1
|
Calarco JA, Taylor SR, Miller DM. Detecting gene expression in Caenorhabditis elegans. Genetics 2025; 229:1-108. [PMID: 39693264 PMCID: PMC11979774 DOI: 10.1093/genetics/iyae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/30/2024] [Indexed: 12/20/2024] Open
Abstract
Reliable methods for detecting and analyzing gene expression are necessary tools for understanding development and investigating biological responses to genetic and environmental perturbation. With its fully sequenced genome, invariant cell lineage, transparent body, wiring diagram, detailed anatomy, and wide array of genetic tools, Caenorhabditis elegans is an exceptionally useful model organism for linking gene expression to cellular phenotypes. The development of new techniques in recent years has greatly expanded our ability to detect gene expression at high resolution. Here, we provide an overview of gene expression methods for C. elegans, including techniques for detecting transcripts and proteins in situ, bulk RNA sequencing of whole worms and specific tissues and cells, single-cell RNA sequencing, and high-throughput proteomics. We discuss important considerations for choosing among these techniques and provide an overview of publicly available online resources for gene expression data.
Collapse
Affiliation(s)
- John A Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3G5
| | - Seth R Taylor
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
2
|
Vandenbosch M, van Hove ERA, Mohren R, Vermeulen I, Dijkman H, Heeren RMA, Leonards PEG, Hughes S. Combined matrix-assisted laser desorption/ionisation-mass spectrometry imaging with liquid chromatography-tandem mass spectrometry for observing spatial distribution of lipids in whole Caenorhabditis elegans. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9850. [PMID: 39034751 DOI: 10.1002/rcm.9850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 07/23/2024]
Abstract
RATIONALE Matrix-assisted laser desorption/ionisation-mass spectrometry imaging (MALDI-MSI) is a powerful label-free technique for biomolecule detection (e.g., lipids), within tissue sections across various biological species. However, despite its utility in many applications, the nematode Caenorhabditis elegans is not routinely used in combination with MALDI-MSI. The lack of studies exploring spatial distribution of biomolecules in nematodes is likely due to challenges with sample preparation. METHODS This study developed a sample preparation method for whole intact nematodes, evaluated using cryosectioning of nematodes embedded in a 10% gelatine solution to obtain longitudinal cross sections. The slices were then subjected to MALDI-MSI, using a RapifleX Tissuetyper in positive and negative polarities. Samples were also prepared for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis using an Exploris 480 coupled to a HPLC Vanquish system to confirm the MALDI-MSI results. RESULTS An optimised embedding method was developed for longitudinal cross-sectioning of individual worms. To obtain longitudinal cross sections, nematodes were frozen at -80°C so that all worms were rod shaped. Then, the samples were defrosted and transferred to a 10% gelatine matrix in a cryomold; the worms aligned, and the whole cryomold submerged in liquid nitrogen. Using MALDI-MSI, we were able to observe the distribution of lipids within C. elegans, with clear differences in their spatial distribution at a resolution of 5 μm. To confirm the lipids from MALDI-MSI, age-matched nematodes were subjected to LC-MS/MS. Here, 520 lipids were identified using LC-MS/MS, indicating overlap with MALDI-MSI data. CONCLUSIONS This optimised sample preparation technique enabled (un)targeted analysis of spatially distributed lipids within individual nematodes. The possibility to detect other biomolecules using this method thus laid the basis for prospective preclinical and toxicological studies on C. elegans.
Collapse
Affiliation(s)
- Michiel Vandenbosch
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Maastricht, The Netherlands
| | - Erika R Amstalden van Hove
- Amsterdam Institute for Life and Environment, Chemistry for Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ronny Mohren
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Maastricht, The Netherlands
| | - Isabeau Vermeulen
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Maastricht, The Netherlands
| | - Henry Dijkman
- HAN University of Applied Sciences, Nijmegen, The Netherlands
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Maastricht, The Netherlands
| | - Pim E G Leonards
- Amsterdam Institute for Life and Environment, Chemistry for Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Samantha Hughes
- Amsterdam Institute for Life and Environment, Environmental Health and Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Su Y, Shea J, Destephanis D, Su Z. Transcriptomic analysis of the spatiotemporal axis of oogenesis and fertilization in C. elegans. Front Cell Dev Biol 2024; 12:1436975. [PMID: 39224437 PMCID: PMC11366716 DOI: 10.3389/fcell.2024.1436975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Caenorhabditis elegans hermaphrodite presents a unique model to study the formation of oocytes. However, the size of the model animal and difficulties in retrieval of specific stages of the germline have obviated closer systematic studies of this process throughout the years. Here, we present a transcriptomic level analysis into the oogenesis of C. elegans hermaphrodites. We dissected a hermaphrodite gonad into seven sections corresponding to the mitotic distal region, the pachytene region, the diplotene region, the early diakinesis region and the 3 most proximal oocytes, and deeply sequenced the transcriptome of each of them along with that of the fertilized egg using a single-cell RNA-seq (scRNA-seq) protocol. We identified specific gene expression events as well as gene splicing events in finer detail along the gonad and provided novel insights into underlying mechanisms of the oogenesis process. Furthermore, through careful review of relevant research literature coupled with patterns observed in our analysis, we delineate transcripts that may serve functions in the interactions between the germline and cells of the somatic gonad. These results expand our knowledge of the transcriptomic space of the C. elegans germline and lay a foundation on which future studies of the germline can be based upon.
Collapse
Affiliation(s)
| | | | | | - Zhengchang Su
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
4
|
Su Y, Shea J, DeStephanis D, Su Z. Transcriptomic Analysis of the Spatiotemporal Axis of Oogenesis and Fertilization in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597235. [PMID: 38895354 PMCID: PMC11185608 DOI: 10.1101/2024.06.03.597235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The oocyte germline of the C. elegans hermaphrodite presents a unique model to study the formation of oocytes. However, the size of the model animal and difficulties in retrieval of specific stages of the germline have obviated closer systematic studies of this process throughout the years. Here, we present a transcriptomic level analysis into the oogenesis of C. elegans hermaphrodites. We dissected a hermaphrodite gonad into seven sections corresponding to the mitotic distal region, the pachytene, the diplotene, the early diakinesis region and the 3 most proximal oocytes, and deeply sequenced the transcriptome of each of them along with that of the fertilized egg using a single-cell RNA-seq protocol. We identified specific gene expression events as well as gene splicing events in finer detail along the oocyte germline and provided novel insights into underlying mechanisms of the oogenesis process. Furthermore, through careful review of relevant research literature coupled with patterns observed in our analysis, we attempt to delineate transcripts that may serve functions in the interaction between the germline and cells of the somatic gonad. These results expand our knowledge of the transcriptomic space of the C. elegans germline and lay a foundation on which future studies of the germline can be based upon.
Collapse
Affiliation(s)
- Yangqi Su
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jonathan Shea
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Darla DeStephanis
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
5
|
Sternberg PW, Van Auken K, Wang Q, Wright A, Yook K, Zarowiecki M, Arnaboldi V, Becerra A, Brown S, Cain S, Chan J, Chen WJ, Cho J, Davis P, Diamantakis S, Dyer S, Grigoriadis D, Grove CA, Harris T, Howe K, Kishore R, Lee R, Longden I, Luypaert M, Müller HM, Nuin P, Quinton-Tulloch M, Raciti D, Schedl T, Schindelman G, Stein L. WormBase 2024: status and transitioning to Alliance infrastructure. Genetics 2024; 227:iyae050. [PMID: 38573366 PMCID: PMC11075546 DOI: 10.1093/genetics/iyae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
WormBase has been the major repository and knowledgebase of information about the genome and genetics of Caenorhabditis elegans and other nematodes of experimental interest for over 2 decades. We have 3 goals: to keep current with the fast-paced C. elegans research, to provide better integration with other resources, and to be sustainable. Here, we discuss the current state of WormBase as well as progress and plans for moving core WormBase infrastructure to the Alliance of Genome Resources (the Alliance). As an Alliance member, WormBase will continue to interact with the C. elegans community, develop new features as needed, and curate key information from the literature and large-scale projects.
Collapse
Affiliation(s)
- Paul W Sternberg
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kimberly Van Auken
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Qinghua Wang
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Adam Wright
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Karen Yook
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Magdalena Zarowiecki
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Valerio Arnaboldi
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrés Becerra
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Stephanie Brown
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| | - Scott Cain
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Juancarlos Chan
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Wen J Chen
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jaehyoung Cho
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul Davis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Stavros Diamantakis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Sarah Dyer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | | | - Christian A Grove
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Todd Harris
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Kevin Howe
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Ranjana Kishore
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Raymond Lee
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ian Longden
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Manuel Luypaert
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Hans-Michael Müller
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paulo Nuin
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Mark Quinton-Tulloch
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Daniela Raciti
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gary Schindelman
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lincoln Stein
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| |
Collapse
|
6
|
Hughes S, Hessel EVS. Zebrafish and nematodes as whole organism models to measure developmental neurotoxicity. Crit Rev Toxicol 2024; 54:330-343. [PMID: 38832580 DOI: 10.1080/10408444.2024.2342448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/05/2024] [Indexed: 06/05/2024]
Abstract
Despite the growing epidemiological evidence of an association between toxin exposure and developmental neurotoxicity (DNT), systematic testing of DNT is not mandatory in international regulations for admission of pharmaceuticals or industrial chemicals. However, to date around 200 compounds, ranging from pesticides, pharmaceuticals and industrial chemicals, have been tested for DNT in the current OECD test guidelines (TG-443 or TG-426). There are calls for the development of new approach methodologies (NAMs) for DNT, which has resulted in a DNT testing battery using in vitro human cell-based assays. These assays provide a means to elucidate the molecular mechanisms of toxicity in humans which is lacking in animal-based toxicity tests. However, cell-based assays do not represent all steps of the complex process leading to DNT. Validated models with a multi-organ network of pathways that interact at the molecular, cellular and tissue level at very specific timepoints in a life cycle are currently missing. Consequently, whole model organisms are being developed to screen for, and causally link, new molecular targets of DNT compounds and how they affect whole brain development and neurobehavioral endpoints. Given the practical and ethical restraints associated with vertebrate testing, lower animal models that qualify as 3 R (reduce, refine and replace) models, including the nematode (Caenorhabditis elegans) and the zebrafish (Danio rerio) will prove particularly valuable for unravelling toxicity pathways leading to DNT. Although not as complex as the human brain, these 3 R-models develop a complete functioning brain with numerous neurodevelopmental processes overlapping with human brain development. Importantly, the main signalling pathways relating to (neuro)development, metabolism and growth are highly conserved in these models. We propose the use of whole model organisms specifically zebrafish and C. elegans for DNT relevant endpoints.
