1
|
Jay A, Pondevida CM, Vahedi G. The epigenetic landscape of fate decisions in T cells. Nat Immunol 2025; 26:544-556. [PMID: 40108419 DOI: 10.1038/s41590-025-02113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025]
Abstract
Specialized T cell subsets mediate adaptive immunity in response to cytokine signaling and specific transcription factor activity. The epigenetic landscape of T cells has an important role in facilitating and establishing T cell fate decisions. Here, we review the interplay between transcription factors, histone modifications, DNA methylation and three-dimensional chromatin organization to define key elements of the epigenetic landscape in T cells. We introduce key technologies in the areas of sequencing, microscopy and proteomics that have enabled the multi-scale profiling of the epigenetic landscape. We highlight the dramatic changes of the epigenetic landscape as multipotent progenitor cells commit to the T cell lineage during development and discuss the epigenetic changes that favor the emergence of CD4+ and CD8+ T cells. Finally, we discuss the inheritance of epigenetic marks and its potential effects on immune responses as well as therapeutic strategies with potential for epigenetic regulation.
Collapse
Affiliation(s)
- Atishay Jay
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Carlos M Pondevida
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Golnaz Vahedi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Xu J, Chen C, Sussman JH, Yoshimura S, Vincent T, Pölönen P, Hu J, Bandyopadhyay S, Elghawy O, Yu W, Tumulty J, Chen CH, Li EY, Diorio C, Shraim R, Newman H, Uppuluri L, Li A, Chen GM, Wu DW, Ding YY, Xu JA, Karanfilovski D, Lim T, Hsu M, Thadi A, Ahn KJ, Wu CY, Peng J, Sun Y, Wang A, Mehta R, Frank D, Meyer L, Loh ML, Raetz EA, Chen Z, Wood BL, Devidas M, Dunsmore KP, Winter SS, Chang TC, Wu G, Pounds SB, Zhang NR, Carroll W, Hunger SP, Bernt K, Yang JJ, Mullighan CG, Tan K, Teachey DT. A multiomic atlas identifies a treatment-resistant, bone marrow progenitor-like cell population in T cell acute lymphoblastic leukemia. NATURE CANCER 2025; 6:102-122. [PMID: 39587259 PMCID: PMC11779640 DOI: 10.1038/s43018-024-00863-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/17/2024] [Indexed: 11/27/2024]
Abstract
Refractoriness to initial chemotherapy and relapse after remission are the main obstacles to curing T cell acute lymphoblastic leukemia (T-ALL). While tumor heterogeneity has been implicated in treatment failure, the cellular and genetic factors contributing to resistance and relapse remain unknown. Here we linked tumor subpopulations with clinical outcome, created an atlas of healthy pediatric hematopoiesis and applied single-cell multiomic analysis to a diverse cohort of 40 T-ALL cases. We identified a bone marrow progenitor (BMP)-like leukemia subpopulation associated with treatment failure and poor overall survival. The single-cell-derived molecular signature of BMP-like blasts predicted poor outcome across multiple subtypes of T-ALL and revealed that NOTCH1 mutations additively drive T-ALL blasts away from the BMP-like state. Through in silico and in vitro drug screenings, we identified a therapeutic vulnerability of BMP-like blasts to apoptosis-inducing agents including venetoclax. Collectively, our study establishes multiomic signatures for rapid risk stratification and targeted treatment of high-risk T-ALL.
Collapse
Affiliation(s)
- Jason Xu
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Changya Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjian, China
| | - Jonathan H Sussman
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Satoshi Yoshimura
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tiffaney Vincent
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Petri Pölönen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jianzhong Hu
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shovik Bandyopadhyay
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Cell & Molecular Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Omar Elghawy
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Wenbao Yu
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph Tumulty
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chia-Hui Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth Y Li
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Caroline Diorio
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rawan Shraim
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Haley Newman
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lahari Uppuluri
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alexander Li
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gregory M Chen
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David W Wu
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yang-Yang Ding
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jessica A Xu
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Damjan Karanfilovski
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tristan Lim
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miles Hsu
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anusha Thadi
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kyung Jin Ahn
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chi-Yun Wu
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacqueline Peng
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yusha Sun
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Alice Wang
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - David Frank
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lauren Meyer
- The Ben Town Center for Childhood Cancer Research, Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatric Hematology Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - Mignon L Loh
- The Ben Town Center for Childhood Cancer Research, Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatric Hematology Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - Elizabeth A Raetz
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Zhiguo Chen
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Brent L Wood
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kimberly P Dunsmore
- Division of Oncology, University of Virginia Children's Hospital, Charlottesville, VA, USA
| | | | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley B Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nancy R Zhang
- Department of Statistics, University of Pennsylvania, Philadelphia, PA, USA
| | - William Carroll
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Stephen P Hunger
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathrin Bernt
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - David T Teachey
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Tran VL, Haltalli MLR, Li J, Lin DS, Yamashita M, Naik SH, Rothenberg EV. Ever-evolving insights into the cellular and molecular drivers of lymphoid cell development. Exp Hematol 2024; 140:104667. [PMID: 39454745 PMCID: PMC11624110 DOI: 10.1016/j.exphem.2024.104667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Lymphocytes play a critical role in adaptive immunity and defense mechanisms, but the molecular mechanisms by which hematopoietic stem and progenitor cells differentiate into T and B lymphocytes are not fully established. Pioneer studies identify several transcription factors essential for lymphoid lineage determination. Yet, many questions remain unanswered about how these transcription factors interact with each other and with chromatin at different developmental stages. This interaction regulates a network of genes and proteins, promoting lymphoid lineage differentiation while suppressing other lineages. Throughout this intricate biological process, any genetic or epigenetic interruptions can derail normal differentiation trajectories, potentially leading to various human pathologic conditions. Here, we summarize recent advances in understanding lymphoid cell development, which was the focus of the Winter 2024 International Society for Experimental Hematology webinar.
Collapse
Affiliation(s)
- Vu L Tran
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| | - Myriam L R Haltalli
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Jingjing Li
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Dawn S Lin
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Masayuki Yamashita
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Shalin H Naik
- Immunology Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
4
|
Shin B, Chang SJ, MacNabb BW, Rothenberg EV. Transcriptional network dynamics in early T cell development. J Exp Med 2024; 221:e20230893. [PMID: 39167073 PMCID: PMC11338287 DOI: 10.1084/jem.20230893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
The rate at which cells enter the T cell pathway depends not only on the immigration of hematopoietic precursors into the strong Notch signaling environment of the thymus but also on the kinetics with which each individual precursor cell reaches T-lineage commitment once it arrives. Notch triggers a complex, multistep gene regulatory network in the cells in which the steps are stereotyped but the transition speeds between steps are variable. Progenitor-associated transcription factors delay T-lineage differentiation even while Notch-induced transcription factors within the same cells push differentiation forward. Progress depends on regulator cross-repression, on breaching chromatin barriers, and on shifting, competitive collaborations between stage-specific and stably expressed transcription factors, as reviewed here.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Samantha J Chang
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Brendan W MacNabb
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| |
Collapse
|
5
|
Meyers S, Gielen O, Cools J, Demeyer S. Single-cell CRISPR screening characterizes transcriptional deregulation in T-cell acute lymphoblastic leukemia. Haematologica 2024; 109:3167-3181. [PMID: 38813729 PMCID: PMC11443379 DOI: 10.3324/haematol.2023.284901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive type of leukemia caused by accumulation of multiple genetic alterations in T-cell progenitors. However, for many genes it remains unknown how their mutations contribute to disease development. We therefore performed two single-cell CRISPR screens in primary pro-T cells ex vivo to study the transcriptional impact of loss-of-function alterations in T-ALL and correlate this with effects on cell fitness. The various perturbations were clustered based on their effects on E2F/MYC or STAT/NOTCH signatures, which play a defining role in driving T-cell proliferation. Many of the perturbations resulted in positive effects on the STAT and NOTCH signatures and were predicted to behave as haploinsufficient tumor suppressors in T-ALL. Additionally, Spi1 was identified as an essential gene for pro-T-cell survival, associated with deregulation of the MYC signature and epigenetic consequences. In contrast, Bcl11b was identified as a strong tumor suppressor gene in immature T lymphocytes, associated with deregulation of NF-kB and JAK/STAT signaling. We found a correlation between BCL11B expression level and JAK/STAT pathway mutations in T-ALL patients and demonstrated oncogenic cooperation between Bcl11b inactivation and JAK3 hyperactivation in pro-T cells. Altogether, these single-cell CRISPR screens in pro-T cells provide fundamental insights into the mechanisms of transcriptional deregulation caused by genetic alterations in T-ALL.
Collapse
Affiliation(s)
- Sarah Meyers
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven
| | - Olga Gielen
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven
| | - Jan Cools
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven.
| | - Sofie Demeyer
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven.
| |
Collapse
|
6
|
Taylor SJ, Stauber J, Bohorquez O, Tatsumi G, Kumari R, Chakraborty J, Bartholdy BA, Schwenger E, Sundaravel S, Farahat AA, Wheat JC, Goldfinger M, Verma A, Kumar A, Boykin DW, Stengel KR, Poon GMK, Steidl U. Pharmacological restriction of genomic binding sites redirects PU.1 pioneer transcription factor activity. Nat Genet 2024; 56:2213-2227. [PMID: 39294495 PMCID: PMC11525197 DOI: 10.1038/s41588-024-01911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/14/2024] [Indexed: 09/20/2024]
Abstract
Transcription factor (TF) DNA-binding dynamics govern cell fate and identity. However, our ability to pharmacologically control TF localization is limited. Here we leverage chemically driven binding site restriction leading to robust and DNA-sequence-specific redistribution of PU.1, a pioneer TF pertinent to many hematopoietic malignancies. Through an innovative technique, 'CLICK-on-CUT&Tag', we characterize the hierarchy of de novo PU.1 motifs, predicting occupancy in the PU.1 cistrome under binding site restriction. Temporal and single-molecule studies of binding site restriction uncover the pioneering dynamics of native PU.1 and identify the paradoxical activation of an alternate target gene set driven by PU.1 localization to second-tier binding sites. These transcriptional changes were corroborated by genetic blockade and site-specific reporter assays. Binding site restriction and subsequent PU.1 network rewiring causes primary human leukemia cells to differentiate. In summary, pharmacologically induced TF redistribution can be harnessed to govern TF localization, actuate alternate gene networks and direct cell fate.
Collapse
Affiliation(s)
- Samuel J Taylor
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jacob Stauber
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Oliver Bohorquez
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Goichi Tatsumi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajni Kumari
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joyeeta Chakraborty
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Boris A Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Emily Schwenger
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sriram Sundaravel
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abdelbasset A Farahat
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Master of Pharmaceutical Sciences Program, California Northstate University, Elk Grove, CA, USA
| | - Justin C Wheat
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mendel Goldfinger
- Department of Oncology, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA
- Blood Cancer Institute, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA
| | - Amit Verma
- Department of Oncology, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA
- Blood Cancer Institute, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA
| | - Arvind Kumar
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - David W Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Kristy R Stengel
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Blood Cancer Institute, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Oncology, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA.
