1
|
Marzec E, Ajimura S, Antonakis A, Botran M, Cheoun MK, Choi JH, Choi JW, Choi JY, Dodo T, Furuta H, Goh JH, Haga K, Harada M, Hasegawa S, Hino Y, Hiraiwa T, Hwang W, Iida T, Iwai E, Iwata S, Jang HI, Jang JS, Jang MC, Jeon HK, Jeon SH, Joo KK, Jung DE, Kang SK, Kasugai Y, Kawasaki T, Kim EJ, Kim JY, Kim EM, Kim SY, Kim W, Kim SB, Kinoshita H, Konno T, Kuwata K, Lee DH, Lee S, Lim IT, Little C, Maruyama T, Masuda S, Meigo S, Monjushiro S, Moon DH, Nakano T, Niiyama M, Nishikawa K, Noumachi M, Pac MY, Park BJ, Park HW, Park JB, Park JS, Park JS, Park RG, Peeters SJM, Roellinghoff G, Rott C, Ryu JW, Sakai K, Sakamoto S, Shima T, Shin CD, Spitz J, Stancu I, Suekane F, Sugaya Y, Suzuya K, Taira M, Takeuchi Y, Wang W, Waterfield J, Wei W, White R, Yamaguchi Y, Yeh M, Yeo IS, Yoo C, Yu I, Zohaib A. First Measurement of Missing Energy due to Nuclear Effects in Monoenergetic Neutrino Charged-Current Interactions. PHYSICAL REVIEW LETTERS 2025; 134:081801. [PMID: 40085883 DOI: 10.1103/physrevlett.134.081801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/27/2024] [Accepted: 01/22/2025] [Indexed: 03/16/2025]
Abstract
We present the first measurement of the missing energy due to nuclear effects in monoenergetic, muon neutrino charged-current interactions on carbon, originating from K^{+}→μ^{+}ν_{μ} decay at rest (E_{ν_{μ}}=235.5 MeV), performed with the J-PARC Sterile Neutrino Search at the J-PARC Spallation Neutron Source liquid scintillator based experiment. Toward characterizing the neutrino interaction, ostensibly ν_{μ}n→μ^{-}p or ν_{μ}^{12}C→μ^{-}^{12}N, we define the missing energy as the energy transferred to the nucleus (ω) minus the kinetic energy of the outgoing proton(s), E_{m}≡ω-∑T_{p}, and relate this to visible energy in the detector, E_{m}=E_{ν_{μ}}(235.5 MeV)-m_{μ}(105.7 MeV)+[m_{n}-m_{p}(1.3 MeV)]-E_{vis}. The missing energy, which is naively expected to be zero in the absence of nuclear effects (e.g., nucleon separation energy, Fermi momenta, and final-state interactions), is uniquely sensitive to many aspects of the interaction, and has previously been inaccessible with neutrinos. The shape-only, differential cross section measurement reported, based on a (77±3)% pure double-coincidence kaon decay-at-rest signal (621 total events), provides detailed insight into neutrino-nucleus interactions, allowing even the nuclear orbital shell of the struck nucleon to be inferred. The measurement provides an important benchmark for models and event generators at hundreds of MeV neutrino energies, characterized by the difficult-to-model transition region between neutrino-nucleus and neutrino-nucleon scattering, and relevant for applications in nuclear physics, neutrino oscillation measurements, and Type-II supernova studies.
Collapse
Affiliation(s)
- E Marzec
- University of Michigan, Ann Arbor, Michigan 48109, USA
| | - S Ajimura
- Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - A Antonakis
- University of Michigan, Ann Arbor, Michigan 48109, USA
| | - M Botran
- University of Michigan, Ann Arbor, Michigan 48109, USA
| | - M K Cheoun
- Department of Physics and OMEG Institute, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Korea
| | - J H Choi
- Laboratory for High Energy Physics, Dongshin University, 67, Dongshindae-gil, Naju-si, Jeollanam-do 58245, Korea
| | - J W Choi
- Department of Physics, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - J Y Choi
- Department of Physics, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - T Dodo
- Research Center for Neutrino Science, Tohoku University, 6-3 Azaaoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - H Furuta
- Research Center for Neutrino Science, Tohoku University, 6-3 Azaaoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - J H Goh
- Department of Physics, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - K Haga
- J-PARC Center, JAEA, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - M Harada
- J-PARC Center, JAEA, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - S Hasegawa
- J-PARC Center, JAEA, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
- Advanced Science Research Center, JAEA, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Y Hino
- Research Center for Neutrino Science, Tohoku University, 6-3 Azaaoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - T Hiraiwa
- Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - W Hwang
- Department of Physics, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - T Iida
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan
| | - E Iwai
- University of Michigan, Ann Arbor, Michigan 48109, USA
| | - S Iwata
- Department of Physics, Kitasato University, 1 Chome-15-1 Kitazato, Minami Ward, Sagamihara, Kanagawa 252-0373, Japan
| | - H I Jang
- Department of Fire Safety, Seoyeong University, 1 Seogang-ro, Buk-gu, Gwangju 61268, Korea
| | - J S Jang
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - M C Jang
- Department of Physics, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - H K Jeon
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| | - S H Jeon
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| | - K K Joo
- Department of Physics, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - D E Jung
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| | - S K Kang
- School of Liberal Arts, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743, Korea
| | - Y Kasugai
- J-PARC Center, JAEA, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - T Kawasaki
- Department of Physics, Kitasato University, 1 Chome-15-1 Kitazato, Minami Ward, Sagamihara, Kanagawa 252-0373, Japan
| | - E J Kim
- Division of Science Education, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Korea
| | - J Y Kim
- Department of Physics, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - E M Kim
- Department of Physics, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - S Y Kim
- Department of Physics, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - W Kim
- Department of Physics, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
| | - S B Kim
- School of Physics, Sun Yat-sen (Zhongshan) University, Haizhu District, Guangzhou 510275, China
| | - H Kinoshita
- J-PARC Center, JAEA, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - T Konno
- Department of Physics, Kitasato University, 1 Chome-15-1 Kitazato, Minami Ward, Sagamihara, Kanagawa 252-0373, Japan
| | - K Kuwata
- Research Center for Neutrino Science, Tohoku University, 6-3 Azaaoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - D H Lee
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - S Lee
- Department of Physics, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - I T Lim
- Department of Physics, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - C Little
- University of Michigan, Ann Arbor, Michigan 48109, USA
| | - T Maruyama
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - S Masuda
- J-PARC Center, JAEA, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - S Meigo
- J-PARC Center, JAEA, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - S Monjushiro
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - D H Moon
- Department of Physics, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - T Nakano
- Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - M Niiyama
- Department of Physics, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto-City 603-8555, Japan
| | - K Nishikawa
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - M Noumachi
- Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - M Y Pac
- Laboratory for High Energy Physics, Dongshin University, 67, Dongshindae-gil, Naju-si, Jeollanam-do 58245, Korea
| | - B J Park
- Department of Physics, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
| | - H W Park
- Department of Physics, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - J B Park
- Department of Physics and OMEG Institute, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Korea
| | - J S Park
- Department of Physics, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
| | - J S Park
- Department of Physics, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - R G Park
- Department of Physics, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - S J M Peeters
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9RH, United Kingdom
| | - G Roellinghoff
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| | - C Rott
- Department of Physics and Astronomy, The University of Utah, Salt Lake City, Utah 84112, USA
| | - J W Ryu
- Department of Physics, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
| | - K Sakai
- J-PARC Center, JAEA, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - S Sakamoto
- J-PARC Center, JAEA, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - T Shima
- Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - C D Shin
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - J Spitz
- University of Michigan, Ann Arbor, Michigan 48109, USA
| | - I Stancu
- University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - F Suekane
- Research Center for Neutrino Science, Tohoku University, 6-3 Azaaoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Y Sugaya
- Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - K Suzuya
- J-PARC Center, JAEA, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - M Taira
- High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Y Takeuchi
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan
| | - W Wang
- School of Physics, Sun Yat-sen (Zhongshan) University, Haizhu District, Guangzhou 510275, China
| | - J Waterfield
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9RH, United Kingdom
| | - W Wei
- School of Physics, Sun Yat-sen (Zhongshan) University, Haizhu District, Guangzhou 510275, China
| | - R White
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9RH, United Kingdom
| | - Y Yamaguchi
- J-PARC Center, JAEA, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - M Yeh
- Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | - I S Yeo
- Laboratory for High Energy Physics, Dongshin University, 67, Dongshindae-gil, Naju-si, Jeollanam-do 58245, Korea
| | - C Yoo
- Department of Physics, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - I Yu
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| | - A Zohaib
- Department of Physics, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
2
|
Acero MA, Acharya B, Adamson P, Anfimov N, Antoshkin A, Arrieta-Diaz E, Asquith L, Aurisano A, Back A, Balashov N, Baldi P, Bambah BA, Bannister EF, Barros A, Bat A, Bays K, Bernstein R, Bezerra TJC, Bhatnagar V, Bhattarai D, Bhuyan B, Bian J, Booth AC, Bowles R, Brahma B, Bromberg C, Buchanan N, Butkevich A, Calvez S, Carroll TJ, Catano-Mur E, Cesar JP, Chatla A, Chirco R, Choudhary BC, Christensen A, Cicala MF, Coan TE, Cooleybeck A, Cortes-Parra C, Coveyou D, Cremonesi L, Davies GS, Derwent PF, Ding P, Djurcic Z, Dobbs K, Dolce M, Doyle D, Tonguino DD, Dukes EC, Dye A, Ehrlich R, Ewart E, Filip P, Frank MJ, Gallagher HR, Gao F, Giri A, Gomes RA, Goodman MC, Groh M, Group R, Habig A, Hakl F, Hartnell J, Hatcher R, Hausner H, He M, Heller K, Hewes V, Himmel A, Horoho T, Ivanova A, Jargowsky B, Jarosz J, Judah M, Kakorin I, Kalitkina A, Kaplan DM, Kirezli-Ozdemir B, Kleykamp J, Klimov O, Koerner LW, Kolupaeva L, Kralik R, Kumar A, Kus V, Lackey T, Lang K, Lesmeister J, Lister A, Liu J, Lock JA, Lokajicek M, MacMahon M, Magill S, Mann WA, Manoharan MT, Plata MM, et alAcero MA, Acharya B, Adamson P, Anfimov N, Antoshkin A, Arrieta-Diaz E, Asquith L, Aurisano A, Back A, Balashov N, Baldi P, Bambah BA, Bannister EF, Barros A, Bat A, Bays K, Bernstein R, Bezerra TJC, Bhatnagar V, Bhattarai D, Bhuyan B, Bian J, Booth AC, Bowles R, Brahma B, Bromberg C, Buchanan N, Butkevich A, Calvez S, Carroll TJ, Catano-Mur E, Cesar JP, Chatla A, Chirco R, Choudhary BC, Christensen A, Cicala MF, Coan TE, Cooleybeck A, Cortes-Parra C, Coveyou D, Cremonesi L, Davies GS, Derwent PF, Ding P, Djurcic Z, Dobbs K, Dolce M, Doyle D, Tonguino DD, Dukes EC, Dye A, Ehrlich R, Ewart E, Filip P, Frank MJ, Gallagher HR, Gao F, Giri A, Gomes RA, Goodman MC, Groh M, Group R, Habig A, Hakl F, Hartnell J, Hatcher R, Hausner H, He M, Heller K, Hewes V, Himmel A, Horoho T, Ivanova A, Jargowsky B, Jarosz J, Judah M, Kakorin I, Kalitkina A, Kaplan DM, Kirezli-Ozdemir B, Kleykamp J, Klimov O, Koerner LW, Kolupaeva L, Kralik R, Kumar A, Kus V, Lackey T, Lang K, Lesmeister J, Lister A, Liu J, Lock JA, Lokajicek M, MacMahon M, Magill S, Mann WA, Manoharan MT, Plata MM, Marshak ML, Martinez-Casales M, Matveev V, Mehta B, Messier MD, Meyer H, Miao T, Mikola V, Miller WH, Mishra S, Mishra SR, Mislivec A, Mohanta R, Moren A, Morozova A, Mu W, Mualem L, Muether M, Myers D, Naples D, Nath A, Nelleri S, Nelson JK, Nichol R, Niner E, Norman A, Norrick A, Oh H, Olshevskiy A, Olson T, Ozkaynak M, Pal A, Paley J, Panda L, Patterson RB, Pawloski G, Petti R, Plunkett RK, Prais LR, Rabelhofer M, Rafique A, Raj V, Rajaoalisoa M, Ramson B, Rebel B, Roy P, Samoylov O, Sanchez MC, Falero SS, Shanahan P, Sharma P, Sheshukov A, Shmakov A, Shivam, Shorrock W, Shukla S, Singha DK, Singh I, Singh P, Singh V, Smith E, Smolik J, Snopok P, Solomey N, Sousa A, Soustruznik K, Strait M, Suter L, Sutton A, Sutton K, Swain S, Sweeney C, Sztuc A, Oregui BT, Talukdar N, Tas P, Thakore T, Thomas J, Tiras E, Titus M, Torun Y, Tran D, Tripathi J, Trokan-Tenorio J, Urheim J, Vahle P, Vallari Z, Villamil JD, Vockerodt KJ, Wallbank M, Weber C, Wetstein M, Whittington D, Wickremasinghe DA, Wieber T, Wolcott J, Wrobel M, Wu S, Wu W, Wu W, Xiao Y, Yaeggy B, Yahaya A, Yankelevich A, Yonehara K, Zadorozhnyy S, Zalesak J, Zwaska R. Dual-Baseline Search for Active-to-Sterile Neutrino Oscillations in NOvA. PHYSICAL REVIEW LETTERS 2025; 134:081804. [PMID: 40085856 DOI: 10.1103/physrevlett.134.081804] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/06/2025] [Indexed: 03/16/2025]
Abstract
We report a search for neutrino oscillations to sterile neutrinos under a model with three active and one sterile neutrinos (3+1 model). This analysis uses the NOvA detectors exposed to the NuMI beam, running in neutrino mode. The data exposure, 13.6×10^{20} protons on target, doubles that previously analyzed by NOvA, and the analysis is the first to use ν_{μ} charged-current interactions in conjunction with neutral-current interactions. Neutrino samples in the near and far detectors are fitted simultaneously, enabling the search to be carried out over a Δm_{41}^{2} range extending 2 (3) orders of magnitude above (below) 1 eV^{2}. NOvA finds no evidence for active-to-sterile neutrino oscillations under the 3+1 model at 90% confidence level. New limits are reported in multiple regions of parameter space, excluding some regions currently allowed by IceCube at 90% confidence level. We additionally set the most stringent limits for anomalous ν_{τ} appearance for Δm_{41}^{2}≤3 eV^{2}.
Collapse
Affiliation(s)
- M A Acero
- Universidad del Atlantico, Carrera 30 No. 8-49, Puerto Colombia, Atlantico, Colombia
| | - B Acharya
- University of Mississippi, University, Oxford, Mississippi 38677, USA
| | - P Adamson
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - N Anfimov
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - A Antoshkin
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - E Arrieta-Diaz
- Universidad del Magdalena, Carrera 32 No 22-08 Santa Marta, Colombia
| | - L Asquith
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - A Aurisano
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - A Back
- Indiana University, Bloomington, Indiana 47405, USA
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - N Balashov
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - P Baldi
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
| | - B A Bambah
- School of Physics, University of Hyderabad, Hyderabad, 500 046, India
| | - E F Bannister
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - A Barros
- Universidad del Atlantico, Carrera 30 No. 8-49, Puerto Colombia, Atlantico, Colombia
| | - A Bat
- Bandirma Onyedi Eylül University, Faculty of Engineering and Natural Sciences, Engineering Sciences Department, 10200, Bandirma, Bal𝚤kesir, Turkey
- Department of Physics, Erciyes University, Kayseri 38030, Turkey
| | - K Bays
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - R Bernstein
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - T J C Bezerra
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - V Bhatnagar
- Department of Physics, Panjab University, Chandigarh, 160 014, India
| | - D Bhattarai
- University of Mississippi, University, Oxford, Mississippi 38677, USA
| | - B Bhuyan
- Department of Physics, IIT Guwahati, Guwahati, 781 039, India
| | - J Bian
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - A C Booth
- Particle Physics Research Centre, Department of Physics and Astronomy, Queen Mary University of London, London E1 4NS, United Kingdom
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - R Bowles
- Indiana University, Bloomington, Indiana 47405, USA
| | - B Brahma
- Department of Physics, IIT Hyderabad, Hyderabad, 502 205, India
| | - C Bromberg
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - N Buchanan
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - A Butkevich
- Institute for Nuclear Research of Russia, Academy of Sciences 7a, 60th October Anniversary prospect, Moscow 117312, Russia
| | - S Calvez
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - T J Carroll
- University of Wisconsin-Madison, Department of Physics, Madison, Wisconsin 53706, USA
| | - E Catano-Mur
- Department of Physics, William & Mary, Williamsburg, Virginia 23187, USA
| | - J P Cesar
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - A Chatla
- School of Physics, University of Hyderabad, Hyderabad, 500 046, India
| | - R Chirco
- Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - B C Choudhary
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - A Christensen
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - M F Cicala
- Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - T E Coan
- Department of Physics, Southern Methodist University, Dallas, Texas 75275, USA
| | - A Cooleybeck
- University of Wisconsin-Madison, Department of Physics, Madison, Wisconsin 53706, USA
| | - C Cortes-Parra
- Universidad del Magdalena, Carrera 32 No 22-08 Santa Marta, Colombia
| | - D Coveyou
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - L Cremonesi
- Particle Physics Research Centre, Department of Physics and Astronomy, Queen Mary University of London, London E1 4NS, United Kingdom
| | - G S Davies
- University of Mississippi, University, Oxford, Mississippi 38677, USA
| | - P F Derwent
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - P Ding
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - Z Djurcic
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - K Dobbs
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - M Dolce
- Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67260, USA
| | - D Doyle
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - D Dueñas Tonguino
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - E C Dukes
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - A Dye
- University of Mississippi, University, Oxford, Mississippi 38677, USA
| | - R Ehrlich
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - E Ewart
- Indiana University, Bloomington, Indiana 47405, USA
| | - P Filip
- Institute of Physics, The Czech Academy of Sciences, 182 21 Prague, Czech Republic
| | - M J Frank
- Department of Physics, University of South Alabama, Mobile, Alabama 36688, USA
| | - H R Gallagher
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - F Gao
- Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - A Giri
- Department of Physics, IIT Hyderabad, Hyderabad, 502 205, India
| | - R A Gomes
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - M C Goodman
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - M Groh
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - R Group
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - A Habig
- Department of Physics and Astronomy, University of Minnesota Duluth, Duluth, Minnesota 55812, USA
| | - F Hakl
- Institute of Computer Science, The Czech Academy of Sciences, 182 07 Prague, Czech Republic
| | - J Hartnell
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - R Hatcher
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - H Hausner
- University of Wisconsin-Madison, Department of Physics, Madison, Wisconsin 53706, USA
| | - M He
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - K Heller
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - V Hewes
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - A Himmel
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - T Horoho
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - A Ivanova
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - B Jargowsky
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
| | - J Jarosz
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - M Judah
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
- Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - I Kakorin
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - A Kalitkina
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - D M Kaplan
- Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | | | - J Kleykamp
- University of Mississippi, University, Oxford, Mississippi 38677, USA
| | - O Klimov
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - L W Koerner
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - L Kolupaeva
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - R Kralik
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - A Kumar
- Department of Physics, Panjab University, Chandigarh, 160 014, India
| | - V Kus
- Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
| | - T Lackey
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
- Indiana University, Bloomington, Indiana 47405, USA
| | - K Lang
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - J Lesmeister
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - A Lister
- University of Wisconsin-Madison, Department of Physics, Madison, Wisconsin 53706, USA
| | - J Liu
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
| | - J A Lock
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - M Lokajicek
- Institute of Physics, The Czech Academy of Sciences, 182 21 Prague, Czech Republic
| | - M MacMahon
- Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - S Magill
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - W A Mann
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - M T Manoharan
- Department of Physics, Cochin University of Science and Technology, Kochi 682 022, India
| | | | - M L Marshak
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - M Martinez-Casales
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - V Matveev
- Institute for Nuclear Research of Russia, Academy of Sciences 7a, 60th October Anniversary prospect, Moscow 117312, Russia
| | - B Mehta
- Department of Physics, Panjab University, Chandigarh, 160 014, India
| | - M D Messier
- Indiana University, Bloomington, Indiana 47405, USA
| | - H Meyer
- Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67260, USA
| | - T Miao
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - V Mikola
- Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - W H Miller
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - S Mishra
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - S R Mishra
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - A Mislivec
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - R Mohanta
- School of Physics, University of Hyderabad, Hyderabad, 500 046, India
| | - A Moren
- Department of Physics and Astronomy, University of Minnesota Duluth, Duluth, Minnesota 55812, USA
| | - A Morozova
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - W Mu
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - L Mualem
- California Institute of Technology, Pasadena, California 91125, USA
| | - M Muether
- Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67260, USA
| | - D Myers
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - D Naples
- Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - A Nath
- Department of Physics, IIT Guwahati, Guwahati, 781 039, India
| | - S Nelleri
- Department of Physics, Cochin University of Science and Technology, Kochi 682 022, India
| | - J K Nelson
- Department of Physics, William & Mary, Williamsburg, Virginia 23187, USA
| | - R Nichol
- Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - E Niner
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - A Norman
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - A Norrick
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - H Oh
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - A Olshevskiy
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - T Olson
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - M Ozkaynak
- Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - A Pal
- National Institute of Science Education and Research, Khurda, 752050, Odisha, India
| | - J Paley
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - L Panda
- National Institute of Science Education and Research, Khurda, 752050, Odisha, India
| | - R B Patterson
- California Institute of Technology, Pasadena, California 91125, USA
| | - G Pawloski
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - R Petti
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - R K Plunkett
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - L R Prais
- University of Mississippi, University, Oxford, Mississippi 38677, USA
| | - M Rabelhofer
- Indiana University, Bloomington, Indiana 47405, USA
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - A Rafique
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - V Raj
- California Institute of Technology, Pasadena, California 91125, USA
| | - M Rajaoalisoa
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - B Ramson
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - B Rebel
- University of Wisconsin-Madison, Department of Physics, Madison, Wisconsin 53706, USA
| | - P Roy
- Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67260, USA
| | - O Samoylov
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - M C Sanchez
- Florida State University, Tallahassee, Florida 32306, USA
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - S Sánchez Falero
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - P Shanahan
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - P Sharma
- Department of Physics, Panjab University, Chandigarh, 160 014, India
| | - A Sheshukov
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - A Shmakov
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
| | - Shivam
- Department of Physics, IIT Guwahati, Guwahati, 781 039, India
| | - W Shorrock
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - S Shukla
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - D K Singha
- School of Physics, University of Hyderabad, Hyderabad, 500 046, India
| | - I Singh
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - P Singh
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
- Particle Physics Research Centre, Department of Physics and Astronomy, Queen Mary University of London, London E1 4NS, United Kingdom
| | - V Singh
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - E Smith
- Indiana University, Bloomington, Indiana 47405, USA
| | - J Smolik
- Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
| | - P Snopok
- Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - N Solomey
- Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67260, USA
| | - A Sousa
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - K Soustruznik
- Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic
| | - M Strait
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - L Suter
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - A Sutton
- Florida State University, Tallahassee, Florida 32306, USA
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - K Sutton
- California Institute of Technology, Pasadena, California 91125, USA
| | - S Swain
- National Institute of Science Education and Research, Khurda, 752050, Odisha, India
| | - C Sweeney
- Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - A Sztuc
- Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - B Tapia Oregui
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - N Talukdar
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - P Tas
- Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic
| | - T Thakore
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - J Thomas
- Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - E Tiras
- Department of Physics, Erciyes University, Kayseri 38030, Turkey
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - M Titus
- Department of Physics, Cochin University of Science and Technology, Kochi 682 022, India
| | - Y Torun
- Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - D Tran
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - J Tripathi
- Department of Physics, Panjab University, Chandigarh, 160 014, India
| | - J Trokan-Tenorio
- Department of Physics, William & Mary, Williamsburg, Virginia 23187, USA
| | - J Urheim
- Indiana University, Bloomington, Indiana 47405, USA
| | - P Vahle
- Department of Physics, William & Mary, Williamsburg, Virginia 23187, USA
| | - Z Vallari
- California Institute of Technology, Pasadena, California 91125, USA
| | - J D Villamil
- Universidad del Magdalena, Carrera 32 No 22-08 Santa Marta, Colombia
| | - K J Vockerodt
- Particle Physics Research Centre, Department of Physics and Astronomy, Queen Mary University of London, London E1 4NS, United Kingdom
| | - M Wallbank
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - C Weber
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - M Wetstein
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - D Whittington
- Indiana University, Bloomington, Indiana 47405, USA
- Department of Physics, Syracuse University, Syracuse, New York 13210, USA
| | | | - T Wieber
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - J Wolcott
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - M Wrobel
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - S Wu
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - W Wu
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
| | - W Wu
- Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Y Xiao
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
| | - B Yaeggy
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - A Yahaya
- Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67260, USA
| | - A Yankelevich
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
| | - K Yonehara
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - S Zadorozhnyy
- Institute for Nuclear Research of Russia, Academy of Sciences 7a, 60th October Anniversary prospect, Moscow 117312, Russia
| | - J Zalesak
- Institute of Physics, The Czech Academy of Sciences, 182 21 Prague, Czech Republic
| | - R Zwaska
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| |
Collapse
|
3
|
Smolsky J, Leach KG, Abells R, Amaro P, Andoche A, Borbridge K, Bray C, Cantor R, Diercks D, Fretwell S, Friedrich S, Gillespie A, Guerra M, Hall A, Harris CN, Harris JT, Hayen LM, Hervieux PA, Hinkle C, Kim GB, Kim I, Lamm A, Lennarz A, Lordi V, Machado J, Marino A, McKeen D, Mougeot X, Ponce F, Ruiz C, Samanta A, Santos JP, Stone-Whitehead C, Taylor J, Templet J, Upadhyayula S, Wagner L, Warburton WK. Direct experimental constraints on the spatial extent of a neutrino wavepacket. Nature 2025; 638:640-644. [PMID: 39939769 PMCID: PMC11839472 DOI: 10.1038/s41586-024-08479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 12/03/2024] [Indexed: 02/14/2025]
Abstract
Despite their high relative abundance in our Universe, neutrinos are the least understood fundamental particles of nature. In fact, the quantum properties of neutrinos emitted in experimentally relevant sources are theoretically contested1-4 and the spatial extent of the neutrino wavepacket is only loosely constrained by reactor neutrino oscillation data with a spread of 13 orders of magnitude5,6. Here we present a method to directly access this quantity by precisely measuring the energy width of the recoil daughter nucleus emitted in the radioactive decay of beryllium-7. The final state in the decay process contains a recoiling lithium-7 nucleus, which is entangled with an electron neutrino at creation. The lithium-7 energy spectrum is measured to high precision by directly embedding beryllium-7 radioisotopes into a high-resolution superconducting tunnel junction that is operated as a cryogenic sensor. Under this approach, we set a lower limit on the Heisenberg spatial uncertainty of the recoil daughter of 6.2 pm, which implies that the final-state system is localized at a scale more than a thousand times larger than the nucleus itself. From this measurement, the first, to our knowledge, direct lower limit on the spatial extent of a neutrino wavepacket is extracted. These results may have implications in several areas including the theoretical understanding of neutrino properties, the nature of localization in weak nuclear decays and the interpretation of neutrino physics data.
Collapse
Affiliation(s)
- Joseph Smolsky
- Department of Physics, Colorado School of Mines, Golden, CO, USA.
| | - Kyle G Leach
- Department of Physics, Colorado School of Mines, Golden, CO, USA.
