1
|
Yang ML, Chang FM, Wu MH, Chen CH, Cheng TL, Kang L. Association studies of vasoactive genes and preeclampsia in taiwan. Placenta 2025; 161:14-22. [PMID: 39842216 DOI: 10.1016/j.placenta.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/01/2025] [Accepted: 01/08/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Preeclampsia (PE) is a serious condition characterized by hypertension and proteinuria after 20 weeks of gestation. The exact cause of PE is unknown but may involve abnormalities in the renin-angiotensin-aldosterone system (RAAS) and endothelial nitric oxide synthase (eNOS). Genetic variations in angiotensinogen (AGT), angiotensin-converting enzyme (ACE), and eNOS genes have been associated with PE. This study aimed to investigate the potential of vasoactive-related gene polymorphisms as indicators of susceptibility to preeclampsia in Taiwanese women. METHODS A total of 109 women with severe PE and 150 controls from the Taiwanese population were genotyped for specific vasoactive gene polymorphisms, including M235T and T174M polymorphisms of AGT gene, insertion/deletion (I/D) polymorphism in ACE gene, and G894T (Glu298Asp) polymorphism and 27bp variable number of tandem repeats (VNTR 3/4/5) polymorphism of the eNOS gene. The association between genotype and disease was assessed using Chi-square tests. RESULTS The study found no significant differences in the M235T and T174M polymorphisms of AGT gene between the PE and control groups. However, haplotype frequencies for the M235T and T174M polymorphisms exhibited a significant association with PE. The genotype distributions of the I/D polymorphism of ACE gene showed a significant difference between PE and control groups. Additionally, no significant differences were detected in the polymorphisms of the eNOS gene between PE and control groups. CONCLUSION The findings of this study suggest that the AGT M235T-T174M haplotype and ACE insertion/deletion polymorphism may contribute to the development of preeclampsia and could serve as susceptibility markers for preeclampsia in Taiwanese women.
Collapse
Affiliation(s)
- Mei-Lin Yang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan; Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Fong-Ming Chang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; Tai-An Clinics/Fong-Ming Chang Fetal Medicine Center, Taiwan
| | - Meng-Hsing Wu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Chung-Hwan Chen
- Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Lin Cheng
- Department of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, 807, Kaohsiung, Taiwan; Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan.
| |
Collapse
|
2
|
Distribution and Phylogeny of Microsymbionts Associated with Cowpea (Vigna unguiculata) Nodulation in Three Agroecological Regions of Mozambique. Appl Environ Microbiol 2018; 84:AEM.01712-17. [PMID: 29101189 PMCID: PMC5752868 DOI: 10.1128/aem.01712-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/19/2017] [Indexed: 11/22/2022] Open
Abstract
Cowpea derives most of its N nutrition from biological nitrogen fixation (BNF) via symbiotic bacteroids in root nodules. In Sub-Saharan Africa, the diversity and biogeographic distribution of bacterial microsymbionts nodulating cowpea and other indigenous legumes are not well understood, though needed for increased legume production. The aim of this study was to describe the distribution and phylogenies of rhizobia at different agroecological regions of Mozambique using PCR of the BOX element (BOX-PCR), restriction fragment length polymorphism of the internal transcribed spacer (ITS-RFLP), and sequence analysis of ribosomal, symbiotic, and housekeeping genes. A total of 122 microsymbionts isolated from two cowpea varieties (IT-1263 and IT-18) grouped into 17 clades within the BOX-PCR dendrogram. The PCR-ITS analysis yielded 17 ITS types for the bacterial isolates, while ITS-RFLP analysis placed all test isolates in six distinct clusters (I to VI). BLASTn sequence analysis of 16S rRNA and four housekeeping genes (glnII, gyrB, recA, and rpoB) showed their alignment with Rhizobium and Bradyrhizobium species. The results revealed a group of highly diverse and adapted cowpea-nodulating microsymbionts which included Bradyrhizobium pachyrhizi, Bradyrhizobium arachidis, Bradyrhizobium yuanmingense, and a novel Bradyrhizobium sp., as well as Rhizobium tropici, Rhizobium pusense, and Neorhizobium galegae in Mozambican soils. Discordances observed in single-gene phylogenies could be attributed to horizontal gene transfer and/or subsequent recombinations of the genes. Natural deletion of 60 bp of the gyrB region was observed in isolate TUTVU7; however, this deletion effect on DNA gyrase function still needs to be confirmed. The inconsistency of nifH with core gene phylogenies suggested differences in the evolutionary history of both chromosomal and symbiotic genes. IMPORTANCE A diverse group of both Bradyrhizobium and Rhizobium species responsible for cowpea nodulation in Mozambique was found in this study. Future studies could prove useful in evaluating these bacterial isolates for symbiotic efficiency and strain competitiveness in Mozambican soils.
Collapse
|
3
|
Islam MF, Watanabe A, Wong L, Lazarou C, Vizeacoumar FS, Abuhussein O, Hill W, Uppalapati M, Geyer CR, Vizeacoumar FJ. Enhancing the throughput and multiplexing capabilities of next generation sequencing for efficient implementation of pooled shRNA and CRISPR screens. Sci Rep 2017; 7:1040. [PMID: 28432350 PMCID: PMC5430825 DOI: 10.1038/s41598-017-01170-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/20/2017] [Indexed: 11/11/2022] Open
Abstract
Next generation sequencing is becoming the method of choice for functional genomic studies that use pooled shRNA or CRISPR libraries. A key challenge in sequencing these mixed-oligo libraries is that they are highly susceptible to hairpin and/or heteroduplex formation. This results in polyclonal, low quality, and incomplete reads and reduces sequencing throughput. Unfortunately, this challenge is significantly magnified in low-to-medium throughput bench-top sequencers as failed reads significantly perturb the maximization of sequence coverage and multiplexing capabilities. Here, we report a methodology that can be adapted to maximize the coverage on a bench-top, Ion PGM System for smaller shRNA libraries with high efficiency. This ligation-based, half-shRNA sequencing strategy minimizes failed sequences and is also equally amenable to high-throughput sequencers for increased multiplexing. Towards this, we also demonstrate that our strategy to reduce heteroduplex formation improves multiplexing capabilities of pooled CRISPR screens using Illumina NextSeq 500. Overall, our method will facilitate sequencing of pooled shRNA or CRISPR libraries from genomic DNA and maximize sequence coverage.
Collapse
Affiliation(s)
- Md Fahmid Islam
- Department of Biochemistry, University of Saskatchewan, Saskatoon, S7N 5E5, Canada
| | - Atsushi Watanabe
- Department of Pathology, University of Saskatchewan, Saskatoon, S7N 0W8, Canada.,Department of Hematology, Nephrology and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Lai Wong
- Department of Biochemistry, University of Saskatchewan, Saskatoon, S7N 5E5, Canada
| | - Conor Lazarou
- Department of Pathology, University of Saskatchewan, Saskatoon, S7N 0W8, Canada
| | | | - Omar Abuhussein
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, S7N 5C9, Canada
| | - Wayne Hill
- Department of Pathology, University of Saskatchewan, Saskatoon, S7N 0W8, Canada
| | - Maruti Uppalapati
- Department of Pathology, University of Saskatchewan, Saskatoon, S7N 0W8, Canada
| | - C Ronald Geyer
- Department of Pathology, University of Saskatchewan, Saskatoon, S7N 0W8, Canada.
| | - Franco J Vizeacoumar
- Department of Pathology, University of Saskatchewan, Saskatoon, S7N 0W8, Canada. .,College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, S7N 5C9, Canada. .,Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, S7N 5E5, Canada.