Collapse
Affiliation(s)
- Samantha Hughes
- Department of Environmental Health and Toxicology, A-LIFE, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
7
|
Collins EMS, Hessel EVS, Hughes S. How neurobehavior and brain development in alternative whole-organism models can contribute to prediction of developmental neurotoxicity. Neurotoxicology 2024; 102:48-57. [PMID: 38552718 PMCID: PMC11139590 DOI: 10.1016/j.neuro.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Developmental neurotoxicity (DNT) is not routinely evaluated in chemical risk assessment because current test paradigms for DNT require the use of mammalian models which are ethically controversial, expensive, and resource demanding. Consequently, efforts have focused on revolutionizing DNT testing through affordable novel alternative methods for risk assessment. The goal is to develop a DNT in vitro test battery amenable to high-throughput screening (HTS). Currently, the DNT in vitro test battery consists primarily of human cell-based assays because of their immediate relevance to human health. However, such cell-based assays alone are unable to capture the complexity of a developing nervous system. Whole organismal systems that qualify as 3 R (Replace, Reduce and Refine) models are urgently needed to complement cell-based DNT testing. These models can provide the necessary organismal context and be used to explore the impact of chemicals on brain function by linking molecular and/or cellular changes to behavioural readouts. The nematode Caenorhabditis elegans, the planarian Dugesia japonica, and embryos of the zebrafish Danio rerio are all suited to low-cost HTS and each has unique strengths for DNT testing. Here, we review the strengths and the complementarity of these organisms in a novel, integrative context and highlight how they can augment current cell-based assays for more comprehensive and robust DNT screening of chemicals. Considering the limitations of all in vitro test systems, we discuss how a smart combinatory use of these systems will contribute to a better human relevant risk assessment of chemicals that considers the complexity of the developing brain.
Collapse
Affiliation(s)
- Eva-Maria S Collins
- Swarthmore College, Biology, 500 College Avenue, Swarthmore, PA 19081, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA, the Netherlands
| | - Samantha Hughes
- Department of Environmental Health and Toxicology, A-LIFE, Vrije Universiteit Amsterdam, de Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands.
| |
Collapse
|
8
|
Moya ND, Stevens L, Miller IR, Sokol CE, Galindo JL, Bardas AD, Koh ESH, Rozenich J, Yeo C, Xu M, Andersen EC. Novel and improved Caenorhabditis briggsae gene models generated by community curation. BMC Genomics 2023; 24:486. [PMID: 37626289 PMCID: PMC10463891 DOI: 10.1186/s12864-023-09582-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The nematode Caenorhabditis briggsae has been used as a model in comparative genomics studies with Caenorhabditis elegans because of their striking morphological and behavioral similarities. However, the potential of C. briggsae for comparative studies is limited by the quality of its genome resources. The genome resources for the C. briggsae laboratory strain AF16 have not been developed to the same extent as C. elegans. The recent publication of a new chromosome-level reference genome for QX1410, a C. briggsae wild strain closely related to AF16, has provided the first step to bridge the gap between C. elegans and C. briggsae genome resources. Currently, the QX1410 gene models consist of software-derived gene predictions that contain numerous errors in their structure and coding sequences. In this study, a team of researchers manually inspected over 21,000 gene models and underlying transcriptomic data to repair software-derived errors. RESULTS We designed a detailed workflow to train a team of nine students to manually curate gene models using RNA read alignments. We manually inspected the gene models, proposed corrections to the coding sequences of over 8,000 genes, and modeled thousands of putative isoforms and untranslated regions. We exploited the conservation of protein sequence length between C. briggsae and C. elegans to quantify the improvement in protein-coding gene model quality and showed that manual curation led to substantial improvements in the protein sequence length accuracy of QX1410 genes. Additionally, collinear alignment analysis between the QX1410 and AF16 genomes revealed over 1,800 genes affected by spurious duplications and inversions in the AF16 genome that are now resolved in the QX1410 genome. CONCLUSIONS Community-based, manual curation using transcriptome data is an effective approach to improve the quality of software-derived protein-coding genes. The detailed protocols provided in this work can be useful for future large-scale manual curation projects in other species. Our manual curation efforts have brought the QX1410 gene models to a comparable level of quality as the extensively curated AF16 gene models. The improved genome resources for C. briggsae provide reliable tools for the study of Caenorhabditis biology and other related nematodes.
Collapse
Affiliation(s)
- Nicolas D Moya
- Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall 2205 Tech Drive, Evanston, IL, 60208, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA
| | - Lewis Stevens
- Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall 2205 Tech Drive, Evanston, IL, 60208, USA
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Isabella R Miller
- Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall 2205 Tech Drive, Evanston, IL, 60208, USA
| | - Chloe E Sokol
- Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall 2205 Tech Drive, Evanston, IL, 60208, USA
| | - Joseph L Galindo
- Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall 2205 Tech Drive, Evanston, IL, 60208, USA
| | - Alexandra D Bardas
- Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall 2205 Tech Drive, Evanston, IL, 60208, USA
| | - Edward S H Koh
- Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall 2205 Tech Drive, Evanston, IL, 60208, USA
| | - Justine Rozenich
- Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall 2205 Tech Drive, Evanston, IL, 60208, USA
| | - Cassia Yeo
- Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall 2205 Tech Drive, Evanston, IL, 60208, USA
| | - Maryanne Xu
- Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall 2205 Tech Drive, Evanston, IL, 60208, USA
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, 4619 Silverman Hall 2205 Tech Drive, Evanston, IL, 60208, USA.
| |
Collapse
|
9
|
Kim JS, Park SK, Lee H. Sniffer worm, C. elegans, as a toxicity evaluation model organism with sensing and locomotion abilities. PLoS One 2023; 18:e0289493. [PMID: 37531332 PMCID: PMC10395899 DOI: 10.1371/journal.pone.0289493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
Additive manufacturing, or 3D printing, has revolutionized the way we create objects. However, its layer-by-layer process may lead to an increased incidence of local defects compared to traditional casting-based methods. Factors such as light intensity, depth of light penetration, component inhomogeneity, and fluctuations in nozzle temperature all contribute to defect formations. These defective regions can become sources of toxic component leakage, but pinpointing their locations in 3D printed materials remains a challenge. Traditional toxicological assessments rely on the extraction and subsequent exposure of living organisms to these harmful agents, thus only offering a passive detection approach. Therefore, the development of an active system to both identify and locate sources of toxicity is essential in the realm of 3D printing technologies. Herein, we introduce the use of the nematode model organism, Caenorhabditis elegans (C. elegans), for toxicity evaluation. C. elegans exhibits distinctive 'sensing' and 'locomotion' capabilities that enable it to actively navigate toward safe zones while steering clear of hazardous areas. This active behavior sets C. elegans apart from other aquatic and animal models, making it an exceptional choice for immediate and precise identification and localization of toxicity sources in 3D printed materials.
Collapse
Affiliation(s)
- Jun Sung Kim
- Department of Chemistry KAIST, Daejeon, Republic of Korea
| | - Sang-Kyu Park
- Department of Medical Biotechnology, College of Medical Science, Soonchunhyang University, Asan, Chungnam, Korea
| | - Haeshin Lee
- Department of Chemistry KAIST, Daejeon, Republic of Korea
| |
Collapse
|
10
|
Bairakdar MD, Tewari A, Truttmann MC. A meta-analysis of RNA-Seq studies to identify novel genes that regulate aging. Exp Gerontol 2023; 173:112107. [PMID: 36731807 PMCID: PMC10653729 DOI: 10.1016/j.exger.2023.112107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Aging is a ubiquitous biological process that limits the maximal lifespan of most organisms. Significant efforts by many groups have identified mechanisms that, when triggered by natural or artificial stimuli, are sufficient to either enhance or decrease maximal lifespan. Previous aging studies using the nematode Caenorhabditis elegans (C. elegans) generated a wealth of publicly available transcriptomics datasets linking changes in gene expression to lifespan regulation. However, a comprehensive comparison of these datasets across studies in the context of aging biology is missing. Here, we carry out a systematic meta-analysis of over 1200 bulk RNA sequencing (RNASeq) samples obtained from 74 peer-reviewed publications on aging-related transcriptomic changes in C. elegans. Using both differential expression analyses and machine learning approaches, we mine the pooled data for novel pro-longevity genes. We find that both approaches identify known and propose novel pro-longevity genes. Further, we find that inter-lab experimental variance complicates the application of machine learning algorithms, a limitation that was not solved using bulk RNA-Seq batch correction and normalization techniques. Taken as a whole, our results indicate that machine learning approaches may hold promise for the identification of genes that regulate aging but will require more sophisticated batch correction strategies or standardized input data to reliably identify novel pro-longevity genes.
Collapse
Affiliation(s)
- Mohamad D Bairakdar
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ambuj Tewari
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA; Department of Statistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthias C Truttmann
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA; Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Karengera A, Bao C, Bovee TFH, Dinkla IJT, Murk AJ. A Multiplex Gene Expression Assay for Direct Measurement of RNA Transcripts in Crude Lysates of the Nematode Caenorhabditis elegans Used as a Bioanalytical Tool. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:130-142. [PMID: 36282018 PMCID: PMC10107722 DOI: 10.1002/etc.5505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Gene expression profiling in Caenorhabditis elegans has been demonstrated to be a potential bioanalytical tool to detect the toxic potency of environmental contaminants. The RNA transcripts of genes responding to toxic exposure can be used as biomarkers for detecting these toxins. For routine application in environmental quality monitoring, an easy-to-use multiplex assay is required to reliably quantify expression levels of these biomarkers. In the present study, a bead-based assay was developed to fingerprint gene expression in C. elegans by quantitating messenger RNAs (mRNAs) of multiple target genes directly from crude nematode lysates, circumventing RNA extraction and purification steps. The assay uses signal amplification rather than target amplification for direct measurement of toxin-induced RNA transcripts. Using a 50-gene panel, the expression changes of four candidate reference genes and 46 target mRNAs for various contaminants and wastewaters were successfully measured, and the expression profiles indicated the type of toxin present. Moreover, the multiplex assay response was in line with previous results obtained with more time-consuming reverse-transcription quantitative polymerase chain reaction and microarray analyses. In addition, the transcriptomic profiles of nematodes exposed to wastewater samples and extracts prepared from tissues of swimming crabs were evaluated. The profiles indicated the presence of organic pollutants. The present study illustrates the successful development of a multiplex fluorescent bead-based approach using nematode C. elegans crude lysates for gene expression profiling of target RNAs. This method can be used to routinely fingerprint the presence of toxic contaminants in environmental samples and to identify the most biologically active fraction of the contaminant mixture in a toxicity identification and evaluation approach. Environ Toxicol Chem 2023;42:130-142. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Antoine Karengera
- Department of Animal Sciences, Marine Animal Ecology GroupWageningen UniversityWageningenThe Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water TechnologyLeeuwardenThe Netherlands
| | - Cong Bao
- Department of Animal Sciences, Marine Animal Ecology GroupWageningen UniversityWageningenThe Netherlands
- Department of Analysis and Testing CenterYangtze Delta Region Institute of Tsinghua UniversityJiaxingChina
| | - Toine F. H. Bovee
- Wageningen Food Safety Research, Team Bioassays & BiosensorsWageningen University & ResearchWageningenThe Netherlands
| | - Inez J. T. Dinkla
- Wetsus, European Centre of Excellence for Sustainable Water TechnologyLeeuwardenThe Netherlands
| | - Albertinka J. Murk
- Department of Animal Sciences, Marine Animal Ecology GroupWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
12
|
Ceron-Noriega A, Almeida MV, Levin M, Butter F. Nematode gene annotation by machine-learning-assisted proteotranscriptomics enables proteome-wide evolutionary analysis. Genome Res 2023; 33:112-128. [PMID: 36653121 PMCID: PMC9977148 DOI: 10.1101/gr.277070.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/18/2022] [Indexed: 01/19/2023]
Abstract
Nematodes encompass more than 24,000 described species, which were discovered in almost every ecological habitat, and make up >80% of metazoan taxonomic diversity in soils. The last common ancestor of nematodes is believed to date back to ∼650-750 million years, generating a large and phylogenetically diverse group to be explored. However, for most species high-quality gene annotations are incomprehensive or missing. Combining short-read RNA sequencing with mass spectrometry-based proteomics and machine-learning quality control in an approach called proteotranscriptomics, we improve gene annotations for nine genome-sequenced nematode species and provide new gene annotations for three additional species without genome assemblies. Emphasizing the sensitivity of our methodology, we provide evidence for two hitherto undescribed genes in the model organism Caenorhabditis elegans Extensive phylogenetic systems analysis using this comprehensive proteome annotation provides new insights into evolutionary processes of this metazoan group.
