
Affiliation(s)
- Maria I Handal
- Texas A&M University, Department of Chemical Engineering, College Station, TX 77843-3122, USA
| | | |
Collapse
|
9
|
Jenkins S, Gibson N. High-throughput SNP genotyping. Comp Funct Genomics 2010; 3:57-66. [PMID: 18628885 PMCID: PMC2447245 DOI: 10.1002/cfg.130] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2001] [Accepted: 11/19/2001] [Indexed: 12/24/2022] Open
Abstract
Whole genome approaches using single nucleotide polymorphism (SNP) markers have the
potential to transform complex disease genetics and expedite pharmacogenetics research.
This has led to a requirement for high-throughput SNP genotyping platforms.
Development of a successful high-throughput genotyping platform depends on coupling
reliable assay chemistry with an appropriate detection system to maximise efficiency with
respect to accuracy, speed and cost. Current technology platforms are able to deliver
throughputs in excess of 100 000 genotypes per day, with an accuracy of >99%, at a cost
of 20–30 cents per genotype. In order to meet the demands of the coming years, however,
genotyping platforms need to deliver throughputs in the order of one million genotypes per
day at a cost of only a few cents per genotype. In addition, DNA template requirements
must be minimised such that hundreds of thousands of SNPs can be interrogated using a
relatively small amount of genomic DNA. As such, it is predicted that the next generation
of high-throughput genotyping platforms will exploit large-scale multiplex reactions and
solid phase assay detection systems.
Collapse
Affiliation(s)
- Suzanne Jenkins
- R&D Genetics, AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK.
| | | |
Collapse
|
10
|
Choi JY, Seo TS. An integrated microdevice for high-performance short tandem repeat genotyping. Biotechnol J 2010; 4:1530-41. [PMID: 19844914 DOI: 10.1002/biot.200900202] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Short tandem repeat (STR) analysis provides genetic fingerprinting of individuals, and is considered as a powerful and indispensable technique for forensic human identification. However, the current state-of-the-art STR genotyping processes and instruments are labor intensive, expensive, time consuming, and lack portability. Micro-total-analysis systems or lab-on-a-chip platforms based on microfabrication technologies have the capability to miniaturize and integrate bioanalysis steps in a single format. Recent progress in microsystems has demonstrated their successful performance for the forensic STR typing with a reduced cost, high speed, and improved high throughput. The purpose of this review article is to highlight up-to-date work on advanced microdevices for high-throughput STR genotyping, and a portable integrated microsystem for on-site forensic DNA analysis.
Collapse
Affiliation(s)
- Jong Young Choi
- Department of Chemical and Biomolecular Engineering (BK21 Program), Institute for the BioCentury, KAIST, Daejeon, Korea
| | | |
Collapse
|
11
|
Microfluidic chip: Next-generation platform for systems biology. Anal Chim Acta 2009; 650:83-97. [DOI: 10.1016/j.aca.2009.04.051] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 04/16/2009] [Accepted: 04/27/2009] [Indexed: 12/30/2022]
|
12
|
Abstract
Much work has been performed since the development of the lab-on-a-chip concept that has brought microfabricated systems to the forefront of bioanalytical research. The success of using these microchips for performing complicated biological assays faster and cheaper than conventional methods has facilitated their emerging popularity among researchers. A recently exploited advantage of microfabricated technology has led to the creation of single wafers with multiple channel manifolds for high-throughput experiments. Efforts toward parallel microchip development have yielded fascinating new devices for chemical separations showing the potential for replacing conventional multiplexing techniques. This review will focus on recent work toward multiplexed separations on microdevices and complementary detection instrumentation.
Collapse
Affiliation(s)
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Yeung SHI, Medintz IL, Greenspoon SA, Mathies RA. Rapid determination of monozygous twinning with a microfabricated capillary array electrophoresis genetic-analysis device. Clin Chem 2008; 54:1080-4. [PMID: 18509014 DOI: 10.1373/clinchem.2007.102319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Microfabricated genetic-analysis devices have great potential for delivering complex clinical diagnostic technology to the point of care. As a demonstration of the potential of these devices, we used a microfabricated capillary array electrophoresis (microCAE) instrument to rapidly characterize the familial and genotypic relationship of twins who had been assigned fraternal (dizygous) status at birth. METHODS We extracted the genomic DNA from buccal samples collected from the twin sons, the parents, another sibling, and an unrelated control individual. We then carried out multiplex PCR amplification of sequences at 16 short tandem repeat loci commonly used in forensic identity testing. We simultaneously separated the amplicons from all of the individuals on a microCAE device and fluorescently detected the amplicons with single-base resolution in <30 min. RESULTS The genotypic analysis confirmed the identical status of the twins and revealed, in conjunction with the medical data, that their twin status arose from the rarer dichorionic, diamniotic process. CONCLUSIONS The ability to rapidly analyze complex genetic samples with microCAE devices demonstrates that this approach can help meet the growing need for rapid genetics-based diagnostics.
Collapse
Affiliation(s)
- Stephanie H I Yeung
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
14
|
Greenspoon SA, Yeung SH, Johnson KR, Chu WK, Rhee HN, McGuckian AB, Crouse CA, Chiesl TN, Barron AE, Scherer JR, Ban JD, Mathies RA. A Forensic Laboratory Tests the Berkeley Microfabricated Capillary Array Electrophoresis Device. J Forensic Sci 2008; 53:828-37. [DOI: 10.1111/j.1556-4029.2008.00750.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Wu D, Qin J, Lin B. Electrophoretic separations on microfluidic chips. J Chromatogr A 2008; 1184:542-59. [PMID: 18207148 PMCID: PMC7094303 DOI: 10.1016/j.chroma.2007.11.119] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 11/17/2007] [Accepted: 11/30/2007] [Indexed: 02/07/2023]
Abstract
This review presents a brief outline and novel developments of electrophoretic separation in microfluidic chips. Distinct characteristics of microchip electrophoresis (MCE) are discussed first, in which sample injection plug, joule heat, channel turn, surface adsorption and modification are introduced, and some successful strategies and recognized conclusions are also included. Important achievements of microfluidic electrophoresis separation in small molecules, DNA and protein are then summarized. This review is aimed at researchers, who are interested in MCE and want to adopt MCE as a functional unit in their integrated microsystems.