| |
Collapse
|
4
|
Kulibaba RA, Liashenko YV. Influence of the PCR artifacts on the genotyping efficiency by the microsatellite loci using native polyacrylamide gel electrophoresis. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716030087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Liu WL, Shih HC, Weng IS, Ko YZ, Tsai CC, Chou CH, Chiang YC. Characterization of Genomic Inheritance of Intergeneric Hybrids between Ascocenda and Phalaenopsis Cultivars by GISH, PCR-RFLP and RFLP. PLoS One 2016; 11:e0153512. [PMID: 27055268 PMCID: PMC4824505 DOI: 10.1371/journal.pone.0153512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/30/2016] [Indexed: 11/18/2022] Open
Abstract
Background The intergeneric hybrids between Ascocenda John De Biase ‘Blue’ and Phalaenopsis Chih Shang's Stripes have been generated to introduce the blue color into the Phalaenopsis germplasm in prior study. In order to confirm the inheritance in hybrid progenies, genomic in situ hybridization (GISH) and restriction fragment length polymorphism (RFLP) analysis were conducted to confirm the intergeneric hybridization status. Methods/Results GISH analysis showed the presence of both maternal and paternal chromosomes in the cells of the putative hybrids indicating that the putative hybrid seedlings were intergeneric hybrids of the two parents. Furthermore, twenty-seven putative hybrids were randomly selected for DNA analysis, and the external transcribed spacer (ETS) regions of nrDNA were analyzed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and RFLP analyses to identify the putative hybrids. RFLP analysis showed that the examined seedlings were intergeneric hybrids of the two parents. However, PCR-RFLP analysis showed bias to maternal genotype. Conclusions Both GISH and RFLP analyses are effective detection technology to identify the intergeneric hybridization status of putative hybrids. Furthermore, the use of PCR-RFLP analysis to identify the inheritance of putative hybrids should be carefully evaluated.
Collapse
Affiliation(s)
- Wen-Lin Liu
- Kaohsiung District Agricultural Research and Extension Station, Pingtung 900, Taiwan
| | - Huei-Chuan Shih
- Department of Nursing, Meiho University, Pingtung 912, Taiwan
| | - I-Szu Weng
- Kaohsiung District Agricultural Research and Extension Station, Pingtung 900, Taiwan
| | - Ya-Zhu Ko
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chi-Chu Tsai
- Kaohsiung District Agricultural Research and Extension Station, Pingtung 900, Taiwan
- National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- * E-mail: (CCT); (CHC); (YCC)
| | - Chang-Hung Chou
- Research Center for Biodiversity, China Medical University, Taichung 404, Taiwan
- * E-mail: (CCT); (CHC); (YCC)
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- * E-mail: (CCT); (CHC); (YCC)
| |
Collapse
|
6
|
Kulibaba RA, Yurko PS, Liashenko YV. MspI-polymorphism in fourth intron of the growth hormone gene in chicken populations of different breeds: Analysis of the causes of additional restriction pattern origin. CYTOL GENET+ 2015. [DOI: 10.3103/s0095452715060043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Kalle E, Kubista M, Rensing C. Multi-template polymerase chain reaction. BIOMOLECULAR DETECTION AND QUANTIFICATION 2014; 2:11-29. [PMID: 27896140 PMCID: PMC5121205 DOI: 10.1016/j.bdq.2014.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022]
Abstract
PCR is a formidable and potent technology that serves as an indispensable tool in a wide range of biological disciplines. However, due to the ease of use and often lack of rigorous standards many PCR applications can lead to highly variable, inaccurate, and ultimately meaningless results. Thus, rigorous method validation must precede its broad adoption to any new application. Multi-template samples possess particular features, which make their PCR analysis prone to artifacts and biases: multiple homologous templates present in copy numbers that vary within several orders of magnitude. Such conditions are a breeding ground for chimeras and heteroduplexes. Differences in template amplification efficiencies and template competition for reaction compounds undermine correct preservation of the original template ratio. In addition, the presence of inhibitors aggravates all of the above-mentioned problems. Inhibitors might also have ambivalent effects on the different templates within the same sample. Yet, no standard approaches exist for monitoring inhibitory effects in multitemplate PCR, which is crucial for establishing compatibility between samples.
Collapse
Affiliation(s)
- Elena Kalle
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Allmas alle 5, 75007 Uppsala, Sweden
| | - Mikael Kubista
- TATAA Biocenter, Odinsgatan 28, 41103 Göteborg, Sweden; Institute of Biotechnology, Czech Academy of Sciences
| | - Christopher Rensing
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
8
|
An association study of interleukin-4 gene and preeclampsia in Taiwan. Taiwan J Obstet Gynecol 2014; 53:215-9. [DOI: 10.1016/j.tjog.2014.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 04/06/2012] [Indexed: 01/17/2023] Open
|
9
|
Dwight ZL, Palais R, Kent J, Wittwer CT. Heterozygote PCR Product Melting Curve Prediction. Hum Mutat 2014; 35:278-82. [DOI: 10.1002/humu.22494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/02/2013] [Indexed: 11/09/2022]
Affiliation(s)
| | - Robert Palais
- Department of Mathematics; Utah Valley University; Orem Utah
| | - Jana Kent
- Department of Pathology; University of Utah; Salt Lake City Utah
| | - Carl T. Wittwer
- Department of Pathology; University of Utah; Salt Lake City Utah
| |
Collapse
|
10
|
Kalle E, Gulevich A, Rensing C. External and semi-internal controls for PCR amplification of homologous sequences in mixed templates. J Microbiol Methods 2013; 95:285-94. [PMID: 24076226 DOI: 10.1016/j.mimet.2013.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 11/30/2022]
Abstract
In a mixed template, the presence of homologous target DNA sequences creates environments that almost inevitably give rise to artifacts and biases during PCR. Heteroduplexes, chimeras, and skewed template-to-product ratios are the exclusive attributes of mixed template PCR and never occur in a single template assay. Yet, multi-template PCR has been used without appropriate attention to quality control and assay validation, in spite of the fact that such practice diminishes the reliability of results. External and internal amplification controls became obligatory elements of good laboratory practice in different PCR assays. We propose the inclusion of an analogous approach as a quality control system for multi-template PCR applications. The amplification controls must take into account the characteristics of multi-template PCR and be able to effectively monitor particular assay performance. This study demonstrated the efficiency of a model mixed template as an adequate external amplification control for a particular PCR application. The conditions of multi-template PCR do not allow implementation of a classic internal control; therefore we developed a convenient semi-internal control as an acceptable alternative. In order to evaluate the effects of inhibitors, a model multi-template mix was amplified in a mixture with DNAse-treated sample. Semi-internal control allowed establishment of intervals for robust PCR performance for different samples, thus enabling correct comparison of the samples. The complexity of the external and semi-internal amplification controls must be comparable with the assumed complexity of the samples. We also emphasize that amplification controls should be applied in multi-template PCR regardless of the post-assay method used to analyze products.
Collapse
Affiliation(s)
- Elena Kalle
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Allmas alle 5, 75007 Uppsala, Sweden.
| | | | | |
Collapse
|
11
|
Kang L, Chen CH, Yu CH, Chang CH, Chang FM. Interleukin-1β gene is not associated with preeclampsia in Taiwanese. Taiwan J Obstet Gynecol 2013; 51:240-4. [PMID: 22795101 DOI: 10.1016/j.tjog.2012.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2012] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To identify associations between the interleukin-1β gene and preeclampsia in Taiwanese women. METHODS AND MATERIALS We genotyped Taiwanese population (102 women with preeclampsia and 148 controls) for two polymorphisms of the interleukin-1β gene (promoter region and Exon 5) by using polymerase chain reaction and restriction fragment length polymorphism analysis. The association between the genotype and disease was examined by Chi-square tests. RESULTS We found no association between the two polymorphic sites of interleukin-1β gene and preeclampsia. No significant differences were detected in genotype distributions and allele frequencies of the AvaI polymorphism at position -511 in the promoter region and the TaqI polymorphism at position +3953 within Exon 5. CONCLUSION Our data do not support a role of the interleukin-1β gene in the pathogenesis of preeclampsia in Taiwanese women.