- Blood Cancer Institute, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA.
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA.
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
7
|
Yang Y, Han X, Sun L, Shao F, Yin Y, Zhang W. ETS Transcription Factors in Immune Cells and Immune-Related Diseases. Int J Mol Sci 2024; 25:10004. [PMID: 39337492 PMCID: PMC11432452 DOI: 10.3390/ijms251810004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The development, differentiation, and function of immune cells are precisely regulated by transcription factors. The E26 transformation-specific (ETS) transcription factor family is involved in various physiological and pathological processes by regulating cell proliferation, differentiation, and apoptosis. Emerging evidence has suggested that ETS family proteins are intimately involved in the development and function of immune cells. This review summarizes the role of the ETS family in immune cells and immune-related disorders. Seven transcription factors within the ETS family, including PU.1, ETV5, ETV6, ETS1/2, ELK3, and ELF1, play essential roles in the development and function of T cells, B cells, macrophages, neutrophils, and dendritic cells. Furthermore, they are involved in the occurrence and development of immune-related diseases, including tumors, allergies, autoimmune diseases, and arteriosclerosis. This review is conducive to a comprehensive overview of the role of the ETS family in immune cells, and thus is informative for the development of novel therapeutic strategies targeting the ETS family for immune-related diseases.
Collapse
Affiliation(s)
- Yaxu Yang
- Department of Physiology and Pathophysiology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (L.S.)
| | - Xue Han
- Department of Pharmacology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.H.); (F.S.)
| | - Lijun Sun
- Department of Physiology and Pathophysiology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (L.S.)
| | - Fangyu Shao
- Department of Pharmacology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.H.); (F.S.)
| | - Yue Yin
- Department of Pharmacology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.H.); (F.S.)
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (L.S.)
| |
Collapse
|
8
|
Duttke SH, Guzman C, Chang M, Delos Santos NP, McDonald BR, Xie J, Carlin AF, Heinz S, Benner C. Position-dependent function of human sequence-specific transcription factors. Nature 2024; 631:891-898. [PMID: 39020164 PMCID: PMC11269187 DOI: 10.1038/s41586-024-07662-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/04/2024] [Indexed: 07/19/2024]
Abstract
Patterns of transcriptional activity are encoded in our genome through regulatory elements such as promoters or enhancers that, paradoxically, contain similar assortments of sequence-specific transcription factor (TF) binding sites1-3. Knowledge of how these sequence motifs encode multiple, often overlapping, gene expression programs is central to understanding gene regulation and how mutations in non-coding DNA manifest in disease4,5. Here, by studying gene regulation from the perspective of individual transcription start sites (TSSs), using natural genetic variation, perturbation of endogenous TF protein levels and massively parallel analysis of natural and synthetic regulatory elements, we show that the effect of TF binding on transcription initiation is position dependent. Analysing TF-binding-site occurrences relative to the TSS, we identified several motifs with highly preferential positioning. We show that these patterns are a combination of a TF's distinct functional profiles-many TFs, including canonical activators such as NRF1, NFY and Sp1, activate or repress transcription initiation depending on their precise position relative to the TSS. As such, TFs and their spacing collectively guide the site and frequency of transcription initiation. More broadly, these findings reveal how similar assortments of TF binding sites can generate distinct gene regulatory outcomes depending on their spatial configuration and how DNA sequence polymorphisms may contribute to transcription variation and disease and underscore a critical role for TSS data in decoding the regulatory information of our genome.
Collapse
Affiliation(s)
- Sascha H Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| | - Carlos Guzman
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA, USA
| | - Max Chang
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA, USA
| | - Nathaniel P Delos Santos
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA, USA
| | - Bayley R McDonald
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jialei Xie
- Department of Pathology and Medicine, U.C. San Diego School of Medicine, La Jolla, CA, USA
| | - Aaron F Carlin
- Department of Pathology and Medicine, U.C. San Diego School of Medicine, La Jolla, CA, USA
| | - Sven Heinz
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA, USA.
| | - Christopher Benner
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
9
|
Freund MM, Harrison MM, Torres-Zelada EF. Exploring the reciprocity between pioneer factors and development. Development 2024; 151:dev201921. [PMID: 38958075 PMCID: PMC11266817 DOI: 10.1242/dev.201921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Development is regulated by coordinated changes in gene expression. Control of these changes in expression is largely governed by the binding of transcription factors to specific regulatory elements. However, the packaging of DNA into chromatin prevents the binding of many transcription factors. Pioneer factors overcome this barrier owing to unique properties that enable them to bind closed chromatin, promote accessibility and, in so doing, mediate binding of additional factors that activate gene expression. Because of these properties, pioneer factors act at the top of gene-regulatory networks and drive developmental transitions. Despite the ability to bind target motifs in closed chromatin, pioneer factors have cell type-specific chromatin occupancy and activity. Thus, developmental context clearly shapes pioneer-factor function. Here, we discuss this reciprocal interplay between pioneer factors and development: how pioneer factors control changes in cell fate and how cellular environment influences pioneer-factor binding and activity.
Collapse
Affiliation(s)
- Meghan M. Freund
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| | - Melissa M. Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| | - Eliana F. Torres-Zelada
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| |
Collapse
|
10
|
Liao J, Hargreaves DC. Coordination of transcription factors and SWI-SNF complexes regulates chromatin priming in developing T cells. Nat Immunol 2024; 25:725-727. [PMID: 38641719 DOI: 10.1038/s41590-024-01822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Affiliation(s)
- Jingwen Liao
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Diana C Hargreaves
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
11
|
Zhang Y, Kang Z, Liu M, Wang L, Liu F. Single-cell omics identifies inflammatory signaling as a trans-differentiation trigger in mouse embryos. Dev Cell 2024; 59:961-978.e7. [PMID: 38508181 DOI: 10.1016/j.devcel.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/08/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Trans-differentiation represents a direct lineage conversion; however, insufficient characterization of this process hinders its potential applications. Here, to explore a potential universal principal for trans-differentiation, we performed single-cell transcriptomic analysis of endothelial-to-hematopoietic transition (EHT), endothelial-to-mesenchymal transition, and epithelial-to-mesenchymal transition in mouse embryos. We applied three scoring indexes of entropies, cell-type signature transcription factor expression, and critical transition signals to show common features underpinning the fate plasticity of transition states. Cross-model comparison identified inflammatory-featured transition states and a common trigger role of interleukin-33 in promoting fate conversions. Multimodal profiling (integrative transcriptomic and chromatin accessibility analysis) demonstrated the inflammatory regulation of hematopoietic specification. Furthermore, multimodal omics and fate-mapping analyses showed that endothelium-specific Spi1, as an inflammatory effector, governs appropriate chromatin accessibility and transcriptional programs to safeguard EHT. Overall, our study employs single-cell omics to identify critical transition states/signals and the common trigger role of inflammatory signaling in developmental-stress-induced fate conversions.
Collapse
Affiliation(s)
- Yifan Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhixin Kang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Feng Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China; Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Zeinali S, Sutton K, Zefreh MG, Mabbott N, Vervelde L. Discrimination of distinct chicken M cell subsets based on CSF1R expression. Sci Rep 2024; 14:8795. [PMID: 38627516 PMCID: PMC11021470 DOI: 10.1038/s41598-024-59368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
In mammals, a subset of follicle-associated epithelial (FAE) cells, known as M cells, conduct the transcytosis of antigens across the epithelium into the underlying lymphoid tissues. We previously revealed that M cells in the FAE of the chicken lung, bursa of Fabricius (bursa), and caecum based on the expression of CSF1R. Here, we applied RNA-seq analysis on highly enriched CSF1R-expressing bursal M cells to investigate their transcriptome and identify novel chicken M cell-associated genes. Our data show that, like mammalian M cells, those in the FAE of the chicken bursa also express SOX8, MARCKSL1, TNFAIP2 and PRNP. Immunohistochemical analysis also confirmed the expression of SOX8 in CSF1R-expressing cells in the lung, bursa, and caecum. However, we found that many other mammalian M cell-associated genes such as SPIB and GP2 were not expressed by chicken M cells or represented in the chicken genome. Instead, we show bursal M cells express high levels of related genes such as SPI1. Whereas our data show that bursal M cells expressed CSF1R-highly, the M cells in the small intestine lacked CSF1R and both expressed SOX8. This study offers insights into the transcriptome of chicken M cells, revealing the expression of CSF1R in M cells is tissue-specific.
Collapse
Affiliation(s)
- Safieh Zeinali
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Kate Sutton
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| | - Masoud Ghaderi Zefreh
- Division of Genetics and Genomics, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Neil Mabbott
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
13
|
Zolotarev N, Wang Y, Du M, Bayer M, Grosschedl A, Cisse I, Grosschedl R. Regularly spaced tyrosines in EBF1 mediate BRG1 recruitment and formation of nuclear subdiffractive clusters. Genes Dev 2024; 38:4-10. [PMID: 38233109 PMCID: PMC10903943 DOI: 10.1101/gad.350828.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
B lineage priming by pioneer transcription factor EBF1 requires the function of an intrinsically disordered region (IDR). Here, we examine the role of regularly spaced tyrosines in the IDR as potential determinants of IDR function and activity of EBF1. We found that four Y > A mutations in EBF1 reduced the formation of condensates in vitro and subdiffractive clusters in vivo. Notably, Y > A mutant EBF1 was inefficient in promoting B cell differentiation and showed impaired chromatin binding, recruitment of BRG1, and activation of specific target genes. Thus, regularly spaced tyrosines in the IDR contribute to the biophysical and functional properties of EBF1.
Collapse
Affiliation(s)
- Nikolay Zolotarev
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Yuanting Wang
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Manyu Du
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Marc Bayer
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Anna Grosschedl
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Ibrahim Cisse
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Rudolf Grosschedl
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany;
| |
Collapse
|
14
|
Barral A, Zaret KS. Pioneer factors: roles and their regulation in development. Trends Genet 2024; 40:134-148. [PMID: 37940484 PMCID: PMC10873006 DOI: 10.1016/j.tig.2023.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Pioneer factors are a subclass of transcription factors that can bind and initiate opening of silent chromatin regions. Pioneer factors subsequently regulate lineage-specific genes and enhancers and, thus, activate the zygotic genome after fertilization, guide cell fate transitions during development, and promote various forms of human cancers. As such, pioneer factors are useful in directed cell reprogramming. In this review, we define the structural and functional characteristics of pioneer factors, how they bind and initiate opening of closed chromatin regions, and the consequences for chromatin dynamics and gene expression during cell differentiation. We also discuss emerging mechanisms that modulate pioneer factors during development.
