1
|
Clarke A, Høye E, Hembrom A, Paynter V, Vinther J, Wyrożemski Ł, Biryukova I, Formaggioni A, Ovchinnikov V, Herlyn H, Pierce A, Wu C, Aslanzadeh M, Cheneby J, Martinez P, Friedländer M, Hovig E, Hackenberg M, Umu SU, Johansen M, Peterson K, Fromm B. MirGeneDB 3.0: improved taxonomic sampling, uniform nomenclature of novel conserved microRNA families and updated covariance models. Nucleic Acids Res 2025; 53:D116-D128. [PMID: 39673268 PMCID: PMC11701709 DOI: 10.1093/nar/gkae1094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 12/16/2024] Open
Abstract
We present a major update of MirGeneDB (3.0), the manually curated animal microRNA gene database. Beyond moving to a new server and the creation of a computational mirror, we have expanded the database with the addition of 33 invertebrate species, including representatives of 5 previously unsampled phyla, and 6 mammal species. MirGeneDB now contains entries for 21 822 microRNA genes (5160 of these from the new species) belonging to 1743 microRNA families. The inclusion of these new species allowed us to refine both the evolutionary node of appearance of a number of microRNA genes/families, as well as MirGeneDB's phylogenetically informed nomenclature system. Updated covariance models of all microRNA families, along with all smallRNA read data are now downloadable. These enhanced annotations will allow researchers to analyze microRNA properties such as secondary structure and features of their biogenesis within a robust phylogenetic context and without the database plagued with numerous false positives and false negatives. In light of these improvements, MirGeneDB 3.0 will assume the responsibility for naming conserved novel metazoan microRNAs. MirGeneDB is part of RNAcentral and Elixir Norway and is publicly and freely available at mirgenedb.org.
Collapse
Affiliation(s)
- Alexander W Clarke
- Department of Biological Sciences, 321 Life Sciences Center, Dartmouth College, 78 College St., Hanover, NH 03755, USA
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Lars Thørings veg 10, 9006 Tromsø, Norway
| | - Eirik Høye
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Anju Angelina Hembrom
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Lars Thørings veg 10, 9006 Tromsø, Norway
| | - Vanessa Molin Paynter
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Lars Thørings veg 10, 9006 Tromsø, Norway
| | - Jakob Vinther
- School of Earth Sciences & School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, BS5 8EH, Bristol, UK
| | - Łukasz Wyrożemski
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Lars Thørings veg 10, 9006 Tromsø, Norway
| | - Inna Biryukova
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691,Stockholm, Sweden
| | - Alessandro Formaggioni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Vladimir Ovchinnikov
- Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Holger Herlyn
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Ackermannweg 4, 55128 Mainz, Germany
| | - Alexandra Pierce
- Department of Biological Sciences, 321 Life Sciences Center, Dartmouth College, 78 College St., Hanover, NH 03755, USA
| | - Charles Wu
- Valley Stream North High School, 750 Herman Ave, Franklin Square, NY 11010, USA
| | - Morteza Aslanzadeh
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691,Stockholm, Sweden
| | - Jeanne Cheneby
- Center for Bioinformatics, Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal, 643; 08028-Barcelona, Spain
- ICREA (Institut Català de Recerca i Estudis Avancats), Passeig Lluis Companys 23; 08010-Barcelona, Spain
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691,Stockholm, Sweden
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Ullernchausseen 70, 0379 Oslo, Norway
| | - Michael Hackenberg
- Department of Genetics, Faculty of Sciences, University of Granada, Avenida de la Fuente Nueva S/N, C.P. 18071 Granada, Spain
- Bioinformatics Laboratory, Biotechnology Institute & Biomedical Research Centre (CIBM), Avenida del Conocimiento 19 Granada, 18100, Spain
| | - Sinan Uğur Umu
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Morten Johansen
- Center for Bioinformatics, Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
| | - Kevin J Peterson
- Department of Biological Sciences, 321 Life Sciences Center, Dartmouth College, 78 College St., Hanover, NH 03755, USA
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Lars Thørings veg 10, 9006 Tromsø, Norway
| |
Collapse
|
2
|
Datar M, Bansal V, Samant P, Nishi K, Balasinor NH. Methylation Status at DMRs of C14MC and C19MC in Spermatozoa and Chorionic Villi of Individuals Experiencing Recurrent Spontaneous Abortions. Reprod Sci 2025; 32:150-157. [PMID: 39578336 DOI: 10.1007/s43032-024-01737-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 10/26/2024] [Indexed: 11/24/2024]
Abstract
Recurrent spontaneous abortions (RSA) is defined as a loss of two or more consecutive clinically recognized pregnancies before the 20th week of gestation. In RSA, several causative maternal factors are known, but still, 50% of the cases remain unexplained. Evidence suggests that paternal factors are also equally important. Epigenetic phenomenon such as genomic imprinting and regulation of gene expression by miRNAs plays an important role in embryonic and placental development. Two large miRNA clusters, C14MC (Chromosome 14 microRNA cluster) and C19MC (Chromosome 19 microRNA cluster) are imprinted and expressed in the placenta during pregnancy and are known to regulate functionally important processes such as the trophoblast proliferation, adhesion, and migration. Hence, we studied the DNA methylation at the Differentially Methylated Regions (DMRs) of these clusters in spermatozoa and chorionic villi by pyrosequencing. In Spermatozoa, few Cytosine followed by Guanosine (CpG) sites at DMRs of C14MC and C19MC showed significant hypermethylation. In Chorionic villi, CpG sites showed significant hypomethylation in the RSA group as compared to control group. Semen parameters like sperm concentration, sperm motility, morphology, and chromatin compaction were comparable in control and RSA groups. The study suggests aberrant DNA methylation in spermatozoa and chorionic villi at DMRs of both miRNA coding clusters to be associated with RSA.
Collapse
Affiliation(s)
- Mamata Datar
- Neuroendocrinology Department, Indian Council of Medical Research-National Institute for Research in Reproductive Health, J. M. Street, Parel, Mumbai, 40012, India
| | - Vandana Bansal
- Department of Obstetrics and Gynecology, Nowrosjee Wadia Maternity Hospital, Mumbai, India
| | - Padmaja Samant
- Department of Obstetrics and Gynecology, Seth G. S. Medical College & King Edward Memorial Hospital (KEM), Mumbai, India
| | - Kumari Nishi
- Neuroendocrinology Department, Indian Council of Medical Research-National Institute for Research in Reproductive Health, J. M. Street, Parel, Mumbai, 40012, India.
| | - Nafisa H Balasinor
- Neuroendocrinology Department, Indian Council of Medical Research-National Institute for Research in Reproductive Health, J. M. Street, Parel, Mumbai, 40012, India.
| |
Collapse
|
3
|
Zhang D, Yin L, Lin Z, Yu C, Li J, Ren P, Yang C, Qiu M, Liu Y. miR-136-5p/FZD4 axis is critical for Wnt signaling-mediated myogenesis and skeletal muscle regeneration. J Cell Physiol 2024; 239:e31046. [PMID: 37218742 DOI: 10.1002/jcp.31046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Skeletal muscle can undergo a regenerative process in response to injury or disease to maintain muscle quality and function. Myogenesis depends on the proliferation and differentiation of myoblasts, and miRNAs can maintain the balance between them by precisely regulating many key factors in the myogenic network. Here, we found that miR-136-5p was significantly upregulated during the proliferation and differentiation of C2C12 cells. We demonstrate that miR-136-5p acts as a myogenic negative regulator during the development of mouse C2C12 myoblasts. In terms of mechanism, miR-136-5p inhibits the formation of β-catenin/LEF/TCF DNA-binding factor transcriptional regulatory complex by targeting FZD4, a gating protein in the Wnt signaling pathway, thereby enhancing downstream myogenic factors and finally promoting myoblast proliferation and differentiation. In addition, in BaCl2-induced muscle injury mouse model, miR-136-5p knockdown accelerated the regeneration of skeletal muscle after injury, and further led to the improvement of gastrocnemius muscle mass and muscle fiber diameter, while being suppressed by shFZD4 lentivirus infection. In summary, these results demonstrate the essential role of miR-136-5p/FZD4 axis in skeletal muscle regeneration. Given the conservation of miR-136-5p among species, miR-136-5p may be a new target for treating human skeletal muscle injury and improving the production of animal meat products.
Collapse
Affiliation(s)
- Donghao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lingqian Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhongzhen Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chunlin Yu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Jingjing Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Peng Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Mohan Qiu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Huan T, Joehanes R, Rong J, Chen MH, Mustafa R, Dehghan A, Ghanbari M, Karlin H, Hwang SJ, Courchesne P, Larson MG, Johnson AD, Freedman JE, Levy D. Expression quantitative trait locus mapping of extracellular microRNAs in human plasma. iScience 2024; 27:110988. [PMID: 39398240 PMCID: PMC11471191 DOI: 10.1016/j.isci.2024.110988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/03/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
MicroRNAs, crucial in regulating protein-coding gene expression, are implicated in various diseases. We performed a genome-wide association study of plasma miRNAs (ex-miRNAs) in 3,743 Framingham Heart Study (FHS) participants and identified 1,027 cis-ex-miRNA-eQTLs (cis-exQTLs) for 37 ex-miRNAs, with 55% replication in an independent study. Colocalization analyses suggested potential genetic coregulation of ex-miRNAs with whole blood mRNAs. Mendelian randomization indicated 29 ex-miRNAs potentially influencing 35 traits. Notably, the chromosome 14q23 and 14q32 miRNA clusters emerged as the top signal, contributing over 50% of the significant cis-exQTL results, and were associated with a diverse range of traits including platelet count. Correlations of 10 ex-miRNAs (such as miR-376c-3p) in 14q32 with platelet count and volume were confirmed in FHS participants. These findings shed light on the genetic basis of ex-miRNA expression and their involvement in complex traits.
Collapse
Affiliation(s)
- Tianxiao Huan
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA 01702, USA
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD 20824, USA
| | - Roby Joehanes
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA 01702, USA
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD 20824, USA
| | - Jian Rong
- Department of Mathematics and Statistics, Boston University, Boston, MA 02118, USA
| | - Ming-Huei Chen
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA 01702, USA
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD 20824, USA
| | - Rima Mustafa
- Department of Epidemiology and Biostatistics, Imperial College London, London SW7 2AZ, UK
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, Imperial College London, London SW7 2AZ, UK
- MRC Centre for Environment and Health, Imperial College London, London SW7 2AZ, UK
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Hannah Karlin
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA 01702, USA
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD 20824, USA
| | - Shih-Jen Hwang
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA 01702, USA
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD 20824, USA
| | - Paul Courchesne
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA 01702, USA
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD 20824, USA
| | - Martin G. Larson
- Department of Mathematics and Statistics, Boston University, Boston, MA 02118, USA
| | - Andrew D. Johnson
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA 01702, USA
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD 20824, USA
| | - Jane E. Freedman
- School of Medicine, Vanderbilt University, 1161 21st Avenue S, Nashville, TN 37232, USA
| | - Daniel Levy
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA 01702, USA
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD 20824, USA
| |
Collapse
|
5
|
Kato M, Abdollahi M, Omori K, Malek V, Lanting L, Kandeel F, Rawson J, Tsark W, Zhang L, Wang M, Tunduguru R, Natarajan R. Lowering an ER stress-regulated long noncoding RNA protects mice from diabetes and isolated pancreatic islets from cell death. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102252. [PMID: 39071954 PMCID: PMC11278341 DOI: 10.1016/j.omtn.2024.102252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024]
Abstract
We investigated the role of the endoplasmic reticulum (ER) stress-regulated long noncoding RNA (lncRNA) lncMGC in pancreatic islets and the pathology of type 1 diabetes (T1D), as well as the potential of lncMGC-based therapeutics. In vivo, blood glucose levels (BGLs) and HbA1c were significantly lower in lncMGC-knockout (KO)-streptozotocin (STZ)-treated diabetic mice compared to wild-type STZ. Antisense oligonucleotides (GapmeR) targeting lncMGC significantly attenuated insulitis and BGLs in T1D NOD mice compared to GapmeR-negative control (NC). GapmeR-injected T1D Akita mice showed significantly lower BGLs compared to Akita-NC mice. hlncMGC-GapmeR lowered BGLs in partially humanized lncMGC (hlncMGC)-STZ mice compared to NC-injected mice. CHOP (ER stress regulating transcription factor) and lncMGC were upregulated in islets from diabetic mice but not in lncMGC-KO and GapmeR-injected diabetic mice, suggesting ER stress involvement. In vitro, hlncMGC-GapmeR increased the viability of isolated islets from human donors and hlncMGC mice and protected them from cytokine-induced apoptosis. Anti-ER stress and anti-apoptotic genes were upregulated, but pro-apoptotic genes were down-regulated in lncMGC KO mice islets and GapmeR-treated human islets. Taken together, these results show that a GapmeR-targeting lncMGC is effective in ameliorating diabetes in mice and also preserves human and mouse islet viability, implicating clinical translation potential.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Maryam Abdollahi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Keiko Omori
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Vajir Malek
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Linda Lanting
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Jeffrey Rawson
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Walter Tsark
- Transgenic Mouse Facility, Center for Comparative Medicine, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Lingxiao Zhang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Mei Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Ragadeepthi Tunduguru
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
6
|
Ware AP, Satyamoorthy K, Paul B. CmirC update 2024: a multi-omics database for clustered miRNAs. Funct Integr Genomics 2024; 24:133. [PMID: 39085735 PMCID: PMC11291601 DOI: 10.1007/s10142-024-01410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Clustered miRNAs consist of two or more miRNAs transcribed together and may coordinately regulate gene expression. Differential expression of clustered miRNAs is found to be controlled by crosstalk of genetic or epigenetic mechanisms. It has been demonstrated that clustered miRNA expression patterns greatly impact cancer cell progression. With the CmirC initiative, we initially developed a comprehensive database to identify copy number variation (CNV) driven clustered miRNAs in cancer. Now, we extended the analysis and identified three miRNAs, mir-96, mir-183, and mir-21, were found to be significantly upregulated in 17 cancer types. Further, CmirC is now upgraded to determine the impact of changes in the DNA methylation status at clustered miRNAs by utilizing The Cancer Genomic Atlas (TCGA) cancer datasets. We examined specific methylation datasets from 9,639 samples, pinpointing 215,435 methylation sites and 27,949 CpG islands with miRNA cluster information. The integrated analysis identified 34 clusters exhibiting differentially methylated CpG sites across 14 cancer types. Furthermore, we determined that CpG islands in the promoter region of 20 miRNA clusters could play a regulatory role. Along with ensuring a straightforward and convenient user experience, CmirC has been updated with improved data browsing and analysis functionalities, as well as enabled hyperlinks to literature and miR-cancer databases. The enhanced version of CmirC is anticipated to play an important role in providing information on the regulation of clustered miRNA expression, and their targeted oncogenes and tumor suppressors. The newly updated version of CmirC is available at https://slsdb.manipal.edu/cmirclust/ .