Collapse
Affiliation(s)
- Lin Kang
- Graduate Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | | | | | | | | |
Collapse
|
12
|
Chen J, Zhang X, Wang T, Li Z, Guan G, Hong Y. Efficient detection, quantification and enrichment of subtle allelic alterations. DNA Res 2012; 19:423-33. [PMID: 23075543 PMCID: PMC3473374 DOI: 10.1093/dnares/dss023] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/03/2012] [Indexed: 12/20/2022] Open
Abstract
Gene targeting (GT) can introduce subtle alterations into a particular locus and represents a powerful tool for genome editing. Engineered zinc finger nucleases (ZFNs) are effective for generating minor allelic alterations. Efficient detection of such minor alterations remains one of the challenges in ZFN-mediated GT experiments. Here, we report the establishment of procedures allowing for efficient detection, quantification and enrichment of such subtle alterations. In a biallelic model, polyacrylamide gel electrophoresis (PAGE) is capable of detecting rare allelic variations in the form of DNA heteroduplexes at a high efficiency of ~0.4% compared with ~6.3% by the traditional T7 endonuclease I-digestion and agarose gel electrophoresis. In a multiple allelic model, PAGE could discriminate different alleles bearing addition or deletion of 1-18 bp as distinct bands that were easily quantifiable by densitometry. Furthermore, PAGE enables enrichment for rare alleles. We show for the first time that direct endogenous GT is possible in medaka by ZFN RNA injection, whereas PAGE allows for detection and cloning of ZFN-targeted alleles in adults arising from ZFN-injected medaka embryos. Therefore, PAGE is effective for detection, quantification and enrichment of multiple fine allelic differences and thus offers a versatile tool for screening targeted subtle gene alterations.
Collapse
Affiliation(s)
- Jianbin Chen
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543, Singapore
| | - Xi Zhang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543, Singapore
| | - Tiansu Wang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543, Singapore
| | - Zhendong Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543, Singapore
| | - Guijun Guan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543, Singapore
- Department of Bioresources, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Yunhan Hong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore117543, Singapore
| |
Collapse
|
13
|
Bi K, Vanderpool D, Singhal S, Linderoth T, Moritz C, Good JM. Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales. BMC Genomics 2012; 13:403. [PMID: 22900609 PMCID: PMC3472323 DOI: 10.1186/1471-2164-13-403] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/28/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND To date, exon capture has largely been restricted to species with fully sequenced genomes, which has precluded its application to lineages that lack high quality genomic resources. We developed a novel strategy for designing array-based exon capture in chipmunks (Tamias) based on de novo transcriptome assemblies. We evaluated the performance of our approach across specimens from four chipmunk species. RESULTS We selectively targeted 11,975 exons (~4 Mb) on custom capture arrays, and enriched over 99% of the targets in all libraries. The percentage of aligned reads was highly consistent (24.4-29.1%) across all specimens, including in multiplexing up to 20 barcoded individuals on a single array. Base coverage among specimens and within targets in each species library was uniform, and the performance of targets among independent exon captures was highly reproducible. There was no decrease in coverage among chipmunk species, which showed up to 1.5% sequence divergence in coding regions. We did observe a decline in capture performance of a subset of targets designed from a much more divergent ground squirrel genome (30 My), however, over 90% of the targets were also recovered. Final assemblies yielded over ten thousand orthologous loci (~3.6 Mb) with thousands of fixed and polymorphic SNPs among species identified. CONCLUSIONS Our study demonstrates the potential of a transcriptome-enabled, multiplexed, exon capture method to create thousands of informative markers for population genomic and phylogenetic studies in non-model species across the tree of life.
Collapse
Affiliation(s)
- Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720-3160, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Alvarez Rojas CA, Gauci CG, Nolan MJ, Harandi MF, Lightowlers MW. Characterization of the eg95 gene family in the G6 genotype of Echinococcus granulosus. Mol Biochem Parasitol 2012; 183:115-21. [PMID: 22349630 DOI: 10.1016/j.molbiopara.2012.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 12/24/2022]
Abstract
Cystic echinococcosis in humans and livestock animals is caused by infection with the cestode parasite Echinococcus granulosus. A number of genotypes of the parasite (designated G1-G10) are known to exist, with the genotype cluster G1-G3 and genotype G6 being responsible for the majority of humans infections. A recombinant vaccine has been developed for use in livestock to prevent infection with E. granulosus. The vaccine is based on the antigen EG95 which is expressed in the early larval stage (oncosphere) of the parasite. The EG95 antigen was originally cloned from the G1 genotype of E. granulosus and the protein has been found to be encoded by members of a small family of related genes in this genotype. Reliable information has not been available about the likely efficacy of the EG95 vaccine against genotypes other than G1. In this study, genomic DNA cloning techniques were used to characterize seven eg95-related gene fragments from the G6 genotype of E. granulosus. Three proteins appear to be encoded by these genes. Considerable differences were found between the EG95 related proteins from the G6 genotype compared with the EG95 protein from the G1 genotype. These differences suggest that the EG95-related proteins from the G6 genotype may have different antigenic epitopes compared with the current vaccine antigen. Data presented in this study have implications for future vaccine design and provide the information that would enable a G6 genotype-specific vaccine to be developed against E. granulosus, should this be considered a desirable addition to the available tools for control of cystic echinococcosis transmission.
Collapse
|
15
|
Mayer F, Haase I, Graubner A, Heising F, Paschke-Kratzin A, Fischer M. Use of polymorphisms in the γ-gliadin gene of spelt and wheat as a tool for authenticity control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:1350-1357. [PMID: 22264072 DOI: 10.1021/jf203945d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Partial sequencing of the γ-gliadin gene of 62 spelt and 14 soft wheat cultivars was performed. Fifty-six of the 62 spelt cultivars and 13 of the 14 soft wheat cultivars were shown to exhibit the typical spelt or soft wheat γ-gliadin sequence, respectively. Exceptions were ascribed to crossbreeding of soft wheat and spelt. Using the typical soft wheat γ-gliadin sequence, two alternative DNA-based analytical methods were developed for the detection and quantification of spelt flour "adulteration" with soft wheat. A simple and fast detection of soft wheat in spelt flours could be achieved by restriction fragment length (RFLP) analysis. In combination with lab-on-a-chip capillary gel electrophoresis (LOC-CE) the soft wheat proportion could be estimated. Heteroduplex formation served as additional confirmation for the presence of spelt besides soft wheat. Hence, RFLP-LOC-CE constitutes a perfect analysis tool for the quality control of cereal seeds and pure cultivars. A precise quantification of soft wheat "adulterations" in spelt flour down to 1% could be achieved by the developed real-time PCR method. The calibration parameters of the real-time PCR assay fulfilled the minimum performance requirements of the European Network of GMO (genetically modified organisms) Laboratories (ENGL).
Collapse
Affiliation(s)
- Franz Mayer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Cheng J, Yim OS, Low PS, Tay SKH, Yap EPH, Lai PS. Detection of hemi/homozygotes through heteroduplex formation in high-resolution melting analysis. Anal Biochem 2010; 410:158-60. [PMID: 21111703 DOI: 10.1016/j.ab.2010.11.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/07/2010] [Accepted: 11/17/2010] [Indexed: 01/06/2023]
Abstract
Heteroduplex formation, required for the complete detection of hemi/homozygotes using high-resolution melting analysis, can be induced either by pre-PCR mixing of genomic DNAs or by post-PCR mixing of PCR products from unknown and reference samples. This study investigates the effects of both methods using two single nucleotide polymorphisms in X-linked DMD gene. The results show that both methods resulted in the same effect when mixing samples with the same gene copy number. Mixing samples with different gene copy numbers has not been previously explored and we show that post-PCR mixing is insensitive to gene copy number differences as compared to pre-PCR mixing.