Collapse
Affiliation(s)
- Amandine Barral
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Boulevard, Philadelphia, PA 19104, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Sun Z, Zhang L, Wang R, Wang Z, Liang X, Gao J. Identification of shared pathogenetic mechanisms between COVID-19 and IC through bioinformatics and system biology. Sci Rep 2024; 14:2114. [PMID: 38267482 PMCID: PMC10808107 DOI: 10.1038/s41598-024-52625-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/22/2024] [Indexed: 01/26/2024] Open
Abstract
COVID-19 increased global mortality in 2019. Cystitis became a contributing factor in SARS-CoV-2 and COVID-19 complications. The complex molecular links between cystitis and COVID-19 are unclear. This study investigates COVID-19-associated cystitis (CAC) molecular mechanisms and drug candidates using bioinformatics and systems biology. Obtain the gene expression profiles of IC (GSE11783) and COVID-19 (GSE147507) from the Gene Expression Omnibus (GEO) database. Identified the common differentially expressed genes (DEGs) in both IC and COVID-19, and extracted a number of key genes from this group. Subsequently, conduct Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis on the DEGs. Additionally, design a protein-protein interaction (PPI) network, a transcription factor gene regulatory network, a TF miRNA regulatory network, and a gene disease association network using the DEGs. Identify and extract hub genes from the PPI network. Then construct Nomogram diagnostic prediction models based on the hub genes. The DSigDB database was used to forecast many potential molecular medicines that are associated with common DEGs. Assess the precision of hub genes and Nomogram models in diagnosing IC and COVID-19 by employing Receiver Operating Characteristic (ROC) curves. The IC dataset (GSE57560) and the COVID-19 dataset (GSE171110) were selected to validate the models' diagnostic accuracy. A grand total of 198 DEGs that overlapped were found and chosen for further research. FCER1G, ITGAM, LCP2, LILRB2, MNDA, SPI1, and TYROBP were screened as the hub genes. The Nomogram model, built using the seven hub genes, demonstrates significant utility as a diagnostic prediction model for both IC and COVID-19. Multiple potential molecular medicines associated with common DEGs have been discovered. These pathways, hub genes, and models may provide new perspectives for future research into mechanisms and guide personalised and effective therapeutics for IC patients infected with COVID-19.
Collapse
Affiliation(s)
- Zhenpeng Sun
- Department of Urology, Qingdao Municipal Hospital, No.5, Donghai Middle Road, Shinan District, Qingdao, 266001, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Li Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Ruihong Wang
- Department of Outpatient, Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Zheng Wang
- Zhucheng People's Hospital, Zhucheng, China
| | - Xin Liang
- Department of Urology, Qingdao Municipal Hospital, No.5, Donghai Middle Road, Shinan District, Qingdao, 266001, Shandong, China
| | - Jiangang Gao
- Department of Urology, Qingdao Municipal Hospital, No.5, Donghai Middle Road, Shinan District, Qingdao, 266001, Shandong, China.
| |
Collapse
|
16
|
Heuts BMH, Martens JHA. Understanding blood development and leukemia using sequencing-based technologies and human cell systems. Front Mol Biosci 2023; 10:1266697. [PMID: 37886034 PMCID: PMC10598665 DOI: 10.3389/fmolb.2023.1266697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023] Open
Abstract
Our current understanding of human hematopoiesis has undergone significant transformation throughout the years, challenging conventional views. The evolution of high-throughput technologies has enabled the accumulation of diverse data types, offering new avenues for investigating key regulatory processes in blood cell production and disease. In this review, we will explore the opportunities presented by these advancements for unraveling the molecular mechanisms underlying normal and abnormal hematopoiesis. Specifically, we will focus on the importance of enhancer-associated regulatory networks and highlight the crucial role of enhancer-derived transcription regulation. Additionally, we will discuss the unprecedented power of single-cell methods and the progression in using in vitro human blood differentiation system, in particular induced pluripotent stem cell models, in dissecting hematopoietic processes. Furthermore, we will explore the potential of ever more nuanced patient profiling to allow precision medicine approaches. Ultimately, we advocate for a multiparameter, regulatory network-based approach for providing a more holistic understanding of normal hematopoiesis and blood disorders.
Collapse
Affiliation(s)
- Branco M H Heuts
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
17
|
Goldman N, Chandra A, Johnson I, Sullivan MA, Patil AR, Vanderbeck A, Jay A, Zhou Y, Ferrari EK, Mayne L, Aguilan J, Xue HH, Faryabi RB, John Wherry E, Sidoli S, Maillard I, Vahedi G. Intrinsically disordered domain of transcription factor TCF-1 is required for T cell developmental fidelity. Nat Immunol 2023; 24:1698-1710. [PMID: 37592014 PMCID: PMC10919931 DOI: 10.1038/s41590-023-01599-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
In development, pioneer transcription factors access silent chromatin to reveal lineage-specific gene programs. The structured DNA-binding domains of pioneer factors have been well characterized, but whether and how intrinsically disordered regions affect chromatin and control cell fate is unclear. Here, we report that deletion of an intrinsically disordered region of the pioneer factor TCF-1 (termed L1) leads to an early developmental block in T cells. The few T cells that develop from progenitors expressing TCF-1 lacking L1 exhibit lineage infidelity distinct from the lineage diversion of TCF-1-deficient cells. Mechanistically, L1 is required for activation of T cell genes and repression of GATA2-driven genes, normally reserved to the mast cell and dendritic cell lineages. Underlying this lineage diversion, L1 mediates binding of TCF-1 to its earliest target genes, which are subject to repression as T cells develop. These data suggest that the intrinsically disordered N terminus of TCF-1 maintains T cell lineage fidelity.
Collapse
Affiliation(s)
- Naomi Goldman
- Department of Genetics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Aditi Chandra
- Department of Genetics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Isabelle Johnson
- Department of Genetics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Matthew A Sullivan
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Abhijeet R Patil
- Department of Genetics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Ashley Vanderbeck
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Atishay Jay
- Department of Genetics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Yeqiao Zhou
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Emily K Ferrari
- Department of Genetics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Leland Mayne
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Jennifer Aguilan
- Department of Biochemistry, Albert Einstein School of Medicine, New York City, NY, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
- New Jersey Veterans Affairs Health Care System, East Orange, NJ, USA
| | - Robert B Faryabi
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - E John Wherry
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein School of Medicine, New York City, NY, USA
| | - Ivan Maillard
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA.
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA.
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Shin B, Zhou W, Wang J, Gao F, Rothenberg EV. Runx factors launch T cell and innate lymphoid programs via direct and gene network-based mechanisms. Nat Immunol 2023; 24:1458-1472. [PMID: 37563311 PMCID: PMC10673614 DOI: 10.1038/s41590-023-01585-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/12/2023] [Indexed: 08/12/2023]
Abstract
Runx factors are essential for lineage specification of various hematopoietic cells, including T lymphocytes. However, they regulate context-specific genes and occupy distinct genomic regions in different cell types. Here, we show that dynamic Runx binding shifts in mouse early T cell development are mostly not restricted by local chromatin state but regulated by Runx dosage and functional partners. Runx cofactors compete to recruit a limited pool of Runx factors in early T progenitor cells, and a modest increase in Runx protein availability at pre-commitment stages causes premature Runx occupancy at post-commitment binding sites. This increased Runx factor availability results in striking T cell lineage developmental acceleration by selectively activating T cell-identity and innate lymphoid cell programs. These programs are collectively regulated by Runx together with other, Runx-induced transcription factors that co-occupy Runx-target genes and propagate gene network changes.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Wen Zhou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Program in Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA, USA
- BillionToOne, Menlo Park, CA, USA
| | - Jue Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Program in Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA, USA
| | - Fan Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Bioinformatics Resource Center, Beckman Institute of California Institute of Technology, Pasadena, CA, USA
- Lyterian Therapeutics, South San Francisco, CA, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
19
|
Terrell JR, Taylor SJ, Schneider AL, Lu Y, Vernon TN, Xhani S, Gumpper RH, Luo M, Wilson WD, Steidl U, Poon GMK. DNA selection by the master transcription factor PU.1. Cell Rep 2023; 42:112671. [PMID: 37352101 PMCID: PMC10479921 DOI: 10.1016/j.celrep.2023.112671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/07/2023] [Accepted: 06/02/2023] [Indexed: 06/25/2023] Open
Abstract
The master transcriptional regulator PU.1/Spi-1 engages DNA sites with affinities spanning multiple orders of magnitude. To elucidate this remarkable plasticity, we have characterized 22 high-resolution co-crystallographic PU.1/DNA complexes across the addressable affinity range in myeloid gene transactivation. Over a purine-rich core (such as 5'-GGAA-3') flanked by variable sequences, affinity is negotiated by direct readout on the 5' flank via a critical glutamine (Q226) sidechain and by indirect readout on the 3' flank by sequence-dependent helical flexibility. Direct readout by Q226 dynamically specifies PU.1's characteristic preference for purines and explains the pathogenic mutation Q226E in Waldenström macroglobulinemia. The structures also reveal how disruption of Q226 mediates strand-specific inhibition by DNA methylation and the recognition of non-canonical sites, including the authentic binding sequence at the CD11b promoter. A re-synthesis of phylogenetic and structural data on the ETS family, considering the centrality of Q226 in PU.1, unifies the model of DNA selection by ETS proteins.
Collapse
Affiliation(s)
- J Ross Terrell
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Samuel J Taylor
- Departments of Cell Biology, Oncology, and Medicine, Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Blood Cancer Institute, and the Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Amelia L Schneider
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Yue Lu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Tyler N Vernon
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Suela Xhani
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Ryan H Gumpper
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Ulrich Steidl
- Departments of Cell Biology, Oncology, and Medicine, Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Blood Cancer Institute, and the Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
20
|
Plant E, Bellefroid M, Van Lint C. A complex network of transcription factors and epigenetic regulators involved in bovine leukemia virus transcriptional regulation. Retrovirology 2023; 20:11. [PMID: 37268923 PMCID: PMC10236774 DOI: 10.1186/s12977-023-00623-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/09/2023] [Indexed: 06/04/2023] Open
Abstract
Bovine Leukemia Virus (BLV) is the etiological agent of enzootic bovine leukosis, a disease characterized by the neoplastic proliferation of B cells in cattle. While most European countries have introduced efficient eradication programs, BLV is still present worldwide and no treatment is available. A major feature of BLV infection is the viral latency, which enables the escape from the host immune system, the maintenance of a persistent infection and ultimately the tumoral development. BLV latency is a multifactorial phenomenon resulting in the silencing of viral genes due to genetic and epigenetic repressions of the viral promoter located in the 5' Long Terminal Repeat (5'LTR). However, viral miRNAs and antisense transcripts are expressed from two different proviral regions, respectively the miRNA cluster and the 3'LTR. These latter transcripts are expressed despite the viral latency affecting the 5'LTR and are increasingly considered to take part in tumoral development. In the present review, we provide a summary of the experimental evidence that has enabled to characterize the molecular mechanisms regulating each of the three BLV transcriptional units, either through cis-regulatory elements or through epigenetic modifications. Additionally, we describe the recently identified BLV miRNAs and antisense transcripts and their implications in BLV-induced tumorigenesis. Finally, we discuss the relevance of BLV as an experimental model for the closely related human T-lymphotropic virus HTLV-1.
