1
|
Tian XB, Luo J, Sun X, Tang W, Qin Y, Guan X. Microtubule-mediated defence reaction of grapevine to Neofusicoccum parvum via the transcription factor VrWRKY22 promoting the kinesin-like protein VrKIN10C. Int J Biol Macromol 2025; 308:142519. [PMID: 40147667 DOI: 10.1016/j.ijbiomac.2025.142519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/22/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Grapevine Trunk Diseases (GTDs) are among the most destructive diseases in viticulture due to global climate change. Some causal agents like Neofusicoccum parvum can be latent endophytic and become pathogenic under abiotic stress. Microtubules (MTs) have been found to play a role in mediating the pathogen-related signaling in grapevine. In this study, a novel transcription factor VrWRKY22 was identified and cloned from the native American grapevine Vitis rupestris. Leaves of the table grape variety 'Kyoho' (V. vinifera × V. labrusca L.) overexpressing VrWRKY22 showed less necroses after N. parvum Bt-67 inoculation and activated signaling pathways. VrWRKY22 interacted with VrMPK3 and then bounded to the TTGACC motif in the promoter of VrKIN10C, which was confirmed by Y2H and Y1H assays. Since VrKIN10C is one of the important kinesin-like proteins associated with MTs, a grapevine MT marker line overexpressing VrWRKY22 was generated to test the responses of grapevine cells to N. parvum Bt-67. An increased number of prompt movement proteins can be traced within the peri-nuclear MTs and along the cortical MTs. The skewness and thickness of both central and cortical MTs were significantly increased. Moreover, a prominent (resulting from both the number and the rate) accumulation of speckles appeared in the nucleus and cortical MTs. A significant reduction in cell mortality and a stronger antioxidant capacity were detected. This study demonstrates that VrWRKY22 plays positive roles during N. parvum Bt-67 invasion by rapidly increasing the concentration and dynamics of MTs in the peri-nuclear and cortical regions via VrKIN10, and will facilitate the interpretation of the results of further GTD mitigation studies.
Collapse
Affiliation(s)
- Xu-Bin Tian
- College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Jiaxin Luo
- College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Xiaoye Sun
- College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Wanting Tang
- College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Yafei Qin
- College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Xin Guan
- College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China.
| |
Collapse
|
2
|
Machfuudzoh A, Pitaksaringkarn W, Koshiba R, Higaki T, Rakwal R, Ohba Y, Asahina M, Satoh S, Iwai H. At2-MMP Is Required for Attenuation of Cell Proliferation during Wound Healing in Incised Arabidopsis Inflorescence Stems. PLANT & CELL PHYSIOLOGY 2024; 65:1821-1832. [PMID: 39275791 DOI: 10.1093/pcp/pcae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/16/2024]
Abstract
Wound healing of partially incised Arabidopsis inflorescence stems constitutes cell proliferation that initiates mainly in pith tissues about 3 d after incision and the healing process that completes in about 7 d. Although the initiation mechanisms of cell proliferation have been well documented, the suppression mechanisms remain elusive. Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases well known as proteolytic enzymes in animal system functioning in extracellular matrix remodeling during physiological and pathological processes, including tissue differentiation, growth, defense, wound healing and control of cancer growth. In this study, we report that At2-MMP might contribute to the suppression mechanism for cell proliferation during the tissue-repair process of incised inflorescence stems. At2-MMP transcript was gradually upregulated from day 0 to 5 after incision and slightly decreased on day 7. Morphological analysis of incised stem of defected mutant at2-mmp revealed significantly enhanced cell proliferation around the incision site. Consistent with this, semi-quantitative analysis of dividing cells displayed a significant increment in the number of dividing cells in at2-mmp as compared to wild type. These results showed that the upregulation of At2-MMP at a later stage of the wound-healing process is likely to be involved in the completion of the process by attenuating cell proliferation.
Collapse
Affiliation(s)
- Afiifah Machfuudzoh
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305,8572 Japan
| | - Weerasak Pitaksaringkarn
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305,8572 Japan
| | - Ryo Koshiba
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305,8572 Japan
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, 860, 8555 Japan
| | - Randeep Rakwal
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305,8572 Japan
| | - Yusuke Ohba
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305,8572 Japan
| | - Masashi Asahina
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Tochigi, 320,8551 Japan
- Department of Biosciences, Teikyo University, Utsunomiya, Tochigi, 320,8551 Japan
| | - Shinobu Satoh
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305,8572 Japan
| | - Hiroaki Iwai
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305,8572 Japan
| |
Collapse
|
3
|
Fernandes P, Pimentel D, Ramiro RS, Silva MDC, Fevereiro P, Costa RL. Dual transcriptomic analysis reveals early induced Castanea defense-related genes and Phytophthora cinnamomi effectors. FRONTIERS IN PLANT SCIENCE 2024; 15:1439380. [PMID: 39188543 PMCID: PMC11345161 DOI: 10.3389/fpls.2024.1439380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024]
Abstract
Phytophthora cinnamomi Rands devastates forest species worldwide, causing significant ecological and economic impacts. The European chestnut (Castanea sativa) is susceptible to this hemibiotrophic oomycete, whereas the Asian chestnuts (Castanea crenata and Castanea mollissima) are resistant and have been successfully used as resistance donors in breeding programs. The molecular mechanisms underlying the different disease outcomes among chestnut species are a key foundation for developing science-based control strategies. However, these are still poorly understood. Dual RNA sequencing was performed in C. sativa and C. crenata roots inoculated with P. cinnamomi. The studied time points represent the pathogen's hemibiotrophic lifestyle previously described at the cellular level. Phytophthora cinnamomi expressed several genes related to pathogenicity in both chestnut species, such as cell wall-degrading enzymes, host nutrient uptake transporters, and effectors. However, the expression of effectors related to the modulation of host programmed cell death (elicitins and NLPs) and sporulation-related genes was higher in the susceptible chestnut. After pathogen inoculation, 1,556 and 488 genes were differentially expressed by C. crenata and C. sativa, respectively. The most significant transcriptional changes occur at 2 h after inoculation (hai) in C. sativa and 48 hai in C. crenata. Nevertheless, C. crenata induced more defense-related genes, indicating that the resistant response to P. cinnamomi is controlled by multiple loci, including several pattern recognition receptors, genes involved in the phenylpropanoid, salicylic acid and ethylene/jasmonic acid pathways, and antifungal genes. Importantly, these results validate previously observed cellular responses for C. crenata. Collectively, this study provides a comprehensive time-resolved description of the chestnut-P. cinnamomi dynamic, revealing new insights into susceptible and resistant host responses and important pathogen strategies involved in disease development.
Collapse
Affiliation(s)
- Patrícia Fernandes
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Diana Pimentel
- InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
| | | | - Maria do Céu Silva
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- Linking Landscape, Environment, Agriculture and Food, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Fevereiro
- InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB, Green-It Unit), Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Rita Lourenço Costa
- Instituto Nacional de Investigação Agrária e Veterinária I.P., Oeiras, Portugal
- Centro de Estudos Florestais, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Nguyen NS, Poelstra JW, Stupar RM, McHale LK, Dorrance AE. Comparative Transcriptomics of Soybean Genotypes with Partial Resistance Toward Phytophthora sojae, Conrad, and M92-220 to Moderately Susceptible Fast Neutron Mutant Soybeans and Sloan. PHYTOPATHOLOGY 2024; 114:1851-1868. [PMID: 38772042 DOI: 10.1094/phyto-11-23-0436-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The breeding of disease-resistant soybeans cultivars to manage Phytophthora root and stem rot caused by the pathogen Phytophthora sojae involves combining quantitative disease resistance (QDR) and Rps gene-mediated resistance. To identify and confirm potential mechanisms of QDR toward P. sojae, we conducted a time course study comparing changes in gene expression among Conrad and M92-220 with high QDR to susceptible genotypes, Sloan, and three mutants derived from fast neutron irradiation of M92-220. Differentially expressed genes from Conrad and M92-220 indicated several shared defense-related pathways at the transcriptomic level but also defense pathways unique to each cultivar, such as stilbenoid, diarylheptanoid, and gingerol biosynthesis and monobactam biosynthesis. Gene Ontology pathway analysis showed that the susceptible fast neutron mutants lacked enrichment of three terpenoid-related pathways and two cell wall-related pathways at either one or both time points, in contrast to M92-220. The susceptible mutants also lacked enrichment of potentially important Kyoto Encyclopedia of Genes and Genomes pathways at either one or both time points, including sesquiterpenoid and triterpenoid biosynthesis; thiamine metabolism; arachidonic acid; stilbenoid, diarylheptanoid, and gingerol biosynthesis; and monobactam biosynthesis. Additionally, 31 genes that were differentially expressed in M92-220 following P. sojae infection were not expressed in the mutants. These 31 genes have annotations related to unknown proteins; valine, leucine, and isoleucine biosynthesis; and protein and lipid metabolic processes. The results of this study confirm previously proposed mechanisms of QDR, provide evidence for potential novel QDR pathways in M92-220, and further our understanding of the complex network associated with QDR mechanisms in soybean toward P. sojae.