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI, USA.
| | | | - Pedro Amaro
- LIBPhys-UNL, Departamento de Física, Faculdade de Ciências e Tecnologia, NOVA FCT, Universidade Nova de Lisboa, Caparica, Portugal
| | - Adrien Andoche
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, France
| | - Keith Borbridge
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | - Connor Bray
- Department of Physics, Colorado School of Mines, Golden, CO, USA
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | - David Diercks
- Shared Instrumentation Facility, Colorado School of Mines, Golden, CO, USA
| | - Spencer Fretwell
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | | | | | - Mauro Guerra
- LIBPhys-UNL, Departamento de Física, Faculdade de Ciências e Tecnologia, NOVA FCT, Universidade Nova de Lisboa, Caparica, Portugal
| | - Ad Hall
- STAR Cryoelectonics LLC, Santa Fe, NM, USA
| | - Cameron N Harris
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | | | | | - Paul-Antoine Hervieux
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, France
| | - Calvin Hinkle
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | - Geon-Bo Kim
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Inwook Kim
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Amii Lamm
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | - Annika Lennarz
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Vincenzo Lordi
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jorge Machado
- LIBPhys-UNL, Departamento de Física, Faculdade de Ciências e Tecnologia, NOVA FCT, Universidade Nova de Lisboa, Caparica, Portugal
| | - Andrew Marino
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | | | - Xavier Mougeot
- Université Paris-Saclay, CEA, List, Laboratoire National Henri Becquerel (LNE-LNHB), Palaiseau, France
| | | | - Chris Ruiz
- TRIUMF, Vancouver, British Columbia, Canada
| | - Amit Samanta
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - José Paulo Santos
- LIBPhys-UNL, Departamento de Física, Faculdade de Ciências e Tecnologia, NOVA FCT, Universidade Nova de Lisboa, Caparica, Portugal
| | | | - John Taylor
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | - Joseph Templet
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | | | - Louis Wagner
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI, USA
- TRIUMF, Vancouver, British Columbia, Canada
| | | |
Collapse
|
4
|
Yun E, Choi JY, Kim SY, Joo KK. Pulse Shape Discrimination of n/γ in Liquid Scintillator at PMT Nonlinear Region Using Artificial Neural Network Technique. SENSORS (BASEL, SWITZERLAND) 2024; 24:8060. [PMID: 39771796 PMCID: PMC11679034 DOI: 10.3390/s24248060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Reactor-emitted electron antineutrinos can be detected via the inverse beta decay reaction, which produces a characteristic signal: a two-fold coincidence between a prompt positron event and a delayed neutron capture event within a specific time frame. While liquid scintillators are widely used for detecting neutrinos reacting with matter, detection is difficult because of the low interaction of neutrinos. In particular, it is important to distinguish between neutron (n) and gamma (γ) signals. The principle of the interaction of neutrons with matter differs from that of gamma rays with matter, and hence the detection signal's waveform is different. Conventionally, pulse shape discrimination (PSD) is used for n/γ separation. This study developed a machine learning method to see if it is more efficient than the traditional PSD method. The possibility of n/γ discrimination in the region beyond the linear response limits was also examined, by using 10- and 2-inch photomultiplier tubes (PMTs) simultaneously. To the best of our knowledge, no study has attempted PSD in a PMT nonlinear region using artificial neural networks. Our results indicate that the proposed method has the potential to distinguish between n and γ signals in a nonlinear region.
Collapse
Affiliation(s)
| | - Ji Young Choi
- Center for Precision Neutrino Research, Department of Physics, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang Yong Kim
- Center for Precision Neutrino Research, Department of Physics, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyung Kwang Joo
- Center for Precision Neutrino Research, Department of Physics, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
5
|
Alves GFS, Fong CS, Leal LPS, Funchal RZ. Limits on W_{R} from Meson Decays. PHYSICAL REVIEW LETTERS 2024; 133:161802. [PMID: 39485966 DOI: 10.1103/physrevlett.133.161802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/08/2024] [Accepted: 09/03/2024] [Indexed: 11/03/2024]
Abstract
In this Letter we show that pseudoscalar meson leptonic decay data can be used to set stringent limits on the mass m_{W_{R}} of a right-handed vector boson, such as the one that appears in left-right symmetric models. We have shown that for a heavy neutrino with a mass m_{N} in the range 50
Collapse
Affiliation(s)
- Gustavo F S Alves
- Fermilab, Instituto de Física, Universidade de São Paulo, C.P. 66.318, 05315-970 São Paulo, Brazil and Particle Theory Department, P.O. Box 500, Batavia, Illinois 60510, USA
| | - Chee Sheng Fong
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas , 09.210-170, Santo André, Brazil
| | - Luighi P S Leal
- Instituto de Física, Universidade de São Paulo, C.P. 66.318, 05315-970 São Paulo, Brazil
| | | |
Collapse
|
6
|
Ding GJ, King SF. Neutrino mass and mixing with modular symmetry. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:084201. [PMID: 38821047 DOI: 10.1088/1361-6633/ad52a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
This is a review article about neutrino mass and mixing and flavour model building strategies based on modular symmetry. After a brief survey of neutrino mass and lepton mixing, and various Majorana seesaw mechanisms, we construct and parameterise the lepton mixing matrix and summarise the latest global fits, before discussing the flavour problem of the Standard Model. We then introduce some simple patterns of lepton mixing, introduce family (or flavour) symmetries, and show how they may be applied to direct, semi-direct and tri-direct CP models, where the simple patterns of lepton mixing, or corrected versions of them, may be enforced by the full family symmetry or a part of it, leading to mixing sum rules. We then turn to the main subject of this review, namely a pedagogical introduction to modular symmetry as a candidate for family symmetry, from the bottom-up point of view. After an informal introduction to modular symmetry, we introduce the modular group, and discuss its fixed points and residual symmetry, assuming supersymmetry throughout. We then introduce finite modular groups of levelNand modular forms with integer or rational modular weights, corresponding to simple geometric groups or their double or metaplectic covers, including the most general finite modular groups and vector-valued modular forms, with detailed results forN=2,3,4,5. The interplay between modular symmetry and generalized CP symmetry is discussed, deriving CP transformations on matter multiplets and modular forms, highlighting the CP fixed points and their implications. In general, compactification of extra dimensions generally leads to a number of moduli, and modular invariance with factorizable and non-factorizable multiple moduli based on symplectic modular invariance and automorphic forms is reviewed. Modular strategies for understanding fermion mass hierarchies are discussed, including the weighton mechanism, small deviations from fixed points, and texture zeroes. Then examples of modular models are discussed based on single modulusA4models, a minimalS4'model of leptons (and quarks), and a multiple moduli model based on threeS4groups capable of reproducing the Littlest Seesaw model. We then extend the discussion to include Grand Unified Theories based on modular (flipped)SU(5) andSO(10). Finally we briefly mention some issues related to top-down approaches based on string theory, including eclectic flavour symmetry and moduli stabilisation, before concluding.
Collapse
Affiliation(s)
- Gui-Jun Ding
- Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Stephen F King
- Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
7
|
Abe K, Akhlaq N, Akutsu R, Ali A, Alonso Monsalve S, Alt C, Andreopoulos C, Antonova M, Aoki S, Arihara T, Asada Y, Ashida Y, Atkin ET, Barbi M, Barker GJ, Barr G, Barrow D, Batkiewicz-Kwasniak M, Bench F, Berardi V, Berns L, Bhadra S, Blanchet A, Blondel A, Bolognesi S, Bonus T, Bordoni S, Boyd SB, Bravar A, Bronner C, Bron S, Bubak A, Buizza Avanzini M, Caballero JA, Calabria NF, Cao S, Carabadjac D, Carter AJ, Cartwright SL, Catanesi MG, Cervera A, Chakrani J, Cherdack D, Chong PS, Christodoulou G, Chvirova A, Cicerchia M, Coleman J, Collazuol G, Cook L, Cudd A, Dalmazzone C, Daret T, Davydov YI, De Roeck A, De Rosa G, Dealtry T, Delogu CC, Densham C, Dergacheva A, Di Lodovico F, Dolan S, Douqa D, Doyle TA, Drapier O, Dumarchez J, Dunne P, Dygnarowicz K, Eguchi A, Emery-Schrenk S, Erofeev G, Ershova A, Eurin G, Fedorova D, Fedotov S, Feltre M, Finch AJ, Fiorentini Aguirre GA, Fiorillo G, Fitton MD, Franco Patiño JM, Friend M, Fujii Y, Fukuda Y, Fusshoeller K, Giannessi L, Giganti C, Glagolev V, Gonin M, González Rosa J, Goodman EAG, Gorin A, Grassi M, Guigue M, Hadley DR, Haigh JT, Hamacher-Baumann P, Harris DA, Hartz M, Hasegawa T, et alAbe K, Akhlaq N, Akutsu R, Ali A, Alonso Monsalve S, Alt C, Andreopoulos C, Antonova M, Aoki S, Arihara T, Asada Y, Ashida Y, Atkin ET, Barbi M, Barker GJ, Barr G, Barrow D, Batkiewicz-Kwasniak M, Bench F, Berardi V, Berns L, Bhadra S, Blanchet A, Blondel A, Bolognesi S, Bonus T, Bordoni S, Boyd SB, Bravar A, Bronner C, Bron S, Bubak A, Buizza Avanzini M, Caballero JA, Calabria NF, Cao S, Carabadjac D, Carter AJ, Cartwright SL, Catanesi MG, Cervera A, Chakrani J, Cherdack D, Chong PS, Christodoulou G, Chvirova A, Cicerchia M, Coleman J, Collazuol G, Cook L, Cudd A, Dalmazzone C, Daret T, Davydov YI, De Roeck A, De Rosa G, Dealtry T, Delogu CC, Densham C, Dergacheva A, Di Lodovico F, Dolan S, Douqa D, Doyle TA, Drapier O, Dumarchez J, Dunne P, Dygnarowicz K, Eguchi A, Emery-Schrenk S, Erofeev G, Ershova A, Eurin G, Fedorova D, Fedotov S, Feltre M, Finch AJ, Fiorentini Aguirre GA, Fiorillo G, Fitton MD, Franco Patiño JM, Friend M, Fujii Y, Fukuda Y, Fusshoeller K, Giannessi L, Giganti C, Glagolev V, Gonin M, González Rosa J, Goodman EAG, Gorin A, Grassi M, Guigue M, Hadley DR, Haigh JT, Hamacher-Baumann P, Harris DA, Hartz M, Hasegawa T, Hassani S, Hastings NC, Hayato Y, Henaff D, Hiramoto A, Hogan M, Holeczek J, Holin A, Holvey T, Hong Van NT, Honjo T, Iacob F, Ichikawa AK, Ikeda M, Ishida T, Ishitsuka M, Israel HT, Iwamoto K, Izmaylov A, Izumi N, Jakkapu M, Jamieson B, Jenkins SJ, Jesús-Valls C, Jiang JJ, Jonsson P, Joshi S, Jung CK, Jurj PB, Kabirnezhad M, Kaboth AC, Kajita T, Kakuno H, Kameda J, Kasetti SP, Kataoka Y, Katayama Y, Katori T, Kawaue M, Kearns E, Khabibullin M, Khotjantsev A, Kikawa T, Kikutani H, King S, Kiseeva V, Kisiel J, Kobata T, Kobayashi H, Kobayashi T, Koch L, Kodama S, Konaka A, Kormos LL, Koshio Y, Kostin A, Koto T, Kowalik K, Kudenko Y, Kudo Y, Kuribayashi S, Kurjata R, Kutter T, Kuze M, La Commara M, Labarga L, Lachner K, Lagoda J, Lakshmi SM, Lamers James M, Lamoureux M, Langella A, Laporte JF, Last D, Latham N, Laveder M, Lavitola L, Lawe M, Lee Y, Lin C, Lin SK, Litchfield RP, Liu SL, Li W, Longhin A, Long KR, Lopez Moreno A, Ludovici L, Lu X, Lux T, Machado LN, Magaletti L, Mahn K, Malek M, Mandal M, Manly S, Marino AD, Marti-Magro L, Martin DGR, Martini M, Martin JF, Maruyama T, Matsubara T, Matveev V, Mauger C, Mavrokoridis K, Mazzucato E, McCauley N, McElwee J, McFarland KS, McGrew C, McKean J, Mefodiev A, Megias GD, Mehta P, Mellet L, Metelko C, Mezzetto M, Miller E, Minamino A, Mineev O, Mine S, Miura M, Molina Bueno L, Moriyama S, Moriyama S, Morrison P, Mueller TA, Munford D, Munteanu L, Nagai K, Nagai Y, Nakadaira T, Nakagiri K, Nakahata M, Nakajima Y, Nakamura A, Nakamura H, Nakamura K, Nakamura KD, Nakano Y, Nakayama S, Nakaya T, Nakayoshi K, Naseby CER, Ngoc TV, Nguyen VQ, Niewczas K, Nishimori S, Nishimura Y, Nishizaki K, Nosek T, Nova F, Novella P, Nugent JC, O’Keeffe HM, O’Sullivan L, Odagawa T, Ogawa T, Okada R, Okinaga W, Okumura K, Okusawa T, Ospina N, Owen RA, Oyama Y, Palladino V, Paolone V, Pari M, Parlone J, Parsa S, Pasternak J, Pavin M, Payne D, Penn GC, Pershey D, Pickering L, Pidcott C, Pintaudi G, Pistillo C, Popov B, Porwit K, Posiadala-Zezula M, Prabhu YS, Pupilli F, Quilain B, Radermacher T, Radicioni E, Radics B, Ramírez MA, Ratoff PN, Reh M, Riccio C, Rondio E, Roth S, Roy N, Rubbia A, Ruggeri AC, Ruggles CA, Rychter A, Sakashita K, Sánchez F, Santucci G, Schloesser CM, Scholberg K, Scott M, Seiya Y, Sekiguchi T, Sekiya H, Sgalaberna D, Shaikhiev A, Shaker F, Shaykina A, Shiozawa M, Shorrock W, Shvartsman A, Skrobova N, Skwarczynski K, Smyczek D, Smy M, Sobczyk JT, Sobel H, Soler FJP, Sonoda Y, Speers AJ, Spina R, Suslov IA, Suvorov S, Suzuki A, Suzuki SY, Suzuki Y, Sztuc AA, Tada M, Tairafune S, Takayasu S, Takeda A, Takeuchi Y, Takifuji K, Tanaka HK, Tanihara Y, Tani M, Teklu A, Tereshchenko VV, Teshima N, Thamm N, Thompson LF, Toki W, Touramanis C, Towstego T, Tsui KM, Tsukamoto T, Tzanov M, Uchida Y, Vagins M, Vargas D, Varghese M, Vasseur G, Vilela C, Villa E, Vinning WGS, Virginet U, Vladisavljevic T, Wachala T, Walsh JG, Wang Y, Wan L, Wark D, Wascko MO, Weber A, Wendell R, Wilking MJ, Wilkinson C, Wilson JR, Wood K, Wret C, Xia J, Xu YH, Yamamoto K, Yamamoto T, Yanagisawa C, Yang G, Yano T, Yasutome K, Yershov N, Yevarouskaya U, Yokoyama M, Yoshimoto Y, Yoshimura N, Yu M, Zaki R, Zalewska A, Zalipska J, Zaremba K, Zarnecki G, Zhao X, Zhu T, Ziembicki M, Zimmerman ED, Zito M, Zsoldos S. Measurements of neutrino oscillation parameters from the T2K experiment using 3.6×1021 protons on target. THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS 2023; 83:782. [PMID: 37680254 PMCID: PMC10480298 DOI: 10.1140/epjc/s10052-023-11819-x] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/10/2023] [Indexed: 09/09/2023]
Abstract
The T2K experiment presents new measurements of neutrino oscillation parameters using 19.7 ( 16.3 ) × 10 20 protons on target (POT) in (anti-)neutrino mode at the far detector (FD). Compared to the previous analysis, an additional 4.7 × 10 20 POT neutrino data was collected at the FD. Significant improvements were made to the analysis methodology, with the near-detector analysis introducing new selections and using more than double the data. Additionally, this is the first T2K oscillation analysis to use NA61/SHINE data on a replica of the T2K target to tune the neutrino flux model, and the neutrino interaction model was improved to include new nuclear effects and calculations. Frequentist and Bayesian analyses are presented, including results on sin 2 θ 13 and the impact of priors on the δ CP measurement. Both analyses prefer the normal mass ordering and upper octant of sin 2 θ 23 with a nearly maximally CP-violating phase. Assuming the normal ordering and using the constraint on sin 2 θ 13 from reactors, sin 2 θ 23 = 0 . 561 - 0.032 + 0.021 using Feldman-Cousins corrected intervals, and Δ m 32 2 = 2 . 494 - 0.058 + 0.041 × 10 - 3 eV 2 using constant Δ χ 2 intervals. The CP-violating phase is constrained to δ CP = - 1 . 97 - 0.70 + 0.97 using Feldman-Cousins corrected intervals, and δ CP = 0 , π is excluded at more than 90% confidence level. A Jarlskog invariant of zero is excluded at more than 2 σ credible level using a flat prior in δ CP , and just below 2 σ using a flat prior in sin δ CP . When the external constraint on sin 2 θ 13 is removed, sin 2 θ 13 = 28 . 0 - 6.5 + 2.8 × 10 - 3 , in agreement with measurements from reactor experiments. These results are consistent with previous T2K analyses.
Collapse
Affiliation(s)
- K. Abe
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - N. Akhlaq
- School of Physics and Astronomy, Queen Mary University of London, London, UK
| | - R. Akutsu
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
| | - A. Ali
- TRIUMF, Vancouver, BC Canada
- Department of Physics, University of Winnipeg, Winnipeg, MB Canada
| | - S. Alonso Monsalve
- Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland
| | - C. Alt
- Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland
| | - C. Andreopoulos
- Department of Physics, University of Liverpool, Liverpool, UK
| | - M. Antonova
- IFIC (CSIC and University of Valencia), Valencia, Spain
| | - S. Aoki
- Kobe University, Kobe, Japan
| | - T. Arihara
- Department of Physics, Tokyo Metropolitan University, Tokyo, Japan
| | - Y. Asada
- Department of Physics, Yokohama National University, Yokohama, Japan
| | - Y. Ashida
- Department of Physics, Kyoto University, Kyoto, Japan
| | - E. T. Atkin
- Department of Physics, Imperial College London, London, UK
| | - M. Barbi
- Department of Physics, University of Regina, Regina, Saskatchewan Canada
| | - G. J. Barker
- Department of Physics, University of Warwick, Coventry, UK
| | - G. Barr
- Department of Physics, Oxford University, Oxford, UK
| | - D. Barrow
- Department of Physics, Oxford University, Oxford, UK
| | | | - F. Bench
- Department of Physics, University of Liverpool, Liverpool, UK
| | - V. Berardi
- Dipartimento Interuniversitario di Fisica, INFN Sezione di Bari and Università e Politecnico di Bari, Bari, Italy
| | - L. Berns
- Department of Physics, Faculty of Science, Tohoku University, Sendai, Miyagi Japan
| | - S. Bhadra
- Department of Physics and Astronomy, York University, Toronto, ON Canada
| | - A. Blanchet
- Section de Physique, DPNC, University of Geneva, Geneva, Switzerland
| | - A. Blondel
- Section de Physique, DPNC, University of Geneva, Geneva, Switzerland
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
| | - S. Bolognesi
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - T. Bonus
- Faculty of Physics and Astronomy, Wroclaw University, Wrocław, Poland
| | - S. Bordoni
- Section de Physique, DPNC, University of Geneva, Geneva, Switzerland
| | - S. B. Boyd
- Department of Physics, University of Warwick, Coventry, UK
| | - A. Bravar
- Section de Physique, DPNC, University of Geneva, Geneva, Switzerland
| | - C. Bronner
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - S. Bron
- TRIUMF, Vancouver, BC Canada
| | - A. Bubak
- Institute of Physics, University of Silesia, Katowice, Poland
| | - M. Buizza Avanzini
- Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
| | - J. A. Caballero
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla, Spain
| | - N. F. Calabria
- Dipartimento Interuniversitario di Fisica, INFN Sezione di Bari and Università e Politecnico di Bari, Bari, Italy
| | - S. Cao
- Institute For Interdisciplinary Research in Science and Education (IFIRSE), ICISE, Quy Nhon, Vietnam
| | - D. Carabadjac
- Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
- Université Paris-Saclay, Gif-sur-Yvette, France
| | - A. J. Carter
- Department of Physics, Royal Holloway University of London, Egham, Surrey UK
| | - S. L. Cartwright
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - M. G. Catanesi
- Dipartimento Interuniversitario di Fisica, INFN Sezione di Bari and Università e Politecnico di Bari, Bari, Italy
| | - A. Cervera
- IFIC (CSIC and University of Valencia), Valencia, Spain
| | - J. Chakrani
- Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
| | - D. Cherdack
- Department of Physics, University of Houston, Houston, TX USA
| | - P. S. Chong
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - G. Christodoulou
- CERN European Organization for Nuclear Research, 1211 Geneva 23, Switzerland
| | - A. Chvirova
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - M. Cicerchia
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
- INFN-Laboratori Nazionali di Legnaro, Legnaro, Italy
| | - J. Coleman
- Department of Physics, University of Liverpool, Liverpool, UK
| | - G. Collazuol
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
| | - L. Cook
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- Department of Physics, Oxford University, Oxford, UK
| | - A. Cudd
- Department of Physics, University of Colorado at Boulder, Boulder, CO USA
| | - C. Dalmazzone
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
| | - T. Daret
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Yu. I. Davydov
- Joint Institute for Nuclear Research, Dubna, Moscow Region Russia
| | - A. De Roeck
- CERN European Organization for Nuclear Research, 1211 Geneva 23, Switzerland
| | - G. De Rosa
- Dipartimento di Fisica, INFN Sezione di Napoli and Università di Napoli, Naples, Italy
| | - T. Dealtry
- Physics Department, Lancaster University, Lancaster, UK
| | - C. C. Delogu
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
| | - C. Densham
- Rutherford Appleton Laboratory, STFC, Harwell, Oxford, UK
- Department of Physics, University of Tokyo, Tokyo, Japan
| | - A. Dergacheva
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - F. Di Lodovico
- Department of Physics, King’s College London, Strand, London, WC2R 2LS UK
| | - S. Dolan
- CERN European Organization for Nuclear Research, 1211 Geneva 23, Switzerland
| | - D. Douqa
- Section de Physique, DPNC, University of Geneva, Geneva, Switzerland
| | - T. A. Doyle
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
| | - O. Drapier
- Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
| | - J. Dumarchez
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
| | - P. Dunne
- Department of Physics, Imperial College London, London, UK
| | - K. Dygnarowicz
- Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Warsaw, Poland
| | - A. Eguchi
- Department of Physics, University of Tokyo, Tokyo, Japan
| | - S. Emery-Schrenk
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - G. Erofeev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - A. Ershova
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - G. Eurin
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - D. Fedorova
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - S. Fedotov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - M. Feltre
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
| | - A. J. Finch
- Physics Department, Lancaster University, Lancaster, UK
| | | | - G. Fiorillo
- Dipartimento di Fisica, INFN Sezione di Napoli and Università di Napoli, Naples, Italy
| | - M. D. Fitton
- Rutherford Appleton Laboratory, STFC, Harwell, Oxford, UK
| | - J. M. Franco Patiño
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla, Spain
| | - M. Friend
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - Y. Fujii
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - Y. Fukuda
- Department of Physics, Miyagi University of Education, Sendai, Japan
| | - K. Fusshoeller
- Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland
| | - L. Giannessi
- Section de Physique, DPNC, University of Geneva, Geneva, Switzerland
| | - C. Giganti
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
| | - V. Glagolev
- Joint Institute for Nuclear Research, Dubna, Moscow Region Russia
| | - M. Gonin
- ILANCE, CNRS-University of Tokyo International Research Laboratory, Kashiwa, Chiba 277-8582 Japan
| | - J. González Rosa
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla, Spain
| | - E. A. G. Goodman
- School of Physics and Astronomy, University of Glasgow, Glasgow, UK
| | - A. Gorin
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - M. Grassi
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
| | - M. Guigue
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
| | - D. R. Hadley
- Department of Physics, University of Warwick, Coventry, UK
| | - J. T. Haigh
- Department of Physics, University of Warwick, Coventry, UK
| | | | - D. A. Harris
- Department of Physics and Astronomy, York University, Toronto, ON Canada
| | - M. Hartz
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- TRIUMF, Vancouver, BC Canada
| | - T. Hasegawa
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - S. Hassani
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - N. C. Hastings
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
| | - Y. Hayato
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - D. Henaff
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - A. Hiramoto
- Department of Physics, Kyoto University, Kyoto, Japan
| | - M. Hogan
- Department of Physics, Colorado State University, Fort Collins, Colorado USA
| | - J. Holeczek
- Institute of Physics, University of Silesia, Katowice, Poland
| | - A. Holin
- Rutherford Appleton Laboratory, STFC, Harwell, Oxford, UK
| | - T. Holvey
- Department of Physics, Oxford University, Oxford, UK
| | - N. T. Hong Van
- International Centre of Physics, Institute of Physics (IOP), Vietnam Academy of Science and Technology (VAST), 10 Dao Tan, Ba Dinh, Hanoi, Vietnam
| | - T. Honjo
- Department of Physics, Osaka Metropolitan University, Osaka, Japan
| | - F. Iacob
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
| | - A. K. Ichikawa
- Department of Physics, Faculty of Science, Tohoku University, Sendai, Miyagi Japan
| | - M. Ikeda
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - T. Ishida
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - M. Ishitsuka
- Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba Japan
| | - H. T. Israel
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - K. Iwamoto
- Department of Physics, University of Tokyo, Tokyo, Japan
| | - A. Izmaylov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - N. Izumi
- Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba Japan
| | - M. Jakkapu
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
| | - B. Jamieson
- Department of Physics, University of Winnipeg, Winnipeg, MB Canada
| | - S. J. Jenkins
- Department of Physics, University of Liverpool, Liverpool, UK
| | - C. Jesús-Valls
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
| | - J. J. Jiang
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
| | - P. Jonsson
- Department of Physics, Imperial College London, London, UK
| | - S. Joshi
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - C. K. Jung
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | - P. B. Jurj
- Department of Physics, Imperial College London, London, UK
| | - M. Kabirnezhad
- Department of Physics, Imperial College London, London, UK
| | - A. C. Kaboth
- Department of Physics, Royal Holloway University of London, Egham, Surrey UK
- Rutherford Appleton Laboratory, STFC, Harwell, Oxford, UK
| | - T. Kajita
- Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Japan
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | - H. Kakuno
- Department of Physics, Tokyo Metropolitan University, Tokyo, Japan
| | - J. Kameda
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - S. P. Kasetti
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA USA
| | - Y. Kataoka
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - Y. Katayama
- Department of Physics, Yokohama National University, Yokohama, Japan
| | - T. Katori
- Department of Physics, King’s College London, Strand, London, WC2R 2LS UK
| | - M. Kawaue
- Department of Physics, Kyoto University, Kyoto, Japan
| | - E. Kearns
- Department of Physics, Boston University, Boston, MA USA
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | - M. Khabibullin
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - A. Khotjantsev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - T. Kikawa
- Department of Physics, Kyoto University, Kyoto, Japan
| | - H. Kikutani
- Department of Physics, University of Tokyo, Tokyo, Japan
| | - S. King
- Department of Physics, King’s College London, Strand, London, WC2R 2LS UK
| | - V. Kiseeva
- Joint Institute for Nuclear Research, Dubna, Moscow Region Russia
| | - J. Kisiel
- Institute of Physics, University of Silesia, Katowice, Poland
| | - T. Kobata
- Department of Physics, Osaka Metropolitan University, Osaka, Japan
| | - H. Kobayashi
- Department of Physics, University of Tokyo, Tokyo, Japan
| | - T. Kobayashi
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - L. Koch
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - S. Kodama
- Department of Physics, University of Tokyo, Tokyo, Japan
| | | | - L. L. Kormos
- Physics Department, Lancaster University, Lancaster, UK
| | - Y. Koshio
- Department of Physics, Okayama University, Okayama, Japan
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | - A. Kostin
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - T. Koto
- Department of Physics, Tokyo Metropolitan University, Tokyo, Japan
| | - K. Kowalik
- National Centre for Nuclear Research, Warsaw, Poland
| | - Y. Kudenko
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (MIPT), Moscow Region, Russia and National Research Nuclear University “MEPhI”, Moscow, Russia
| | - Y. Kudo
- Department of Physics, Yokohama National University, Yokohama, Japan
| | | | - R. Kurjata
- Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Warsaw, Poland
| | - T. Kutter
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA USA
| | - M. Kuze
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
| | - M. La Commara
- Dipartimento di Fisica, INFN Sezione di Napoli and Università di Napoli, Naples, Italy
| | - L. Labarga
- Department of Theoretical Physics, University Autonoma Madrid, 28049 Madrid, Spain
| | - K. Lachner
- Department of Physics, University of Warwick, Coventry, UK
| | - J. Lagoda
- National Centre for Nuclear Research, Warsaw, Poland
| | - S. M. Lakshmi
- National Centre for Nuclear Research, Warsaw, Poland
| | - M. Lamers James
- Physics Department, Lancaster University, Lancaster, UK
- Rutherford Appleton Laboratory, STFC, Harwell, Oxford, UK
| | - M. Lamoureux
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
| | - A. Langella
- Dipartimento di Fisica, INFN Sezione di Napoli and Università di Napoli, Naples, Italy
| | - J.-F. Laporte
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - D. Last
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - N. Latham
- Department of Physics, University of Warwick, Coventry, UK
| | - M. Laveder
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
| | - L. Lavitola
- Dipartimento di Fisica, INFN Sezione di Napoli and Università di Napoli, Naples, Italy
| | - M. Lawe
- Physics Department, Lancaster University, Lancaster, UK
| | - Y. Lee
- Department of Physics, Kyoto University, Kyoto, Japan
| | - C. Lin
- Department of Physics, Imperial College London, London, UK
| | - S.-K. Lin
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA USA
| | - R. P. Litchfield
- School of Physics and Astronomy, University of Glasgow, Glasgow, UK
| | - S. L. Liu
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
| | - W. Li
- Department of Physics, Oxford University, Oxford, UK
| | - A. Longhin
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
| | - K. R. Long
- Department of Physics, Imperial College London, London, UK
- Rutherford Appleton Laboratory, STFC, Harwell, Oxford, UK