Collapse
Affiliation(s)
- Estelle Plant
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Maxime Bellefroid
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium.
| |
Collapse
|
21
|
MacNabb BW, Rothenberg EV. Speed and navigation control of thymocyte development by the fetal T-cell gene regulatory network. Immunol Rev 2023; 315:171-196. [PMID: 36722494 PMCID: PMC10771342 DOI: 10.1111/imr.13190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
T-cell differentiation is a tightly regulated developmental program governed by interactions between transcription factors (TFs) and chromatin landscapes and affected by signals received from the thymic stroma. This process is marked by a series of checkpoints: T-lineage commitment, T-cell receptor (TCR)β selection, and positive and negative selection. Dynamically changing combinations of TFs drive differentiation along the T-lineage trajectory, through mechanisms that have been most extensively dissected in adult mouse T-lineage cells. However, fetal T-cell development differs from adult in ways that suggest that these TF mechanisms are not fully deterministic. The first wave of fetal T-cell differentiation occurs during a unique developmental window during thymic morphogenesis, shows more rapid kinetics of differentiation with fewer rounds of cell division, and gives rise to unique populations of innate lymphoid cells (ILCs) and invariant γδT cells that are not generated in the adult thymus. As the characteristic kinetics and progeny biases are cell-intrinsic properties of thymic progenitors, the differences could be based on distinct TF network circuitry within the progenitors themselves. Here, we review recent single-cell transcriptome data that illuminate the TF networks involved in T-cell differentiation in the fetal and adult mouse thymus.
Collapse
Affiliation(s)
- Brendan W MacNabb
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
22
|
Chambers C, Cermakova K, Chan YS, Kurtz K, Wohlan K, Lewis AH, Wang C, Pham A, Dejmek M, Sala M, Loeza Cabrera M, Aguilar R, Nencka R, Lacorazza HD, Rau RE, Hodges HC. SWI/SNF Blockade Disrupts PU.1-Directed Enhancer Programs in Normal Hematopoietic Cells and Acute Myeloid Leukemia. Cancer Res 2023; 83:983-996. [PMID: 36662812 PMCID: PMC10071820 DOI: 10.1158/0008-5472.can-22-2129] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/09/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
In acute myeloid leukemia (AML), SWI/SNF chromatin remodeling complexes sustain leukemic identity by driving high levels of MYC. Previous studies have implicated the hematopoietic transcription factor PU.1 (SPI1) as an important target of SWI/SNF inhibition, but PU.1 is widely regarded to have pioneer-like activity. As a result, many questions have remained regarding the interplay between PU.1 and SWI/SNF in AML as well as normal hematopoiesis. Here we found that PU.1 binds to most of its targets in a SWI/SNF-independent manner and recruits SWI/SNF to promote accessibility for other AML core regulatory factors, including RUNX1, LMO2, and MEIS1. SWI/SNF inhibition in AML cells reduced DNA accessibility and binding of these factors at PU.1 sites and redistributed PU.1 to promoters. Analysis of nontumor hematopoietic cells revealed that similar effects also impair PU.1-dependent B-cell and monocyte populations. Nevertheless, SWI/SNF inhibition induced profound therapeutic response in an immunocompetent AML mouse model as well as in primary human AML samples. In vivo, SWI/SNF inhibition promoted leukemic differentiation and reduced the leukemic stem cell burden in bone marrow but also induced leukopenia. These results reveal a variable therapeutic window for SWI/SNF blockade in AML and highlight important off-tumor effects of such therapies in immunocompetent settings. SIGNIFICANCE Disruption of PU.1-directed enhancer programs upon SWI/SNF inhibition causes differentiation of AML cells and induces leukopenia of PU.1-dependent B cells and monocytes, revealing the on- and off-tumor effects of SWI/SNF blockade.
Collapse
Affiliation(s)
- Courtney Chambers
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Katerina Cermakova
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Yuen San Chan
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Kristen Kurtz
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Katharina Wohlan
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
| | - Andrew Henry Lewis
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Christiana Wang
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Anh Pham
- Department of Bioengineering, Rice University, Houston, Texas
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Sala
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mario Loeza Cabrera
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Rogelio Aguilar
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - H. Daniel Lacorazza
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Rachel E. Rau
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
| | - H. Courtney Hodges
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Department of Bioengineering, Rice University, Houston, Texas
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
23
|
Zhao M, Feng D, Hu L, Liu L, Wu J, Hu Z, Long H, Kuang Q, Ouyang L, Lu Q. 3D genome alterations in T cells associated with disease activity of systemic lupus erythematosus. Ann Rheum Dis 2023; 82:226-234. [PMID: 36690410 PMCID: PMC9887402 DOI: 10.1136/ard-2022-222653] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/17/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Three-dimensional (3D) genome alterations can dysregulate gene expression by rewiring physical interactions within chromosomes in a tissue-specific or cell-specific manner and lead to diseases. We aimed to elucidate the 3D genome structure and its role in gene expression networks dysregulated in systemic lupus erythematosus (SLE). METHODS We performed Hi-C experiments using CD4+ T cells from 7 patients with SLE and 5 age-matched and sex-matched healthy controls (HCs) combined with RNA sequencing analysis. Further integrative analyses, including transcription factor motif enrichment, SPI1 knockdown and histone modifications (H3K27ac, H3K4me1, H3K4me3), were performed for altered loop-associated gene loci in SLE. RESULTS We deciphered the 3D chromosome organisation in T cells of patients with SLE and found it was clearly distinct from that of HCs and closely associated with the disease activity of SLE. Importantly, we identified loops within chromosomes associated with the disease activity of SLE and differentially expressed genes and found some key histone modifications close to these loops. Moreover, we demonstrated the contribution of the transcription factor SPI1, whose motif is located in the altered loop in SLE, to the overexpression of interferon pathway gene. In addition, we identified the potential influences of genetic variations in 3D genome alterations in SLE. CONCLUSIONS Our results highlight the 3D genome structure alterations associated with SLE development and provide a foundation for future interrogation of the relationships between chromosome structure and gene expression control in SLE.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Delong Feng
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Longyuan Hu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lin Liu
- Epigenetic Group, Frasergen Bioinformatics Co, Ltd, Wuhan, China
| | - Jiali Wu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhi Hu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haojun Long
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiqi Kuang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lianlian Ouyang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| |
Collapse
|
24
|
Shin B, Rothenberg EV. Multi-modular structure of the gene regulatory network for specification and commitment of murine T cells. Front Immunol 2023; 14:1108368. [PMID: 36817475 PMCID: PMC9928580 DOI: 10.3389/fimmu.2023.1108368] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
T cells develop from multipotent progenitors by a gradual process dependent on intrathymic Notch signaling and coupled with extensive proliferation. The stages leading them to T-cell lineage commitment are well characterized by single-cell and bulk RNA analyses of sorted populations and by direct measurements of precursor-product relationships. This process depends not only on Notch signaling but also on multiple transcription factors, some associated with stemness and multipotency, some with alternative lineages, and others associated with T-cell fate. These factors interact in opposing or semi-independent T cell gene regulatory network (GRN) subcircuits that are increasingly well defined. A newly comprehensive picture of this network has emerged. Importantly, because key factors in the GRN can bind to markedly different genomic sites at one stage than they do at other stages, the genes they significantly regulate are also stage-specific. Global transcriptome analyses of perturbations have revealed an underlying modular structure to the T-cell commitment GRN, separating decisions to lose "stem-ness" from decisions to block alternative fates. Finally, the updated network sheds light on the intimate relationship between the T-cell program, which depends on the thymus, and the innate lymphoid cell (ILC) program, which does not.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ellen V. Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
25
|
Bae S, Kim K, Kang K, Kim H, Lee M, Oh B, Kaneko K, Ma S, Choi JH, Kwak H, Lee EY, Park SH, Park-Min KH. RANKL-responsive epigenetic mechanism reprograms macrophages into bone-resorbing osteoclasts. Cell Mol Immunol 2023; 20:94-109. [PMID: 36513810 PMCID: PMC9794822 DOI: 10.1038/s41423-022-00959-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/03/2022] [Indexed: 12/15/2022] Open
Abstract
Monocyte/macrophage lineage cells are highly plastic and can differentiate into various cells under different environmental stimuli. Bone-resorbing osteoclasts are derived from the monocyte/macrophage lineage in response to receptor activator of NF-κB ligand (RANKL). However, the epigenetic signature contributing to the fate commitment of monocyte/macrophage lineage differentiation into human osteoclasts is largely unknown. In this study, we identified RANKL-responsive human osteoclast-specific superenhancers (SEs) and SE-associated enhancer RNAs (SE-eRNAs) by integrating data obtained from ChIP-seq, ATAC-seq, nuclear RNA-seq and PRO-seq analyses. RANKL induced the formation of 200 SEs, which are large clusters of enhancers, while suppressing 148 SEs in macrophages. RANKL-responsive SEs were strongly correlated with genes in the osteoclastogenic program and were selectively increased in human osteoclasts but marginally presented in osteoblasts, CD4+ T cells, and CD34+ cells. In addition to the major transcription factors identified in osteoclasts, we found that BATF binding motifs were highly enriched in RANKL-responsive SEs. The depletion of BATF1/3 inhibited RANKL-induced osteoclast differentiation. Furthermore, we found increased chromatin accessibility in SE regions, where RNA polymerase II was significantly recruited to induce the extragenic transcription of SE-eRNAs, in human osteoclasts. Knocking down SE-eRNAs in the vicinity of the NFATc1 gene diminished the expression of NFATc1, a major regulator of osteoclasts, and osteoclast differentiation. Inhibiting BET proteins suppressed the formation of some RANKL-responsive SEs and NFATc1-associated SEs, and the expression of SE-eRNA:NFATc1. Moreover, SE-eRNA:NFATc1 was highly expressed in the synovial macrophages of rheumatoid arthritis patients exhibiting high-osteoclastogenic potential. Our genome-wide analysis revealed RANKL-inducible SEs and SE-eRNAs as osteoclast-specific signatures, which may contribute to the development of osteoclast-specific therapeutic interventions.