Collapse
Affiliation(s)
| | - Jianhua Qin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bingcheng Lin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
16
|
Abstract
Single nucleotide polymorphisms (SNPs) are the most frequently occurring genetic variation in the human genome, with the total number of SNPs reported in public SNP databases currently exceeding 9 million. SNPs are important markers in many studies that link sequence variations to phenotypic changes; such studies are expected to advance the understanding of human physiology and elucidate the molecular bases of diseases. For this reason, over the past several years a great deal of effort has been devoted to developing accurate, rapid, and cost-effective technologies for SNP analysis, yielding a large number of distinct approaches. This article presents a review of SNP genotyping techniques and examines their principles of genotype determination in terms of allele differentiation strategies and detection methods. Further, several current biomedical applications of SNP genotyping are discussed.
Collapse
Affiliation(s)
- Sobin Kim
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
17
|
Chowdhury J, Kaigala GV, Pushpakom S, Lauzon J, Makin A, Atrazhev A, Stickel A, Newman WG, Backhouse CJ, Pilarski LM. Microfluidic platform for single nucleotide polymorphism genotyping of the thiopurine S-methyltransferase gene to evaluate risk for adverse drug events. J Mol Diagn 2007; 9:521-9. [PMID: 17690215 PMCID: PMC1975104 DOI: 10.2353/jmoldx.2007.070014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Prospective clinical pharmacogenetic testing of the thiopurine S-methyltransferase gene remains to be realized despite the large body of evidence demonstrating clinical benefit for the patient and cost effectiveness for health care systems. We describe an entirely microchip-based method to genotype for common single nucleotide polymorphisms in the thiopurine S-methyltransferase gene that lead to serious adverse drug reactions for patients undergoing thiopurine therapy. Restriction fragment length polymorphism and allele-specific polymerase chain reaction have been adapted to a microfluidic chip-based polymerase chain reaction and capillary electrophoresis platform to genotype the common *2, *3A, and *3C functional alleles. In total, 80 patients being treated with thiopurines were genotyped, with 100% concordance between microchip and conventional methods. This is the first report of single nucleotide polymorphism detection using portable instrumentation and represents a significant step toward miniaturized for personalized treatment and automated point-of-care testing.
Collapse
Affiliation(s)
- Jeeshan Chowdhury
- Cross Cancer Institute, 11560 University Ave., Edmonton AB T6G1Z2, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shadpour H, Hupert ML, Patterson D, Liu C, Galloway M, Stryjewski W, Goettert J, Soper SA. Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array. Anal Chem 2007; 79:870-8. [PMID: 17263312 DOI: 10.1021/ac0612168] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A 16-channel microfluidic chip with an integrated contact conductivity sensor array is presented. The microfluidic network consisted of 16 separation channels that were hot-embossed into polycarbonate (PC) using a high-precision micromilled metal master. All channels were 40 microm deep and 60 microm wide with an effective separation length of 40 mm. A gold (Au) sensor array was lithographically patterned onto a PC cover plate and assembled to the fluidic chip via thermal bonding in such a way that a pair of Au microelectrodes (60 microm wide with a 5 microm spacing) was incorporated into each of the 16 channels and served as independent contact conductivity detectors. The spacing between the corresponding fluidic reservoirs for each separation channel was set to 9 mm, which allowed for loading samples and buffers to all 40 reservoirs situated on the microchip in only five pipetting steps using an 8-channel pipettor. A printed circuit board (PCB) with platinum (Pt) wires was used to distribute the electrophoresis high-voltage to all reservoirs situated on the fluidic chip. Another PCB was used for collecting the conductivity signals from the patterned Au microelectrodes. The device performance was evaluated using microchip capillary zone electrophoresis (mu-CZE) of amino acid, peptide, and protein mixtures as well as oligonucleotides that were separated via microchip capillary electrochromatography (mu-CEC). The separations were performed with an electric field (E) of 90 V/cm and were completed in less than 4 min in all cases. The conductivity detection was carried out using a bipolar pulse voltage waveform with a pulse amplitude of +/-0.6 V and a frequency of 6.0 kHz. The conductivity sensor array concentration limit of detection (SNR = 3) was determined to be 7.1 microM for alanine. The separation efficiency was found to be 6.4 x 10(4), 2.0 x 10(3), 4.8 x 10(3), and 3.4 x 10(2) plates for the mu-CEC of the oligonucleotides and mu-CZE of the amino acids, peptides, and proteins, respectively, with an average channel-to-channel migration time reproducibility of 2.8%. The average resolution obtained for mu-CEC of the oligonucleotides and mu-CZE of the amino acids, peptides, and proteins was 4.6, 1.0, 0.9, and 1.0, respectively. To the best of our knowledge, this report is the first to describe a multichannel microchip electrophoresis device with integrated contact conductivity sensor array.
Collapse
Affiliation(s)
- Hamed Shadpour
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu P, Seo TS, Beyor N, Shin KJ, Scherer JR, Mathies RA. Integrated Portable Polymerase Chain Reaction-Capillary Electrophoresis Microsystem for Rapid Forensic Short Tandem Repeat Typing. Anal Chem 2007; 79:1881-9. [PMID: 17269794 DOI: 10.1021/ac061961k] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A portable forensic genetic analysis system consisting of a microfluidic device for amplification and separation of short tandem repeat (STR) fragments as well as an instrument for chip operation and four-color fluorescence detection has been developed. The microdevice performs polymerase chain reaction (PCR) in a 160-nL chamber and capillary electrophoresis (CE) in a 7-cm-long separation channel. The instrumental design integrates PCR thermal cycling, electrophoretic separation, pneumatic valve fluidic control, and four-color laser excited fluorescence detection. A quadruplex Y-chromosome STR typing system consisting of amelogenin and three Y STR loci (DYS390, DYS393, DYS439) was developed and used for validation studies. The multiplex amplification of these 4 loci with 35 PCR cycles followed by CE separation and 4-color fluorescence detection was completed in 1.5 h. All the amplicons can be detected with a limit of detection of 20 copies of male standard DNA in the reactor. Real-world forensic analyses of oral swab and human bone extracts from case evidence were also successfully performed. Mixture analysis demonstrated that a balanced profile can be obtained even at a male-to-female template ratio of 1:10. The successful development and operation of this portable PCR-CE system establishes the feasibility of rapid point-of-analysis DNA typing of forensic casework, of mass disaster samples or of individuals at a security checkpoint.