Collapse
Affiliation(s)
- Nghi S Nguyen
- Department of Plant Pathology, The Ohio State University, Wooster, OH
- Center for Soybean Research, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH
| | - Jelmer W Poelstra
- Molecular and Cellular Imaging Center, College of Food, Agricultural, and Environmental Sciences, Wooster Campus, Wooster, OH
| | - Robert M Stupar
- Agronomy and Plant Genetics Department, University of Minnesota, Minneapolis, MN
| | - Leah K McHale
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH
- Center for Soybean Research, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH
| | - Anne E Dorrance
- Department of Plant Pathology, The Ohio State University, Wooster, OH
- Center for Soybean Research, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH
| |
Collapse
|
5
|
Longsaward R, Pengnoo A, Kongsawadworakul P, Viboonjun U. A novel rubber tree PR-10 protein involved in host-defense response against the white root rot fungus Rigidoporus microporus. BMC PLANT BIOLOGY 2023; 23:157. [PMID: 36944945 PMCID: PMC10032002 DOI: 10.1186/s12870-023-04149-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 02/28/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND White root rot disease in rubber trees, caused by the pathogenic fungi Rigidoporus microporus, is currently considered a major problem in rubber tree plantations worldwide. Only a few reports have mentioned the response of rubber trees occurring at the non-infection sites, which is crucial for the disease understanding and protecting the yield losses. RESULTS Through a comparative proteomic study using the two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) technique, the present study reveals some distal-responsive proteins in rubber tree leaves during the plant-fungal pathogen interaction. From a total of 12 selected differentially expressed protein spots, several defense-related proteins such as molecular chaperones and ROS-detoxifying enzymes were identified. The expression of 6 candidate proteins was investigated at the transcript level by Reverse Transcription Quantitative PCR (RT-qPCR). In silico, a highly-expressed uncharacterized protein LOC110648447 found in rubber trees was predicted to be a protein in the pathogenesis-related protein 10 (PR-10) class. In silico promoter analysis and structural-related characterization of this novel PR-10 protein suggest that it plays a potential role in defending rubber trees against R. microporus infection. The promoter contains WRKY-, MYB-, and other defense-related cis-acting elements. The structural model of the novel PR-10 protein predicted by I-TASSER showed a topology of the Bet v 1 protein family, including a conserved active site and a ligand-binding hydrophobic cavity. CONCLUSIONS A novel protein in the PR-10 group increased sharply in rubber tree leaves during interaction with the white root rot pathogen, potentially contributing to host defense. The results of this study provide information useful for white root rot disease management of rubber trees in the future.
Collapse
Affiliation(s)
- Rawit Longsaward
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Ashara Pengnoo
- Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai Campus, Songkhla, 90110, Thailand
- Natural Biological Control Research Center, National Research Council of Thailand, 196 Phahonyothin Road, Lat Yao, Chatuchak, Bangkok, 10900, Thailand
| | - Panida Kongsawadworakul
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Unchera Viboonjun
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
6
|
Wu H, Si Q, Liu J, Yang L, Zhang S, Xu J. Regulation of Arabidopsis Matrix Metalloproteinases by Mitogen-Activated Protein Kinases and Their Function in Leaf Senescence. FRONTIERS IN PLANT SCIENCE 2022; 13:864986. [PMID: 35463412 PMCID: PMC9024413 DOI: 10.3389/fpls.2022.864986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Leaf senescence is a developmentally programmed cell death process that is influenced by a variety of endogenous signals and environmental factors. Here, we report that MPK3 and MPK6, two Arabidopsis mitogen-activated protein kinases (MAPKs or MPKs), and their two upstream MAPK kinases (MAPKKs or MKKs), MKK4 and MKK5, are key regulators of leaf senescence. Weak induction of constitutively active MAPKKs driven by steroid-inducible promoter, which activates endogenous MPK3 and MPK6, induces leaf senescence. This gain-of-function phenotype requires functional endogenous MPK3 and MPK6. Furthermore, loss of function of both MKK4 and MKK5 delays leaf senescence. Expression profiling leads to the identification of matrix metalloproteinases (MMPs), a family of zinc- and calcium-dependent endopeptidases, as the downstream target genes of MPK3/MPK6 cascade. MPK3/MPK6 activation-triggered leaf senescence is associated with rapid and strong induction of At3-MMP and At2-MMP. Expression of Arabidopsis MMP genes is strongly induced during leaf senescence, qualifying them as senescence-associated genes (SAGs). In addition, either constitutive or inducible overexpression of At3-MMP is sufficient to trigger leaf senescence. Based on these findings, we conclude that MPK3/MPK6 MAPK cascade and MMP target genes further downstream are involved in regulating leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Hongjiao Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qi Si
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jianmin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Liuyi Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shuqun Zhang
- Interdisciplinary Plant Group, Division of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Godson A, van der Hoorn RAL. The front line of defence: a meta-analysis of apoplastic proteases in plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3381-3394. [PMID: 33462613 PMCID: PMC8042752 DOI: 10.1093/jxb/eraa602] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/23/2020] [Indexed: 05/13/2023]
Abstract
Secreted proteases act at the front line of defence and play pivotal roles in disease resistance. However, the criteria for apoplastic immune proteases are not always defined and followed. Here, we critically reviewed 46 apoplastic proteases that function in plant defence. We found that most apoplastic immune proteases are induced upon infection, and 17 proteases are genetically required for the immune response. Proteolytic activity has been confirmed for most of the proteases but is rarely shown to be required for biological function, and the apoplastic location of proteases can be subjective and dynamic. Pathogen-derived inhibitors have only been described for cysteine and serine proteases, and the selection pressure acting on immune proteases is rarely investigated. We discuss six different mechanisms by which these proteases mediate plant immunity and summarize the challenges for future research.
Collapse
Affiliation(s)
- Alice Godson
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
8
|
Van K, Rolling W, Biyashev RM, Matthiesen RL, Abeysekara NS, Robertson AE, Veney DJ, Dorrance AE, McHale LK, Saghai Maroof MA. Mining germplasm panels and phenotypic datasets to identify loci for resistance to Phytophthora sojae in soybean. THE PLANT GENOME 2021; 14:e20063. [PMID: 33200586 DOI: 10.1002/tpg2.20063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Phytophthora sojae causes Phytophthora root and stem rot of soybean and has been primarily managed through deployment of qualitative Resistance to P. sojae genes (Rps genes). The effectiveness of each individual or combination of Rps gene(s) depends on the diversity and pathotypes of the P. sojae populations present. Due to the complex nature of P. sojae populations, identification of more novel Rps genes is needed. In this study, phenotypic data from previous studies of 16 panels of plant introductions (PIs) were analyzed. Panels 1 and 2 consisted of 448 Glycine max and 520 G. soja, which had been evaluated for Rps gene response with a combination of P. sojae isolates. Panels 3 and 4 consisted of 429 and 460 G. max PIs, respectively, which had been evaluated using individual P. sojae isolates with complex virulence pathotypes. Finally, Panels 5-16 (376 G. max PIs) consisted of data deposited in the USDA Soybean Germplasm Collection from evaluations with 12 races of P. sojae. Using these panels, genome-wide association (GWA) analyses were carried out by combining phenotypic and SoySNP50K genotypic data. GWA models identified two, two, six, and seven novel Rps loci with Panels 1, 2, 3, and 4, respectively. A total of 58 novel Rps loci were identified using Panels 5-16. Genetic and phenotypic dissection of these loci may lead to the characterization of novel Rps genes that can be effectively deployed in new soybean cultivars against diverse P. sojae populations.
Collapse
Affiliation(s)
- Kyujung Van
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH, 43210, USA
| | - William Rolling
- Center for Applied Plant Sciences, Ohio State University, Columbus, OH, 43210, USA
| | - Ruslan M Biyashev
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rashelle L Matthiesen
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Nilwala S Abeysekara
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Alison E Robertson
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Deloris J Veney
- Department of Plant Pathology, Ohio State University, Wooster, OH, 44691, USA
| | - Anne E Dorrance
- Center for Applied Plant Sciences, Ohio State University, Columbus, OH, 43210, USA
- Department of Plant Pathology, Ohio State University, Wooster, OH, 44691, USA
- Center for Soybean Research, Ohio State University, Wooster, OH, 44691, USA
| | - Leah K McHale
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH, 43210, USA
- Center for Applied Plant Sciences, Ohio State University, Columbus, OH, 43210, USA
- Center for Soybean Research, Ohio State University, Wooster, OH, 44691, USA
| | - M A Saghai Maroof
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
9
|
Ku YS, Cheng SS, Gerhardt A, Cheung MY, Contador CA, Poon LYW, Lam HM. Secretory Peptides as Bullets: Effector Peptides from Pathogens against Antimicrobial Peptides from Soybean. Int J Mol Sci 2020; 21:E9294. [PMID: 33291499 PMCID: PMC7730307 DOI: 10.3390/ijms21239294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Soybean is an important crop as both human food and animal feed. However, the yield of soybean is heavily impacted by biotic stresses including insect attack and pathogen infection. Insect bites usually make the plants vulnerable to pathogen infection, which causes diseases. Fungi, oomycetes, bacteria, viruses, and nematodes are major soybean pathogens. The infection by pathogens and the defenses mounted by soybean are an interactive and dynamic process. Using fungi, oomycetes, and bacteria as examples, we will discuss the recognition of pathogens by soybean at the molecular level. In this review, we will discuss both the secretory peptides for soybean plant infection and those for pathogen inhibition. Pathogenic secretory peptides and peptides secreted by soybean and its associated microbes will be included. We will also explore the possible use of externally applied antimicrobial peptides identical to those secreted by soybean and its associated microbes as biopesticides.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Sau-Shan Cheng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Aisha Gerhardt
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ming-Yan Cheung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Carolina A. Contador
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Lok-Yiu Winnie Poon
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| |
Collapse
|
10
|
Das PK, Biswas R, Anjum N, Das AK, Maiti MK. Rice matrix metalloproteinase OsMMP1 plays pleiotropic roles in plant development and symplastic-apoplastic transport by modulating cellulose and callose depositions. Sci Rep 2018; 8:2783. [PMID: 29426868 PMCID: PMC5807377 DOI: 10.1038/s41598-018-20070-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 01/12/2018] [Indexed: 11/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are well-known proteolytic enzymes in animal systems and play roles in tissue differentiation, growth, and defence. Although a few plant MMPs have been reported, their exact functions in development and growth remain elusive. In this study, we characterized the promoter and coding sequence of OsMMP1, one of the putative MMP genes in rice (Oryza sativa). The OsMMP1 catalytic domain is structurally similar to human MMPs with respect to cofactor orientation as predicted by homology modeling. Bacterially expressed recombinant OsMMP1 showed protease activity with bovine serum albumin and gelatin as substrates. Analyses of transcript accumulation and promoter-reporter gene expression revealed that OsMMP1 is spatio-temporally expressed in vegetative and reproductive parts of plants. The plasma membrane-localized OsMMP1 protease affected plant development upon heterologous expression in tobacco and endogenous gene silencing in rice. Transgenic tobacco plants expressing OsMMP1 showed enhanced deposition of cellulose and callose, leading to impairment of symplastic and apoplastic translocations. Moreover, transgenic tobacco tissues exhibited tolerance to oxidative stress-inducing agent by confining the area of tissue death owing to callose lining. Collectively, these findings demonstrate the involvement of a plant MMP in growth, organ differentiation, and development in relation to cell wall modification.