Collapse
Affiliation(s)
- Seyeon Bae
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 10021, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Kibyeong Kim
- Department of Biological Science, Ulsan National Institute of Science & Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan, 3116, Republic of Korea
| | - Haemin Kim
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 10021, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Minjoon Lee
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Brian Oh
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Kaichi Kaneko
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Sungkook Ma
- Department of Biological Science, Ulsan National Institute of Science & Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jae Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, USA
| | - Eun Young Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | - Sung Ho Park
- Department of Biological Science, Ulsan National Institute of Science & Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 10021, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
- BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10021, USA.
| |
Collapse
|
26
|
Frederick MA, Williamson KE, Fernandez Garcia M, Ferretti MB, McCarthy RL, Donahue G, Luzete Monteiro E, Takenaka N, Reynaga J, Kadoch C, Zaret KS. A pioneer factor locally opens compacted chromatin to enable targeted ATP-dependent nucleosome remodeling. Nat Struct Mol Biol 2023; 30:31-37. [PMID: 36536103 PMCID: PMC10004348 DOI: 10.1038/s41594-022-00886-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
To determine how different pioneer transcription factors form a targeted, accessible nucleosome within compacted chromatin and collaborate with an ATP-dependent chromatin remodeler, we generated nucleosome arrays in vitro with a central nucleosome containing binding sites for the hematopoietic E-Twenty Six (ETS) factor PU.1 and Basic Leucine Zipper (bZIP) factors C/EBPα and C/EBPβ. Our long-read sequencing reveals that each factor can expose a targeted nucleosome on linker histone-compacted arrays, but with different nuclease sensitivity patterns. The DNA binding domain of PU.1 binds mononucleosomes, but requires an additional intrinsically disordered domain to bind and open compacted chromatin. The canonical mammalian SWI/SNF (cBAF) remodeler was unable to act upon two forms of locally open chromatin unless cBAF was enabled by a separate transactivation domain of PU.1. cBAF potentiates the PU.1 DNA binding domain to weakly open chromatin in the absence of the PU.1 disordered domain. Our findings reveal a hierarchy by which chromatin is opened and show that pioneer factors can provide specificity for action by nucleosome remodelers.
Collapse
Affiliation(s)
- Megan A Frederick
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kaylyn E Williamson
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Meilin Fernandez Garcia
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max B Ferretti
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan L McCarthy
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Greg Donahue
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edgar Luzete Monteiro
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Naomi Takenaka
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Janice Reynaga
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Kim ED, Dorrity MW, Fitzgerald BA, Seo H, Sepuru KM, Queitsch C, Mitsuda N, Han SK, Torii KU. Dynamic chromatin accessibility deploys heterotypic cis/trans-acting factors driving stomatal cell-fate commitment. NATURE PLANTS 2022; 8:1453-1466. [PMID: 36522450 PMCID: PMC9788986 DOI: 10.1038/s41477-022-01304-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/28/2022] [Indexed: 05/12/2023]
Abstract
Chromatin architecture and transcription factor (TF) binding underpin cell-fate specification during development, but their mutual regulatory relationships remain unclear. Here we report an atlas of dynamic chromatin landscapes during stomatal cell-lineage progression, in which sequential cell-state transitions are governed by lineage-specific bHLH TFs. Major reprogramming of chromatin accessibility occurs at the proliferation-to-differentiation transition. We discover novel co-cis regulatory elements (CREs) signifying the early precursor stage, BBR/BPC (GAGA) and bHLH (E-box) motifs, where master-regulatory bHLH TFs, SPEECHLESS and MUTE, consecutively bind to initiate and terminate the proliferative state, respectively. BPC TFs complex with MUTE to repress SPEECHLESS expression through a local deposition of repressive histone marks. We elucidate the mechanism by which cell-state-specific heterotypic TF complexes facilitate cell-fate commitment by recruiting chromatin modifiers via key co-CREs.
Collapse
Affiliation(s)
- Eun-Deok Kim
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Michael W Dorrity
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Bridget A Fitzgerald
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Hyemin Seo
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Krishna Mohan Sepuru
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Soon-Ki Han
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Keiko U Torii
- Howard Hughes Medical Institute, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan.
| |
Collapse
|
28
|
Shi H, Duan J, Wang J, Li H, Wu Z, Wang S, Wu X, Lu M. 1,25(OH) 2D 3 Promotes Macrophage Efferocytosis Partly by Upregulating ASAP2 Transcription via the VDR-Bound Enhancer Region and ASAP2 May Affect Antiviral Immunity. Nutrients 2022; 14:4935. [PMID: 36432619 PMCID: PMC9699620 DOI: 10.3390/nu14224935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The active form of vitamin D3, i.e., 1,25(OH)2D3, exerts an anti-inflammatory effect on the immune system, especially macrophage-mediated innate immunity. In a previous study, we identified 1,25(OH)2D3-responsive and vitamin D receptor (VDR)-bound super-enhancer regions in THP-1 cells. Herein, we examined the transcriptional regulation of ArfGAP with SH3 Domain, Ankyrin Repeat and PH Domain 2 (ASAP2) (encoding a GTPase-activating protein) by 1,25(OH)2D3 through the top-ranked VDR-bound super-enhancer region in the first intron of ASAP2 and potential functions of ASAP2 in macrophages. First, we validated the upregulation of ASAP2 by 1,25(OH)2D3 in both THP-1 cells and macrophages. Subsequently, we identified three regulatory regions (i.e., the core, 1,25(OH)2D3-responsive, and inhibitory regions) in the VDR bound-enhancer of ASAP2. ASAP2 promoted RAC1-activity and macrophage efferocytosis in vitro. Next, we assessed the functions of ASAP2 by mass spectrometry and RNA sequencing analyses. ASAP2 upregulated the expressions of antiviral-associated genes and interacted with SAM and HD domain-containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1). In vivo, vitamin D reduced the number of apoptotic cells in experimental autoimmune encephalomyelitis (EAE) and promoted macrophage efferocytosis in peritonitis without changing the mRNA level of ASAP2. Thus, we could better understand the regulatory mechanism underlying ASAP2 transcription and the function of ASAP2, which may serve as a potential treatment target against inflammatory diseases and virus infections.
Collapse
Affiliation(s)
- Hui Shi
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jiangling Duan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jiayu Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Haohao Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhiheng Wu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Shuaideng Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xueyan Wu
- Department of Human Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Ming Lu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
29
|
Koizumi M, Kama Y, Hirano KI, Endo Y, Tanaka T, Hozumi K, Hosokawa H. Transcription factor Zbtb1 interacts with bridging factor Lmo2 and maintains the T-lineage differentiation capacity of lymphoid progenitor cells. J Biol Chem 2022; 298:102506. [PMID: 36126774 PMCID: PMC9582733 DOI: 10.1016/j.jbc.2022.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022] Open
Abstract
Hematopoietic stem and progenitor cells can differentiate into all types of blood cells. Regulatory mechanisms underlying pluripotency in progenitors, such as the ability of lymphoid progenitor cells to differentiate into T-lineage, remain unclear. We have previously reported that LIM domain only 2 (Lmo2), a bridging factor in large transcriptional complexes, is essential to retain the ability of lymphoid progenitors to differentiate into T-lineage. However, biochemical characterization of Lmo2 protein complexes in physiological hematopoietic progenitors remains obscure. Here, we identified approximately 600 Lmo2-interacting molecules in a lymphoid progenitor cell line by two-step affinity purification with LC-MS/MS analysis. Zinc finger and BTB domain containing 1 (Zbtb1) and CBFA2/RUNX1 partner transcriptional corepressor 3 (Cbfa2t3) were found to be the functionally important binding partners of Lmo2. We determined CRISPR/Cas9-mediated acute disruption of Zbtb1 or Cbfa2t3 in the lymphoid progenitor or bone marrow–derived primary hematopoietic progenitor cells causes significant defects in the initiation of T-cell development when Notch signaling is activated. Our transcriptome analysis of Zbtb1- or Cbfa2t3-deficient lymphoid progenitors revealed that Tcf7 was a common target for both factors. Additionally, ChIP-seq analysis showed that Lmo2, Zbtb1, and Cbfa2t3 cobind to the Tcf7 upstream enhancer region, which is occupied by the Notch intracellular domain/RBPJ transcriptional complex after Notch stimulation, in lymphoid progenitors. Moreover, transduction with Tcf7 restored the defect in the T-lineage potential of Zbtb1-deficient lymphoid progenitors. Thus, in lymphoid progenitors, the Lmo2/Zbtb1/Cbfa2t3 complex directly binds to the Tcf7 locus and maintains responsiveness to the Notch-mediated inductive signaling to facilitate T-lineage differentiation.
Collapse
Affiliation(s)
- Maria Koizumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yuichi Kama
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Ken-Ichi Hirano
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yusuke Endo
- Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Chiba, Japan; Department of Omics Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan.
| |
Collapse
|
30
|
Aivalioti MM, Bartholdy BA, Pradhan K, Bhagat TD, Zintiridou A, Jeong JJ, Thiruthuvanathan VJ, Pujato M, Paranjpe A, Zhang C, Levine RL, Viny AD, Wickrema A, Verma A, Will B. PU.1-Dependent Enhancer Inhibition Separates Tet2-Deficient Hematopoiesis from Malignant Transformation. Blood Cancer Discov 2022; 3:444-467. [PMID: 35820129 PMCID: PMC9894728 DOI: 10.1158/2643-3230.bcd-21-0226] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/05/2022] [Accepted: 07/07/2022] [Indexed: 12/17/2022] Open
Abstract
Cytosine hypermethylation in and around DNA-binding sites of master transcription factors, including PU.1, occurs in aging hematopoietic stem cells following acquired loss-of-function mutations of DNA methyl-cytosine dioxygenase ten-eleven translocation-2 (TET2), albeit functional relevance has been unclear. We show that Tet2-deficient mouse hematopoietic stem and progenitor cells undergo malignant transformation upon compromised gene regulation through heterozygous deletion of an upstream regulatory region (UREΔ/WT) of the PU.1 gene. Although compatible with multilineage blood formation at young age, Tet2-deficient PU.1 UREΔ/WT mice develop highly penetrant, transplantable acute myeloid leukemia (AML) during aging. Leukemic stem and progenitor cells show hypermethylation at putative PU.1-binding sites, fail to activate myeloid enhancers, and are hallmarked by a signature of genes with impaired expression shared with human AML. Our study demonstrates that Tet2 and PU.1 jointly suppress leukemogenesis and uncovers a methylation-sensitive PU.1-dependent gene network as a unifying molecular vulnerability associated with AML. SIGNIFICANCE We identify moderately impaired PU.1 mRNA expression as a biological modality predisposing Tet2-deficient hematopoietic stem and progenitor cells to malignant transformation. Our study furthermore uncovers a methylation-sensitive PU.1 gene network as a common feature of myeloid leukemia potentially allowing for the identification of patients at risk for malignant transformation. See related commentary by Schleicher and Pietras, p. 378. This article is highlighted in the In This Issue feature, p. 369.