| | - A. Lopez Moreno
- Department of Physics, King’s College London, Strand, London, WC2R 2LS UK
| | - L. Ludovici
- INFN Sezione di Roma and Università di Roma “La Sapienza”, Rome, Italy
| | - X. Lu
- Department of Physics, University of Warwick, Coventry, UK
| | - T. Lux
- Institut de Fisica d’Altes Energies (IFAE)-The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona Spain
| | - L. N. Machado
- School of Physics and Astronomy, University of Glasgow, Glasgow, UK
| | - L. Magaletti
- Dipartimento Interuniversitario di Fisica, INFN Sezione di Bari and Università e Politecnico di Bari, Bari, Italy
| | - K. Mahn
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI USA
| | - M. Malek
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - M. Mandal
- National Centre for Nuclear Research, Warsaw, Poland
| | - S. Manly
- Department of Physics and Astronomy, University of Rochester, Rochester, NY USA
| | - A. D. Marino
- Department of Physics, University of Colorado at Boulder, Boulder, CO USA
| | - L. Marti-Magro
- Department of Physics, Yokohama National University, Yokohama, Japan
| | | | - M. Martini
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
- IPSA-DRII, Ivry-sur-Seine, France
| | - J. F. Martin
- Department of Physics, University of Toronto, Toronto, ON Canada
| | - T. Maruyama
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - T. Matsubara
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
| | - V. Matveev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - C. Mauger
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - K. Mavrokoridis
- Department of Physics, University of Liverpool, Liverpool, UK
| | - E. Mazzucato
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - N. McCauley
- Department of Physics, University of Liverpool, Liverpool, UK
| | - J. McElwee
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - K. S. McFarland
- Department of Physics and Astronomy, University of Rochester, Rochester, NY USA
| | - C. McGrew
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
| | - J. McKean
- Department of Physics, Imperial College London, London, UK
| | - A. Mefodiev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - G. D. Megias
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla, Spain
| | - P. Mehta
- Department of Physics, University of Liverpool, Liverpool, UK
| | - L. Mellet
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
| | - C. Metelko
- Department of Physics, University of Liverpool, Liverpool, UK
| | - M. Mezzetto
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
| | - E. Miller
- Department of Physics, King’s College London, Strand, London, WC2R 2LS UK
| | - A. Minamino
- Department of Physics, Yokohama National University, Yokohama, Japan
| | - O. Mineev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - S. Mine
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA USA
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - M. Miura
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | | | - S. Moriyama
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | - S. Moriyama
- Department of Physics, Yokohama National University, Yokohama, Japan
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | - P. Morrison
- School of Physics and Astronomy, University of Glasgow, Glasgow, UK
| | - Th. A. Mueller
- Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
| | - D. Munford
- Department of Physics, University of Houston, Houston, TX USA
| | - L. Munteanu
- CERN European Organization for Nuclear Research, 1211 Geneva 23, Switzerland
| | - K. Nagai
- Department of Physics, Yokohama National University, Yokohama, Japan
| | - Y. Nagai
- Department of Atomic Physics, Eötvös Loránd University, Budapest, Hungary
| | - T. Nakadaira
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - K. Nakagiri
- Department of Physics, University of Tokyo, Tokyo, Japan
| | - M. Nakahata
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - Y. Nakajima
- Department of Physics, University of Tokyo, Tokyo, Japan
| | - A. Nakamura
- Department of Physics, Okayama University, Okayama, Japan
| | - H. Nakamura
- Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba Japan
| | - K. Nakamura
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- J-PARC, Tokai, Japan
| | - K. D. Nakamura
- Department of Physics, Faculty of Science, Tohoku University, Sendai, Miyagi Japan
| | - Y. Nakano
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - S. Nakayama
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - T. Nakaya
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- Department of Physics, Kyoto University, Kyoto, Japan
| | - K. Nakayoshi
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | | | - T. V. Ngoc
- Institute For Interdisciplinary Research in Science and Education (IFIRSE), ICISE, Quy Nhon, Vietnam
- The Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - V. Q. Nguyen
- Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
| | - K. Niewczas
- Faculty of Physics and Astronomy, Wroclaw University, Wrocław, Poland
| | - S. Nishimori
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
| | - Y. Nishimura
- Department of Physics, Keio University, Yokohama, Kanagawa Japan
| | - K. Nishizaki
- Department of Physics, Osaka Metropolitan University, Osaka, Japan
| | - T. Nosek
- National Centre for Nuclear Research, Warsaw, Poland
| | - F. Nova
- Rutherford Appleton Laboratory, STFC, Harwell, Oxford, UK
| | - P. Novella
- IFIC (CSIC and University of Valencia), Valencia, Spain
| | - J. C. Nugent
- Department of Physics, Faculty of Science, Tohoku University, Sendai, Miyagi Japan
| | | | - L. O’Sullivan
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - T. Odagawa
- Department of Physics, Kyoto University, Kyoto, Japan
| | - T. Ogawa
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
| | - R. Okada
- Department of Physics, Okayama University, Okayama, Japan
| | - W. Okinaga
- Department of Physics, University of Tokyo, Tokyo, Japan
| | - K. Okumura
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Japan
| | - T. Okusawa
- Department of Physics, Osaka Metropolitan University, Osaka, Japan
| | - N. Ospina
- Department of Theoretical Physics, University Autonoma Madrid, 28049 Madrid, Spain
| | - R. A. Owen
- School of Physics and Astronomy, Queen Mary University of London, London, UK
| | - Y. Oyama
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - V. Palladino
- Dipartimento di Fisica, INFN Sezione di Napoli and Università di Napoli, Naples, Italy
| | - V. Paolone
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA USA
| | - M. Pari
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
| | - J. Parlone
- Department of Physics, University of Liverpool, Liverpool, UK
| | - S. Parsa
- Section de Physique, DPNC, University of Geneva, Geneva, Switzerland
| | - J. Pasternak
- Department of Physics, Imperial College London, London, UK
| | | | - D. Payne
- Department of Physics, University of Liverpool, Liverpool, UK
| | - G. C. Penn
- Department of Physics, University of Liverpool, Liverpool, UK
| | - D. Pershey
- Department of Physics, Duke University, Durham, NC USA
| | - L. Pickering
- Department of Physics, Royal Holloway University of London, Egham, Surrey UK
| | - C. Pidcott
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - G. Pintaudi
- Department of Physics, Yokohama National University, Yokohama, Japan
| | - C. Pistillo
- Laboratory for High Energy Physics (LHEP), Albert Einstein Center for Fundamental Physics, University of Bern, Bern, Switzerland
| | - B. Popov
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
- JINR, Dubna, Russia
| | - K. Porwit
- Institute of Physics, University of Silesia, Katowice, Poland
| | | | - Y. S. Prabhu
- National Centre for Nuclear Research, Warsaw, Poland
| | - F. Pupilli
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
| | - B. Quilain
- Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
| | - T. Radermacher
- III. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
| | - E. Radicioni
- Dipartimento Interuniversitario di Fisica, INFN Sezione di Bari and Università e Politecnico di Bari, Bari, Italy
| | - B. Radics
- Department of Physics and Astronomy, York University, Toronto, ON Canada
| | - M. A. Ramírez
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - P. N. Ratoff
- Physics Department, Lancaster University, Lancaster, UK
| | - M. Reh
- Department of Physics, University of Colorado at Boulder, Boulder, CO USA
| | - C. Riccio
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
| | - E. Rondio
- National Centre for Nuclear Research, Warsaw, Poland
| | - S. Roth
- III. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
| | - N. Roy
- Department of Physics and Astronomy, York University, Toronto, ON Canada
| | - A. Rubbia
- Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland
| | - A. C. Ruggeri
- Dipartimento di Fisica, INFN Sezione di Napoli and Università di Napoli, Naples, Italy
| | - C. A. Ruggles
- School of Physics and Astronomy, University of Glasgow, Glasgow, UK
| | - A. Rychter
- Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Warsaw, Poland
| | - K. Sakashita
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - F. Sánchez
- Section de Physique, DPNC, University of Geneva, Geneva, Switzerland
| | - G. Santucci
- Department of Physics and Astronomy, York University, Toronto, ON Canada
| | - C. M. Schloesser
- Section de Physique, DPNC, University of Geneva, Geneva, Switzerland
| | - K. Scholberg
- Department of Physics, Duke University, Durham, NC USA
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | - M. Scott
- Department of Physics, Imperial College London, London, UK
| | - Y. Seiya
- Department of Physics, Osaka Metropolitan University, Osaka, Japan
- Science Department, BMCC/CUNY, New York, NY USA
| | - T. Sekiguchi
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - H. Sekiya
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | - D. Sgalaberna
- Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland
| | - A. Shaikhiev
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - F. Shaker
- Department of Physics and Astronomy, York University, Toronto, ON Canada
| | - A. Shaykina
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - M. Shiozawa
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - W. Shorrock
- Department of Physics, Imperial College London, London, UK
| | - A. Shvartsman
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - N. Skrobova
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | | | - D. Smyczek
- III. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
| | - M. Smy
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA USA
| | - J. T. Sobczyk
- Faculty of Physics and Astronomy, Wroclaw University, Wrocław, Poland
| | - H. Sobel
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA USA
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
| | - F. J. P. Soler
- School of Physics and Astronomy, University of Glasgow, Glasgow, UK
| | - Y. Sonoda
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - A. J. Speers
- Physics Department, Lancaster University, Lancaster, UK
| | - R. Spina
- Dipartimento Interuniversitario di Fisica, INFN Sezione di Bari and Università e Politecnico di Bari, Bari, Italy
| | - I. A. Suslov
- Joint Institute for Nuclear Research, Dubna, Moscow Region Russia
| | - S. Suvorov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
| | | | - S. Y. Suzuki
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - Y. Suzuki
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
| | - A. A. Sztuc
- Department of Physics, Imperial College London, London, UK
| | - M. Tada
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - S. Tairafune
- Department of Physics, Faculty of Science, Tohoku University, Sendai, Miyagi Japan
| | - S. Takayasu
- Department of Physics, Osaka Metropolitan University, Osaka, Japan
| | - A. Takeda
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - Y. Takeuchi
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- Kobe University, Kobe, Japan
| | - K. Takifuji
- Department of Physics, Faculty of Science, Tohoku University, Sendai, Miyagi Japan
| | - H. K. Tanaka
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | - Y. Tanihara
- Department of Physics, Yokohama National University, Yokohama, Japan
| | - M. Tani
- Department of Physics, Kyoto University, Kyoto, Japan
| | - A. Teklu
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
| | | | - N. Teshima
- Department of Physics, Osaka Metropolitan University, Osaka, Japan
| | - N. Thamm
- III. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
| | - L. F. Thompson
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - W. Toki
- Department of Physics, Colorado State University, Fort Collins, Colorado USA
| | - C. Touramanis
- Department of Physics, University of Liverpool, Liverpool, UK
| | - T. Towstego
- Department of Physics, University of Toronto, Toronto, ON Canada
| | - K. M. Tsui
- Department of Physics, University of Liverpool, Liverpool, UK
| | - T. Tsukamoto
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- J-PARC, Tokai, Japan
| | - M. Tzanov
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA USA
| | - Y. Uchida
- Department of Physics, Imperial College London, London, UK
| | - M. Vagins
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA USA
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
| | - D. Vargas
- Institut de Fisica d’Altes Energies (IFAE)-The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona Spain
| | - M. Varghese
- Institut de Fisica d’Altes Energies (IFAE)-The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona Spain
| | - G. Vasseur
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - C. Vilela
- CERN European Organization for Nuclear Research, 1211 Geneva 23, Switzerland
| | - E. Villa
- CERN European Organization for Nuclear Research, 1211 Geneva 23, Switzerland
- Section de Physique, DPNC, University of Geneva, Geneva, Switzerland
| | | | - U. Virginet
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
| | | | - T. Wachala
- H. Niewodniczanski Institute of Nuclear Physics PAN, Cracow, Poland
| | - J. G. Walsh
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI USA
| | - Y. Wang
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
| | - L. Wan
- Department of Physics, Boston University, Boston, MA USA
| | - D. Wark
- Department of Physics, Oxford University, Oxford, UK
- Rutherford Appleton Laboratory, STFC, Harwell, Oxford, UK
| | - M. O. Wascko
- Department of Physics, Imperial College London, London, UK
| | - A. Weber
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - R. Wendell
- Department of Physics, Kyoto University, Kyoto, Japan
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | - M. J. Wilking
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
| | - C. Wilkinson
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - J. R. Wilson
- Department of Physics, King’s College London, Strand, London, WC2R 2LS UK
| | - K. Wood
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - C. Wret
- Department of Physics, Oxford University, Oxford, UK
| | - J. Xia
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
| | - Y.-H. Xu
- Physics Department, Lancaster University, Lancaster, UK
| | - K. Yamamoto
- Department of Physics, Osaka Metropolitan University, Osaka, Japan
- Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka, Japan
| | - T. Yamamoto
- Department of Physics, Osaka Metropolitan University, Osaka, Japan
| | - C. Yanagisawa
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
- Science Department, BMCC/CUNY, New York, NY USA
| | - G. Yang
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
| | - T. Yano
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
| | - K. Yasutome
- Department of Physics, Kyoto University, Kyoto, Japan
| | - N. Yershov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
| | - U. Yevarouskaya
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
| | - M. Yokoyama
- Department of Physics, University of Tokyo, Tokyo, Japan
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
| | - Y. Yoshimoto
- Department of Physics, University of Tokyo, Tokyo, Japan
| | - N. Yoshimura
- Department of Physics, Kyoto University, Kyoto, Japan
| | - M. Yu
- Department of Physics, Yokohama National University, Yokohama, Japan
| | - R. Zaki
- Department of Physics and Astronomy, York University, Toronto, ON Canada
| | - A. Zalewska
- H. Niewodniczanski Institute of Nuclear Physics PAN, Cracow, Poland
| | - J. Zalipska
- National Centre for Nuclear Research, Warsaw, Poland
| | - K. Zaremba
- Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Warsaw, Poland
| | - G. Zarnecki
- H. Niewodniczanski Institute of Nuclear Physics PAN, Cracow, Poland
| | - X. Zhao
- Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland
| | - T. Zhu
- Department of Physics, Imperial College London, London, UK
| | - M. Ziembicki
- Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Warsaw, Poland
| | - E. D. Zimmerman
- Department of Physics, University of Colorado at Boulder, Boulder, CO USA
| | - M. Zito
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
| | - S. Zsoldos
- Department of Physics, King’s College London, Strand, London, WC2R 2LS UK
| | - T2K Collaboration
- Department of Theoretical Physics, University Autonoma Madrid, 28049 Madrid, Spain
- Laboratory for High Energy Physics (LHEP), Albert Einstein Center for Fundamental Physics, University of Bern, Bern, Switzerland
- Department of Physics, Boston University, Boston, MA USA
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA USA
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- Department of Physics, University of Colorado at Boulder, Boulder, CO USA
- Department of Physics, Colorado State University, Fort Collins, Colorado USA
- Department of Physics, Duke University, Durham, NC USA
- Department of Atomic Physics, Eötvös Loránd University, Budapest, Hungary
- Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich, Switzerland
- CERN European Organization for Nuclear Research, 1211 Geneva 23, Switzerland
- Section de Physique, DPNC, University of Geneva, Geneva, Switzerland
- School of Physics and Astronomy, University of Glasgow, Glasgow, UK
- H. Niewodniczanski Institute of Nuclear Physics PAN, Cracow, Poland
- High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki Japan
- Department of Physics, University of Houston, Houston, TX USA
- Institut de Fisica d’Altes Energies (IFAE)-The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona Spain
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
- IFIC (CSIC and University of Valencia), Valencia, Spain
- Institute For Interdisciplinary Research in Science and Education (IFIRSE), ICISE, Quy Nhon, Vietnam
- Department of Physics, Imperial College London, London, UK
- Dipartimento Interuniversitario di Fisica, INFN Sezione di Bari and Università e Politecnico di Bari, Bari, Italy
- Dipartimento di Fisica, INFN Sezione di Napoli and Università di Napoli, Naples, Italy
- Dipartimento di Fisica, INFN Sezione di Padova and Università di Padova, Padua, Italy
- INFN Sezione di Roma and Università di Roma “La Sapienza”, Rome, Italy
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
- International Centre of Physics, Institute of Physics (IOP), Vietnam Academy of Science and Technology (VAST), 10 Dao Tan, Ba Dinh, Hanoi, Vietnam
- ILANCE, CNRS-University of Tokyo International Research Laboratory, Kashiwa, Chiba 277-8582 Japan
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba Japan
- Department of Physics, Keio University, Yokohama, Kanagawa Japan
- Department of Physics, King’s College London, Strand, London, WC2R 2LS UK
- Kobe University, Kobe, Japan
- Department of Physics, Kyoto University, Kyoto, Japan
- Physics Department, Lancaster University, Lancaster, UK
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
- Department of Physics, University of Liverpool, Liverpool, UK
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA USA
- Joint Institute for Nuclear Research, Dubna, Moscow Region Russia
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI USA
- Department of Physics, Miyagi University of Education, Sendai, Japan
- National Centre for Nuclear Research, Warsaw, Poland
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY USA
- Department of Physics, Okayama University, Okayama, Japan
- Department of Physics, Osaka Metropolitan University, Osaka, Japan
- Department of Physics, Oxford University, Oxford, UK
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA USA
- School of Physics and Astronomy, Queen Mary University of London, London, UK
- Department of Physics, University of Regina, Regina, Saskatchewan Canada
- Department of Physics and Astronomy, University of Rochester, Rochester, NY USA
- Department of Physics, Royal Holloway University of London, Egham, Surrey UK
- III. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla, Spain
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
- Institute of Physics, University of Silesia, Katowice, Poland
- Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Paris, France
- Rutherford Appleton Laboratory, STFC, Harwell, Oxford, UK
- Department of Physics, University of Tokyo, Tokyo, Japan
- Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Japan
- Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Japan
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
- Department of Physics, Tokyo Metropolitan University, Tokyo, Japan
- Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba Japan
- Department of Physics, University of Toronto, Toronto, ON Canada
- TRIUMF, Vancouver, BC Canada
- Faculty of Physics, University of Warsaw, Warsaw, Poland
- Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Warsaw, Poland
- Department of Physics, Faculty of Science, Tohoku University, Sendai, Miyagi Japan
- Department of Physics, University of Warwick, Coventry, UK
- Department of Physics, University of Winnipeg, Winnipeg, MB Canada
- Faculty of Physics and Astronomy, Wroclaw University, Wrocław, Poland
- Department of Physics, Yokohama National University, Yokohama, Japan
- Department of Physics and Astronomy, York University, Toronto, ON Canada
- Université Paris-Saclay, Gif-sur-Yvette, France
- INFN-Laboratori Nazionali di Legnaro, Legnaro, Italy
- J-PARC, Tokai, Japan
- Kavli IPMU (WPI), The University of Tokyo, Tokyo, Japan
- Moscow Institute of Physics and Technology (MIPT), Moscow Region, Russia and National Research Nuclear University “MEPhI”, Moscow, Russia
- IPSA-DRII, Ivry-sur-Seine, France
- The Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
- JINR, Dubna, Russia
- Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka, Japan
- Science Department, BMCC/CUNY, New York, NY USA
| |
Collapse
|
8
|
Andriamirado M, Balantekin AB, Bass CD, Bergeron DE, Bernard EP, Bowden NS, Bryan CD, Carr R, Classen T, Conant AJ, Deichert G, Delgado A, Diwan MV, Dolinski MJ, Erickson A, Foust BT, Gaison JK, Galindo-Uribari A, Gilbert CE, Gokhale S, Grant C, Hans S, Hansell AB, Heeger KM, Heffron B, Jaffe DE, Jayakumar S, Ji X, Jones DC, Koblanski J, Kunkle P, Kyzylova O, LaBelle D, Lane CE, Langford TJ, LaRosa J, Littlejohn BR, Lu X, Maricic J, Mendenhall MP, Meyer AM, Milincic R, Mueller PE, Mumm HP, Napolitano J, Neilson R, Nikkel JA, Nour S, Palomino Gallo JL, Pushin DA, Qian X, Roca C, Rosero R, Searles M, Surukuchi PT, Sutanto F, Tyra MA, Venegas-Vargas D, Weatherly PB, Wilhelmi J, Woolverton A, Yeh M, Zhang C, Zhang X. Final Measurement of the ^{235}U Antineutrino Energy Spectrum with the PROSPECT-I Detector at HFIR. PHYSICAL REVIEW LETTERS 2023; 131:021802. [PMID: 37505961 DOI: 10.1103/physrevlett.131.021802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 05/11/2023] [Indexed: 07/30/2023]
Abstract
This Letter reports one of the most precise measurements to date of the antineutrino spectrum from a purely ^{235}U-fueled reactor, made with the final dataset from the PROSPECT-I detector at the High Flux Isotope Reactor. By extracting information from previously unused detector segments, this analysis effectively doubles the statistics of the previous PROSPECT measurement. The reconstructed energy spectrum is unfolded into antineutrino energy and compared with both the Huber-Mueller model and a spectrum from a commercial reactor burning multiple fuel isotopes. A local excess over the model is observed in the 5-7 MeV energy region. Comparison of the PROSPECT results with those from commercial reactors provides new constraints on the origin of this excess, disfavoring at 2.0 and 3.7 standard deviations the hypotheses that antineutrinos from ^{235}U are solely responsible and noncontributors to the excess observed at commercial reactors, respectively.
Collapse
Affiliation(s)
- M Andriamirado
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - A B Balantekin
- Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - C D Bass
- Department of Physics, Le Moyne College, Syracuse, New York 13214, USA
| | - D E Bergeron
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - E P Bernard
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - N S Bowden
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - C D Bryan
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - R Carr
- Department of Physics, United States Naval Academy, Annapolis, Maryland 21402, USA
| | - T Classen
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A J Conant
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - G Deichert
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - A Delgado
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - M V Diwan
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - M J Dolinski
- Department of Physics, Drexel University, Philadelphia PA 19104-2875, Pennsylvania, USA
| | - A Erickson
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - B T Foust
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J K Gaison
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - A Galindo-Uribari
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - C E Gilbert
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - S Gokhale
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Grant
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - S Hans
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - A B Hansell
- Department of Physics, Susquehanna University, Selinsgrove, Pennsylvania 17870, USA
| | - K M Heeger
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - B Heffron
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - D E Jaffe
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - S Jayakumar
- Department of Physics, Drexel University, Philadelphia PA 19104-2875, Pennsylvania, USA
| | - X Ji
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D C Jones
- Department of Physics (035-08), Temple University, 1925 N 12th Street, Philadelphia, Pennsylvania 19122-1801, USA
| | - J Koblanski
- Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - P Kunkle
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - O Kyzylova
- Department of Physics, Drexel University, Philadelphia PA 19104-2875, Pennsylvania, USA
| | - D LaBelle
- Department of Physics, Drexel University, Philadelphia PA 19104-2875, Pennsylvania, USA
| | - C E Lane
- Department of Physics, Drexel University, Philadelphia PA 19104-2875, Pennsylvania, USA
| | - T J Langford
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J LaRosa
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - B R Littlejohn
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - X Lu
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - J Maricic
- Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - M P Mendenhall
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A M Meyer
- Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - R Milincic
- Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - P E Mueller
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - H P Mumm
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - J Napolitano
- Department of Physics (035-08), Temple University, 1925 N 12th Street, Philadelphia, Pennsylvania 19122-1801, USA
| | - R Neilson
- Department of Physics, Drexel University, Philadelphia PA 19104-2875, Pennsylvania, USA
| | - J A Nikkel
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - S Nour
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - J L Palomino Gallo
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - D A Pushin
- Institute for Quantum Computing and Department of Physics, University of Waterloo, Waterloo, ON N2L 3G1 Ontario, Canada
| | - X Qian
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Roca
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - R Rosero
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - M Searles
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - P T Surukuchi
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - F Sutanto
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - M A Tyra
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - D Venegas-Vargas
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - P B Weatherly
- Department of Physics, Drexel University, Philadelphia PA 19104-2875, Pennsylvania, USA
| | - J Wilhelmi
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - A Woolverton
- Institute for Quantum Computing and Department of Physics, University of Waterloo, Waterloo, ON N2L 3G1 Ontario, Canada
| | - M Yeh
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Zhang
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - X Zhang
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
9
|
Two-Zero Textures Based on A4 Symmetry and Unimodular Mixing Matrix. Symmetry (Basel) 2022. [DOI: 10.3390/sym14112410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We propose a phenomenological model of two-zeros Majorana neutrino mass matrix based on the A4 symmetry, where the structure of mixing matrix is a unimodular second scheme of trimaximal TM2, and the charged lepton mass matrix is diagonal. We show that, among seven possible two-zero textures with A4 symmetry, only two textures, namely the texture with Mee=0 and Meμ=0 and its permutation, are acceptable in the non-perturbation method, since the results associated with these two textures are consistent with the experimental data. We obtain a unique relation between our phases, namely ρ+σ=ϕ±π, and an effective equation sin2θ13=23Rν where Rν=δm2Δm2. Then, only by using the experimental ranges of Rν, we obtain the allowable range of the unknown parameter ϕ as the phase of TM2 mixing matrix, which leads to obtaining not only the ranges of all neutrino oscillation parameters of the model (which agree well with experimental data) but also with the masses of neutrinos, the Dirac and Majorana phases and the Jarlskog parameter, and to predict the normal neutrino mass hierarchy. Finally, we show that all the predictions regarding our two specific textures agree with the corresponding data reported from neutrino oscillation, cosmic microwave background and neutrinoless double beta decay.
