1
|
Huang J, Wu H, Gao R, Wu L, Wang M, Chu Y, Shi Y, Xiang L, Yin Q. Integrated Multi-Omics Analysis Reveals Glycosylation Involving 2-O-β-D-Glucopyranosyl-L-Ascorbic Acid Biosynthesis in Lycium barbarum. Int J Mol Sci 2025; 26:1558. [PMID: 40004023 PMCID: PMC11855784 DOI: 10.3390/ijms26041558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
L-ascorbic acid (vitamin C, AA) is widely present in plants, but humans lack the ability to synthesize it independently. As a potent reducing agent, AA is susceptible to oxidation, making the enhancement of its stability crucial. 2-O-β-D-glucopyranosyl-L-ascorbic acid (AA-2βG) is a stable natural derivative of AA with glycosylation, initially discovered in the fruits of Lycium barbarum. Understanding the biosynthesis of AA-2βG is crucial for enhancing its production in L. barbarum. While the established biosynthesis pathway of AA constitutes the upstream of AA-2βG biosynthesis, the conclusive step of β-glycosylation remains unclear. We identified a L. barbarum cultivar by UPLC, ZN01, with a high content of AA-2βG, and compared its leaves, immature fruits, and mature fruits to a normal AA-2βG content L. barbarum cultivar for metabolomic and transcriptomic analysis. The RNA-seq and RT-qPCR analysis revealed that the expression levels of genes involved in the AA biosynthesis pathway did not consistently correlate with AA-2βG content, suggesting that the final glycosylation step may be a key determinant of AA-2βG accumulation. Subsequently, utilizing phylogenetic and co-expression analysis, we identified ten UDP-glycosyltransferases (UGTs) and three β-glucosidases (BGLUs) which may be involved in the crucial step of the conversion from AA to AA-2βG, and the UGTs' activities were predicted through molecular docking. Lastly, we speculated that the presence of the glycosylation process of AA might have a crucial role in maintaining AA homeostasis in L. barbarum, and deliberated on potential correlations between AA, carotenoids, and anthocyanins. Our integrated multi-omics analysis provides valuable insights into AA-2βG biosynthesis in L. barbarum, identifying thirteen candidate genes and highlighting the complex interplay between AA, carotenoids, and anthocyanins. These findings have implications for improving AA-2βG content in L. barbarum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Xiang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qinggang Yin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
2
|
Tóth D, Tengölics R, Aarabi F, Karlsson A, Vidal-Meireles A, Kovács L, Kuntam S, Körmöczi T, Fernie AR, Hudson EP, Papp B, Tóth SZ. Chloroplastic ascorbate modifies plant metabolism and may act as a metabolite signal regardless of oxidative stress. PLANT PHYSIOLOGY 2024; 196:1691-1711. [PMID: 39106412 PMCID: PMC11444284 DOI: 10.1093/plphys/kiae409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/06/2024] [Accepted: 07/01/2024] [Indexed: 08/09/2024]
Abstract
Ascorbate (Asc) is a major plant metabolite that plays crucial roles in various processes, from reactive oxygen scavenging to epigenetic regulation. However, to what extent and how Asc modulates metabolism is largely unknown. We investigated the consequences of chloroplastic and total cellular Asc deficiencies by studying chloroplastic Asc transporter mutant lines lacking PHOSPHATE TRANSPORTER 4; 4 and the Asc-deficient vtc2-4 mutant of Arabidopsis (Arabidopsis thaliana). Under regular growth conditions, both Asc deficiencies caused minor alterations in photosynthesis, with no apparent signs of oxidative damage. In contrast, metabolomics analysis revealed global and largely overlapping alterations in the metabolome profiles of both Asc-deficient mutants, suggesting that chloroplastic Asc modulates plant metabolism. We observed significant alterations in amino acid metabolism, particularly in arginine metabolism, activation of nucleotide salvage pathways, and changes in secondary metabolism. In addition, proteome-wide analysis of thermostability revealed that Asc may interact with enzymes involved in arginine metabolism, the Calvin-Benson cycle, and several photosynthetic electron transport components. Overall, our results suggest that, independent of oxidative stress, chloroplastic Asc modulates the activity of diverse metabolic pathways in vascular plants and may act as an internal metabolite signal.
Collapse
Affiliation(s)
- Dávid Tóth
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
- Doctoral School of Biology, University of Szeged, Közép fasor 52, Szeged H-6722, Hungary
| | - Roland Tengölics
- HCEMM-BRC Metabolic Systems Biology Lab, Temesvári krt. 62, Szeged H-6726, Hungary
- Synthetic and Systems Biology Unit, HUN-REN Biological Research Centre, Institute of Biochemistry, Temesvári krt. 62, Szeged H-6726, Hungary
- Metabolomics Lab, Core Facilities, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Fayezeh Aarabi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Anna Karlsson
- Science for Life Laboratory, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, PO Box 1031, Solna 171 21, Sweden
| | - André Vidal-Meireles
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
| | - László Kovács
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Soujanya Kuntam
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Tímea Körmöczi
- HCEMM-BRC Metabolic Systems Biology Lab, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Elton P Hudson
- Science for Life Laboratory, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, PO Box 1031, Solna 171 21, Sweden
| | - Balázs Papp
- HCEMM-BRC Metabolic Systems Biology Lab, Temesvári krt. 62, Szeged H-6726, Hungary
- Synthetic and Systems Biology Unit, HUN-REN Biological Research Centre, Institute of Biochemistry, Temesvári krt. 62, Szeged H-6726, Hungary
- National Laboratory for Health Security, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Szilvia Z Tóth
- Laboratory for Molecular Photobioenergetics, HUN-REN Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62, Szeged H-6726, Hungary
| |
Collapse
|
3
|
Natesungnoen M, Pongrakhananon V, Lindblad P, Jantaro S. Overexpressing Carotenoid Biosynthetic Genes in Synechocystis sp. PCC 6803 Improved Intracellular Pigments and Antioxidant Activity, Which Can Decrease the Viability and Proliferation of Lung Cancer Cells In Vitro. Int J Mol Sci 2023; 24:ijms24119370. [PMID: 37298323 DOI: 10.3390/ijms24119370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
In the antioxidant system in cyanobacteria, non-enzymatic antioxidants, such as carotenoids, are considered good candidates for coping with oxidative stress, particularly light stress, and pharmaceutical therapeutic applications. A significant amount of carotenoid accumulation has been recently improved by genetic engineering. In this study, to achieve higher carotenoid production with higher antioxidant activity, we successfully constructed five Synechocystis sp. PCC 6803 strains overexpressing (OX) native genes related to the carotenoids biosynthetic pathway, including OX_CrtB, OX_CrtP, OX_CrtQ, OX_CrtO, and OX_CrtR. All of the engineered strains maintained a significant quantity of myxoxanthophyll, while increasing zeaxanthin and echinenone accumulation. In addition, higher components of zeaxanthin and echinenone were noted in all OX strains, ranging from 14 to 19% and from 17 to 22%, respectively. It is worth noting that the enhanced echinenone component responded to low light conditions, while the increased β-carotene component contributed to a high light stress response. According to the higher antioxidant activity of all OX strains, the carotenoid extracts presented lower IC50 in lung cancer cell lines H460 and A549, with values less than 157 and 139 µg/mL, respectively, when compared with those of WTc, particularly OX_CrtR and OX_CrtQ. A higher proportion of zeaxanthin and β-carotene in OX_CrtR and OX_CrtQ, respectively, may considerably contribute to the ability to treat lung cancer cells with antiproliferative and cytotoxic effects.