Collapse
Affiliation(s)
| | | | - Michal Levin
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
13
|
Velumani M, Thiruppathi G, Mohankumar A, Kalaiselvi D, Sundararaj P, Premasudha P. Green synthesis of zinc oxide nanoparticles using Cananga odorata essential oil and its antibacterial efficacy in vitro and in vivo. Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109448. [PMID: 36064134 DOI: 10.1016/j.cbpc.2022.109448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/01/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022]
Abstract
Zinc oxide (ZnO) nanostructure exhibits antimicrobial properties, which have prompted more research on their bactericidal effect against foodborne pathogens. The present work focused on the green synthesis of ZnO nanoparticles (ZnO NPs) using Cananga odorata essential oil. The synthesized ZnO NPs were characterized by XRD, UV-Vis spectroscopy, zeta potential, SEM, and FT-IR analysis. The bactericidal activity of biosynthesized ZnO NPs was tested against Pseudomonas aeruginosa and Staphylococcus aureus. The in vitro results indicate that ZnO NPs have excellent antibacterial activity and that the bactericidal and bacteriostatic mechanisms are based on ROS production and depend on its penetration and interaction with bacterial cells. Moreover, ZnO NPs were found to be non-toxic to Caenorhabditis elegans, an in vivo animal model, up to 1 g/L and exert antibacterial activity by reducing the growth and colonization of pathogens. By reducing pathogen virulence, ZnO NPs significantly improved worms' physiological functions such as pharyngeal pumping, body length, reproduction, and movement. The competitive effect of ZnO NPs against pathogenic bacteria increased the gut-barrier integrity of C. elegans. The most interesting observation was noted that ZnO treatment increased the mean survival rate of P. aeruginosa and S. aureus infected C. elegans by 56.6 % and 62.4 %, respectively. As an outcome, our study proved that green synthesized ZnO NPs exhibit remarkable biological properties and can be used as an efficient bactericidal agent against foodborne pathogens.
Collapse
Affiliation(s)
- Muthusamy Velumani
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | | | - Amirthalingam Mohankumar
- Department of Zoology, Bharathiar University, Coimbatore, Tamilnadu 641046, India. https://twitter.com/@amir_mohankumar
| | - Duraisamy Kalaiselvi
- Department of Zoology, Bharathiar University, Coimbatore, Tamilnadu 641046, India. https://twitter.com/@KalaiselviDura1
| | | | - Paramasivam Premasudha
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamilnadu 641046, India.
| |
Collapse
|
14
|
Guan G, Zhao Z, Tang C. Delineating the mechanisms and design principles of Caenorhabditis elegans embryogenesis using in toto high-resolution imaging data and computational modeling. Comput Struct Biotechnol J 2022; 20:5500-5515. [PMID: 36284714 PMCID: PMC9562942 DOI: 10.1016/j.csbj.2022.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
The nematode (roundworm) Caenorhabditis elegans is one of the most popular animal models for the study of developmental biology, as its invariant development and transparent body enable in toto cellular-resolution fluorescence microscopy imaging of developmental processes at 1-min intervals. This has led to the development of various computational tools for the systematic and automated analysis of imaging data to delineate the molecular and cellular processes throughout the embryogenesis of C. elegans, such as those associated with cell lineage, cell migration, cell morphology, and gene activity. In this review, we first introduce C. elegans embryogenesis and the development of techniques for tracking cell lineage and reconstructing cell morphology during this process. We then contrast the developmental modes of C. elegans and the customized technologies used for studying them with the ones of other animal models, highlighting its advantage for studying embryogenesis with exceptional spatial and temporal resolution. This is followed by an examination of the physical models that have been devised-based on accurate determinations of developmental processes afforded by analyses of imaging data-to interpret the early embryonic development of C. elegans from subcellular to intercellular levels of multiple cells, which focus on two key processes: cell polarization and morphogenesis. We subsequently discuss how quantitative data-based theoretical modeling has improved our understanding of the mechanisms of C. elegans embryogenesis. We conclude by summarizing the challenges associated with the acquisition of C. elegans embryogenesis data, the construction of algorithms to analyze them, and the theoretical interpretation.
Collapse
Affiliation(s)
- Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- Peking–Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Kondratyeva L, Alekseenko I, Chernov I, Sverdlov E. Data Incompleteness May form a Hard-to-Overcome Barrier to Decoding Life's Mechanism. BIOLOGY 2022; 11:1208. [PMID: 36009835 PMCID: PMC9404739 DOI: 10.3390/biology11081208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022]
Abstract
In this brief review, we attempt to demonstrate that the incompleteness of data, as well as the intrinsic heterogeneity of biological systems, may form very strong and possibly insurmountable barriers for researchers trying to decipher the mechanisms of the functioning of live systems. We illustrate this challenge using the two most studied organisms: E. coli, with 34.6% genes lacking experimental evidence of function, and C. elegans, with identified proteins for approximately 50% of its genes. Another striking example is an artificial unicellular entity named JCVI-syn3.0, with a minimal set of genes. A total of 31.5% of the genes of JCVI-syn3.0 cannot be ascribed a specific biological function. The human interactome mapping project identified only 5-10% of all protein interactions in humans. In addition, most of the available data are static snapshots, and it is barely possible to generate realistic models of the dynamic processes within cells. Moreover, the existing interactomes reflect the de facto interaction but not its functional result, which is an unpredictable emerging property. Perhaps the completeness of molecular data on any living organism is beyond our reach and represents an unsolvable problem in biology.
Collapse
Affiliation(s)
- Liya Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Igor Chernov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Eugene Sverdlov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
- Kurchatov Center for Genome Research, National Research Center “Kurchatov Institute”, Moscow 123182, Russia
| |
Collapse
|
16
|
Hughes S, van de Klashorst D, Veltri CA, Grundmann O. Acute, Sublethal, and Developmental Toxicity of Kratom ( Mitragyna speciosa Korth.) Leaf Preparations on Caenorhabditis elegans as an Invertebrate Model for Human Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6294. [PMID: 35627831 PMCID: PMC9140534 DOI: 10.3390/ijerph19106294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
Kratom (Mitragyna speciosa Korth.) is a tree native to Southeast Asia with stimulant and opioid-like effects which has seen increased use in Europe and North America in recent years. Its safety and pharmacological effects remain under investigation, especially in regard to developmental and generational toxicity. In the current study, we investigated commercial kratom preparations using the nematode Caenorhabditis elegans as a translational model for toxicity and pharmacological effects. The pure alkaloids mitragynine and 7-hydroxymitragynine as well as aqueous, ethanolic, and methanolic extracts of three commercial kratom products were evaluated using a battery of developmental, genotoxic, and opioid-related experiments. As determined previously, the mitragynine and 7-hydroxymitragynine content in kratom samples was higher in the alcoholic extracts than the aqueous extracts. Above the human consumption range equivalent of 15-70 µg/mL, kratom dose-dependently reduced brood size and health of parent worms and their progeny. 7-hydroxymitragynine, but not mitragynine, presented with toxic and developmental effects at very high concentrations, while the positive control, morphine, displayed toxic effects at 0.5 mM. Kratom and its alkaloids did not affect pumping rate or interpump interval in the same way as morphine, suggesting that kratom is unlikely to act primarily via the opioid-signalling pathway. Only at very high doses did kratom cause developmental and genotoxic effects in nematodes, indicating its relative safety.
Collapse
Affiliation(s)
- Samantha Hughes
- A-LIFE Amsterdam Institute for Life and Environment, Section Environmental Health and Toxicology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | | | - Charles A. Veltri
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, Glendale, AZ 85308, USA;
| | - Oliver Grundmann
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, Glendale, AZ 85308, USA;
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
17
|
Camacho J, de Conti A, Pogribny IP, Sprando RL, Hunt PR. Assessment of the effects of organic vs. inorganic arsenic and mercury in Caenorhabditis elegans. Curr Res Toxicol 2022; 3:100071. [PMID: 35602005 PMCID: PMC9118485 DOI: 10.1016/j.crtox.2022.100071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/26/2022] [Accepted: 04/20/2022] [Indexed: 01/03/2023] Open
Abstract
Exposures to mercury and arsenic are known to pose significant threats to human health. Effects specific to organic vs. inorganic forms of these toxic elements are less understood however, especially for organic dimethylarsinic acid (DMA), which has recently been detected in pups of rodent dams orally exposed to inorganic sodium (meta)arsenite (NaAsO2). Caenorhabditis elegans is a small animal alternative toxicity model. To fill data gaps on the effects of DMA relative to NaAsO2, C. elegans were exposed to these two compounds alongside more thoroughly researched inorganic mercury chloride (HgCl2) and organic methylmercury chloride (meHgCl). For timing of developmental milestone acquisition in C. elegans, meHgCl was 2 to 4-fold more toxic than HgCl2, and NaAsO2 was 20-fold more toxic than DMA, ranking the four compounds meHgCl > HgCl2 > NaAsO2 ≫ DMA for developmental toxicity. Methylmercury induced significant decreases in population locomotor activity levels in developing C. elegans. DMA was also associated with developmental hypoactivity, but at >100-fold higher concentrations than meHgCl. Transcriptional alterations in native genes were observed in wild type C. elegans adults exposed to concentrations equitoxic for developmental delay in juveniles. Both forms of arsenic induced genes involved in immune defense and oxidative stress response, while the two mercury species induced proportionally more genes involved in transcriptional regulation. A transgenic bioreporter for activation of conserved proteosome specific unfolded protein response was strongly activated by NaAsO2, but not DMA at tested concentrations. HgCl2 and meHgCl had opposite effects on a bioreporter for unfolded protein response in the endoplasmic reticulum. Presented experiments indicating low toxicity for DMA in C. elegans are consistent with human epidemiologic data correlating higher arsenic methylation capacity with resistance to arsenic toxicity. This work contributes to the understanding of the accuracy and fit-for-use categories for C. elegans toxicity screening and its usefulness to prioritize compounds of concern for further testing.