Collapse
Affiliation(s)
- Jinting Cheng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | | | | | | | | | | |
Collapse
|
17
|
Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc 2010; 2010:pdb.prot5448. [PMID: 20516186 DOI: 10.1101/pdb.prot5448] [Citation(s) in RCA: 1358] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The large amount of DNA sequence data generated by high-throughput sequencing technologies often allows multiple samples to be sequenced in parallel on a single sequencing run. This is particularly true if subsets of the genome are studied rather than complete genomes. In recent years, target capture from sequencing libraries has largely replaced polymerase chain reaction (PCR) as the preferred method of target enrichment. Parallelizing target capture and sequencing for multiple samples requires the incorporation of sample-specific barcodes into sequencing libraries, which is necessary to trace back the sample source of each sequence. This protocol describes a fast and reliable method for the preparation of barcoded ("indexed") sequencing libraries for Illumina's Genome Analyzer platform. The protocol avoids expensive commercial library preparation kits and can be performed in a 96-well plate setup using multi-channel pipettes, requiring not more than two or three days of lab work. Libraries can be prepared from any type of double-stranded DNA, even if present in subnanogram quantity.
Collapse
Affiliation(s)
- Matthias Meyer
- Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
| | | |
Collapse
|
18
|
Dotan K, Feldman B, Goldman B, Peri Y, Peleg L. The single cell as a tool for genetic testing: credibility, precision, implication. J Assist Reprod Genet 2010; 27:335-41. [PMID: 20198415 DOI: 10.1007/s10815-010-9396-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 02/04/2010] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the influence of amplicons size and cell type on allele dropout and amplification failures in single-cell based molecular diagnosis. METHODS 730 single lymphocytes and amniotic cells were collected from known heterozygotes individuals to one of the common Ashkenazi Jewish mutations: 1278+TATC and IVS12+1G>C which cause Tay Sachs Disease, IVS20+6T and 854A>C which underlie Familial Dysautonomia and Canavan Disease. DNA was extracted and analyzed by our routine methods. RESULTS Reduced rates of allele dropout and amplification failure were found when smaller amplification product were designed and in amniotic cultured cells compared to peripheral lymphocytes. Cultured lymphocytes, induced to divide, demonstrated significantly less allele dropout than non induced lymphocytes suggesting the role of division potential on amplification efficiency. CONCLUSION Single cell based diagnosis should be designed for each mutation. Minimal sized amplicons and cell having division potential should be preferred, as well as sensitive techniques to detect preferential amplification.
Collapse
Affiliation(s)
- Keren Dotan
- Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Ramat Gan, 52621, Israel
| | | | | | | | | |
Collapse
|
19
|
Lim KS, Naviaux RK, Wong S, Haas RH. Pitfalls in the denaturing high-performance liquid chromatography analysis of mitochondrial DNA mutation. J Mol Diagn 2007; 10:102-8. [PMID: 18165269 DOI: 10.2353/jmoldx.2008.070081] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Denaturing high-performance liquid chromatography (DHPLC) purification of heteroduplexes has been reported as a method to increase sensitivity of the detection of low-level heteroplasmy by DNA sequencing, and DHPLC profiling has been suggested as a method to allow the correlation of a characteristic chromatographic profile with a specific sequence alteration. Herein we report pitfalls associated with the use of DHPLC for these purposes. We show that the purified heteroduplex fraction does not contain a 50:50 mix of wild-type and mutant DNA in DNA samples containing low-level mutations, and that with a commonly used protocol, DNA sequencing gave false negative results at the 1% mutation level, potentially leading to misdiagnosis. We improved the protocol to detect low levels of mutations and evaluated the sensitivity of DNA sequencing in the detection of mutation in these fractions. We also studied the DHPLC profiles of several mutations in the tRNALeu(UUR) region of mitochondrial DNA and found a characteristic profile in only one of five mutants tested, whereas four other mutants showed identical chromatographic profiles.
Collapse
Affiliation(s)
- Kok Seong Lim
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California, USA.
| | | | | | | |
Collapse
|
20
|
Brotherton P, Endicott P, Sanchez JJ, Beaumont M, Barnett R, Austin J, Cooper A. Novel high-resolution characterization of ancient DNA reveals C > U-type base modification events as the sole cause of post mortem miscoding lesions. Nucleic Acids Res 2007; 35:5717-28. [PMID: 17715147 PMCID: PMC2034480 DOI: 10.1093/nar/gkm588] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ancient DNA (aDNA) research has long depended on the power of PCR to amplify trace amounts of surviving genetic material from preserved specimens. While PCR permits specific loci to be targeted and amplified, in many ways it can be intrinsically unsuited to damaged and degraded aDNA templates. PCR amplification of aDNA can produce highly-skewed distributions with significant contributions from miscoding lesion damage and non-authentic sequence artefacts. As traditional PCR-based approaches have been unable to fully resolve the molecular nature of aDNA damage over many years, we have developed a novel single primer extension (SPEX)-based approach to generate more accurate sequence information. SPEX targets selected template strands at defined loci and can generate a quantifiable redundancy of coverage; providing new insights into the molecular nature of aDNA damage and fragmentation. SPEX sequence data reveals inherent limitations in both traditional and metagenomic PCR-based approaches to aDNA, which can make current damage analyses and correct genotyping of ancient specimens problematic. In contrast to previous aDNA studies, SPEX provides strong quantitative evidence that C > U-type base modifications are the sole cause of authentic endogenous damage-derived miscoding lesions. This new approach could allow ancient specimens to be genotyped with unprecedented accuracy.
Collapse
Affiliation(s)
- Paul Brotherton
- Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
| | | | | | | | | | | | | |
Collapse
|
21
|
Nocker A, Burr M, Camper AK. Genotypic microbial community profiling: a critical technical review. MICROBIAL ECOLOGY 2007; 54:276-89. [PMID: 17345133 DOI: 10.1007/s00248-006-9199-5] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 11/27/2006] [Accepted: 12/12/2006] [Indexed: 05/14/2023]
Abstract
Microbial ecology has undergone a profound change in the last two decades with regard to methods employed for the analysis of natural communities. Emphasis has shifted from culturing to the analysis of signature molecules including molecular DNA-based approaches that rely either on direct cloning and sequencing of DNA fragments (shotgun cloning) or often rely on prior amplification of target sequences by use of the polymerase chain reaction (PCR). The pool of PCR products can again be either cloned and sequenced or can be subjected to an increasing variety of genetic profiling methods, including amplified ribosomal DNA restriction analysis, automated ribosomal intergenic spacer analysis, terminal restriction fragment length polymorphism, denaturing gradient gel electrophoresis, temperature gradient gel electrophoresis, single strand conformation polymorphism, and denaturing high-performance liquid chromatography. In this document, we present and critically compare these methods commonly used for the study of microbial diversity.
Collapse
Affiliation(s)
- Andreas Nocker
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717-3980, USA.
| | | | | |
Collapse
|
22
|
|
23
|
Abstract
Abstract
Background: In recent years, denaturing HPLC (DHPLC) has been widely used to screen the whole mitochondrial genome or specific regions of the genome for DNA mutations. The quantification and mathematical modeling of DHPLC results is, however, underexplored.
Methods: We generated site-directed mutants containing some common mutations in the mitochondrial DNA (mtDNA) tRNA(leu) region with different mutation loads and used PCR to amplify the gene segment of interest in these mutants. We then performed restriction digestion followed by slow reannealing to induce heteroduplex formation and analyzed the samples by use of DHPLC.
Results: We observed a quadratic relationship between the heteroduplex peak areas and mutant loads, consistent with the kinetics of heteroduplex formation reported by others. This was modeled mathematically and used to quantify mtDNA mutation load. The method was able to detect a mutation present in a concentration as low as 1% and gave reproducible measurements of the mutations in the range of 2.5%–97.5%.
Conclusion: The quantitative DHPLC assay is well suited for simultaneous detection and quantification of DNA mutations.