Collapse
Affiliation(s)
- Maturin Natesungnoen
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, SE-75120 Uppsala, Sweden
| | - Saowarath Jantaro
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
López-Pozo M, Adams WW, Polutchko SK, Demmig-Adams B. Terrestrial and Floating Aquatic Plants Differ in Acclimation to Light Environment. PLANTS (BASEL, SWITZERLAND) 2023; 12:1928. [PMID: 37653846 PMCID: PMC10224479 DOI: 10.3390/plants12101928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 09/02/2023]
Abstract
The ability of plants to respond to environmental fluctuations is supported by acclimatory adjustments in plant form and function that may require several days and development of a new leaf. We review adjustments in photosynthetic, photoprotective, and foliar vascular capacity in response to variation in light and temperature in terrestrial plants. The requirement for extensive acclimation to these environmental conditions in terrestrial plants is contrasted with an apparent lesser need for acclimation to different light environments, including rapid light fluctuations, in floating aquatic plants for the duckweed Lemna minor. Relevant features of L. minor include unusually high growth rates and photosynthetic capacities coupled with the ability to produce high levels of photoprotective xanthophylls across a wide range of growth light environments without compromising photosynthetic efficiency. These features also allow L. minor to maximize productivity and avoid problems during an abrupt experimental transfer of low-light-grown plants to high light. The contrasting responses of land plants and floating aquatic plants to the light environment further emphasize the need of land plants to, e.g., experience light fluctuations in their growth environment before they induce acclimatory adjustments that allow them to take full advantage of natural settings with such fluctuations.
Collapse
Affiliation(s)
- Marina López-Pozo
- Department of Plant Biology & Ecology, University of the Basque Country, 48940 Leioa, Spain
| | - William W. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Stephanie K. Polutchko
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
5
|
Yang DY, Zhuang KY, Ma NN. Overexpression of SlGGP-LIKE gene enhanced the resistance of tomato to salt stress. PROTOPLASMA 2023; 260:625-635. [PMID: 35947214 DOI: 10.1007/s00709-022-01800-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Ascorbic acid (AsA) plays an important role in scavenging reactive oxygen species (ROS) and reducing photoinhibition in plants, especially under stress. The function of SlGGP which encodes the key enzyme GDP-L-galactose phosphorylase in AsA synthetic pathway is relatively clear. However, there is another gene SlGGP-LIKE that encodes this enzyme in tomato, and there are few studies on it, especially under salt stress. In this study, we explored the function of this gene in tomato salt stress response using transgenic lines overexpressing SlGGP-LIKE (OE). Under normal conditions, overexpressing SlGGP-LIKE can increase the content of reduced AsA and the ratio of AsA/ DHA (dehydroascorbic acid), as well as the level of xanthophyll cycle. Under salt stress, compared with the wild-type plants (WT), the OE lines can maintain higher levels of reduced AsA. In addition, OE lines also have higher levels of reduced GSH (glutathione) and total GSH, higher ratios of AsA/DHA and GSH/oxidative GSH (GSSR), and higher level of xanthophyll cycle. Therefore, the OE lines are more tolerant to salt stress, with higher photosynthetic activity, higher antioxidative enzyme activities, higher content of D1 protein, lower production rate of ROS, and lighter membrane damage. These results indicate that overexpressing SlGGP-LIKE can enhance tomato resistance to salt stress through promoting the synthesis of AsA.
Collapse
Affiliation(s)
- Dong-Yue Yang
- Shandong Academy of Grape/Shandong Engineering Technology Research Centre of Viticulture and Grape Intensive Processing, Jinan, 250100, Shandong, China
| | - Kun-Yang Zhuang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai'an, 271018, Shandong, China
| | - Na-Na Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai'an, 271018, Shandong, China.
| |
Collapse
|
6
|
The Functions of Chloroplastic Ascorbate in Vascular Plants and Algae. Int J Mol Sci 2023; 24:ijms24032537. [PMID: 36768860 PMCID: PMC9916717 DOI: 10.3390/ijms24032537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Ascorbate (Asc) is a multifunctional metabolite essential for various cellular processes in plants and animals. The best-known property of Asc is to scavenge reactive oxygen species (ROS), in a highly regulated manner. Besides being an effective antioxidant, Asc also acts as a chaperone for 2-oxoglutarate-dependent dioxygenases that are involved in the hormone metabolism of plants and the synthesis of various secondary metabolites. Asc also essential for the epigenetic regulation of gene expression, signaling and iron transport. Thus, Asc affects plant growth, development, and stress resistance via various mechanisms. In this review, the intricate relationship between Asc and photosynthesis in plants and algae is summarized in the following major points: (i) regulation of Asc biosynthesis by light, (ii) interaction between photosynthetic and mitochondrial electron transport in relation to Asc biosynthesis, (iii) Asc acting as an alternative electron donor of photosystem II, (iv) Asc inactivating the oxygen-evolving complex, (v) the role of Asc in non-photochemical quenching, and (vi) the role of Asc in ROS management in the chloroplast. The review also discusses differences in the regulation of Asc biosynthesis and the effects of Asc on photosynthesis in algae and vascular plants.