Collapse
Affiliation(s)
- Prabir Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Rupam Biswas
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Nazma Anjum
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
11
|
Ha JH, Jang HA, Moon KB, Baek KH, Choi GJ, Choi D, Cho HS, Kwon SY, Jeon JH, Oh SK, Kim HS. Nicotiana benthamiana Matrix Metalloprotease 1 (NMMP1) gene confers disease resistance to Phytophthora infestans in tobacco and potato plants. JOURNAL OF PLANT PHYSIOLOGY 2017; 218:189-195. [PMID: 28888160 DOI: 10.1016/j.jplph.2017.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 05/14/2023]
Abstract
We previously isolated Nicotiana benthamiana matrix metalloprotease 1 (NMMP1) from tobacco leaves. The NMMP1 gene encodes a highly conserved, Zn-containing catalytic protease domain that functions as a factor in the plant's defense against bacterial pathogens. Expression of NMMP1 was strongly induced during interactions between tobacco and one of its pathogens, Phytophthora infestans. To elucidate the role of the NMMP1 in defense of N. benthamiana against fungal pathogens, we performed gain-of-function and loss-of-function studies. NMMP1-overexpressing plants had stronger resistance responses against P. infestans infections than control plants, while silencing of NMMP1 resulted in greater susceptibility of the plants to the pathogen. This greater susceptibility correlated with fewer NMMP1 transcripts than the non-silenced control. We also examined cell death as a measure of disease. The amount of cell death induced by the necrosis-inducing P. infestans protein 1, PiNPP1, was dependent on NMMP1 in N. benthamiana. Potato plants overexpressing NMMP1 also had enhanced disease resistance against P. infestans. RT-PCR analysis of these transgenic potato plants revealed constitutive up-regulation of the potato defense gene NbPR5. NMMP1-overexpressing potato plants were taller and produced heavier tubers than control plants. We suggest a role for NMMP1in pathogen defense and development.
Collapse
Affiliation(s)
- Jang Ho Ha
- Plant Systems Engineering Research Center, KRIBB, Yusung, Daejeon, 34141, Republic of Korea
| | - Hyun A Jang
- Department of Applied Biology CALS, Chungnam National University, Deajeon, 34134, Republic of Korea
| | - Ki-Beom Moon
- Plant Systems Engineering Research Center, KRIBB, Yusung, Daejeon, 34141, Republic of Korea
| | - Kwang Hyun Baek
- School of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-friendly New Materials, KRICT, Daejeon, 34114, Republic of Korea
| | - Doil Choi
- Department of Plant Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, KRIBB, Yusung, Daejeon, 34141, Republic of Korea
| | - Suk Yun Kwon
- Plant Systems Engineering Research Center, KRIBB, Yusung, Daejeon, 34141, Republic of Korea
| | - Jae-Heung Jeon
- Plant Systems Engineering Research Center, KRIBB, Yusung, Daejeon, 34141, Republic of Korea
| | - Sang-Keun Oh
- Department of Applied Biology CALS, Chungnam National University, Deajeon, 34134, Republic of Korea.
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, KRIBB, Yusung, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
12
|
Zhao P, Zhang F, Liu D, Imani J, Langen G, Kogel KH. Matrix metalloproteinases operate redundantly in Arabidopsis immunity against necrotrophic and biotrophic fungal pathogens. PLoS One 2017; 12:e0183577. [PMID: 28832648 PMCID: PMC5568438 DOI: 10.1371/journal.pone.0183577] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 08/07/2017] [Indexed: 01/20/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are evolutionarily conserved and multifunctional effector molecules playing pivotal roles in development and homeostasis. In this study we explored the involvement of the five Arabidopsis thaliana At-MMPs in plant defence against microbial pathogens. Expression of At2-MMP was most responsive to inoculation with fungi and a bacterial pathogen followed by At3-MMP and At5-MMP, while At1-MMP and At4-MMP were non-responsive to these biotic stresses. Loss-of-function mutants for all tested At-MMPs displayed increased susceptibility to the necrotrophic fungus Botrytis cinerea and double mutant at2,3-mmp and triple mutant at2,3,5-mmp plants developed even stronger symptoms. Consistent with this, transgenic Arabidopsis plants that expressed At2-MMP constitutively under the Cauliflower mosaic virus 35S promoter showed enhanced resistance to the necrotrophic pathogen. Similarly, resistance to the biotrophic Arabidopsis powdery mildew fungus Golovinomyces orontii was also compromised particularly in the at2,3-mmp / at2,3,5-mmp multiplex mutants, and increased in At2-MMP overexpressor plants. The degree of disease resistance of at-mmp mutants and At2-MMP overexpressor plants also correlated positively with the degree of MAMP-triggered callose deposition in response to the bacterial flagellin peptide flg22, suggesting that matrix metalloproteinases contribute to pattern-triggered immunity (PTI) in interactions of Arabidopsis with necrotrophic and biotrophic pathogens.
Collapse
Affiliation(s)
- Puyan Zhao
- Institute of Phytopathology, Justus Liebig University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Fei Zhang
- Institute of Phytopathology, Justus Liebig University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Dilin Liu
- Institute of Phytopathology, Justus Liebig University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Jafargholi Imani
- Institute of Phytopathology, Justus Liebig University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Gregor Langen
- Institute of Phytopathology, Justus Liebig University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Justus Liebig University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| |
Collapse
|
13
|
Liu S, Liu Y, Jia Y, Wei J, Wang S, Liu X, Zhou Y, Zhu Y, Gu W, Ma H. Gm1-MMP is involved in growth and development of leaf and seed, and enhances tolerance to high temperature and humidity stress in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 259:48-61. [PMID: 28483053 DOI: 10.1016/j.plantsci.2017.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/14/2017] [Accepted: 03/10/2017] [Indexed: 05/28/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc- and calcium-dependent endopeptidases. Gm1-MMP was found to play an important role in soybean tissue remodeling during leaf expansion. In this study, Gm1-MMP was isolated and characterized. Its encoding protein had a relatively low phylogenetic relationship with the MMPs in other plant species. Subcellular localization indicated that Gm1-MMP was a plasma membrane protein. Gm1-MMP showed higher expression levels in mature leaves, old leaves, pods, and mature seeds, as well as was involved in the development of soybean seed. Additionally, it was involved in response to high temperature and humidity (HTH) stress in R7 leaves and seeds in soybean. The analysis of promoter of Gm1-MMP suggested that the fragment from -399 to -299 was essential for its promoter activity in response to HTH stress. The overexpression of Gm1-MMP in Arabidopsis affected the growth and development of leaves, enhanced leaf and developing seed tolerance to HTH stress and improved seed vitality. The levels of hydrogen peroxide (H2O2) and ROS in transgenic Arabidopsis seeds were lower than those in wild type seeds under HTH stress. Gm1-MMP could interact with soybean metallothionein-II (GmMT-II), which was confirmed by analysis of yeast two-hybrid assay and BiFC assays. All the results indicated that Gm1-MMP plays an important role in the growth and development of leaves and seeds as well as in tolerance to HTH stress. It will be helpful for us understanding the functions of Gm1-MMP in plant growth and development, and in response to abiotic stresses.
Collapse
Affiliation(s)
- Sushuang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanhong Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaping Wei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yali Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yajing Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Weihong Gu
- Animal and Plant Introduction and Research Center, Shanghai Agricultural Academy, Shanghai 201106, China
| | - Hao Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Marino-Puertas L, Goulas T, Gomis-Rüth FX. Matrix metalloproteinases outside vertebrates. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2026-2035. [PMID: 28392403 DOI: 10.1016/j.bbamcr.2017.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 02/07/2023]
Abstract
The matrix metalloproteinase (MMP) family belongs to the metzincin clan of zinc-dependent metallopeptidases. Due to their enormous implications in physiology and disease, MMPs have mainly been studied in vertebrates. They are engaged in extracellular protein processing and degradation, and present extensive paralogy, with 23 forms in humans. One characteristic of MMPs is a ~165-residue catalytic domain (CD), which has been structurally studied for 14 MMPs from human, mouse, rat, pig and the oral-microbiome bacterium Tannerella forsythia. These studies revealed close overall coincidence and characteristic structural features, which distinguish MMPs from other metzincins and give rise to a sequence pattern for their identification. Here, we reviewed the literature available on MMPs outside vertebrates and performed database searches for potential MMP CDs in invertebrates, plants, fungi, viruses, protists, archaea and bacteria. These and previous results revealed that MMPs are widely present in several copies in Eumetazoa and higher plants (Tracheophyta), but have just token presence in eukaryotic algae. A few dozen sequences were found in Ascomycota (within fungi) and in double-stranded DNA viruses infecting invertebrates (within viruses). In contrast, a few hundred sequences were found in archaea and >1000 in bacteria, with several copies for some species. Most of the archaeal and bacterial phyla containing potential MMPs are present in human oral and gut microbiomes. Overall, MMP-like sequences are present across all kingdoms of life, but their asymmetric distribution contradicts the vertical descent model from a eubacterial or archaeal ancestor. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Laura Marino-Puertas
- Proteolysis Lab, Structural Biology Unit, "María-de-Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain
| | - Theodoros Goulas
- Proteolysis Lab, Structural Biology Unit, "María-de-Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain..
| | - F Xavier Gomis-Rüth
- Proteolysis Lab, Structural Biology Unit, "María-de-Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain..
| |
Collapse
|
15
|
Wang Q, Wang J, Yang Y, Du W, Zhang D, Yu D, Cheng H. A genome-wide expression profile analysis reveals active genes and pathways coping with phosphate starvation in soybean. BMC Genomics 2016; 17:192. [PMID: 26944721 PMCID: PMC4779269 DOI: 10.1186/s12864-016-2558-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/29/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Phosphorus is one of the most important macronutrients that is required for plant growth and development. However, stress under low-P conditions has become a limiting factor that affects crop yields and qualities. Plants have developed strategies to cope with this, while few genes associated with low-P tolerance have been identified in soybean. RESULTS Genome-wide analyses were performed on the roots and leaves of a low-P-tolerant accession and a low-P-sensitive accession which were identified by hydroponic experiments under different P treatments. Through comparative analyses on the differently expressed genes, we explored 42 common genes that were highly correlated to low-P stress. The functional classification of these genes revealed 24 Gene Ontology (GO) terms of biological process including response to oxidation reduction, hormone stimuli, and biotic and abiotic stimuli. Additionally, three common pathways were identified. CONCLUSIONS These results could not only promote the work on the molecular regulation mechanism under low-P stress in soybean, but also facilitate the cultivation of high-phosphorus-acquisition and high-phosphorus-utilization soybean varieties.