Collapse
Affiliation(s)
- Akshay Pramod Ware
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Institute of Cardiovascular Regeneration, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, Frankfurt Am Main, 60590, Germany
| | - Kapaettu Satyamoorthy
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, Karnataka, 580009, India
| | - Bobby Paul
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
7
|
Narayanan R, Levone BR, Winterer J, Nanda P, Müller A, Lobriglio T, Fiore R, Germain PL, Mihailovich M, Testa G, Schratt G. miRNA-mediated inhibition of an actomyosin network in hippocampal pyramidal neurons restricts sociability in adult male mice. Cell Rep 2024; 43:114429. [PMID: 38968074 DOI: 10.1016/j.celrep.2024.114429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/07/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024] Open
Abstract
Social deficits are frequently observed in patients suffering from neurodevelopmental disorders, but the molecular mechanisms regulating sociability are still poorly understood. We recently reported that the loss of the microRNA (miRNA) cluster miR-379-410 leads to hypersocial behavior and anxiety in mice. Here, we show that ablating miR-379-410 in excitatory neurons of the postnatal mouse hippocampus recapitulates hypersociability, but not anxiety. At the cellular level, miR-379-410 loss in excitatory neurons leads to larger dendritic spines, increased excitatory synaptic transmission, and upregulation of an actomyosin gene network. Re-expression of three cluster miRNAs, as well as pharmacological inhibition of the actomyosin activator ROCK, is sufficient to reinstate normal sociability in miR-379-410 knockout mice. Several actomyosin genes and miR-379-410 family members are reciprocally dysregulated in isogenic human induced pluripotent stem cell (iPSC)-derived neurons harboring a deletion present in patients with Williams-Beuren syndrome, characterized by hypersocial behavior. Together, our results show an miRNA-actomyosin pathway involved in social behavior regulation.
Collapse
Affiliation(s)
- Ramanathan Narayanan
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH-Zürich, Zürich, Switzerland
| | - Brunno Rocha Levone
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH-Zürich, Zürich, Switzerland
| | - Jochen Winterer
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH-Zürich, Zürich, Switzerland
| | - Prakruti Nanda
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH-Zürich, Zürich, Switzerland
| | - Alexander Müller
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH-Zürich, Zürich, Switzerland
| | - Thomas Lobriglio
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH-Zürich, Zürich, Switzerland
| | - Roberto Fiore
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH-Zürich, Zürich, Switzerland
| | - Pierre-Luc Germain
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH-Zürich, Zürich, Switzerland; Laboratory of Molecular and Behavioural Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH-Zürich, Zürich, Switzerland; Laboratory of Statistical Bioinformatics, IMLS, University of Zürich, Zürich, Switzerland
| | - Marija Mihailovich
- European Institute of Oncology (IEO) IRCCS, Milan, Italy; Human Technopole, Milan, Italy
| | - Giuseppe Testa
- European Institute of Oncology (IEO) IRCCS, Milan, Italy; Human Technopole, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Gerhard Schratt
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH-Zürich, Zürich, Switzerland.
| |
Collapse
|
8
|
Baena N, Monk D, Aguilera C, Fraga MF, Fernández AF, Gabau E, Corripio R, Capdevila N, Trujillo JP, Ruiz A, Guitart M. Novel 14q32.2 paternal deletion encompassing the whole DLK1 gene associated with Temple syndrome. Clin Epigenetics 2024; 16:62. [PMID: 38715103 PMCID: PMC11077747 DOI: 10.1186/s13148-024-01652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/05/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Temple syndrome (TS14) is a rare imprinting disorder caused by maternal UPD14, imprinting defects or paternal microdeletions which lead to an increase in the maternal expressed genes and a silencing the paternally expressed genes in the 14q32 imprinted domain. Classical TS14 phenotypic features include pre- and postnatal short stature, small hands and feet, muscular hypotonia, motor delay, feeding difficulties, weight gain, premature puberty along and precocious puberty. METHODS An exon array comparative genomic hybridization was performed on a patient affected by psychomotor and language delay, muscular hypotonia, relative macrocephaly, and small hand and feet at two years old. At 6 years of age, the proband presented with precocious thelarche. Genes dosage and methylation within the 14q32 region were analyzed by MS-MLPA. Bisulfite PCR and pyrosequencing were employed to quantification methylation at the four known imprinted differentially methylated regions (DMR) within the 14q32 domain: DLK1 DMR, IG-DMR, MEG3 DMR and MEG8 DMR. RESULTS The patient had inherited a 69 Kb deletion, encompassing the entire DLK1 gene, on the paternal allele. Relative hypermethylation of the two maternally methylated intervals, DLK1 and MEG8 DMRs, was observed along with normal methylation level at IG-DMR and MEG3 DMR, resulting in a phenotype consistent with TS14. Additional family members with the deletion showed modest methylation changes at both the DLK1 and MEG8 DMRs consistent with parental transmission. CONCLUSION We describe a girl with clinical presentation suggestive of Temple syndrome resulting from a small paternal 14q32 deletion that led to DLK1 whole-gene deletion, as well as hypermethylation of the maternally methylated DLK1-DMR.
Collapse
Affiliation(s)
- Neus Baena
- Genetics Laboratory, Centre de Medicina Genòmica, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.
| | - David Monk
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Cinthia Aguilera
- Genetics Laboratory, Centre de Medicina Genòmica, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Mario F Fraga
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain
- Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Agustín F Fernández
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain
- Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Elisabeth Gabau
- Genetics Laboratory, Centre de Medicina Genòmica, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Raquel Corripio
- Paediatric Endocrinology Department, Parc Tauli Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Nuria Capdevila
- Genetics Laboratory, Centre de Medicina Genòmica, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Juan Pablo Trujillo
- Genetics Laboratory, Centre de Medicina Genòmica, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Anna Ruiz
- Genetics Laboratory, Centre de Medicina Genòmica, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Miriam Guitart
- Genetics Laboratory, Centre de Medicina Genòmica, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| |
Collapse
|
9
|
Yu Y, Su Y, Wang G, Lan M, Liu J, Garcia Martin R, Brandao BB, Lino M, Li L, Liu C, Kahn CR, Meng Q. Reciprocal communication between FAPs and muscle cells via distinct extracellular vesicle miRNAs in muscle regeneration. Proc Natl Acad Sci U S A 2024; 121:e2316544121. [PMID: 38442155 PMCID: PMC10945765 DOI: 10.1073/pnas.2316544121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Muscle regeneration is a complex process relying on precise teamwork between multiple cell types, including muscle stem cells (MuSCs) and fibroadipogenic progenitors (FAPs). FAPs are also the main source of intramuscular adipose tissue (IMAT). Muscles without FAPs exhibit decreased IMAT infiltration but also deficient muscle regeneration, indicating the importance of FAPs in the repair process. Here, we demonstrate the presence of bidirectional crosstalk between FAPs and MuSCs via their secretion of extracellular vesicles (EVs) containing distinct clusters of miRNAs that is crucial for normal muscle regeneration. Thus, after acute muscle injury, there is activation of FAPs leading to a transient rise in IMAT. These FAPs also release EVs enriched with a selected group of miRNAs, a number of which come from an imprinted region on chromosome 12. The most abundant of these is miR-127-3p, which targets the sphingosine-1-phosphate receptor S1pr3 and activates myogenesis. Indeed, intramuscular injection of EVs from immortalized FAPs speeds regeneration of injured muscle. In late stages of muscle repair, in a feedback loop, MuSCs and their derived myoblasts/myotubes secrete EVs enriched in miR-206-3p and miR-27a/b-3p. The miRNAs repress FAP adipogenesis, allowing full muscle regeneration. Together, the reciprocal communication between FAPs and muscle cells via miRNAs in their secreted EVs plays a critical role in limiting IMAT infiltration while stimulating muscle regeneration, hence providing an important mechanism for skeletal muscle repair and homeostasis.
Collapse
Affiliation(s)
- Yingying Yu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, Department of Genetics and Molecular biology, China Agricultural University, Beijing100193, China
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
| | - Yang Su
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, Department of Genetics and Molecular biology, China Agricultural University, Beijing100193, China
- Department of Cell Biology, Third Military Medical University, Chongqing400038, China
| | - Guoxiao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
| | - Miaomiao Lan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, Department of Genetics and Molecular biology, China Agricultural University, Beijing100193, China
| | - Jin Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, Department of Genetics and Molecular biology, China Agricultural University, Beijing100193, China
| | - Ruben Garcia Martin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
| | - Bruna Brasil Brandao
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
| | - Marsel Lino
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
| | - Lei Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, Department of Genetics and Molecular biology, China Agricultural University, Beijing100193, China
| | - Chang Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, Department of Genetics and Molecular biology, China Agricultural University, Beijing100193, China
| | - C. Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
| | - Qingyong Meng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, Department of Genetics and Molecular biology, China Agricultural University, Beijing100193, China
| |
Collapse
|
10
|
Zaki MB, Abulsoud AI, Ashraf A, Abdelmaksoud NM, Sallam AAM, Aly SH, Sa'eed El-Tokhy F, Rashad AA, El-Dakroury WA, Abdel Mageed SS, Nomier Y, Elrebehy MA, Elshaer SS, Elballal MS, Mohammed OA, Abdel-Reheim MA, Doghish AS. The potential role of miRNAs in the pathogenesis of schizophrenia - A focus on signaling pathways interplay. Pathol Res Pract 2024; 254:155102. [PMID: 38211386 DOI: 10.1016/j.prp.2024.155102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
microRNAs (miRNAs) play a crucial role in brain growth and function. Hence, research on miRNA has the potential to reveal much about the etiology of neuropsychiatric diseases. Among these, schizophrenia (SZ) is a highly intricate and destructive neuropsychiatric ailment that has been thoroughly researched in the field of miRNA. Despite being a relatively recent area of study about miRNAs and SZ, this discipline has advanced enough to justify numerous reviews that summarize the findings from the past to the present. However, most reviews cannot cover all research, thus it is necessary to synthesize the large range of publications on this topic systematically and understandably. Consequently, this review aimed to provide evidence that miRNAs play a role in the pathophysiology and progression of SZ. They have also been investigated for their potential use as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Fatma Sa'eed El-Tokhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
11
|
Gao W, Li C, Yuan J, Zhang Y, Liu G, Zhang J, Shi H, Liu H, Ge J. Circ-MBOAT2 Regulates Angiogenesis via the miR-495/NOTCH1 Axis and Associates with Myocardial Perfusion in Patients with Coronary Chronic Total Occlusion. Int J Mol Sci 2024; 25:793. [PMID: 38255868 PMCID: PMC10815571 DOI: 10.3390/ijms25020793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Revascularization of coronary chronic total occlusion (CTO) still remains controversial. The factors that impact collateral circulation and myocardial perfusion are of interest. Circular RNA (circRNA) has been shown to regulate the process of angiogenesis. However, the effects of circ-membrane-bound O-acyltransferase domain containing 2 (circ-MBOAT2) on angiogenesis in patients with CTO were unclear. In this study, we evaluated circulating circRNAs and miRNAs in patients with CTO and stable coronary artery disease using high-throughput sequencing. Another cohort of patients were selected to verify the expressions of circ-MBOAT2 and miR-495. The role and mechanism of circ-MBOAT2 in the process of angiogenesis were explored through in vitro and vivo studies. Finally, we came back to a clinical perspective and investigated whether circ-MBOAT2 and miR-495 were associated with the improvement of myocardial perfusion evaluated by single-photon emission computed tomography (SPECT). We found that the expression of circ-MBOAT2 was significantly up-regulated while miR-495 was significantly down-regulated in patients with CTO. The expression of circ-MBOAT2 was negatively correlated with miR-495 in patients with CTO. In an in vitro study, we found that circ-MBOAT2 promoted tube formation and cell migration via the miR-495/NOTCH1 axis in endothelial cells. In an in vivo study, we showed that the inhibition of miR-495 caused the increase in collateral formation in mice after hindlimb ischemia. In a human study, we showed the expressions of circ-MBOAT2 and miR-495 were associated with myocardial perfusion improvement after revascularization of CTO. In conclusion, circ-MBOAT2 regulates angiogenesis via the miR-495/NOTCH1 axis and associates with myocardial perfusion in patients with CTO. Our findings suggest that circ-MBOAT2 and miR-495 may be potential therapeutic targets and prognostic factors for patients with CTO.