Collapse
|
7
|
Matos IF, Morales LMM, Santana DB, Silva GMC, Gomes MMDA, Ayub RA, Costa JH, de Oliveira JG. Ascorbate synthesis as an alternative electron source for mitochondrial respiration: Possible implications for the plant performance. FRONTIERS IN PLANT SCIENCE 2022; 13:987077. [PMID: 36507441 PMCID: PMC9727407 DOI: 10.3389/fpls.2022.987077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/31/2022] [Indexed: 06/01/2023]
Abstract
The molecule vitamin C, in the chemical form of ascorbic acid (AsA), is known to be essential for the metabolism of humans and animals. Humans do not produce AsA, so they depend on plants as a source of vitamin C for their food. The AsA synthesis pathway occurs partially in the cytosol, but the last oxidation step is physically linked to the respiratory chain of plant mitochondria. This oxidation step is catalyzed by l-galactono-1,4-lactone dehydrogenase (l-GalLDH). This enzyme is not considered a limiting step for AsA production; however, it presents a distinguishing characteristic: the l-GalLDH can introduce electrons directly into the respiratory chain through cytochrome c (Cytc) and therefore can be considered an extramitochondrial electron source that bypasses the phosphorylating Complex III. The use of Cytc as electron acceptor has been debated in terms of its need for AsA synthesis, but little has been said in relation to its impact on the functioning of the respiratory chain. This work seeks to offer a new view about the possible changes that result of the link between AsA synthesis and the mitochondrial respiration. We hypothesized that some physiological alterations related to low AsA may be not only explained by the deficiency of this molecule but also by the changes in the respiratory function. We discussed some findings showing that respiratory mutants contained changes in AsA synthesis. Besides, recent works that also indicate that the excessive electron transport via l-GalLDH enzyme may affect other respiratory pathways. We proposed that Cytc reduction by l-GalLDH may be part of an alternative respiratory pathway that is active during AsA synthesis. Also, it is proposed that possible links of this pathway with other pathways of alternative electron transport in plant mitochondria may exist. The review suggests potential implications of this relationship, particularly for situations of stress. We hypothesized that this pathway of alternative electron input would serve as a strategy for adaptation of plant respiration to changing conditions.
Collapse
Affiliation(s)
- Isabelle Faria Matos
- Plant Genetic Breeding Laboratory, Center for Agricultural Sciences and Technologies, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | | | - Diederson Bortolini Santana
- Plant Genetic Breeding Laboratory, Center for Agricultural Sciences and Technologies, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Gláucia Michelle Cosme Silva
- Plant Genetic Breeding Laboratory, Center for Agricultural Sciences and Technologies, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Mara Menezes de Assis Gomes
- Plant Genetic Breeding Laboratory, Center for Agricultural Sciences and Technologies, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Ricardo Antônio Ayub
- Laboratory of Biotechnology Applied to Fruit Growing, Department of Phytotechny and Phytosanitary, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - José Hélio Costa
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Jurandi Gonçalves de Oliveira
- Plant Genetic Breeding Laboratory, Center for Agricultural Sciences and Technologies, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
8
|
Garmash EV, Dymova OV, Silina EV, Malyshev RV, Belykh ES, Shelyakin MA, Velegzhaninov IO. AOX1a Expression in Arabidopsis thaliana Affects the State of Chloroplast Photoprotective Systems under Moderately High Light Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223030. [PMID: 36432760 PMCID: PMC9697105 DOI: 10.3390/plants11223030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 06/01/2023]
Abstract
Alternative oxidase (AOX) in the mitochondrial electron transport chain is considered important for sustaining photosynthesis under high light conditions. Here, we examined the effects of the AOX pathway on the state of chloroplast photoprotective systems. Arabidopsis thaliana plants (4 weeks old), comprising three genotypes (wild type [WT], overexpressing [XX-2] and antisense [AS-12] lines for AOX1a), were exposed to moderately high light conditions (MHL, 400 μmol m-2 s-1) in a short-term experiment (8 h). After 8 h of MHL, the WT and XX-2 plants showed stable non-photochemical quenching (qN) and violaxanthin cycle activity. Antisense plants displayed the lowest level of qN and a lower de-epoxidation state (DEPS) relative to plants of the same line after 4-6 h MHL, as well as compared to WT and XX-2 plants after 8 h MHL. The decline in DEPS in AS-12 plants was attributed to an insufficient violaxanthin de-epoxidase activity, which in turn was associated with a decrease in reduced ascorbate levels in the chloroplasts and leaves. Simultaneously, gene expression and the activity of ascorbate peroxidase in the antisense line increased after 8 h of MHL, supporting the compensatory effect of the antioxidant system when AOX1a expression is suppressed. This study emphasizes the role played by AOX in modulating the photoprotection processes and in the maintenance of relationships between mitochondria and chloroplasts by influencing ascorbate content.
Collapse
|
9
|
Advances in Novel Animal Vitamin C Biosynthesis Pathways and the Role of Prokaryote-Based Inferences to Understand Their Origin. Genes (Basel) 2022; 13:genes13101917. [PMID: 36292802 PMCID: PMC9602106 DOI: 10.3390/genes13101917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022] Open
Abstract
Vitamin C (VC) is an essential nutrient required for the optimal function and development of many organisms. VC has been studied for many decades, and still today, the characterization of its functions is a dynamic scientific field, mainly because of its commercial and therapeutic applications. In this review, we discuss, in a comparative way, the increasing evidence for alternative VC synthesis pathways in insects and nematodes, and the potential of myo-inositol as a possible substrate for this metabolic process in metazoans. Methodological approaches that may be useful for the future characterization of the VC synthesis pathways of Caenorhabditis elegans and Drosophila melanogaster are here discussed. We also summarize the current distribution of the eukaryote aldonolactone oxidoreductases gene lineages, while highlighting the added value of studies on prokaryote species that are likely able to synthesize VC for both the characterization of novel VC synthesis pathways and inferences on the complex evolutionary history of such pathways. Such work may help improve the industrial production of VC.