Collapse
Affiliation(s)
- Peng Liu
- UCSF/UC Berkeley Joint Graduate Group in Bioengineering, and Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
20
|
Alonso A, Albarran C, Martín P, García P, Capilla J, García O, de la Rua C, Izaguirre N, Pereira F, Pereira L, Amorim A, Sancho M. Usefulness of microchip electrophoresis for the analysis of mitochondrial DNA in forensic and ancient DNA studies. Electrophoresis 2006; 27:5101-9. [PMID: 17120261 DOI: 10.1002/elps.200600331] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We evaluate the usefulness of a commercially available microchip CE (MCE) device in different genetic identification studies performed with mitochondrial DNA (mtDNA) targets, including the haplotype analysis of HVR1 and HVR2 and the study of interspecies diversity of cytochrome b (Cyt b) and 16S ribosomal RNA (16S rRNA) mitochondrial genes in forensic and ancient DNA samples. The MCE commercial system tested in this study proved to be a fast and sensitive detection method of length heteroplasmy in cytosine stretches produced by 16 189T>C transitions in HVR1 and by 309.1 and 309.2 C-insertions in HVR2. Moreover, the quantitative analysis of PCR amplicons performed by LIF allowed normalizing the amplicon input in the sequencing reactions, improving the overall quality of sequence data. These quantitative data in combination with the quantification of genomic mtDNA by real-time PCR has been successfully used to evaluate the PCR efficiency and detection limit of full sequencing methods of different mtDNA targets. The quantification of amplicons also provided a method for the rapid evaluation of PCR efficiency of multiplex-PCR versus singleplex-PCR to amplify short HV1 amplicons (around 100 bp) from severely degraded ancient DNA samples. The combination of human-specific (Cyt b) and universal (16S rRNA) mtDNA primer sets in a single PCR reaction followed by MCE detection offers a very rapid and simple screening test to differentiate between human and nonhuman hair forensic samples. This method was also very efficient with degraded DNA templates from forensic hair and bone samples, because of its applicability to detect small amplicon sizes. Future possibilities of MCE in forensic DNA typing, including nuclear STRs and SNP profiling are suggested.
Collapse
MESH Headings
- Animals
- Bone and Bones/chemistry
- Cattle
- Cytochromes b/genetics
- DNA Fingerprinting/methods
- DNA, Mitochondrial/analysis
- DNA, Mitochondrial/genetics
- Dogs
- Electrophoresis, Microchip/methods
- Forensic Anthropology/methods
- Forensic Genetics/methods
- Hair/chemistry
- Haplotypes
- Humans
- Mice
- RNA, Ribosomal, 16S/genetics
- Rats
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Antonio Alonso
- Instituto Nacional de Toxicología y Ciencias Forenses, Servicio de Biología, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ng JKK, Liu WT. Miniaturized platforms for the detection of single-nucleotide polymorphisms. Anal Bioanal Chem 2006; 386:427-34. [PMID: 16821029 DOI: 10.1007/s00216-006-0552-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/29/2006] [Accepted: 05/12/2006] [Indexed: 01/03/2023]
Abstract
Conventional methods for detecting single-nucleotide polymorphisms (SNPs), the most common form of genetic variation in human beings, are mostly limited by their analysis time and throughputs. In contrast, advances in microfabrication technology have led to the development of miniaturized platforms that can potentially provide rapid high-throughput analysis at small sample volumes. This review highlights some of the recent developments in the miniaturization of SNP detection platforms, including microarray-based, bead-based microfluidic and microelectrophoresis-based platforms. Particular attention is paid to their ease of fabrication, analysis time, and level of throughput.
Collapse
Affiliation(s)
- Johnson Kian-Kok Ng
- Division of Environmental Science and Engineering, National University of Singapore, 21 Lower Kent Ridge Road, 119077, Singapore, Singapore
| | | |
Collapse
|
22
|
Dang F, Kakehi K, Cheng J, Tabata O, Kurokawa M, Nakajima K, Ishikawa M, Baba Y. Hybrid Dynamic Coating with n-Dodecyl β-d-Maltoside and Methyl Cellulose for High-Performance Carbohydrate Analysis on Poly(methyl methacrylate) Chips. Anal Chem 2006; 78:1452-8. [PMID: 16503593 DOI: 10.1021/ac051702f] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hybrid dynamic coating using n-dodecyl beta-d-maltoside (DDM) and methyl cellulose (MC) has been developed for suppression of analyte adsorption and electroosmotic flow (EOF) in a poly(methyl methacrylate) (PMMA) channel. The adsorption of APTS-labeled sugars in a PMMA channel was obviously suppressed with DDM dynamic coating; however, EOF was reduced only by a factor of approximately 25%, resulting in irreproducible separations. In contrast, both analyte adsorption and EOF in a PMMA channel were efficiently minimized with MC coating; however, concentrated MC above 0.3% was required to achieve high-performance separations, which greatly increased viscosity of the solution and caused difficulties during buffer loading and rinsing. In addition, n-dodecyltrimethylammonium chloride did not show observable effects on reducing analyte adsorption, although it has the same hydrophobic alkyl chain as DDM. These results strongly indicated that the polysaccharide moiety of surface modifiers has a specific affinity to surface charges and is crucial to achieving efficient and stable dynamic coating on the PMMA surface. Hybrid dynamic coating with 0.25% DDM and 0.03% MC was found to minimize both analyte adsorption and EOF in a PMMA channel to a negligible level, while still keeping a low viscosity of the solution. High-speed and high-throughput profiling of the N-linked glycans derived from alpha1-acid glycoprotein, fetuin, and ribonuclease B was demonstrated in both single-channel and 10-channel PMMA chips using DDM-MC hybrid coating. We propose that DDM-MC hybrid coating might be a general method for suppressing analyte adsorption and EOF in polymer MCE devices. The current MCE-based method might be a promising alternative for high-throughput screening of carbohydrate alterations in glycoproteins.