Collapse
Affiliation(s)
- Qing Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
| | - Jiao Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
| | - Yuming Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
| | - Wenkai Du
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
16
|
Li D, Zhang H, Song Q, Wang L, Liu S, Hong Y, Huang L, Song F. Tomato Sl3-MMP, a member of the Matrix metalloproteinase family, is required for disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. BMC PLANT BIOLOGY 2015; 15:143. [PMID: 26070456 PMCID: PMC4465618 DOI: 10.1186/s12870-015-0536-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/29/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases. MMPs have been characterized in detail in mammals and shown to play key roles in many physiological and pathological processes. Although MMPs in some plant species have been identified, the function of MMPs in biotic stress responses remains elusive. RESULTS A total of five MMP genes were identified in tomato genome. qRT-PCR analysis revealed that expression of Sl-MMP genes was induced with distinct patterns by infection of Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000 and by treatment with defense-related hormones such as salicylic acid, jasmonic acid and ethylene precursor 1-amino cyclopropane-1-carboxylic acid. Virus-induced gene silencing (VIGS)-based knockdown of individual Sl-MMPs and disease assays indicated that silencing of Sl3-MMP resulted in reduced resistance to B. cinerea and Pst DC3000, whereas silencing of other four Sl-MMPs did not affect the disease resistance against these two pathogens. The Sl3-MMP-silenced tomato plants responded with increased accumulation of reactive oxygen species and alerted expression of defense genes after infection of B. cinerea. Transient expression of Sl3-MMP in leaves of Nicotiana benthamiana led to an enhanced resistance to B. cinerea and upregulated expression of defense-related genes. Biochemical assays revealed that the recombinant mature Sl3-MMP protein had proteolytic activities in vitro with distinct preferences for specificity of cleavage sites. The Sl3-MMP protein was targeted onto the plasma membrane of plant cells when transiently expressed in onion epidermal cells. CONCLUSION VIGS-based knockdown of Sl3-MMP expression in tomato and gain-of-function transient expression of Sl3-MMP in N. benthamiana demonstrate that Sl3-MMP functions as a positive regulator of defense response against B. cinerea and Pst DC3000.
Collapse
Affiliation(s)
- Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Qiuming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Lu Wang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Shixia Liu
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Yongbo Hong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
17
|
Zhong Y, Cheng CZ, Jiang NH, Jiang B, Zhang YY, Wu B, Hu ML, Zeng JW, Yan HX, Yi GJ, Zhong GY. Comparative Transcriptome and iTRAQ Proteome Analyses of Citrus Root Responses to Candidatus Liberibacter asiaticus Infection. PLoS One 2015; 10:e0126973. [PMID: 26046530 PMCID: PMC4457719 DOI: 10.1371/journal.pone.0126973] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 04/09/2015] [Indexed: 11/23/2022] Open
Abstract
Root samples of 'Sanhu' red tangerine trees infected with and without Candidatus Liberibacter asiaticus (CLas) were collected at 50 days post inoculation and subjected to RNA-sequencing and isobaric tags for relative and absolute quantification (iTRAQ) to profile the differentially expressed genes (DEGs) and proteins (DEPs), respectively. Quantitative real-time PCR was subsequently used to confirm the expression of 16 selected DEGs. Results showed that a total of 3956 genes and 78 proteins were differentially regulated by HLB-infection. Among the most highly up-regulated DEPs were sperm specific protein 411, copper ion binding protein, germin-like proteins, subtilisin-like proteins and serine carboxypeptidase-like 40 proteins whose transcript levels were concomitantly up-regulated as shown by RNA-seq data. Comparison between our results and those of the previously reported showed that known HLB-modulated biological pathways including cell-wall modification, protease-involved protein degradation, carbohydrate metabolism, hormone synthesis and signaling, transcription activities, and stress responses were similarly regulated by HLB infection but different or root-specific changes did exist. The root unique changes included the down-regulation in genes of ubiquitin-dependent protein degradation pathway, secondary metabolism, cytochrome P450s, UDP-glucosyl transferases and pentatricopeptide repeat containing proteins. Notably, nutrient absorption was impaired by HLB-infection as the expression of the genes involved in Fe, Zn, N and P adsorption and transportation were significantly changed. HLB-infection induced some cellular defense responses but simultaneously reduced the biosynthesis of the three major classes of secondary metabolites, many of which are known to have anti-pathogen activities. Genes involved in callose deposition were up-regulated whereas those involved in callose degradation were also up-regulated, indicating that the sieve tube elements in roots were hanging on the balance of life and death at this stage. In addition, signs of carbohydrate starvation were already eminent in roots at this stage. Other interesting genes and pathways that were changed by HLB-infection were also discussed based on our findings.
Collapse
Affiliation(s)
- Yun Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R.China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, P.R.China
- Key Laboratory of Tropical and Subtropical Fruit Tree Researches, Guangdong Province, Guangzhou, 510640, P.R.China
| | - Chun-zhen Cheng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R.China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, P.R.China
- Key Laboratory of Tropical and Subtropical Fruit Tree Researches, Guangdong Province, Guangzhou, 510640, P.R.China
| | - Nong-hui Jiang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R.China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, P.R.China
- Key Laboratory of Tropical and Subtropical Fruit Tree Researches, Guangdong Province, Guangzhou, 510640, P.R.China
| | - Bo Jiang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R.China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, P.R.China
- Key Laboratory of Tropical and Subtropical Fruit Tree Researches, Guangdong Province, Guangzhou, 510640, P.R.China
| | - Yong-yan Zhang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R.China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, P.R.China
- Key Laboratory of Tropical and Subtropical Fruit Tree Researches, Guangdong Province, Guangzhou, 510640, P.R.China
| | - Bo Wu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R.China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, P.R.China
- Key Laboratory of Tropical and Subtropical Fruit Tree Researches, Guangdong Province, Guangzhou, 510640, P.R.China
| | - Min-lun Hu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R.China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, P.R.China
- Key Laboratory of Tropical and Subtropical Fruit Tree Researches, Guangdong Province, Guangzhou, 510640, P.R.China
| | - Ji-wu Zeng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R.China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, P.R.China
- Key Laboratory of Tropical and Subtropical Fruit Tree Researches, Guangdong Province, Guangzhou, 510640, P.R.China
| | - Hua-xue Yan
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R.China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, P.R.China
- Key Laboratory of Tropical and Subtropical Fruit Tree Researches, Guangdong Province, Guangzhou, 510640, P.R.China
| | - Gan-jun Yi
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, P.R.China
- Key Laboratory of Tropical and Subtropical Fruit Tree Researches, Guangdong Province, Guangzhou, 510640, P.R.China
| | - Guang-yan Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R.China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, P.R.China
- Key Laboratory of Tropical and Subtropical Fruit Tree Researches, Guangdong Province, Guangzhou, 510640, P.R.China
| |
Collapse
|
18
|
Leisner CP, Ming R, Ainsworth EA. Distinct transcriptional profiles of ozone stress in soybean (Glycine max) flowers and pods. BMC PLANT BIOLOGY 2014; 14:335. [PMID: 25430603 PMCID: PMC4263021 DOI: 10.1186/s12870-014-0335-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/14/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND Tropospheric ozone (O3) is a secondary air pollutant and anthropogenic greenhouse gas. Concentrations of tropospheric O3 ([O3] have more than doubled since the Industrial Revolution, and are high enough to damage plant productivity. Soybean (Glycine max L. Merr.) is the world's most important legume crop and is sensitive to O3. Current ground-level [O3] are estimated to reduce global soybean yields by 6% to 16%. In order to understand transcriptional mechanisms of yield loss in soybean, we examined the transcriptome of soybean flower and pod tissues exposed to elevated [O3] using RNA-Sequencing. RESULTS Elevated [O3] elicited a strong transcriptional response in flower and pod tissues, with increased expression of genes involved in signaling in both tissues. Flower tissues also responded to elevated [O3] by increasing expression of genes encoding matrix metalloproteinases (MMPs). MMPs are zinc- and calcium-dependent endopeptidases that have roles in programmed cell death, senescence and stress response in plants. Pod tissues responded to elevated [O3] by increasing expression of xyloglucan endotransglucosylase/hydrolase genes, which may be involved with increased pod dehiscence in elevated [O3]. CONCLUSIONS This study established that gene expression in reproductive tissues of soybean are impacted by elevated [O3], and flowers and pods have distinct transcriptomic responses to elevated [O3].
Collapse
Affiliation(s)
- Courtney P Leisner
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Ray Ming
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Elizabeth A Ainsworth
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA.
- USDA ARS Global Change and Photosynthesis Research Unit, 1201 W. Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
19
|
Calla B, Blahut-Beatty L, Koziol L, Zhang Y, Neece DJ, Carbajulca D, Garcia A, Simmonds DH, Clough SJ. Genomic evaluation of oxalate-degrading transgenic soybean in response to Sclerotinia sclerotiorum infection. MOLECULAR PLANT PATHOLOGY 2014; 15:563-75. [PMID: 24382019 PMCID: PMC6638623 DOI: 10.1111/mpp.12115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oxalate oxidases (OxO) catalyse the degradation of oxalic acid (OA). Highly resistant transgenic soybean carrying an OxO gene and its susceptible parent soybean line, AC Colibri, were tested for genome-wide gene expression in response to the necrotrophic, OA-producing pathogen Sclerotinia sclerotiorum using soybean cDNA microarrays. The genes with changed expression at statistically significant levels (overall F-test P-value cut-off of 0.0001) were classified into functional categories and pathways, and were analysed to evaluate the differences in transcriptome profiles. Although many genes and pathways were found to be similarly activated or repressed in both genotypes after inoculation with S. sclerotiorum, the OxO genotype displayed a measurably faster induction of basal defence responses, as observed by the differential changes in defence-related and secondary metabolite genes compared with its susceptible parent AC Colibri. In addition, the experiment presented provides data on several other transcripts that support the hypothesis that S. sclerotiorum at least partially elicits the hypersensitive response, induces lignin synthesis (cinnamoyl CoA reductase) and elicits as yet unstudied signalling pathways (G-protein-coupled receptor and related). Of the nine genes showing the most extreme opposite directions of expression between genotypes, eight were related to photosynthesis and/or oxidation, highlighting the importance of redox in the control of this pathogen.