Collapse
|
10
|
Integrative Seed and Leaf Treatment with Ascorbic Acid Extends the Planting Period by Improving Tolerance to Late Sowing Influences in Parsley. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Abnormal production of reactive oxygen species (ROS) is an undesirable event which occurs in plants due to stress. To meet this event, plants synthesize ROS-neutralizing compounds, including the non-enzymatic oxidant scavenger known as vitamin C: ascorbic acid (AsA). In addition to scavenging ROS, AsA modulates many vital functions in stressed or non-stressed plants. Thus, two-season (2018/2019 and 2019/2020) trials were conducted to study the effect of integrative treatment (seed soaking + foliar spray) using 1.0 or 2.0 mM AsA vs. distilled water (control) on the growth, seed yield, and oil yield of parsley plants under three sowing dates (SDs; November, December, and January, which represent adverse conditions of late sowing) vs. October as the optimal SD (control). The ion balance, osmotic-modifying compounds, and different antioxidants were also studied. The experimental layout was a split plot in a completely randomized block design. Late sowing (December and January) noticeably reduced growth traits, seed and oil yield components, and chlorophyll and nutrient contents. However, soluble sugar, proline, and AsA contents were significantly increased along with the activities of catalase (CAT) and superoxide dismutase (SOD). Under late sowing conditions, the use of AsA significantly increased growth, different yields, essential oil fractions, CAT and SOD activities, and contents of chlorophylls, nutrients, soluble sugars, free proline, and AsA. The interaction treatments of SDs and AsA concentrations indicated that AsA at a concentration of 2 mM was more efficient in conferring greater tolerance to adverse conditions of late sowing in parsley plants. Therefore, this study recommends 2.0 mM AsA for integrative (seed soaking + foliar spraying) treatment to prolong the sowing period of parsley seeds (from October up to December) and avoid damage caused by adverse conditions of late sowing.
Collapse
|
11
|
Multi-Fold Enhancement of Tocopherol Yields Employing High CO2 Supplementation and Nitrate Limitation in Native Isolate Monoraphidium sp. Cells 2022; 11:cells11081315. [PMID: 35455994 PMCID: PMC9032582 DOI: 10.3390/cells11081315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Tocopherols are the highly active form of the antioxidant molecules involved in scavenging of free radicals and protect the cell membranes from reactive oxygen species (ROS). In the present study, we focused on employing carbon supplementation with varying nitrate concentrations to enhance the total tocopherol yields in the native isolate Monoraphidium sp. CABeR41. The total tocopherol productivity of NRHC (Nitrate replete + 3% CO2) supplemented was (306.14 µg·L−1 d−1) which was nearly 2.5-fold higher compared to NRVLC (Nitrate replete + 0.03% CO2) (60.35 µg·L−1 d−1). The best tocopherol productivities were obtained in the NLHC (Nitrate limited + 3% CO2) supplemented cells (734.38 µg·L−1 d−1) accompanied by a significant increase in cell biomass (2.65-fold) and total lipids (6.25-fold). Further, global metabolomics using gas chromatography-mass spectrometry (GC-MS) was done in the defined conditions to elucidate the molecular mechanism during tocopherol accumulation. In the present study, the Monoraphidium sp. responded to nitrogen limitation by increase in nitrogen assimilation, with significant upregulation in gamma-Aminobutyric acid (GABA). Moreover, the tricarboxylic acid (TCA) cycle upregulation depicted increased availability of carbon skeletons and reducing power, which is leading to increased biomass yields along with the other biocommodities. In conclusion, our study depicts valorization of carbon dioxide as a cost-effective alternative for the enhancement of biomass along with tocopherols and other concomitant products like lipids and carotenoids in the indigenous strain Monoraphidium sp., as an industrial potential strain with relevance in nutraceuticals and pharmaceuticals.
Collapse
|
12
|
Abstract
Ascorbate is the most abundant soluble antioxidant in plants, and its concentration is enhanced under high-light and other abiotic stresses. One of the main functions of ascorbate is the detoxification of reactive oxygen species, as ascorbate-deficient plants are highly sensitive to high-light-induced photooxidative stress. Its antioxidative role in plants is further complemented by the presence of ascorbate peroxidases, as well as enzymes that recycle ascorbate from its oxidized forms. In parallel with ascorbate biosynthesis, the expression and activity of these enzymes are enhanced by photooxidative stress. Thus, ascorbate metabolism plays a key role in photooxidative stress acclimation. Herein, the present authors' preferred protocols for the application of high-light stress and the measurement of ascorbate and the activity of related enzymes are described.
Collapse
Affiliation(s)
- Takanori Maruta
- Department of Life Sciences, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan.
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan.
| | - Takahiro Ishikawa
- Department of Life Sciences, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan
| |
Collapse
|
13
|
Tanaka M, Takahashi R, Hamada A, Terai Y, Ogawa T, Sawa Y, Ishikawa T, Maruta T. Distribution and Functions of Monodehydroascorbate Reductases in Plants: Comprehensive Reverse Genetic Analysis of Arabidopsis thaliana Enzymes. Antioxidants (Basel) 2021; 10:antiox10111726. [PMID: 34829597 PMCID: PMC8615211 DOI: 10.3390/antiox10111726] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Monodehydroascorbate reductase (MDAR) is an enzyme involved in ascorbate recycling. Arabidopsis thaliana has five MDAR genes that encode two cytosolic, one cytosolic/peroxisomal, one peroxisomal membrane-attached, and one chloroplastic/mitochondrial isoform. In contrast, tomato plants possess only three enzymes, lacking the cytosol-specific enzymes. Thus, the number and distribution of MDAR isoforms differ according to plant species. Moreover, the physiological significance of MDARs remains poorly understood. In this study, we classify plant MDARs into three classes: class I, chloroplastic/mitochondrial enzymes; class II, peroxisomal membrane-attached enzymes; and class III, cytosolic/peroxisomal enzymes. The cytosol-specific isoforms form a subclass of class III and are conserved only in Brassicaceae plants. With some exceptions, all land plants and a charophyte algae, Klebsormidium flaccidum, contain all three classes. Using reverse genetic analysis of Arabidopsis thaliana mutants lacking one or more isoforms, we provide new insight into the roles of MDARs; for example, (1) the lack of two isoforms in a specific combination results in lethality, and (2) the role of MDARs in ascorbate redox regulation in leaves can be largely compensated by other systems. Based on these findings, we discuss the distribution and function of MDAR isoforms in land plants and their cooperation with other recycling systems.