Collapse
Affiliation(s)
- Fuquan Dang
- Nano-bioanalysis Team, Health Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Hayashi-cho 2217-14, Takamatsu 761-0395, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang J, Chuang K, Ahluwalia M, Patel S, Umblas N, Mirel D, Higuchi R, Germer S. High-throughput SNP genotyping by single-tube PCR with Tm-shift primers. Biotechniques 2006; 39:885-93. [PMID: 16382908 DOI: 10.2144/000112028] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Despite many recent advances in high-throughput single nucleotide polymorphism (SNP) genotyping technologies, there is still a great need for inexpensive and flexible methods with a reasonable throughput. Here we report substantial modifications and improvements to an existing homogenous allele-specific PCR-based SNP genotyping method, making it an attractive new option for researchers engaging in candidate gene studies or following up on genome-wide scans. In this advanced version of the melting temperature (Tm)-shift SNP genotyping method, we attach two GC-rich tails of different lengths to allele-specific PCR primers, such that SNP alleles in genomic DNA samples can be discriminated by the Tms of the PCR products. We have validated 306 SNP assays using this method and achieved a success rate in assay development of greater than 83% under uniform PCR conditions. We have developed a standalone software application to automatically assign genotypes directly from melting curve data. To demonstrate the accuracy of this method, we typed 592 individuals for 6 SNPs and showed a high call rate (>98%) and high accuracy (>99.9%). With this method, 6-10,000 samples can be genotyped per day using a single 384-well real-time thermal cycler with 2-4 standard 384-well PCR instruments.
Collapse
Affiliation(s)
- Jun Wang
- Human Genetics Department, Roche Molecular Systems, Alameda, CA 94501, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
CE on microchip is an emerging separation technique that has attracted wide attention and gained considerable popularity. Because of miniaturization of the separation format, CE on chip typically offers shorter analysis time and lower reagent consumption with potential development of portable analytical instrumentation. This review with 143 references is focused on proteins and peptides analysis, DNA separation including fragment sizing, genotyping, mutation detection and sequencing, and also the analysis of low-molecular-weight compounds, namely explosive residues and warfare agents, pharmaceuticals and drugs of abuse, and various small molecules in body fluids.
Collapse
|
25
|
Taylor P, Manage DP, Helmle KE, Zheng Y, Glerum DM, Backhouse CJ. Analysis of mitochondrial DNA in microfluidic systems. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 822:78-84. [PMID: 15990373 DOI: 10.1016/j.jchromb.2005.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 05/24/2005] [Accepted: 05/29/2005] [Indexed: 11/30/2022]
Abstract
Abnormalities in mitochondrial function play a major role in many human diseases. It is often of critical importance to ascertain what proportion of the mitochondria within a cell, or cells, bear a given mutation (the mitochondrial "demographics"). In this work, a rapid, novel, on-chip procedure was used, in which a restriction enzyme was employed to excise a mitochondrial DNA (mtDNA) sequence from plasmid DNA that acted as a prototypical mitochondrial genome. The DNA was then denatured, reassembled to form duplexes, fluorescently labelled and analysed. This method was able to differentiate between a homogeneous population and a heterogeneous population. Using a microfluidic chip, the method could be performed in about 45 min, even without robotics or multiplexed operation, whereas conventional methods of analysis require days to perform. This method may ultimately form the basis for a means of characterizing the mitochondrial demographics of a single cell.
Collapse
Affiliation(s)
- Patricia Taylor
- Department of Electrical and Computer Engineering, 2nd Floor, ECERF Building (9107-116St.), University of Alberta, Edmonton, Alta., Canada
| | | | | | | | | | | |
Collapse
|
26
|
Tian H, Emrich CA, Scherer JR, Mathies RA, Andersen PS, Larsen LA, Christiansen M. High-throughput single-strand conformation polymorphism analysis on a microfabricated capillary array electrophoresis device. Electrophoresis 2005; 26:1834-42. [PMID: 15706574 DOI: 10.1002/elps.200410205] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A high-density 384-lane microfabricated capillary array electrophoresis device is evaluated for high-throughput single-strand conformation polymorphism (SSCP) analysis. A delayed back bias direct electrokinetic injection scheme is used to provide better than 10-bp resolution with an 8.0-cm effective separation length. Separation of a HaeIII digest of PhiX174 yielded theoretical plate numbers of 4.0 x 10(6). Using 5% PDMA containing 10% glycerol and 15% urea, 21 single-nucleotide polymorphisms (SNPs) from HFE, MYL2, MYL3, and MYH7 genes associated with hereditary hemochromatosis (HHC) and hereditary hypertrophic cardiomyopathy (HCM) are discriminated at two running temperatures (25 degrees C and 40 degrees C), providing 100% sensitivity. The data in this study demonstrate that the 384-lane microCAE device provides the resolution and detection sensitivity required for SSCP analysis, showing its potential for ultrahigh-throughput mutation detection.
Collapse
Affiliation(s)
- Huijun Tian
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Dang F, Shinohara S, Tabata O, Yamaoka Y, Kurokawa M, Shinohara Y, Ishikawa M, Baba Y. Replica multichannel polymer chips with a network of sacrificial channels sealed by adhesive printing method. LAB ON A CHIP 2005; 5:472-478. [PMID: 15791347 DOI: 10.1039/b417398h] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Replica microchips for capillary array electrophoresis containing 10 separation channels (50 microm width, 50 microm depth and 100 microm pitch) and a network of sacrificial channels (100 microm width and 50 microm depth) were successfully fabricated on a poly(methyl methacrylate) (PMMA) substrate by injection molding. The strategy involved development of moving mask deep X-ray lithography to fabricate an array of channels with inclined channel sidewalls. A slight inclination of channel sidewalls, which can not be fabricated by conventional deep X-ray lithography, is highly required to ensure the release of replicated polymer chips from a mold. Moreover, the sealing of molded PMMA multichannel chips with a PMMA cover film was achieved by a novel bonding technique involving adhesive printing and a network of sacrificial channels. An adhesive printing process enables us to precisely control the thickness of an adhesive layer, and a network of sacrificial channels makes it possible to remove air bubbles and an excess adhesive, which are crucial to achieving perfect sealing of replica PMMA chips with well-defined channel and injection structures. A CCD camera equipped with an image intensifier was used to simultaneously monitor electrophoretic separations in ten micro-channels with laser-induced fluorescence detection. High-speed and high-throughput separations of a 100 bp DNA ladder and phi X174 Hae III DNA restriction fragments have been demonstrated using a 10-channel PMMA chip. The current work establishes the feasibility of mass production of PMMA multichannel chips at a cost-effective basis.