Collapse
|
10
|
Yu M, Wu W, Peng N, Yu T, Ding Y, Liu Q, Ren F, Zhang Z, Zhou X. Measurements of Rayleigh ratios in linear alkylbenzene. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:063106. [PMID: 35778038 DOI: 10.1063/5.0091847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
This paper describes a new experimental setup designed for the direct measurement of the Rayleigh ratio and Rayleigh scattering length for linear alkylbenzene, a solvent commonly used in liquid scintillator detectors for neutrino experiments. Using the new approach, the perpendicularly polarized Rayleigh ratio was determined to be (4.52 ± 0.28) × 10-6 m-1 sr-1 at 405 nm and (3.82 ± 0.24) × 10-6 m-1 sr-1 at 432 nm, and the corresponding Rayleigh scattering length was LRay = 22.9 ± 0.3(stat.) ± 1.7(sys.) m at 405 nm and LRay = 27.0 ± 0.9(stat.) ± 1.8(sys.) m at 432 nm. These results are consistent with both previous results determined using other experimental strategies and theoretical predictions.
Collapse
Affiliation(s)
- Miao Yu
- Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Wenjie Wu
- Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Na Peng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Taozhe Yu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yayun Ding
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ren
- Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhenyu Zhang
- Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiang Zhou
- Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
11
|
Li YF, Xin Z. Model-independent determination of isotopic cross sections per fission for reactor antineutrinos. Int J Clin Exp Med 2022. [DOI: 10.1103/physrevd.105.073003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
An FP, Andriamirado M, Balantekin AB, Band HR, Bass CD, Bergeron DE, Berish D, Bishai M, Blyth S, Bowden NS, Bryan CD, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen SM, Chen Y, Chen YX, Cheng J, Cheng ZK, Cherwinka JJ, Chu MC, Classen T, Conant AJ, Cummings JP, Dalager O, Deichert G, Delgado A, Deng FS, Ding YY, Diwan MV, Dohnal T, Dolinski MJ, Dolzhikov D, Dove J, Dvořák M, Dwyer DA, Erickson A, Foust BT, Gaison JK, Galindo-Uribarri A, Gallo JP, Gilbert CE, Gonchar M, Gong GH, Gong H, Grassi M, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Hans S, Hansell AB, He M, Heeger KM, Heffron B, Heng YK, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang JH, Huang XT, Huang YB, Huber P, Koblanski J, Jaffe DE, Jayakumar S, Jen KL, Ji XL, Ji XP, Johnson RA, Jones DC, Kang L, Kettell SH, Kohn S, Kramer M, Kyzylova O, Lane CE, Langford TJ, LaRosa J, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li F, Li HL, Li JJ, Li QJ, Li RH, Li S, Li SC, et alAn FP, Andriamirado M, Balantekin AB, Band HR, Bass CD, Bergeron DE, Berish D, Bishai M, Blyth S, Bowden NS, Bryan CD, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen SM, Chen Y, Chen YX, Cheng J, Cheng ZK, Cherwinka JJ, Chu MC, Classen T, Conant AJ, Cummings JP, Dalager O, Deichert G, Delgado A, Deng FS, Ding YY, Diwan MV, Dohnal T, Dolinski MJ, Dolzhikov D, Dove J, Dvořák M, Dwyer DA, Erickson A, Foust BT, Gaison JK, Galindo-Uribarri A, Gallo JP, Gilbert CE, Gonchar M, Gong GH, Gong H, Grassi M, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Hans S, Hansell AB, He M, Heeger KM, Heffron B, Heng YK, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang JH, Huang XT, Huang YB, Huber P, Koblanski J, Jaffe DE, Jayakumar S, Jen KL, Ji XL, Ji XP, Johnson RA, Jones DC, Kang L, Kettell SH, Kohn S, Kramer M, Kyzylova O, Lane CE, Langford TJ, LaRosa J, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li F, Li HL, Li JJ, Li QJ, Li RH, Li S, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu JX, Lu C, Lu HQ, Lu X, Luk KB, Ma BZ, Ma XB, Ma XY, Ma YQ, Mandujano RC, Maricic J, Marshall C, McDonald KT, McKeown RD, Mendenhall MP, Meng Y, Meyer AM, Milincic R, Mueller PE, Mumm HP, Napolitano J, Naumov D, Naumova E, Neilson R, Nguyen TMT, Nikkel JA, Nour S, Ochoa-Ricoux JP, Olshevskiy A, Palomino JL, Pan HR, Park J, Patton S, Peng JC, Pun CSJ, Pushin DA, Qi FZ, Qi M, Qian X, Raper N, Ren J, Morales Reveco C, Rosero R, Roskovec B, Ruan XC, Searles M, Steiner H, Sun JL, Surukuchi PT, Tmej T, Treskov K, Tse WH, Tull CE, Tyra MA, Varner RL, Venegas-Vargas D, Viren B, Vorobel V, Wang CH, Wang J, Wang M, Wang NY, Wang RG, Wang W, Wang W, Wang X, Wang Y, Wang YF, Wang Z, Wang Z, Wang ZM, Weatherly PB, Wei HY, Wei LH, Wen LJ, Whisnant K, White C, Wilhelmi J, Wong HLH, Woolverton A, Worcester E, Wu DR, Wu FL, Wu Q, Wu WJ, Xia DM, Xie ZQ, Xing ZZ, Xu HK, Xu JL, Xu T, Xue T, Yang CG, Yang L, Yang YZ, Yao HF, Ye M, Yeh M, Young BL, Yu HZ, Yu ZY, Yue BB, Zavadskyi V, Zeng S, Zeng Y, Zhan L, Zhang C, Zhang FY, Zhang HH, Zhang JW, Zhang QM, Zhang SQ, Zhang X, Zhang XT, Zhang YM, Zhang YX, Zhang YY, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zhao RZ, Zhou L, Zhuang HL, Zou JH. Joint Determination of Reactor Antineutrino Spectra from ^{235}U and ^{239}Pu Fission by Daya Bay and PROSPECT. PHYSICAL REVIEW LETTERS 2022; 128:081801. [PMID: 35275656 DOI: 10.1103/physrevlett.128.081801] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 10/26/2021] [Indexed: 06/14/2023]
Abstract
A joint determination of the reactor antineutrino spectra resulting from the fission of ^{235}U and ^{239}Pu has been carried out by the Daya Bay and PROSPECT Collaborations. This Letter reports the level of consistency of ^{235}U spectrum measurements from the two experiments and presents new results from a joint analysis of both data sets. The measurements are found to be consistent. The combined analysis reduces the degeneracy between the dominant ^{235}U and ^{239}Pu isotopes and improves the uncertainty of the ^{235}U spectral shape to about 3%. The ^{235}U and ^{239}Pu antineutrino energy spectra are unfolded from the jointly deconvolved reactor spectra using the Wiener-SVD unfolding method, providing a data-based reference for other reactor antineutrino experiments and other applications. This is the first measurement of the ^{235}U and ^{239}Pu spectra based on the combination of experiments at low- and highly enriched uranium reactors.
Collapse
Affiliation(s)
- F P An
- Institute of Modern Physics, East China University of Science and Technology, Shanghai
| | - M Andriamirado
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois
| | - A B Balantekin
- Department of Physics, University of Wisconsin, Madison, Madison, Wisconsin
| | - H R Band
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - C D Bass
- Department of Physics, Le Moyne College, Syracuse, New York
| | - D E Bergeron
- National Institute of Standards and Technology, Gaithersburg, Maryland
| | - D Berish
- Department of Physics, Temple University, Philadelphia, Pennsylvania
| | - M Bishai
- Brookhaven National Laboratory, Upton, New York
| | - S Blyth
- Department of Physics, National Taiwan University, Taipei
| | - N S Bowden
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California
| | - C D Bryan
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - G F Cao
- Institute of High Energy Physics, Beijing
| | - J Cao
- Institute of High Energy Physics, Beijing
| | - J F Chang
- Institute of High Energy Physics, Beijing
| | - Y Chang
- National United University, Miao-Li
| | - H S Chen
- Institute of High Energy Physics, Beijing
| | - S M Chen
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Y Chen
- Shenzhen University, Shenzhen
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Y X Chen
- North China Electric Power University, Beijing
| | - J Cheng
- Institute of High Energy Physics, Beijing
| | - Z K Cheng
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J J Cherwinka
- Department of Physics, University of Wisconsin, Madison, Madison, Wisconsin
| | - M C Chu
- Chinese University of Hong Kong, Hong Kong
| | - T Classen
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California
| | - A J Conant
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | | | - O Dalager
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - G Deichert
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - A Delgado
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - F S Deng
- University of Science and Technology of China, Hefei
| | - Y Y Ding
- Institute of High Energy Physics, Beijing
| | - M V Diwan
- Brookhaven National Laboratory, Upton, New York
| | - T Dohnal
- Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
| | - M J Dolinski
- Department of Physics, Drexel University, Philadelphia, Pennsylvania
| | - D Dolzhikov
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - J Dove
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - M Dvořák
- Institute of High Energy Physics, Beijing
| | - D A Dwyer
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - A Erickson
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - B T Foust
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - J K Gaison
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - A Galindo-Uribarri
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - J P Gallo
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois
| | - C E Gilbert
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - M Gonchar
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - G H Gong
- Department of Engineering Physics, Tsinghua University, Beijing
| | - H Gong
- Department of Engineering Physics, Tsinghua University, Beijing
| | - M Grassi
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - W Q Gu
- Brookhaven National Laboratory, Upton, New York
| | - J Y Guo
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - L Guo
- Department of Engineering Physics, Tsinghua University, Beijing
| | - X H Guo
- Beijing Normal University, Beijing
| | - Y H Guo
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an
| | - Z Guo
- Department of Engineering Physics, Tsinghua University, Beijing
| | | | - S Hans
- Brookhaven National Laboratory, Upton, New York
| | - A B Hansell
- Department of Physics, Temple University, Philadelphia, Pennsylvania
| | - M He
- Institute of High Energy Physics, Beijing
| | - K M Heeger
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - B Heffron
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - Y K Heng
- Institute of High Energy Physics, Beijing
| | - Y K Hor
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Y B Hsiung
- Department of Physics, National Taiwan University, Taipei
| | - B Z Hu
- Department of Physics, National Taiwan University, Taipei
| | - J R Hu
- Institute of High Energy Physics, Beijing
| | - T Hu
- Institute of High Energy Physics, Beijing
| | - Z J Hu
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - H X Huang
- China Institute of Atomic Energy, Beijing
| | - J H Huang
- Institute of High Energy Physics, Beijing
| | | | - Y B Huang
- Guangxi University, No.100 Daxue East Road, Nanning
| | - P Huber
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - J Koblanski
- Department of Physics & Astronomy, University of Hawaii, Honolulu, Hawaii
| | - D E Jaffe
- Brookhaven National Laboratory, Upton, New York
| | - S Jayakumar
- Department of Physics, Drexel University, Philadelphia, Pennsylvania
| | - K L Jen
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - X L Ji
- Institute of High Energy Physics, Beijing
| | - X P Ji
- Brookhaven National Laboratory, Upton, New York
| | - R A Johnson
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221
| | - D C Jones
- Department of Physics, Temple University, Philadelphia, Pennsylvania
| | - L Kang
- Dongguan University of Technology, Dongguan
| | - S H Kettell
- Brookhaven National Laboratory, Upton, New York
| | - S Kohn
- Department of Physics, University of California, Berkeley, California 94720
| | - M Kramer
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - O Kyzylova
- Department of Physics, Drexel University, Philadelphia, Pennsylvania
| | - C E Lane
- Department of Physics, Drexel University, Philadelphia, Pennsylvania
| | - T J Langford
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - J LaRosa
- National Institute of Standards and Technology, Gaithersburg, Maryland
| | - J Lee
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - J H C Lee
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - R T Lei
- Dongguan University of Technology, Dongguan
| | - R Leitner
- Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
| | - J K C Leung
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - F Li
- Institute of High Energy Physics, Beijing
| | - H L Li
- Institute of High Energy Physics, Beijing
| | - J J Li
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Q J Li
- Institute of High Energy Physics, Beijing
| | - R H Li
- Institute of High Energy Physics, Beijing
| | - S Li
- Dongguan University of Technology, Dongguan
| | - S C Li
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - W D Li
- Institute of High Energy Physics, Beijing
| | - X N Li
- Institute of High Energy Physics, Beijing
| | - X Q Li
- School of Physics, Nankai University, Tianjin
| | - Y F Li
- Institute of High Energy Physics, Beijing
| | - Z B Li
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - H Liang
- University of Science and Technology of China, Hefei
| | - C J Lin
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - G L Lin
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - S Lin
- Dongguan University of Technology, Dongguan
| | - J J Ling
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J M Link
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | | | - B R Littlejohn
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois
| | - J C Liu
- Institute of High Energy Physics, Beijing
| | - J L Liu
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - J X Liu
- Institute of High Energy Physics, Beijing
| | - C Lu
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
| | - H Q Lu
- Institute of High Energy Physics, Beijing
| | - X Lu
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - K B Luk
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - B Z Ma
- Shandong University, Jinan
| | - X B Ma
- North China Electric Power University, Beijing
| | - X Y Ma
- Institute of High Energy Physics, Beijing
| | - Y Q Ma
- Institute of High Energy Physics, Beijing
| | - R C Mandujano
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - J Maricic
- Department of Physics & Astronomy, University of Hawaii, Honolulu, Hawaii
| | - C Marshall
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - K T McDonald
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
| | - R D McKeown
- California Institute of Technology, Pasadena, California 91125
- College of William and Mary, Williamsburg, Virginia 23187
| | - M P Mendenhall
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California
| | - Y Meng
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - A M Meyer
- Department of Physics & Astronomy, University of Hawaii, Honolulu, Hawaii
| | - R Milincic
- Department of Physics & Astronomy, University of Hawaii, Honolulu, Hawaii
| | - P E Mueller
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - H P Mumm
- National Institute of Standards and Technology, Gaithersburg, Maryland
| | - J Napolitano
- Department of Physics, Temple University, Philadelphia, Pennsylvania
| | - D Naumov
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - E Naumova
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - R Neilson
- Department of Physics, Drexel University, Philadelphia, Pennsylvania
| | - T M T Nguyen
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - J A Nikkel
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - S Nour
- National Institute of Standards and Technology, Gaithersburg, Maryland
| | - J P Ochoa-Ricoux
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - A Olshevskiy
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - J L Palomino
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois
| | - H-R Pan
- Department of Physics, National Taiwan University, Taipei
| | - J Park
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - S Patton
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - J C Peng
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - C S J Pun
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - D A Pushin
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario
| | - F Z Qi
- Institute of High Energy Physics, Beijing
| | - M Qi
- Nanjing University, Nanjing
| | - X Qian
- Brookhaven National Laboratory, Upton, New York
| | - N Raper
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J Ren
- China Institute of Atomic Energy, Beijing
| | - C Morales Reveco
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - R Rosero
- Brookhaven National Laboratory, Upton, New York
| | - B Roskovec
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - X C Ruan
- China Institute of Atomic Energy, Beijing
| | - M Searles
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - H Steiner
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - J L Sun
- China General Nuclear Power Group, Shenzhen
| | - P T Surukuchi
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - T Tmej
- Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
| | - K Treskov
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - W-H Tse
- Chinese University of Hong Kong, Hong Kong
| | - C E Tull
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - M A Tyra
- National Institute of Standards and Technology, Gaithersburg, Maryland
| | - R L Varner
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - D Venegas-Vargas
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - B Viren
- Brookhaven National Laboratory, Upton, New York
| | - V Vorobel
- Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
| | - C H Wang
- National United University, Miao-Li
| | - J Wang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - M Wang
- Shandong University, Jinan
| | - N Y Wang
- Beijing Normal University, Beijing
| | - R G Wang
- Institute of High Energy Physics, Beijing
| | - W Wang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
- College of William and Mary, Williamsburg, Virginia 23187
| | - W Wang
- Nanjing University, Nanjing
| | - X Wang
- College of Electronic Science and Engineering, National University of Defense Technology, Changsha
| | - Y Wang
- Nanjing University, Nanjing
| | - Y F Wang
- Institute of High Energy Physics, Beijing
| | - Z Wang
- Institute of High Energy Physics, Beijing
| | - Z Wang
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Z M Wang
- Institute of High Energy Physics, Beijing
| | - P B Weatherly
- Department of Physics, Drexel University, Philadelphia, Pennsylvania
| | - H Y Wei
- Brookhaven National Laboratory, Upton, New York
| | - L H Wei
- Institute of High Energy Physics, Beijing
| | - L J Wen
- Institute of High Energy Physics, Beijing
| | | | - C White
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois
| | - J Wilhelmi
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - H L H Wong
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - A Woolverton
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario
| | - E Worcester
- Brookhaven National Laboratory, Upton, New York
| | - D R Wu
- Institute of High Energy Physics, Beijing
| | - F L Wu
- Nanjing University, Nanjing
| | - Q Wu
- Shandong University, Jinan
| | - W J Wu
- Institute of High Energy Physics, Beijing
| | - D M Xia
- Chongqing University, Chongqing
| | - Z Q Xie
- Institute of High Energy Physics, Beijing
| | - Z Z Xing
- Institute of High Energy Physics, Beijing
| | - H K Xu
- Institute of High Energy Physics, Beijing
| | - J L Xu
- Institute of High Energy Physics, Beijing
| | - T Xu
- Department of Engineering Physics, Tsinghua University, Beijing
| | - T Xue
- Department of Engineering Physics, Tsinghua University, Beijing
| | - C G Yang
- Institute of High Energy Physics, Beijing
| | - L Yang
- Dongguan University of Technology, Dongguan
| | - Y Z Yang
- Department of Engineering Physics, Tsinghua University, Beijing
| | - H F Yao
- Institute of High Energy Physics, Beijing
| | - M Ye
- Institute of High Energy Physics, Beijing
| | - M Yeh
- Brookhaven National Laboratory, Upton, New York
| | - B L Young
- Iowa State University, Ames, Iowa 50011
| | - H Z Yu
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Z Y Yu
- Institute of High Energy Physics, Beijing
| | - B B Yue
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - V Zavadskyi
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - S Zeng
- Institute of High Energy Physics, Beijing
| | - Y Zeng
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - L Zhan
- Institute of High Energy Physics, Beijing
| | - C Zhang
- Brookhaven National Laboratory, Upton, New York
| | - F Y Zhang
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - H H Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J W Zhang
- Institute of High Energy Physics, Beijing
| | - Q M Zhang
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an
| | - S Q Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - X Zhang
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California
| | - X T Zhang
- Institute of High Energy Physics, Beijing
| | - Y M Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Y X Zhang
- China General Nuclear Power Group, Shenzhen
| | - Y Y Zhang
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - Z J Zhang
- Dongguan University of Technology, Dongguan
| | - Z P Zhang
- University of Science and Technology of China, Hefei
| | - Z Y Zhang
- Institute of High Energy Physics, Beijing
| | - J Zhao
- Institute of High Energy Physics, Beijing
| | - R Z Zhao
- Institute of High Energy Physics, Beijing
| | - L Zhou
- Institute of High Energy Physics, Beijing
| | - H L Zhuang
- Institute of High Energy Physics, Beijing
| | - J H Zou
- Institute of High Energy Physics, Beijing
| |
Collapse
|
13
|
Berryman JM, Delgadillo LA, Huber P. Future searches for light sterile neutrinos at nuclear reactors. Int J Clin Exp Med 2022. [DOI: 10.1103/physrevd.105.035002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Revealing Neutrino Oscillations Unknowns with Reactor and Long-Baseline Accelerator Experiments. UNIVERSE 2022. [DOI: 10.3390/universe8020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reactor and accelerator-based neutrino experiments have played a critical role in the understanding of neutrino oscillations and are currently dominating the high-precision measurements of neutrino oscillation parameters. The discovery of a non-zero θ13 by the reactor experiments has opened the possibility of observing CP violation in the lepton sector by long-baseline accelerator experiments. The current knowledge of the neutrino oscillation parameters will be expanded upon in the near future through more precise measurements, including the discovery of the neutrino mass ordering and the CP-violating phase. This review summarizes the distinct and complementary approach of reactor and accelerator-based neutrino experiments to measure neutrino oscillations. The main scientific achievements of the Double Chooz reactor neutrino experiment and the science program to be developed by the DUNE long-baseline neutrino experiment with the world’s most intense neutrino beam are presented in this article. Spain has strongly contributed to these results and will continue to play a prominent role in the neutrino oscillation program in the coming years.
Collapse
|
15
|
Abstract
In this contribution, we summarise the determination of neutrino masses and mixing arising from global analysis of data from atmospheric, solar, reactor, and accelerator neutrino experiments performed in the framework of three-neutrino mixing and obtained in the context of the NuFIT collaboration. Apart from presenting the latest status as of autumn 2021, we discuss the evolution of global-fit results over the last 10 years, and mention various pending issues (and their resolution) that occurred during that period in the global analyses.
Collapse
|
16
|
Acero MA, Adamson P, Aliaga L, Anfimov N, Antoshkin A, Arrieta-Diaz E, Asquith L, Aurisano A, Back A, Backhouse C, Baird M, Balashov N, Baldi P, Bambah BA, Bashar S, Bays K, Bernstein R, Bhatnagar V, Bhuyan B, Bian J, Blair J, Booth AC, Bowles R, Bromberg C, Buchanan N, Butkevich A, Calvez S, Carroll TJ, Catano-Mur E, Choudhary BC, Christensen A, Coan TE, Colo M, Cremonesi L, Davies GS, Derwent PF, Ding P, Djurcic Z, Dolce M, Doyle D, Dueñas Tonguino D, Dukes EC, Duyang H, Edayath S, Ehrlich R, Elkins M, Ewart E, Feldman GJ, Filip P, Franc J, Frank MJ, Gallagher HR, Gandrajula R, Gao F, Giri A, Gomes RA, Goodman MC, Grichine V, Groh M, Group R, Guo B, Habig A, Hakl F, Hall A, Hartnell J, Hatcher R, Hausner H, Heller K, Hewes J, Himmel A, Holin A, Huang J, Jargowsky B, Jarosz J, Jediny F, Johnson C, Judah M, Kakorin I, Kalra D, Kalitkina A, Kaplan DM, Keloth R, Klimov O, Koerner LW, Kolupaeva L, Kotelnikov S, Kralik R, Kullenberg C, Kubu M, Kumar A, Kuruppu CD, Kus V, Lackey T, Lasorak P, Lang K, Lesmeister J, Lin S, Lister A, Liu J, Lokajicek M, et alAcero MA, Adamson P, Aliaga L, Anfimov N, Antoshkin A, Arrieta-Diaz E, Asquith L, Aurisano A, Back A, Backhouse C, Baird M, Balashov N, Baldi P, Bambah BA, Bashar S, Bays K, Bernstein R, Bhatnagar V, Bhuyan B, Bian J, Blair J, Booth AC, Bowles R, Bromberg C, Buchanan N, Butkevich A, Calvez S, Carroll TJ, Catano-Mur E, Choudhary BC, Christensen A, Coan TE, Colo M, Cremonesi L, Davies GS, Derwent PF, Ding P, Djurcic Z, Dolce M, Doyle D, Dueñas Tonguino D, Dukes EC, Duyang H, Edayath S, Ehrlich R, Elkins M, Ewart E, Feldman GJ, Filip P, Franc J, Frank MJ, Gallagher HR, Gandrajula R, Gao F, Giri A, Gomes RA, Goodman MC, Grichine V, Groh M, Group R, Guo B, Habig A, Hakl F, Hall A, Hartnell J, Hatcher R, Hausner H, Heller K, Hewes J, Himmel A, Holin A, Huang J, Jargowsky B, Jarosz J, Jediny F, Johnson C, Judah M, Kakorin I, Kalra D, Kalitkina A, Kaplan DM, Keloth R, Klimov O, Koerner LW, Kolupaeva L, Kotelnikov S, Kralik R, Kullenberg C, Kubu M, Kumar A, Kuruppu CD, Kus V, Lackey T, Lasorak P, Lang K, Lesmeister J, Lin S, Lister A, Liu J, Lokajicek M, Magill S, Manrique Plata M, Mann WA, Marshak ML, Martinez-Casales M, Matveev V, Mayes B, Méndez DP, Messier MD, Meyer H, Miao T, Miller WH, Mishra SR, Mislivec A, Mohanta R, Moren A, Morozova A, Mu W, Mualem L, Muether M, Mulder K, Naples D, Nayak N, Nelson JK, Nichol R, Niner E, Norman A, Norrick A, Nosek T, Oh H, Olshevskiy A, Olson T, Ott J, Paley J, Patterson RB, Pawloski G, Petrova O, Petti R, Phan DD, Plunkett RK, Porter JCC, Rafique A, Raj V, Rajaoalisoa M, Ramson B, Rebel B, Rojas P, Ryabov V, Samoylov O, Sanchez MC, Sánchez Falero S, Shanahan P, Sheshukov A, Singh P, Singh V, Smith E, Smolik J, Snopok P, Solomey N, Sousa A, Soustruznik K, Strait M, Suter L, Sutton A, Swain S, Sweeney C, Tapia Oregui B, Tas P, Thakore T, Thayyullathil RB, Thomas J, Tiras E, Tripathi J, Trokan-Tenorio J, Tsaris A, Torun Y, Urheim J, Vahle P, Vallari Z, Vasel J, Vokac P, Vrba T, Wallbank M, Warburton TK, Wetstein M, Whittington D, Wickremasinghe DA, Wojcicki SG, Wolcott J, Wu W, Xiao Y, Yallappa Dombara A, Yonehara K, Yu S, Yu Y, Zadorozhnyy S, Zalesak J, Zhang Y, Zwaska R. Search for Active-Sterile Antineutrino Mixing Using Neutral-Current Interactions with the NOvA Experiment. PHYSICAL REVIEW LETTERS 2021; 127:201801. [PMID: 34860065 DOI: 10.1103/physrevlett.127.201801] [Show More Authors] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
This Letter reports results from the first long-baseline search for sterile antineutrinos mixing in an accelerator-based antineutrino-dominated beam. The rate of neutral-current interactions in the two NOvA detectors, at distances of 1 and 810 km from the beam source, is analyzed using an exposure of 12.51×10^{20} protons-on-target from the NuMI beam at Fermilab running in antineutrino mode. A total of 121 of neutral-current candidates are observed at the far detector, compared to a prediction of 122±11(stat.)±15(syst.) assuming mixing only between three active flavors. No evidence for ν[over ¯]_{μ}→ν[over ¯]_{s} oscillation is observed. Interpreting this result within a 3+1 model, constraints are placed on the mixing angles θ_{24}<25° and θ_{34}<32° at the 90% C.L. for 0.05 eV^{2}≤Δm_{41}^{2}≤0.5 eV^{2}, the range of mass splittings that produces no significant oscillations at the near detector. These are the first 3+1 confidence limits set using long-baseline accelerator antineutrinos.