Collapse
Affiliation(s)
- Mio Tanaka
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (M.T.); (A.H.); (T.O.); (T.I.)
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
| | - Ryuki Takahashi
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
| | - Akane Hamada
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (M.T.); (A.H.); (T.O.); (T.I.)
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
| | - Yusuke Terai
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
| | - Takahisa Ogawa
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (M.T.); (A.H.); (T.O.); (T.I.)
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan
| | - Yoshihiro Sawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
| | - Takahiro Ishikawa
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (M.T.); (A.H.); (T.O.); (T.I.)
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan
| | - Takanori Maruta
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (M.T.); (A.H.); (T.O.); (T.I.)
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan; (R.T.); (Y.T.); (Y.S.)
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Shimane, Japan
- Correspondence: ; Tel.: +81-882-32-6585
| |
Collapse
|
14
|
Bassi R, Dall'Osto L. Dissipation of Light Energy Absorbed in Excess: The Molecular Mechanisms. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:47-76. [PMID: 34143647 DOI: 10.1146/annurev-arplant-071720-015522] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Light is essential for photosynthesis. Nevertheless, its intensity widely changes depending on time of day, weather, season, and localization of individual leaves within canopies. This variability means that light collected by the light-harvesting system is often in excess with respect to photon fluence or spectral quality in the context of the capacity of photosynthetic metabolism to use ATP and reductants produced from the light reactions. Absorption of excess light can lead to increased production of excited, highly reactive intermediates, which expose photosynthetic organisms to serious risks of oxidative damage. Prevention and management of such stress are performed by photoprotective mechanisms, which operate by cutting down light absorption, limiting the generation of redox-active molecules, or scavenging reactive oxygen species that are released despite the operation of preventive mechanisms. Here, we describe the major physiological and molecular mechanisms of photoprotection involved in the harmless removal of the excess light energy absorbed by green algae and land plants. In vivo analyses of mutants targeting photosynthetic components and the enhanced resolution of spectroscopic techniques have highlighted specific mechanisms protecting the photosynthetic apparatus from overexcitation. Recent findings unveil a network of multiple interacting elements, the reaction times of which vary from a millisecond to weeks, that continuously maintain photosynthetic organisms within the narrow safety range between efficient light harvesting and photoprotection.
Collapse
Affiliation(s)
- Roberto Bassi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| | - Luca Dall'Osto
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
15
|
Porcher A, Guérin V, Leduc N, Lebrec A, Lothier J, Vian A. Ascorbate-glutathione pathways mediated by cytokinin regulate H2O2 levels in light-controlled rose bud burst. PLANT PHYSIOLOGY 2021; 186:910-928. [PMID: 33711160 PMCID: PMC8195510 DOI: 10.1093/plphys/kiab123] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 05/10/2023]
Abstract
Rosebush (Rosa "Radrazz") plants are an excellent model to study light control of bud outgrowth since bud outgrowth only arises in the presence of light and never occurs in darkness. Recently, we demonstrated high levels of hydrogen peroxide (H2O2) present in the quiescent axillary buds strongly repress the outgrowth process. In light, the outgrowing process occurred after H2O2 scavenging through the promotion of Ascorbic acid-Glutathione (AsA-GSH)-dependent pathways and the continuous decrease in H2O2 production. Here we showed Respiratory Burst Oxidase Homologs expression decreased in buds during the outgrowth process in light. In continuous darkness, the same decrease was observed although H2O2 remained at high levels in axillary buds, as a consequence of the strong inhibition of AsA-GSH cycle and GSH synthesis preventing the outgrowth process. Cytokinin (CK) application can evoke bud outgrowth in light as well as in continuous darkness. Furthermore, CKs are the initial targets of light in the photocontrol process. We showed CK application to cultured buds in darkness decreases bud H2O2 to a level that is similar to that observed in light. Furthermore, this treatment restores GSH levels and engages bud burst. We treated plants with buthionine sulfoximine, an inhibitor of GSH synthesis, to solve the sequence of events involving H2O2/GSH metabolisms in the photocontrol process. This treatment prevented bud burst, even in the presence of CK, suggesting the sequence of actions starts with the positive CK effect on GSH that in turn stimulates H2O2 scavenging, resulting in initiation of bud outgrowth.
Collapse
Affiliation(s)
- Alexis Porcher
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Vincent Guérin
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Nathalie Leduc
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Anita Lebrec
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Jérémy Lothier
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Alain Vian
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| |
Collapse
|
16
|
Tang C, Xie J, Lv J, Li J, Zhang J, Wang C, Liang G. Alleviating damage of photosystem and oxidative stress from chilling stress with exogenous zeaxanthin in pepper (Capsicum annuum L.) seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:395-409. [PMID: 33740679 DOI: 10.1016/j.plaphy.2021.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/05/2021] [Indexed: 05/03/2023]
Abstract
As a typical thermophilous vegetable, the growth and yield of peppers are easily limited by chilling conditions. Zeaxanthin, a crucial carotenoid, positively regulates plant abiotic stress responses. Therefore, this study investigated the regulatory mechanisms of zeaxanthin-induced chilling tolerance in peppers. The results indicated that the pretreatment with zeaxanthin effectively alleviated chilling damage in pepper leaves and increased the plant fresh weight and photosynthetic pigment content under chilling stress. Additionally, alterations in photosynthetic chlorophyll fluorescence parameters and chlorophyll fluorescence induction curves after zeaxanthin treatment highlighted the participation of zeaxanthin in improving the photosystem response to chilling stress by heightening the quenching of excess excitation energy and protection of the photosynthetic electron transport system. In chill-stressed plants, zeaxanthin treatment also enhanced antioxidant enzyme activity and transcript expression, and reduced hydrogen peroxide (H2O2) and superoxide anion (O2•-) content, resulting in a decrease in biological membrane damage. Additionally, exogenous zeaxanthin upregulated the expression levels of key genes encoding β-carotene hydroxylase (CaCA1, CaCA2), zeaxanthin epoxidase (CaZEP) and violaxanthin de-epoxidase (CaVDE), and promoted the synthesis of endogenous zeaxanthin during chilling stress. Collectively, exogenous zeaxanthin pretreatment enhances plant tolerance to chilling by improving the photosystem process, increasing oxidation resistance, and inducing alterations in endogenous zeaxanthin metabolism.