Collapse
Affiliation(s)
- Kok Seong Lim
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA 92093-0935, USA.
| | | | | |
Collapse
|
24
|
Darius HT, Dauga C, Grimont PAD, Chungue E, Martin PMV. Diversity In Symbiotic Dinoflagellates (Pyrrhophyta) from Seven Scleractinian Coral Species: Restriction Enzyme Analysis of Small Subunit Ribosomal RNA Genes. J Eukaryot Microbiol 2007. [DOI: 10.1111/j.1550-7408.1998.tb04558.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Beser J, Hagblom P, Fernandez V. Frequent in vitro recombination in internal transcribed spacers 1 and 2 during genotyping of Pneumocystis jirovecii. J Clin Microbiol 2007; 45:881-6. [PMID: 17202274 PMCID: PMC1829102 DOI: 10.1128/jcm.02245-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pneumocystis jirovecii is the causative agent of Pneumocystis pneumonia (PCP) in immunocompromised persons. Knowledge of the transmission and epidemiology of PCP is still incipient, and investigations on these subjects are based exclusively on applications of molecular typing techniques. The polymorphic internal transcribed spacers ITS1 and ITS2 in the ribosomal DNA operon, which in the P. jirovecii genome exist as single-copy DNA, are commonly used as target loci for isolate typing. In the course of genotyping P. jirovecii in respiratory specimens from PCP patients by amplification and cloning of a large number of ITS sequences, we found mixed infections (two or more types) in 50% of the samples. In a majority of the specimens with mixed infections, we detected many ITS haplotypes (combinations of ITS1 and ITS2 types) that appeared to be products of recombination between globally common ITS haplotypes present in the same sample. Here we present results of a series of experiments showing that essentially all ITS recombinants are chimeras formed during the genotyping process. Under standard conditions, as many as 37% of the amplified sequences could be hybrid DNA artifacts. We show that by modifying PCR amplification conditions, ITS chimera formation could be largely abolished and the erroneous establishment of artifactual haplotypes avoided. The accurate assessment of genetic diversity is fundamental for a better understanding of the epidemiology and biology of P. jirovecii infections.
Collapse
Affiliation(s)
- Jessica Beser
- Department of Parasitology, Mycology and Environmental Microbiology, Swedish Institute for Infectious Disease Control, SE-17182 Solna, Sweden
| | | | | |
Collapse
|
26
|
Rangwala SH, Elumalai R, Vanier C, Ozkan H, Galbraith DW, Richards EJ. Meiotically stable natural epialleles of Sadhu, a novel Arabidopsis retroposon. PLoS Genet 2006; 2:e36. [PMID: 16552445 PMCID: PMC1401498 DOI: 10.1371/journal.pgen.0020036] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 01/30/2006] [Indexed: 11/30/2022] Open
Abstract
Epigenetic variation is a potential source of genomic and phenotypic variation among different individuals in a population, and among different varieties within a species. We used a two-tiered approach to identify naturally occurring epigenetic alleles in the flowering plant Arabidopsis: a primary screen for transcript level polymorphisms among three strains (Col, Cvi, Ler), followed by a secondary screen for epigenetic alleles. Here, we describe the identification of stable, meiotically transmissible epigenetic alleles that correspond to one member of a previously uncharacterized non-LTR retroposon family, which we have designated Sadhu. The pericentromeric At2g10410 element is highly expressed in strain Col, but silenced in Ler and 18 other strains surveyed. Transcription of this locus is inversely correlated with cytosine methylation and both the expression and DNA methylation states map in a Mendelian manner to stable cis-acting variation. The silent Ler allele can be converted by the epigenetic modifier mutation ddm1 to a meiotically stable expressing allele with an identical primary nucleotide sequence, demonstrating that the variation responsible for transcript level polymorphism among Arabidopsis strains is epigenetic. We extended our characterization of the Sadhu family members and show that different elements are subject to both genetic and epigenetic variation in natural populations. These findings support the view that an important component of natural variation in retroelements is epigenetic.
Collapse
Affiliation(s)
- Sanjida H Rangwala
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Rangasamy Elumalai
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Cheryl Vanier
- Department of Biological Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Hakan Ozkan
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - David W Galbraith
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Eric J Richards
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
27
|
Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, Polz MF. PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl Environ Microbiol 2006; 71:8966-9. [PMID: 16332901 PMCID: PMC1317340 DOI: 10.1128/aem.71.12.8966-8969.2005] [Citation(s) in RCA: 384] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The contribution of PCR artifacts to 16S rRNA gene sequence diversity from a complex bacterioplankton sample was estimated. Taq DNA polymerase errors were found to be the dominant sequence artifact but could be constrained by clustering the sequences into 99% sequence similarity groups. Other artifacts (chimeras and heteroduplex molecules) were significantly reduced by employing modified amplification protocols. Surprisingly, no skew in sequence types was detected in the two libraries constructed from PCR products amplified for different numbers of cycles. Recommendations for modification of amplification protocols and for reporting diversity estimates at 99% sequence similarity as a standard are given.
Collapse
Affiliation(s)
- Silvia G Acinas
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
28
|
Palais RA, Liew MA, Wittwer CT. Quantitative heteroduplex analysis for single nucleotide polymorphism genotyping. Anal Biochem 2005; 346:167-75. [PMID: 16188219 DOI: 10.1016/j.ab.2005.08.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 08/06/2005] [Accepted: 08/09/2005] [Indexed: 11/22/2022]
Abstract
High-resolution melting of polymerase chain reaction (PCR) products can detect heterozygous mutations and most homozygous mutations without electrophoretic or chromatographic separations. However, some homozygous single nucleotide polymorphism (SNPs) have melting curves identical to that of the wild-type, as predicted by nearest neighbor thermodynamic models. In these cases, if DNA of a known reference genotype is added to each unknown before PCR, quantitative heteroduplex analysis can differentiate heterozygous, homozygous, and wild-type genotypes if the fraction of reference DNA is chosen carefully. Theoretical calculations suggest that melting curve separation is proportional to heteroduplex content difference and that the addition of reference homozygous DNA at one seventh of total DNA results in the best discrimination between the three genotypes of biallelic SNPs. This theory was verified experimentally by quantitative analysis of both high-resolution melting and temperature-gradient capillary electrophoresis data. Reference genotype proportions other than one seventh of total DNA were suboptimal and failed to distinguish some genotypes. Optimal mixing before PCR followed by high-resolution melting analysis permits genotyping of all SNPs with a single closed-tube analysis.
Collapse
Affiliation(s)
- Robert A Palais
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | |
Collapse
|
29
|
Xu D, Du J, Kamino H, Ratech H. Rapid diagnosis of clonal immunoglobulin heavy chain gene rearrangements in cutaneous B-cell lymphomas using the LightCycler-Polymerase Chain Reaction with DNA melting curve analysis. Am J Dermatopathol 2005; 26:385-9. [PMID: 15365370 DOI: 10.1097/00000372-200410000-00007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have recently developed a novel Immunoglobulin heavy chain gene rearrangement (IgH-R) assay that combines polymerase chain reaction (PCR) amplification and analysis in the same closed capillary tube using the LightCycler System. IgH-R can be identified by DNA melting curve analysis within 40 minutes after DNA preparation and amplification. To test the clinical utility of this new IgH-R assay for rapidly diagnosing cutaneous B-cell lymphomas, we prospectively analyzed 44 formalin-fixed, paraffin-embedded tissues suspected of B-cell malignant lymphoma: skin (n = 31), lymph node (n = 7), stomach (n = 3), spleen (n = 1), colon (n = 1), and soft tissue (n = 1). We detected IgH-R in 12 DNA samples, including 8 skin biopsies, with the following diagnoses: B-cell chronic lymphocytic leukemia (n = 4), extranodal marginal zone B-cell lymphoma (n = 4), diffuse large B-cell lymphoma (n = 2), Burkitt lymphoma (n = 1), and precursor B-lymphoblastic lymphoma (n = 1). DNA melting curve analysis, compared with polyacrylamide gel electrophoresis, achieved a sensitivity equal to 92.3% and a specificity equal to 100%. There was a single false negative result because DNA melting curve analysis could not detect less than 10.0% clonal B-cells. We conclude that this new, rapid PCR assay for detecting IgH-R based on DNA melting curve analysis can be clinically useful for confirming the initial diagnosis of B-cell malignant lymphoma.