Collapse
Affiliation(s)
- Wei Gao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (W.G.); (C.L.)
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Chenguang Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (W.G.); (C.L.)
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Jie Yuan
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (W.G.); (C.L.)
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Youming Zhang
- Department of Cardiology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jianhui Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (W.G.); (C.L.)
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Haibo Liu
- Department of Cardiology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (W.G.); (C.L.)
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| |
Collapse
|
12
|
Lau KEH, Nguyen NT, Kesavan JC, Langa E, Fanning K, Brennan GP, Sanz-Rodriguez A, Villegas-Salmerón J, Yan Y, Venø MT, Mills JD, Rosenow F, Bauer S, Kjems J, Henshall DC. Differential microRNA editing may drive target pathway switching in human temporal lobe epilepsy. Brain Commun 2024; 6:fcad355. [PMID: 38204971 PMCID: PMC10781512 DOI: 10.1093/braincomms/fcad355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/03/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
MicroRNAs have emerged as important regulators of the gene expression landscape in temporal lobe epilepsy. The mechanisms that control microRNA levels and influence target choice remain, however, poorly understood. RNA editing is a post-transcriptional mechanism mediated by the adenosine acting on RNA (ADAR) family of proteins that introduces base modification that diversifies the gene expression landscape. RNA editing has been studied for the mRNA landscape but the extent to which microRNA editing occurs in human temporal lobe epilepsy is unknown. Here, we used small RNA-sequencing data to characterize the identity and extent of microRNA editing in human temporal lobe epilepsy brain samples. This detected low-to-high editing in over 40 of the identified microRNAs. Among microRNA exhibiting the highest editing was miR-376a-3p, which was edited in the seed region and this was predicted to significantly change the target pool. The edited form was expressed at lower levels in human temporal lobe epilepsy samples. We modelled the shift in editing levels of miR-376a-3p in human-induced pluripotent stem cell-derived neurons. Reducing levels of the edited form of miR-376a-3p using antisense oligonucleotides resulted in extensive gene expression changes, including upregulation of mitochondrial and metabolism-associated pathways. Together, these results show that differential editing of microRNAs may re-direct targeting and result in altered functions relevant to the pathophysiology of temporal lobe epilepsy and perhaps other disorders of neuronal hyperexcitability.
Collapse
Affiliation(s)
- Kelvin E How Lau
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Ngoc T Nguyen
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Jaideep C Kesavan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Elena Langa
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Kevin Fanning
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Gary P Brennan
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Amaya Sanz-Rodriguez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Javier Villegas-Salmerón
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- The SFI Centre for Research Training in Genomics Data Science, University of Galway, Galway H91 TK33, Ireland
| | - Yan Yan
- Omiics ApS, 8200 Aarhus N, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Morten T Venø
- Omiics ApS, 8200 Aarhus N, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - James D Mills
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St.Peter SL9 0RJ, UK
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Felix Rosenow
- Goethe-University Frankfurt, Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital, 60590 Frankfurt, Germany
- Goethe-University Frankfurt, LOEWE Center for Personalized Translational Epilepsy Research (CePTER), 60590 Frankfurt, Germany
| | - Sebastian Bauer
- Goethe-University Frankfurt, Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital, 60590 Frankfurt, Germany
- Goethe-University Frankfurt, LOEWE Center for Personalized Translational Epilepsy Research (CePTER), 60590 Frankfurt, Germany
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| |
Collapse
|
13
|
Sais D, Chowdhury S, Dalton JP, Tran N, Donnelly S. Both host and parasite non-coding RNAs co-ordinate the regulation of macrophage gene expression to reduce pro-inflammatory immune responses and promote tissue repair pathways during infection with fasciola hepatica. RNA Biol 2024; 21:62-77. [PMID: 39344634 PMCID: PMC11445894 DOI: 10.1080/15476286.2024.2408706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Parasitic worms (helminths) establish chronic infection within mammalian hosts by strategically regulating their host's immune responses. Deciphering the mechanisms by which host non-coding RNAs (ncRNA) co-ordinate the activation and regulation of immune cells is essential to understanding host immunity and immune-related pathology. It is also important to comprehend how pathogens secrete specific ncRNAs to manipulate gene expression of host immune cells and influence their response to infection. To investigate the contribution of both host and helminth derived ncRNAs to the activation and/or regulation of innate immune responses during a parasite infection, we examined ncRNA expression in the peritoneal macrophages from mice infected with Fasciola hepatica. We discovered the presence of several parasitic-derived miRNAs within host macrophages at 6 hrs and 18 hrs post infection. Target prediction analysis showed that these Fasciola miRNAs regulate host genes associated with the activation of host pro-inflammatory macrophages. Concomitantly, there was a distinct shift in host ncRNA expression, which was significant at 5 days post-infection. Prediction analysis suggested that these host ncRNAs target a different cohort of host genes compared to the parasite miRNAs, although the functional outcome was predicted to be similar i.e. reduced pro-inflammatory response and the promotion of a reparative/tolerant phenotype. Taken together, these observations uncover the interplay between host and parasitic ncRNAs and reveal a complementary regulation of the immune response that allows the parasite to evade immune detection and promote tissue repair for the host. These findings will provide a new understanding of the molecular interaction between parasites and host.
Collapse
Affiliation(s)
- Dayna Sais
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Sumaiya Chowdhury
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Technology Sydney, Ultimo, NSW, Australia
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, Australia
| | - John. P. Dalton
- Molecular Parasitology Laboratory, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Nham Tran
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, Australia
- Molecular Parasitology Laboratory, School of Natural Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
14
|
Weinberg-Shukron A, Youngson NA, Ferguson-Smith AC, Edwards CA. Epigenetic control and genomic imprinting dynamics of the Dlk1-Dio3 domain. Front Cell Dev Biol 2023; 11:1328806. [PMID: 38155837 PMCID: PMC10754522 DOI: 10.3389/fcell.2023.1328806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Genomic imprinting is an epigenetic process whereby genes are monoallelically expressed in a parent-of-origin-specific manner. Imprinted genes are frequently found clustered in the genome, likely illustrating their need for both shared regulatory control and functional inter-dependence. The Dlk1-Dio3 domain is one of the largest imprinted clusters. Genes in this region are involved in development, behavior, and postnatal metabolism: failure to correctly regulate the domain leads to Kagami-Ogata or Temple syndromes in humans. The region contains many of the hallmarks of other imprinted domains, such as long non-coding RNAs and parental origin-specific CTCF binding. Recent studies have shown that the Dlk1-Dio3 domain is exquisitely regulated via a bipartite imprinting control region (ICR) which functions differently on the two parental chromosomes to establish monoallelic expression. Furthermore, the Dlk1 gene displays a selective absence of imprinting in the neurogenic niche, illustrating the need for precise dosage modulation of this domain in different tissues. Here, we discuss the following: how differential epigenetic marks laid down in the gametes cause a cascade of events that leads to imprinting in the region, how this mechanism is selectively switched off in the neurogenic niche, and why studying this imprinted region has added a layer of sophistication to how we think about the hierarchical epigenetic control of genome function.
Collapse
Affiliation(s)
| | - Neil A. Youngson
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | | | - Carol A. Edwards
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Wang Z, Heid B, He J, Xie H, Reilly CM, Dai R, Ahmed SA. Egr2 Deletion in Autoimmune-Prone C57BL6/lpr Mice Suppresses the Expression of Methylation-Sensitive Dlk1-Dio3 Cluster MicroRNAs. Immunohorizons 2023; 7:898-907. [PMID: 38153351 PMCID: PMC10759154 DOI: 10.4049/immunohorizons.2300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
We previously demonstrated that the upregulation of microRNAs (miRNAs) at the genomic imprinted Dlk1-Dio3 locus in murine lupus is correlated with global DNA hypomethylation. We now report that the Dlk1-Dio3 genomic region in CD4+ T cells of MRL/lpr mice is hypomethylated, linking it to increased Dlk1-Dio3 miRNA expression. We evaluated the gene expression of methylating enzymes, DNA methyltransferases (DNMTs), and demethylating ten-eleven translocation proteins (TETs) to elucidate the molecular basis of DNA hypomethylation in lupus CD4+ T cells. There was a significantly elevated expression of Dnmt1 and Dnmt3b, as well as Tet1 and Tet2, in CD4+ T cells of three different lupus-prone mouse strains compared to controls. These findings suggest that the hypomethylation of murine lupus CD4+ T cells is likely attributed to a TET-mediated active demethylation pathway. Moreover, we found that deletion of early growth response 2 (Egr2), a transcription factor gene in B6/lpr mice markedly reduced maternally expressed miRNA genes but not paternally expressed protein-coding genes at the Dlk1-Dio3 locus in CD4+ T cells. EGR2 has been shown to induce DNA demethylation by recruiting TETs. Surprisingly, we found that deleting Egr2 in B6/lpr mice induced more hypomethylated differentially methylated regions at either the whole-genome level or the Dlk1-Dio3 locus in CD4+ T cells. Although the role of methylation in EGR2-mediated regulation of Dlk1-Dio3 miRNAs is not readily apparent, these are the first data to show that in lupus, Egr2 regulates Dlk1-Dio3 miRNAs, which target major signaling pathways in autoimmunity. These data provide a new perspective on the role of upregulated EGR2 in lupus pathogenesis.
Collapse
Affiliation(s)
- Zhuang Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Bettina Heid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Jianlin He
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute at Virginia Tech, Blacksburg, VA
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute at Virginia Tech, Blacksburg, VA
| | - Christopher M. Reilly
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Blacksburg, VA
| | - Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| |
Collapse
|
16
|
Ho WY, Chak LL, Hor JH, Liu F, Diaz-Garcia S, Chang JC, Sanford E, Rodriguez MJ, Alagappan D, Lim SM, Cho YL, Shimizu Y, Sun AX, Tyan SH, Koo E, Kim SH, Ravits J, Ng SY, Okamura K, Ling SC. FUS-dependent microRNA deregulations identify TRIB2 as a druggable target for ALS motor neurons. iScience 2023; 26:108152. [PMID: 37920668 PMCID: PMC10618709 DOI: 10.1016/j.isci.2023.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
MicroRNAs (miRNAs) modulate mRNA expression, and their deregulation contributes to various diseases including amyotrophic lateral sclerosis (ALS). As fused in sarcoma (FUS) is a causal gene for ALS and regulates biogenesis of miRNAs, we systematically analyzed the miRNA repertoires in spinal cords and hippocampi from ALS-FUS mice to understand how FUS-dependent miRNA deregulation contributes to ALS. miRNA profiling identified differentially expressed miRNAs between different central nervous system (CNS) regions as well as disease states. Among the up-regulated miRNAs, miR-1197 targets the pro-survival pseudokinase Trib2. A reduced TRIB2 expression was observed in iPSC-derived motor neurons from ALS patients. Pharmacological stabilization of TRIB2 protein with a clinically approved cancer drug rescues the survival of iPSC-derived human motor neurons, including those from a sporadic ALS patient. Collectively, our data indicate that miRNA profiling can be used to probe the molecular mechanisms underlying selective vulnerability, and TRIB2 is a potential therapeutic target for ALS.
Collapse
Affiliation(s)
- Wan Yun Ho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
- Programs in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Li-Ling Chak
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
- Temasek Lifesciences Laboratory, Singapore 117604, Singapore
| | - Jin-Hui Hor
- Institute of Molecular and Cellular Biology, A∗STAR Research Entities, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Fujia Liu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Sandra Diaz-Garcia
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jer-Cherng Chang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Emma Sanford
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Maria J. Rodriguez
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Durgadevi Alagappan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Su Min Lim
- Department of Neurology, Biomedical Research Institute, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Yik-Lam Cho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Yuji Shimizu
- Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Alfred Xuyang Sun
- Programs in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Sheue-Houy Tyan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Edward Koo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Seung Hyun Kim
- Department of Neurology, Biomedical Research Institute, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - John Ravits
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shi-Yan Ng
- Institute of Molecular and Cellular Biology, A∗STAR Research Entities, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Katsutomo Okamura
- Temasek Lifesciences Laboratory, Singapore 117604, Singapore
- Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuo-Chien Ling
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
- Programs in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| |
Collapse
|
17
|
Willekens J, Mosca P, Burt-Oberecken N, Laugeais E, Kaoma T, Bernardin F, Vallar L, Dimofski P, Renaud M, Lambert L, Leheup B, Guéant JL, Leininger-Muller B, Dreumont N. Cross-Talk between miRNAs from the Dlk1-Dio3 Locus and Histone Methylation to Protect Male Cerebellum from Methyl Donor Deficiency. Mol Nutr Food Res 2023; 67:e2300040. [PMID: 37672803 DOI: 10.1002/mnfr.202300040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/12/2023] [Indexed: 09/08/2023]
Abstract
SCOPE Disruption of the one carbon metabolism during development, i.e., following a gestational vitamin B9 and B12 deficiencies, is involved in birth defects and brain development delay. Using a rat nutritional model, consisting of pups born to dams fed a vitamin B9 and B12 deficient diet (MDD), the study previously reports molecular and cellular alterations in the brain, in a sex dependent manner, with females being more affected than males. The study hypothesizes that epigenetic modifications could participate in the sex differences is observed. METHODS AND RESULTS The study investigates lysine methylation of histones and expression of microRNAs in the cerebellum of MDD male and female pups. The study reports a differential regulation of H3K36Me2 and H4K20Me3 between males and females, in response to MDD. Moreover, distinct regulation of Kmt5b and Kdm2a expression by miR-134-5p and miR-369-5p from the Dlk1-Dio3 locus, contributes to the maintenance of expression of genes involved in synaptic plasticity. CONCLUSION These results could explain the neuroprotection to MDD that male pups display. The work will contribute to the understanding of the consequences of vitamin starvation on brain development, as well as how the epigenome is affected by one carbon metabolism disruption.