Collapse
Affiliation(s)
- Chaonan Tang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China.
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Cheng Wang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| |
Collapse
|
17
|
Podmaniczki A, Nagy V, Vidal-Meireles A, Tóth D, Patai R, Kovács L, Tóth SZ. Ascorbate inactivates the oxygen-evolving complex in prolonged darkness. PHYSIOLOGIA PLANTARUM 2021; 171:232-245. [PMID: 33215703 DOI: 10.1111/ppl.13278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Ascorbate (Asc, vitamin C) is an essential metabolite participating in multiple physiological processes of plants, including environmental stress management and development. In this study, we acquired knowledge on the role of Asc in dark-induced leaf senescence using Arabidopsis thaliana as a model organism. One of the earliest effects of prolonged darkness is the inactivation of oxygen-evolving complexes (OEC) as demonstrated here by fast chlorophyll a fluorescence and thermoluminescence measurements. We found that inactivation of OEC due to prolonged darkness was attenuated in the Asc-deficient vtc2-4 mutant. On the other hand, the severe photosynthetic phenotype of a psbo1 knockout mutant, lacking the major extrinsic OEC subunit PSBO1, was further aggravated upon a 24-h dark treatment. The psbr mutant, devoid of the PSBR subunit of OEC, performed only slightly disturbed photosynthetic activity under normal growth conditions, whereas it showed a strongly diminished B thermoluminescence band upon dark treatment. We have also generated a double psbo1 vtc2 mutant, and it showed a slightly milder photosynthetic phenotype than the single psbo1 mutant. Our results, therefore, suggest that Asc leads to the inactivation of OEC in prolonged darkness by over-reducing the Mn-complex that is probably enabled by a dark-induced dissociation of the extrinsic OEC subunits. Our study is an example that Asc may negatively affect certain cellular processes and thus its concentration and localization need to be highly controlled.
Collapse
Affiliation(s)
- Anna Podmaniczki
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Valéria Nagy
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | | | - Dávid Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Roland Patai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
18
|
Gasperl A, Balogh E, Boldizsár Á, Kemeter N, Pirklbauer R, Möstl S, Kalapos B, Szalai G, Müller M, Zellnig G, Kocsy G. Comparison of Light Condition-Dependent Differences in the Accumulation and Subcellular Localization of Glutathione in Arabidopsis and Wheat. Int J Mol Sci 2021; 22:E607. [PMID: 33435361 PMCID: PMC7827723 DOI: 10.3390/ijms22020607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/21/2022] Open
Abstract
This study aimed to clarify whether the light condition-dependent changes in the redox state and subcellular distribution of glutathione were similar in the dicotyledonous model plant Arabidopsis (wild-type, ascorbate- and glutathione-deficient mutants) and the monocotyledonous crop species wheat (Chinese Spring variety). With increasing light intensity, the amount of its reduced (GSH) and oxidized (GSSG) form and the GSSG/GSH ratio increased in the leaf extracts of both species including all genotypes, while far-red light increased these parameters only in wheat except for GSH in the GSH-deficient Arabidopsis mutant. Based on the expression changes of the glutathione metabolism-related genes, light intensity influences the size and redox state of the glutathione pool at the transcriptional level in wheat but not in Arabidopsis. In line with the results in leaf extracts, a similar inducing effect of both light intensity and far-red light was found on the total glutathione content at the subcellular level in wheat. In contrast to the leaf extracts, the inducing influence of light intensity on glutathione level was only found in the cell compartments of the GSH-deficient Arabidopsis mutant, and far-red light increased it in both mutants. The observed general and genotype-specific, light-dependent changes in the accumulation and subcellular distribution of glutathione participate in adjusting the redox-dependent metabolism to the actual environmental conditions.
Collapse
Affiliation(s)
- Anna Gasperl
- Institute of Biology, Plant Sciences, University of Graz, NAWI Graz, 8010 Graz, Austria; (A.G.); (N.K.); (R.P.); (S.M.); (M.M.); (G.Z.)
| | - Eszter Balogh
- Agricultural Institute, ELKH Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.B.); (Á.B.); (B.K.); (G.S.)
| | - Ákos Boldizsár
- Agricultural Institute, ELKH Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.B.); (Á.B.); (B.K.); (G.S.)
| | - Nadine Kemeter
- Institute of Biology, Plant Sciences, University of Graz, NAWI Graz, 8010 Graz, Austria; (A.G.); (N.K.); (R.P.); (S.M.); (M.M.); (G.Z.)
| | - Richard Pirklbauer
- Institute of Biology, Plant Sciences, University of Graz, NAWI Graz, 8010 Graz, Austria; (A.G.); (N.K.); (R.P.); (S.M.); (M.M.); (G.Z.)
| | - Stefan Möstl
- Institute of Biology, Plant Sciences, University of Graz, NAWI Graz, 8010 Graz, Austria; (A.G.); (N.K.); (R.P.); (S.M.); (M.M.); (G.Z.)
| | - Balázs Kalapos
- Agricultural Institute, ELKH Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.B.); (Á.B.); (B.K.); (G.S.)
| | - Gabriella Szalai
- Agricultural Institute, ELKH Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.B.); (Á.B.); (B.K.); (G.S.)
| | - Maria Müller
- Institute of Biology, Plant Sciences, University of Graz, NAWI Graz, 8010 Graz, Austria; (A.G.); (N.K.); (R.P.); (S.M.); (M.M.); (G.Z.)
| | - Günther Zellnig
- Institute of Biology, Plant Sciences, University of Graz, NAWI Graz, 8010 Graz, Austria; (A.G.); (N.K.); (R.P.); (S.M.); (M.M.); (G.Z.)
| | - Gábor Kocsy
- Agricultural Institute, ELKH Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.B.); (Á.B.); (B.K.); (G.S.)