Collapse
Affiliation(s)
- Bernarda Calla
- University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Babuin MF, Campestre MP, Rocco R, Bordenave CD, Escaray FJ, Antonelli C, Calzadilla P, Gárriz A, Serna E, Carrasco P, Ruiz OA, Menendez AB. Response to long-term NaHCO3-derived alkalinity in model Lotus japonicus Ecotypes Gifu B-129 and Miyakojima MG-20: transcriptomic profiling and physiological characterization. PLoS One 2014; 9:e97106. [PMID: 24835559 PMCID: PMC4024010 DOI: 10.1371/journal.pone.0097106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/14/2014] [Indexed: 11/19/2022] Open
Abstract
The current knowledge regarding transcriptomic changes induced by alkalinity on plants is scarce and limited to studies where plants were subjected to the alkaline salt for periods not longer than 48 h, so there is no information available regarding the regulation of genes involved in the generation of a new homeostatic cellular condition after long-term alkaline stress. Lotus japonicus is a model legume broadly used to study many important physiological processes including biotic interactions and biotic and abiotic stresses. In the present study, we characterized phenotipically the response to alkaline stress of the most widely used L. japonicus ecotypes, Gifu B-129 and MG-20, and analyzed global transcriptome of plants subjected to 10 mM NaHCO3 during 21 days, by using the Affymetrix Lotus japonicus GeneChip®. Plant growth assessment, gas exchange parameters, chlorophyll a fluorescence transient (OJIP) analysis and metal accumulation supported the notion that MG-20 plants displayed a higher tolerance level to alkaline stress than Gifu B-129. Overall, 407 and 459 probe sets were regulated in MG-20 and Gifu B-129, respectively. The number of probe sets differentially expressed in roots was higher than that of shoots, regardless the ecotype. Gifu B-129 and MG-20 also differed in their regulation of genes that could play important roles in the generation of a new Fe/Zn homeostatic cellular condition, synthesis of plant compounds involved in stress response, protein-degradation, damage repair and root senescence, as well as in glycolysis, gluconeogenesis and TCA. In addition, there were differences between both ecotypes in the expression patterns of putative transcription factors that could determine distinct arrangements of flavonoid and isoflavonoid compounds. Our results provided a set of selected, differentially expressed genes deserving further investigation and suggested that the L. japonicus ecotypes could constitute a useful model to search for common and distinct tolerance mechanisms to long-term alkaline stress response in plants.
Collapse
Affiliation(s)
- María Florencia Babuin
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús/Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina
| | - María Paula Campestre
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús/Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina
| | - Rubén Rocco
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús/Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina
| | - Cesar D. Bordenave
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús/Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina
| | - Francisco J. Escaray
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús/Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina
| | - Cristian Antonelli
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús/Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina
| | - Pablo Calzadilla
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús/Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina
| | - Andrés Gárriz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús/Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina
| | - Eva Serna
- Unidad Central de Investigación en Medicina-INCLIVA, Universitat de Valencia, Valencia, Spain
| | - Pedro Carrasco
- Departamento de Bioquímica y Biología Vegetal-Universitat de Valencia, Valencia, Spain
| | - Oscar A. Ruiz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús/Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina
| | - Ana B. Menendez
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús/Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
21
|
Zhong Y, Wang B, Yan J, Cheng L, Yao L, Xiao L, Wu T. DL-β-aminobutyric acid-induced resistance in soybean against Aphis glycines Matsumura (Hemiptera: Aphididae). PLoS One 2014; 9:e85142. [PMID: 24454805 PMCID: PMC3893187 DOI: 10.1371/journal.pone.0085142] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/23/2013] [Indexed: 11/26/2022] Open
Abstract
Priming can improve plant innate capability to deal with the stresses caused by both biotic and abiotic factors. In this study, the effect of DL-β-amino-n-butyric acid (BABA) against Aphis glycines Matsumura, the soybean aphid (SA) was evaluated. We found that 25 mM BABA as a root drench had minimal adverse impact on plant growth and also efficiently protected soybean from SA infestation. In both choice and non-choice tests, SA number was significantly decreased to a low level in soybean seedlings drenched with 25 mM BABA compared to the control counterparts. BABA treatment resulted in a significant increase in the activities of several defense enzymes, such as phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO), chitinase (CHI), and β-1, 3-glucanase (GLU) in soybean seedlings attacked by aphid. Meanwhile, the induction of 15 defense-related genes by aphid, such as AOS, CHS, MMP2, NPR1-1, NPR1-2, and PR genes, were significantly augmented in BABA-treated soybean seedlings. Our study suggest that BABA application is a promising way to enhance soybean resistance against SA.
Collapse
Affiliation(s)
- Yunpeng Zhong
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Biao Wang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Junhui Yan
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Linjing Cheng
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Luming Yao
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Xiao
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tianlong Wu
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Family-wide characterization of matrix metalloproteinases from Arabidopsis thaliana reveals their distinct proteolytic activity and cleavage site specificity. Biochem J 2013; 457:335-46. [DOI: 10.1042/bj20130196] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The five recombinant MMP-like proteins of Arabidopsis thaliana have specific biochemical properties. Detailed analysis of their sequence specificity using proteomic identification of protease cleavage sites revealed cleavage profiles similar to human MMPs.
Collapse
|
23
|
Bae C, Kim SM, Lee DJ, Choi D. Multiple classes of immune-related proteases associated with the cell death response in pepper plants. PLoS One 2013; 8:e63533. [PMID: 23696830 PMCID: PMC3656034 DOI: 10.1371/journal.pone.0063533] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/04/2013] [Indexed: 01/07/2023] Open
Abstract
Proteases regulate a large number of biological processes in plants, such as metabolism, physiology, growth, and defense. In this study, we carried out virus-induced gene silencing assays with pepper cDNA clones to elucidate the biological roles of protease superfamilies. A total of 153 representative protease genes from pepper cDNA were selected and cloned into a Tobacco rattle virus-ligation independent cloning vector in a loss-of-function study. Silencing of 61 proteases resulted in altered phenotypes, such as the inhibition of shoot growth, abnormal leaf shape, leaf color change, and lethality. Furthermore, the silencing experiments revealed that multiple proteases play a role in cell death and immune response against avirulent and virulent pathogens. Among these 153 proteases, 34 modulated the hypersensitive cell death response caused by infection with an avirulent pathogen, and 16 proteases affected disease symptom development caused by a virulent pathogen. Specifically, we provide experimental evidence for the roles of multiple protease genes in plant development and immune defense following pathogen infection. With these results, we created a broad sketch of each protease function. This information will provide basic information for further understanding the roles of the protease superfamily in plant growth, development, and defense.
Collapse
Affiliation(s)
- Chungyun Bae
- Department of Plant Sciences, Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Su-min Kim
- Department of Plant Sciences, Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Dong Ju Lee
- Higher Education Center for Bioregulator Research, Chonnam National University, Gwangju, Korea
| | - Doil Choi
- Department of Plant Sciences, Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
24
|
López-García B, Hernández M, Segundo BS. Bromelain, a cysteine protease from pineapple (Ananas comosus) stem, is an inhibitor of fungal plant pathogens. Lett Appl Microbiol 2012; 55:62-7. [PMID: 22537505 DOI: 10.1111/j.1472-765x.2012.03258.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM This study aimed to evaluate the effect of bromelain, a cysteine protease isolated from pineapple (Ananas comosus), on growth of several agronomically important fungal pathogens. METHODS AND RESULTS Purification of bromelain from pineapple stems was carried out by chromatography techniques, and its antimicrobial activity was tested against the fungal pathogens Fusarium verticillioides, Fusarium oxysporum and Fusarium proliferatum by broth microdilution assay. A concentration of 0.3 μmol l(-1) of bromelain was sufficient for 90% growth inhibition of F. verticillioides. The capability of bromelain to inhibit fungal growth is related to its proteolytic activity. CONCLUSIONS The study demonstrates that stem bromelain exhibits a potent antifungal activity against phytopathogens and suggests its potential use as an effective agent for crop protection. SIGNIFICANCE AND IMPACT OF THE STUDY The results support the use of a natural protease that accumulates at high levels in pineapple stems as alternative to the use of chemical fungicides for crop protection.
Collapse
Affiliation(s)
- B López-García
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, Spain.
| | | | | |
Collapse
|
25
|
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases belonging to the metzincin clan. MMPs have been characterized in detail in mammals, and they have been shown to play key roles in many physiological and pathological processes. Plant MMP-like proteases exist, but relatively few have been characterized. It has been speculated that plant MMPs are involved in remodeling of the plant extracellular matrix during growth, development and stress response. However, the precise functions and physiological substrates in higher plants remain to be determined. In this brief overview, we summarize the current knowledge of MMPs in higher plants and algae.