Collapse
Affiliation(s)
- Jeremy Willekens
- Université de Lorraine, Inserm, NGERE, Nancy, F-54000, France
- CINJ, Rutgers Cancer Institute of New Jersey, 195 Little Albany St, New Brunswick, NJ 08901, USA
| | - Pauline Mosca
- Université de Lorraine, Inserm, NGERE, Nancy, F-54000, France
| | | | - Edgar Laugeais
- Université de Lorraine, Inserm, NGERE, Nancy, F-54000, France
| | - Tony Kaoma
- Luxembourg Institute of Health, Bioinformatics Platform, 1 A-B, Luxembourg, L-1445, Luxembourg
| | - François Bernardin
- Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, L-1210, Luxembourg
| | - Laurent Vallar
- Luxembourg Institute of Health, Bioinformatics Platform, 1 A-B, Luxembourg, L-1445, Luxembourg
| | | | - Mathilde Renaud
- Université de Lorraine, Inserm, NGERE, Nancy, F-54000, France
- CHRU Nancy, Hôpital d'enfants, Service de Génétique Clinique, Nancy, F-54000, France
| | - Laetitia Lambert
- Université de Lorraine, Inserm, NGERE, Nancy, F-54000, France
- CHRU Nancy, Hôpital d'enfants, Service de Génétique Clinique, Nancy, F-54000, France
| | - Bruno Leheup
- Université de Lorraine, Inserm, NGERE, Nancy, F-54000, France
- CHRU Nancy, Hôpital d'enfants, Service de Génétique Clinique, Nancy, F-54000, France
| | | | | | | |
Collapse
|
18
|
Zhang L, Wang J, Cai G, Ma L, Zhao Z, Ma Q, Deng X. Imprinted Dlk1-Gtl2 cluster miRNAs are potential epigenetic regulators of lamb fur quality. BMC Genomics 2023; 24:632. [PMID: 37872623 PMCID: PMC10594899 DOI: 10.1186/s12864-023-09741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Tan and Hu sheep are well-known local breeds in China, producing lamb fur with unique ornamental and practical values highly appreciated by consumers worldwide. Fur quality is optimal at one month of age and gradually declines with time. Despite active research on its genetic mechanism using transcriptomic and whole genome bisulfite sequencing analysis, the main effective gene locus has not been found, and its regulatory mechanism is still unclear, which limits the breeding and improvement of fur traits. RESULTS Scapular skin samples from newborn (1-month old) and adult (24-month old) Tan sheep were utilized for small ribonucleic acid (RNA) sequencing Principal Component Analysis (PCA) showed that the newborn and adult groups were completely separated. Differential expression analysis of micro-RNAs (miRNAs) identified 32 up-regulated miRNAs and 48 down-regulated miRNAs in the newborn groups. All up-regulated miRNAs were located in the imprinted. Dlk1-Gtl2 locus on chromosome 18, whereas all down-regulated miRNAs were distributed across the sheep chromosomes, without a clear pattern of positional consistency. Further, by systematically analyzing the target genes and signaling pathways of all 32 up-regulated miRNAs, we found that the PI3K-AKT signaling pathway has the potential to be targeted and regulated by most of the miRNAs in the Dlk1-Gtl2 region. In addition, we also re-analyzed miRNA sequencing data from public databases on Hu lambs (full sibling Hu lambs with high- and low-quality fur characteristics). Again, it was found that most of the up-regulated miRNAs in lambs with high-quality fur were also located in the Dlk1-Gtl2 region, whereas this patter was not present for down-regulated miRNAs. CONCLUSION Sequencing of miRNAs in conjunction with public databases was employed to identify miRNAs within the imprinted Dlk1-Gtl2 region on chromosome 18, suggesting their potential roles as epigenetic regulators of fur traits. Small RNAs located at the Dlk1-Gtl2 locus were identified as having the potential to systematically regulate the PI3K-AKT signaling pathway, thereby indicating the relevance of the Dlk1-Gtl2/PI3K-AKT axis in the context of fur traits. Selection of parental specific expressed imprinted genes in the process of conserving and exploiting lamb fur traits should be emphasized.
Collapse
Affiliation(s)
- Letian Zhang
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
| | - Jiankui Wang
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
| | - Ganxian Cai
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
| | - Lina Ma
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, 750002, Yinchuan, China
| | - Zhengwei Zhao
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, 750002, Yinchuan, China
| | - Qing Ma
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, 750002, Yinchuan, China
| | - Xuemei Deng
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
19
|
Maraghechi P, Aponte MTS, Ecker A, Lázár B, Tóth R, Szabadi NT, Gócza E. Pluripotency-Associated microRNAs in Early Vertebrate Embryos and Stem Cells. Genes (Basel) 2023; 14:1434. [PMID: 37510338 PMCID: PMC10379376 DOI: 10.3390/genes14071434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNA molecules, regulate a wide range of critical biological processes, such as proliferation, cell cycle progression, differentiation, survival, and apoptosis, in many cell types. The regulatory functions of miRNAs in embryogenesis and stem cell properties have been extensively investigated since the early years of miRNA discovery. In this review, we will compare and discuss the impact of stem-cell-specific miRNA clusters on the maintenance and regulation of early embryonic development, pluripotency, and self-renewal of embryonic stem cells, particularly in vertebrates.
Collapse
Affiliation(s)
- Pouneh Maraghechi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Maria Teresa Salinas Aponte
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - András Ecker
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Bence Lázár
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation (NBGK-HGI), Isaszegi str. 200, 2100 Gödöllő, Hungary
| | - Roland Tóth
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Nikolett Tokodyné Szabadi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Elen Gócza
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| |
Collapse
|
20
|
Zhang L, Han Z, He H, Zhang X, Zhang M, Li B, Wu Q. Meg8-DMR as the Secondary Regulatory Region Regulates the Expression of MicroRNAs While It Does Not Affect Embryonic Development in Mice. Genes (Basel) 2023; 14:1264. [PMID: 37372444 DOI: 10.3390/genes14061264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Meg8-DMR is the first maternal methylated DMR to be discovered in the imprinted Dlk1-Dio3 domain. The deletion of Meg8-DMR enhances the migration and invasion of MLTC-1 depending on the CTCF binding sites. However, the biological function of Meg8-DMR during mouse development remains unknown. In this study, a CRISPR/Cas9 system was used to generate 434 bp genomic deletions of Meg8-DMR in mice. High-throughput and bioinformatics profiling revealed that Meg8-DMR is involved in the regulation of microRNA: when the deletion was inherited from the mother (Mat-KO), the expression of microRNA was unchanged. However, when the deletion occurred from the father (Pat-KO) and homozygous (Homo-KO), the expression was upregulated. Then, differentially expressed microRNAs (DEGs) were identified between WT with Pat-KO, Mat-KO, and Homo-KO, respectively. Subsequently, these DEGs were subjected to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) term enrichment analysis to explore the functional roles of these genes. In total, 502, 128, and 165 DEGs were determined. GO analysis showed that these DEGs were mainly enriched in axonogenesis in Pat-KO and Home-KO, while forebrain development was enriched in Mat-KO. Finally, the methylation levels of IG-DMR, Gtl2-DMR, and Meg8-DMR, and the imprinting status of Dlk1, Gtl2, and Rian were not affected. These findings suggest that Meg8-DMR, as a secondary regulatory region, could regulate the expression of microRNAs while not affecting the normal embryonic development of mice.
Collapse
Affiliation(s)
- Liang Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Zhengbin Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Hongjuan He
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ximeijia Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Mengyan Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Boran Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qiong Wu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
21
|
Kato M, Chen Z, Das S, Wu X, Wang J, Li A, Chen W, Tsark W, Tunduguru R, Lanting L, Wang M, Moore R, Kalkum M, Abdollahi M, Natarajan R. Long non-coding RNA lncMGC mediates the expression of TGF-β-induced genes in renal cells via nucleosome remodelers. Front Mol Biosci 2023; 10:1204124. [PMID: 37325470 PMCID: PMC10266347 DOI: 10.3389/fmolb.2023.1204124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Background: MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) play key roles in diabetic kidney disease (DKD). The miR-379 megacluster of miRNAs and its host transcript lnc-megacluster (lncMGC) are regulated by transforming growth factor-β (TGF-β), increased in the glomeruli of diabetic mice, and promote features of early DKD. However, biochemical functions of lncMGC are unknown. Here, we identified lncMGC-interacting proteins by in vitro-transcribed lncMGC RNA pull down followed by mass spectrometry. We also created lncMGC-knockout (KO) mice by CRISPR-Cas9 editing and used primary mouse mesangial cells (MMCs) from the KO mice to examine the effects of lncMGC on the gene expression related to DKD, changes in promoter histone modifications, and chromatin remodeling. Methods: In vitro-transcribed lncMGC RNA was mixed with lysates from HK2 cells (human kidney cell line). lncMGC-interacting proteins were identified by mass spectrometry. Candidate proteins were confirmed by RNA immunoprecipitation followed by qPCR. Cas9 and guide RNAs were injected into mouse eggs to create lncMGC-KO mice. Wild-type (WT) and lncMGC-KO MMCs were treated with TGF-β, and RNA expression (by RNA-seq and qPCR) and histone modifications (by chromatin immunoprecipitation) and chromatin remodeling/open chromatin (by Assay for Transposase-Accessible Chromatin using sequencing, ATAC-seq) were examined. Results: Several nucleosome remodeling factors including SMARCA5 and SMARCC2 were identified as lncMGC-interacting proteins by mass spectrometry, and confirmed by RNA immunoprecipitation-qPCR. MMCs from lncMGC-KO mice showed no basal or TGF-β-induced expression of lncMGC. Enrichment of histone H3K27 acetylation and SMARCA5 at the lncMGC promoter was increased in TGF-β-treated WT MMCs but significantly reduced in lncMGC-KO MMCs. ATAC peaks at the lncMGC promoter region and many other DKD-related loci including Col4a3 and Col4a4 were significantly lower in lncMGC-KO MMCs compared to WT MMCs in the TGF-β-treated condition. Zinc finger (ZF), ARID, and SMAD motifs were enriched in ATAC peaks. ZF and ARID sites were also found in the lncMGC gene. Conclusion: lncMGC RNA interacts with several nucleosome remodeling factors to promote chromatin relaxation and enhance the expression of lncMGC itself and other genes including pro-fibrotic genes. The lncMGC/nucleosome remodeler complex promotes site-specific chromatin accessibility to enhance DKD-related genes in target kidney cells.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Zhuo Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Sadhan Das
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, India
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Arthur Li
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Wei Chen
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Walter Tsark
- Transgenic Mouse Facility, Center for Comparative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Ragadeepthi Tunduguru
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Linda Lanting
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Mei Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Roger Moore
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Markus Kalkum
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Maryam Abdollahi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
22
|
Li Q, Lu J, Yin X, Chang Y, Wang C, Yan M, Feng L, Cheng Y, Gao Y, Xu B, Zhang Y, Wang Y, Cui G, Xu L, Sun Y, Zeng R, Li Y, Jing N, Xu GL, Wu L, Tang F, Li J. Base editing-mediated one-step inactivation of the Dnmt gene family reveals critical roles of DNA methylation during mouse gastrulation. Nat Commun 2023; 14:2922. [PMID: 37217538 PMCID: PMC10203112 DOI: 10.1038/s41467-023-38528-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
During embryo development, DNA methylation is established by DNMT3A/3B and subsequently maintained by DNMT1. While much research has been done in this field, the functional significance of DNA methylation in embryogenesis remains unknown. Here, we establish a system of simultaneous inactivation of multiple endogenous genes in zygotes through screening for base editors that can efficiently introduce a stop codon. Embryos with mutations in Dnmts and/or Tets can be generated in one step with IMGZ. Dnmt-null embryos display gastrulation failure at E7.5. Interestingly, although DNA methylation is absent, gastrulation-related pathways are down-regulated in Dnmt-null embryos. Moreover, DNMT1, DNMT3A, and DNMT3B are critical for gastrulation, and their functions are independent of TET proteins. Hypermethylation can be sustained by either DNMT1 or DNMT3A/3B at some promoters, which are related to the suppression of miRNAs. The introduction of a single mutant allele of six miRNAs and paternal IG-DMR partially restores primitive streak elongation in Dnmt-null embryos. Thus, our results unveil an epigenetic correlation between promoter methylation and suppression of miRNA expression for gastrulation and demonstrate that IMGZ can accelerate deciphering the functions of multiple genes in vivo.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiansen Lu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Xidi Yin
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yunjian Chang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Chao Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Meng Yan
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Li Feng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yanbo Cheng
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yun Gao
- School of Life Sciences, Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Beiying Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yao Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yingyi Wang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Guizhong Cui
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Luang Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zeng
- CAS Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yixue Li
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Fuchou Tang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
| |
Collapse
|
23
|
Huang CC, Hsueh YW, Chang CW, Hsu HC, Yang TC, Lin WC, Chang HM. Establishment of the fetal-maternal interface: developmental events in human implantation and placentation. Front Cell Dev Biol 2023; 11:1200330. [PMID: 37266451 PMCID: PMC10230101 DOI: 10.3389/fcell.2023.1200330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Early pregnancy is a complex and well-orchestrated differentiation process that involves all the cellular elements of the fetal-maternal interface. Aberrant trophoblast-decidual interactions can lead to miscarriage and disorders that occur later in pregnancy, including preeclampsia, intrauterine fetal growth restriction, and preterm labor. A great deal of research on the regulation of implantation and placentation has been performed in a wide range of species. However, there is significant species variation regarding trophoblast differentiation as well as decidual-specific gene expression and regulation. Most of the relevant information has been obtained from studies using mouse models. A comprehensive understanding of the physiology and pathology of human implantation and placentation has only recently been obtained because of emerging advanced technologies. With the derivation of human trophoblast stem cells, 3D-organoid cultures, and single-cell analyses of differentiated cells, cell type-specific transcript profiles and functions were generated, and each exhibited a unique signature. Additionally, through integrative transcriptomic information, researchers can uncover the cellular dysfunction of embryonic and placental cells in peri-implantation embryos and the early pathological placenta. In fact, the clinical utility of fetal-maternal cellular trafficking has been applied for the noninvasive prenatal diagnosis of aneuploidies and the prediction of pregnancy complications. Furthermore, recent studies have proposed a viable path toward the development of therapeutic strategies targeting placenta-enriched molecules for placental dysfunction and diseases.