| |
Collapse
|
19
|
Xiao M, Li Z, Zhu L, Wang J, Zhang B, Zheng F, Zhao B, Zhang H, Wang Y, Zhang Z. The Multiple Roles of Ascorbate in the Abiotic Stress Response of Plants: Antioxidant, Cofactor, and Regulator. FRONTIERS IN PLANT SCIENCE 2021; 12:598173. [PMID: 33912200 PMCID: PMC8072462 DOI: 10.3389/fpls.2021.598173] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/17/2021] [Indexed: 05/13/2023]
Abstract
Ascorbate (ASC) plays a critical role in plant stress response. The antioxidant role of ASC has been well-studied, but there are still several confusing questions about the function of ASC in plant abiotic stress response. ASC can scavenge reactive oxygen species (ROS) and should be helpful for plant stress tolerance. But in some cases, increasing ASC content impairs plant abiotic stress tolerance, whereas, inhibiting ASC synthesis or regeneration enhances plant stress tolerance. This confusing phenomenon indicates that ASC may have multiple roles in plant abiotic stress response not just as an antioxidant, though many studies more or less ignored other roles of ASC in plant. In fact, ACS also can act as the cofactor of some enzymes, which are involved in the synthesis, metabolism, and modification of a variety of substances, which has important effects on plant stress response. In addition, ASC can monitor and effectively regulate cell redox status. Therefore, we believe that ASC has atleast triple roles in plant abiotic stress response: as the antioxidant to scavenge accumulated ROS, as the cofactor to involve in plant metabolism, or as the regulator to coordinate the actions of various signal pathways under abiotic stress. The role of ASC in plant abiotic stress response is important and complex. The detail role of ASC in plant abiotic stress response should be analyzed according to specific physiological process in specific organ. In this review, we discuss the versatile roles of ASC in the response of plants to abiotic stresses.
Collapse
Affiliation(s)
- Minggang Xiao
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zixuan Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Li Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Jiayi Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Bo Zhang
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Fuyu Zheng
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Beiping Zhao
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Yujie Wang
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Yujie Wang,
| | - Zhijin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- *Correspondence: Zhijin Zhang,
| |
Collapse
|
20
|
Loi M, Villani A, Paciolla F, Mulè G, Paciolla C. Challenges and Opportunities of Light-Emitting Diode (LED) as Key to Modulate Antioxidant Compounds in Plants. A Review. Antioxidants (Basel) 2020; 10:antiox10010042. [PMID: 33396461 PMCID: PMC7824119 DOI: 10.3390/antiox10010042] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 02/08/2023] Open
Abstract
Plant antioxidants are important compounds involved in plant defense, signaling, growth, and development. The quantity and quality of such compounds is genetically driven; nonetheless, light is one of the factors that strongly influence their synthesis and accumulation in plant tissues. Indeed, light quality affects the fitness of the plant, modulating its antioxidative profile, a key element to counteract the biotic and abiotic stresses. With this regard, light-emitting diodes (LEDs) are emerging as a powerful technology which allows the selection of specific wavelengths and intensities, and therefore the targeted accumulation of plant antioxidant compounds. Despite the unique advantages of such technology, LED application in the horticultural field is still at its early days and several aspects still need to be investigated. This review focused on the most recent outcomes of LED application to modulate the antioxidant compounds of plants, with particular regard to vitamin C, phenols, chlorophyll, carotenoids, and glucosinolates. Additionally, future challenges and opportunities in the use of LED technology in the growth and postharvest storage of fruits and vegetables were also addressed to give a comprehensive overview of the future applications and trends of research.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
| | - Alessandra Villani
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Francesco Paciolla
- Automation Engineering, Polytechnic of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
| | - Costantino Paciolla
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
21
|
Exogenous Ascorbic Acid Induced Chilling Tolerance in Tomato Plants Through Modulating Metabolism, Osmolytes, Antioxidants, and Transcriptional Regulation of Catalase and Heat Shock Proteins. PLANTS 2020; 9:plants9040431. [PMID: 32244604 PMCID: PMC7238171 DOI: 10.3390/plants9040431] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 12/26/2022]
Abstract
Chilling, a sort of cold stress, is a typical abiotic ecological stress that impacts the development as well as the growth of crops. The present study was carried to investigate the role of ascorbic acid root priming in enhancing tolerance of tomato seedlings against acute chilling stress. The treatments included untreated control, ascorbic acid-treated plants (AsA; 0.5 mM), acute chilling-stressed plants (4 °C), and chilling stressed seedlings treated by ascorbic acid. Exposure to acute chilling stress reduced growth in terms of length, fresh and dry biomass, pigment synthesis, and photosynthesis. AsA was effective in mitigating the injurious effects of chilling stress to significant levels when supplied at 0.5 mM concentrations. AsA priming reduced the chilling mediated oxidative damage by lowering the electrolyte leakage, lipid peroxidation, and hydrogen peroxide. Moreover, up regulating the activity of enzymatic components of the antioxidant system. Further, 0.5 mM AsA proved beneficial in enhancing ions uptake in normal and chilling stressed seedlings. At the gene expression level, AsA significantly lowered the expression level of CAT and heat shock protein genes. Therefore, we theorize that the implementation of exogenous AsA treatment reduced the negative effects of severe chilling stress on tomato.
Collapse
|
22
|
Ruhil K, Prasad SM. Nostoc muscorum and Phormidium foveolarum differentially respond to butachlor and UV-B stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:841-856. [PMID: 32255944 PMCID: PMC7113359 DOI: 10.1007/s12298-019-00754-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/28/2019] [Accepted: 12/27/2019] [Indexed: 06/11/2023]
Abstract
Present study deals with responses of two cyanobacteria viz. Nostoc muscorum and Phormidium foveolarum against butachlor [2-chloro-2,6-diethyl-N-(butoxymethyl) acetanilide] (low dose; 5 µg mL-1 and high dose; 10 µg mL-1) and UV-B (7.2 kJ m-2) alone, and in combination. Butachlor and UV-B exposure, alone and in combination, suppressed growth of both the cyanobacteria. This was accompanied by inhibitory effect on whole cell oxygen evolution and photosynthetic electron transport activities. Both the stressors induced the oxidative stress as there was significant increase in superoxide radical (O2 ·-) and hydrogen peroxide (H2O2) contents resulting into increased lipid peroxidation and electrolyte leakage. In N. muscorum, low dose of butachlor and UV-B alone increased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), while activity of all these enzymatic antioxidants declined significantly at treatments with high dose of butachlor alone, and with low and high doses of butachlor and UV-B in combination. In P. foveolarum, enhanced activity of SOD, CAT and POD (except POD at high dose of butachlor and UV-B combination) was noticed. Ascorbate level in N. muscorum declined progressively with increasing intensity of stress while in P. foveolarum varied response was noticed. Proline contents increased progressively under tested stress in both the organisms. Overall results suggest that N. muscorum was more sensitive than P. foveolarum against butachlor and UV-B stresses. Hence, P. foveolarum may be preferred in paddy field for sustainable agriculture.