Collapse
Affiliation(s)
- F Dang
- Single-Molecule Bioanalysis Laboratory, National Institute of Advanced Industrial Science and Technology, Hayashi-cho 2217-14, Takamatsu 761-0395, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lagally ET, Scherer JR, Blazej RG, Toriello NM, Diep BA, Ramchandani M, Sensabaugh GF, Riley LW, Mathies RA. Integrated portable genetic analysis microsystem for pathogen/infectious disease detection. Anal Chem 2005; 76:3162-70. [PMID: 15167797 DOI: 10.1021/ac035310p] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An integrated portable genetic analysis microsystem including PCR amplification and capillary electrophoretic (CE) analysis coupled with a compact instrument for electrical control and laser-excited fluorescence detection has been developed. The microdevice contains microfabricated heaters, temperature sensors, and membrane valves to provide controlled sample positioning and immobilization in 200-nL PCR chambers. The instrument incorporates a solid-state laser and confocal fluorescence detection optics, electronics for sensing and powering the PCR reactor, and high-voltage power supplies for conducting CE separations. The fluorescein-labeled PCR products are amplified and electrophoretically analyzed in a gel-filled microchannel in <10 min. We demonstrate the utility of this instrument by performing pathogen detection and genotyping directly from whole Escherichia coli and Staphylococcus aureus cells. The E. coli detection assay consists of a triplex PCR amplification targeting genes that encode 16S ribosomal RNA, the fliC flagellar antigen, and the sltI shigatoxin. Serial dilution demonstrates a limit of detection of 2-3 bacterial cells. The S. aureus assay uses a femA marker to identify cells as S. aureus and a mecA marker to probe for methicillin resistance. This integrated portable genomic analysis microsystem demonstrates the feasibility of performing rapid high-quality detection of pathogens and their antimicrobial drug resistance.
Collapse
Affiliation(s)
- E T Lagally
- Chemistry Department, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dang F, Tabata O, Kurokawa M, Ewis AA, Zhang L, Yamaoka Y, Shinohara S, Shinohara Y, Ishikawa M, Baba Y. High-Performance Genetic Analysis on Microfabricated Capillary Array Electrophoresis Plastic Chips Fabricated by Injection Molding. Anal Chem 2005; 77:2140-6. [PMID: 15801748 DOI: 10.1021/ac0485031] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have developed a novel technique for mass production of microfabricated capillary array electrophoresis (mu-CAE) plastic chips for high-speed, high-throughput genetic analysis. The mu-CAE chips, containing 10 individual separation channels of 50-microm width, 50-microm depth, and a 100-microm lane-to-lane spacing at the detection region and a sacrificial channel network, were fabricated on a poly(methyl methacrylate) substrate by injection molding and then bonded manually using a pressure-sensitive sealing tape within several seconds at room temperature. The conditions for injection molding and bonding were carefully characterized to yield mu-CAE chips with well-defined channel and injection structures. A CCD camera equipped with an image intensifier was used to monitor simultaneously the separation in a 10-channel array with laser-induced fluorescence detection. High-performance electrophoretic separations of phiX174 HaeIII DNA restriction fragments and PCR products related to the human beta-globin gene and SP-B gene (the surfactant protein B) have been demonstrated on mu-CAE plastic chips using a methylcellulose sieving matrix in individual channels. The current work demonstrated greatly simplified the fabrication process as well as a detection scheme for mu-CAE chips and will bring the low-cost mass production and application of mu-CAE plastic chips for genetic analysis.
Collapse
Affiliation(s)
- Fuquan Dang
- Single-Molecule Bioanalysis Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Hayashi-cho 2217-14, Takamatsu 761-0395, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dodge A, Turcatti G, Lawrence I, de Rooij NF, Verpoorte E. A microfluidic platform using molecular beacon-based temperature calibration for thermal dehybridization of surface-bound DNA. Anal Chem 2004; 76:1778-87. [PMID: 15018583 DOI: 10.1021/ac034377+] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work presents a simple microfluidic device with an integrated thin-film heater for studies of DNA hybridization kinetics and double-stranded DNA melting temperature measurements. The heating characteristics of the device were evaluated with a novel, noninvasive indirect technique using molecular beacons as temperature probes inside reaction chambers. This is the first microfluidic device in which thermal dehybridization of surface-bound oligonucleotides was performed for measurement of double-stranded DNA melting temperatures with +/- 1 degrees C precision. Surface modification and oligonucleotide immobilization were performed by continuously flowing reagents through the microchannels. The resulting reproducibility of oligonucleotide surface densities, at 9% RSD, was better than for the same modification chemistries on glass slides in unstirred reagent solutions (RSD=20%). Moreover, the surface density of immobilized DNA probe molecules could be varied controllably by changing the concentration of the reagent solution used for immobilization. Thus, excellent control of surface characteristics was made possible, something which is often difficult to achieve with larger devices. Solid-phase hybridization reactions, a fundamental aspect of microarray technologies often taking several hours in conventional systems, were reduced to minutes in this device. It was also possible to determine forward rate constants for hybridization, k. These varied from 820,000 to 72,000 M(-1) s(-1), decreasing as surface densities increased. Surface densities could therefore be optimized to obtain rapid hybridization using such an approach. Taken together, this combined microfluidic/small-volume heating approach represents a powerful tool for surface-based DNA analysis.