Collapse
|
24
|
Kumar P, Courtes M, Lemmers C, Le Digarcher A, Coku I, Monteil A, Hong C, Varrault A, Liu R, Wang L, Bouschet T. Functional mapping of microRNA promoters with dCas9 fused to transcriptional regulators. Front Genet 2023; 14:1147222. [PMID: 37214422 PMCID: PMC10196145 DOI: 10.3389/fgene.2023.1147222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
MicroRNAs are small non-coding RNAs that control gene expression during development, physiology, and disease. Transcription is a key factor in microRNA abundance and tissue-specific expression. Many databases predict the location of microRNA transcription start sites and promoters. However, these candidate regions require functional validation. Here, dCas9 fused to transcriptional activators or repressors - CRISPR activation (CRISPRa) and inhibition (CRISPRi)- were targeted to the candidate promoters of two intronic microRNAs, mmu-miR-335 and hsa-miR-3662, including the promoters of their respective host genes Mest and HBS1L. We report that in mouse embryonic stem cells and brain organoids, miR-335 was downregulated upon CRISPRi of its host gene Mest. Reciprocally, CRISPRa of Mest promoter upregulated miR-335. By contrast, CRISPRa of the predicted miR-335-specific promoter (located in an intron of Mest) did not affect miR-335 levels. Thus, the expression of miR-335 only depends on the promoter activity of its host gene Mest. By contrast, miR-3662 was CRISPR activatable both by the promoter of its host gene HBS1L and an intronic sequence in HEK-293T cells. Thus, CRISPRa and CRISPRi are powerful tools to evaluate the relevance of endogenous regulatory sequences involved in microRNA transcription in defined cell types.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mathilde Courtes
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Céline Lemmers
- Plateforme de Vectorologie de Montpellier (PVM), BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Anne Le Digarcher
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Ilda Coku
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Arnaud Monteil
- Plateforme de Vectorologie de Montpellier (PVM), BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Charles Hong
- Vanderbilt University School of Medicine Nashville, Nashville, TN, United States
| | - Annie Varrault
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| |
Collapse
|
25
|
Suen HC, Rao S, Luk ACS, Zhang R, Yang L, Qi H, So HC, Hobbs RM, Lee TL, Liao J. The single-cell chromatin accessibility landscape in mouse perinatal testis development. eLife 2023; 12:e75624. [PMID: 37096870 PMCID: PMC10174692 DOI: 10.7554/elife.75624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/24/2023] [Indexed: 04/26/2023] Open
Abstract
Spermatogenesis depends on an orchestrated series of developing events in germ cells and full maturation of the somatic microenvironment. To date, the majority of efforts to study cellular heterogeneity in testis has been focused on single-cell gene expression rather than the chromatin landscape shaping gene expression. To advance our understanding of the regulatory programs underlying testicular cell types, we analyzed single-cell chromatin accessibility profiles in more than 25,000 cells from mouse developing testis. We showed that single-cell sequencing assay for transposase-accessible chromatin (scATAC-Seq) allowed us to deconvolve distinct cell populations and identify cis-regulatory elements (CREs) underlying cell-type specification. We identified sets of transcription factors associated with cell type-specific accessibility, revealing novel regulators of cell fate specification and maintenance. Pseudotime reconstruction revealed detailed regulatory dynamics coordinating the sequential developmental progressions of germ cells and somatic cells. This high-resolution dataset also unveiled previously unreported subpopulations within both the Sertoli and Leydig cell groups. Further, we defined candidate target cell types and genes of several genome-wide association study (GWAS) signals, including those associated with testosterone levels and coronary artery disease. Collectively, our data provide a blueprint of the 'regulon' of the mouse male germline and supporting somatic cells.
Collapse
Affiliation(s)
- Hoi Ching Suen
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongHong Kong
| | - Shitao Rao
- School of Medical Technology and Engineering, Fujian Medical UniversityFujianChina
- Cancer Biology and Experimental Therapeutics Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongChina
| | - Alfred Chun Shui Luk
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongHong Kong
| | - Ruoyu Zhang
- Cancer Biology and Experimental Therapeutics Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongChina
| | - Lele Yang
- Guangzhou Regenerative Medicine and Health Bioland Laboratory, Guangzhou Institutes of Biomedicine and HealthGuangzhouChina
| | - Huayu Qi
- Guangzhou Regenerative Medicine and Health Bioland Laboratory, Guangzhou Institutes of Biomedicine and HealthGuangzhouChina
| | - Hon Cheong So
- Cancer Biology and Experimental Therapeutics Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongChina
| | - Robin M Hobbs
- Germline Stem Cell Biology Laboratory, Centre for Reproductive Health, Hudson Institute of Medical ResearchMelbourneAustralia
| | - Tin-lap Lee
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongHong Kong
| | - Jinyue Liao
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongHong Kong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New TerritoriesHong KongChina
| |
Collapse
|
26
|
Ramos BRA, Tronco JA, Carvalho M, Felix TF, Reis PP, Silveira JC, Silva MG. Circulating Extracellular Vesicles microRNAs Are Altered in Women Undergoing Preterm Birth. Int J Mol Sci 2023; 24:ijms24065527. [PMID: 36982598 PMCID: PMC10058006 DOI: 10.3390/ijms24065527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Preterm labor (PTL) and preterm premature rupture of membranes (PPROM) lead to high perinatal morbidity/mortality rates worldwide. Small extracellular vesicles (sEV) act in cell communication and contain microRNAs that may contribute to the pathogenesis of these complications. We aimed to compare the expression, in sEV from peripheral blood, of miRNAs between term and preterm pregnancies. This cross-sectional study included women who underwent PTL, PPROM, and term pregnancies, examined at the Botucatu Medical School Hospital, SP, Brazil. sEV were isolated from plasma. Western blot used to detect exosomal protein CD63 and nanoparticle tracking analysis were performed. The expression of 800 miRNAs was assessed by the nCounter Humanv3 miRNA Assay (NanoString). The miRNA expression and relative risk were determined. Samples from 31 women—15 preterm and 16 term—were included. miR-612 expression was increased in the preterm groups. miR-612 has been shown to increase apoptosis in tumor cells and to regulate the nuclear factor κB inflammatory pathway, processes involved in PTL/PPROM pathogenesis. miR-1253, miR-1283, miR378e, and miR-579-3p, all associated with cellular senescence, were downregulated in PPROM compared with term pregnancies. We conclude that miRNAs from circulating sEV are differentially expressed between term and preterm pregnancies and modulate genes in pathways that are relevant to PTL/PPROM pathogenesis.
Collapse
Affiliation(s)
- Bruna Ribeiro Andrade Ramos
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
- Faculty of Medicine—Jaú Campus, University of Western São Paulo (UNOESTE), Jaú 17213-700, SP, Brazil
- Correspondence: ; Tel.: +55-(14)-3624-1109
| | - Júlia Abbade Tronco
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
| | - Márcio Carvalho
- Faculty of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
| | - Tainara Francini Felix
- Experimental Research Unity (UNIPEX), Botucatu Medical School, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
| | - Patrícia Pintor Reis
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
| | - Juliano Coelho Silveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, São Paulo University (USP), Pirassununga 13635-900, SP, Brazil
| | - Márcia Guimarães Silva
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 17213-700, SP, Brazil
| |
Collapse
|
27
|
Chang S, Min J, Lu X, Zhang Q, Shangguan S, Zhang T, Wang L. Effect of epigenetic activating of Dlk1-Dio3 imprinted cluster on miR-370 expression due to folate deficiency during nerve development. J Nutr Biochem 2023; 116:109297. [PMID: 36907530 DOI: 10.1016/j.jnutbio.2023.109297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 03/13/2023]
Abstract
Proper Dlk1-Dio3 imprinting plays a critical role in embryogenesis, and folic acid deficiency may affect the imprinting of this locus through epigenetic regulation. However, whether and how folic acid directly impacts the imprinting status of Dlk1-Dio3 to affect neural development remain unclear. Here, we found decreased IG-DMR (intergenic -differentially methylated regions) methylation in the folate-deficient encephalocele in humans, suggesting that abnormal Dlk1-Dio3 imprinting status is related to neural tube defects (NTDs) caused by folate deficiency. Similar results were obtained with folate-deficient embryonic stem cells. By miRNA chip analysis, folic acid deficiency led to changes in multiple miRNAs, including the upregulation of 15 miRNAs located in the Dlk1-Dio3 locus. Real-time PCR confirmed that seven of these miRNAs were upregulated, especially miR-370. In contrast to normal embryonic development, in which expression of miR-370 is highest at E9.5, the abnormally high and sustained expression of miRNA-370 in folate-deficient E13.5 embryos may contribute to NTDs. In addition, we found that DNMT3A (de novo DNA methyltransferases 3A) is a direct target gene of miR-370 in neural cells, and DNMT3A participates in the role of miR-370 in inhibiting cell migration. Finally, in the folate-deficient mouse model, Dlk1-Dio3 epigenetic activation was found in fetal brain tissue, along with the upregulation of miR-370 and the downregulation of DNMT3A. Collectively, our findings demonstrate a pivotal role of folate in the epigenetic regulation of Dlk1-Dio3 imprinting during neurogenesis, revealing an elegant mechanism for the activation of Dlk1-Dio3 locus miRNAs in folic acid deficiency.
Collapse
Affiliation(s)
- Shaoyan Chang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China, 100020
| | - Jie Min
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China, 100020; Department 2 of Nephrology, Beijing Children's Hospital Affiliated to Capital Medical University, Beijing Key Laboratory for Chronic Renal Disease and Blood Purification, Key Laboratory of Major Diseases in Children, National Center for Children's Health, Beijing, China, 100045
| | - Xiaolin Lu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China, 100020
| | - Qingyu Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China, 100020
| | - Shaofang Shangguan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China, 100020
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China, 100020
| | - Li Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China, 100020.
| |
Collapse
|
28
|
Rather RA, Saha SC. Reappraisal of evolving methods in non-invasive prenatal screening: Discovery, biology and clinical utility. Heliyon 2023; 9:e13923. [PMID: 36879971 PMCID: PMC9984859 DOI: 10.1016/j.heliyon.2023.e13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Non-invasive prenatal screening (NIPS) offers an opportunity to screen or determine features associated with the fetus. Earlier, prenatal testing was done with cytogenetic procedures like karyotyping or fluorescence in-situ hybridization, which necessitated invasive methods such as fetal blood sampling, chorionic villus sampling or amniocentesis. Over the last two decades, there has been a paradigm shift away from invasive prenatal diagnostic methods to non-invasive ones. NIPS tests heavily rely on cell-free fetal DNA (cffDNA). This DNA is released into the maternal circulation by placenta. Like cffDNA, fetal cells such as nucleated red blood cells, placental trophoblasts, leukocytes, and exosomes or fetal RNA circulating in maternal plasma, have enormous potential in non-invasive prenatal testing, but their use is still limited due to a number of limitations. Non-invasive approaches currently use circulating fetal DNA to assess the fetal genetic milieu. Methods with an acceptable detection rate and specificity such as sequencing, methylation, or PCR, have recently gained popularity in NIPS. Now that NIPS has established clinical significance in prenatal screening and diagnosis, it is critical to gain insights into and comprehend the genesis of NIPS de novo. The current review reappraises the development and emergence of non-invasive prenatal screen/test approaches, as well as their clinical application, with a focus, on the scope, benefits, and limitations.
Collapse
Affiliation(s)
- Riyaz Ahmad Rather
- Department of Biotechnology, College of Natural and Computational Science, Wachemo University, Ethiopia
| | - Subhas Chandra Saha
- Department of Obstetrics and Gynecology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
29
|
Liang L, Chen Y, Wu C, Cao Z, Xia L, Meng J, He L, Yang C, Wang Z. MicroRNAs: key regulators of the trophoblast function in pregnancy disorders. J Assist Reprod Genet 2023; 40:3-17. [PMID: 36508034 PMCID: PMC9742672 DOI: 10.1007/s10815-022-02677-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The placenta is essential for a successful pregnancy and healthy intrauterine development in mammals. During human pregnancy, the growth and development of the placenta are inseparable from the rapid proliferation, invasion, and migration of trophoblast cells. Previous reports have shown that the occurrence of many pregnancy disorders may be closely related to the dysfunction of trophoblasts. However, the function regulation of human trophoblast cells in the placenta is poorly understood. Therefore, studying the factors that regulate the function of trophoblast cells is necessary. MicroRNAs (miRNAs) are small, non-coding, single-stranded RNA molecules. Increasing evidence suggests that miRNAs play a crucial role in regulating trophoblast functions. This review outlines the role of miRNAs in regulating the function of trophoblast cells and several common signaling pathways related to miRNA regulation in pregnancy disorders.