Collapse
Key Words
- Alternative Toxicity Model
- Arsenic
- DEGs, Differentially Expressed Genes
- DMA, dimethylarsinic acid
- ER, endoplasmic reticulum
- EXT, extinction (a measure of optical density)
- GO, gene ontology
- HgCl2, mercury(ii) chloride
- Inorganic
- L1, first larval stage C. elegans
- LD50, the median lethal dose per kilogram of body weight
- LOEL, lowest observed effect level
- Mercury
- NOEL, no observed effect level
- NaAsO2, sodium (meta)arsenite
- Organic
- OxStrR, Oxidative Stress Response
- Predictive Toxicology
- TOF, time of flight (a measure of size)
- UPR, Unfolded Protein Response
- iAs, inorganic arsenic
- meHgCl, methylmercury chloride
Collapse
Affiliation(s)
- Jessica Camacho
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, 8301 Muirkirk Road, Laurel, MD 20708, United States
| | - Aline de Conti
- Food and Drug Administration, National Center for Toxicological Research, 3900 NCTR Rd, Jefferson, AR 72079, United States
| | - Igor P. Pogribny
- Food and Drug Administration, National Center for Toxicological Research, 3900 NCTR Rd, Jefferson, AR 72079, United States
| | - Robert L. Sprando
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, 8301 Muirkirk Road, Laurel, MD 20708, United States
| | - Piper Reid Hunt
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, 8301 Muirkirk Road, Laurel, MD 20708, United States
| |
Collapse
|
18
|
Hughes S, van Dop M, Kolsters N, van de Klashorst D, Pogosova A, Rijs AM. Using a Caenorhabditis elegans Parkinson's Disease Model to Assess Disease Progression and Therapy Efficiency. Pharmaceuticals (Basel) 2022; 15:512. [PMID: 35631338 PMCID: PMC9143865 DOI: 10.3390/ph15050512] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Despite Parkinson's Disease (PD) being the second most common neurodegenerative disease, treatment options are limited. Consequently, there is an urgent need to identify and screen new therapeutic compounds that slow or reverse the pathology of PD. Unfortunately, few new therapeutics are being produced, partly due to the low throughput and/or poor predictability of the currently used model organisms and in vivo screening methods. Our objective was to develop a simple and affordable platform for drug screening utilizing the nematode Caenorhabditis elegans. The effect of Levodopa, the "Gold standard" of PD treatment, was explored in nematodes expressing the disease-causing α-synuclein protein. We focused on two key hallmarks of PD: plaque formation and mobility. Exposure to Levodopa ameliorated the mobility defect in C. elegans, similar to people living with PD who take the drug. Further, long-term Levodopa exposure was not detrimental to lifespan. This C. elegans-based method was used to screen a selection of small-molecule drugs for an impact on α-synuclein aggregation and mobility, identifying several promising compounds worthy of further investigation, most notably Ambroxol. The simple methodology means it can be adopted in many labs to pre-screen candidate compounds for a positive impact on disease progression.
Collapse
Affiliation(s)
- Samantha Hughes
- HAN BioCentre, HAN University of Applied Sciences, Laan van Scheut 2, 6525 EM Nijmegen, The Netherlands; (M.v.D.); (N.K.); (D.v.d.K.); (A.P.)
- A-LIFE Amsterdam Institute for Life and Environment, Section Environmental Health and Toxicology, Vrije Univeristeit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Maritza van Dop
- HAN BioCentre, HAN University of Applied Sciences, Laan van Scheut 2, 6525 EM Nijmegen, The Netherlands; (M.v.D.); (N.K.); (D.v.d.K.); (A.P.)
| | - Nikki Kolsters
- HAN BioCentre, HAN University of Applied Sciences, Laan van Scheut 2, 6525 EM Nijmegen, The Netherlands; (M.v.D.); (N.K.); (D.v.d.K.); (A.P.)
| | - David van de Klashorst
- HAN BioCentre, HAN University of Applied Sciences, Laan van Scheut 2, 6525 EM Nijmegen, The Netherlands; (M.v.D.); (N.K.); (D.v.d.K.); (A.P.)
| | - Anastasia Pogosova
- HAN BioCentre, HAN University of Applied Sciences, Laan van Scheut 2, 6525 EM Nijmegen, The Netherlands; (M.v.D.); (N.K.); (D.v.d.K.); (A.P.)
| | - Anouk M. Rijs
- Division of BioAnalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Univeristeit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
19
|
Abstract
The nematode Caenorhabditis elegans has shed light on many aspects of eukaryotic biology, including genetics, development, cell biology, and genomics. A major factor in the success of C. elegans as a model organism has been the availability, since the late 1990s, of an essentially gap-free and well-annotated nuclear genome sequence, divided among 6 chromosomes. In this review, we discuss the structure, function, and biology of C. elegans chromosomes and then provide a general perspective on chromosome biology in other diverse nematode species. We highlight malleable chromosome features including centromeres, telomeres, and repetitive elements, as well as the remarkable process of programmed DNA elimination (historically described as chromatin diminution) that induces loss of portions of the genome in somatic cells of a handful of nematode species. An exciting future prospect is that nematode species may enable experimental approaches to study chromosome features and to test models of chromosome evolution. In the long term, fundamental insights regarding how speciation is integrated with chromosome biology may be revealed.
Collapse
Affiliation(s)
- Peter M Carlton
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, CO 80045, USA.,RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
20
|
Karengera A, Bao C, Riksen JAG, van Veelen HPJ, Sterken MG, Kammenga JE, Murk AJ, Dinkla IJT. Development of a transcription-based bioanalytical tool to quantify the toxic potencies of hydrophilic compounds in water using the nematode Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112923. [PMID: 34700171 DOI: 10.1016/j.ecoenv.2021.112923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/16/2021] [Accepted: 10/18/2021] [Indexed: 05/14/2023]
Abstract
Low concentrations of environmental contaminants can be difficult to detect with current analytical tools, yet they may pose a risk to human and environmental health. The development of bioanalytical tools can help to quantify toxic potencies of biologically active compounds even of hydrophilic contaminants that are hard to extract from water samples. In this study, we exposed the model organism Caenorhabditis elegans synchronized in larval stage L4 to hydrophilic compounds via the water phase and analyzed the effect on gene transcription abundance. The nematodes were exposed to three direct-acting genotoxicants (1 mM and 5 mM): N-ethyl-N-nitrosourea (ENU), formaldehyde (HCHO), and methyl methanesulfonate (MMS). Genome-wide gene expression analysis using microarrays revealed significantly altered transcription levels of 495 genes for HCHO, 285 genes for ENU, and 569 genes for MMS in a concentration-dependent manner. A relatively high number of differentially expressed genes was downregulated, suggesting a general stress in nematodes treated with toxicants. Gene ontology and Kyoto encyclopedia of genes and genomes analysis demonstrated that the upregulated genes were primarily associated with metabolism, xenobiotic detoxification, proteotoxic stress, and innate immune response. Interestingly, genes downregulated by MMS were linked to the inhibition of neurotransmission, and this is in accordance with the observed decreased locomotion in MMS-exposed nematodes. Unexpectedly, the expression level of DNA damage response genes such as cell-cycle checkpoints or DNA-repair proteins were not altered. Overall, the current study shows that gene expression profiling of nematodes can be used to identify the potential mechanisms underlying the toxicity of chemical compounds. C. elegans is a promising test organism to further develop into a bioanalytical tool for quantification of the toxic potency of a wide array of hydrophilic contaminants.
Collapse
Affiliation(s)
- Antoine Karengera
- Wageningen University, Department of Animal Sciences, Marine Animal Ecology Group, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands.
| | - Cong Bao
- Wageningen University, Department of Animal Sciences, Marine Animal Ecology Group, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Joost A G Riksen
- Wageningen University, Plant Sciences, Laboratory of Nematology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - H Pieter J van Veelen
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Mark G Sterken
- Wageningen University, Plant Sciences, Laboratory of Nematology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jan E Kammenga
- Wageningen University, Plant Sciences, Laboratory of Nematology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Albertinka J Murk
- Wageningen University, Department of Animal Sciences, Marine Animal Ecology Group, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Inez J T Dinkla
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| |
Collapse
|
21
|
Probiotics Interactions and the Modulation of Major Signalling Pathways in Host Model Organism Caenorhabditis elegans. Indian J Microbiol 2021; 61:404-416. [PMID: 34744196 DOI: 10.1007/s12088-021-00961-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022] Open
Abstract
Microorganisms live in the human digestive system and the gut microbiome constitutes part of our prime determining component for healthy aging and wellness. Gut microbiota has broad influences on its host, beginning from the digestion of food and nutrients absorption to protective roles against invading pathogens and host immune system regulation. Dysbiosis of the gut microbial composition has been linked to numerous diseases and there is a need to have a better grasp on what makes a 'good' gut microbiome. Caenorhabditis elegans (C. elegans) model organism is considered as a well-suited in-vivo model system and, is at the frontline of probiotic research because of its well-defined characteristics and prolific nature. Most importantly, C. elegans feeds on bacteria, which speeds up manipulations and investigations in probiotics research tremendously. With its unique salient features of short lifespan, and ease of propagation, different unknown probiotics biological roles can be measured at an organism level with precision in the form of worm's stress responses, survivability, and lifespan. In this review, new insights on the different mechanisms underlying the establishment of probiotics regulations of conserved signalling pathways such as p38 MAPK/SKN-1, DAF-2/DAF-16, and JNK-1/DAF-16 is highlighted based on information obtained from C. elegans studies. Along with the current state of knowledge and the uniqueness of C. elegans as a model organism, explorations of its future contribution and scope in synthetic biology and probiotics engineering strains are also addressed. This is expected to strengthen our understanding of probiotics roles and to facilitate novel discovery and applications, for specific therapeutics against age-related disorders and various pathophysiological conditions.
Collapse
|
22
|
Campos TL, Korhonen PK, Hofmann A, Gasser RB, Young ND. Harnessing model organism genomics to underpin the machine learning-based prediction of essential genes in eukaryotes - Biotechnological implications. Biotechnol Adv 2021; 54:107822. [PMID: 34461202 DOI: 10.1016/j.biotechadv.2021.107822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022]
Abstract
The availability of high-quality genomes and advances in functional genomics have enabled large-scale studies of essential genes in model eukaryotes, including the 'elegant worm' (Caenorhabditis elegans; Nematoda) and the 'vinegar fly' (Drosophila melanogaster; Arthropoda). However, this is not the case for other, much less-studied organisms, such as socioeconomically important parasites, for which functional genomic platforms usually do not exist. Thus, there is a need to develop innovative techniques or approaches for the prediction, identification and investigation of essential genes. A key approach that could enable the prediction of such genes is machine learning (ML). Here, we undertake an historical review of experimental and computational approaches employed for the characterisation of essential genes in eukaryotes, with a particular focus on model ecdysozoans (C. elegans and D. melanogaster), and discuss the possible applicability of ML-approaches to organisms such as socioeconomically important parasites. We highlight some recent results showing that high-performance ML, combined with feature engineering, allows a reliable prediction of essential genes from extensive, publicly available 'omic data sets, with major potential to prioritise such genes (with statistical confidence) for subsequent functional genomic validation. These findings could 'open the door' to fundamental and applied research areas. Evidence of some commonality in the essential gene-complement between these two organisms indicates that an ML-engineering approach could find broader applicability to ecdysozoans such as parasitic nematodes or arthropods, provided that suitably large and informative data sets become/are available for proper feature engineering, and for the robust training and validation of algorithms. This area warrants detailed exploration to, for example, facilitate the identification and characterisation of essential molecules as novel targets for drugs and vaccines against parasitic diseases. This focus is particularly important, given the substantial impact that such diseases have worldwide, and the current challenges associated with their prevention and control and with drug resistance in parasite populations.
Collapse
Affiliation(s)
- Tulio L Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia; Bioinformatics Core Facility, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (IAM-Fiocruz), Recife, Pernambuco, Brazil
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
23
|
Abstract
Following the spectacular success of molecular genetics in deciphering the genetic code in the 1960s, several of its leading practitioners felt sufficiently emboldened to use their newly acquired skills to move on and study that most enigmatic of biological organs - the brain. Sydney Brenner's approach was to focus on Caenorhabditis elegans, a nematode that is genetically tractable, has a nervous system that generates a rich repertoire of behaviours yet is small enough to allow anatomical reconstructions with ultrastructural precision. Through force of personality and some inspired pioneering studies, Brenner managed to ignite a bonfire of enthusiasm for this organism, which has resulted in its nervous system becoming the best understood of that in any organism. Initially, many were skeptical that this rather strange structure with just a few hundred neurons would yield insights that were relevant to vertebrate nervous systems. However, fifty years on we know that the basic repertoire of molecular components of worm and human nervous systems are remarkably similar. Furthermore, worms have a similar diversity of these components rather than a primitive sub-set. It appears that the fundamental difference in a vertebrate nervous system is a huge expansion of the neural units that comprise a basic brain such as that exemplified in C. elegans.