Collapse
Affiliation(s)
- Maria M Aivalioti
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Graduate Programs in the Biomedical Sciences, Albert Einstein College of Medicine, Bronx, New York
| | - Boris A Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Kith Pradhan
- Department of Medicine (Oncology), Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Tushar D Bhagat
- Department of Medicine (Oncology), Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Aliona Zintiridou
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Jong Jin Jeong
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Victor J Thiruthuvanathan
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Mario Pujato
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Aditi Paranjpe
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chi Zhang
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Ross L Levine
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aaron D Viny
- Department of Genetics and Development, Columbia University, New York, New York
| | - Amittha Wickrema
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Amit Verma
- Department of Medicine (Oncology), Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Department of Medicine (Oncology), Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| |
Collapse
|
31
|
Sierra-Pagan JE, Garry DJ. The regulatory role of pioneer factors during cardiovascular lineage specification – A mini review. Front Cardiovasc Med 2022; 9:972591. [PMID: 36082116 PMCID: PMC9445115 DOI: 10.3389/fcvm.2022.972591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
Cardiovascular disease (CVD) remains the number one cause of death worldwide. Ischemic heart disease contributes to heart failure and has considerable morbidity and mortality. Therefore, alternative therapeutic strategies are urgently needed. One class of epigenetic regulators known as pioneer factors has emerged as an important tool for the development of regenerative therapies for the treatment of CVD. Pioneer factors bind closed chromatin and remodel it to drive lineage specification. Here, we review pioneer factors within the cardiovascular lineage, particularly during development and reprogramming and highlight the implications this field of research has for the future development of cardiac specific regenerative therapies.
Collapse
Affiliation(s)
- Javier E. Sierra-Pagan
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Daniel J. Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Daniel J. Garry
| |
Collapse
|
32
|
Gregoricchio S, Polit L, Esposito M, Berthelet J, Delestré L, Evanno E, Diop M, Gallais I, Aleth H, Poplineau M, Zwart W, Rosenbauer F, Rodrigues-Lima F, Duprez E, Boeva V, Guillouf C. HDAC1 and PRC2 mediate combinatorial control in SPI1/PU.1-dependent gene repression in murine erythroleukaemia. Nucleic Acids Res 2022; 50:7938-7958. [PMID: 35871293 PMCID: PMC9371914 DOI: 10.1093/nar/gkac613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/18/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Although originally described as transcriptional activator, SPI1/PU.1, a major player in haematopoiesis whose alterations are associated with haematological malignancies, has the ability to repress transcription. Here, we investigated the mechanisms underlying gene repression in the erythroid lineage, in which SPI1 exerts an oncogenic function by blocking differentiation. We show that SPI1 represses genes by binding active enhancers that are located in intergenic or gene body regions. HDAC1 acts as a cooperative mediator of SPI1-induced transcriptional repression by deacetylating SPI1-bound enhancers in a subset of genes, including those involved in erythroid differentiation. Enhancer deacetylation impacts on promoter acetylation, chromatin accessibility and RNA pol II occupancy. In addition to the activities of HDAC1, polycomb repressive complex 2 (PRC2) reinforces gene repression by depositing H3K27me3 at promoter sequences when SPI1 is located at enhancer sequences. Moreover, our study identified a synergistic relationship between PRC2 and HDAC1 complexes in mediating the transcriptional repression activity of SPI1, ultimately inducing synergistic adverse effects on leukaemic cell survival. Our results highlight the importance of the mechanism underlying transcriptional repression in leukemic cells, involving complex functional connections between SPI1 and the epigenetic regulators PRC2 and HDAC1.
Collapse
Affiliation(s)
- Sebastian Gregoricchio
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute , Amsterdam , The Netherlands
| | - Lélia Polit
- CNRS UMR8104, Inserm U1016, Université Paris Cité, Cochin Institute , F-75014 Paris , France
| | - Michela Esposito
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | | | - Laure Delestré
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | - Emilie Evanno
- Curie Institute , Inserm U830, F- 75005 Paris, France
| | - M’Boyba Diop
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | | | - Hanna Aleth
- Institute of Molecular Tumor Biology, University of Münster , Münster, Germany
| | - Mathilde Poplineau
- CNRS UMR7258, Inserm U1068, Université Aix Marseille, Paoli-Calmettes Institute , CRCM, F-13009 Marseille , France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute , Amsterdam , The Netherlands
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, University of Münster , Münster, Germany
| | | | - Estelle Duprez
- CNRS UMR7258, Inserm U1068, Université Aix Marseille, Paoli-Calmettes Institute , CRCM, F-13009 Marseille , France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | - Valentina Boeva
- CNRS UMR8104, Inserm U1016, Université Paris Cité, Cochin Institute , F-75014 Paris , France
- Department of Computer Science and Department of Biology , ETH Zurich, 8092 Zurich , Switzerland
| | - Christel Guillouf
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| |
Collapse
|
33
|
Zhou W, Gao F, Romero-Wolf M, Jo S, Rothenberg EV. Single-cell deletion analyses show control of pro-T cell developmental speed and pathways by Tcf7, Spi1, Gata3, Bcl11a, Erg, and Bcl11b. Sci Immunol 2022; 7:eabm1920. [PMID: 35594339 PMCID: PMC9273332 DOI: 10.1126/sciimmunol.abm1920] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
As early T cell precursors transition from multipotentiality to T lineage commitment, they change expression of multiple transcription factors. It is unclear whether individual transcription factors directly control choices between T cell identity and some alternative fate or whether these factors mostly affect proliferation or survival during the normal commitment process. Here, we unraveled the impacts of deleting individual transcription factors at two stages in early T cell development, using synchronized in vitro differentiation systems, single-cell RNA-seq with batch indexing, and controlled gene-disruption strategies. First, using a customized method for single-cell CRISPR disruption, we defined how the early-acting transcription factors Bcl11a, Erg, Spi1 (PU.1), Gata3, and Tcf7 (TCF1) function before commitment. The results revealed a kinetic tug of war within individual cells between T cell factors Tcf7 and Gata3 and progenitor factors Spi1 and Bcl11a, with an unexpected guidance role for Erg. Second, we tested how activation of transcription factor Bcl11b during commitment altered ongoing cellular programs. In knockout cells where Bcl11b expression was prevented, the cells did not undergo developmental arrest, instead following an alternative path as T lineage commitment was blocked. A stepwise, time-dependent regulatory cascade began with immediate-early transcription factor activation and E protein inhibition, finally leading Bcl11b knockout cells toward exit from the T cell pathway. Last, gene regulatory networks of transcription factor cross-regulation were extracted from the single-cell transcriptome results, characterizing the specification network operating before T lineage commitment and revealing its links to both the Bcl11b knockout alternative network and the network consolidating T cell identity during commitment.
Collapse
Affiliation(s)
- Wen Zhou
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA
- Program in Biochemistry and Molecular Biophysics, California Institute of Technology
- Current address: BillionToOne, Menlo Park, CA
| | - Fan Gao
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA
- Caltech Bioinformatics Resource Center, Beckman Institute of Caltech
| | - Maile Romero-Wolf
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA
- Current address: Center for Stem Cell Biology and Regenerative Medicine, University of Southern California
| | - Suin Jo
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA
- Current address: Washington University of St. Louis
| | - Ellen V. Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| |
Collapse
|
34
|
Balsalobre A, Drouin J. Pioneer factors as master regulators of the epigenome and cell fate. Nat Rev Mol Cell Biol 2022; 23:449-464. [PMID: 35264768 DOI: 10.1038/s41580-022-00464-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/23/2022]
Abstract
Pioneer factors are transcription factors with the unique ability to initiate opening of closed chromatin. The stability of cell identity relies on robust mechanisms that maintain the epigenome and chromatin accessibility to transcription factors. Pioneer factors counter these mechanisms to implement new cell fates through binding of DNA target sites in closed chromatin and introduction of active-chromatin histone modifications, primarily at enhancers. As master regulators of enhancer activation, pioneers are thus crucial for the implementation of correct cell fate decisions in development, and as such, they hold tremendous potential for therapy through cellular reprogramming. The power of pioneer factors to reshape the epigenome also presents an Achilles heel, as their misexpression has major pathological consequences, such as in cancer. In this Review, we discuss the emerging mechanisms of pioneer factor functions and their roles in cell fate specification, cellular reprogramming and cancer.
Collapse
Affiliation(s)
- Aurelio Balsalobre
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montreal, QC, Canada
| | - Jacques Drouin
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montreal, QC, Canada.