Collapse
Affiliation(s)
- Dongsheng Xu
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York 10467, USA
| | | | | | | |
Collapse
|
30
|
Smigrodzki R, Parks J, Parker WD. High frequency of mitochondrial complex I mutations in Parkinson’s disease and aging. Neurobiol Aging 2004; 25:1273-81. [PMID: 15465623 DOI: 10.1016/j.neurobiolaging.2004.02.020] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Revised: 12/09/2003] [Accepted: 02/09/2004] [Indexed: 12/21/2022]
Abstract
Idiopathic Parkinson's disease (PD) involves a systemic loss of activity of complex I of the mitochondrial electron transport chain. This biochemical lesion plays a key pathogenic role. Transfer of PD mitochondrial DNA recapitulates this loss of activity and several other pathogenic features of PD suggesting that this lesion may arise, at least in part, from mitochondrial DNA. We investigated this possibility by an extensive clonal sequencing of the seven mitochondrial genes encoding complex I subunits in PD and age-matched control frontal cortex. Each gene was completely sequenced an average of 94.4 times for each subject. Aminoacid-changing mutations were found at the frequency of 59.3 per million bases in both PD and controls, corresponding to approximately 32% of the mitochondrial genomes in the average sample having at least one mutation in a complex I gene. Individual low frequency mutations had an abundance of 1-10%. Significant interindividual variation in mutation frequency was observed. Several aminoacid-changing mutations were identified and multiple PD brains but not in controls. Genetic algorithm analysis detected areas in ND genes with a higher mutation frequency in PD that allowed differentiation of PD from controls. Total mutational burden due to low-abundance heteroplasmy is high and may play a role in human disease.
Collapse
Affiliation(s)
- Rafal Smigrodzki
- Department of Neurology, University of Virginia, BNG1370, Research Lane, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
31
|
Xu D, Du J, Schultz C, Ali A, Ratech H. Rapid and accurate detection of monoclonal immunoglobulin heavy chain gene rearrangement by DNA melting curve analysis in the LightCycler System. J Mol Diagn 2002; 4:216-22. [PMID: 12411589 PMCID: PMC1907354 DOI: 10.1016/s1525-1578(10)60706-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The detection of immunoglobulin heavy chain gene rearrangement (IgH-R) is a standard tool for distinguishing polyclonal from monoclonal B-cell populations. Current DNA-based polymerase chain reactions (PCR) strategies can diagnose monoclonal IgH-R either by measuring the length of the amplicon or by detecting gel mobility variations owing to sequence-dependent conformational changes. However, amplification and analysis remain sequential operations usually requiring manual transfer. We have developed a novel PCR strategy for detecting monoclonal IgH-R that monitors fluorescence of the specific double-stranded DNA binding dye SYBR Green I during melting curve analysis using the LightCycler System. We compared polyacrylamide gel electrophoresis (PAGE) versus melting curve analysis in 130 clinical DNA samples from formalin-fixed, paraffin-embedded (FFPE) tissues (mostly skin biopsies) of 128 patients. The identical FR3 primers were used to amplify the IgH variable region for both analytic techniques. We detected IgH-R in 24 DNA samples from FFPE tissue of 22 patients. Melting curve analysis, compared to PAGE, revealed no false negative and no false positive results, yielding both sensitivity and specificity equal to 100%. We also compared Southern blot analysis versus melting curve analysis in 23 clinical DNA samples from fresh-frozen lymph nodes of 23 patients. We detected IgH-R by melting curve analysis in 7 DNA samples from fresh-frozen lymph nodes. Melting curve analysis, compared to Southern blot analysis, revealed sensitivity equal to 58.3% (7 of 12) and specificity equal to 100% (11 of 11). We conclude that continuous fluorescence monitoring of PCR products with DNA melting curve analysis can rapidly and reproducibly distinguish polyclonal from monoclonal B-cell populations.
Collapse
Affiliation(s)
- Dongsheng Xu
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York 10467, USA
| | | | | | | | | |
Collapse
|
32
|
Thompson JR, Marcelino LA, Polz MF. Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by 'reconditioning PCR'. Nucleic Acids Res 2002; 30:2083-8. [PMID: 11972349 PMCID: PMC113844 DOI: 10.1093/nar/30.9.2083] [Citation(s) in RCA: 318] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although it has been recognized that PCR amplification of mixed templates may generate sequence artifacts, the mechanisms of their formation, frequency and potential elimination have not been fully elucidated. Here evidence is presented for heteroduplexes as a major source of artifacts in mixed-template PCR. Nearly equal proportions of homoduplexes and heteroduplexes were observed after co-amplifying 16S rDNA from three bacterial genomes and analyzing products by constant denaturing capillary electrophoresis (CDCE). Heteroduplexes became increasingly prevalent as primers became limiting and/or template diversity was increased. A model exploring the fate of cloned heteroduplexes during MutHLS-mediated mismatch repair in the Escherichia coli host demonstrates that the diversity of artifactual sequences increases exponentially with the number of both variable nucleotides and of original sequence variants. Our model illustrates how minimization of heteroduplex molecules before cloning may reduce artificial genetic diversity detected during sequence analysis by clone screening. Thus, we developed a method to eliminate heteroduplexes from mixed-template PCR products by subjecting them to 'reconditioning PCR', a low cycle number re-amplification of a 10-fold diluted mixed-template PCR product. This simple modification to the protocol may ensure that sequence richness encountered in clone libraries more closely reflects genetic diversity in the original sample.
Collapse
Affiliation(s)
- Janelle R Thompson
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
33
|
Abstract
Most spinal muscular atrophy patients lack both copies of SMN1 exon 7 and most carriers have only one copy of SMN1 exon 7. We investigated the effect of SMN1/SMN2 heteroduplex formation on SMN gene dosage analysis, which is an assay to determine copy number of SMN1 exon 7 that utilizes multiplex quantitative polymerase chain reaction (PCR) with DraI digestion to differentiate SMN1 from SMN2. Heteroduplex formation in PCR is a well-described phenomenon. In addition to demonstrating the presence of heteroduplexes by sequence analysis of purified SMN1 bands, we compared the SMN1 signals in various genotype groups (total n = 260) to those in a group lacking SMN2 (n = 13), and we estimated the relative amounts of SMN1/SMN2 heteroduplexes. The SMN1 signal increased as SMN2 copy number increased despite a constant SMN1 copy number, although not all pairwise comparisons showed a statistically significant difference in the SMN1 signal. In conclusion, SMN1/SMN2 heteroduplexes form in SMN gene dosage analysis, falsely increasing the SMN1 signal. External controls for SMN gene dosage analysis should be chosen carefully with regard to SMN2 copy number. The effect of heteroduplex formation should be considered when performing quantitative multiplex PCR.