Collapse
Affiliation(s)
- John White
- Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
24
|
Waterston RH, Moerman DG. John Sulston (1942-2018): a personal perspective. J Neurogenet 2021; 34:238-246. [PMID: 33446017 DOI: 10.1080/01677063.2020.1833008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
John Sulston changed the way we do science, not once, but three times - initially with the complete cell lineage of the nematode Caenorhabditis elegans, next with completion of the genome sequences of the worm and human genomes and finally with his strong and active advocacy for open data sharing. His contributions were widely recognized and in 2002 he received the Nobel Prize in Physiology and Medicine.
Collapse
Affiliation(s)
- Robert H Waterston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Donald G Moerman
- Department of Zoology, University of British Columbia, Vancouver, BC, USA
| |
Collapse
|
25
|
Commuting to Work: Nucleolar Long Non-Coding RNA Control Ribosome Biogenesis from Near and Far. Noncoding RNA 2021; 7:ncrna7030042. [PMID: 34287370 PMCID: PMC8293466 DOI: 10.3390/ncrna7030042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/26/2022] Open
Abstract
Gene expression is an essential process for cellular growth, proliferation, and differentiation. The transcription of protein-coding genes and non-coding loci depends on RNA polymerases. Interestingly, numerous loci encode long non-coding (lnc)RNA transcripts that are transcribed by RNA polymerase II (RNAPII) and fine-tune the RNA metabolism. The nucleolus is a prime example of how different lncRNA species concomitantly regulate gene expression by facilitating the production and processing of ribosomal (r)RNA for ribosome biogenesis. Here, we summarise the current findings on how RNAPII influences nucleolar structure and function. We describe how RNAPII-dependent lncRNA can both promote nucleolar integrity and inhibit ribosomal (r)RNA synthesis by modulating the availability of rRNA synthesis factors in trans. Surprisingly, some lncRNA transcripts can directly originate from nucleolar loci and function in cis. The nucleolar intergenic spacer (IGS), for example, encodes nucleolar transcripts that counteract spurious rRNA synthesis in unperturbed cells. In response to DNA damage, RNAPII-dependent lncRNA originates directly at broken ribosomal (r)DNA loci and is processed into small ncRNA, possibly to modulate DNA repair. Thus, lncRNA-mediated regulation of nucleolar biology occurs by several modes of action and is more direct than anticipated, pointing to an intimate crosstalk of RNA metabolic events.
Collapse
|
26
|
Grigorieva MV, Danilova VM, Komisarenko SV. Discovery of cell apoptosis regulation genes: Sydney Brenner, John E. Sulston and H. Robert Horvitz (The Nobel Prize in Physiology or Medicine 2002). UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.03.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
27
|
Bergalet J, Patel D, Legendre F, Lapointe C, Benoit Bouvrette LP, Chin A, Blanchette M, Kwon E, Lécuyer E. Inter-dependent Centrosomal Co-localization of the cen and ik2 cis-Natural Antisense mRNAs in Drosophila. Cell Rep 2021; 30:3339-3352.e6. [PMID: 32160541 DOI: 10.1016/j.celrep.2020.02.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/24/2019] [Accepted: 02/10/2020] [Indexed: 11/30/2022] Open
Abstract
Overlapping genes are prevalent in most genomes, but the extent to which this organization influences regulatory events operating at the post-transcriptional level remains unclear. Studying the cen and ik2 genes of Drosophila melanogaster, which are convergently transcribed as cis-natural antisense transcripts (cis-NATs) with overlapping 3' UTRs, we found that their encoded mRNAs strikingly co-localize to centrosomes. These transcripts physically interact in a 3' UTR-dependent manner, and the targeting of ik2 requires its 3' UTR sequence and the presence of cen mRNA, which serves as the main driver of centrosomal co-localization. The cen transcript undergoes localized translation in proximity to centrosomes, and its localization is perturbed by polysome-disrupting drugs. By interrogating global fractionation-sequencing datasets generated from Drosophila and human cellular models, we find that RNAs expressed as cis-NATs tend to co-localize to specific subcellular fractions. This work suggests that post-transcriptional interactions between RNAs with complementary sequences can dictate their localization fate in the cytoplasm.
Collapse
Affiliation(s)
- Julie Bergalet
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Dhara Patel
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire and Programme de Biologie Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Félix Legendre
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire and Programme de Biologie Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Catherine Lapointe
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Louis Philip Benoit Bouvrette
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire and Programme de Biologie Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Ashley Chin
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada; Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | | | - Eunjeong Kwon
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Eric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire and Programme de Biologie Moléculaire, Université de Montréal, Montréal, QC, Canada; Division of Experimental Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
28
|
Wang X, Jiang W, Luo S, Yang X, Wang C, Wang B, Dang Y, Shen Y, Ma DK. The C. elegans homolog of human panic-disorder risk gene TMEM132D orchestrates neuronal morphogenesis through the WAVE-regulatory complex. Mol Brain 2021; 14:54. [PMID: 33726789 PMCID: PMC7962252 DOI: 10.1186/s13041-021-00767-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/03/2021] [Indexed: 01/11/2023] Open
Abstract
TMEM132D is a human gene identified with multiple risk alleles for panic disorders, anxiety and major depressive disorders. Defining a conserved family of transmembrane proteins, TMEM132D and its homologs are still of unknown molecular functions. By generating loss-of-function mutants of the sole TMEM132 ortholog in C. elegans, we identify abnormal morphologic phenotypes in the dopaminergic PDE neurons. Using a yeast two-hybrid screen, we find that NAP1 directly interacts with the cytoplasmic domain of human TMEM132D, and mutations in C. elegans tmem-132 that disrupt interaction with NAP1 cause similar morphologic defects in the PDE neurons. NAP1 is a component of the WAVE regulatory complex (WRC) that controls F-actin cytoskeletal dynamics. Decreasing activity of WRC rescues the PDE defects in tmem-132 mutants, whereas gain-of-function of TMEM132D in mammalian cells inhibits WRC, leading to decreased abundance of select WRC components, impaired actin nucleation and cell motility. We propose that metazoan TMEM132 family proteins play evolutionarily conserved roles in regulating NAP1 protein homologs to restrict inappropriate WRC activity, cytoskeletal and morphologic changes in the cell.
Collapse
Affiliation(s)
- Xin Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, 94158, USA.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Fudan University, Shanghai, 200032, China
| | - Shuo Luo
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Xiaoyu Yang
- Institute for Human Genetics, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Changnan Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Bingying Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Fudan University, Shanghai, 200032, China
| | - Yin Shen
- Institute for Human Genetics, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Dengke K Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
29
|
Urso SJ, Lamitina T. The C. elegans Hypertonic Stress Response: Big Insights from Shrinking Worms. Cell Physiol Biochem 2021; 55:89-105. [PMID: 33626269 DOI: 10.33594/000000332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 12/23/2022] Open
Abstract
Cell volume is one of the most aggressively defended physiological set points in biology. Changes in intracellular ion and water concentrations, which are induced by changes in metabolism or environmental exposures, disrupt protein folding, enzymatic activity, and macromolecular assemblies. To counter these challenges, cells and organisms have evolved multifaceted, evolutionarily conserved molecular mechanisms to restore cell volume and repair stress induced damage. However, many unanswered questions remain regarding the nature of cell volume 'sensing' as well as the molecular signaling pathways involved in activating physiological response mechanisms. Unbiased genetic screening in the model organism C. elegans is providing new and unexpected insights into these questions, particularly questions relating to the hypertonic stress response (HTSR) pathway. One surprising characteristic of the HTSR pathway in C. elegans is that it is under strong negative regulation by proteins involved in protein homeostasis and the extracellular matrix (ECM). The role of the ECM in particular highlights the importance of studying the HTSR in the context of a live organism where native ECM-tissue associations are preserved. A second novel and recently discovered characteristic is that the HTSR is regulated at the post-transcriptional level. The goal of this review is to describe these discoveries, to provide context for their implications, and to raise outstanding questions to guide future research.
Collapse
Affiliation(s)
- Sarel J Urso
- University of Pittsburgh, Graduate Program in Cell Biology and Physiology, Pittsburgh, PA, USA.,University of Pittsburgh, Departments of Pediatrics and Cell Biology, Pittsburgh, PA, USA
| | - Todd Lamitina
- University of Pittsburgh, Graduate Program in Cell Biology and Physiology, Pittsburgh, PA, USA, .,University of Pittsburgh, Departments of Pediatrics and Cell Biology, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Chen PC, Ruan L, Jin J, Tao YT, Ding XB, Zhang HB, Guo WP, Yang QL, Yao H, Chen X. Predicted functional interactome of Caenorhabditis elegans and a web tool for the functional interpretation of differentially expressed genes. Biol Direct 2020; 15:20. [PMID: 33076954 PMCID: PMC7574172 DOI: 10.1186/s13062-020-00271-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 09/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nematode worm, Caenorhabditis elegans, is a saprophytic species that has been emerging as a standard model organism since the early 1960s. This species is useful in numerous fields, including developmental biology, neurobiology, and ageing. A high-quality comprehensive molecular interaction network is needed to facilitate molecular mechanism studies in C. elegans. RESULTS We present the predicted functional interactome of Caenorhabditis elegans (FIC), which integrates functional association data from 10 public databases to infer functional gene interactions on diverse functional perspectives. In this work, FIC includes 108,550 putative functional associations with balanced sensitivity and specificity, which are expected to cover 21.42% of all C. elegans protein interactions, and 29.25% of these associations may represent protein interactions. Based on FIC, we developed a gene set linkage analysis (GSLA) web tool to interpret potential functional impacts from a set of differentially expressed genes observed in transcriptome analyses. CONCLUSION We present the predicted C. elegans interactome database FIC, which is a high-quality database of predicted functional interactions among genes. The functional interactions in FIC serve as a good reference interactome for GSLA to annotate differentially expressed genes for their potential functional impacts. In a case study, the FIC/GSLA system shows more comprehensive and concise annotations compared to other widely used gene set annotation tools, including PANTHER and DAVID. FIC and its associated GSLA are available at the website http://worm.biomedtzc.cn .