Collapse
Affiliation(s)
- Giada Marino
- Department of Chemistry and Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden.
| | | |
Collapse
|
26
|
Lenger J, Kaschani F, Lenz T, Dalhoff C, Villamor JG, Köster H, Sewald N, van der Hoorn RA. Labeling and enrichment of Arabidopsis thaliana matrix metalloproteases using an active-site directed, marimastat-based photoreactive probe. Bioorg Med Chem 2012; 20:592-6. [DOI: 10.1016/j.bmc.2011.06.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/16/2011] [Accepted: 06/24/2011] [Indexed: 01/12/2023]
|
27
|
Pirovani CP, da Silva Santiago A, dos Santos LS, Micheli F, Margis R, da Silva Gesteira A, Alvim FC, Pereira GAG, de Mattos Cascardo JC. Theobroma cacao cystatins impair Moniliophthora perniciosa mycelial growth and are involved in postponing cell death symptoms. PLANTA 2010; 232:1485-1497. [PMID: 20859638 DOI: 10.1007/s00425-010-1272-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 09/06/2010] [Indexed: 05/29/2023]
Abstract
Three cystatin open reading frames named TcCys1, TcCys2 and TcCys3 were identified in cDNA libraries from compatible interactions between Theobroma cacao (cacao) and Moniliophthora perniciosa. In addition, an ORF named TcCys4 was identified in the cDNA library of the incompatible interaction. The cDNAs encoded conceptual proteins with 209, 127, 124, and 205 amino acid residues, with a deduced molecular weight of 24.3, 14.1, 14.3 and 22.8 kDa, respectively. His-tagged recombinant proteins were purified from Escherichia coli expression, and showed inhibitory activities against M. perniciosa. The four recombinant cystatins exhibited K(i) values against papain in the range of 152-221 nM. Recombinant TcCYS3 and TcCYS4 immobilized in CNBr-Sepharose were efficient to capture M. perniciosa proteases from culture media. Polyclonal antibodies raised against the recombinant TcCYS4 detected that the endogenous protein was more abundant in young cacao tissues, when compared with mature tissues. A ~85 kDa cacao multicystatin induced by M. perniciosa inoculation, MpNEP (necrosis and ethylene-inducing protein) and M. perniciosa culture supernatant infiltration were detected by anti-TcCYS4 antibodies in cacao young tissues. A direct role of the cacao cystatins in the defense against this phytopathogen was proposed, as well as its involvement in the development of symptoms of programmed cell death.
Collapse
Affiliation(s)
- Carlos Priminho Pirovani
- UESC, DCB, Laboratório de Proteômica, Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, BA, 45650-000, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mandal MK, Fischer R, Schillberg S, Schiermeyer A. Biochemical properties of the matrix metalloproteinase NtMMP1 from Nicotiana tabacum cv. BY-2 suspension cells. PLANTA 2010; 232:899-910. [PMID: 20635096 DOI: 10.1007/s00425-010-1221-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 06/29/2010] [Indexed: 05/22/2023]
Abstract
A zinc-dependent matrix metalloproteinase (NtMMP1) found in the plasma membrane of Nicotiana tabacum cv. Bright Yellow 2 (BY-2) suspension cells is thought to be responsible for the degradation of recombinant proteins secreted into the culture supernatant. We have characterized the proteolytic activity of NtMMP1 by expressing a recombinant derivative lacking the C-terminal transmembrane domain in yeast. After purifying the protein by affinity chromatography, its autocatalytic activity was analyzed using monoclonal antibodies raised against its N-terminal and C-terminal portions. Both the unprocessed and processed forms of NtMMP1 displayed caseinolytic activity and N-terminal sequencing identified an autocatalytic cleavage site within the sequence motif HFSFFP, which is similar to the corresponding sequences of the human matrix metalloproteinases stromelysin-1 (MMP-3) and stromelysin-2 (MMP-10). Unlike all other matrix metalloproteinases investigated so far, NtMMP1 contains a disulfide bond within its propeptide thus rendering the proenzyme catalytically active. Kinetic analysis of NtMMP1 with a synthetic substrate revealed a K(m) of 10.55 +/- 0.9 microM, a k(cat) of 0.6 +/- 0.01 s(-1) and maximum activity at pH 7.5. We found that NtMMP1 degrades Desmodus rotundus salivary plasminogen activator alpha 1 (DSPAalpha1), a biopharmaceutical protein, that has proven difficult to produce in tobacco BY-2 cells. This provides a likely explanation for the frequent instability of secreted recombinant biopharmaceuticals produced in plant suspension cell cultures. Our data suggest new avenues that can be explored to improve the production of pharmaceutical proteins in plants and plant cells.
Collapse
Affiliation(s)
- Manoj K Mandal
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | | | | | | |
Collapse
|
29
|
Widjaja I, Lassowskat I, Bethke G, Eschen-Lippold L, Long HH, Naumann K, Dangl JL, Scheel D, Lee J. A protein phosphatase 2C, responsive to the bacterial effector AvrRpm1 but not to the AvrB effector, regulates defense responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:249-258. [PMID: 19843314 DOI: 10.1111/j.1365-313x.2009.04047.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Using a proteomics approach, a PP2C-type phosphatase (renamed PIA1, for PP2C induced by AvrRpm1) was identified that accumulates following infection by Pseudomonas syringae expressing the type III effector AvrRpm1, and subsequent activation of the corresponding plant NB-LRR disease resistance protein RPM1. No accumulation of PIA1 protein was seen following infection with P. syringae expressing AvrB, another type III effector that also activates RPM1, although PIA transcripts were observed. Accordingly, mutation of PIA1 resulted in enhanced RPM1 function in response to P. syringae pathover tomato (Pto) DC3000 (avrRpm1) but not to Pto DC3000 (avrB). Thus, PIA1 is a protein marker that distinguishes AvrRpm1- and AvrB-dependent activation of RPM1. AvrRpm1-induced expression of the pathogenesis-related genes PR1, PR2 and PR3, and salicylic acid accumulation were reduced in two pia1 mutants. By contrast, expression of other defense-related genes, including PR5 and PDF1.2 (plant defensin), was elevated in unchallenged pia1 mutants. Hence, PIA1 is required for AvrRpm1-induced responses, and confers dual (both positive and negative) regulation of defense gene expression.
Collapse
Affiliation(s)
- Ivy Widjaja
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ratnaparkhe SM, Egertsdotter EMU, Flinn BS. Identification and characterization of a matrix metalloproteinase (Pta1-MMP) expressed during Loblolly pine (Pinus taeda) seed development, germination completion, and early seedling establishment. PLANTA 2009; 230:339-54. [PMID: 19466448 DOI: 10.1007/s00425-009-0949-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Accepted: 05/06/2009] [Indexed: 05/09/2023]
Abstract
Extracellular matrix (ECM) modifications occur during plant growth, development, and in response to environmental stimuli. Key modulators of ECM modification in vertebrates, the extracellular matrix metalloproteinases (MMPs), have also been described in a few plants. Here, we report the identification of Loblolly pine (Pinus taeda) Pta1-MMP and its characterization during seed development and germination. Pta1-MMP protein has the structural characteristics of other plant MMPs, the recombinant protein exhibits Zn(2+)-dependent protease activity, and is inhibited by EDTA and the active site-binding hydroxamate inhibitor GM6001. The Pta1-MMP gene is expressed in both embryo and megagametophyte, with transcript levels increasing in both during the period from proembryo to early cotyledonary stage, then declining during late embryogenesis and maturation drying. Protein extracts exhibited similar developmental-stage MMP-like activity. Seed germination was stimulated by GA(3) and inhibited by ABA, and the timing of germination completion was mirrored by the presence of MMP-like protease activity in both water- and GA(3)-imbibed embryos. Pta1-MMP gene transcript levels increased in association with radicle protrusion for both GA(3)- and water-treated embryos, in agreement with MMP-like activity. In contrast, by 11 days after imbibition, Pta1-MMP gene transcripts in ABA-treated embryos were at levels similar to the other treatments, although MMP-like activity was not observed. The application of GM6001 during Loblolly pine seed germination inhibited radicle protrusion. Our results suggest that MMP activity may be involved in ECM modification, facilitating the cell division and expansion required during seed development, germination completion, and subsequent seedling establishment.
Collapse
Affiliation(s)
- Supriya M Ratnaparkhe
- Department of Forestry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0002, USA
| | | | | |
Collapse
|
31
|
Xie W, Goodwin PH. A PRp27 gene of Nicotiana benthamiana contributes to resistance to Pseudomonas syringae pv. tabaci but not to Colletotrichum destructivum or Colletotrichum orbiculare. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:351-361. [PMID: 32688652 DOI: 10.1071/fp08241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 01/21/2009] [Indexed: 06/11/2023]
Abstract
NbPRp27 from Nicotiana benthamiana Domin. is highly similar to NtPRp27, which is a secreted protein from Nicotiana tabacum L. belonging to pathogen-inducible genes comprising the PR17 family of pathogenesis-related proteins. A collection of related genes from plants in several plant families showed that their deduced amino acid sequences clustered according to plant family. Expression of NbPRp27 was not detectable in healthy leaves or stems but was expressed at high levels in roots. Expression was induced by wounding, BTH, ethylene, methyl jasmonate, ABA and NAA, but not by drought, heat or cold stress. Expression was induced by infection with the hemibiotrophic pathogens, Colletotrichum destructivum, Colletotrichum orbiculare and Pseudomonas syringae pv. tabaci. For infections with the Colletotrichum species, expression increased more slowly during biotrophy than necrotrophy, but the reverse was true for P. syringae pv. tabaci. Virus-induced silencing of NbPRp27 did not affect the lesion number produced by the Colletotrichum species but did reduce basal resistance to P. syringae pv. tabaci permitting higher bacterial populations. Based on sequence similarities, PRp27 proteins have been hypothesised to have protease activity and may contribute to resistance by exhibiting direct antimicrobial activity in the apoplast, releasing of antimicrobial compounds from the plant matrix or releasing elicitors from pathogens to induce resistance.
Collapse
Affiliation(s)
- Weilong Xie
- Department of Environmental Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Paul H Goodwin
- Department of Environmental Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
32
|
Narayanan NN, Grosic S, Tasma IM, Grant D, Shoemaker R, Bhattacharyya MK. Identification of candidate signaling genes including regulators of chromosome condensation 1 protein family differentially expressed in the soybean-Phytophthora sojae interaction. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:399-412. [PMID: 18825360 DOI: 10.1007/s00122-008-0895-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 09/06/2008] [Indexed: 05/07/2023]
Abstract
Stem and root rot caused by the oomycete pathogen, Phytophthora sojae, is a serious soybean disease. Use of Phytophthora resistance genes (Rps) in soybean cultivars has been very effective in controlling this pathogen. Resistance encoded by Rps genes is manifested through activation of defense responses. In order to identify candidate signaling genes involved in the expression of Phytophthora resistance in soybean, a cDNA library was prepared from infected etiolated hypocotyl tissues of a Phytophthora resistant soybean cultivar harvested 2 and 4 h following P. sojae inoculation. In silico subtraction of 101,833 expressed sequence tags (ESTs) originating from unstressed cDNA libraries from 4,737 ESTs of this library resulted in identification of 204 genes that were absent in the unstressed libraries. Of the 204 identified genes, seven were P. sojae genes. Putative function of 91 of the 204 genes could not be assigned based on sequence comparison. Macroarray analyses of all 204 genes led to identification of 60 genes including 15 signaling-related soybean genes and three P. sojae genes, transcripts of which were induced twofold in P. sojae-infected tissues as compared to that in water controls. Eight soybean genes were down-regulated twofold following P. sojae infection as compared to water controls. Differential expression of a few selected genes was confirmed by conducting Northern and RT-PCR analyses. We have shown that two putative regulators of chromosome condensation 1 (RCC1) family proteins were down-regulated in the incompatible interaction. This observation suggested that the nucleocytoplasmic transport function for trafficking protein and non-coding RNA is suppressed during expression of race-specific Phytophthora resistance. Characterization of a cDNA library generated from tissues harvested almost immediately following P. sojae-infection of a resistant cultivar allowed us to identify many candidate signaling genes that are presumably involved in regulating the expression of defense-related pathways for expression of Phytophthora resistance in soybean.