Collapse
Affiliation(s)
- M A Acero
- Universidad del Atlantico, Carrera 30 No. 8-49, Puerto Colombia, Atlantico, Colombia
| | - P Adamson
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - L Aliaga
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - N Anfimov
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - A Antoshkin
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - E Arrieta-Diaz
- Universidad del Magdalena, Carrera 32 No 22 - 08 Santa Marta, Colombia
| | - L Asquith
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - A Aurisano
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - A Back
- Indiana University, Bloomington, Indiana 47405, USA
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - C Backhouse
- Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - M Baird
- Indiana University, Bloomington, Indiana 47405, USA
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - N Balashov
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - P Baldi
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
| | - B A Bambah
- School of Physics, University of Hyderabad, Hyderabad, 500 046, India
| | - S Bashar
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - K Bays
- California Institute of Technology, Pasadena, California 91125, USA
- Illinois Institute of Technology, Chicago Illinois 60616, USA
| | - R Bernstein
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - V Bhatnagar
- Department of Physics, Panjab University, Chandigarh, 160 014, India
| | - B Bhuyan
- Department of Physics, IIT Guwahati, Guwahati, 781 039, India
| | - J Bian
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - J Blair
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - A C Booth
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - R Bowles
- Indiana University, Bloomington, Indiana 47405, USA
| | - C Bromberg
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - N Buchanan
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - A Butkevich
- Institute for Nuclear Research of Russia, Academy of Sciences 7a, 60th October Anniversary prospect, Moscow 117312, Russia
| | - S Calvez
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - T J Carroll
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - E Catano-Mur
- Department of Physics, William and Mary, Williamsburg, Virginia 23187, USA
| | - B C Choudhary
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - A Christensen
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - T E Coan
- Department of Physics, Southern Methodist University, Dallas, Texas 75275, USA
| | - M Colo
- Department of Physics, William and Mary, Williamsburg, Virginia 23187, USA
| | - L Cremonesi
- School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, United Kingdom
- Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - G S Davies
- Indiana University, Bloomington, Indiana 47405, USA
- University of Mississippi, University, Mississippi 38677, USA
| | - P F Derwent
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - P Ding
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - Z Djurcic
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - M Dolce
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - D Doyle
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - D Dueñas Tonguino
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - E C Dukes
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - H Duyang
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - S Edayath
- Department of Physics, Cochin University of Science and Technology, Kochi 682 022, India
| | - R Ehrlich
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - M Elkins
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - E Ewart
- Indiana University, Bloomington, Indiana 47405, USA
| | - G J Feldman
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - P Filip
- Institute of Physics, The Czech Academy of Sciences, 182 21 Prague, Czech Republic
| | - J Franc
- Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
| | - M J Frank
- Department of Physics, University of South Alabama, Mobile, Alabama 36688, USA
| | - H R Gallagher
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - R Gandrajula
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - F Gao
- Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - A Giri
- Department of Physics, IIT Hyderabad, Hyderabad, 502 205, India
| | - R A Gomes
- Instituto de Física, Universidade Federal de Goiás, Goiánia, Goiás, 74690-900, Brazil
| | - M C Goodman
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - V Grichine
- Nuclear Physics and Astrophysics Division, Lebedev Physical Institute, Leninsky Prospect 53, 119991 Moscow, Russia
| | - M Groh
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
- Indiana University, Bloomington, Indiana 47405, USA
| | - R Group
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - B Guo
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - A Habig
- Department of Physics and Astronomy, University of Minnesota Duluth, Duluth, Minnesota 55812, USA
| | - F Hakl
- Institute of Computer Science, The Czech Academy of Sciences, 182 07 Prague, Czech Republic
| | - A Hall
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - J Hartnell
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - R Hatcher
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - H Hausner
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - K Heller
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - J Hewes
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - A Himmel
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - A Holin
- Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - J Huang
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - B Jargowsky
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
| | - J Jarosz
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - F Jediny
- Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
| | - C Johnson
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - M Judah
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
- Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - I Kakorin
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - D Kalra
- Department of Physics, Panjab University, Chandigarh, 160 014, India
| | - A Kalitkina
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - D M Kaplan
- Illinois Institute of Technology, Chicago Illinois 60616, USA
| | - R Keloth
- Department of Physics, Cochin University of Science and Technology, Kochi 682 022, India
| | - O Klimov
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - L W Koerner
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - L Kolupaeva
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - S Kotelnikov
- Nuclear Physics and Astrophysics Division, Lebedev Physical Institute, Leninsky Prospect 53, 119991 Moscow, Russia
| | - R Kralik
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - Ch Kullenberg
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - M Kubu
- Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
| | - A Kumar
- Department of Physics, Panjab University, Chandigarh, 160 014, India
| | - C D Kuruppu
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - V Kus
- Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
| | - T Lackey
- Indiana University, Bloomington, Indiana 47405, USA
| | - P Lasorak
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - K Lang
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - J Lesmeister
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - S Lin
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - A Lister
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - J Liu
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
| | - M Lokajicek
- Institute of Physics, The Czech Academy of Sciences, 182 21 Prague, Czech Republic
| | - S Magill
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | | | - W A Mann
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - M L Marshak
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - M Martinez-Casales
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - V Matveev
- Institute for Nuclear Research of Russia, Academy of Sciences 7a, 60th October Anniversary prospect, Moscow 117312, Russia
| | - B Mayes
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - D P Méndez
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - M D Messier
- Indiana University, Bloomington, Indiana 47405, USA
| | - H Meyer
- Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67206, USA
| | - T Miao
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - W H Miller
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - S R Mishra
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - A Mislivec
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - R Mohanta
- School of Physics, University of Hyderabad, Hyderabad, 500 046, India
| | - A Moren
- Department of Physics and Astronomy, University of Minnesota Duluth, Duluth, Minnesota 55812, USA
| | - A Morozova
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - W Mu
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - L Mualem
- California Institute of Technology, Pasadena, California 91125, USA
| | - M Muether
- Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67206, USA
| | - K Mulder
- Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - D Naples
- Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - N Nayak
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
| | - J K Nelson
- Department of Physics, William and Mary, Williamsburg, Virginia 23187, USA
| | - R Nichol
- Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - E Niner
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - A Norman
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - A Norrick
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - T Nosek
- Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic
| | - H Oh
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - A Olshevskiy
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - T Olson
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - J Ott
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
| | - J Paley
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - R B Patterson
- California Institute of Technology, Pasadena, California 91125, USA
| | - G Pawloski
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - O Petrova
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - R Petti
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - D D Phan
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
- Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - R K Plunkett
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - J C C Porter
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - A Rafique
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - V Raj
- California Institute of Technology, Pasadena, California 91125, USA
| | - M Rajaoalisoa
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - B Ramson
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - B Rebel
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - P Rojas
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - V Ryabov
- Nuclear Physics and Astrophysics Division, Lebedev Physical Institute, Leninsky Prospect 53, 119991 Moscow, Russia
| | - O Samoylov
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - M C Sanchez
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - S Sánchez Falero
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - P Shanahan
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - A Sheshukov
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - P Singh
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - V Singh
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - E Smith
- Indiana University, Bloomington, Indiana 47405, USA
| | - J Smolik
- Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
| | - P Snopok
- Illinois Institute of Technology, Chicago Illinois 60616, USA
| | - N Solomey
- Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67206, USA
| | - A Sousa
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - K Soustruznik
- Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic
| | - M Strait
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - L Suter
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - A Sutton
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - S Swain
- National Institute of Science Education and Research, Khurda, 752050, Odisha, India
| | - C Sweeney
- Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - B Tapia Oregui
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - P Tas
- Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic
| | - T Thakore
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - R B Thayyullathil
- Department of Physics, Cochin University of Science and Technology, Kochi 682 022, India
| | - J Thomas
- Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - E Tiras
- Department of Physics, Erciyes University, Kayseri 38030, Turkey
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - J Tripathi
- Department of Physics, Panjab University, Chandigarh, 160 014, India
| | - J Trokan-Tenorio
- Department of Physics, William and Mary, Williamsburg, Virginia 23187, USA
| | - A Tsaris
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - Y Torun
- Illinois Institute of Technology, Chicago Illinois 60616, USA
| | - J Urheim
- Indiana University, Bloomington, Indiana 47405, USA
| | - P Vahle
- Department of Physics, William and Mary, Williamsburg, Virginia 23187, USA
| | - Z Vallari
- California Institute of Technology, Pasadena, California 91125, USA
| | - J Vasel
- Indiana University, Bloomington, Indiana 47405, USA
| | - P Vokac
- Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
| | - T Vrba
- Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
| | - M Wallbank
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - T K Warburton
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - M Wetstein
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - D Whittington
- Indiana University, Bloomington, Indiana 47405, USA
- Department of Physics, Syracuse University, Syracuse New York 13210, USA
| | | | - S G Wojcicki
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - J Wolcott
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - W Wu
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
| | - Y Xiao
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
| | - A Yallappa Dombara
- Department of Physics, Syracuse University, Syracuse New York 13210, USA
| | - K Yonehara
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - S Yu
- Argonne National Laboratory, Argonne, Illinois 60439, USA
- Illinois Institute of Technology, Chicago Illinois 60616, USA
| | - Y Yu
- Illinois Institute of Technology, Chicago Illinois 60616, USA
| | - S Zadorozhnyy
- Institute for Nuclear Research of Russia, Academy of Sciences 7a, 60th October Anniversary prospect, Moscow 117312, Russia
| | - J Zalesak
- Institute of Physics, The Czech Academy of Sciences, 182 21 Prague, Czech Republic
| | - Y Zhang
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - R Zwaska
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| |
Collapse
|
17
|
A New Generation of Neutrino Cross Section Experiments: Challenges and Opportunities. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Our knowledge of neutrino cross sections at the GeV scale, instrumental to test CP symmetry violation in the leptonic sector, has grown substantially in the last two decades. Still, their precision and understanding are far from the standard needed in contemporary neutrino physics. Nowadays, the knowledge of the neutrino cross section at O(10%) causes the main systematic uncertainty in oscillation experiments and jeopardizes their physics reach. In this paper, we envision the opportunities for a new generation of cross section experiments to be run in parallel with DUNE and HyperKamiokande. We identify the most prominent physics goals by looking at the theory and experimental limitations of the previous generation of experiments. We highlight the priorities in the theoretical understanding of GeV cross sections and the experimental challenges of this new generation of facilities.
Collapse
|
18
|
Abstract
Borexino is a 280-ton liquid scintillator detector located at the Laboratori Nazionali del Gran Sasso in Italy. Since the start of its data-taking in May 2007, it has provided several measurements of low-energy neutrinos from various sources. At the base of its success lie unprecedented levels of radio-purity and extensive thermal stabilization, both resulting from a years-long effort of the collaboration. Solar neutrinos, emitted in the Hydrogen-to-Helium fusion in the solar core, are important for the understanding of our star, as well as neutrino properties. Borexino is the only experiment that has performed a complete spectroscopy of the pp chain solar neutrinos (with the exception of the hep neutrinos contributing to the total flux at 10−5 level), through the detection of pp, 7Be, pep, and 8B solar neutrinos and has experimentally confirmed the existence of the CNO fusion cycle in the Sun. Borexino has also detected geoneutrinos, antineutrinos from the decays of long-lived radioactive elements inside the Earth, that can be exploited as a new and unique tool to study our planet. This paper reviews the most recent Borexino results on solar and geoneutrinos, from highlighting the key elements of the analyses up to the discussion and interpretation of the results for neutrino, solar, and geophysics.
Collapse
|
19
|
Hashimoto T, Suematsu D. Inflation and DM phenomenology in a scotogenic model extended with a real singlet scalar. Int J Clin Exp Med 2020. [DOI: 10.1103/physrevd.102.115041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Abstract
We present new approaches to distinguish between Dirac and Majorana neutrinos. The first is based on the analysis of the geometric phases associated to neutrinos in matter, the second on the effects of decoherence on neutrino oscillations. In the former we compute the total and geometric phase for neutrinos, and find that they depend on the Majorana phase and on the parametrization of the mixing matrix. In the latter, we show that Majorana neutrinos might violate CPT symmetry, whereas Dirac neutrinos preserve CPT. A phenomenological analysis is also reported showing the possibility to highlight the distinctions between Dirac and Majorana neutrinos.
Collapse
|
21
|
Febbraro M, deBoer RJ, Pain SD, Toomey R, Becchetti FD, Boeltzig A, Chen Y, Chipps KA, Couder M, Jones KL, Lamere E, Liu Q, Lyons S, Macon KT, Morales L, Peters WA, Robertson D, Rasco BC, Smith K, Seymour C, Seymour G, Smith MS, Stech E, Kolk BV, Wiescher M. New ^{13}C(α,n)^{16}O Cross Section with Implications for Neutrino Mixing and Geoneutrino Measurements. PHYSICAL REVIEW LETTERS 2020; 125:062501. [PMID: 32845657 DOI: 10.1103/physrevlett.125.062501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 05/07/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Precise antineutrino measurements are very sensitive to proper background characterization. We present an improved measurement of the ^{13}C(α,n)^{16}O reaction cross section which constitutes significant background for large ν[over ¯] detectors. We greatly improve the precision and accuracy by utilizing a setup that is sensitive to the neutron energies while making measurements of the excited state transitions via secondary γ-ray detection. Our results shows a 54% reduction in the background contributions from the ^{16}O(3^{-},6.13 MeV) state used in the KamLAND analysis.
Collapse
Affiliation(s)
- M Febbraro
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - R J deBoer
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - S D Pain
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - R Toomey
- Rutgers University, Piscataway, New Jersey 08854, USA
- University of Surrey, GU2 7XH, Guildford, United Kingdom
| | - F D Becchetti
- University of Michigan, Ann Arbor, Michigan 48109, USA
| | - A Boeltzig
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Y Chen
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - K A Chipps
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - M Couder
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - K L Jones
- University of Tennessee, Knoxville, Tennessee 37996, USA
| | - E Lamere
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Q Liu
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - S Lyons
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - K T Macon
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - L Morales
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - W A Peters
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- University of Tennessee, Knoxville, Tennessee 37996, USA
| | - D Robertson
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - B C Rasco
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- University of Tennessee, Knoxville, Tennessee 37996, USA
| | - K Smith
- University of Tennessee, Knoxville, Tennessee 37996, USA
| | - C Seymour
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - G Seymour
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - M S Smith
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - E Stech
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - B Vande Kolk
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - M Wiescher
- The Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
22
|
Abstract
Symmetries in the Physical Laws of Nature lead to observable effects. Beyond the regularities and conserved magnitudes, the last few decades in particle physics have seen the identification of symmetries, and their well-defined breaking, as the guiding principle for the elementary constituents of matter and their interactions. Flavour SU(3) symmetry of hadrons led to the Quark Model and the antisymmetric requirement under exchange of identical fermions led to the colour degree of freedom. Colour became the generating charge for flavour-independent strong interactions of quarks and gluons in the exact colour SU(3) local gauge symmetry. Parity Violation in weak interactions led us to consider the chiral fields of fermions as the objects with definite transformation properties under the weak isospin SU(2) gauge group of the Unifying Electro-Weak SU(2) × U(1) symmetry, which predicted novel weak neutral current interactions. CP-Violation led to three families of quarks opening the field of Flavour Physics. Time-reversal violation has recently been observed with entangled neutral mesons, compatible with CPT-invariance. The cancellation of gauge anomalies, which would invalidate the gauge symmetry of the quantum field theory, led to Quark–Lepton Symmetry. Neutrinos were postulated in order to save the conservation laws of energy and angular momentum in nuclear beta decay. After the ups and downs of their mass, neutrino oscillations were discovered in 1998, opening a new era about their origin of mass, mixing, discrete symmetries and the possibility of global lepton-number violation through Majorana mass terms and Leptogenesis as the source of the matter–antimatter asymmetry in the universe. The experimental discovery of quarks and leptons and the mediators of their interactions, with physical observables in spectacular agreement with this Standard Theory, is the triumph of Symmetries. The gauge symmetry is exact only when the particles are massless. One needs a subtle breaking of the symmetry, providing the origin of mass without affecting the excellent description of the interactions. This is the Brout–Englert–Higgs Mechanism, which produces the Higgs Boson as a remnant, discovered at CERN in 2012. Open present problems are addressed with by searching the New Physics Beyond-the-Standard-Model.
Collapse
|
23
|
Lei M, Wells JD. Minimally modified
A4
Altarelli-Feruglio model for neutrino masses and mixings and its experimental consequences. Int J Clin Exp Med 2020. [DOI: 10.1103/physrevd.102.016023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Behera S, Mishra D, Pant L. Active-sterile neutrino mixing constraints using reactor antineutrinos with the ISMRAN setup. Int J Clin Exp Med 2020. [DOI: 10.1103/physrevd.102.013002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Al Kharusi S, Anton G, Badhrees I, Barbeau PS, Beck D, Belov V, Bhatta T, Breidenbach M, Brunner T, Cao GF, Cen WR, Chambers C, Cleveland B, Coon M, Craycraft A, Daniels T, Darroch L, Daugherty SJ, Davis J, Delaquis S, Der Mesrobian-Kabakian A, DeVoe R, Dilling J, Dolgolenko A, Dolinski MJ, Echevers J, Fairbank W, Fairbank D, Farine J, Feyzbakhsh S, Fierlinger P, Fudenberg D, Gautam P, Gornea R, Gratta G, Hall C, Hansen EV, Hoessl J, Hufschmidt P, Hughes M, Iverson A, Jamil A, Jessiman C, Jewell MJ, Johnson A, Karelin A, Kaufman LJ, Koffas T, Kostensalo J, Krücken R, Kuchenkov A, Kumar KS, Lan Y, Larson A, Lenardo BG, Leonard DS, Li GS, Li S, Li Z, Licciardi C, Lin YH, MacLellan R, McElroy T, Michel T, Mong B, Moore DC, Murray K, Nakarmi P, Njoya O, Nusair O, Odian A, Ostrovskiy I, Piepke A, Pocar A, Retière F, Robinson AL, Rowson PC, Ruddell D, Runge J, Schmidt S, Sinclair D, Skarpaas K, Soma AK, Stekhanov V, Suhonen J, Tarka M, Thibado S, Todd J, Tolba T, Totev TI, Tsang R, Veenstra B, Veeraraghavan V, Vogel P, Vuilleumier JL, Wagenpfeil M, Watkins J, Weber M, Wen LJ, Wichoski U, et alAl Kharusi S, Anton G, Badhrees I, Barbeau PS, Beck D, Belov V, Bhatta T, Breidenbach M, Brunner T, Cao GF, Cen WR, Chambers C, Cleveland B, Coon M, Craycraft A, Daniels T, Darroch L, Daugherty SJ, Davis J, Delaquis S, Der Mesrobian-Kabakian A, DeVoe R, Dilling J, Dolgolenko A, Dolinski MJ, Echevers J, Fairbank W, Fairbank D, Farine J, Feyzbakhsh S, Fierlinger P, Fudenberg D, Gautam P, Gornea R, Gratta G, Hall C, Hansen EV, Hoessl J, Hufschmidt P, Hughes M, Iverson A, Jamil A, Jessiman C, Jewell MJ, Johnson A, Karelin A, Kaufman LJ, Koffas T, Kostensalo J, Krücken R, Kuchenkov A, Kumar KS, Lan Y, Larson A, Lenardo BG, Leonard DS, Li GS, Li S, Li Z, Licciardi C, Lin YH, MacLellan R, McElroy T, Michel T, Mong B, Moore DC, Murray K, Nakarmi P, Njoya O, Nusair O, Odian A, Ostrovskiy I, Piepke A, Pocar A, Retière F, Robinson AL, Rowson PC, Ruddell D, Runge J, Schmidt S, Sinclair D, Skarpaas K, Soma AK, Stekhanov V, Suhonen J, Tarka M, Thibado S, Todd J, Tolba T, Totev TI, Tsang R, Veenstra B, Veeraraghavan V, Vogel P, Vuilleumier JL, Wagenpfeil M, Watkins J, Weber M, Wen LJ, Wichoski U, Wrede G, Wu SX, Xia Q, Yahne DR, Yang L, Yen YR, Zeldovich OY, Ziegler T. Measurement of the Spectral Shape of the β-Decay of ^{137}Xe to the Ground State of ^{137}Cs in EXO-200 and Comparison with Theory. PHYSICAL REVIEW LETTERS 2020; 124:232502. [PMID: 32603173 DOI: 10.1103/physrevlett.124.232502] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/17/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
We report on a comparison between the theoretically predicted and experimentally measured spectra of the first-forbidden nonunique β-decay transition ^{137}Xe(7/2^{-})→^{137}Cs(7/2^{+}). The experimental data were acquired by the EXO-200 experiment during a deployment of an AmBe neutron source. The ultralow background environment of EXO-200, together with dedicated source deployment and analysis procedures, allowed for collection of a pure sample of the decays, with an estimated signal to background ratio of more than 99 to 1 in the energy range from 1075 to 4175 keV. In addition to providing a rare and accurate measurement of the first-forbidden nonunique β-decay shape, this work constitutes a novel test of the calculated electron spectral shapes in the context of the reactor antineutrino anomaly and spectral bump.
Collapse
Affiliation(s)
- S Al Kharusi
- Physics Department, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - G Anton
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91058, Germany
| | - I Badhrees
- Physics Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - P S Barbeau
- Department of Physics, Duke University, and Triangle Universities Nuclear Laboratory (TUNL), Durham, North Carolina 27708, USA
| | - D Beck
- Physics Department, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| | - V Belov
- Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre "Kurchatov Institute", Moscow 117218, Russia
| | - T Bhatta
- Department of Physics, University of South Dakota, Vermillion, South Dakota 57069, USA
| | - M Breidenbach
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - T Brunner
- Physics Department, McGill University, Montreal, Quebec H3A 2T8, Canada
- TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - G F Cao
- Institute of High Energy Physics, Beijing 100049, China
| | - W R Cen
- Institute of High Energy Physics, Beijing 100049, China
| | - C Chambers
- Physics Department, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - B Cleveland
- Department of Physics, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - M Coon
- Physics Department, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| | - A Craycraft
- Physics Department, Colorado State University, Fort Collins, Colorado 80523, USA
| | - T Daniels
- Department of Physics and Physical Oceanography, University of North Carolina at Wilmington, Wilmington, North Carolina 28403, USA
| | - L Darroch
- Physics Department, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - S J Daugherty
- Physics Department and CEEM, Indiana University, Bloomington, Indiana 47405, USA
| | - J Davis
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - S Delaquis
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - R DeVoe
- Physics Department, Stanford University, Stanford, California 94305, USA
| | - J Dilling
- TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - A Dolgolenko
- Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre "Kurchatov Institute", Moscow 117218, Russia
| | - M J Dolinski
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - J Echevers
- Physics Department, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| | - W Fairbank
- Physics Department, Colorado State University, Fort Collins, Colorado 80523, USA
| | - D Fairbank
- Physics Department, Colorado State University, Fort Collins, Colorado 80523, USA
| | - J Farine
- Department of Physics, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - S Feyzbakhsh
- Amherst Center for Fundamental Interactions and Physics Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - P Fierlinger
- Technische Universität München, Physikdepartment and Excellence Cluster Universe, Garching 80805, Germany
| | - D Fudenberg
- Physics Department, Stanford University, Stanford, California 94305, USA
| | - P Gautam
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - R Gornea
- Physics Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - G Gratta
- Physics Department, Stanford University, Stanford, California 94305, USA
| | - C Hall
- Physics Department, University of Maryland, College Park, Maryland 20742, USA
| | - E V Hansen
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - J Hoessl
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91058, Germany
| | - P Hufschmidt
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91058, Germany
| | - M Hughes
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - A Iverson
- Physics Department, Colorado State University, Fort Collins, Colorado 80523, USA
| | - A Jamil
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| | - C Jessiman
- Physics Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - M J Jewell
- Physics Department, Stanford University, Stanford, California 94305, USA
| | - A Johnson
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A Karelin
- Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre "Kurchatov Institute", Moscow 117218, Russia
| | - L J Kaufman
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - T Koffas
- Physics Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - J Kostensalo
- University of Jyväskylä, Department of Physics, P.O. Box 35 (YFL), Jyväskylä FI-40014, Finland
| | - R Krücken
- TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - A Kuchenkov
- Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre "Kurchatov Institute", Moscow 117218, Russia
| | - K S Kumar
- Amherst Center for Fundamental Interactions and Physics Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Y Lan
- TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - A Larson
- Department of Physics, University of South Dakota, Vermillion, South Dakota 57069, USA
| | - B G Lenardo
- Physics Department, Stanford University, Stanford, California 94305, USA
| | - D S Leonard
- IBS Center for Underground Physics, Daejeon 34126, Korea
| | - G S Li
- Physics Department, Stanford University, Stanford, California 94305, USA
| | - S Li
- Physics Department, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| | - Z Li
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| | - C Licciardi
- Department of Physics, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Y H Lin
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - R MacLellan
- Department of Physics, University of South Dakota, Vermillion, South Dakota 57069, USA
| | - T McElroy
- Physics Department, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - T Michel
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91058, Germany
| | - B Mong
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - D C Moore
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| | - K Murray
- Physics Department, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - P Nakarmi
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - O Njoya
- Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794, USA
| | - O Nusair
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - A Odian
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - I Ostrovskiy
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - A Piepke
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - A Pocar
- Amherst Center for Fundamental Interactions and Physics Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - F Retière
- TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - A L Robinson
- Department of Physics, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - P C Rowson
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - D Ruddell
- Department of Physics and Physical Oceanography, University of North Carolina at Wilmington, Wilmington, North Carolina 28403, USA
| | - J Runge
- Department of Physics, Duke University, and Triangle Universities Nuclear Laboratory (TUNL), Durham, North Carolina 27708, USA
| | - S Schmidt
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91058, Germany
| | - D Sinclair
- Physics Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - K Skarpaas
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A K Soma
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - V Stekhanov
- Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre "Kurchatov Institute", Moscow 117218, Russia
| | - J Suhonen
- University of Jyväskylä, Department of Physics, P.O. Box 35 (YFL), Jyväskylä FI-40014, Finland
| | - M Tarka
- Amherst Center for Fundamental Interactions and Physics Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - S Thibado
- Amherst Center for Fundamental Interactions and Physics Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - J Todd
- Physics Department, Colorado State University, Fort Collins, Colorado 80523, USA
| | - T Tolba
- Institute of High Energy Physics, Beijing 100049, China
| | - T I Totev
- Physics Department, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - R Tsang
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - B Veenstra
- Physics Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - V Veeraraghavan
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - P Vogel
- Kellogg Lab, Caltech, Pasadena, California 91125, USA
| | - J-L Vuilleumier
- LHEP, Albert Einstein Center, University of Bern, Bern CH-3012, Switzerland
| | - M Wagenpfeil
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91058, Germany
| | - J Watkins
- Physics Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - M Weber
- Physics Department, Stanford University, Stanford, California 94305, USA
| | - L J Wen
- Institute of High Energy Physics, Beijing 100049, China
| | - U Wichoski
- Department of Physics, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - G Wrede
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91058, Germany
| | - S X Wu
- Physics Department, Stanford University, Stanford, California 94305, USA
| | - Q Xia
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| | - D R Yahne
- Physics Department, Colorado State University, Fort Collins, Colorado 80523, USA
| | - L Yang
- Department of Physics, University of California San Diego, La Jolla, California 92093, USA
| | - Y-R Yen
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - O Ya Zeldovich
- Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre "Kurchatov Institute", Moscow 117218, Russia
| | - T Ziegler
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91058, Germany
| |
Collapse
|
26
|
Present and Future Contributions of Reactor Experiments to Mass Ordering and Neutrino Oscillation Studies. UNIVERSE 2020. [DOI: 10.3390/universe6040052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
After a long a glorious history, marked by the first direct proofs of neutrino existence and of the mixing between the first and third neutrino generations, the reactor antineutrino experiments are still well alive and will continue to give important contributions to the development of elementary particle physics and astrophysics. In parallel to the SBL (short baseline) experiments, that will be dedicated mainly to the search for sterile neutrinos, a new kind of experiments will start playing an important role: reactor experiments with a “medium” value, around 50 km, of the baseline, somehow in the middle between the SBL and the LBL (long baselines), like KamLAND, which in the recent past gave essential contributions to the developments of neutrino physics. These new medium baseline reactor experiments can be very important, mainly for the study of neutrino mass ordering. The first example of this kind, the liquid scintillator JUNO experiment, characterized by a very high mass and an unprecedented energy resolution, will soon start data collecting in China. Its main aspects are discussed here, together with its potentialities for what concerns the mass ordering investigation and also the other issues that can be studied with this detector, spanning from the accurate oscillation parameter determination to the study of solar neutrinos, geoneutrinos, atmospheric neutrinos and neutrinos emitted by supernovas and to the search for signals of potential Lorentz invariance violation.