Collapse
Affiliation(s)
- Peng-Cheng Chen
- Institute of Pharmaceutical Biotechnology of Zhejiang University School of Medicine and Department of Radiology of the First Affiliated Hospital, Hangzhou, 310058, China
| | - Li Ruan
- Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, China
| | - Jie Jin
- Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, China
| | - Yu-Tian Tao
- Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, China
| | - Xiao-Bao Ding
- Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, China
| | - Hai-Bo Zhang
- Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, China
| | - Wen-Ping Guo
- Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, China
| | - Qiao-Lei Yang
- Institute of Pharmaceutical Biotechnology of Zhejiang University School of Medicine and Department of Radiology of the First Affiliated Hospital, Hangzhou, 310058, China
| | - Heng Yao
- Institute of Pharmaceutical Biotechnology of Zhejiang University School of Medicine and Department of Radiology of the First Affiliated Hospital, Hangzhou, 310058, China
| | - Xin Chen
- Institute of Pharmaceutical Biotechnology of Zhejiang University School of Medicine and Department of Radiology of the First Affiliated Hospital, Hangzhou, 310058, China. .,Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, China. .,Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
31
|
Kamp JA, van Schendel R, Dilweg IW, Tijsterman M. BRCA1-associated structural variations are a consequence of polymerase theta-mediated end-joining. Nat Commun 2020; 11:3615. [PMID: 32680986 PMCID: PMC7368036 DOI: 10.1038/s41467-020-17455-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/01/2020] [Indexed: 12/03/2022] Open
Abstract
Failure to preserve the integrity of the genome is a hallmark of cancer. Recent studies have revealed that loss of the capacity to repair DNA breaks via homologous recombination (HR) results in a mutational profile termed BRCAness. The enzymatic activity that repairs HR substrates in BRCA-deficient conditions to produce this profile is currently unknown. We here show that the mutational landscape of BRCA1 deficiency in C. elegans closely resembles that of BRCA1-deficient tumours. We identify polymerase theta-mediated end-joining (TMEJ) to be responsible: knocking out polq-1 suppresses the accumulation of deletions and tandem duplications in brc-1 and brd-1 animals. We find no additional back-up repair in HR and TMEJ compromised animals; non-homologous end-joining does not affect BRCAness. The notion that TMEJ acts as an alternative to HR, promoting the genome alteration of HR-deficient cells, supports the idea that polymerase theta is a promising therapeutic target for HR-deficient tumours.
Collapse
Affiliation(s)
- J A Kamp
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - R van Schendel
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - I W Dilweg
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - M Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
32
|
Montmorency tart cherry (Prunus cerasus L.) acts as a calorie restriction mimetic that increases intestinal fat and lifespan in Caenorhabditis elegans. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
33
|
Holdorf AD, Higgins DP, Hart AC, Boag PR, Pazour GJ, Walhout AJM, Walker AK. WormCat: An Online Tool for Annotation and Visualization of Caenorhabditis elegans Genome-Scale Data. Genetics 2020; 214:279-294. [PMID: 31810987 PMCID: PMC7017019 DOI: 10.1534/genetics.119.302919] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/02/2019] [Indexed: 02/08/2023] Open
Abstract
The emergence of large gene expression datasets has revealed the need for improved tools to identify enriched gene categories and visualize enrichment patterns. While gene ontogeny (GO) provides a valuable tool for gene set enrichment analysis, it has several limitations. First, it is difficult to graph multiple GO analyses for comparison. Second, genes from some model systems are not well represented. For example, ∼30% of Caenorhabditis elegans genes are missing from the analysis in commonly used databases. To allow categorization and visualization of enriched C. elegans gene sets in different types of genome-scale data, we developed WormCat, a web-based tool that uses a near-complete annotation of the C. elegans genome to identify coexpressed gene sets and scaled heat map for enrichment visualization. We tested the performance of WormCat using a variety of published transcriptomic datasets, and show that it reproduces major categories identified by GO. Importantly, we also found previously unidentified categories that are informative for interpreting phenotypes or predicting biological function. For example, we analyzed published RNA-seq data from C. elegans treated with combinations of lifespan-extending drugs, where one combination paradoxically shortened lifespan. Using WormCat, we identified sterol metabolism as a category that was not enriched in the single or double combinations, but emerged in a triple combination along with the lifespan shortening. Thus, WormCat identified a gene set with potential. phenotypic relevance not found with previous GO analysis. In conclusion, WormCat provides a powerful tool for the analysis and visualization of gene set enrichment in different types of C. elegans datasets.
Collapse
Affiliation(s)
- Amy D Holdorf
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Daniel P Higgins
- Department of Computer Science, Georgia Technical University, Atlanta, Georgia 30332-0765
| | - Anne C Hart
- Department of Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Peter R Boag
- Department of Biochemistry and Molecular Biology, Monash University, 3800 Clayton Australia
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Albertha J M Walhout
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Amy K Walker
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
34
|
Roach NP, Sadowski N, Alessi AF, Timp W, Taylor J, Kim JK. The full-length transcriptome of C. elegans using direct RNA sequencing. Genome Res 2020; 30:299-312. [PMID: 32024661 PMCID: PMC7050520 DOI: 10.1101/gr.251314.119] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/06/2020] [Indexed: 12/31/2022]
Abstract
Current transcriptome annotations have largely relied on short read lengths intrinsic to the most widely used high-throughput cDNA sequencing technologies. For example, in the annotation of the Caenorhabditis elegans transcriptome, more than half of the transcript isoforms lack full-length support and instead rely on inference from short reads that do not span the full length of the isoform. We applied nanopore-based direct RNA sequencing to characterize the developmental polyadenylated transcriptome of C. elegans Taking advantage of long reads spanning the full length of mRNA transcripts, we provide support for 23,865 splice isoforms across 14,611 genes, without the need for computational reconstruction of gene models. Of the isoforms identified, 3452 are novel splice isoforms not present in the WormBase WS265 annotation. Furthermore, we identified 16,342 isoforms in the 3' untranslated region (3' UTR), 2640 of which are novel and do not fall within 10 bp of existing 3'-UTR data sets and annotations. Combining 3' UTRs and splice isoforms, we identified 28,858 full-length transcript isoforms. We also determined that poly(A) tail lengths of transcripts vary across development, as do the strengths of previously reported correlations between poly(A) tail length and expression level, and poly(A) tail length and 3'-UTR length. Finally, we have formatted this data as a publicly accessible track hub, enabling researchers to explore this data set easily in a genome browser.
Collapse
Affiliation(s)
- Nathan P Roach
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Norah Sadowski
- Department of Biomedical Engineering, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Amelia F Alessi
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Winston Timp
- Department of Biomedical Engineering, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - James Taylor
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - John K Kim
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
35
|
Pathak A, Chatterjee N, Sinha S. Developmental trajectory of Caenorhabditis elegans nervous system governs its structural organization. PLoS Comput Biol 2020; 16:e1007602. [PMID: 31895942 PMCID: PMC6959611 DOI: 10.1371/journal.pcbi.1007602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 01/14/2020] [Accepted: 12/11/2019] [Indexed: 11/22/2022] Open
Abstract
A central problem of neuroscience involves uncovering the principles governing the organization of nervous systems which ensure robustness in brain development. The nematode Caenorhabditis elegans provides us with a model organism for studying this question. In this paper, we focus on the invariant connection structure and spatial arrangement of the neurons comprising the somatic neuronal network of this organism to understand the key developmental constraints underlying its design. We observe that neurons with certain shared characteristics-such as, neural process lengths, birth time cohort, lineage and bilateral symmetry-exhibit a preference for connecting to each other. Recognizing the existence of such homophily and their relative degree of importance in determining connection probability within neurons (for example, in synapses, symmetric pairing is the most dominant factor followed by birth time cohort, process length and lineage) helps in connecting specific neuronal attributes to the topological organization of the network. Further, the functional identities of neurons appear to dictate the temporal hierarchy of their appearance during the course of development. Providing crucial insights into principles that may be common across many organisms, our study shows how the trajectory in the developmental landscape constrains the structural organization of a nervous system.
Collapse
Affiliation(s)
- Anand Pathak
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | | | - Sitabhra Sinha
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
36
|
Brady SC, Zdraljevic S, Bisaga KW, Tanny RE, Cook DE, Lee D, Wang Y, Andersen EC. A Novel Gene Underlies Bleomycin-Response Variation in Caenorhabditis elegans. Genetics 2019; 212:1453-1468. [PMID: 31171655 PMCID: PMC6707474 DOI: 10.1534/genetics.119.302286] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
Bleomycin is a powerful chemotherapeutic drug used to treat a variety of cancers. However, individual patients vary in their responses to bleomycin. The identification of genetic differences that underlie this response variation could improve treatment outcomes by tailoring bleomycin dosages to each patient. We used the model organism Caenorhabditis elegans to identify genetic determinants of bleomycin-response differences by performing linkage mapping on recombinants derived from a cross between the laboratory strain (N2) and a wild strain (CB4856). This approach identified a small genomic region on chromosome V that underlies bleomycin-response variation. Using near-isogenic lines, and strains with CRISPR-Cas9 mediated deletions and allele replacements, we discovered that a novel nematode-specific gene (scb-1) is required for bleomycin resistance. Although the mechanism by which this gene causes variation in bleomycin responses is unknown, we suggest that a rare variant present in the CB4856 strain might cause differences in the potential stress-response function of scb-1 between the N2 and CB4856 strains, thereby leading to differences in bleomycin resistance.
Collapse
Affiliation(s)
- Shannon C Brady
- Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208
| | - Stefan Zdraljevic
- Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208
| | - Karol W Bisaga
- Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois 60208
| | - Robyn E Tanny
- Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | | | - Daehan Lee
- Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | - Ye Wang
- Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | - Erik C Andersen
- Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
37
|
Ibrahim HMM, Ahmad EM, Martínez-Medina A, Aly MAM. Effective approaches to study the plant-root knot nematode interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:332-342. [PMID: 31207494 DOI: 10.1016/j.plaphy.2019.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/26/2019] [Accepted: 06/08/2019] [Indexed: 05/24/2023]
Abstract
Plant-parasitic nematodes cause major agricultural losses worldwide. Examining the molecular mechanisms underlying plant-nematode interactions and how plants respond to different invading pathogens is attracting major attention to reduce the expanding gap between agricultural production and the needs of the growing world population. This review summarizes the most recent developments in plant-nematode interactions and the diverse approaches used to improve plant resistance against root knot nematode (RKN). We will emphasize the recent rapid advances in genome sequencing technologies, small interfering RNA techniques (RNAi) and targeted genome editing which are contributing to the significant progress in understanding the plant-nematode interaction mechanisms. Also, molecular approaches to improve plant resistance against nematodes are considered.
Collapse
Affiliation(s)
- Heba M M Ibrahim
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt.
| | - Esraa M Ahmad
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ainhoa Martínez-Medina
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig, Germany
| | - Mohammed A M Aly
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
38
|
Rangsinth P, Prasansuklab A, Duangjan C, Gu X, Meemon K, Wink M, Tencomnao T. Leaf extract of Caesalpinia mimosoides enhances oxidative stress resistance and prolongs lifespan in Caenorhabditis elegans. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:164. [PMID: 31286949 PMCID: PMC6615182 DOI: 10.1186/s12906-019-2578-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/26/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Caesalpinia mimosoides, a vegetable consumed in Thailand, has been reported to exhibit in vitro antioxidant properties. The in vivo antioxidant and anti-aging activities have not been investigated. The aim of this research was to study the antioxidant activity of C. mimosoides extracts in Caenorhabditis elegans, a widely used model organism in this context. METHODS C. elegans were treated with C. mimosoides extracts in a various concentrations. To investigate the protective effects of the extract against oxidative stress, wild-type N2 were used to determine survival rate under oxidative stress and intracellular ROS. To study underlying mechanisms, the mutant strains with GFP reporter gene including TJ356, CF1553, EU1 and LD4 were used to study DAF-16, SOD-3, SKN-1 and GST-4 gene, respectively. Lifespan and aging pigment of the worms were also investigated. RESULTS A leaf extract of C. mimosoides improved resistance to oxidative stress and reduced intracellular ROS accumulation in nematodes. The antioxidant effects were mediated through the DAF-16/FOXO pathway and SOD-3 expression, whereas the expression of SKN-1 and GST-4 were not altered. The extract also prolonged lifespan and decreased aging pigments, while the body length and brood size of the worms were not affected by the extract, indicating low toxicity and excluding dietary restriction. CONCLUSIONS The results of this study establish the antioxidant activity of C. mimosoides extract in vivo and suggest its potential as a dietary supplement and alternative medicine to defend against oxidative stress and aging, which should be investigated in intervention studies.