Collapse
|
33
|
Flinn BS. Plant extracellular matrix metalloproteinases. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:1183-1193. [PMID: 32688865 DOI: 10.1071/fp08182] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 09/18/2008] [Indexed: 06/11/2023]
Abstract
The plant extracellular matrix (ECM) includes a variety of proteins with critical roles in the regulation of plant growth, development, and responses to pests and pathogens. Several studies have shown that various ECM proteins undergo proteolytic modification. In mammals, the extracellular matrix metalloproteinases (MMPs) are known modifiers of the ECM, implicated in tissue architecture changes and the release of biologically active and/or signalling molecules. Although plant MMPs have been identified, little is known about their activity and function. Plant MMPs show structural similarity to mammalian MMPs, including the presence of an auto-regulatory cysteine switch domain and a zinc-binding catalytic domain. Plant MMPs are differentially expressed in cells and tissues during plant growth and development, as well as in response to several biotic and abiotic stresses. The few gene expression and mutant analyses to date indicate their involvement in plant growth, morphogenesis, senescence and adaptation and response to stress. In order to gain a further understanding of their function, an analysis and characterisation of MMP proteins, their activity and their substrates during plant growth and development are still required. This review describes plant MMP work to date, as well as the variety of genomic and proteomic methodologies available to characterise plant MMP activity, function and potential substrates.
Collapse
Affiliation(s)
- Barry S Flinn
- The Institute for Advanced Learning and Research, Institute for Sustainable and Renewable Resources, 150 Slayton Avenue, Danville, VA 24540, USA
| |
Collapse
|
34
|
Seo PJ, Kim SG, Park CM. Membrane-bound transcription factors in plants. TRENDS IN PLANT SCIENCE 2008; 13:550-6. [PMID: 18722803 DOI: 10.1016/j.tplants.2008.06.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/19/2008] [Accepted: 06/20/2008] [Indexed: 05/03/2023]
Abstract
The ability to activate dormant transcription factors is an important molecular feature of the transcriptional regulatory networks that govern diverse cellular functions. An intriguing example is the controlled proteolytic activation of membrane-bound transcription factors (MTFs). Most MTFs are activated either by intramembrane proteases or by the ubiquitin-proteasome pathway. Recent studies have shown that several members of the bZIP and NAC families in Arabidopsis are membrane-associated and are activated by membrane-associated proteases during stress responses in the endoplasmic reticulum and when the plants experience environmental stresses. A genome-scale analysis shows that over 10% of all transcription factors are membrane bound, indicating that activation of MTFs occurs at the genomic level, allowing transcription to be regulated rapidly under stressful conditions.
Collapse
Affiliation(s)
- Pil Joon Seo
- Molecular Signaling Laboratory, Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
35
|
Yun J, Kim SG, Hong S, Park CM. Small interfering peptides as a novel way of transcriptional control. PLANT SIGNALING & BEHAVIOR 2008; 3:615-7. [PMID: 19513250 PMCID: PMC2634540 DOI: 10.4161/psb.3.9.6225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 05/02/2008] [Indexed: 05/04/2023]
Abstract
Transcription factors are key components of transcriptional regulatory networks governing virtually all aspects of plant growth and developmental processes. Their activities are regulated at various steps, including gene transcription, posttranscriptional mRNA metabolism, posttranslational modifications, nucleocytoplasmic transport, and controlled proteolytic cleavage of membrane-anchored, dormant forms. Dynamic protein dimerization also plays a critical role in this process. An exquisite regulatory scheme has recently been proposed to modulate the action of transcription factors. Small peptides possessing a protein dimerization motif but lacking the DNA-binding motif form nonfunctional heterodimers with a group of specific TFs, inhibiting their transcriptional activation activities. Extensive searches for small proteins that have a similar structural organization in the databases revealed that small peptide-mediated transcription control is not an exceptional case but would be a regulatory mechanism occurring widespread in the Arabidopsis genome.
Collapse
Affiliation(s)
- Ju Yun
- Molecular Signaling Laboratory; Department of Chemistry; Seoul National University; Seoul, Korea
| | | | | | | |
Collapse
|
36
|
Delannoy M, Alves G, Vertommen D, Ma J, Boutry M, Navarre C. Identification of peptidases in Nicotiana tabacum leaf intercellular fluid. Proteomics 2008; 8:2285-98. [PMID: 18446799 DOI: 10.1002/pmic.200700507] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Indexed: 01/23/2023]
Abstract
Peptidases in the extracellular space might affect the integrity of recombinant proteins expressed in, and secreted from, plant cells. To identify extracellular peptidases, we recovered the leaf intercellular fluid from Nicotiana tabacum plants by an infiltration-centrifugation method. The activity of various peptidases was detected by an in vitro assay in the presence of specific inhibitors, using BSA and human serum gamma-globulin as substrates. Peptidases were detected by 1- and 2-D zymography in a polyacrylamide gel containing gelatin as substrate. Proteolytic activity was observed over a wide range of molecular masses equal to, or higher than, 45 kDa. To identify the peptidases, the extracellular proteins were digested with trypsin and analyzed by LC and MS. Seventeen peptides showing identity or similarity to predicted plant aspartic, cysteine, and serine peptidases have been identified. The extracellular localization of a cysteine peptidase aleurain homolog was also shown.
Collapse
Affiliation(s)
- Mélanie Delannoy
- Unité de Biochimie Physiologique, Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
37
|
Combier JP, Vernié T, de Billy F, El Yahyaoui F, Mathis R, Gamas P. The MtMMPL1 early nodulin is a novel member of the matrix metalloendoproteinase family with a role in Medicago truncatula infection by Sinorhizobium meliloti. PLANT PHYSIOLOGY 2007; 144:703-16. [PMID: 17293436 PMCID: PMC1914174 DOI: 10.1104/pp.106.092585] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 01/20/2007] [Indexed: 05/13/2023]
Abstract
We show here that MtMMPL1, a Medicago truncatula nodulin gene previously identified by transcriptomics, represents a novel and specific marker for root and nodule infection by Sinorhizobium meliloti. This was established by determining the spatial pattern of MtMMPL1 expression and evaluating gene activation in the context of various plant and bacterial symbiotic mutant interactions. The MtMMPL1 protein is the first nodulin shown to belong to the large matrix metalloendoproteinase (MMP) family. While plant MMPs are poorly documented, they are well characterized in animals as playing a key role in a number of normal and pathological processes involving the remodeling of the extracellular matrix. MtMMPL1 represents a novel MMP variant, with a substitution of a key amino acid residue within the predicted active site, found exclusively in expressed sequence tags corresponding to legume MMP homologs. An RNA interference approach revealed that decreasing MtMMPL1 expression leads to an accumulation of rhizobia within infection threads, whose diameter is often significantly enlarged. Conversely, MtMMPL1 ectopic overexpression under the control of a constitutive (35S) promoter led to numerous abortive infections and an overall decrease in the number of nodules. We discuss possible roles of MtMMPL1 during Rhizobium infection.
Collapse
Affiliation(s)
- Jean-Philippe Combier
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique, 31326 Castanet Tolosan cedex, France
| | | | | | | | | | | |
Collapse
|
38
|
Tian M, Win J, Song J, van der Hoorn R, van der Knaap E, Kamoun S. A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. PLANT PHYSIOLOGY 2007; 143:364-77. [PMID: 17085509 PMCID: PMC1761951 DOI: 10.1104/pp.106.090050] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 10/24/2006] [Indexed: 05/12/2023]
Abstract
There is emerging evidence that the proteolytic machinery of plants plays important roles in defense against pathogens. The oomycete pathogen Phytophthora infestans, the agent of the devastating late blight disease of tomato (Lycopersicon esculentum) and potato (Solanum tuberosum), has evolved an arsenal of protease inhibitors to overcome the action of host proteases. Previously, we described a family of 14 Kazal-like extracellular serine protease inhibitors from P. infestans. Among these, EPI1 and EPI10 bind and inhibit the pathogenesis-related (PR) P69B subtilisin-like serine protease of tomato. Here, we describe EPIC1 to EPIC4, a new family of P. infestans secreted proteins with similarity to cystatin-like protease inhibitor domains. Among these, the epiC1 and epiC2 genes lacked orthologs in Phytophthora sojae and Phytophthora ramorum, were relatively fast-evolving within P. infestans, and were up-regulated during infection of tomato, suggesting a role during P. infestans-host interactions. Biochemical functional analyses revealed that EPIC2B interacts with and inhibits a novel papain-like extracellular cysteine protease, termed Phytophthora Inhibited Protease 1 (PIP1). Characterization of PIP1 revealed that it is a PR protein closely related to Rcr3, a tomato apoplastic cysteine protease that functions in fungal resistance. Altogether, this and earlier studies suggest that interplay between host proteases of diverse catalytic families and pathogen inhibitors is a general defense-counterdefense process in plant-pathogen interactions.
Collapse
Affiliation(s)
- Miaoying Tian
- Department of Plant Pathology , The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA
| | | | | | | | | | | |
Collapse
|
39
|
Mosolov VV, Valueva TA. Participation of proteolytic enzymes in the interaction of plants with phytopathogenic microorganisms. BIOCHEMISTRY (MOSCOW) 2006; 71:838-45. [PMID: 16978145 DOI: 10.1134/s0006297906080037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Different forms of participation of proteolytic enzymes in pathogenesis and plant defense are reviewed. Together with extracellular proteinases, phytopathogenic microorganisms produce specific effectors with proteolytic activity and are able to act on proteins inside the plant cell. In turn, plants use both extracellular and intracellular proteinases for defense against phytopathogenic microorganisms. Among the latter, a special role belongs to vacuolar processing enzymes (legumains), which perform the function of caspases in the plant cell.