| |
Collapse
|
35
|
Saini A, Ghoneim HE, Lio CWJ, Collins PL, Oltz EM. Gene Regulatory Circuits in Innate and Adaptive Immune Cells. Annu Rev Immunol 2022; 40:387-411. [PMID: 35119910 DOI: 10.1146/annurev-immunol-101320-025949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell identity and function largely rely on the programming of transcriptomes during development and differentiation. Signature gene expression programs are orchestrated by regulatory circuits consisting of cis-acting promoters and enhancers, which respond to a plethora of cues via the action of transcription factors. In turn, transcription factors direct epigenetic modifications to revise chromatin landscapes, and drive contacts between distal promoter-enhancer combinations. In immune cells, regulatory circuits for effector genes are especially complex and flexible, utilizing distinct sets of transcription factors and enhancers, depending on the cues each cell type receives during an infection, after sensing cellular damage, or upon encountering a tumor. Here, we review major players in the coordination of gene regulatory programs within innate and adaptive immune cells, as well as integrative omics approaches that can be leveraged to decipher their underlying circuitry. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ankita Saini
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Hazem E Ghoneim
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Chan-Wang Jerry Lio
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Patrick L Collins
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Eugene M Oltz
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| |
Collapse
|
36
|
Tong W, Zhang H. Overexpression of long non-coding RNA WT1-AS or silencing of PIK3AP1 are inhibitory to cervical cancer progression. Cell Cycle 2021; 20:2583-2596. [PMID: 34839795 DOI: 10.1080/15384101.2021.1991106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Accumulating evidence demonstrate that long non-coding RNAs (lncRNAs) play an important role in regulating the biological function of cervical cancer cells. However, the regulatory role of lncRNA Wilms tumor 1 homolog antisense RNA (WT1-AS) in cervical cancer cells remains uncertain. In this study, we explored the participation of WT1-AS in cervical cancer by first using the reverse transcription quantitative polymerase-chain reaction (RT-qPCR) was to analyze the expression of WT1-AS and phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1) in cervical cancer tissues and cells. Dual-luciferase reporter gene assay, RNA pull-down/RNA immunoprecipitation (RIP) assays and Chromatin Immunoprecipitation (ChIP) assay were conducted to explore the interactions among WT1-AS, PIK3AP1, and SPI1. Gain- and loss-of-function approaches were carried out to determine the effects of lncRNA WT1-AS, PIK3AP1 on cell biological characteristics, followed by assays of cell proliferation, autophagy, and apoptosis abilities using, respectively, EdU, monodansylcadaverine (MDC) staining, and flow cytometry. Finally, we measured growth of xenograft tumors in nude mice. We found decreased expression of lncRNA WT1-AS and increased expression of PIK3AP1 in cervical cancer samples. Moreover, PIK3AP1 was negatively regulated by WT1-AS, which promoted apoptosis, but inhibited cell proliferation and autophagy of cervical cancer cells. Furthermore, WT1-AS inhibited PIK3AP1 expression by recruiting SPI1, and inhibited the progression of cervical cancer through the SPI1/PIK3AP1 axis in vivo and in vitro. In summary, lncRNA WT1-AS repressed the development of cervical cancer by reducing PIK3AP1 expression through an interaction with SPI1, which may suggest new therapeutic approaches for treating cervical cancer.Abbreviations: HPV, human papillomavirus; lncRNAs, Long non-coding RNAs; WT1-AS, wilms tumor 1 antisense RNA; HCC, hepatocellular carcinoma; SFFV, Spleen focus forming virus; SPI1, Spleen focus forming virus proviral integration oncogene 1; TF, transcription factor; PIK3AP1, Phosphoinositide-3-kinase adaptor protein 1; NCBI, National Center for Biotechnology Information; oe, overexpressed; sh-PIK3AP1, short hairpin RNA against PIK3AP1; RIPA, radioimmunoprecipitation; PMSF, phenylmethylsulfonyl fluoride; HRP, horseradish peroxidase; IgG, immunoglobulin G; GAPDH, Glyceraldehyde-3-phosphate dehydrogenase; PCR, polymerase chain reaction; EP, Eppendorf; RIP, RNA-binding protein immunoprecipitation; CHIP, Chromatin immunoprecipitation; EdU, 5-ethynyl-2'-deoxyuridine; PI, propidium iodide; MDC, Monodansylcadaverine; PFA, paraformaldehyde; SPF, specific pathogen free; TV, tumor volume; DLG1-AS1, discs large MAGUK scaffold protein 1 antisense RNA 1; TOB1-AS1, transducer of epidermal growth factor receptor-2.1 antisense RNA 1; LC3II, light chain 3 type II; LC3I, light chain 3 type I; IRF4, interferon regulatory factor 4.
Collapse
Affiliation(s)
- Wenjuan Tong
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, P. R. China
| | - Huiming Zhang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, P. R. China
| |
Collapse
|
37
|
Hirano KI, Hosokawa H, Koizumi M, Endo Y, Yahata T, Ando K, Hozumi K. LMO2 is essential to maintain the ability of progenitors to differentiate into T-cell lineage in mice. eLife 2021; 10:e68227. [PMID: 34382935 PMCID: PMC8360648 DOI: 10.7554/elife.68227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/31/2021] [Indexed: 12/20/2022] Open
Abstract
Notch signaling primarily determines T-cell fate. However, the molecular mechanisms underlying the maintenance of T-lineage potential in pre-thymic progenitors remain unclear. Here, we established two murine Ebf1-deficient pro-B cell lines, with and without T-lineage potential. The latter expressed lower levels of Lmo2; their potential was restored via ectopic expression of Lmo2. Conversely, the CRISPR/Cas9-mediated deletion of Lmo2 resulted in the loss of the T-lineage potential. Introduction of Bcl2 rescued massive cell death of Notch-stimulated pro-B cells without efficient LMO2-driven Bcl11a expression but was not sufficient to retain their T-lineage potential. Pro-B cells without T-lineage potential failed to activate Tcf7 due to DNA methylation; Tcf7 transduction restored this capacity. Moreover, direct binding of LMO2 to the Bcl11a and Tcf7 loci was observed. Altogether, our results highlight LMO2 as a crucial player in the survival and maintenance of T-lineage potential in T-cell progenitors via the regulation of the expression of Bcl11a and Tcf7.
Collapse
Affiliation(s)
- Ken-ichi Hirano
- Department of Immunology, Tokai University School of MedicineIseharaJapan
| | - Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of MedicineIseharaJapan
- Institute of Medical Sciences, Tokai UniversityIseharaJapan
| | - Maria Koizumi
- Department of Immunology, Tokai University School of MedicineIseharaJapan
| | - Yusuke Endo
- Laboratory of Medical Omics Research, Kazusa DNA Research InstituteKisarazuJapan
- Department of Omics Medicine, Graduate School of Medicine, Chiba UniversityChibaJapan
| | - Takashi Yahata
- Institute of Medical Sciences, Tokai UniversityIseharaJapan
- Department of Innovative Medical Science, Tokai University School of MedicineIseharaJapan
| | - Kiyoshi Ando
- Institute of Medical Sciences, Tokai UniversityIseharaJapan
- Department of Hematology and Oncology, Tokai University School of MedicineIseharaJapan
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of MedicineIseharaJapan
| |
Collapse
|
38
|
Hosokawa H, Koizumi M, Masuhara K, Romero-Wolf M, Tanaka T, Nakayama T, Rothenberg EV. Stage-specific action of Runx1 and GATA3 controls silencing of PU.1 expression in mouse pro-T cells. J Exp Med 2021; 218:e20202648. [PMID: 34180951 PMCID: PMC8241539 DOI: 10.1084/jem.20202648] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/01/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022] Open
Abstract
PU.1 (encoded by Spi1), an ETS-family transcription factor with many hematopoietic roles, is highly expressed in the earliest intrathymic T cell progenitors but must be down-regulated during T lineage commitment. The transcription factors Runx1 and GATA3 have been implicated in this Spi1 repression, but the basis of the timing was unknown. We show that increasing Runx1 and/or GATA3 down-regulates Spi1 expression in pro-T cells, while deletion of these factors after Spi1 down-regulation reactivates its expression. Leveraging the stage specificities of repression and transcription factor binding revealed an unconventional but functional site in Spi1 intron 2. Acute Cas9-mediated deletion or disruption of the Runx and GATA motifs in this element reactivates silenced Spi1 expression in a pro-T cell line, substantially more than disruption of other candidate elements, and counteracts the repression of Spi1 in primary pro-T cells during commitment. Thus, Runx1 and GATA3 work stage specifically through an intronic silencing element in mouse Spi1 to control strength and maintenance of Spi1 repression during T lineage commitment.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Maria Koizumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kaori Masuhara
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Maile Romero-Wolf
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
39
|
Mapping the landscape of chromatin dynamics during naïve CD4+ T-cell activation. Sci Rep 2021; 11:14101. [PMID: 34238961 PMCID: PMC8266878 DOI: 10.1038/s41598-021-93509-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
T-cell activation induces context-specific gene expression programs that promote energy generation and biosynthesis, progression through the cell cycle and ultimately cell differentiation. The aim of this study was to apply the omni ATAC-seq method to characterize the landscape of chromatin changes induced by T-cell activation in mature naïve CD4+ T-cells. Using a well-established ex vivo protocol of canonical T-cell receptor signaling, we generated genome-wide chromatin maps of naïve T-cells from pediatric donors in quiescent or recently activated states. We identified thousands of individual chromatin accessibility peaks that are associated with T-cell activation, the majority of which were annotated intronic and intergenic enhancer regions. A core set of 3268 gene promoters underwent chromatin remodeling and concomitant changes in gene expression in response to activation, and were enriched in multiple pathways controlling cell cycle regulation, metabolism, inflammatory response genes and cell survival. Leukemia inhibitory factor (LIF) was among those factors that gained the highest accessibility and expression, in addition to IL2-STAT5 dependent chromatin remodeling in the T-cell activation response. Using publicly available data we found the chromatin response was far more dynamic at 24-h compared with 72-h post-activation. In total 546 associations were reproduced at both time-points with similar strength of evidence and directionality of effect. At the pathways level, the IL2-STAT5, KRAS signalling and UV response pathways were replicable at both time-points, although differentially modulated from 24 to 72 h post-activation.
Collapse
|
40
|
Runx1 and Runx3 drive progenitor to T-lineage transcriptome conversion in mouse T cell commitment via dynamic genomic site switching. Proc Natl Acad Sci U S A 2021; 118:2019655118. [PMID: 33479171 DOI: 10.1073/pnas.2019655118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Runt domain-related (Runx) transcription factors are essential for early T cell development in mice from uncommitted to committed stages. Single and double Runx knockouts via Cas9 show that target genes responding to Runx activity are not solely controlled by the dominant factor, Runx1. Instead, Runx1 and Runx3 are coexpressed in single cells; bind to highly overlapping genomic sites; and have redundant, collaborative functions regulating genes pivotal for T cell development. Despite stable combined expression levels across pro-T cell development, Runx1 and Runx3 preferentially activate and repress genes that change expression dynamically during lineage commitment, mostly activating T-lineage genes and repressing multipotent progenitor genes. Furthermore, most Runx target genes are sensitive to Runx perturbation only at one stage and often respond to Runx more for expression transitions than for maintenance. Contributing to this highly stage-dependent gene regulation function, Runx1 and Runx3 extensively shift their binding sites during commitment. Functionally distinct Runx occupancy sites associated with stage-specific activation or repression are also distinguished by different patterns of partner factor cobinding. Finally, Runx occupancies change coordinately at numerous clustered sites around positively or negatively regulated targets during commitment. This multisite binding behavior may contribute to a developmental "ratchet" mechanism making commitment irreversible.
Collapse
|
41
|
Chiara VD, Daxinger L, Staal FJT. The Route of Early T Cell Development: Crosstalk between Epigenetic and Transcription Factors. Cells 2021; 10:1074. [PMID: 33946533 PMCID: PMC8147249 DOI: 10.3390/cells10051074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic multipotent progenitors seed the thymus and then follow consecutive developmental stages until the formation of mature T cells. During this process, phenotypic changes of T cells entail stage-specific transcriptional programs that underlie the dynamic progression towards mature lymphocytes. Lineage-specific transcription factors are key drivers of T cell specification and act in conjunction with epigenetic regulators that have also been elucidated as crucial players in the establishment of regulatory networks necessary for proper T cell development. In this review, we summarize the activity of transcription factors and epigenetic regulators that together orchestrate the intricacies of early T cell development with a focus on regulation of T cell lineage commitment.