Collapse
|
27
|
Abstract
This work explores the possibility of resorting to neutrino phenomenology to detect evidence of new physics, caused by the residual signals of the supposed quantum structure of spacetime. In particular, this work investigates the effects on neutrino oscillations and mass hierarchy detection, predicted by models that violate Lorentz invariance, preserving the spacetime isotropy and homogeneity. Neutrino physics is the ideal environment where conducting the search for new “exotic” physics, since the oscillation phenomenon is not included in the original formulation of the minimal Standard Model (SM) of particles. The confirmed observation of the neutrino oscillation phenomenon is, therefore, the first example of physics beyond the SM and can indicate the necessity to resort to new theoretical models. In this work, the hypothesis that the supposed Lorentz Invariance Violation (LIV) perturbations can influence the oscillation pattern is investigated. LIV theories are indeed constructed assuming modified kinematics, caused by the interaction of massive particles with the spacetime background. This means that the dispersion relations are modified, so it appears natural to search for effects caused by LIV in physical phenomena governed by masses, as in the case of neutrino oscillations. In addition, the neutrino oscillation phenomenon is interesting since there are three different mass eigenstates and in a LIV scenario, which preserves isotropy, at least two different species of particle must interact.
Collapse
|
28
|
|
29
|
Abstract
The three-flavor neutrino oscillation paradigm is well established in particle physics thanks to the crucial contribution of accelerator neutrino beam experiments. In this paper, we review the most important contributions of these experiments to the physics of massive neutrinos after the discovery of θ 13 and future perspectives in such a lively field of research. Special emphasis is given to the technical challenges of high power beams and the oscillation results of T2K, OPERA, ICARUS, and NO ν A. We discuss in detail the role of accelerator neutrino experiments in the precision era of neutrino physics in view of DUNE and Hyper-Kamiokande, the program of systematic uncertainty reduction and the development of new beam facilities.
Collapse
|
30
|
Yang L, Ma X, Zhu R, Li Y, Huang Z. Analysis of the reactor antineutrino spectrum anomaly with fuel burnup. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202023902005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recently, three successful antineutrino experiments (Daya Bay, Double Chooz, and RENO) measured the neutrino mixing angle θ13; however, significant discrepancies were found, both in the absolute flux and spectral shape. Much effort has been expended investigating the possible reasons for the discrepancies. In this paper, the change of neutrino energy spectrum with burnup is analyzed from the point of view of the change of neutrino energy spectrum with burnup. An accurate method for calculating neutrino energy spectrum is proposed. The non-equilibrium correction is studied by using this method. It is found that the non-equilibrium correction contributes not only to the energy region less than 4.0 MeV, but also to the energy region greater than 4.0 MeV, with a maximum correction of about 3%.
Collapse
|
31
|
Acero MA, Adamson P, Aliaga L, Alion T, Allakhverdian V, Altakarli S, Anfimov N, Antoshkin A, Aurisano A, Back A, Backhouse C, Baird M, Balashov N, Baldi P, Bambah BA, Bashar S, Bays K, Bending S, Bernstein R, Bhatnagar V, Bhuyan B, Bian J, Blackburn T, Blair J, Booth AC, Bour P, Bromberg C, Buchanan N, Butkevich A, Calvez S, Campbell M, Carroll TJ, Catano-Mur E, Cedeno A, Childress S, Choudhary BC, Chowdhury B, Coan TE, Colo M, Cooper J, Corwin L, Cremonesi L, Davies GS, Derwent PF, Ding P, Djurcic Z, Doyle D, Dukes EC, Duyang H, Edayath S, Ehrlich R, Elkins M, Feldman GJ, Filip P, Flanagan W, Frank MJ, Gallagher HR, Gandrajula R, Gao F, Germani S, Giri A, Gomes RA, Goodman MC, Grichine V, Groh M, Group R, Guo B, Habig A, Hakl F, Hartnell J, Hatcher R, Hatzikoutelis A, Heller K, Hewes J, Himmel A, Holin A, Howard B, Huang J, Hylen J, Jediny F, Johnson C, Judah M, Kakorin I, Kalra D, Kaplan DM, Keloth R, Klimov O, Koerner LW, Kolupaeva L, Kotelnikov S, Kourbanis I, Kreymer A, Kulenberg C, Kumar A, Kuruppu CD, Kus V, Lackey T, Lang K, Lin S, Lokajicek M, et alAcero MA, Adamson P, Aliaga L, Alion T, Allakhverdian V, Altakarli S, Anfimov N, Antoshkin A, Aurisano A, Back A, Backhouse C, Baird M, Balashov N, Baldi P, Bambah BA, Bashar S, Bays K, Bending S, Bernstein R, Bhatnagar V, Bhuyan B, Bian J, Blackburn T, Blair J, Booth AC, Bour P, Bromberg C, Buchanan N, Butkevich A, Calvez S, Campbell M, Carroll TJ, Catano-Mur E, Cedeno A, Childress S, Choudhary BC, Chowdhury B, Coan TE, Colo M, Cooper J, Corwin L, Cremonesi L, Davies GS, Derwent PF, Ding P, Djurcic Z, Doyle D, Dukes EC, Duyang H, Edayath S, Ehrlich R, Elkins M, Feldman GJ, Filip P, Flanagan W, Frank MJ, Gallagher HR, Gandrajula R, Gao F, Germani S, Giri A, Gomes RA, Goodman MC, Grichine V, Groh M, Group R, Guo B, Habig A, Hakl F, Hartnell J, Hatcher R, Hatzikoutelis A, Heller K, Hewes J, Himmel A, Holin A, Howard B, Huang J, Hylen J, Jediny F, Johnson C, Judah M, Kakorin I, Kalra D, Kaplan DM, Keloth R, Klimov O, Koerner LW, Kolupaeva L, Kotelnikov S, Kourbanis I, Kreymer A, Kulenberg C, Kumar A, Kuruppu CD, Kus V, Lackey T, Lang K, Lin S, Lokajicek M, Lozier J, Luchuk S, Maan K, Magill S, Mann WA, Marshak ML, Martinez-Casales M, Matveev V, Méndez DP, Messier MD, Meyer H, Miao T, Miller WH, Mishra SR, Mislivec A, Mohanta R, Moren A, Mualem L, Muether M, Mufson S, Mulder K, Murphy R, Musser J, Naples D, Nayak N, Nelson JK, Nichol R, Nikseresht G, Niner E, Norman A, Nosek T, Olshevskiy A, Olson T, Paley J, Patterson RB, Pawloski G, Pershey D, Petrova O, Petti R, Phan DD, Plunkett RK, Potukuchi B, Principato C, Psihas F, Radovic A, Raj V, Rameika RA, Rebel B, Rojas P, Ryabov V, Samoylov O, Sanchez MC, Sánchez Falero S, Seong IS, Shanahan P, Sheshukov A, Singh P, Singh V, Smith E, Smolik J, Snopok P, Solomey N, Song E, Sousa A, Soustruznik K, Strait M, Suter L, Sutton A, Talaga RL, Tapia Oregui B, Tas P, Thayyullathil RB, Thomas J, Tiras E, Torbunov D, Tripathi J, Tsaris A, Torun Y, Urheim J, Vahle P, Vasel J, Vinton L, Vokac P, Vrba T, Wallbank M, Wang B, Warburton TK, Wetstein M, While M, Whittington D, Wojcicki SG, Wolcott J, Yadav N, Yallappa Dombara A, Yonehara K, Yu S, Zadorozhnyy S, Zalesak J, Zamorano B, Zwaska R. First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA. PHYSICAL REVIEW LETTERS 2019; 123:151803. [PMID: 31702305 DOI: 10.1103/physrevlett.123.151803] [Show More Authors] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 06/10/2023]
Abstract
The NOvA experiment has seen a 4.4σ signal of ν[over ¯]_{e} appearance in a 2 GeV ν[over ¯]_{μ} beam at a distance of 810 km. Using 12.33×10^{20} protons on target delivered to the Fermilab NuMI neutrino beamline, the experiment recorded 27 ν[over ¯]_{μ}→ν[over ¯]_{e} candidates with a background of 10.3 and 102 ν[over ¯]_{μ}→ν[over ¯]_{μ} candidates. This new antineutrino data are combined with neutrino data to measure the parameters |Δm_{32}^{2}|=2.48_{-0.06}^{+0.11}×10^{-3} eV^{2}/c^{4} and sin^{2}θ_{23} in the ranges from (0.53-0.60) and (0.45-0.48) in the normal neutrino mass hierarchy. The data exclude most values near δ_{CP}=π/2 for the inverted mass hierarchy by more than 3σ and favor the normal neutrino mass hierarchy by 1.9σ and θ_{23} values in the upper octant by 1.6σ.
Collapse
Affiliation(s)
- M A Acero
- Universidad del Atlantico, Km. 7 antigua via a Puerto Colombia, Barranquilla, Colombia
| | - P Adamson
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - L Aliaga
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - T Alion
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - V Allakhverdian
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - S Altakarli
- Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67206, USA
| | - N Anfimov
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - A Antoshkin
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - A Aurisano
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - A Back
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - C Backhouse
- Physics and Astronomy Dept., University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - M Baird
- Indiana University, Bloomington, Indiana 47405, USA
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - N Balashov
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - P Baldi
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
| | - B A Bambah
- School of Physics, University of Hyderabad, Hyderabad 500 046, India
| | - S Bashar
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - K Bays
- California Institute of Technology, Pasadena, California 91125, USA
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - S Bending
- Physics and Astronomy Dept., University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - R Bernstein
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - V Bhatnagar
- Department of Physics, Panjab University, Chandigarh 160 014, India
| | - B Bhuyan
- Department of Physics, IIT Guwahati, Guwahati 781 039, India
| | - J Bian
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - T Blackburn
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - J Blair
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - A C Booth
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - P Bour
- Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
| | - C Bromberg
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - N Buchanan
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - A Butkevich
- Institute for Nuclear Research of Russia, Academy of Sciences 7a, 60th October Anniversary prospect, Moscow 117312, Russia
| | - S Calvez
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - M Campbell
- Physics and Astronomy Dept., University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - T J Carroll
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - E Catano-Mur
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
- Department of Physics, College of William & Mary, Williamsburg, Virginia 23187, USA
| | - A Cedeno
- Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67206, USA
| | - S Childress
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - B C Choudhary
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - B Chowdhury
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - T E Coan
- Department of Physics, Southern Methodist University, Dallas, Texas 75275, USA
| | - M Colo
- Department of Physics, College of William & Mary, Williamsburg, Virginia 23187, USA
| | - J Cooper
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - L Corwin
- South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - L Cremonesi
- Physics and Astronomy Dept., University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - G S Davies
- Indiana University, Bloomington, Indiana 47405, USA
| | - P F Derwent
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - P Ding
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - Z Djurcic
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - D Doyle
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - E C Dukes
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - H Duyang
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - S Edayath
- Department of Physics, Cochin University of Science and Technology, Kochi 682 022, India
| | - R Ehrlich
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - M Elkins
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - G J Feldman
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - P Filip
- Institute of Physics, The Czech Academy of Sciences, 182 21 Prague, Czech Republic
| | - W Flanagan
- University of Dallas, 1845 E Northgate Drive, Irving, Texas 75062 USA
| | - M J Frank
- Department of Physics, University of South Alabama, Mobile, Alabama 36688, USA
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - H R Gallagher
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - R Gandrajula
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - F Gao
- Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - S Germani
- Physics and Astronomy Dept., University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - A Giri
- Department of Physics, IIT Hyderabad, Hyderabad 502 205, India
| | - R A Gomes
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Goiás 74690-900, Brazil
| | - M C Goodman
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - V Grichine
- Nuclear Physics and Astrophysics Division, Lebedev Physical Institute, Leninsky Prospect 53, 119991 Moscow, Russia
| | - M Groh
- Indiana University, Bloomington, Indiana 47405, USA
| | - R Group
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - B Guo
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - A Habig
- Department of Physics and Astronomy, University of Minnesota Duluth, Duluth, Minnesota 55812, USA
| | - F Hakl
- Institute of Computer Science, The Czech Academy of Sciences, 182 07 Prague, Czech Republic
| | - J Hartnell
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - R Hatcher
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - A Hatzikoutelis
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - K Heller
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - J Hewes
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - A Himmel
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - A Holin
- Physics and Astronomy Dept., University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - B Howard
- Indiana University, Bloomington, Indiana 47405, USA
| | - J Huang
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - J Hylen
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - F Jediny
- Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
| | - C Johnson
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - M Judah
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - I Kakorin
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - D Kalra
- Department of Physics, Panjab University, Chandigarh 160 014, India
| | - D M Kaplan
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - R Keloth
- Department of Physics, Cochin University of Science and Technology, Kochi 682 022, India
| | - O Klimov
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - L W Koerner
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - L Kolupaeva
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - S Kotelnikov
- Nuclear Physics and Astrophysics Division, Lebedev Physical Institute, Leninsky Prospect 53, 119991 Moscow, Russia
| | - I Kourbanis
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - A Kreymer
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - Ch Kulenberg
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - A Kumar
- Department of Physics, Panjab University, Chandigarh 160 014, India
| | - C D Kuruppu
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - V Kus
- Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
| | - T Lackey
- Indiana University, Bloomington, Indiana 47405, USA
| | - K Lang
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - S Lin
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - M Lokajicek
- Institute of Physics, The Czech Academy of Sciences, 182 21 Prague, Czech Republic
| | - J Lozier
- California Institute of Technology, Pasadena, California 91125, USA
| | - S Luchuk
- Institute for Nuclear Research of Russia, Academy of Sciences 7a, 60th October Anniversary prospect, Moscow 117312, Russia
| | - K Maan
- Department of Physics, Panjab University, Chandigarh 160 014, India
| | - S Magill
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - W A Mann
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - M L Marshak
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - M Martinez-Casales
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - V Matveev
- Institute for Nuclear Research of Russia, Academy of Sciences 7a, 60th October Anniversary prospect, Moscow 117312, Russia
| | - D P Méndez
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - M D Messier
- Indiana University, Bloomington, Indiana 47405, USA
| | - H Meyer
- Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67206, USA
| | - T Miao
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - W H Miller
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - S R Mishra
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - A Mislivec
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - R Mohanta
- School of Physics, University of Hyderabad, Hyderabad 500 046, India
| | - A Moren
- Department of Physics and Astronomy, University of Minnesota Duluth, Duluth, Minnesota 55812, USA
| | - L Mualem
- California Institute of Technology, Pasadena, California 91125, USA
| | - M Muether
- Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67206, USA
| | - S Mufson
- Indiana University, Bloomington, Indiana 47405, USA
| | - K Mulder
- Physics and Astronomy Dept., University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - R Murphy
- Indiana University, Bloomington, Indiana 47405, USA
| | - J Musser
- Indiana University, Bloomington, Indiana 47405, USA
| | - D Naples
- Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - N Nayak
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
| | - J K Nelson
- Department of Physics, College of William & Mary, Williamsburg, Virginia 23187, USA
| | - R Nichol
- Physics and Astronomy Dept., University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - G Nikseresht
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - E Niner
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - A Norman
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - T Nosek
- Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague 116 36, Czech Republic
| | - A Olshevskiy
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - T Olson
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - J Paley
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - R B Patterson
- California Institute of Technology, Pasadena, California 91125, USA
| | - G Pawloski
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - D Pershey
- California Institute of Technology, Pasadena, California 91125, USA
| | - O Petrova
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - R Petti
- Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - D D Phan
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - R K Plunkett
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - B Potukuchi
- Department of Physics and Electronics, University of Jammu, Jammu Tawi 180 006, Jammu and Kashmir, India
| | - C Principato
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - F Psihas
- Indiana University, Bloomington, Indiana 47405, USA
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - A Radovic
- Department of Physics, College of William & Mary, Williamsburg, Virginia 23187, USA
| | - V Raj
- California Institute of Technology, Pasadena, California 91125, USA
| | - R A Rameika
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - B Rebel
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - P Rojas
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA
| | - V Ryabov
- Nuclear Physics and Astrophysics Division, Lebedev Physical Institute, Leninsky Prospect 53, 119991 Moscow, Russia
| | - O Samoylov
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - M C Sanchez
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - S Sánchez Falero
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - I S Seong
- Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA
| | - P Shanahan
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - A Sheshukov
- Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
| | - P Singh
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - V Singh
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - E Smith
- Indiana University, Bloomington, Indiana 47405, USA
| | - J Smolik
- Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
| | - P Snopok
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - N Solomey
- Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67206, USA
| | - E Song
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - A Sousa
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - K Soustruznik
- Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague 116 36, Czech Republic
| | - M Strait
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - L Suter
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - A Sutton
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - R L Talaga
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - B Tapia Oregui
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - P Tas
- Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague 116 36, Czech Republic
| | - R B Thayyullathil
- Department of Physics, Cochin University of Science and Technology, Kochi 682 022, India
| | - J Thomas
- Physics and Astronomy Dept., University College London, Gower Street, London WC1E 6BT, United Kingdom
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - E Tiras
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - D Torbunov
- School of Physics and Astronomy, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, USA
| | - J Tripathi
- Department of Physics, Panjab University, Chandigarh 160 014, India
| | - A Tsaris
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - Y Torun
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - J Urheim
- Indiana University, Bloomington, Indiana 47405, USA
| | - P Vahle
- Department of Physics, College of William & Mary, Williamsburg, Virginia 23187, USA
| | - J Vasel
- Indiana University, Bloomington, Indiana 47405, USA
| | - L Vinton
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - P Vokac
- Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
| | - T Vrba
- Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic
| | - M Wallbank
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - B Wang
- Department of Physics, Southern Methodist University, Dallas, Texas 75275, USA
| | - T K Warburton
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - M Wetstein
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - M While
- South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - D Whittington
- Indiana University, Bloomington, Indiana 47405, USA
- Department of Physics, Syracuse University, Syracuse, New York 13210, USA
| | - S G Wojcicki
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - J Wolcott
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - N Yadav
- Department of Physics, IIT Guwahati, Guwahati 781 039, India
| | - A Yallappa Dombara
- Department of Physics, Syracuse University, Syracuse, New York 13210, USA
| | - K Yonehara
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - S Yu
- Argonne National Laboratory, Argonne, Illinois 60439, USA
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - S Zadorozhnyy
- Institute for Nuclear Research of Russia, Academy of Sciences 7a, 60th October Anniversary prospect, Moscow 117312, Russia
| | - J Zalesak
- Institute of Physics, The Czech Academy of Sciences, 182 21 Prague, Czech Republic
| | - B Zamorano
- Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
| | - R Zwaska
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| |
Collapse
|
32
|
Borah D, Roshan R, Sil A. Minimal two-component scalar doublet dark matter with radiative neutrino mass. Int J Clin Exp Med 2019. [DOI: 10.1103/physrevd.100.055027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Adey D, An FP, Balantekin AB, Band HR, Bishai M, Blyth S, Cao D, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen SM, Chen Y, Chen YX, Cheng J, Cheng ZK, Cherwinka JJ, Chu MC, Chukanov A, Cummings JP, Dash N, Deng FS, Ding YY, Diwan MV, Dohnal T, Dove J, Dvořák M, Dwyer DA, Gonchar M, Gong GH, Gong H, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Hans S, He M, Heeger KM, Heng YK, Higuera A, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang XT, Huang YB, Huber P, Jaffe DE, Jen KL, Ji XL, Ji XP, Johnson RA, Jones D, Kang L, Kettell SH, Koerner LW, Kohn S, Kramer M, Langford TJ, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li C, Li F, Li HL, Li QJ, Li S, Li SC, Li SJ, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu Y, Liu YH, Lu C, Lu HQ, Lu JS, Luk KB, Ma XB, et alAdey D, An FP, Balantekin AB, Band HR, Bishai M, Blyth S, Cao D, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen SM, Chen Y, Chen YX, Cheng J, Cheng ZK, Cherwinka JJ, Chu MC, Chukanov A, Cummings JP, Dash N, Deng FS, Ding YY, Diwan MV, Dohnal T, Dove J, Dvořák M, Dwyer DA, Gonchar M, Gong GH, Gong H, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Hans S, He M, Heeger KM, Heng YK, Higuera A, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang XT, Huang YB, Huber P, Jaffe DE, Jen KL, Ji XL, Ji XP, Johnson RA, Jones D, Kang L, Kettell SH, Koerner LW, Kohn S, Kramer M, Langford TJ, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li C, Li F, Li HL, Li QJ, Li S, Li SC, Li SJ, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu Y, Liu YH, Lu C, Lu HQ, Lu JS, Luk KB, Ma XB, Ma XY, Ma YQ, Marshall C, Martinez Caicedo DA, McDonald KT, McKeown RD, Mitchell I, Mora Lepin L, Napolitano J, Naumov D, Naumova E, Ochoa-Ricoux JP, Olshevskiy A, Pan HR, Park J, Patton S, Pec V, Peng JC, Pinsky L, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Ren J, Rosero R, Roskovec B, Ruan XC, Steiner H, Sun JL, Treskov K, Tse WH, Tull CE, Viren B, Vorobel V, Wang CH, Wang J, Wang M, Wang NY, Wang RG, Wang W, Wang W, Wang X, Wang Y, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wei LH, Wen LJ, Whisnant K, White CG, Wong HLH, Wong SCF, Worcester E, Wu Q, Wu WJ, Xia DM, Xing ZZ, Xu JL, Xue T, Yang CG, Yang L, Yang MS, Yang YZ, Ye M, Yeh M, Young BL, Yu HZ, Yu ZY, Yue BB, Zeng S, Zeng Y, Zhan L, Zhang C, Zhang CC, Zhang FY, Zhang HH, Zhang JW, Zhang QM, Zhang R, Zhang XF, Zhang XT, Zhang YM, Zhang YM, Zhang YX, Zhang YY, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zhou L, Zhuang HL, Zou JH. Extraction of the ^{235}U and ^{239}Pu Antineutrino Spectra at Daya Bay. PHYSICAL REVIEW LETTERS 2019; 123:111801. [PMID: 31573238 DOI: 10.1103/physrevlett.123.111801] [Show More Authors] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/04/2019] [Indexed: 06/10/2023]
Abstract
This Letter reports the first extraction of individual antineutrino spectra from ^{235}U and ^{239}Pu fission and an improved measurement of the prompt energy spectrum of reactor antineutrinos at Daya Bay. The analysis uses 3.5×10^{6} inverse beta-decay candidates in four near antineutrino detectors in 1958 days. The individual antineutrino spectra of the two dominant isotopes, ^{235}U and ^{239}Pu, are extracted using the evolution of the prompt spectrum as a function of the isotope fission fractions. In the energy window of 4-6 MeV, a 7% (9%) excess of events is observed for the ^{235}U (^{239}Pu) spectrum compared with the normalized Huber-Mueller model prediction. The significance of discrepancy is 4.0σ for ^{235}U spectral shape compared with the Huber-Mueller model prediction. The shape of the measured inverse beta-decay prompt energy spectrum disagrees with the prediction of the Huber-Mueller model at 5.3σ. In the energy range of 4-6 MeV, a maximal local discrepancy of 6.3σ is observed.