Collapse
Affiliation(s)
- Panthakarn Rangsinth
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Chatrawee Duangjan
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Xiaojie Gu
- Department of Biotechnology, School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028 China
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Tewin Tencomnao
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
39
|
van Heyningen V. Genome sequencing-the dawn of a game-changing era. Heredity (Edinb) 2019; 123:58-66. [PMID: 31189904 PMCID: PMC6781137 DOI: 10.1038/s41437-019-0226-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/16/2019] [Indexed: 01/14/2023] Open
Abstract
The development of genome sequencing technologies has revolutionized the biological sciences in ways which could not have been imagined at the time. This article sets out to document the dawning of the age of genomics and to consider the impact of this revolution on biological investigation, our understanding of life, and the relationship between science and society.
Collapse
Affiliation(s)
- Veronica van Heyningen
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh, EH4 2XU, UK.
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
40
|
Yoshimura J, Ichikawa K, Shoura MJ, Artiles KL, Gabdank I, Wahba L, Smith CL, Edgley ML, Rougvie AE, Fire AZ, Morishita S, Schwarz EM. Recompleting the Caenorhabditis elegans genome. Genome Res 2019; 29:1009-1022. [PMID: 31123080 PMCID: PMC6581061 DOI: 10.1101/gr.244830.118] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/11/2019] [Indexed: 01/14/2023]
Abstract
Caenorhabditis elegans was the first multicellular eukaryotic genome sequenced to apparent completion. Although this assembly employed a standard C. elegans strain (N2), it used sequence data from several laboratories, with DNA propagated in bacteria and yeast. Thus, the N2 assembly has many differences from any C. elegans available today. To provide a more accurate C. elegans genome, we performed long-read assembly of VC2010, a modern strain derived from N2. Our VC2010 assembly has 99.98% identity to N2 but with an additional 1.8 Mb including tandem repeat expansions and genome duplications. For 116 structural discrepancies between N2 and VC2010, 97 structures matching VC2010 (84%) were also found in two outgroup strains, implying deficiencies in N2. Over 98% of N2 genes encoded unchanged products in VC2010; moreover, we predicted ≥53 new genes in VC2010. The recompleted genome of C. elegans should be a valuable resource for genetics, genomics, and systems biology.
Collapse
Affiliation(s)
- Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8583, Japan
| | - Kazuki Ichikawa
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8583, Japan
| | - Massa J Shoura
- Department of Pathology, Stanford University, Stanford, California 94305, USA
| | - Karen L Artiles
- Department of Pathology, Stanford University, Stanford, California 94305, USA
| | - Idan Gabdank
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Lamia Wahba
- Department of Pathology, Stanford University, Stanford, California 94305, USA
| | - Cheryl L Smith
- Department of Pathology, Stanford University, Stanford, California 94305, USA.,Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Mark L Edgley
- Department of Zoology and Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Ann E Rougvie
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55454, USA
| | - Andrew Z Fire
- Department of Pathology, Stanford University, Stanford, California 94305, USA.,Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8583, Japan
| | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
41
|
Vandevenne M, Delmarcelle M, Galleni M. RNA Regulatory Networks as a Control of Stochasticity in Biological Systems. Front Genet 2019; 10:403. [PMID: 31134128 PMCID: PMC6514243 DOI: 10.3389/fgene.2019.00403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/12/2019] [Indexed: 01/24/2023] Open
Abstract
The discovery that the non-protein coding part of human genome, dismissed as "junk DNA," is actively transcripted and carries out crucial functions is probably one of the most important discoveries of the past decades. These transcripts are becoming the rising stars of modern biology. In this review, we have casted a new light on RNAs. We have placed these molecules in the context of life origins, evolution with a big emphasize on the "RNA networks" concept. We discuss how this view can help us to understand the global role of RNA networks in modern cells, and can change our perception of the cell biology and therapy. Finally, although high-throughput methods as well as traditional case-to-case studies have laid the groundwork for our current knowledge of transcriptomes, we would like to discuss new strategies that are better suited to uncover and tackle these integrated and complex RNA networks.
Collapse
Affiliation(s)
- Marylène Vandevenne
- InBioS - Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Michael Delmarcelle
- InBioS - Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Moreno Galleni
- InBioS - Center for Protein Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
42
|
Mir DA, Balamurugan K. A proteomic analysis of Caenorhabditis elegans mitochondria during bacterial infection. Mitochondrion 2019; 48:37-50. [PMID: 30926536 DOI: 10.1016/j.mito.2019.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/13/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022]
Abstract
Mitochondria are involved in a variety of cellular metabolic processes and their functions are regulated by intrinsic and extrinsic stimuli. Recent studies have revealed functional diversity and importance of mitochondria in many cellular processes, including the innate immune response. This study evaluated the specific response and proteomic changes in host Caenorhabditis elegans mitochondria during Pseudomonas aeruginosa PAO1 infection. We performed an inclusive approach to determine the C. elegans mitochondria proteome. The protein fractions of mitochondria were analysed by tandem LC-MS/MS, 129 differentially regulated proteins were identified, indicating an involvement of various mitochondrial processes. The several known components of the oxidative phosphorylation (OXPHOS) machinery, the tricarboxylic acid (TCA) cycle, mitochondrial unfolded protein response (UPRmt) and stable mitochondria-encoded proteins were found to be differentially expressed. Our results in-depth provide new horizons for mitochondria-associated protein functions and the classification of mitochondrial diseases during host-pathogen interaction.
Collapse
Affiliation(s)
- Dilawar Ahmad Mir
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | | |
Collapse
|
43
|
Smith L, Maddox P. Embryo timelapses can be compiled and quantified to understand canonical histone dynamics across multiple cell cycles. Cytoskeleton (Hoboken) 2018; 75:522-530. [PMID: 30203569 DOI: 10.1002/cm.21493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 11/09/2022]
Abstract
In the last decade, computational processing of big datasets has facilitated the analyses of unprecedented quantities of biological data. Thus, automation and big data analysis have been revolutionary in detecting and quantifying subtle phenotypes in cell biological contexts. Analyzing similar quantities of data in larger and more complicated biological systems such as developing embryos has been more challenging due to experimental limitations on both ensemble data collection and analysis. These challenges include photosensitivity of living samples and of the fluorescently tagged proteins under study, collectively limiting the number of images that can be acquired in a single timelapse series. Here we present a streamlined workflow to quantify dynamics of fluorescently labeled proteins over the course of several cell cycles in early embryos, taking advantage of the stereotypical nature of early development that is inherent for many organisms. We benchmark this pipeline studying a fluorescently labeled histone during early embryonic development of the nematode Caenorhabditis elegans. Our strategy allowed us to overcome biological and experimental variation among our timelapse series and quantify nuclear accumulation rate, chromatin incorporation, and turnover/stability of canonical histones. We find that histone proteins are broadly stable in early C. elegans development. Thus, changes in genome regulation occurring in early development do not manifest in gross changes in histone metabolism. Our method enabling characterization of cumulative protein dynamics over several cell cycles of developmental time with high temporal resolution can be applied to expand our understanding of diverse cellular and developmental processes.
Collapse
Affiliation(s)
- Lydia Smith
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, North Carolina
| | - Paul Maddox
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, North Carolina
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina
| |
Collapse
|
44
|
Yang J, Kim EK, McDowell A, Kim YK. Microbe-derived extracellular vesicles as a smart drug delivery system. Transl Clin Pharmacol 2018; 26:103-110. [PMID: 32055558 PMCID: PMC6989235 DOI: 10.12793/tcp.2018.26.3.103] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The human microbiome is known to play an essential role in influencing host health. Extracellular vesicles (EVs) have also been reported to act on a variety of signaling pathways, distally transport cellular components such as proteins, lipids, and nucleic acid, and have immunomodulatory effects. Here we shall review the current understanding of the intersectionality of the human microbiome and EVs in the emerging field of microbiota-derived EVs and their pharmacological potential. Microbes secrete several classes of EVs: outer membrane vesicles (OMVs), membrane vesicles (MVs), and apoptotic bodies. EV biogenesis is unique to each cell and regulated by sophisticated signaling pathways. EVs are primarily composed of lipids, proteins, nucleic acids, and recent evidence suggests they may also carry metabolites. These components interact with host cells and control various cellular processes by transferring their constituents. The pharmacological potential of microbiomederived EVs as vaccine candidates, biomarkers, and a smart drug delivery system is a promising area of future research. Therefore, it is necessary to elucidate in detail the mechanisms of microbiome-derived EV action in host health in a multi-disciplinary manner.
Collapse
Affiliation(s)
- Jinho Yang
- Institute of MD Healthcare Inc., Seoul 03923, Republic of Korea
| | - Eun Kyoung Kim
- Institute of MD Healthcare Inc., Seoul 03923, Republic of Korea
| | - Andrea McDowell
- Institute of MD Healthcare Inc., Seoul 03923, Republic of Korea
| | - Yoon-Keun Kim
- Institute of MD Healthcare Inc., Seoul 03923, Republic of Korea
| |
Collapse
|
45
|
Çelen İ, Doh JH, Sabanayagam CR. Effects of liquid cultivation on gene expression and phenotype of C. elegans. BMC Genomics 2018; 19:562. [PMID: 30064382 PMCID: PMC6069985 DOI: 10.1186/s12864-018-4948-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/19/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Liquid cultures have been commonly used in space, toxicology, and pharmacology studies of Caenorhabditis elegans. However, the knowledge about transcriptomic alterations caused by liquid cultivation remains limited. Moreover, the impact of different genotypes in rapid adaptive responses to environmental changes (e.g., liquid cultivation) is often overlooked. Here, we report the transcriptomic and phenotypic responses of laboratory N2 and the wild-isolate AB1 strains after culturing P0 worms on agar plates, F1 in liquid cultures, and F2 back on agar plates. RESULTS Significant variations were found in the gene expressions between the N2 and AB1 strains in response to liquid cultivation. The results demonstrated that 8-34% of the environmental change-induced transcriptional responses are transmitted to the subsequent generation. By categorizing the gene expressions for genotype, environment, and genotype-environment interactions, we identified that the genotype has a substantial impact on the adaptive responses. Functional analysis of the transcriptome showed correlation with phenotypical changes. For example, the N2 strain exhibited alterations in both phenotype and gene expressions for germline and cuticle in axenic liquid cultivation. We found transcript evidence to approximately 21% of the computationally predicted genes in C. elegans by exposing the worms to environmental changes. CONCLUSIONS The presented study reveals substantial differences between N2 and AB1 strains for transcriptomic and phenotypical responses to rapid environmental changes. Our data can provide standard controls for future studies for the liquid cultivation of C. elegans and enable the discovery of condition-specific genes.