Collapse
Affiliation(s)
- Veronica Della Chiara
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
42
|
Rothenberg EV. Logic and lineage impacts on functional transcription factor deployment for T-cell fate commitment. Biophys J 2021; 120:4162-4181. [PMID: 33838137 PMCID: PMC8516641 DOI: 10.1016/j.bpj.2021.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022] Open
Abstract
Transcription factors are the major agents that read the regulatory sequence information in the genome to initiate changes in expression of specific genes, both in development and in physiological activation responses. Their actions depend on site-specific DNA binding and are largely guided by their individual DNA target sequence specificities. However, their action is far more conditional in a real developmental context than would be expected for simple reading of local genomic DNA sequence, which is common to all cells in the organism. They are constrained by slow-changing chromatin states and by interactions with other transcription factors, which affect their occupancy patterns of potential sites across the genome. These mechanisms lead to emergent discontinuities in function even for transcription factors with minimally changing expression. This is well revealed by diverse lineages of blood cells developing throughout life from hematopoietic stem cells, which use overlapping combinations of transcription factors to drive strongly divergent gene regulation programs. Here, using development of T lymphocytes from hematopoietic multipotent progenitor cells as a focus, recent evidence is reviewed on how binding specificity and dynamics, transcription factor cooperativity, and chromatin state changes impact the effective regulatory functions of key transcription factors including PU.1, Runx1, Notch-RBPJ, and Bcl11b.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.
| |
Collapse
|
43
|
Romero-Wolf M, Shin B, Zhou W, Koizumi M, Rothenberg EV, Hosokawa H. Notch2 complements Notch1 to mediate inductive signaling that initiates early T cell development. J Cell Biol 2021; 219:152003. [PMID: 32756905 PMCID: PMC7659720 DOI: 10.1083/jcb.202005093] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Notch signaling is the dominant intercellular signaling input during the earliest stages of T cell development in the thymus. Although Notch1 is known to be indispensable, we show that it does not mediate all Notch signaling in precommitment stages: Notch2 initially works in parallel to promote early murine T cell development and antagonize other fates. Notch-regulated target genes before and after T lineage commitment change dynamically, and we show that this partially reflects shifts in genome-wide DNA binding by RBPJ, the transcription factor activated by complex formation with the Notch intracellular domain. Although Notch signaling and transcription factor PU.1 can activate some common targets in precommitment T progenitors, Notch signaling and PU.1 activity have functionally antagonistic effects on multiple targets, delineating separation of pro-T cells from alternative PU.1-dependent fates. These results define a distinct mechanism of Notch signal response that distinguishes the initial stages of murine T cell development.
Collapse
Affiliation(s)
- Maile Romero-Wolf
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Boyoung Shin
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Wen Zhou
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Maria Koizumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Hiroyuki Hosokawa
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA.,Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
44
|
Rothenberg EV. Single-cell insights into the hematopoietic generation of T-lymphocyte precursors in mouse and human. Exp Hematol 2021; 95:1-12. [PMID: 33454362 PMCID: PMC8018899 DOI: 10.1016/j.exphem.2020.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/29/2023]
Abstract
T-Cell development is a major branch of lymphoid development and a key output of hematopoiesis, especially in early life, but the molecular requirements for T-cell potential have remained obscure. Considerable advances have now been made toward solving this problem through single-cell transcriptome studies, interfaced with in vitro differentiation assays that monitor potential efficiently at the single-cell level. This review focuses on a series of recent reports studying mouse and human early T-cell precursors, both in the developing fetus and in stringently purified postnatal samples of intrathymic and prethymic T-lineage precursors. Cross-comparison of results reveals a robustly conserved core program in mouse and human, but with some informative and provocative variations between species and between ontogenic states. Repeated findings are the multipotent progenitor regulatory signature of thymus-seeding cells and the proximity of the T-cell program to dendritic cell programs, especially to plasmacytoid dendritic cells in humans.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA.
| |
Collapse
|
45
|
Hosokawa H, Rothenberg EV. How transcription factors drive choice of the T cell fate. Nat Rev Immunol 2021; 21:162-176. [PMID: 32918063 PMCID: PMC7933071 DOI: 10.1038/s41577-020-00426-6] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2020] [Indexed: 12/21/2022]
Abstract
Recent evidence has elucidated how multipotent blood progenitors transform their identities in the thymus and undergo commitment to become T cells. Together with environmental signals, a core group of transcription factors have essential roles in this process by directly activating and repressing specific genes. Many of these transcription factors also function in later T cell development, but control different genes. Here, we review how these transcription factors work to change the activities of specific genomic loci during early intrathymic development to establish T cell lineage identity. We introduce the key regulators and highlight newly emergent insights into the rules that govern their actions. Whole-genome deep sequencing-based analysis has revealed unexpectedly rich relationships between inherited epigenetic states, transcription factor-DNA binding affinity thresholds and influences of given transcription factors on the activities of other factors in the same cells. Together, these mechanisms determine T cell identity and make the lineage choice irreversible.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
46
|
Hosokawa H, Masuhara K, Koizumi M. Transcription factors regulate early T cell development via redeployment of other factors: Functional dynamics of constitutively required factors in cell fate decisions. Bioessays 2021; 43:e2000345. [PMID: 33624856 DOI: 10.1002/bies.202000345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 01/02/2023]
Abstract
Establishment of cell lineage identity from multipotent progenitors is controlled by cooperative actions of lineage-specific and stably expressed transcription factors, combined with input from environmental signals. Lineage-specific master transcription factors activate and repress gene expression by recruiting consistently expressed transcription factors and chromatin modifiers to their target loci. Recent technical advances in genome-wide and multi-omics analysis have shed light on unexpected mechanisms that underlie more complicated actions of transcription factors in cell fate decisions. In this review, we discuss functional dynamics of stably expressed and continuously required factors, Notch and Runx family members, throughout developmental stages of early T cell development in the thymus. Pre- and post-commitment stage-specific transcription factors induce dynamic redeployment of Notch and Runx binding genomic regions. Thus, together with stage-specific transcription factors, shared transcription factors across distinct developmental stages regulate acquisition of T lineage identity.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan.,Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
| | - Kaori Masuhara
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Maria Koizumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
47
|
Olariu V, Yui MA, Krupinski P, Zhou W, Deichmann J, Andersson E, Rothenberg EV, Peterson C. Multi-scale Dynamical Modeling of T Cell Development from an Early Thymic Progenitor State to Lineage Commitment. Cell Rep 2021; 34:108622. [PMID: 33440162 DOI: 10.1016/j.celrep.2020.108622] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/24/2020] [Accepted: 12/18/2020] [Indexed: 01/13/2023] Open
Abstract
Intrathymic development of committed progenitor (pro)-T cells from multipotent hematopoietic precursors offers an opportunity to dissect the molecular circuitry establishing cell identity in response to environmental signals. This transition encompasses programmed shutoff of stem/progenitor genes, upregulation of T cell specification genes, proliferation, and ultimately commitment. To explain these features in light of reported cis-acting chromatin effects and experimental kinetic data, we develop a three-level dynamic model of commitment based upon regulation of the commitment-linked gene Bcl11b. The levels are (1) a core gene regulatory network (GRN) architecture from transcription factor (TF) perturbation data, (2) a stochastically controlled chromatin-state gate, and (3) a single-cell proliferation model validated by experimental clonal growth and commitment kinetic assays. Using RNA fluorescence in situ hybridization (FISH) measurements of genes encoding key TFs and measured bulk population dynamics, this single-cell model predicts state-switching kinetics validated by measured clonal proliferation and commitment times. The resulting multi-scale model provides a mechanistic framework for dissecting commitment dynamics.
Collapse
Affiliation(s)
- Victor Olariu
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - Mary A Yui
- Division of Biology and Biological Engineering, 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pawel Krupinski
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - Wen Zhou
- Division of Biology and Biological Engineering, 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Julia Deichmann
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - Emil Andersson
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Carsten Peterson
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden.
| |
Collapse
|
48
|
Wang Y, Zolotarev N, Yang CY, Rambold A, Mittler G, Grosschedl R. A Prion-like Domain in Transcription Factor EBF1 Promotes Phase Separation and Enables B Cell Programming of Progenitor Chromatin. Immunity 2020; 53:1151-1167.e6. [DOI: 10.1016/j.immuni.2020.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/14/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
|
49
|
Nie Y, Shu C, Sun X. Cooperative binding of transcription factors in the human genome. Genomics 2020; 112:3427-3434. [DOI: 10.1016/j.ygeno.2020.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 04/16/2020] [Accepted: 06/17/2020] [Indexed: 01/24/2023]
|
50
|
Erarslan-Uysal B, Kunz JB, Rausch T, Richter-Pechańska P, van Belzen IA, Frismantas V, Bornhauser B, Ordoñez-Rueada D, Paulsen M, Benes V, Stanulla M, Schrappe M, Cario G, Escherich G, Bakharevich K, Kirschner-Schwabe R, Eckert C, Loukanov T, Gorenflo M, Waszak SM, Bourquin JP, Muckenthaler MU, Korbel JO, Kulozik AE. Chromatin accessibility landscape of pediatric T-lymphoblastic leukemia and human T-cell precursors. EMBO Mol Med 2020; 12:e12104. [PMID: 32755029 PMCID: PMC7507092 DOI: 10.15252/emmm.202012104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 01/11/2023] Open
Abstract
We aimed at identifying the developmental stage at which leukemic cells of pediatric T-ALLs are arrested and at defining leukemogenic mechanisms based on ATAC-Seq. Chromatin accessibility maps of seven developmental stages of human healthy T cells revealed progressive chromatin condensation during T-cell maturation. Developmental stages were distinguished by 2,823 signature chromatin regions with 95% accuracy. Open chromatin surrounding SAE1 was identified to best distinguish thymic developmental stages suggesting a potential role of SUMOylation in T-cell development. Deconvolution using signature regions revealed that T-ALLs, including those with mature immunophenotypes, resemble the most immature populations, which was confirmed by TF-binding motif profiles. We integrated ATAC-Seq and RNA-Seq and found DAB1, a gene not related to leukemia previously, to be overexpressed, abnormally spliced and hyper-accessible in T-ALLs. DAB1-negative patients formed a distinct subgroup with particularly immature chromatin profiles and hyper-accessible binding sites for SPI1 (PU.1), a TF crucial for normal T-cell maturation. In conclusion, our analyses of chromatin accessibility and TF-binding motifs showed that pediatric T-ALL cells are most similar to immature thymic precursors, indicating an early developmental arrest.
Collapse
Affiliation(s)
- Büşra Erarslan-Uysal
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Joachim B Kunz
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Tobias Rausch
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Paulina Richter-Pechańska
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Ianthe Aem van Belzen
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Viktoras Frismantas
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Beat Bornhauser
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Diana Ordoñez-Rueada
- Flow Cytometry Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Malte Paulsen
- Flow Cytometry Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gunnar Cario
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gabriele Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kseniya Bakharevich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renate Kirschner-Schwabe
- Department of Pediatric Oncology/Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tsvetomir Loukanov
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Matthias Gorenflo
- Department of Pediatric Cardiology and Congenital Heart Diseases, University of Heidelberg, Heidelberg, Germany
| | - Sebastian M Waszak
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jean-Pierre Bourquin
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jan O Korbel
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|