Collapse
Affiliation(s)
- Arash Dodge
- Sensors, Actuators and Microsystems Laboratory, Institute of Microtechnology, University of Neuchâtel, Rue Jaquet-Droz 1, CH-2007 Neuchâtel, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Zhou GH, Shirakura H, Kamahori M, Okano K, Nagai K, Kambara H. A gel-free SNP genotyping method: bioluminometric assay coupled with modified primer extension reactions (BAMPER) directly from double-stranded PCR products. Hum Mutat 2004; 24:155-63. [PMID: 15241797 DOI: 10.1002/humu.20052] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Inexpensive, high-throughput genotyping methods are needed for analyzing human genetic variations. We have successfully applied the regular bioluminometric assay coupled with modified primer extension reactions (BAMPER) method to single-nucleotide polymorphism (SNP) typing as well as the allele frequency determination for various SNPs. This method includes the production of single-strand target DNA from a genome and a primer extension reaction coupled with inorganic pyrophosphate (PPi) detection by a bioluminometric assay. It is an efficient way to get accurate allele frequencies for various SNPs, while single-strand DNA preparation is labor intensive. The procedure can be simplified in the typing of SNPs. We demonstrate that a modified BAMPER method in which we need not prepare a single-strand DNA can be carried out in one tube. A PCR product is directly used as a template for SNP typing in the new BAMPER method. Generally, tremendous amounts of PPi are produced in a PCR process, as well as many residual dNTPs, and residual PCR primers remain in the PCR products, which cause a large background signal in a bioluminometric assay. Here, shrimp alkaline phosphatase (SAP) and E. coli exonuclease I were used to degrade these components prior to BAMPER detection. The specific primer extension reactions in BAMPER were carried out under thermocycle conditions. The primers were extended to produce large amounts of PPi only when their bases at 3'-termini were complementary to the target. The extension products, PPis, were converted to ATP to be analyzed using the luciferin-luciferase detection system. We successfully demonstrated that PCR products can be directly genotyped by BAMPER in one tube for SNPs with various GC contents. As all reactions can be carried out in a single tube, the method will be useful for realizing a fully automated genotyping system.
Collapse
Affiliation(s)
- Guo-Hua Zhou
- Hitachi, Ltd., Central Research Laboratory, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Footz T, Somerville MJ, Tomaszewski R, Sprysak KA, Backhouse CJ. Heteroduplex-based genotyping with microchip electrophoresis and dHPLC. ACTA ACUST UNITED AC 2004; 7:283-93. [PMID: 15000804 DOI: 10.1089/109065703322783635] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This work compares the methods of mutation detection via denaturing high-performance liquid chromatography (dHPLC) and a microchip-based heteroduplex analysis (HA) method. The mutations analyzed were 185delAG and 5382insC in BRCA1 and 6174delT in BRCA2 with, as additional examples, 188del11 and 5396 + 1G --> A in BRCA1. Our HA method is based upon the use of a replaceable, highly denaturing sieving matrix that has dynamic coating capabilities, rendering our method relatively insensitive to contamination. We have found significant advantages in the microchip analysis in terms of reagent consumption, ease of use, versatility, simplicity of the protocol, the lack of constraints upon sample preparation or content, and the lack of parameters that need be adjusted. Although HA methods have a lower sensitivity than that of dHPLC, the electropherograms of the present HA method appear to provide more information and may allow mutations within the same amplicon to be distinguished. Although the dHPLC method has a remarkably high sensitivity, with this sensitivity there come constraints that may prevent it, in its present form, from being used in some applications, particularly those involving higher levels of integration. The advantages of the present HA method, along with recent developments in microchip-based single-nucleotide polymorphism (SNP) detection and high-throughput arrays, suggest that microchip-based systems could provide compact and integrated platforms capable of large-scale genotyping or mutational screening.
Collapse
Affiliation(s)
- Tim Footz
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2V4
| | | | | | | | | |
Collapse
|
33
|
Xu H, Roddy ES, Roddy TP, Lapos JA, Ewing AG. Parallel separations of oligonucleotides with optically gated sample introduction on multichannel microchips. J Sep Sci 2004; 27:7-12. [PMID: 15335051 DOI: 10.1002/jssc.200301593] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
With the release of the human genome sequence, there has been increasing attention given to other genetic analyses, including the detection of genetic variations and fast sequencing of multiple samples for pharmacogenomics studies. Rapid injections of samples in multiplexed separation channels by optically gated sample introduction are shown here for DNA separation. Serial separations of four amino acids are shown in less than four seconds on a microchip with four multiplexed channels. Five short oligonucleotides have also been rapidly separated in 2% LPA with four channels using this technique. In addition, multiple unique samples have been simultaneously separated and five-base resolution has been demonstrated.
Collapse
Affiliation(s)
- Hongwei Xu
- Department of Chemistry, Pennsylvania State University, University, PA 16801, USA
| | | | | | | | | |
Collapse
|
34
|
|
35
|
Chen X, Sullivan PF. Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughput. THE PHARMACOGENOMICS JOURNAL 2004; 3:77-96. [PMID: 12746733 DOI: 10.1038/sj.tpj.6500167] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The large number of single nucleotide polymorphism (SNP) markers available in the public databases makes studies of association and fine mapping of disease loci very practical. To provide information for researchers who do not follow SNP genotyping technologies but need to use them for their research, we review here recent developments in the fields. We start with a general description of SNP typing protocols and follow this with a summary of current methods for each step of the protocol and point out the unique features and weaknesses of these techniques as well as comparing the cost and throughput structures of the technologies. Finally, we describe some popular techniques and the applications that are suitable for these techniques.
Collapse
Affiliation(s)
- X Chen
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298-0424, USA.