Collapse
Affiliation(s)
- Lingli Liang
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Yanjun Chen
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Chunyan Wu
- grid.412017.10000 0001 0266 8918Department of Cardiovascular, The Third Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Zitong Cao
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Linzhen Xia
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Jun Meng
- grid.461579.8Department of Function, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Lu He
- grid.461579.8Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Chunfen Yang
- grid.461579.8Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Zuo Wang
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| |
Collapse
|
30
|
The expression profiling of serum miR-92a, miR-134 and miR-375 in acute ischemic stroke. Future Sci OA 2022; 8:FSO829. [PMID: 36874371 PMCID: PMC9979103 DOI: 10.2144/fsoa-2022-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/17/2023] [Indexed: 02/22/2023] Open
Abstract
Aim To investigate the expression profile and diagnostic potentials of serum miR-92a, 134, and 375 in acute ischemic stroke (AIS) patients. Materials & methods Serum miRs-92a, 134, and 375 expression profiles were estimated by qRT-PCR for 70 AIS patients, age-matched with 25 control subjects. Their diagnostic potential was estimated by ROC analysis. Results Down-expression of miR-92a and miR-375 was found (56; 96.5%; -1.86 ± 1.36; and 53; 91.4%; -1.63 ± 1.38, respectively), while miR-134 showed a predominant upregulation (46; 79.3%; 0.853 ± 1.34). The diagnostic accuracy was the highest for miR-92a and miR-375 (area under the curve = 0.9183 and 0.898, respectively), with greater specificity for miR-375 (Sp = 96%). Conclusion Serum miR-92a and miR-375 could be promising early detective biomarkers of AIS.
Collapse
|
31
|
Köhrle J, Frädrich C. Deiodinases control local cellular and systemic thyroid hormone availability. Free Radic Biol Med 2022; 193:59-79. [PMID: 36206932 DOI: 10.1016/j.freeradbiomed.2022.09.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
Abstract
Iodothyronine deiodinases (DIO) are a family of selenoproteins controlling systemic and local availability of the major thyroid hormone l-thyroxine (T4), a prohormone secreted by the thyroid gland. T4 is activated to the active 3,3'-5-triiodothyronine (T3) by two 5'-deiodinases, DIO1 and DIO2. DIO3, a 5-deiodinase selenoenzyme inactivates both the prohormone T4 and its active form T3. DIOs show species-specific different patterns of temporo-spatial expression, regulation and function and exhibit different mechanisms of reaction and inhibitor sensitivities. The main regulators of DIO expression and function are the thyroid hormone status, several growth factors, cytokines and altered pathophysiological conditions. Selenium (Se) status has a modest impact on DIO expression and translation. DIOs rank high in the priority of selenium supply to various selenoproteins; thus, their function is impaired only during severe selenium deficiency. DIO variants, polymorphisms, SNPs and rare mutations have been identified. Development of DIO isozyme selective drugs is ongoing. A first X-ray structure has been reported for DIO3. This review focusses on the biochemical characteristics and reaction mechanisms, the relationships between DIO selenoproteins and their importance for local and systemic provision of the active hormone T3. Nutritional, pharmacological, and environmental factors and inhibitors, such as endocrine disruptors, impact DIO functions.
Collapse
Affiliation(s)
- Josef Köhrle
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Max Rubner Center (MRC) für Kardiovaskuläre-metabolische-renale Forschung in Berlin, Institut für Experimentelle Endokrinologie, 10115, Berlin, Germany.
| | - Caroline Frädrich
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Max Rubner Center (MRC) für Kardiovaskuläre-metabolische-renale Forschung in Berlin, Institut für Experimentelle Endokrinologie, 10115, Berlin, Germany
| |
Collapse
|
32
|
CmirC: an integrated database of clustered miRNAs co-localized with copy number variations in cancer. Funct Integr Genomics 2022; 22:1229-1241. [DOI: 10.1007/s10142-022-00909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022]
Abstract
AbstractGenomic rearrangements and copy number variations (CNVs) are the major regulators of clustered microRNAs (miRNAs) expression. Several clustered miRNAs are harbored in and around chromosome fragile sites (CFSs) and cancer-associated genomic hotspots. Aberrant expression of such clusters can lead to oncogenic or tumor suppressor activities. Here, we developed CmirC (Clustered miRNAs co-localized with CNVs), a comprehensive database of clustered miRNAs co-localized with CNV regions. The database consists of 481 clustered miRNAs co-localized with CNVs and their expression patterns in 35 cancer types of the TCGA. The portal also provides information on CFSs, miRNA cluster candidates, genomic coordinates, target gene networks, and gene functionality. The web portal is integrated with advanced tools such as JBrowse, NCBI-BLAST, GeneSCF, visNetwork, and NetworkD3 to help the researchers in data analysis, visualization, and browsing. This portal provides a promising avenue for integrated data analytics and offers additional evidence for the complex regulation of clustered miRNAs in cancer. The web portal is freely accessible at http://slsdb.manipal.edu/cmirclust to explore clinically significant miRNAs.
Collapse
|
33
|
Vu Hong A, Bourg N, Sanatine P, Poupiot J, Charton K, Gicquel E, Massourides E, Spinazzi M, Richard I, Israeli D. Dlk1-Dio3 cluster miRNAs regulate mitochondrial functions in the dystrophic muscle in Duchenne muscular dystrophy. Life Sci Alliance 2022; 6:6/1/e202201506. [PMID: 36265896 PMCID: PMC9585966 DOI: 10.26508/lsa.202201506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle disease caused by impaired expression of dystrophin. Whereas mitochondrial dysfunction is thought to play an important role in DMD, the mechanism of this dysfunction remains to be clarified. Here we demonstrate that in DMD and other muscular dystrophies, a large number of Dlk1-Dio3 clustered miRNAs (DD-miRNAs) are coordinately up-regulated in regenerating myofibers and in the serum. To characterize the biological effect of this dysregulation, 14 DD-miRNAs were simultaneously overexpressed in vivo in mouse muscle. Transcriptomic analysis revealed highly similar changes between the muscle ectopically overexpressing 14 DD-miRNAs and the mdx diaphragm, with naturally up-regulated DD-miRNAs. Among the commonly dysregulated pathway we found repressed mitochondrial metabolism, and oxidative phosphorylation (OxPhos) in particular. Knocking down the DD-miRNAs in iPS-derived skeletal myotubes resulted in increased OxPhos activities. The data suggest that (1) DD-miRNAs are important mediators of dystrophic changes in DMD muscle, (2) mitochondrial metabolism and OxPhos in particular are targeted in DMD by coordinately up-regulated DD-miRNAs. These findings provide insight into the mechanism of mitochondrial dysfunction in muscular dystrophy.
Collapse
Affiliation(s)
- Ai Vu Hong
- Genethon, Evry, France,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, Evry, France
| | - Nathalie Bourg
- Genethon, Evry, France,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, Evry, France
| | - Peggy Sanatine
- Genethon, Evry, France,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, Evry, France
| | - Jerome Poupiot
- Genethon, Evry, France,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, Evry, France
| | - Karine Charton
- Genethon, Evry, France,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, Evry, France
| | - Evelyne Gicquel
- Genethon, Evry, France,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, Evry, France
| | | | - Marco Spinazzi
- Neuromuscular Reference Center, Department of Neurology, CHU d’Angers, Angers, France,Institute of Neurobiology and Neuropathology CHU d’Angers, Angers, France
| | - Isabelle Richard
- Genethon, Evry, France,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, Evry, France
| | - David Israeli
- Genethon, Evry, France .,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare Research Unit UMR_S951, Evry, France
| |
Collapse
|
34
|
Highly sensitive single-cell chromatin accessibility assay and transcriptome coassay with METATAC. Proc Natl Acad Sci U S A 2022; 119:e2206450119. [PMID: 36161934 PMCID: PMC9546615 DOI: 10.1073/pnas.2206450119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The thriving field of single-cell genomics allows researchers to dissect the complexity and heterogeneity of tissues at single-cell resolution at large scale, involving transcriptome and epigenome. However, single-cell chromatin accessibility profiling methods exhibit low sensitivity. Here, we increased accessible chromatin detection sensitivity in single cells with METATAC, a single-cell ATAC-seq technique, with the help of META amplification strategy and other biochemical modifications. METATAC reached the highest accessible chromatin region detection efficiency compared with existing techniques, allowing more accurate cis-regulatory element coaccessibility measurement and allele-specific chromatin accessibility analysis in complex tissue samples. In combination with a high-resolution single-cell RNA sequencing assay, we further developed a high-sensitivity joint single-cell ATAC–RNA strategy, which helps us to better resolve gene regulatory programs. Recent advances in single-cell assay for transposase accessible chromatin using sequencing (scATAC-seq) and its coassays have transformed the field of single-cell epigenomics and transcriptomics. However, the low detection efficiency of current methods has limited our understanding of the true complexity of chromatin accessibility and its relationship with gene expression in single cells. Here, we report a high-sensitivity scATAC-seq method, termed multiplexed end-tagging amplification of transposase accessible chromatin (METATAC), which detects a large number of accessible sites per cell and is compatible with automation. Our high detectability and statistical framework allowed precise linking of enhancers to promoters without merging single cells. We systematically investigated allele-specific accessibility in the mouse cerebral cortex, revealing allele-specific accessibility of promotors of certain imprinted genes but biallelic accessibility of their enhancers. Finally, we combined METATAC with our high-sensitivity single-cell RNA sequencing (scRNA-seq) method, multiple annealing and looping based amplification cycles for digital transcriptomics (MALBAC-DT), to develop a joint ATAC–RNA assay, termed METATAC and MALBAC-DT coassay by sequencing (M2C-seq). M2C-seq achieved significant improvements for both ATAC and RNA compared with previous methods, with consistent performance across cell lines and early mouse embryos.
Collapse
|
35
|
Hayder H, Shan Y, Chen Y, O’Brien JA, Peng C. Role of microRNAs in trophoblast invasion and spiral artery remodeling: Implications for preeclampsia. Front Cell Dev Biol 2022; 10:995462. [PMID: 36263015 PMCID: PMC9575991 DOI: 10.3389/fcell.2022.995462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
It is now well-established that microRNAs (miRNAs) are important regulators of gene expression. The role of miRNAs in placental development and trophoblast function is constantly expanding. Trophoblast invasion and their ability to remodel uterine spiral arteries are essential for proper placental development and successful pregnancy outcome. Many miRNAs are reported to be dysregulated in pregnancy complications, especially preeclampsia and they exert various regulatory effects on trophoblasts. In this review, we provide a brief overview of miRNA biogenesis and their mechanism of action, as well as of trophoblasts differentiation, invasion and spiral artery remodeling. We then discuss the role of miRNAs in trophoblasts invasion and spiral artery remodeling, focusing on miRNAs that have been thoroughly investigated, especially using multiple model systems. We also discuss the potential role of miRNAs in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Heyam Hayder
- Department of Biology, York University, Toronto, ON, Canada
| | - Yanan Shan
- Department of Biology, York University, Toronto, ON, Canada
| | - Yan Chen
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng,
| |
Collapse
|
36
|
Han X, He H, Shao L, Cui S, Yu H, Zhang X, Wu Q. Deletion of Meg8-DMR Enhances Migration and Invasion of MLTC-1 Depending on the CTCF Binding Sites. Int J Mol Sci 2022; 23:ijms23158828. [PMID: 35955961 PMCID: PMC9369160 DOI: 10.3390/ijms23158828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
The Dlk1-Dio3 imprinted domain on mouse chromosome 12 contains three well-characterized paternally methylated differentially methylated regions (DMRs): IG-DMR, Gtl2-DMR, and Dlk1-DMR. These DMRs control the expression of many genes involved in embryonic development, inherited diseases, and human cancer in this domain. The first maternal methylation DMR discovered in this domain was the Meg8-DMR, the targets and biological function of which are still unknown. Here, using an enhancer-blocking assay, we first dissected the functional parts of the Meg8-DMR and showed that its insulator activity is dependent on the CCCTC-binding factor (CTCF) in MLTC-1. Results from RNA-seq showed that the deletion of the Meg8-DMR and its compartment CTCF binding sites, but not GGCG repeats, lead to the downregulation of numerous genes on chromosome 12, in particular the drastically reduced expression of Dlk1 and Rtl1 in the Dlk1-Dio3 domain, while differentially expressed genes are enriched in the MAPK pathway. In vitro assays revealed that the deletion of the Meg8-DMR and CTCF binding sites enhances cell migration and invasion by decreasing Dlk1 and activating the Notch1-Rhoc-MAPK/ERK pathway. These findings enhance research into gene regulation in the Dlk1-Dio3 domain by indicating that the Meg8-DMR functions as a long-range regulatory element which is dependent on CTCF binding sites and affects multiple genes in this domain.