Collapse
Affiliation(s)
- D Adey
- Institute of High Energy Physics, Beijing
| | - F P An
- Institute of Modern Physics, East China University of Science and Technology, Shanghai
| | | | - H R Band
- Wright Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520
| | - M Bishai
- Brookhaven National Laboratory, Upton, New York 11973
| | - S Blyth
- Department of Physics, National Taiwan University, Taipei
| | - D Cao
- Nanjing University, Nanjing
| | - G F Cao
- Institute of High Energy Physics, Beijing
| | - J Cao
- Institute of High Energy Physics, Beijing
| | - J F Chang
- Institute of High Energy Physics, Beijing
| | - Y Chang
- National United University, Miao-Li
| | - H S Chen
- Institute of High Energy Physics, Beijing
| | - S M Chen
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Y Chen
- Shenzhen University, Shenzhen
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Y X Chen
- North China Electric Power University, Beijing
| | - J Cheng
- Institute of High Energy Physics, Beijing
| | - Z K Cheng
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | | | - M C Chu
- Chinese University of Hong Kong, Hong Kong
| | - A Chukanov
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | | | - N Dash
- Institute of High Energy Physics, Beijing
| | - F S Deng
- University of Science and Technology of China, Hefei
| | - Y Y Ding
- Institute of High Energy Physics, Beijing
| | - M V Diwan
- Brookhaven National Laboratory, Upton, New York 11973
| | - T Dohnal
- Charles University, Faculty of Mathematics and Physics, Prague
| | - J Dove
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - M Dvořák
- Charles University, Faculty of Mathematics and Physics, Prague
| | - D A Dwyer
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - M Gonchar
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - G H Gong
- Department of Engineering Physics, Tsinghua University, Beijing
| | - H Gong
- Department of Engineering Physics, Tsinghua University, Beijing
| | - W Q Gu
- Brookhaven National Laboratory, Upton, New York 11973
| | - J Y Guo
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - L Guo
- Department of Engineering Physics, Tsinghua University, Beijing
| | - X H Guo
- Beijing Normal University, Beijing
| | - Y H Guo
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an
| | - Z Guo
- Department of Engineering Physics, Tsinghua University, Beijing
| | | | - S Hans
- Brookhaven National Laboratory, Upton, New York 11973
| | - M He
- Institute of High Energy Physics, Beijing
| | - K M Heeger
- Wright Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520
| | - Y K Heng
- Institute of High Energy Physics, Beijing
| | - A Higuera
- Department of Physics, University of Houston, Houston, Texas 77204
| | - Y K Hor
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Y B Hsiung
- Department of Physics, National Taiwan University, Taipei
| | - B Z Hu
- Department of Physics, National Taiwan University, Taipei
| | - J R Hu
- Institute of High Energy Physics, Beijing
| | - T Hu
- Institute of High Energy Physics, Beijing
| | - Z J Hu
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - H X Huang
- China Institute of Atomic Energy, Beijing
| | | | - Y B Huang
- Institute of High Energy Physics, Beijing
| | - P Huber
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - D E Jaffe
- Brookhaven National Laboratory, Upton, New York 11973
| | - K L Jen
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - X L Ji
- Institute of High Energy Physics, Beijing
| | - X P Ji
- Brookhaven National Laboratory, Upton, New York 11973
| | - R A Johnson
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221
| | - D Jones
- Department of Physics, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122
| | - L Kang
- Dongguan University of Technology, Dongguan
| | - S H Kettell
- Brookhaven National Laboratory, Upton, New York 11973
| | - L W Koerner
- Department of Physics, University of Houston, Houston, Texas 77204
| | - S Kohn
- Department of Physics, University of California, Berkeley, California 94720
| | - M Kramer
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - T J Langford
- Wright Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520
| | - J Lee
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - J H C Lee
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - R T Lei
- Dongguan University of Technology, Dongguan
| | - R Leitner
- Charles University, Faculty of Mathematics and Physics, Prague
| | - J K C Leung
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - C Li
- Shandong University, Jinan
| | - F Li
- Institute of High Energy Physics, Beijing
| | - H L Li
- Institute of High Energy Physics, Beijing
| | - Q J Li
- Institute of High Energy Physics, Beijing
| | - S Li
- Dongguan University of Technology, Dongguan
| | - S C Li
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - S J Li
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - W D Li
- Institute of High Energy Physics, Beijing
| | - X N Li
- Institute of High Energy Physics, Beijing
| | - X Q Li
- School of Physics, Nankai University, Tianjin
| | - Y F Li
- Institute of High Energy Physics, Beijing
| | - Z B Li
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - H Liang
- University of Science and Technology of China, Hefei
| | - C J Lin
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - G L Lin
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - S Lin
- Dongguan University of Technology, Dongguan
| | - J J Ling
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J M Link
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - L Littenberg
- Brookhaven National Laboratory, Upton, New York 11973
| | - B R Littlejohn
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
| | - J C Liu
- Institute of High Energy Physics, Beijing
| | - J L Liu
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - Y Liu
- Shandong University, Jinan
| | | | - C Lu
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
| | - H Q Lu
- Institute of High Energy Physics, Beijing
| | - J S Lu
- Institute of High Energy Physics, Beijing
| | - K B Luk
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - X B Ma
- North China Electric Power University, Beijing
| | - X Y Ma
- Institute of High Energy Physics, Beijing
| | - Y Q Ma
- Institute of High Energy Physics, Beijing
| | - C Marshall
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - D A Martinez Caicedo
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
| | - K T McDonald
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
| | - R D McKeown
- California Institute of Technology, Pasadena, California 91125
- College of William and Mary, Williamsburg, Virginia 23187
| | - I Mitchell
- Department of Physics, University of Houston, Houston, Texas 77204
| | - L Mora Lepin
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago
| | - J Napolitano
- Department of Physics, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122
| | - D Naumov
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - E Naumova
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - J P Ochoa-Ricoux
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - A Olshevskiy
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - H-R Pan
- Department of Physics, National Taiwan University, Taipei
| | - J Park
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - S Patton
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - V Pec
- Charles University, Faculty of Mathematics and Physics, Prague
| | - J C Peng
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - L Pinsky
- Department of Physics, University of Houston, Houston, Texas 77204
| | - C S J Pun
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - F Z Qi
- Institute of High Energy Physics, Beijing
| | - M Qi
- Nanjing University, Nanjing
| | - X Qian
- Brookhaven National Laboratory, Upton, New York 11973
| | - N Raper
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J Ren
- China Institute of Atomic Energy, Beijing
| | - R Rosero
- Brookhaven National Laboratory, Upton, New York 11973
| | - B Roskovec
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - X C Ruan
- China Institute of Atomic Energy, Beijing
| | - H Steiner
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - J L Sun
- China General Nuclear Power Group, Shenzhen
| | - K Treskov
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - W-H Tse
- Chinese University of Hong Kong, Hong Kong
| | - C E Tull
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - B Viren
- Brookhaven National Laboratory, Upton, New York 11973
| | - V Vorobel
- Charles University, Faculty of Mathematics and Physics, Prague
| | - C H Wang
- National United University, Miao-Li
| | - J Wang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - M Wang
- Shandong University, Jinan
| | - N Y Wang
- Beijing Normal University, Beijing
| | - R G Wang
- Institute of High Energy Physics, Beijing
| | - W Wang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
- College of William and Mary, Williamsburg, Virginia 23187
| | - W Wang
- Nanjing University, Nanjing
| | - X Wang
- College of Electronic Science and Engineering, National University of Defense Technology, Changsha
| | - Y Wang
- Nanjing University, Nanjing
| | - Y F Wang
- Institute of High Energy Physics, Beijing
| | - Z Wang
- Institute of High Energy Physics, Beijing
| | - Z Wang
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Z M Wang
- Institute of High Energy Physics, Beijing
| | - H Y Wei
- Brookhaven National Laboratory, Upton, New York 11973
| | - L H Wei
- Institute of High Energy Physics, Beijing
| | - L J Wen
- Institute of High Energy Physics, Beijing
| | | | - C G White
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
| | - H L H Wong
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - S C F Wong
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - E Worcester
- Brookhaven National Laboratory, Upton, New York 11973
| | - Q Wu
- Shandong University, Jinan
| | - W J Wu
- Institute of High Energy Physics, Beijing
| | - D M Xia
- Chongqing University, Chongqing
| | - Z Z Xing
- Institute of High Energy Physics, Beijing
| | - J L Xu
- Institute of High Energy Physics, Beijing
| | - T Xue
- Department of Engineering Physics, Tsinghua University, Beijing
| | - C G Yang
- Institute of High Energy Physics, Beijing
| | - L Yang
- Dongguan University of Technology, Dongguan
| | - M S Yang
- Institute of High Energy Physics, Beijing
| | - Y Z Yang
- Department of Engineering Physics, Tsinghua University, Beijing
| | - M Ye
- Institute of High Energy Physics, Beijing
| | - M Yeh
- Brookhaven National Laboratory, Upton, New York 11973
| | - B L Young
- Iowa State University, Ames, Iowa 50011
| | - H Z Yu
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Z Y Yu
- Institute of High Energy Physics, Beijing
| | - B B Yue
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - S Zeng
- Institute of High Energy Physics, Beijing
| | - Y Zeng
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - L Zhan
- Institute of High Energy Physics, Beijing
| | - C Zhang
- Brookhaven National Laboratory, Upton, New York 11973
| | - C C Zhang
- Institute of High Energy Physics, Beijing
| | - F Y Zhang
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - H H Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J W Zhang
- Institute of High Energy Physics, Beijing
| | - Q M Zhang
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an
| | | | - X F Zhang
- Institute of High Energy Physics, Beijing
| | - X T Zhang
- Institute of High Energy Physics, Beijing
| | - Y M Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Y M Zhang
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Y X Zhang
- China General Nuclear Power Group, Shenzhen
| | - Y Y Zhang
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - Z J Zhang
- Dongguan University of Technology, Dongguan
| | - Z P Zhang
- University of Science and Technology of China, Hefei
| | - Z Y Zhang
- Institute of High Energy Physics, Beijing
| | - J Zhao
- Institute of High Energy Physics, Beijing
| | - L Zhou
- Institute of High Energy Physics, Beijing
| | - H L Zhuang
- Institute of High Energy Physics, Beijing
| | - J H Zou
- Institute of High Energy Physics, Beijing
| |
Collapse
|
34
|
Loureiro A, Cuceu A, Abdalla FB, Moraes B, Whiteway L, McLeod M, Balan ST, Lahav O, Benoit-Lévy A, Manera M, Rollins RP, Xavier HS. Upper Bound of Neutrino Masses from Combined Cosmological Observations and Particle Physics Experiments. PHYSICAL REVIEW LETTERS 2019; 123:081301. [PMID: 31491224 DOI: 10.1103/physrevlett.123.081301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/19/2019] [Indexed: 06/10/2023]
Abstract
We investigate the impact of prior models on the upper bound of the sum of neutrino masses, ∑m_{ν}. Using data from the large scale structure of galaxies, cosmic microwave background, type Ia supernovae, and big bang nucleosynthesis, we argue that cosmological neutrino mass and hierarchy determination should be pursued using exact models, since approximations might lead to incorrect and nonphysical bounds. We compare constraints from physically motivated neutrino mass models (i.e., ones respecting oscillation experiments) to those from models using standard cosmological approximations. The former give a consistent upper bound of ∑m_{ν}≲0.26 eV (95% CI) and yield the first approximation-independent upper bound for the lightest neutrino mass species, m_{0}^{ν}<0.086 eV (95% CI). By contrast, one of the approximations, which is inconsistent with the known lower bounds from oscillation experiments, yields an upper bound of ∑m_{ν}≲0.15 eV (95% CI); this differs substantially from the physically motivated upper bound.
Collapse
Affiliation(s)
- Arthur Loureiro
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Andrei Cuceu
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Filipe B Abdalla
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Department of Physics and Electronics, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa
| | - Bruno Moraes
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, Brazil
| | - Lorne Whiteway
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Michael McLeod
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Sreekumar T Balan
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Ofer Lahav
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | - Marc Manera
- Institut de Física d'Altes Energies, The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona), Spain
- Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, United Kingdom
| | - Richard P Rollins
- Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Henrique S Xavier
- Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão, São Paulo 05508-090, Brazil
| |
Collapse
|
35
|
Estienne M, Fallot M, Algora A, Briz-Monago J, Bui VM, Cormon S, Gelletly W, Giot L, Guadilla V, Jordan D, Le Meur L, Porta A, Rice S, Rubio B, Taín JL, Valencia E, Zakari-Issoufou AA. Updated Summation Model: An Improved Agreement with the Daya Bay Antineutrino Fluxes. PHYSICAL REVIEW LETTERS 2019; 123:022502. [PMID: 31386517 DOI: 10.1103/physrevlett.123.022502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/02/2019] [Indexed: 06/10/2023]
Abstract
A new summation method model of the reactor antineutrino energy spectrum is presented. It is updated with the most recent evaluated decay databases and with our total absorption gamma-ray spectroscopy measurements performed during the last decade. For the first time, the spectral measurements from the Daya Bay experiment are compared with the antineutrino energy spectrum computed with the updated summation method without any renormalization. The results exhibit a better agreement than is obtained with the Huber-Mueller model in the 2-5 MeV range, the region that dominates the detected flux. A systematic trend is found in which the antineutrino flux computed with the summation model decreases with the inclusion of more pandemonium-free data. The calculated flux obtained now lies only 1.9% above that detected in the Daya Bay experiment, a value that may be reduced with forthcoming new pandemonium-free data, leaving less room for a reactor anomaly. Eventually, the new predictions of individual antineutrino spectra for the ^{235}U, ^{239}Pu, ^{241}Pu, and ^{238}U are used to compute the dependence of the reactor antineutrino spectral shape on the fission fractions.
Collapse
Affiliation(s)
- M Estienne
- SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - M Fallot
- SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - A Algora
- Instituto de Física Corpuscular, CSIC-Universitat de València, E-46071 València, Spain
- Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4026 Debrecen, Hungary
| | - J Briz-Monago
- SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - V M Bui
- SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - S Cormon
- SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - W Gelletly
- Department of Physics, University of Surrey, GU2 7XH Guildford, United Kingdom
| | - L Giot
- SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - V Guadilla
- SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - D Jordan
- Instituto de Física Corpuscular, CSIC-Universitat de València, E-46071 València, Spain
| | - L Le Meur
- SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - A Porta
- SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - S Rice
- Department of Physics, University of Surrey, GU2 7XH Guildford, United Kingdom
| | - B Rubio
- Instituto de Física Corpuscular, CSIC-Universitat de València, E-46071 València, Spain
| | - J L Taín
- Instituto de Física Corpuscular, CSIC-Universitat de València, E-46071 València, Spain
| | - E Valencia
- Instituto de Física Corpuscular, CSIC-Universitat de València, E-46071 València, Spain
| | - A-A Zakari-Issoufou
- SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| |
Collapse
|
36
|
Ashenfelter J, Balantekin AB, Band HR, Bass CD, Bergeron DE, Berish D, Bowden NS, Brodsky JP, Bryan CD, Cherwinka JJ, Classen T, Conant AJ, Cox AA, Davee D, Dean D, Deichert G, Diwan MV, Dolinski MJ, Erickson A, Febbraro M, Foust BT, Gaison JK, Galindo-Uribarri A, Gilbert CE, Gilje KE, Hackett BT, Hans S, Hansell AB, Heeger KM, Insler J, Jaffe DE, Ji X, Jones DC, Kyzylova O, Lane CE, Langford TJ, LaRosa J, Littlejohn BR, Lu X, Martinez Caicedo DA, Matta JT, McKeown RD, Mendenhall MP, Minock JM, Mueller PE, Mumm HP, Napolitano J, Neilson R, Nikkel JA, Norcini D, Nour S, Pushin DA, Qian X, Romero-Romero E, Rosero R, Sarenac D, Surukuchi PT, Telles AB, Tyra MA, Varner RL, Viren B, White C, Wilhelmi J, Wise T, Yeh M, Yen YR, Zhang A, Zhang C, Zhang X. Measurement of the Antineutrino Spectrum from ^{235}U Fission at HFIR with PROSPECT. PHYSICAL REVIEW LETTERS 2019; 122:251801. [PMID: 31347897 DOI: 10.1103/physrevlett.122.251801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/22/2019] [Indexed: 06/10/2023]
Abstract
This Letter reports the first measurement of the ^{235}U ν[over ¯]_{e} energy spectrum by PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, operating 7.9 m from the 85 MW_{th} highly enriched uranium (HEU) High Flux Isotope Reactor. With a surface-based, segmented detector, PROSPECT has observed 31678±304(stat) ν[over ¯]_{e}-induced inverse beta decays, the largest sample from HEU fission to date, 99% of which are attributed to ^{235}U. Despite broad agreement, comparison of the Huber ^{235}U model to the measured spectrum produces a χ^{2}/ndf=51.4/31, driven primarily by deviations in two localized energy regions. The measured ^{235}U spectrum shape is consistent with a deviation relative to prediction equal in size to that observed at low-enriched uranium power reactors in the ν[over ¯]_{e} energy region of 5-7 MeV.
Collapse
Affiliation(s)
- J Ashenfelter
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - A B Balantekin
- Department of Physics, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | - H R Band
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - C D Bass
- Department of Physics, Le Moyne College, Syracuse, New York 13214, USA
| | - D E Bergeron
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - D Berish
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - N S Bowden
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J P Brodsky
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - C D Bryan
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - J J Cherwinka
- Physical Sciences Laboratory, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | - T Classen
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A J Conant
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - A A Cox
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - D Davee
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA
| | - D Dean
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - G Deichert
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - M V Diwan
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - M J Dolinski
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - A Erickson
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - M Febbraro
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - B T Foust
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J K Gaison
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - A Galindo-Uribarri
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - C E Gilbert
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - K E Gilje
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - B T Hackett
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - S Hans
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - A B Hansell
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - K M Heeger
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J Insler
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - D E Jaffe
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - X Ji
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D C Jones
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - O Kyzylova
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - C E Lane
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - T J Langford
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J LaRosa
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - B R Littlejohn
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - X Lu
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - D A Martinez Caicedo
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - J T Matta
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - R D McKeown
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA
| | - M P Mendenhall
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J M Minock
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - P E Mueller
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - H P Mumm
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - J Napolitano
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - R Neilson
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - J A Nikkel
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - D Norcini
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - S Nour
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - D A Pushin
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - X Qian
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - E Romero-Romero
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - R Rosero
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D Sarenac
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - P T Surukuchi
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - A B Telles
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - M A Tyra
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - R L Varner
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - B Viren
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C White
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - J Wilhelmi
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - T Wise
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - M Yeh
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Y-R Yen
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - A Zhang
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Zhang
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - X Zhang
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| |
Collapse
|
37
|
Bak G, Choi JH, Jang HI, Jang JS, Jeon SH, Joo KK, Ju K, Jung DE, Kim JG, Kim JH, Kim JY, Kim SB, Kim SY, Kim W, Kwon E, Lee DH, Lee HG, Lee YC, Lim IT, Moon DH, Pac MY, Park YS, Rott C, Seo H, Seo JW, Seo SH, Shin CD, Yang JY, Yoo J, Yu I. Fuel-Composition Dependent Reactor Antineutrino Yield at RENO. PHYSICAL REVIEW LETTERS 2019; 122:232501. [PMID: 31298906 DOI: 10.1103/physrevlett.122.232501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 05/16/2019] [Indexed: 06/10/2023]
Abstract
We report a fuel-dependent reactor electron antineutrino (ν[over ¯]_{e}) yield using six 2.8 GW_{th} reactors in the Hanbit nuclear power plant complex, Yonggwang, Korea. The analysis uses 850 666 ν[over ¯]_{e} candidate events with a background fraction of 2.0% acquired through inverse beta decay (IBD) interactions in the near detector for 1807.9 live days from August 2011 to February 2018. Based on multiple fuel cycles, we observe a fuel ^{235}U dependent variation of measured IBD yields with a slope of (1.51±0.23)×10^{-43} cm^{2}/fission and measure a total average IBD yield of (5.84±0.13)×10^{-43} cm^{2}/fission. The hypothesis of no fuel-dependent IBD yield is ruled out at 6.6σ. The observed IBD yield variation over ^{235}U isotope fraction does not show significant deviation from the Huber-Mueller (HM) prediction at 1.3 σ. The measured fuel-dependent variation determines IBD yields of (6.15±0.19)×10^{-43} and (4.18±0.26)×10^{-43} cm^{2}/fission for two dominant fuel isotopes ^{235}U and ^{239}Pu, respectively. The measured IBD yield per ^{235}U fission shows the largest deficit relative to the HM prediction. Reevaluation of the ^{235}U IBD yield per fission may mostly solve the reactor antineutrino anomaly (RAA) while ^{239}Pu is not completely ruled out as a possible contributor to the anomaly. We also report a 2.9 σ correlation between the fractional change of the 5 MeV excess and the reactor fuel isotope fraction of ^{235}U.
Collapse
Affiliation(s)
- G Bak
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - J H Choi
- Institute for High Energy Physics, Dongshin University, Naju 58245, Korea
| | - H I Jang
- Department of Fire Safety, Seoyeong University, Gwangju 61268, Korea
| | - J S Jang
- GIST College, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - S H Jeon
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - K K Joo
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - K Ju
- Department of Physics, KAIST, Daejeon 34141, Korea
| | - D E Jung
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - J G Kim
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - J H Kim
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - J Y Kim
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - S B Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - S Y Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - W Kim
- Department of Physics, Kyungpook National University, Daegu 41566, Korea
| | - E Kwon
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - D H Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - H G Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Y C Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - I T Lim
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - D H Moon
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - M Y Pac
- Institute for High Energy Physics, Dongshin University, Naju 58245, Korea
| | - Y S Park
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - C Rott
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - H Seo
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - J W Seo
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - S H Seo
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - C D Shin
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - J Y Yang
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - J Yoo
- Institute for Basic Science, Daejeon 34047, Korea
- Department of Physics, KAIST, Daejeon 34141, Korea
| | - I Yu
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
38
|
Qian X, Peng JC. Physics with reactor neutrinos. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:036201. [PMID: 30523922 DOI: 10.1088/1361-6633/aae881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Neutrinos produced by nuclear reactors have played a major role in advancing our knowledge of the properties of neutrinos. The first direct detection of the neutrino, confirming its existence, was performed using reactor neutrinos. More recent experiments utilizing reactor neutrinos have also found clear evidence for neutrino oscillation, providing unique input for the determination of neutrino mass and mixing. Ongoing and future reactor neutrino experiments will explore other important issues, including the neutrino mass hierarchy and the search for sterile neutrinos and other new physics beyond the standard model. In this article, we review the recent progress in physics using reactor neutrinos and the opportunities they offer for future discoveries.
Collapse
Affiliation(s)
- Xin Qian
- Physics Department, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | | |
Collapse
|
39
|
Wang T, Zhou YL. Neutrino nonstandard interactions as a portal to test flavor symmetries. Int J Clin Exp Med 2019. [DOI: 10.1103/physrevd.99.035039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Guadilla V, Algora A, Tain JL, Estienne M, Fallot M, Sonzogni AA, Agramunt J, Äystö J, Briz JA, Cucoanes A, Eronen T, Fraile LM, Ganioğlu E, Gelletly W, Gorelov D, Hakala J, Jokinen A, Jordan D, Kankainen A, Kolhinen V, Koponen J, Lebois M, Le Meur L, Martinez T, Monserrate M, Montaner-Pizá A, Moore I, Nácher E, Orrigo SEA, Penttilä H, Pohjalainen I, Porta A, Reinikainen J, Reponen M, Rinta-Antila S, Rubio B, Rytkönen K, Shiba T, Sonnenschein V, Valencia E, Vedia V, Voss A, Wilson JN, Zakari-Issoufou AA. Large Impact of the Decay of Niobium Isomers on the Reactor ν[over ¯]_{e} Summation Calculations. PHYSICAL REVIEW LETTERS 2019; 122:042502. [PMID: 30768318 DOI: 10.1103/physrevlett.122.042502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The β-intensity distributions of ^{100gs,100m}Nb and ^{102gs,102m}Nb β decays have been determined using the total absorption γ-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyväskylä. Here, the double Penning trap system JYFLTRAP was employed to disentangle the β decay of the isomeric states. The new data obtained in this challenging measurement have a large impact in antineutrino summation calculations. For the first time the discrepancy between the summation model and the reactor antineutrino measurements in the region of the shape distortion has been reduced.
Collapse
Affiliation(s)
- V Guadilla
- Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
| | - A Algora
- Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
- Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen H-4026, Hungary
| | - J L Tain
- Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
| | - M Estienne
- Subatech, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - M Fallot
- Subatech, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - A A Sonzogni
- NNDC, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | - J Agramunt
- Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
| | - J Äystö
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - J A Briz
- Subatech, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - A Cucoanes
- Subatech, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - T Eronen
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - L M Fraile
- Universidad Complutense, Grupo de Física Nuclear and UPARCOS, CEI Moncloa, E-28040 Madrid, Spain
| | - E Ganioğlu
- Department of Physics, Istanbul University, 34134 Istanbul, Turkey
| | - W Gelletly
- Department of Physics, University of Surrey, GU2 7XH Guildford, United Kingdom
| | - D Gorelov
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - J Hakala
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - A Jokinen
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - D Jordan
- Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
| | - A Kankainen
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - V Kolhinen
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - J Koponen
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - M Lebois
- Institut de Physique Nuclèaire d'Orsay, 91406 Orsay, France
| | - L Le Meur
- Subatech, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - T Martinez
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, E-28040 Madrid, Spain
| | - M Monserrate
- Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
| | - A Montaner-Pizá
- Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
| | - I Moore
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - E Nácher
- Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
- Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain
| | - S E A Orrigo
- Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
| | - H Penttilä
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - I Pohjalainen
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - A Porta
- Subatech, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - J Reinikainen
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - M Reponen
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | | | - B Rubio
- Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
| | - K Rytkönen
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - T Shiba
- Subatech, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | | | - E Valencia
- Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
| | - V Vedia
- Universidad Complutense, Grupo de Física Nuclear and UPARCOS, CEI Moncloa, E-28040 Madrid, Spain
| | - A Voss
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - J N Wilson
- Institut de Physique Nuclèaire d'Orsay, 91406 Orsay, France
| | - A-A Zakari-Issoufou
- Subatech, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| |
Collapse
|
41
|
Estienne M, Fallot M, Giot L, Guadilla-Gomez V, Le Meur L, Porta A, Algora A, Taìn JL, Briz JA, Agramunt J, Äystö J, Cormon S, Cucoanes A, Eronen T, Fraile LM, Ganogliu E, Gelletly W, Gorelov D, Hakala J, Jokinen A, Jordan MD, Kankainen A, Kolhinen VS, Koponen J, Lebois M, Martinez T, Monserrate M, Montaner-Pizá A, Moore I, Nácher E, Orrigo SEA, Penttilä H, Pohjalainen I, Reinikainen J, Reponen M, Rinta-Antila S, Rytkönen K, Rubio B, Shiba T, Sonnenschein V, Sonzogni AA, Valencia E, Vedia V, Voss A, Weber C, Wilson JN, Zakari-Issoufou AA. Summation Calculations for Reactor Antineutrino Spectra, Decay Heat and Delayed Neutron Fractions Involving New TAGS Data and Evaluated Databases. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201921101001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Three observables of interest for present and future reactors depend on the β decay properties of the fission products: antineutrinos from reactors, the reactor decay heat and delayed neutron emission. In these proceedings, we present new results from summation calculations of the first two quantities quoted above, performed with evolved independent yields coupled with fission product decay data, from various nuclear data bases or models. New TAGS results from the latest experiment of the TAGS collaboration at the JYFL facility of Jyväskylä will be displayed as well as their impact on the antineutrino spectra and the decay heat associated to fission pulses of the main actinides.
Collapse
|
42
|
Ashenfelter J, Balantekin AB, Baldenegro C, Band HR, Bass CD, Bergeron DE, Berish D, Bignell LJ, Bowden NS, Bricco J, Brodsky JP, Bryan CD, Bykadorova Telles A, Cherwinka JJ, Classen T, Commeford K, Conant AJ, Cox AA, Davee D, Dean D, Deichert G, Diwan MV, Dolinski MJ, Erickson A, Febbraro M, Foust BT, Gaison JK, Galindo-Uribarri A, Gilbert CE, Gilje KE, Glenn A, Goddard BW, Hackett BT, Han K, Hans S, Hansell AB, Heeger KM, Heffron B, Insler J, Jaffe DE, Ji X, Jones DC, Koehler K, Kyzylova O, Lane CE, Langford TJ, LaRosa J, Littlejohn BR, Lopez F, Lu X, Martinez Caicedo DA, Matta JT, McKeown RD, Mendenhall MP, Miller HJ, Minock JM, Mueller PE, Mumm HP, Napolitano J, Neilson R, Nikkel JA, Norcini D, Nour S, Pushin DA, Qian X, Romero-Romero E, Rosero R, Sarenac D, Seilhan BS, Sharma R, Surukuchi PT, Trinh C, Tyra MA, Varner RL, Viren B, Wagner JM, Wang W, White B, White C, Wilhelmi J, Wise T, Yao H, Yeh M, Yen YR, Zhang A, Zhang C, Zhang X, Zhao M. First Search for Short-Baseline Neutrino Oscillations at HFIR with PROSPECT. PHYSICAL REVIEW LETTERS 2018; 121:251802. [PMID: 30608854 DOI: 10.1103/physrevlett.121.251802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 06/09/2023]
Abstract
This Letter reports the first scientific results from the observation of antineutrinos emitted by fission products of ^{235}U at the High Flux Isotope Reactor. PROSPECT, the Precision Reactor Oscillation and Spectrum Experiment, consists of a segmented 4 ton ^{6}Li-doped liquid scintillator detector covering a baseline range of 7-9 m from the reactor and operating under less than 1 m water equivalent overburden. Data collected during 33 live days of reactor operation at a nominal power of 85 MW yield a detection of 25 461±283 (stat) inverse beta decays. Observation of reactor antineutrinos can be achieved in PROSPECT at 5σ statistical significance within 2 h of on-surface reactor-on data taking. A reactor model independent analysis of the inverse beta decay prompt energy spectrum as a function of baseline constrains significant portions of the previously allowed sterile neutrino oscillation parameter space at 95% confidence level and disfavors the best fit of the reactor antineutrino anomaly at 2.2σ confidence level.