Collapse
Affiliation(s)
- İrem Çelen
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711 USA
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711 USA
| | - Jung H. Doh
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711 USA
| | - Chandran R. Sabanayagam
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711 USA
| |
Collapse
|
46
|
Ravichandran M, Priebe S, Grigolon G, Rozanov L, Groth M, Laube B, Guthke R, Platzer M, Zarse K, Ristow M. Impairing L-Threonine Catabolism Promotes Healthspan through Methylglyoxal-Mediated Proteohormesis. Cell Metab 2018; 27:914-925.e5. [PMID: 29551589 DOI: 10.1016/j.cmet.2018.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 07/23/2017] [Accepted: 02/06/2018] [Indexed: 12/22/2022]
Abstract
Whether and how regulation of genes and pathways contributes to physiological aging is topic of intense scientific debate. By performing an RNA expression-based screen for genes downregulated during aging of three different species, we identified glycine-C-acetyltransferase (GCAT, EC 2.3.1.29). Impairing gcat expression promotes the lifespan of C. elegans by interfering with threonine catabolism to promote methylglyoxal (MGO; CAS 78-98-8) formation in an amine oxidase-dependent manner. MGO is a reactive dicarbonyl inducing diabetic complications in mammals by causing oxidative stress and damaging cellular components, including proteins. While high concentrations of MGO consistently exert toxicity in nematodes, we unexpectedly find that low-dose MGO promotes lifespan, resembling key mediators of gcat impairment. These were executed by the ubiquitin-proteasome system, namely PBS-3 and RPN-6.1 subunits, regulated by the stress-responsive transcriptional regulators SKN-1/NRF2 and HSF-1. Taken together, GCAT acts as an evolutionary conserved aging-related gene by orchestrating an unexpected nonlinear impact of proteotoxic MGO on longevity.
Collapse
Affiliation(s)
- Meenakshi Ravichandran
- Energy Metabolism Laboratory, Institute of Translational Medicine, D-HEST, Swiss Federal Institute of Technology (ETH) Zürich, Schwerzenbach 8603, Switzerland; Life Sciences Zürich Graduate School, Molecular and Translational Biomedicine Program, Zurich 8044, Switzerland
| | - Steffen Priebe
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena 07745, Germany
| | - Giovanna Grigolon
- Energy Metabolism Laboratory, Institute of Translational Medicine, D-HEST, Swiss Federal Institute of Technology (ETH) Zürich, Schwerzenbach 8603, Switzerland
| | - Leonid Rozanov
- Energy Metabolism Laboratory, Institute of Translational Medicine, D-HEST, Swiss Federal Institute of Technology (ETH) Zürich, Schwerzenbach 8603, Switzerland; Life Sciences Zürich Graduate School, Molecular and Translational Biomedicine Program, Zurich 8044, Switzerland
| | - Marco Groth
- Genome Analysis Group, Leibniz Institute on Aging, Fritz Lipmann Institute, Jena 07745, Germany
| | - Beate Laube
- Energy Metabolism Laboratory, Institute of Translational Medicine, D-HEST, Swiss Federal Institute of Technology (ETH) Zürich, Schwerzenbach 8603, Switzerland
| | - Reinhard Guthke
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena 07745, Germany
| | - Matthias Platzer
- Genome Analysis Group, Leibniz Institute on Aging, Fritz Lipmann Institute, Jena 07745, Germany
| | - Kim Zarse
- Energy Metabolism Laboratory, Institute of Translational Medicine, D-HEST, Swiss Federal Institute of Technology (ETH) Zürich, Schwerzenbach 8603, Switzerland
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, D-HEST, Swiss Federal Institute of Technology (ETH) Zürich, Schwerzenbach 8603, Switzerland.
| |
Collapse
|
47
|
de Bruin RG, Rabelink TJ, van Zonneveld AJ, van der Veer EP. Emerging roles for RNA-binding proteins as effectors and regulators of cardiovascular disease. Eur Heart J 2018; 38:1380-1388. [PMID: 28064149 DOI: 10.1093/eurheartj/ehw567] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/02/2016] [Indexed: 12/18/2022] Open
Abstract
The cardiovascular system comprises multiple cell types that possess the capacity to modulate their phenotype in response to acute or chronic injury. Transcriptional and post-transcriptional mechanisms play a key role in the regulation of remodelling and regenerative responses to damaged cardiovascular tissues. Simultaneously, insufficient regulation of cellular phenotype is tightly coupled with the persistence and exacerbation of cardiovascular disease. Recently, RNA-binding proteins such as Quaking, HuR, Muscleblind, and SRSF1 have emerged as pivotal regulators of these functional adaptations in the cardiovascular system by guiding a wide-ranging number of post-transcriptional events that dramatically impact RNA fate, including alternative splicing, stability, localization and translation. Moreover, homozygous disruption of RNA-binding protein genes is commonly associated with cardiac- and/or vascular complications. Here, we summarize the current knowledge on the versatile role of RNA-binding proteins in regulating the transcriptome during phenotype switching in cardiovascular health and disease. We also detail existing and potential DNA- and RNA-based therapeutic approaches that could impact the treatment of cardiovascular disease in the future.
Collapse
Affiliation(s)
- Ruben G de Bruin
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands.,Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands
| | - Ton J Rabelink
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands.,Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands
| | - Anton Jan van Zonneveld
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands.,Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands
| | - Eric P van der Veer
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands.,Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden 2300RC, The Netherlands
| |
Collapse
|
48
|
Kudron MM, Victorsen A, Gevirtzman L, Hillier LW, Fisher WW, Vafeados D, Kirkey M, Hammonds AS, Gersch J, Ammouri H, Wall ML, Moran J, Steffen D, Szynkarek M, Seabrook-Sturgis S, Jameel N, Kadaba M, Patton J, Terrell R, Corson M, Durham TJ, Park S, Samanta S, Han M, Xu J, Yan KK, Celniker SE, White KP, Ma L, Gerstein M, Reinke V, Waterston RH. The ModERN Resource: Genome-Wide Binding Profiles for Hundreds of Drosophila and Caenorhabditis elegans Transcription Factors. Genetics 2018; 208:937-949. [PMID: 29284660 PMCID: PMC5844342 DOI: 10.1534/genetics.117.300657] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022] Open
Abstract
To develop a catalog of regulatory sites in two major model organisms, Drosophila melanogaster and Caenorhabditis elegans, the modERN (model organism Encyclopedia of Regulatory Networks) consortium has systematically assayed the binding sites of transcription factors (TFs). Combined with data produced by our predecessor, modENCODE (Model Organism ENCyclopedia Of DNA Elements), we now have data for 262 TFs identifying 1.23 M sites in the fly genome and 217 TFs identifying 0.67 M sites in the worm genome. Because sites from different TFs are often overlapping and tightly clustered, they fall into 91,011 and 59,150 regions in the fly and worm, respectively, and these binding sites span as little as 8.7 and 5.8 Mb in the two organisms. Clusters with large numbers of sites (so-called high occupancy target, or HOT regions) predominantly associate with broadly expressed genes, whereas clusters containing sites from just a few factors are associated with genes expressed in tissue-specific patterns. All of the strains expressing GFP-tagged TFs are available at the stock centers, and the chromatin immunoprecipitation sequencing data are available through the ENCODE Data Coordinating Center and also through a simple interface (http://epic.gs.washington.edu/modERN/) that facilitates rapid accessibility of processed data sets. These data will facilitate a vast number of scientific inquiries into the function of individual TFs in key developmental, metabolic, and defense and homeostatic regulatory pathways, as well as provide a broader perspective on how individual TFs work together in local networks and globally across the life spans of these two key model organisms.
Collapse
Affiliation(s)
- Michelle M Kudron
- Department of Genetics, Yale University, New Haven, Connecticut 06520
| | - Alec Victorsen
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago, Illinois 60637
| | - Louis Gevirtzman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - LaDeana W Hillier
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - William W Fisher
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Dionne Vafeados
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Matt Kirkey
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago, Illinois 60637
| | - Ann S Hammonds
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Jeffery Gersch
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago, Illinois 60637
| | - Haneen Ammouri
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago, Illinois 60637
| | - Martha L Wall
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago, Illinois 60637
| | - Jennifer Moran
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago, Illinois 60637
| | - David Steffen
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago, Illinois 60637
| | - Matt Szynkarek
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago, Illinois 60637
| | - Samantha Seabrook-Sturgis
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago, Illinois 60637
| | - Nader Jameel
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago, Illinois 60637
| | - Madhura Kadaba
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago, Illinois 60637
| | - Jaeda Patton
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Robert Terrell
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Mitch Corson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Timothy J Durham
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Soo Park
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Swapna Samanta
- Department of Genetics, Yale University, New Haven, Connecticut 06520
| | - Mei Han
- Department of Genetics, Yale University, New Haven, Connecticut 06520
| | - Jinrui Xu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Koon-Kiu Yan
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Susan E Celniker
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Kevin P White
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago, Illinois 60637
| | - Lijia Ma
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago, Illinois 60637
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
- Department of Computer Science, Yale University, New Haven, Connecticut 06520
| | - Valerie Reinke
- Department of Genetics, Yale University, New Haven, Connecticut 06520
| | - Robert H Waterston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| |
Collapse
|
49
|
Ahringer J, Gasser SM. Repressive Chromatin in Caenorhabditis elegans: Establishment, Composition, and Function. Genetics 2018; 208:491-511. [PMID: 29378810 PMCID: PMC5788517 DOI: 10.1534/genetics.117.300386] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/18/2017] [Indexed: 01/08/2023] Open
Abstract
Chromatin is organized and compacted in the nucleus through the association of histones and other proteins, which together control genomic activity. Two broad types of chromatin can be distinguished: euchromatin, which is generally transcriptionally active, and heterochromatin, which is repressed. Here we examine the current state of our understanding of repressed chromatin in Caenorhabditis elegans, focusing on roles of histone modifications associated with repression, such as methylation of histone H3 lysine 9 (H3K9me2/3) or the Polycomb Repressive Complex 2 (MES-2/3/6)-deposited modification H3K27me3, and on proteins that recognize these modifications. Proteins involved in chromatin repression are important for development, and have demonstrated roles in nuclear organization, repetitive element silencing, genome integrity, and the regulation of euchromatin. Additionally, chromatin factors participate in repression with small RNA pathways. Recent findings shed light on heterochromatin function and regulation in C. elegans, and should inform our understanding of repressed chromatin in other animals.
Collapse
Affiliation(s)
- Julie Ahringer
- The Gurdon Institute, University of Cambridge CB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge CB2 1QN, United Kingdom
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland, and
- Faculty of Natural Sciences, University of Basel, 4056, Switzerland
| |
Collapse
|
50
|
Murray JI. Systems biology of embryonic development: Prospects for a complete understanding of the Caenorhabditis elegans embryo. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e314. [PMID: 29369536 DOI: 10.1002/wdev.314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 01/07/2023]
Abstract
The convergence of developmental biology and modern genomics tools brings the potential for a comprehensive understanding of developmental systems. This is especially true for the Caenorhabditis elegans embryo because its small size, invariant developmental lineage, and powerful genetic and genomic tools provide the prospect of a cellular resolution understanding of messenger RNA (mRNA) expression and regulation across the organism. We describe here how a systems biology framework might allow large-scale determination of the embryonic regulatory relationships encoded in the C. elegans genome. This framework consists of two broad steps: (a) defining the "parts list"-all genes expressed in all cells at each time during development and (b) iterative steps of computational modeling and refinement of these models by experimental perturbation. Substantial progress has been made towards defining the parts list through imaging methods such as large-scale green fluorescent protein (GFP) reporter analysis. Imaging results are now being augmented by high-resolution transcriptome methods such as single-cell RNA sequencing, and it is likely the complete expression patterns of all genes across the embryo will be known within the next few years. In contrast, the modeling and perturbation experiments performed so far have focused largely on individual cell types or genes, and improved methods will be needed to expand them to the full genome and organism. This emerging comprehensive map of embryonic expression and regulatory function will provide a powerful resource for developmental biologists, and would also allow scientists to ask questions not accessible without a comprehensive picture. This article is categorized under: Invertebrate Organogenesis > Worms Technologies > Analysis of the Transcriptome Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics.
Collapse
Affiliation(s)
- John Isaac Murray
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|