Collapse
Affiliation(s)
- Xiao Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Hongjuan He
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Lan Shao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Shuang Cui
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Haoran Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ximeijia Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qiong Wu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
- Correspondence: ; Tel./Fax: +86-0451-86416944
| |
Collapse
|
37
|
Isles AR. The contribution of imprinted genes to neurodevelopmental and neuropsychiatric disorders. Transl Psychiatry 2022; 12:210. [PMID: 35597773 PMCID: PMC9124202 DOI: 10.1038/s41398-022-01972-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/15/2022] Open
Abstract
Imprinted genes are a subset of mammalian genes that are subject to germline parent-specific epigenetic modifications leading monoallelic expression. Imprinted gene expression is particularly prevalent in the brain and it is unsurprising that mutations affecting their expression can lead to neurodevelopmental and/or neuropsychiatric disorders in humans. Here I review the evidence for this, detailing key neurodevelopmental disorders linked to imprinted gene clusters on human chromosomes 15q11-q13 and 14q32, highlighting genes and possible regulatory links between these different syndromes. Similarly, rare copy number variant mutations at imprinted clusters also provide strong links between abnormal imprinted gene expression and the predisposition to severe psychiatric illness. In addition to direct links between brain-expressed imprinted genes and neurodevelopmental and/or neuropsychiatric disorders, I outline how imprinted genes that are expressed in another tissue hotspot, the placenta, contribute indirectly to abnormal brain and behaviour. Specifically, altered nutrient provisioning or endocrine signalling by the placenta caused by abnormal expression of imprinted genes may lead to increased prevalence of neurodevelopmental and/or neuropsychiatric problems in both the offspring and the mother.
Collapse
Affiliation(s)
- Anthony R. Isles
- grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, CF24 4HQ UK
| |
Collapse
|
38
|
Genome-wide DNA methylation patterns reveal clinically relevant predictive and prognostic subtypes in human osteosarcoma. Commun Biol 2022; 5:213. [PMID: 35260776 PMCID: PMC8904843 DOI: 10.1038/s42003-022-03117-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Aberrant methylation of genomic DNA has been reported in many cancers. Specific DNA methylation patterns have been shown to provide clinically useful prognostic information and define molecular disease subtypes with different response to therapy and long-term outcome. Osteosarcoma is an aggressive malignancy for which approximately half of tumors recur following standard combined surgical resection and chemotherapy. No accepted prognostic factor save tumor necrosis in response to adjuvant therapy currently exists, and traditional genomic studies have thus far failed to identify meaningful clinical associations. We studied the genome-wide methylation state of primary tumors and tested how they predict patient outcomes. We discovered relative genomic hypomethylation to be strongly predictive of response to standard chemotherapy. Recurrence and survival were also associated with genomic methylation, but through more site-specific patterns. Furthermore, the methylation patterns were reproducible in three small independent clinical datasets. Downstream transcriptional, in vitro, and pharmacogenomic analysis provides insight into the clinical translation of the methylation patterns. Our findings suggest the assessment of genomic methylation may represent a strategy for stratifying patients for the application of alternative therapies.
Collapse
|
39
|
Widmark A, Sagredo EA, Karlström V, Behm M, Biryukova I, Friedländer MR, Daniel C, Öhman M. ADAR1- and ADAR2-mediated regulation of maturation and targeting of miR-376b to modulate GABA neurotransmitter catabolism. J Biol Chem 2022; 298:101682. [PMID: 35124003 PMCID: PMC8892144 DOI: 10.1016/j.jbc.2022.101682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
miRNAs are short noncoding RNA molecules that regulate gene expression by inhibiting translation or inducing degradation of target mRNAs. miRNAs are often expressed as polycistronic transcripts, so-called miRNA clusters, containing several miRNA precursors. The largest mammalian miRNA cluster, the miR-379–410 cluster, is expressed primarily during embryonic development and in the adult brain; however, downstream regulation of this cluster is not well understood. Here, we investigated adenosine deamination to inosine (RNA editing) in the miR-379–410 cluster by adenosine deaminase acting on RNA (ADAR) enzymes as a possible mechanism modulating the expression and activity of these miRNAs in a brain-specific manner. We show that the levels of editing in the majority of mature miRNAs are lower than the editing levels of the corresponding site in primary miRNA precursors. However, for one miRNA, miR-376b-3p, editing was significantly higher in the mature form than in the primary precursor. We found miR-376b-3p maturation is negatively regulated by ADAR2 in an editing activity–independent manner, whereas ADAR1-mediated and ADAR2-mediated editing were observed to be competitive. In addition, the edited miR-376b-3p targets a different set of mRNAs than unedited miR-376b-3p, including 4-aminobutyrate aminotransferase, encoding the enzyme responsible for the catabolism of the neurotransmitter gamma aminobutyric acid (GABA). Expression of edited miR-376b-3p led to increased intracellular GABA levels as well as increased cell surface presentation of GABA type A receptors. Our results indicate that both editing and editing-independent effects modulate the expression of miR-376b-3p, with the potential to regulate GABAergic signaling in the brain.
Collapse
Affiliation(s)
- Albin Widmark
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Eduardo A Sagredo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Victor Karlström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mikaela Behm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Inna Biryukova
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Chammiran Daniel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
40
|
miR-154-5p Affects the TGFβ1/Smad3 Pathway on the Fibrosis of Diabetic Kidney Disease via Binding E3 Ubiquitin Ligase Smurf1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7502632. [PMID: 35126820 PMCID: PMC8814716 DOI: 10.1155/2022/7502632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 11/29/2022]
Abstract
Aim The study is aimed at verifying miR-154-5p and Smurf1 combination in glomerular mesangial cells regulating TGFβ1/Smad3 pathway-related protein ubiquitination in the model of diabetic rats renal tissues, primary mesangial cells, and cell lines. Methods The diabetic SD rat model and high-glucose-cultured primary mesangial cells and cell lines were established. miR-154-5p mimic and inhibitor, Smurf1 siRNA, and TGF β 1/Smad3 inhibitor (SB431542) were pretreated to make the TGFβ1/Smad3 pathway and ubiquitin changes. Fluorescence in situ hybridization was used for the miR-154-5p renal localization; molecular biological detection was adopted for cell proliferation, renal function, urine protein, and pathway proteins. After bioinformatics predicted binding sites, luciferase and Co-IP were used to detect miRNA and protein binding. Results miR-154-5p was significantly increased and mainly concentrated in the glomerular of renal cortex in well-established diabetic rat renal tissues. Rno-miR-154-5p combined Rno-Smurf1 3′ UTR, while Smurf1 combined Smad3 directly. Meanwhile, miR-154-5p regulates TGFβ1/Smad3-mediated cell proliferation via Smurf1 ubiquitination. Conclusion miR-154-5p regulates the TGFβ1/Smads pathway through Smurf1 ubiquitination and promotes the fibrosis process of diabetic kidney disease.
Collapse
|
41
|
Légaré C, Clément AA, Desgagné V, Thibeault K, White F, Guay SP, Arsenault BJ, Scott MS, Jacques PÉ, Perron P, Guérin R, Hivert MF, Bouchard L. Human plasma pregnancy-associated miRNAs and their temporal variation within the first trimester of pregnancy. Reprod Biol Endocrinol 2022; 20:14. [PMID: 35031065 PMCID: PMC8759232 DOI: 10.1186/s12958-021-00883-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/20/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND During pregnancy, maternal metabolism undergoes substantial changes to support the developing fetus. Such changes are finely regulated by different mechanisms carried out by effectors such as microRNAs (miRNAs). These small non-coding RNAs regulate numerous biological functions, mostly through post-transcriptional repression of gene expression. miRNAs are also secreted in circulation by numerous organs, such as the placenta. However, the complete plasmatic microtranscriptome of pregnant women has still not been fully described, although some miRNA clusters from the chromosome 14 (C14MC) and the chromosome 19 (C19MC and miR-371-3 cluster) have been proposed as being specific to pregnancy. Our aims were thus to describe the plasma microtranscriptome during the first trimester of pregnancy, by assessing the differences with non-pregnant women, and how it varies between the 4th and the 16th week of pregnancy. METHODS Plasmatic miRNAs from 436 pregnant (gestational week 4 to 16) and 15 non-pregnant women were quantified using Illumina HiSeq next-generation sequencing platform. Differentially abundant miRNAs were identified using DESeq2 package (FDR q-value ≤ 0.05) and their targeted biological pathways were assessed with DIANA-miRpath. RESULTS A total of 2101 miRNAs were detected, of which 191 were differentially abundant (fold change < 0.05 or > 2, FDR q-value ≤ 0.05) between pregnant and non-pregnant women. Of these, 100 miRNAs were less and 91 miRNAs were more abundant in pregnant women. Additionally, the abundance of 57 miRNAs varied according to gestational age at first trimester, of which 47 were positively and 10 were negatively associated with advancing gestational age. miRNAs from the C19MC were positively associated with both pregnancy and gestational age variation during the first trimester. Biological pathway analysis revealed that these 191 (pregnancy-specific) and 57 (gestational age markers) miRNAs targeted genes involved in fatty acid metabolism, ECM-receptor interaction and TGF-beta signaling pathways. CONCLUSION We have identified circulating miRNAs specific to pregnancy and/or that varied with gestational age in first trimester. These miRNAs target biological pathways involved in lipid metabolism as well as placenta and embryo development, suggesting a contribution to the maternal metabolic adaptation to pregnancy and fetal growth.
Collapse
Affiliation(s)
- Cécilia Légaré
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Andrée-Anne Clément
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Véronique Desgagné
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
- Clinical Department of Laboratory Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital Universitaire de Chicoutimi, Pavillon des Augustines, 305 rue St-Vallier, Saguenay, QC, G7H 5H6, Canada
| | - Kathrine Thibeault
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Frédérique White
- Department of Biology, FMHS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon-Pierre Guay
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada
| | - Benoit J Arsenault
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Michelle S Scott
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Étienne Jacques
- Department of Biology, FMHS, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), Sherbrooke, QC, Canada
| | - Patrice Perron
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), Sherbrooke, QC, Canada
- Department of Medicine, FMHS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Renée Guérin
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
- Clinical Department of Laboratory Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital Universitaire de Chicoutimi, Pavillon des Augustines, 305 rue St-Vallier, Saguenay, QC, G7H 5H6, Canada
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, USA
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada.
- Clinical Department of Laboratory Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital Universitaire de Chicoutimi, Pavillon des Augustines, 305 rue St-Vallier, Saguenay, QC, G7H 5H6, Canada.
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), Sherbrooke, QC, Canada.
| |
Collapse
|
42
|
Frankel D, Delecourt V, Novoa-del-Toro EM, Robin JD, Airault C, Bartoli C, Carabalona A, Perrin S, Mazaleyrat K, De Sandre-Giovannoli A, Magdinier F, Baudot A, Lévy N, Kaspi E, Roll P. miR-376a-3p and miR-376b-3p overexpression in Hutchinson-Gilford progeria fibroblasts inhibits cell proliferation and induces premature senescence. iScience 2022; 25:103757. [PMID: 35118365 PMCID: PMC8800101 DOI: 10.1016/j.isci.2022.103757] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 01/07/2022] [Indexed: 11/29/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder, in which an abnormal and toxic protein called progerin, accumulates in cell nuclei, leading to major cellular defects. Among them, chromatin remodeling drives gene expression changes, including miRNA dysregulation. In our study, we evaluated miRNA expression profiles in HGPS and control fibroblasts. We identified an enrichment of overexpressed miRNAs belonging to the 14q32.2-14q32.3 miRNA cluster. Using 3D FISH, we demonstrated that overexpression of these miRNAs is associated with chromatin remodeling at this specific locus in HGPS fibroblasts. We then focused on miR-376b-3p and miR-376a-3p, both overexpressed in HGPS fibroblasts. We demonstrated that their induced overexpression in control fibroblasts decreases cell proliferation and increases senescence, whereas their inhibition in HGPS fibroblasts rescues proliferation defects and senescence and decreases progerin accumulation. By targeting these major processes linked to premature aging, these two miRNAs may play a pivotal role in the pathophysiology of HGPS. Several miRNAs are deregulated in HGPS fibroblasts compared with controls Progerin leads to overexpression of miRNAs belonging to the 14q32.2-14q32.3 cluster miR-376a and miR-376b overexpression decreases cell proliferation and increases senescence
Collapse
Affiliation(s)
- Diane Frankel
- Aix Marseille Univ, APHM, INSERM, MMG, Hôpital la Timone, Service de Biologie Cellulaire, 27 Bd Jean Moulin, Marseille, France
| | | | | | | | | | | | | | | | | | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, APHM, INSERM, MMG, Hôpital la Timone, Département de Génétique Médicale, Biological Resource Center (CRB-TAC), Marseille, France
| | | | - Anaïs Baudot
- Aix Marseille Univ, INSERM, MMG, Marseille, France
| | - Nicolas Lévy
- Aix Marseille Univ, APHM, INSERM, MMG, Hôpital la Timone, Département de Génétique Médicale, Biological Resource Center (CRB-TAC), Marseille, France
| | - Elise Kaspi
- Aix Marseille Univ, APHM, INSERM, MMG, Hôpital la Timone, Service de Biologie Cellulaire, 27 Bd Jean Moulin, Marseille, France
| | - Patrice Roll
- Aix Marseille Univ, APHM, INSERM, MMG, Hôpital la Timone, Service de Biologie Cellulaire, 27 Bd Jean Moulin, Marseille, France
- Corresponding author
| |
Collapse
|
43
|
Trotman JB, Braceros KCA, Cherney RE, Murvin MM, Calabrese JM. The control of polycomb repressive complexes by long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1657. [PMID: 33861025 PMCID: PMC8500928 DOI: 10.1002/wrna.1657] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
The polycomb repressive complexes 1 and 2 (PRCs; PRC1 and PRC2) are conserved histone-modifying enzymes that often function cooperatively to repress gene expression. The PRCs are regulated by long noncoding RNAs (lncRNAs) in complex ways. On the one hand, specific lncRNAs cause the PRCs to engage with chromatin and repress gene expression over genomic regions that can span megabases. On the other hand, the PRCs bind RNA with seemingly little sequence specificity, and at least in the case of PRC2, direct RNA-binding has the effect of inhibiting the enzyme. Thus, some RNAs appear to promote PRC activity, while others may inhibit it. The reasons behind this apparent dichotomy are unclear. The most potent PRC-activating lncRNAs associate with chromatin and are predominantly unspliced or harbor unusually long exons. Emerging data imply that these lncRNAs promote PRC activity through internal RNA sequence elements that arise and disappear rapidly in evolutionary time. These sequence elements may function by interacting with common subsets of RNA-binding proteins that recruit or stabilize PRCs on chromatin. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jackson B. Trotman
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Keean C. A. Braceros
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachel E. Cherney
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - McKenzie M. Murvin
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J. Mauro Calabrese
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
44
|
Voss G, Edsjö A, Bjartell A, Ceder Y. Quantification of microRNA editing using two-tailed RT-qPCR for improved biomarker discovery. RNA (NEW YORK, N.Y.) 2021; 27:1412-1424. [PMID: 34433636 PMCID: PMC8522694 DOI: 10.1261/rna.078867.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Even though microRNAs have been viewed as promising biomarkers for years, their clinical implementation is still lagging far behind. This is in part due to the lack of RT-qPCR technologies that can differentiate between microRNA isoforms. For example, A-to-I editing of microRNAs through adenosine deaminase acting on RNA (ADAR) enzymes can affect their expression levels and functional roles, but editing isoform-specific assays are not commercially available. Here, we describe RT-qPCR assays that are specific for editing isoforms, using microRNA-379 (miR-379) as a model. The assays are based on two-tailed RT-qPCR, and we show them to be compatible both with SYBR Green and hydrolysis-based chemistries, as well as with both qPCR and digital PCR. The assays could readily detect different miR-379 editing isoforms in various human tissues as well as changes of editing levels in ADAR-overexpressing cell lines. We found that the miR-379 editing frequency was higher in prostate cancer samples compared to benign prostatic hyperplasia samples. Furthermore, decreased expression of unedited miR-379, but not edited miR-379, was associated with treatment resistance, metastasis, and shorter overall survival. Taken together, this study presents the first RT-qPCR assays that were demonstrated to distinguish A-to-I-edited microRNAs, and shows that they can be useful in the identification of biomarkers that previously have been masked by other isoforms.