| | | |
Collapse
|
36
|
Liu Y, Garcia CD, Henry CS. Recent progress in the development of muTAS for clinical analysis. Analyst 2003; 128:1002-8. [PMID: 12964597 DOI: 10.1039/b306278n] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yan Liu
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
37
|
Wang H, Qin J, Dai Z, Wang L, Bai J, Lin B. Highly efficient separation of dsDNA fragments on glass chips by using an ultralow viscosity sieving matrix. J Sep Sci 2003. [DOI: 10.1002/jssc.200301360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Affiliation(s)
- James P Landers
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| |
Collapse
|
39
|
Kim S, Shi S, Bonome T, Ulz ME, Edwards JR, Fodstad H, Russo JJ, Ju J. Multiplex genotyping of the human beta2-adrenergic receptor gene using solid-phase capturable dideoxynucleotides and mass spectrometry. Anal Biochem 2003; 316:251-8. [PMID: 12711347 DOI: 10.1016/s0003-2697(03)00080-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Previously, we established the feasibility of using solid phase capturable (SPC) dideoxynucleotides to generate single base extension (SBE) products which were detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for multiplex genotyping, an approach that we refer to as SPC-SBE. We report here the expanding of the SPC-SBE method as a single-tube assay to simultaneously detect 20 single nucleotide variations in a model system and 3 single nucleotide polymorphisms (SNPs) in the human beta2-adrenergic receptor (beta2AR) gene. Twenty primers were designed to have a sufficient mass difference between all extension products for accurate detection of nucleotide variants of the synthetic templates related to the p53 gene. These primers were extended simultaneously in a single tube with biotin-ddNTPs to generate 3(')-biotinylated DNA products, which were first captured by streptavidin-coated magnetic beads and then released from the beads and analyzed with MALDI-TOF MS. This approach generates a mass spectrum free of primer peaks and their associated dimers, increasing the scope of multiplexing SNPs. We also simultaneously genotyped 3 SNPs in the beta2AR gene (5(')LC-Cys19Arg, Gly16Arg, and Gln27Glu) from the genomic DNA of 20 individuals. Comparison of this approach with direct sequencing and the restriction fragment length polymorphism method indicated that the SPC-SBE method is superior for detecting nucleotide variations at known SNP sites.
Collapse
Affiliation(s)
- Sobin Kim
- Laboratory of DNA Sequencing and Chemical Biology, Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Qin J, Fung Y, Lin B. DNA diagnosis by capillary electrophoresis and microfabricated electrophoretic devices. Expert Rev Mol Diagn 2003; 3:387-94. [PMID: 12779012 DOI: 10.1586/14737159.3.3.387] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA diagnosis is experiencing an impressive progression towards the development of novel technology to identify various clinically relevant categories of genetic changes and to meet the exponential growth of genomics. The introduction of capillary electrophoresis has dramatically accelerated the completion of the first draft of the human DNA sequence in the Human Genome Project, and thus, has become the method of choice for analysis of various genetic variants. The recent development of microfabricated electrophoretic devices has led to the possibility of integrating multiple sample handling with the actual measurement steps required for automation of molecular diagnostics. This review highlights the most recent progress in capillary electrophoresis and electrophoretic microdevices for DNA-based diagnostics, including the important areas of genotyping for point mutation, single nucleotide polymorphisms, short tandem repeats and organism identification. The application of these techniques for infectious and genetic disease diagnosis, as well as forensic identification purpose, are covered. The promising development and the challenges for techinical problems are also discussed.
Collapse
Affiliation(s)
- Jianhua Qin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshang Road 457, 116023 Dalian, China
| | | | | |
Collapse
|
41
|
Abstract
Miniaturized instruments have developed very quickly in the last decade. This review is focused on the microchip electrophoresis-based separation of DNA. Fundamentals, including the chip format, substrates and fabrication technologies, fluid control, as well as various detection methods, are summarized. Array electrophoresis microchip and the on-chip integration of electrophoresis with other systems are introduced as well. In addition, the application of microchip electrophoresis in DNA sizing, genetic analysis and DNA sequencing are also presented in this paper.
Collapse
Affiliation(s)
- Lihua Zhang
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, CREST, Japan Science and Technology Corporation (JST), Shomachi, Tokushima 770-8505, Japan.
| | | | | |
Collapse
|
42
|
Tian H, Landers JP. Hydroxyethylcellulose as an effective polymer network for DNA analysis in uncoated glass microchips: optimization and application to mutation detection via heteroduplex analysis. Anal Biochem 2002; 309:212-23. [PMID: 12413454 DOI: 10.1016/s0003-2697(02)00297-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nature of the sieving matrix for DNA fragment separation is of immense importance in capillary and microchip electrophoresis. The chemical nature of the surface of the capillary or microchannel wall is equally as important, particularly with DNA electrophoresis where a substantial electroosmotic flow (EOF) may be detrimental to the separation. Although DNA analysis has been carried out successfully in both coated and uncoated capillaries, analysis of unpurified polymerase chain reaction products has been carried out primarily with covalently coated surfaces, especially with microchip electrophoresis. In this report, double-stranded (ds) DNA fragment analysis using hydroxyethylcellulose (HEC) buffered in 1xTris-borate-EDTA is demonstrated both in uncoated capillaries and in microchips. EOF was suppressed 20% in the presence of 1.5% HEC, and the effectiveness of HEC as a polymer for dsDNA fragment analysis was dependent on the pH, with pH 8.6 being optimal. Using separation efficiency (number of theoretical plates) and resolution to gauge the effectiveness of a variety of polymers for the capillary separation of dsDNA fragments in the size range 60-587bp, HEC was found to be comparable in performance to polydimethylacrylamide (PDMA), and superior to linear polyacrylamide and polyethylene oxide for DNA analysis. With respect to longevity and robust performance, HEC could be used effectively in an uncoated capillary for more than 40 runs and for more than 90 runs (without replenishing the polymer) in an uncoated microchip. Application of the optimized HEC conditions is demonstrated through its ability to facilitate heteroduplex analysis.
Collapse
Affiliation(s)
- Huijun Tian
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
43
|
Emrich CA, Tian H, Medintz IL, Mathies RA. Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis. Anal Chem 2002; 74:5076-83. [PMID: 12380833 DOI: 10.1021/ac020236g] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A microfabricated 384-lane capillary array electrophoresis device is developed and utilized for massively parallel genetic analysis. The 384 capillary lanes, arrayed radially about the center of a 200-mm-diameter glass substrate sandwich, are constructed using scalable microfabrication techniques derived from the semiconductor industry. Samples are loaded into reservoirs on the perimeter of the wafer, separated on the 8-cm-long poly(dimethylacrylamide) gel-filled channels, and detected with a four-color rotary confocal fluorescence scanner. The performance and throughput of this bioanalyzer are demonstrated by simultaneous genotyping 384 individuals for the common hemochromatosis-linked H63D mutation in the human HFE gene in only 325 s. This lab-on-a-chip device thoroughly exploits the power of microfabrication to produce high-density capillary electrophoresis arrays and to use them for high-throughput bioanalysis.