Collapse
Affiliation(s)
- S Ogino
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
34
|
Doukhan L, Delwart E. Population genetic analysis of the protease locus of human immunodeficiency virus type 1 quasispecies undergoing drug selection, using a denaturing gradient-heteroduplex tracking assay. J Virol 2001; 75:6729-36. [PMID: 11413343 PMCID: PMC114399 DOI: 10.1128/jvi.75.14.6729-6736.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2001] [Accepted: 04/15/2001] [Indexed: 11/20/2022] Open
Abstract
Monitoring the evolution of human immunodeficiency virus type 1 (HIV-1) drug resistance requires measuring the frequency of closely related genetic variants making up the complex viral quasispecies found in vivo. In order to resolve both major and minor (>/=2%) protease gene variants differing by one or more nucleotide substitutions, we analyzed PCR products derived from plasma viral quasispecies by using a combination of denaturing gradient gel electrophoresis and DNA heteroduplex tracking assays. Correct population sampling of the high level of genetic diversity present within viral quasispecies could be documented by parallel analysis of duplicate, independently generated PCR products. The composition of genetically complex protease gene quasispecies remained constant over short periods of time in the absence of treatment and while plasma viremia fell >100-fold following the initiation of protease inhibitor ritonavir monotherapy. Within a month of initiating therapy, a strong reduction in the genetic diversity of plasma viral populations at the selected protease locus was associated with rising plasma viremia and the emergence of drug resistance. The high levels of protease genetic diversity seen before treatment reemerged only months later. In one patient, reduction in genetic diversity at the protease gene was observed concomitantly with an increase in diversity at the envelope gene (E. L. Delwart, P. Heng, A. Neumann, and M. Markowitz, J. Virol. 72:2416-2421, 1998), indicating that opposite population genetic changes can take place in different HIV-1 loci. The rapid emergence of drug-resistant HIV-1 was therefore associated with a strong, although only transient, reduction in genetic diversity at the selected locus. The denaturing gradient-heteroduplex tracking assay is a simple method for the separation and quantitation of very closely related, low-frequency, genetic variants within complex viral populations.
Collapse
Affiliation(s)
- L Doukhan
- Blood Centers of the Pacific, 270 Masonic Avenue, San Francisco, California 94118, USA
| | | |
Collapse
|
35
|
Deinard AS, Kidd K. Identifying conservation units within captive chimpanzee populations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2000; 111:25-44. [PMID: 10618587 DOI: 10.1002/(sici)1096-8644(200001)111:1<25::aid-ajpa3>3.0.co;2-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
One of the primary objectives in the captive management of any endangered primate is to preserve as much as possible the genetic diversity that has evolved and still exists in wild gene pools. The rationale for this is based on the theoretical understanding of the relationship between genetic diversity and fitness in response to selection. There remains little consensus, however, as to the type of genetic data that should be used to monitor captive populations. In order to develop a deeper understanding of the degree and nature of genetic diversity among "wild" chimpanzee gene pools, as well as to determine if one type of genetic data is more useful than others, DNA sequence data were generated at three unlinked, nonrepetitive nuclear loci, one polymorphic microsatellite, and the mitochondrial D-loop for 59 unrelated common and pygmy chimpanzees. The results suggest that: 1) data from nuclear loci can be used to differentiate common chimpanzee subspecies; 2) pygmy chimpanzees may have less genetic diversity than common chimpanzees; 3) shared microsatellite alleles do not always indicate identity by descent; and 4) nonrepetitive loci provide unique insights into evolutionary relationships and provide useful information for captive management programs.
Collapse
Affiliation(s)
- A S Deinard
- Department of Anthropology, Yale University, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
36
|
Fu P, Senior P, Fernley RT, Tregear GW, Aldred GP. Rapid determination of transgene copy number in stably-transfected mammalian cells by competitive PCR. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1999; 40:101-12. [PMID: 10487164 DOI: 10.1016/s0165-022x(99)00018-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We describe here an application of the competitive PCR technique to the analysis of copy number of recombinant rat parathyroid hormone-related protein (rPTHrP) gene in stably-transfected murine erythroleukemia (MEL) cell lines. A single-copy reference gene (endogenous mouse PTHrP gene or mPTHrP) is used as an internal control. This control gene, present in the genome of MEL cells, shares the same primer binding sites as the rPTHrP cDNA but contains an internal PvuII site, which allows resolution of the amplified products after restriction enzyme digestion by polyacrylamide gel electrophoresis (PAGE). The transgene copy number is determined by the ratio of band intensity of the rPTHrP product to that of the mPTHrP product. Using this method, we have determined the copy number of the rPTHrP transgene from isolated genomic DNA, and compared the results with those obtained from Southern blot analysis. In addition, we have demonstrated that the procedure can be applied very simply to whole MEL cells without DNA extractions and that as few as 10(4) cells are required for the analysis.
Collapse
Affiliation(s)
- P Fu
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
37
|
Cubells JF, Kobayashi K, Nagatsu T, Kidd KK, Kidd JR, Calafell F, Kranzler HR, Ichinose H, Gelernter J. Population genetics of a functional variant of the dopamine beta-hydroxylase gene (DBH). AMERICAN JOURNAL OF MEDICAL GENETICS 1997; 74:374-9. [PMID: 9259372 DOI: 10.1002/(sici)1096-8628(19970725)74:4<374::aid-ajmg7>3.0.co;2-p] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dopamine beta-hydroxylase (E.C. 1.14.17.1; protein abbreviation: DbetaH) catalyzes conversion of dopamine to norepinephrine. Previous work identified two expressed alleles of the gene encoding DbetaH (locus symbol DBH), containing either G or T at nucleotide position 910, resulting in specification by codon 304 of alanine (DBH*304A) or serine (DBH*304S), respectively. The current study employed denaturing gradient gel electrophoresis to identify these alleles, and after developing a PCR RFLP for rapid genotyping, estimated the frequencies of the alleles in African-Americans, European-Americans, and in several geographically dispersed populations (Mbuti, Danes, Adygei, Chinese, Japanese, Surui, Maya, and Nasioi). DBH*304A was the most common allele in all populations tested, with allele frequencies greater than 0.80 in each case. There was significant heterogeneity in allele frequency across population groups. The DBH*304S allele was most common in subjects of African descent, and least common in East Asians and individuals from indigenous populations of North and South America. The frequency of DBH*304S was significantly higher in African-Americans (0.16) than in European-Americans (0.06; P < 0.004). Of the four DBH*304S homozygotes observed, all were Europeans and three of the four were Danes. Based on empirical P-values generated by computer simulation, the observed proportions of DBH*304S homozygotes did not differ significantly from Hardy-Weinberg expectations in any of the populations after Bonferroni correction for multiple comparisons. The observation of significant heterogeneity in DBH*304S allele frequency across different population samples demonstrates the importance of controlling for population stratification in future studies testing for associations between DBH*304S and clinical phenotypes.
Collapse
Affiliation(s)
- J F Cubells
- Department of Psychiatry, VA Connecticut Health Care System, West Haven 06516, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Vuorio AF, Paulin L, Turtola H, Kontula K. Deletions of the low density lipoprotein receptor gene underlying familial hypercholesterolaemia: screening by polymerase chain reaction using pooled DNA and blood samples. Mol Cell Probes 1997; 11:65-70. [PMID: 9076717 DOI: 10.1006/mcpr.1996.0078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We evaluated the feasibility of methods based on the polymerase chain reaction (PCR) and non-automated or automated gel electrophoresis to detect clinically important DNA deletions in pooled DNA and blood samples. Two common low density lipoprotein (LDL) receptor mutations causing familial hypercholesterolaemia (FH) in the Finnish population were easily identified in pools corresponding to 20 individuals. One of these mutations (FH-North Karelia) deletes seven nucleotides from exon 6 of the LDL receptor gene. PCR amplification of DNA samples from the heterozygous patients with the FH-North Karelia gene results in the formation of DNA heteroduplexes, which markedly improves mutation detection. These studies show the applicability of semi-automated PCR techniques in the screening of DNA deletions and demonstrate the clinical diagnostic usefulness of heteroduplex formation.