Collapse
Affiliation(s)
- Gjendine Voss
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, 22381 Lund, Sweden
| | - Anders Edsjö
- Department of Clinical Genetics and Pathology, Laboratory Medicine, Medical Services, Region Skåne, 22185 Lund, Sweden
| | - Anders Bjartell
- Department of Urology, Skåne University Hospital, 20502 Malmö, Sweden
| | - Yvonne Ceder
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, 22381 Lund, Sweden
| |
Collapse
|
45
|
Munjas J, Sopić M, Stefanović A, Košir R, Ninić A, Joksić I, Antonić T, Spasojević-Kalimanovska V, Prosenc Zmrzljak U. Non-Coding RNAs in Preeclampsia-Molecular Mechanisms and Diagnostic Potential. Int J Mol Sci 2021; 22:10652. [PMID: 34638993 PMCID: PMC8508896 DOI: 10.3390/ijms221910652] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Preeclampsia (PE) is a leading cause of maternal and neonatal morbidity and mortality worldwide. Defects in trophoblast invasion, differentiation of extravillous trophoblasts and spiral artery remodeling are key factors in PE development. Currently there are no predictive biomarkers clinically available for PE. Recent technological advancements empowered transcriptome exploration and led to the discovery of numerous non-coding RNA species of which microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the most investigated. They are implicated in the regulation of numerous cellular functions, and as such are being extensively explored as potential biomarkers for various diseases. Altered expression of numerous lncRNAs and miRNAs in placenta has been related to pathophysiological processes that occur in preeclampsia. In the following text we offer summary of the latest knowledge of the molecular mechanism by which lnRNAs and miRNAs (focusing on the chromosome 19 miRNA cluster (C19MC)) contribute to pathophysiology of PE development and their potential utility as biomarkers of PE, with special focus on sample selection and techniques for the quantification of lncRNAs and miRNAs in maternal circulation.
Collapse
Affiliation(s)
- Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | - Miron Sopić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | - Aleksandra Stefanović
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | - Rok Košir
- BIA Separations CRO, Labena Ltd., Street Verovškova 64, 1000 Ljubljana, Slovenia;
| | - Ana Ninić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | - Ivana Joksić
- Genetic Laboratory Department, Obstetrics and Gynaecology Clinic “Narodni Front”, Street Kraljice Natalije 62, 11000 Belgrade, Serbia;
| | - Tamara Antonić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | - Vesna Spasojević-Kalimanovska
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | | |
Collapse
|
46
|
Vilimova M, Contrant M, Randrianjafy R, Dumas P, Elbasani E, Ojala P, Pfeffer S, Fender A. Cis regulation within a cluster of viral microRNAs. Nucleic Acids Res 2021; 49:10018-10033. [PMID: 34417603 PMCID: PMC8464075 DOI: 10.1093/nar/gkab731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs involved in virtually all biological processes. Although many of them are co-expressed from clusters, little is known regarding the impact of this organization on the regulation of their accumulation. In this study, we set to decipher a regulatory mechanism controlling the expression of the ten clustered pre-miRNAs from Kaposi's sarcoma associated herpesvirus (KSHV). We measured in vitro the efficiency of cleavage of each individual pre-miRNA by the Microprocessor and found that pre-miR-K1 and -K3 were the most efficiently cleaved pre-miRNAs. A mutational analysis showed that, in addition to producing mature miRNAs, they are also important for the optimal expression of the whole set of miRNAs. We showed that this feature depends on the presence of a canonical pre-miRNA at this location since we could functionally replace pre-miR-K1 by a heterologous pre-miRNA. Further in vitro processing analysis suggests that the two stem-loops act in cis and that the cluster is cleaved in a sequential manner. Finally, we exploited this characteristic of the cluster to inhibit the expression of the whole set of miRNAs by targeting the pre-miR-K1 with LNA-based antisense oligonucleotides in cells either expressing a synthetic construct or latently infected with KSHV.
Collapse
Affiliation(s)
- Monika Vilimova
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| | - Maud Contrant
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| | - Ramy Randrianjafy
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| | - Philippe Dumas
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Department of Integrated structural Biology, 1 rue Laurent Fries, BP10142, 67404 Illkirch-Graffenstaden, France
| | - Endrit Elbasani
- Translational Cancer Medicine Research Program, P.O. Box 63 (Haartmaninkatu 8), FIN-00014 University of Helsinki, Finland
| | - Päivi M Ojala
- Translational Cancer Medicine Research Program, P.O. Box 63 (Haartmaninkatu 8), FIN-00014 University of Helsinki, Finland
| | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| | - Aurélie Fender
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| |
Collapse
|
47
|
Prasasya R, Grotheer KV, Siracusa LD, Bartolomei MS. Temple syndrome and Kagami-Ogata syndrome: clinical presentations, genotypes, models and mechanisms. Hum Mol Genet 2021; 29:R107-R116. [PMID: 32592473 DOI: 10.1093/hmg/ddaa133] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Temple syndrome (TS) and Kagami-Ogata syndrome (KOS) are imprinting disorders caused by absence or overexpression of genes within a single imprinted cluster on human chromosome 14q32. TS most frequently arises from maternal UPD14 or epimutations/deletions on the paternal chromosome, whereas KOS most frequently arises from paternal UPD14 or epimutations/deletions on the maternal chromosome. In this review, we describe the clinical symptoms and genetic/epigenetic features of this imprinted region. The locus encompasses paternally expressed protein-coding genes (DLK1, RTL1 and DIO3) and maternally expressed lncRNAs (MEG3/GTL2, RTL1as and MEG8), as well as numerous miRNAs and snoRNAs. Control of expression is complex, with three differentially methylated regions regulating germline, placental and tissue-specific transcription. The strong conserved synteny between mouse chromosome 12aF1 and human chromosome 14q32 has enabled the use of mouse models to elucidate imprinting mechanisms and decipher the contribution of genes to the symptoms of TS and KOS. In this review, we describe relevant mouse models and highlight their value to better inform treatment options for long-term management of TS and KOS patients.
Collapse
Affiliation(s)
- Rexxi Prasasya
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen V Grotheer
- Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, 340 Kingsland Street, Building 123, Nutley, NJ 07110, USA
| | - Linda D Siracusa
- Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, 340 Kingsland Street, Building 123, Nutley, NJ 07110, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
48
|
Smith MD, Pillman K, Jankovic-Karasoulos T, McAninch D, Wan Q, Bogias KJ, McCullough D, Bianco-Miotto T, Breen J, Roberts CT. Large-scale transcriptome-wide profiling of microRNAs in human placenta and maternal plasma at early to mid gestation. RNA Biol 2021; 18:507-520. [PMID: 34412547 PMCID: PMC8677031 DOI: 10.1080/15476286.2021.1963105] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are increasingly seen as important regulators of placental development and opportunistic biomarker targets. Given the difficulty in obtaining samples from early gestation and subsequent paucity of the same, investigation of the role of miRNAs in early gestation human placenta has been limited. To address this, we generated miRNA profiles using 96 placentas from presumed normal pregnancies, across early gestation, in combination with matched profiles from maternal plasma. Placenta samples range from 6 to 23 weeks' gestation, a time period that includes placenta from the early, relatively low but physiological (6-10 weeks' gestation) oxygen environment, and later, physiologically normal oxygen environment (11-23 weeks' gestation).We identified 637 miRNAs with expression in 86 samples (after removing poor quality samples), showing a clear gestational age gradient from 6 to 23 weeks' gestation. We identified 374 differentially expressed (DE) miRNAs between placentas from 6-10 weeks' versus 11-23 weeks' gestation. We see a clear gestational age group bias in miRNA clusters C19MC, C14MC, miR-17 ~ 92 and paralogs, regions that also include many DE miRNAs. Proportional change in expression of placenta-specific miRNA clusters was reflected in maternal plasma.The presumed introduction of oxygenated maternal blood into the placenta (between ~10 and 12 weeks' gestation) changes the miRNA profile of the chorionic villus, particularly in placenta-specific miRNA clusters. Data presented here comprise a clinically important reference set for studying early placenta development and may underpin the generation of minimally invasive methods for monitoring placental health.
Collapse
Affiliation(s)
- Melanie D Smith
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Katherine Pillman
- Centre for Cancer Biology, University of South Australia/SA Pathology, Adelaide, SA, Australia
| | - Tanja Jankovic-Karasoulos
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Dale McAninch
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Qianhui Wan
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - K Justinian Bogias
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Dylan McCullough
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Tina Bianco-Miotto
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - James Breen
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,South Australian Genomics Centre, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Claire T Roberts
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
49
|
Inno R, Kikas T, Lillepea K, Laan M. Coordinated Expressional Landscape of the Human Placental miRNome and Transcriptome. Front Cell Dev Biol 2021; 9:697947. [PMID: 34368147 PMCID: PMC8334369 DOI: 10.3389/fcell.2021.697947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Placenta is a unique organ that serves its own function, and contributes to maternal gestational adaptation and fetal development. Coordination of its transcriptome to satisfy all the maternal-fetal needs across gestation is not fully understood. MicroRNAs are powerful transcriptome modulators capable to adjust rapidly the expression level and dynamics of large gene sets. This MiR-Seq based study presents a multi-omics investigation of the human placental miRNome and its synergy with the transcriptome. The analysis included 52 placentas representing three trimesters of normal pregnancy, and term cases of late-onset preeclampsia (LO-PE), gestational diabetes and affected fetal growth. Gestational-age dependent differential expression (FDR < 0.05) was detected for 319 of 417 tested miRNAs (76.5%). A shared list of target genes of dynamic miRNAs suggested their coordinated action. The most abundant miR-143-3p revealed as a marker for pregnancy progression. The data suggested critical, but distinct roles of placenta-specific imprinted C19MC and C14MC miRNA clusters. Paternally encoded primate-specific C19MC was highly transcribed during first trimester, potentially fine-tuning the early placental transcriptome in dosage-sensitive manner. Maternally encoded eutherian C14MC showed high expression until term, underlining its key contribution across gestation. A major shift in placental miRNome (16% miRNAs) was observed in LO-PE, but not in other term pregnancy complications. Notably, 13/38 upregulated miRNAs were transcribed from C19MC and only one from C14MC, whereas 11/28 downregulated miRNAs represented C14MC and none C19MC. miR-210-3p, miR-512-5p, miR-32-5p, miR-19a-3p, miR-590-3p, miR-379-5p were differentially expressed in LO-PE and cases of small-for-gestational-age newborns, supporting a shared etiology. Expression correlation analysis with the RNA-Seq data (16,567 genes) of the same samples clustered PE-linked miRNAs into five groups. Large notable clusters of miRNA–gene pairs showing directly and inversely correlated expression dynamics suggested potential functional relationships in both scenarios. The first genome-wide study of placental miR-eQTLs identified 66 placental SNVs associated with the expression of neighboring miRNAs, including PE-linked miRNAs miR-30a-5p, miR-210-3p, miR-490-3p and miR-518-5p. This study provided a rich catalog of miRNAs for further in-depth investigations of their individual and joint effect on placental transcriptome. Several highlighted miRNAs may serve as potential biomarkers for pregnancy monitoring and targets to prevent or treat gestational disorders.
Collapse
Affiliation(s)
- Rain Inno
- Human Genetics Research Group, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Triin Kikas
- Human Genetics Research Group, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Kristiina Lillepea
- Human Genetics Research Group, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Maris Laan
- Human Genetics Research Group, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
50
|
Mandal S, Chakrabarty D, Bhattacharya A, Paul J, Haldar S, Pal K. miRNA regulation of G protein-coupled receptor mediated angiogenic pathways in cancer. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00365-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|