Collapse
Affiliation(s)
- V V Mosolov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | | |
Collapse
|
40
|
Rumbaugh J, Turchan-Cholewo J, Galey D, St Hillaire C, Anderson C, Conant K, Nath A. Interaction of HIV Tat and matrix metalloproteinase in HIV neuropathogenesis: a new host defense mechanism. FASEB J 2006; 20:1736-8. [PMID: 16807369 DOI: 10.1096/fj.05-5619fje] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tat, the HIV transactivating protein, and matrix metalloproteinases (MMPs), a family of extracellular matrix (ECM) endopeptidases, have been implicated in the pathogenesis of HIV-associated dementia. However, the possibility that MMPs interact with viral proteins has remained unexplored. We therefore treated mixed human fetal neuronal cultures with recombinant Tat and select MMPs. Neurotoxicity was determined by measuring mitochondrial membrane potential and neuronal cell death. Previous studies have shown that Tat and MMP independently cause neurotoxicity. Surprisingly, we found the combination of Tat and MMP produced significant attenuation of neurotoxicity. To determine whether there was a physical interaction between Tat and MMP, we used protein electrophoresis and Western blot techniques, and found that MMP-1 can degrade Tat. This effect was blocked by MMP inhibitors. Furthermore, MMP-1 decreased Tat-mediated transactivation of the HIV long terminal repeat region, and this functionality was restored when MMP-1 activity was inhibited. These results suggest that the decrease in Tat-induced neurotoxicity and HIV transactivation is due to Tat's enzymatic cleavage by MMP-1. The direct interaction of human MMPs with viral proteins has now been demonstrated, with resultant modulation of Tat-mediated neurotoxicity and transactivation. This study elucidates a unique viral-host interaction that may serve as an innate host defense mechanism.
Collapse
Affiliation(s)
- J Rumbaugh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Lei Z, Elmer AM, Watson BS, Dixon RA, Mendes PJ, Sumner LW. A Two-dimensional Electrophoresis Proteomic Reference Map and Systematic Identification of 1367 Proteins from a Cell Suspension Culture of the Model Legume Medicago truncatula. Mol Cell Proteomics 2005; 4:1812-25. [PMID: 16048909 DOI: 10.1074/mcp.d500005-mcp200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteome of a Medicago truncatula cell suspension culture was analyzed using two-dimensional electrophoresis and nanoscale HPLC coupled to a tandem Q-TOF mass spectrometer (QSTAR Pulsar i) to yield an extensive protein reference map. Coomassie Brilliant Blue R-250 was used to visualize more than 1661 proteins, which were excised, subjected to in-gel trypsin digestion, and analyzed using nanoscale HPLC/MS/MS. The resulting spectral data were queried against a custom legume protein database using the MASCOT search engine. A total of 1367 of the 1661 proteins were identified with high rigor, yielding an identification success rate of 83% and 907 unique protein accession numbers. Functional annotation of the M. truncatula suspension cell proteins revealed a complete tricarboxylic acid cycle, a nearly complete glycolytic pathway, a significant portion of the ubiquitin pathway with the associated proteolytic and regulatory complexes, and many enzymes involved in secondary metabolism such as flavonoid/isoflavonoid, chalcone, and lignin biosynthesis. Proteins were also identified from most other functional classes including primary metabolism, energy production, disease/defense, protein destination/storage, protein synthesis, transcription, cell growth/division, and signal transduction. This work represents the most extensive proteomic description of M. truncatula suspension cells to date and provides a reference map for future comparative proteomic and functional genomic studies of the response of these cells to biotic and abiotic stress.
Collapse
Affiliation(s)
- Zhentian Lei
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73402, USA
| | | | | | | | | | | |
Collapse
|
42
|
Schiermeyer A, Schinkel H, Apel S, Fischer R, Schillberg S. Production of Desmodus rotundus salivary plasminogen activator alpha1 (DSPAalpha1) in tobacco is hampered by proteolysis. Biotechnol Bioeng 2005; 89:848-58. [PMID: 15685597 DOI: 10.1002/bit.20410] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The high fibrin specificity of Desmodus rotundus salivary plasminogen activator alpha1 (DSPAalpha1 or desmoteplase (INN)) makes it a promising candidate for the treatment of acute ischemic stroke. In the current study we explored the use of transgenic tobacco plants and BY-2 suspension cells as alternative production platforms for this drug. Four different N-terminal signal peptides, from plants and animals, were used to translocate the recombinant DSPAalpha1 protein to the endomembrane system. Intact recombinant DSPAalpha1 was produced in transgenic plants and BY-2 cells, although a certain degree of degradation was observed in immunoblotted extracts. The choice of signal peptide had no major influence on the degradation pattern or recombinant protein accumulation, which reached a maximum level of 38 microg/g leaf material. N-terminal sequencing of purified, His6-tagged DSPAalpha1 revealed only minor changes in the position of signal peptide cleavage compared to the same protein expressed in Chinese hamster ovary cells. However, correctly processed recombinant DSPAalpha1 was also detected. The enzymatic activity of the recombinant protein was confirmed using an in vitro assay with unpurified and purified samples, demonstrating that plants are suitable for the production of functional DSPAalpha1. In contrast to whole plant cell extracts, no recombinant DSPAalpha1 was detected in the culture supernatant of transgenic BY-2 cells. Further analysis showed that recombinant DSPAalpha1 is subject to proteolysis and that endogenous secreted BY-2 proteases are responsible for DSPAalpha1 degradation in the culture medium. The addition of a highly concentrated protease inhibitor mixture or 5 mM EDTA reduced DSPAalpha1 proteolysis, improving the accumulation of intact product in the culture medium. Strategies to improve the plant cell suspension system for the production of secreted recombinant proteins are discussed.
Collapse
Affiliation(s)
- Andreas Schiermeyer
- Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie (IME), c/o Institut für Biologie VII, RWTH Aachen, Worringerweg 1, 52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
43
|
Kemp BP, Beeching JR, Cooper RM. cDNA-AFLP reveals genes differentially expressed during the hypersensitive response of cassava. MOLECULAR PLANT PATHOLOGY 2005; 6:113-123. [PMID: 20565643 DOI: 10.1111/j.1364-3703.2005.00268.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY The tropical staple cassava is subject to several major diseases, such as cassava bacterial blight, caused by Xanthomonas axonopodis pv. manihotis. Disease-resistant genotypes afford the only practical solution, yet despite the global importance of this crop, little is known about its defence mechanisms. cDNA-AFLP was used to isolate cassava genes differentially expressed during the hypersensitive reaction (HR) of leaves in response to an incompatible Pseudomonas syringae pathovar. Seventy-eight transcript-derived fragments (TDFs) showing differential expression (c. 75% up-regulated, 25% down-regulated) were identified. Many encoded putative homologues of known defence-related genes involved in signalling (e.g. calcium transport and binding, ACC oxidases and a WRKY transcription factor), cell wall strengthening (e.g. cinnamoyl coenzyme A reductase and peroxidase), programmed cell death (e.g. proteases, 26S proteosome), antimicrobial activity (e.g. proteases and beta-1,3-glucanases) and the production of antimicrobial compounds (e.g. DAHP synthase and cytochrome P450s). Full-length cDNAs including a probable matrix metalloprotease and a WRKY transcription factor were isolated from six TDFs. RT-PCR or Northern blot analysis showed HR-induced TDFs were maximally expressed at 24 h, although some were produced by 6 h; some were induced, albeit more slowly, in response to wounding. This work begins to reveal potential defence-related genes of this understudied, major crop.
Collapse
Affiliation(s)
- Benjamin P Kemp
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | | |
Collapse
|
44
|
van der Hoorn RAL, Jones JDG. The plant proteolytic machinery and its role in defence. CURRENT OPINION IN PLANT BIOLOGY 2004; 7:400-7. [PMID: 15231262 DOI: 10.1016/j.pbi.2004.04.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The diverse roles of plant proteases in defence responses that are triggered by pathogens or pests are becoming clearer. Some proteases, such as papain in latex, execute the attack on the invading organism. Other proteases seem to be part of a signalling cascade, as indicated by protease inhibitor studies. Such a role has also been suggested for the recently discovered metacaspases and CDR1. Some proteases, such as RCR3, even act in perceiving the invader. These exciting recent reports are probably just the first examples of what lies beneath. More roles for plant proteases in defence, as well as the regulation and substrates of these enzymes, are waiting to be discovered.
Collapse
|
45
|
Heitzer M, Hallmann A. An extracellular matrix-localized metalloproteinase with an exceptional QEXXH metal binding site prefers copper for catalytic activity. J Biol Chem 2002; 277:28280-6. [PMID: 12034745 DOI: 10.1074/jbc.m203925200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular matrix (ECM) of the simple multicellular organism Volvox contains many region-specific morphological elements and mediates a variety of developmental and physiological responses by modification of its components. The fact that >95% of the mature organism is ECM makes Volvox suitable as a model system for ECM investigations. VMPs are a family of Volvox genes that are homologous to zinc-dependent matrix metalloproteinases (MMPs). Here we describe the identification and purification of the first VMP protein, VMP3. The 470-kDa VMP3 glycoprotein is localized within the ECM, and its biosynthesis is induced by the sex pheromone. The metal binding motif of VMP3 is QEXXH, not HEXXH as known for approximately 1300 other metalloproteinases. VMP3 shows proteinase activity and is inhibited by EDTA or the MMP inhibitor GM 6001, but in contrast to all known proteinases, VMP3 clearly prefers copper for activity rather than zinc. The exchange from Q to H within the QEXXH motif abolishes its copper preference. The unique properties of VMP3 suggest a novel type of metalloproteinase.
Collapse
Affiliation(s)
- Markus Heitzer
- Lehrstuhl Biochemie I, Universität Regensburg, D-93053 Regensburg, Germany
| | | |
Collapse
|