Collapse
Affiliation(s)
- A F Vuorio
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
39
|
Lee SY, Bollinger J, Bezdicek D, Ogram A. Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method. Appl Environ Microbiol 1996; 62:3787-93. [PMID: 8837435 PMCID: PMC168187 DOI: 10.1128/aem.62.10.3787-3793.1996] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Strain EA25 was identified in a clone library of bacterial 16S rRNA gene sequences that had been amplified from DNA extracted from soil collected in eastern Washington State. EA25 was subsequently shown to be related to members of the genera Planctomyces and Chlamydia and most closely related (93% similarity) to strain MC18, a strain identified in an Australian soil sample (W. Liesack and E. Stackebrandt, J. Bacteriol. 174:5072-5078, 1992). A competitive quantitative PCR method developed by Zachar et al. (V. Zachar, R.A. Thomas, and A.S. Goustin, Nucleic Acids Res. 21:2017-2018, 1993) was used to estimate the abundance of this uncultured strain in soil. An estimation of the abundance of EA25 was based on the number of copies of the sequence in the DNA extracted and the efficiency of the DNA extraction. In addition, amplification rates of Escherichia coli DNAs added to soil were shown to be similar to those of DNAs from laboratory cultures of E. coli. The number of EA25 16S rRNA genes was estimated to be 2.17 x 10(8) copies per g of soil, suggesting that strains similar to EA25 and the similar Australian strain could be widely distributed and present in significant numbers in soils from temperate regions. This represents the first enumeration of 16S rDNA copies from an uncultured strain in soil.
Collapse
MESH Headings
- Chlamydia/genetics
- Chlamydia/isolation & purification
- Cloning, Molecular
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA, Ribosomal/analysis
- DNA, Ribosomal/genetics
- Genes, Bacterial/genetics
- Gram-Negative Bacteria/genetics
- Gram-Negative Bacteria/isolation & purification
- Molecular Sequence Data
- Phylogeny
- Polymerase Chain Reaction/methods
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Soil Microbiology
- Washington
Collapse
Affiliation(s)
- S Y Lee
- Department of Crop and Soil Sciences, Washington State University, Pullman 99164-6420, USA
| | | | | | | |
Collapse
|
40
|
Vaneechoutte M. DNA fingerprinting techniques for microorganisms. A proposal for classification and nomenclature. Mol Biotechnol 1996; 6:115-42. [PMID: 8970167 DOI: 10.1007/bf02740768] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A whole array of DNA-fingerprinting techniques, which provide indirect access to DNA sequence polymorphism in order to assess species or clonal identity of bacterial organisms or in order to study bacterial genome composition, have been described during past decades. Nomenclature has been sometimes erroneous and/or confusing, also because of hybrid techniques that combine different approaches. It can be shown that most techniques study the sequence polymorphism of only the chromosome, or only the plasmid(s) or only a gene or gene fragment and that the sequence polymorphism is revealed by AFLP (amplified fragment length polymorphism) or by RFLP (restriction fragment length polymorphism) or by special electrophoresis techniques. Starting from these considerations, some taxonomy of techniques, which enables more appropriate nomenclature, can be developed.
Collapse
Affiliation(s)
- M Vaneechoutte
- Department of Clinical Chemistry, Microbiology & Immunology Blok A, University Hospital, Ghent, Belgium.
| |
Collapse
|
41
|
Lee DH, Zo YG, Kim SJ. Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism. Appl Environ Microbiol 1996; 62:3112-20. [PMID: 8795197 PMCID: PMC168103 DOI: 10.1128/aem.62.9.3112-3120.1996] [Citation(s) in RCA: 227] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We describe a new method for studying the structure and diversity of bacterial communities in the natural ecosystem. Our approach is based on single-strand-conformation polymorphism (SSCP) analysis of PCR products of 16S rRNA genes from complex bacterial populations. A pair of eubacterial universal primers for amplification of the variable V3 region were designed from the 16S rRNA sequences of 1,262 bacterial strains. The PCR conditions were optimized by using genomic DNAs from five gram-positive and seven gram-negative strains. The SSCP analysis of the PCR products demonstrated that a bacterial strain generated its characteristic band pattern and that other strains generated other band patterns, so that the relative diversity in bacterial communities could be measured. In addition, this method was sensitive enough to detect a bacterial population that made up less than 1.5% of a bacterial community. The distinctive differences between bacterial populations were observed in an oligotrophic lake and a eutrophic pond in a field study. The method presented here, using combined PCR amplification and SSCP pattern analyses of 16S rRNA genes, provides a useful tool to study bacterial community structures in various ecosystems.
Collapse
Affiliation(s)
- D H Lee
- Department of Microbiology, College of Natural Sciences, Seoul National University, Korea
| | | | | |
Collapse
|
42
|
Schlötterer C. Temperature-gradient gel electrophoresis as a screening tool for polymorphisms in multigene families. Electrophoresis 1995; 16:722-8. [PMID: 7588551 DOI: 10.1002/elps.11501601117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Information about sequence variability between different copies of a multigene family is indispensable for understanding the evolutionary mechanisms acting on multigene families. However, their high copy number has been a major obstacle to systematic analysis. Exemplified by the internal transcribed spacer 1 (ITS1) of the rDNA in Drosophila melanogaster, it is shown how temperature gradient gel electrophoresis (TGGE) can be used to study sequence polymorphisms in a multigene family. Experimental conditions influencing the melting behavior of the ITS1 fragment are discussed as well as discrepancies between observed and calculated melting patterns.
Collapse
Affiliation(s)
- C Schlötterer
- Zoologisches Institut der Universität München, Germany
| |
Collapse
|
43
|
Kami J, Velásquez VB, Debouck DG, Gepts P. Identification of presumed ancestral DNA sequences of phaseolin in Phaseolus vulgaris. Proc Natl Acad Sci U S A 1995; 92:1101-4. [PMID: 7862642 PMCID: PMC42645 DOI: 10.1073/pnas.92.4.1101] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Common bean (Phaseolus vulgaris) consists of two major geographic gene pools, one distributed in Mexico, Central America, and Colombia and the other in the southern Andes (southern Peru, Bolivia, and Argentina). Amplification and sequencing of members of the multigene family coding for phaseolin, the major seed storage protein of the common bean, provide evidence for accumulation of tandem direct repeats in both introns and exons during evolution of the multigene family in this species. The presumed ancestral phaseolin sequences, without tandem repeats, were found in recently discovered but nearly extinct wild common bean populations of Ecuador and northern Peru that are intermediate between the two major gene pools of the species based on geographical and molecular arguments. Our results illustrate the usefulness of tandem direct repeats in establishing the polarity of DNA sequence divergence and therefore in proposing phylogenies.
Collapse
Affiliation(s)
- J Kami
- Department of Agronomy and Range Science, University of California, Davis 95616-8515
| | | | | | | |
Collapse
|
44
|
Delwart EL, Sheppard HW, Walker BD, Goudsmit J, Mullins JI. Human immunodeficiency virus type 1 evolution in vivo tracked by DNA heteroduplex mobility assays. J Virol 1994; 68:6672-83. [PMID: 8084001 PMCID: PMC237088 DOI: 10.1128/jvi.68.10.6672-6683.1994] [Citation(s) in RCA: 241] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
High mutation rates and strong selective pressures imposed on human immunodeficiency viruses in vivo result in the formation of pools of genetic variants known as quasispecies. DNA heteroduplex mobility and tracking analyses were used to monitor the generation of HIV sequence diversity, to estimate quasispecies complexity, and to assess the turnover of genetic variants to approach an understanding of the relationship between viral quasispecies evolution in vivo and disease progression. Proviral DNA pools were nearly homogeneous soon after sexual transmission. The emergence and clearance of individual variants then occurred at different rates in different individuals. High quasispecies complexity was found in long-term-infected, asymptomatic individuals, while rapid CD4+ cell decline and AIDS were often, but not always, associated with lower quasispecies complexity. Proviral genetic variation was often low following in vitro culture, because of the outgrowth of one or a few variants that often became more abundant only later as proviruses in peripheral blood mononuclear cells. These studies provide insight into the dynamics of human immunodeficiency virus sequence changes in vivo and illustrate the utility of heteroduplex analysis for the study of phenomena associated with rapid genetic changes.
Collapse
Affiliation(s)
- E L Delwart
- Department of Microbiology and Immunology, Stanford University School of Medicine, California 94305-5402
| | | | | | | | | |
Collapse
|