Collapse
Affiliation(s)
- J Ashenfelter
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - A B Balantekin
- Department of Physics, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | - C Baldenegro
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - H R Band
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - C D Bass
- Department of Physics, Le Moyne College, Syracuse, New York 13214, USA
| | - D E Bergeron
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - D Berish
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - L J Bignell
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - N S Bowden
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J Bricco
- Physical Sciences Laboratory, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | - J P Brodsky
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - C D Bryan
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - A Bykadorova Telles
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J J Cherwinka
- Physical Sciences Laboratory, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | - T Classen
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - K Commeford
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - A J Conant
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - A A Cox
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - D Davee
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23185, USA
| | - D Dean
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - G Deichert
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - M V Diwan
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - M J Dolinski
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - A Erickson
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - M Febbraro
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - B T Foust
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J K Gaison
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - A Galindo-Uribarri
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - C E Gilbert
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - K E Gilje
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - A Glenn
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - B W Goddard
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - B T Hackett
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - K Han
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - S Hans
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - A B Hansell
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - K M Heeger
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - B Heffron
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - J Insler
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - D E Jaffe
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - X Ji
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D C Jones
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - K Koehler
- Physical Sciences Laboratory, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | - O Kyzylova
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - C E Lane
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - T J Langford
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J LaRosa
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - B R Littlejohn
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - F Lopez
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - X Lu
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - D A Martinez Caicedo
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - J T Matta
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - R D McKeown
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23185, USA
| | - M P Mendenhall
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - H J Miller
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - J M Minock
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - P E Mueller
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - H P Mumm
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - J Napolitano
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - R Neilson
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - J A Nikkel
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - D Norcini
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - S Nour
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - D A Pushin
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - X Qian
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - E Romero-Romero
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - R Rosero
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D Sarenac
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - B S Seilhan
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - R Sharma
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - P T Surukuchi
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - C Trinh
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - M A Tyra
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - R L Varner
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - B Viren
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - J M Wagner
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - W Wang
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23185, USA
| | - B White
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - C White
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - J Wilhelmi
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - T Wise
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - H Yao
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23185, USA
| | - M Yeh
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Y-R Yen
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - A Zhang
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Zhang
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - X Zhang
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - M Zhao
- Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
43
|
Adey D, An FP, Balantekin AB, Band HR, Bishai M, Blyth S, Cao D, Cao GF, Cao J, Chan YL, Chang JF, Chang Y, Chen HS, Chen SM, Chen Y, Chen YX, Cheng J, Cheng ZK, Cherwinka JJ, Chu MC, Chukanov A, Cummings JP, Deng FS, Ding YY, Diwan MV, Dolgareva M, Dwyer DA, Edwards WR, Gonchar M, Gong GH, Gong H, Gu WQ, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Hans S, He M, Heeger KM, Heng YK, Higuera A, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang XT, Huang YB, Huber P, Huo W, Hussain G, Jaffe DE, Jen KL, Ji XL, Ji XP, Johnson RA, Jones D, Kang L, Kettell SH, Koerner LW, Kohn S, Kramer M, Langford TJ, Lebanowski L, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li C, Li F, Li HL, Li QJ, Li S, Li SC, Li SJ, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Lin SK, Lin YC, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu Y, Liu YH, Loh CW, Lu C, Lu HQ, et alAdey D, An FP, Balantekin AB, Band HR, Bishai M, Blyth S, Cao D, Cao GF, Cao J, Chan YL, Chang JF, Chang Y, Chen HS, Chen SM, Chen Y, Chen YX, Cheng J, Cheng ZK, Cherwinka JJ, Chu MC, Chukanov A, Cummings JP, Deng FS, Ding YY, Diwan MV, Dolgareva M, Dwyer DA, Edwards WR, Gonchar M, Gong GH, Gong H, Gu WQ, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Hans S, He M, Heeger KM, Heng YK, Higuera A, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang XT, Huang YB, Huber P, Huo W, Hussain G, Jaffe DE, Jen KL, Ji XL, Ji XP, Johnson RA, Jones D, Kang L, Kettell SH, Koerner LW, Kohn S, Kramer M, Langford TJ, Lebanowski L, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li C, Li F, Li HL, Li QJ, Li S, Li SC, Li SJ, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Lin SK, Lin YC, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu Y, Liu YH, Loh CW, Lu C, Lu HQ, Lu JS, Luk KB, Ma XB, Ma XY, Ma YQ, Malyshkin Y, Marshall C, Martinez Caicedo DA, McDonald KT, McKeown RD, Mitchell I, Mora Lepin L, Napolitano J, Naumov D, Naumova E, Ochoa-Ricoux JP, Olshevskiy A, Pan HR, Park J, Patton S, Pec V, Peng JC, Pinsky L, Pun CSJ, Qi FZ, Qi M, Qian X, Qiu RM, Raper N, Ren J, Rosero R, Roskovec B, Ruan XC, Steiner H, Sun JL, Tang W, Taychenachev D, Treskov K, Tse WH, Tull CE, Viren B, Vorobel V, Wang CH, Wang J, Wang M, Wang NY, Wang RG, Wang W, Wang W, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wei LH, Wen LJ, Whisnant K, White CG, Wise T, Wong HLH, Wong SCF, Worcester E, Wu Q, Wu WJ, Xia DM, Xing ZZ, Xu JL, Xue T, Yang CG, Yang H, Yang L, Yang MS, Yang MT, Yang YZ, Ye M, Yeh M, Young BL, Yu HZ, Yu ZY, Yue BB, Zeng S, Zhan L, Zhang C, Zhang CC, Zhang FY, Zhang HH, Zhang JW, Zhang QM, Zhang R, Zhang XF, Zhang XT, Zhang YM, Zhang YM, Zhang YX, Zhang YY, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zheng P, Zhou L, Zhuang HL, Zou JH. Measurement of the Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay. PHYSICAL REVIEW LETTERS 2018; 121:241805. [PMID: 30608728 DOI: 10.1103/physrevlett.121.241805] [Show More Authors] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Indexed: 06/09/2023]
Abstract
We report a measurement of electron antineutrino oscillation from the Daya Bay Reactor Neutrino Experiment with nearly 4 million reactor ν[over ¯]_{e} inverse β decay candidates observed over 1958 days of data collection. The installation of a flash analog-to-digital converter readout system and a special calibration campaign using different source enclosures reduce uncertainties in the absolute energy calibration to less than 0.5% for visible energies larger than 2 MeV. The uncertainty in the cosmogenic ^{9}Li and ^{8}He background is reduced from 45% to 30% in the near detectors. A detailed investigation of the spent nuclear fuel history improves its uncertainty from 100% to 30%. Analysis of the relative ν[over ¯]_{e} rates and energy spectra among detectors yields sin^{2}2θ_{13}=0.0856±0.0029 and Δm_{32}^{2}=(2.471_{-0.070}^{+0.068})×10^{-3} eV^{2} assuming the normal hierarchy, and Δm_{32}^{2}=-(2.575_{-0.070}^{+0.068})×10^{-3} eV^{2} assuming the inverted hierarchy.
Collapse
Affiliation(s)
- D Adey
- Institute of High Energy Physics, Beijing
| | - F P An
- Institute of Modern Physics, East China University of Science and Technology, Shanghai
| | | | - H R Band
- Wright Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520
| | - M Bishai
- Brookhaven National Laboratory, Upton, New York 11973
| | - S Blyth
- Department of Physics, National Taiwan University, Taipei
- National United University, Miao-Li
| | - D Cao
- Nanjing University, Nanjing
| | - G F Cao
- Institute of High Energy Physics, Beijing
| | - J Cao
- Institute of High Energy Physics, Beijing
| | - Y L Chan
- Chinese University of Hong Kong, Hong Kong
| | - J F Chang
- Institute of High Energy Physics, Beijing
| | - Y Chang
- National United University, Miao-Li
| | - H S Chen
- Institute of High Energy Physics, Beijing
| | - S M Chen
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Y Chen
- Shenzhen University, Shenzhen
| | - Y X Chen
- North China Electric Power University, Beijing
| | | | - Z K Cheng
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | | | - M C Chu
- Chinese University of Hong Kong, Hong Kong
| | - A Chukanov
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | | | - F S Deng
- University of Science and Technology of China, Hefei
| | - Y Y Ding
- Institute of High Energy Physics, Beijing
| | - M V Diwan
- Brookhaven National Laboratory, Upton, New York 11973
| | - M Dolgareva
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - D A Dwyer
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - W R Edwards
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - M Gonchar
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - G H Gong
- Department of Engineering Physics, Tsinghua University, Beijing
| | - H Gong
- Department of Engineering Physics, Tsinghua University, Beijing
| | - W Q Gu
- Brookhaven National Laboratory, Upton, New York 11973
| | - L Guo
- Department of Engineering Physics, Tsinghua University, Beijing
| | - X H Guo
- Beijing Normal University, Beijing
| | - Y H Guo
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an
| | - Z Guo
- Department of Engineering Physics, Tsinghua University, Beijing
| | | | - S Hans
- Brookhaven National Laboratory, Upton, New York 11973
| | - M He
- Institute of High Energy Physics, Beijing
| | - K M Heeger
- Wright Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520
| | - Y K Heng
- Institute of High Energy Physics, Beijing
| | - A Higuera
- Department of Physics, University of Houston, Houston, Texas 77204
| | - Y B Hsiung
- Department of Physics, National Taiwan University, Taipei
| | - B Z Hu
- Department of Physics, National Taiwan University, Taipei
| | - J R Hu
- Institute of High Energy Physics, Beijing
| | - T Hu
- Institute of High Energy Physics, Beijing
| | - Z J Hu
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - H X Huang
- China Institute of Atomic Energy, Beijing
| | | | - Y B Huang
- Institute of High Energy Physics, Beijing
| | - P Huber
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - W Huo
- University of Science and Technology of China, Hefei
| | - G Hussain
- Department of Engineering Physics, Tsinghua University, Beijing
| | - D E Jaffe
- Brookhaven National Laboratory, Upton, New York 11973
| | - K L Jen
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - X L Ji
- Institute of High Energy Physics, Beijing
| | - X P Ji
- Brookhaven National Laboratory, Upton, New York 11973
| | - R A Johnson
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221
| | - D Jones
- Department of Physics, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122
| | - L Kang
- Dongguan University of Technology, Dongguan
| | - S H Kettell
- Brookhaven National Laboratory, Upton, New York 11973
| | - L W Koerner
- Department of Physics, University of Houston, Houston, Texas 77204
| | - S Kohn
- Department of Physics, University of California, Berkeley, California 94720
| | - M Kramer
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - T J Langford
- Wright Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520
| | - L Lebanowski
- Department of Engineering Physics, Tsinghua University, Beijing
| | - J Lee
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - J H C Lee
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - R T Lei
- Dongguan University of Technology, Dongguan
| | - R Leitner
- Charles University, Faculty of Mathematics and Physics, Prague
| | - J K C Leung
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - C Li
- Shandong University, Jinan
| | - F Li
- Institute of High Energy Physics, Beijing
| | - H L Li
- Shandong University, Jinan
| | - Q J Li
- Institute of High Energy Physics, Beijing
| | - S Li
- Dongguan University of Technology, Dongguan
| | - S C Li
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - S J Li
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - W D Li
- Institute of High Energy Physics, Beijing
| | - X N Li
- Institute of High Energy Physics, Beijing
| | - X Q Li
- School of Physics, Nankai University, Tianjin
| | - Y F Li
- Institute of High Energy Physics, Beijing
| | - Z B Li
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - H Liang
- University of Science and Technology of China, Hefei
| | - C J Lin
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - G L Lin
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - S Lin
- Dongguan University of Technology, Dongguan
| | - S K Lin
- Department of Physics, University of Houston, Houston, Texas 77204
| | - Y-C Lin
- Department of Physics, National Taiwan University, Taipei
| | - J J Ling
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J M Link
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - L Littenberg
- Brookhaven National Laboratory, Upton, New York 11973
| | - B R Littlejohn
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
| | - J C Liu
- Institute of High Energy Physics, Beijing
| | - J L Liu
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - Y Liu
- Shandong University, Jinan
| | | | | | - C Lu
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
| | - H Q Lu
- Institute of High Energy Physics, Beijing
| | - J S Lu
- Institute of High Energy Physics, Beijing
| | - K B Luk
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - X B Ma
- North China Electric Power University, Beijing
| | - X Y Ma
- Institute of High Energy Physics, Beijing
| | - Y Q Ma
- Institute of High Energy Physics, Beijing
| | - Y Malyshkin
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago
| | - C Marshall
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - D A Martinez Caicedo
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
| | - K T McDonald
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
| | - R D McKeown
- California Institute of Technology, Pasadena, California 91125
- College of William and Mary, Williamsburg, Virginia 23187
| | - I Mitchell
- Department of Physics, University of Houston, Houston, Texas 77204
| | - L Mora Lepin
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago
| | - J Napolitano
- Department of Physics, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122
| | - D Naumov
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - E Naumova
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - J P Ochoa-Ricoux
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago
| | - A Olshevskiy
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - H-R Pan
- Department of Physics, National Taiwan University, Taipei
| | - J Park
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - S Patton
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - V Pec
- Charles University, Faculty of Mathematics and Physics, Prague
| | - J C Peng
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - L Pinsky
- Department of Physics, University of Houston, Houston, Texas 77204
| | - C S J Pun
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - F Z Qi
- Institute of High Energy Physics, Beijing
| | - M Qi
- Nanjing University, Nanjing
| | - X Qian
- Brookhaven National Laboratory, Upton, New York 11973
| | - R M Qiu
- North China Electric Power University, Beijing
| | - N Raper
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J Ren
- China Institute of Atomic Energy, Beijing
| | - R Rosero
- Brookhaven National Laboratory, Upton, New York 11973
| | - B Roskovec
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago
| | - X C Ruan
- China Institute of Atomic Energy, Beijing
| | - H Steiner
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - J L Sun
- China General Nuclear Power Group, Shenzhen
| | - W Tang
- Brookhaven National Laboratory, Upton, New York 11973
| | - D Taychenachev
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - K Treskov
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - W-H Tse
- Chinese University of Hong Kong, Hong Kong
| | - C E Tull
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - B Viren
- Brookhaven National Laboratory, Upton, New York 11973
| | - V Vorobel
- Charles University, Faculty of Mathematics and Physics, Prague
| | - C H Wang
- National United University, Miao-Li
| | - J Wang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - M Wang
- Shandong University, Jinan
| | - N Y Wang
- Beijing Normal University, Beijing
| | - R G Wang
- Institute of High Energy Physics, Beijing
| | - W Wang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
- College of William and Mary, Williamsburg, Virginia 23187
| | - W Wang
- Nanjing University, Nanjing
| | - X Wang
- College of Electronic Science and Engineering, National University of Defense Technology, Changsha
| | - Y F Wang
- Institute of High Energy Physics, Beijing
| | - Z Wang
- Institute of High Energy Physics, Beijing
| | - Z Wang
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Z M Wang
- Institute of High Energy Physics, Beijing
| | - H Y Wei
- Brookhaven National Laboratory, Upton, New York 11973
| | - L H Wei
- Institute of High Energy Physics, Beijing
| | - L J Wen
- Institute of High Energy Physics, Beijing
| | | | - C G White
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
| | - T Wise
- Wright Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520
| | - H L H Wong
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - S C F Wong
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - E Worcester
- Brookhaven National Laboratory, Upton, New York 11973
| | - Q Wu
- Shandong University, Jinan
| | - W J Wu
- Institute of High Energy Physics, Beijing
| | - D M Xia
- Chongqing University, Chongqing
| | - Z Z Xing
- Institute of High Energy Physics, Beijing
| | - J L Xu
- Institute of High Energy Physics, Beijing
| | - T Xue
- Department of Engineering Physics, Tsinghua University, Beijing
| | - C G Yang
- Institute of High Energy Physics, Beijing
| | - H Yang
- Nanjing University, Nanjing
| | - L Yang
- Dongguan University of Technology, Dongguan
| | - M S Yang
- Institute of High Energy Physics, Beijing
| | | | - Y Z Yang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - M Ye
- Institute of High Energy Physics, Beijing
| | - M Yeh
- Brookhaven National Laboratory, Upton, New York 11973
| | - B L Young
- Iowa State University, Ames, Iowa 50011
| | - H Z Yu
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Z Y Yu
- Institute of High Energy Physics, Beijing
| | - B B Yue
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - S Zeng
- Institute of High Energy Physics, Beijing
| | - L Zhan
- Institute of High Energy Physics, Beijing
| | - C Zhang
- Brookhaven National Laboratory, Upton, New York 11973
| | - C C Zhang
- Institute of High Energy Physics, Beijing
| | - F Y Zhang
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - H H Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J W Zhang
- Institute of High Energy Physics, Beijing
| | - Q M Zhang
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an
| | | | - X F Zhang
- Institute of High Energy Physics, Beijing
| | - X T Zhang
- Institute of High Energy Physics, Beijing
| | - Y M Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Y M Zhang
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Y X Zhang
- China General Nuclear Power Group, Shenzhen
| | - Y Y Zhang
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - Z J Zhang
- Dongguan University of Technology, Dongguan
| | - Z P Zhang
- University of Science and Technology of China, Hefei
| | - Z Y Zhang
- Institute of High Energy Physics, Beijing
| | - J Zhao
- Institute of High Energy Physics, Beijing
| | - P Zheng
- Dongguan University of Technology, Dongguan
| | - L Zhou
- Institute of High Energy Physics, Beijing
| | - H L Zhuang
- Institute of High Energy Physics, Beijing
| | - J H Zou
- Institute of High Energy Physics, Beijing
| |
Collapse
|
44
|
Bernabéu J, Segarra A. Disentangling Genuine from Matter-Induced CP Violation in Neutrino Oscillations. PHYSICAL REVIEW LETTERS 2018; 121:211802. [PMID: 30517809 DOI: 10.1103/physrevlett.121.211802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/04/2018] [Indexed: 06/09/2023]
Abstract
We prove that, in any flavor transition, neutrino oscillation CP-violating asymmetries in matter have two disentangled components: (i) a CPT-odd T-invariant term, non-vanishing iff there are interactions with matter, and (ii) a T-odd CPT-invariant term, non-vanishing iff there is genuine CP violation. As function of the baseline, these two terms are distinct L-even and L-odd observables to separately test (i) matter effects sensitive to the neutrino hierarchy and (ii) genuine CP violation in the neutrino sector. For the golden ν_{μ}→ν_{e} channel, the different energy distributions of the two components provide a signature of their separation. At long baselines, they show oscillations in the low and medium energy regions, with zeros at different positions and peculiar behavior around the zeros. We discover a magic energy E=(0.91±0.01) GeV at L=1300 km with vanishing CPT-odd component and maximal genuine CP asymmetry proportional to sinδ, with δ the weak CP phase. For energies above 1.5 GeV, the sign of the CP asymmetry discriminates the neutrino hierarchy.
Collapse
Affiliation(s)
- José Bernabéu
- Department of Theoretical Physics, University of Valencia and IFIC, University Valencia-CSIC, Burjassot, 46100 Valencia, Spain
| | - Alejandro Segarra
- Department of Theoretical Physics, University of Valencia and IFIC, University Valencia-CSIC, Burjassot, 46100 Valencia, Spain
| |
Collapse
|
45
|
Bak G, Choi JH, Jang HI, Jang JS, Jeon SH, Joo KK, Ju K, Jung DE, Kim JG, Kim JH, Kim JY, Kim SB, Kim SY, Kim W, Kwon E, Lee DH, Lee HG, Lee YC, Lim IT, Moon DH, Pac MY, Park YS, Rott C, Seo H, Seo JW, Seo SH, Shin CD, Yang JY, Yoo J, Yu I. Measurement of Reactor Antineutrino Oscillation Amplitude and Frequency at RENO. PHYSICAL REVIEW LETTERS 2018; 121:201801. [PMID: 30500262 DOI: 10.1103/physrevlett.121.201801] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/13/2018] [Indexed: 06/09/2023]
Abstract
The RENO experiment reports more precisely measured values of θ_{13} and |Δm_{ee}^{2}| using ∼2200 live days of data. The amplitude and frequency of reactor electron antineutrino (ν[over ¯]_{e}) oscillation are measured by comparing the prompt signal spectra obtained from two identical near and far detectors. In the period between August 2011 and February 2018, the far (near) detector observed 103 212 (850 666) ν[over ¯]_{e} candidate events with a background fraction of 4.8% (2.0%). A clear energy and baseline dependent disappearance of reactor ν[over ¯]_{e} is observed in the deficit of the measured number of ν[over ¯]_{e}. Based on the measured far-to-near ratio of prompt spectra, we obtain sin^{2}2θ_{13}=0.0896±0.0048(stat)±0.0047(syst) and |Δm_{ee}^{2}|=[2.68±0.12(stat)±0.07(syst)]×10^{-3} eV^{2}.
Collapse
Affiliation(s)
- G Bak
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - J H Choi
- Institute for High Energy Physics, Dongshin University, Naju 58245, Korea
| | - H I Jang
- Department of Fire Safety, Seoyeong University, Gwangju 61268, Korea
| | - J S Jang
- GIST College, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - S H Jeon
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - K K Joo
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - K Ju
- Department of Physics, KAIST, Daejeon 34141, Korea
| | - D E Jung
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - J G Kim
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - J H Kim
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - J Y Kim
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - S B Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - S Y Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - W Kim
- Department of Physics, Kyungpook National University, Daegu 41566, Korea
| | - E Kwon
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - D H Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - H G Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Y C Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - I T Lim
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - D H Moon
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - M Y Pac
- Institute for High Energy Physics, Dongshin University, Naju 58245, Korea
| | - Y S Park
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - C Rott
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - H Seo
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - J W Seo
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - S H Seo
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - C D Shin
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - J Y Yang
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - J Yoo
- Institute for Basic Science, Daejeon 34047, Korea
- Department of Physics, KAIST, Daejeon 34141, Korea
| | - I Yu
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
46
|
Li Z, Abe K, Bronner C, Hayato Y, Ikeda M, Iyogi K, Kameda J, Kato Y, Kishimoto Y, Marti L, Miura M, Moriyama S, Nakahata M, Nakajima Y, Nakano Y, Nakayama S, Orii A, Pronost G, Sekiya H, Shiozawa M, Sonoda Y, Takeda A, Takenaka A, Tanaka H, Tasaka S, Tomura T, Akutsu R, Kajita T, Nishimura Y, Okumura K, Tsui K, Fernandez P, Labarga L, Blaszczyk F, Gustafson J, Kachulis C, Kearns E, Raaf J, Stone J, Sulak L, Berkman S, Tobayama S, Elnimr M, Kropp W, Locke S, Mine S, Weatherly P, Smy M, Sobel H, Takhistov V, Ganezer K, Hill J, Kim J, Lim I, Park R, Himmel A, O’Sullivan E, Scholberg K, Walter C, Ishizuka T, Nakamura T, Jang J, Choi K, Learned J, Matsuno S, Smith S, Amey J, Litchfield R, Ma W, Uchida Y, Wascko M, Cao S, Friend M, Hasegawa T, Ishida T, Ishii T, Kobayashi T, Nakadaira T, Nakamura K, Oyama Y, Sakashita K, Sekiguchi T, Tsukamoto T, Abe KE, Hasegawa M, Suzuki A, Takeuchi Y, Yano T, Hayashino T, Hiraki T, Hirota S, Huang K, Jiang M, Mori M, Nakamura KE, Nakaya T, Patel N, Wendell R, Anthony L, McCauley N, et alLi Z, Abe K, Bronner C, Hayato Y, Ikeda M, Iyogi K, Kameda J, Kato Y, Kishimoto Y, Marti L, Miura M, Moriyama S, Nakahata M, Nakajima Y, Nakano Y, Nakayama S, Orii A, Pronost G, Sekiya H, Shiozawa M, Sonoda Y, Takeda A, Takenaka A, Tanaka H, Tasaka S, Tomura T, Akutsu R, Kajita T, Nishimura Y, Okumura K, Tsui K, Fernandez P, Labarga L, Blaszczyk F, Gustafson J, Kachulis C, Kearns E, Raaf J, Stone J, Sulak L, Berkman S, Tobayama S, Elnimr M, Kropp W, Locke S, Mine S, Weatherly P, Smy M, Sobel H, Takhistov V, Ganezer K, Hill J, Kim J, Lim I, Park R, Himmel A, O’Sullivan E, Scholberg K, Walter C, Ishizuka T, Nakamura T, Jang J, Choi K, Learned J, Matsuno S, Smith S, Amey J, Litchfield R, Ma W, Uchida Y, Wascko M, Cao S, Friend M, Hasegawa T, Ishida T, Ishii T, Kobayashi T, Nakadaira T, Nakamura K, Oyama Y, Sakashita K, Sekiguchi T, Tsukamoto T, Abe KE, Hasegawa M, Suzuki A, Takeuchi Y, Yano T, Hayashino T, Hiraki T, Hirota S, Huang K, Jiang M, Mori M, Nakamura KE, Nakaya T, Patel N, Wendell R, Anthony L, McCauley N, Pritchard A, Fukuda Y, Itow Y, Murase M, Muto F, Mijakowski P, Frankiewicz K, Jung C, Li X, Palomino J, Santucci G, Vilela C, Wilking M, Yanagisawa C, Yang G, Ito S, Fukuda D, Ishino H, Kibayashi A, Koshio Y, Nagata H, Sakuda M, Xu C, Kuno Y, Wark D, Di Lodovico F, Richards B, Sedgwick S, Tacik R, Kim S, Cole A, Thompson L, Okazawa H, Choi Y, Ito K, Nishijima K, Koshiba M, Suda Y, Yokoyama M, Calland R, Hartz M, Martens K, Murdoch M, Quilain B, Simpson C, Suzuki Y, Vagins M, Hamabe D, Kuze M, Okajima Y, Yoshida T, Ishitsuka M, Martin J, Nantais C, Tanaka H, Towstego T, Konaka A, Chen S, Wan L, Zhang Y, Minamino A, Wilkes R. Measurement of the tau neutrino cross section in atmospheric neutrino oscillations with Super-Kamiokande. Int J Clin Exp Med 2018. [DOI: 10.1103/physrevd.98.052006] [Show More Authors] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Dong XX, Zhao SM, Feng JJ, Ning GZ, Chen JB, Zhang HB, Feng TF. Search for charged lepton flavor violation of vector mesons in the BLMSSM model. Int J Clin Exp Med 2018. [DOI: 10.1103/physrevd.97.056027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Kim M, Yeo M, Kim M, Kim G. Biomimetic cellulose/calcium-deficient-hydroxyapatite composite scaffolds fabricated using an electric field for bone tissue engineering. RSC Adv 2018; 8:20637-20647. [PMID: 35542321 PMCID: PMC9080802 DOI: 10.1039/c8ra03657h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/01/2018] [Indexed: 12/29/2022] Open
Abstract
Cellulose has been widely used as micro/nanofibers in various applications of tissue regeneration, but has certain limitations for bone regeneration, e.g., low biocompatibility in inducing osteogenesis. In addition, the low processability from the decomposition property before melting can be a significant obstacle to fabricating a required complex structure through a 3D-printing process. Herein, to overcome the low osteogenic activity of pure cellulose, we suggest a new cellulose-based composite scaffold consisting of cellulose and a high weight fraction (70 wt%) of calcium-deficient-hydroxyapatite (CDHA), which was obtained from the hydrolysis of α-tricalcium phosphate. Using biocompatible components, we fabricated a 3D pore-structure controllable composite scaffold consisting of microfibrous bundles through an electrohydrodynamic printing (EHDP) process supplemented with an ethanol bath. To obtain a mechanically stable and repeatable 3D mesh structure, various process parameters (nozzle-to-target distance, electric field strength, flow rate, and nozzle moving speed) were considered. As a control, a mesh structure fabricated using a normal EHDP process and with a similar pore geometry was used. A variety of cellular responses using preosteoblasts (MC3T3-E1) indicate that a CDHA/cellulose composite scaffold provides an efficient platform for inducing significantly high bone mineralization. The fabricated ceramic scaffold showed a layer-by-layered mesh structure entangled with cellulose micro/nanofibers and the bioceramic phase. By varying processing parameters, the unique 3D fibrous mesh-structure could be achieved.![]()
Collapse
Affiliation(s)
- MyoJin Kim
- Department of Biomechatronic Eng
- College of Biotechnology and Bioengineering
- Sungkyunkwan University (SKKU)
- Suwon
- South Korea
| | - MiJi Yeo
- Department of Biomechatronic Eng
- College of Biotechnology and Bioengineering
- Sungkyunkwan University (SKKU)
- Suwon
- South Korea
| | - Minseong Kim
- Department of Biomechatronic Eng
- College of Biotechnology and Bioengineering
- Sungkyunkwan University (SKKU)
- Suwon
- South Korea
| | - GeunHyung Kim
- Department of Biomechatronic Eng
- College of Biotechnology and Bioengineering
- Sungkyunkwan University (SKKU)
- Suwon
- South Korea
| |
Collapse
|
49
|
Estienne M, Fallot M, Giot L, Le Meur L, Porta A. Recent advances in beta decay measurements. EPJ NUCLEAR SCIENCES & TECHNOLOGIES 2018. [DOI: 10.1051/epjn/2018034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Three observables of interest for present and future reactors depend on the β decay data of the fission products: the reactor decay heat, antineutrinos from reactors and delayed neutron emission. Concerning the decay heat, significant discrepancies still exist between summation calculations in − their two main ingredients: the decay data and the fission yields − performed using the most recent evaluated databases available. It has been recently shown that the associated uncertainties are dominated by the ones on the decay data. But the results subtantially differ taking into account or not the correlations between the fission products. So far the uncertainty propagation does not include as well systematic effects on nuclear data such as the Pandemonium effect which impacts a large number of nuclei contributing to the decay heat. The list of nuclei deserving new TAGS measurements has been updated recently in the frame of IAEA working groups. The issues listed above impact in the same way the predicted energy spectra of the antineutrinos from reactors computed with the summation method, the interest of which has been recently reinforced by the Daya Bay latest publication. Nuclear data should definitely contribute to refine and better control these calculations. Lastly, a lot of nuclear data related to delayed neutrons are missing in nuclear databases. Despite the progresses already done these last years with new measurements now requiring to be included in evaluated databases, the experimental efforts which still need to be done are significant. These different issues will be addressed here before to comment on recent experimental results and on their impacts on the quoted observables. Some perspectives will also be presented. Solving the issues listed above will require to bring together experimental, simulation, evaluation and theoretical activities.
Collapse
|
50
|
|