Collapse
Affiliation(s)
- Charles A Emrich
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|
44
|
Brazill SA, Kuhr WG. A single base extension technique for the analysis of known mutations utilizing capillary gel electrophoreisis with electrochemical detection. Anal Chem 2002; 74:3421-8. [PMID: 12139049 DOI: 10.1021/ac025569s] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel single nucleotide polymorphism (SNP) detection system is described in which the accuracy of DNA polymerase and advantages of electrochemical detection are demonstrated. A model SNP system is presented to illustrate the potential advantages in coupling the single base extension (SBE) technique to capillary gel electrophoresis (CGE) with electrochemical detection. An electrochemically labeled primer, with a ferrocene acetate covalently attached to its 5' end, is used in the extension reaction. When the Watson-Crick complementary ddNTP is added to the SBE reaction, the primer is extended by a single nucleotide. The reaction mixture is subsequently separated by CGE, and the ferrocene-tagged fragments are detected at the separation anode with sinusoidal voltammetry. This work demonstrates the first single base resolution separation of DNA coupled with electrochemical detection. The unextended primer (20-mer) and the 21-mer extension product are separated with a resolution of 0.8.
Collapse
Affiliation(s)
- Sara A Brazill
- Department of Chemistry, University of California, Riverside 92521, USA
| | | |
Collapse
|
45
|
Auroux PA, Iossifidis D, Reyes DR, Manz A. Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem 2002; 74:2637-52. [PMID: 12090654 DOI: 10.1021/ac020239t] [Citation(s) in RCA: 819] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Pierre-Alain Auroux
- Department of Chemistry, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | |
Collapse
|
46
|
Abstract
This review gives an overview of developments in the field of microchip analysis for clinical diagnostic and forensic applications. The approach chosen to review the literature is different from that in most microchip reviews to date, in that the information is presented in terms of analytes tested rather than microchip method. Analyte categories for which examples are presented include (i) drugs (quality control, seizures) and explosives residues, (ii) drugs and endogenous small molecules and ions in biofluids, (iii) proteins and peptides, and (iv) analysis of nucleic acids and oligonucleotides. Few cases of microchip analysis of physiological samples or other "real-world" matrices were found. However, many of the examples presented have potential application for these samples, especially with ongoing parallel developments involving integration of sample pretreatment onto chips and the use of fluid propulsion mechanisms other than electrokinetic pumping.
Collapse
Affiliation(s)
- Elisabeth Verpoorte
- Sensors, Actuators & Microsystems Laboratory, Institute of Microtechnology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
47
|
|
48
|
Abstract
Understanding the relationship between genetic variation and biological function on a genomic scale is expected to provide fundamental new insights into the biology, evolution and pathophysiology of humans and other species. The hope that single nucleotide polymorphisms (SNPs) will allow genes that underlie complex disease to be identified, together with progress in identifying large sets of SNPs, are the driving forces behind intense efforts to establish the technology for large-scale analysis of SNPs. New genotyping methods that are high throughput, accurate and cheap are urgently needed for gaining full access to the abundant genetic variation of organisms.
Collapse
Affiliation(s)
- A C Syvänen
- Department of Medical Sciences - Molecular Medicine, Uppsala University, University Hospital, 75185 Uppsala, Sweden.
| |
Collapse
|
49
|
Medintz IL, Paegel BM, Blazej RG, Emrich CA, Berti L, Scherer JR, Mathies RA. High-performance genetic analysis using microfabricated capillary array electrophoresis microplates. Electrophoresis 2001; 22:3845-56. [PMID: 11700713 DOI: 10.1002/1522-2683(200110)22:18<3845::aid-elps3845>3.0.co;2-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This review focuses on some recent advances in realizing microfabricated capillary array electrophoresis (microCAE). In particular, the development of a novel rotary scanning confocal fluorescence detector has facilitated the high-speed collection of sequencing and genotyping data from radially formatted microCAE devices. The concomitant development of a convenient energy-transfer cassette labeling chemistry allows sensitive multicolor labeling of any DNA genotyping or sequencing analyte. High-performance hereditary haemochromatosis and short tandem repeat genotyping assays are demonstrated on these devices along with rapid mitochondrial DNA sequence polymorphism analysis. Progress in supporting technology such as robotic fluid dispensing and batched data analysis is also presented. The ultimate goal is to develop a parallel analysis platform capable of integrated sample preparation and automated electrophoretic analysis with a throughput 10-100 times that of current technology.
Collapse
Affiliation(s)
- I L Medintz
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Medintz IL, Berti L, Emrich CA, Tom J, Scherer JR, Mathies RA. Genotyping Energy-Transfer-Cassette-labeled Short-Tandem-Repeat Amplicons with Capillary Array Electrophoresis Microchannel Plates. Clin Chem 2001. [DOI: 10.1093/clinchem/47.9.1614] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Background: Genetic analysis of microsatellite DNA is a powerful tool used in linkage analysis, gene mapping, and clinical diagnosis. To address the expanding needs of studies of short tandem repeats (STRs), we demonstrated high-performance STR analysis on a high-throughput microchannel plate-based platform.
Methods: Energy-transfer-cassette-labeled STR amplicons were separated and typed on a microfabricated 96-channel radial capillary array electrophoresis (CAE) microchannel plate system. Four-color detection was accomplished with a laser-excited confocal fluorescence rotary scanner.
Results: Multiplex STR analysis with single base-pair resolution was demonstrated on denaturing polyacrylamide gel media. The high-throughput multiplex capabilities of this genetic analysis platform were demonstrated by the simultaneous separation of STR amplicons representing 122 samples in ninety-six 5.5-cm-long channels in <8 min. Sizing values obtained for these amplicons on the CAE microchannel plate were comparable to those measured on a conventional commercial CAE instrument and exhibit <1% sizing variance.
Conclusions: Energy-transfer-cassette labeling and microfabricated CAE microchannel plates allow high-performance multiplex STR analyses.
Collapse
Affiliation(s)
- Igor L Medintz
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Lorenzo Berti
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Charles A Emrich
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Jennifer Tom
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - James R Scherer
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Richard A Mathies
- Department of Chemistry, University of California, Berkeley, CA 94720
| |
Collapse
|