Collapse
Affiliation(s)
- Kamal Ruhil
- Lab No. 114, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067 India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002 India
| |
Collapse
|
23
|
Yu L, Gao B, Li Y, Tan W, Li M, Zhou L, Peng C, Xiao L, Liu Y. The synthesis of strigolactone is affected by endogenous ascorbic acid in transgenic rice for l-galactono-1, 4-lactone dehydrogenase suppressed or overexpressing. JOURNAL OF PLANT PHYSIOLOGY 2020; 246-247:153139. [PMID: 32114415 DOI: 10.1016/j.jplph.2020.153139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Rice tillering, which determines the panicle number per plant, is an important agronomic trait for grain production. In higher plants, ascorbic acid (Asc) plays a major role in ROS-scavenging activity. l-Galactono-1, 4-lactone dehydrogenase (GalLDH, EC1.3.2.3) is an enzyme that catalyzes the last step of Asc biosynthesis in plants. Previously, we have reported that homozygous L-GalLDH-suppressed transgenic rice plants (GI) display a reduced tiller number and a lower level of foliar carotenoids (Car) compared with wild type. Strigolactones (SL), which play an important role in the suppression of shoot branching, are synthesized in the roots of rice plant using Car as substrates. In this paper, the relationship between Asc, SL, the accumulation of H2O2, changes in antioxidant capacity, enzyme activities, and gene transcriptions related to the synthesis of SL were analyzed in transgenic rice plants for L-GalLDH suppressed (GI-1 and GI-2) and overexpressing (GO-2). The results showed that the altered level of Asc in the L-GalLDH transgenic rice plants leads to a change in redox homeostasis, resulting in a marked accumulation of H2O2 and decreased antioxidant capacity in GI-1 and GI-2, but lower H2O2 content and increased antioxidant capacity in GO-2. Meanwhile, the altered level of Asc also leads to altered enzyme activities and gene transcript abundances related to SL synthesis in L-GalLDH transgenics. These observations support the conclusion that Asc influences tiller number in the L-GalLDH transgenics by affecting H2O2 accumulation and antioxidant capacity, and altering those enzyme activities and gene transcript abundances related to SL synthesis.
Collapse
Affiliation(s)
- Le Yu
- College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Bin Gao
- College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Yelin Li
- College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Weijian Tan
- College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Mingkang Li
- College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Liping Zhou
- College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Changlian Peng
- College of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yonghai Liu
- College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, Guangdong, China.
| |
Collapse
|
24
|
Foyer CH, Kyndt T, Hancock RD. Vitamin C in Plants: Novel Concepts, New Perspectives, and Outstanding Issues. Antioxid Redox Signal 2020; 32:463-485. [PMID: 31701753 DOI: 10.1089/ars.2019.7819] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Significance: The concept that vitamin C (l-ascorbic acid) is at the heart of the peroxide processing and redox signaling hub in plants is well established, but our knowledge of the precise mechanisms involved remains patchy at best. Recent Advances: Ascorbate participates in the multifaceted signaling pathways initiated by both reactive oxygen species (ROS) and reactive nitrogen species. Crucially, the apoplastic ascorbate/dehydroascorbate (DHA) ratio that is regulated by ascorbate oxidase (AO) sculpts the apoplastic ROS (apoROS) signal that controls polarized cell growth, biotic and abiotic defences, and cell to cell signaling, as well as exerting control over the light-dependent regulation of photosynthesis. Critical Issues: Here we re-evaluate the roles of ascorbate in photosynthesis and other processes, addressing the question of how much we really know about the regulation of ascorbate homeostasis and its functions in plants, or how AO is regulated to modulate apoROS signals. Future Directions: The role of microRNAs in the regulation of AO activity in relation to stress perception and signaling must be resolved. Similarly, the molecular characterization of ascorbate transporters and mechanistic links between photosynthetic and respiratory electron transport and ascorbate synthesis/homeostasis are a prerequisite to understanding ascorbate homeostasis and function. Similarly, there is little in vivo evidence for ascorbate functions as an enzyme cofactor.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Tina Kyndt
- Department Biotechnology, University of Ghent, Ghent, Belgium
| | - Robert D Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
25
|
Yu L, Zhang Q, Lu L, Gao H, Liu Q, Liu Y, Yang C, Peng C. The role of ascorbic acid in rice leaf senescence and photo-carbon imbalance. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:263-278. [PMID: 32029065 DOI: 10.1071/fp19248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Leaf senescence is an important factor that affects crop yield traits and is regulated by various factors. Here, we propose the photo-carbon imbalance hypothesis to explain the mechanism of rice leaf senescence. The main idea of this hypothesis is that carbon assimilation decreases faster than the absorption of light energy in photosynthesis during the late stages of rice growth, which ultimately results in leaf senescence. Our results indicate that endogenous ascorbic acid (Asc) plays an important role in leaf senescence by affecting the expression of senescence genes, thereby influencing photosynthetic capacity and consequently grain yield. The effects of exogenous Asc and methyl jasmonate (MeJA) on photosynthetic capability implied that the balance between photoreaction and carbon assimilation is regulated by exogenous antioxidants or accelerators of senescence. The results of the shading treatments indicated that shading will mitigate the photo-carbon imbalance and improve photosynthetic capacity, resulting in increased yields. Increasing antioxidant concentrations can enhance the reactive oxygen species (ROS) scavenging capacity, whereas shading reduces excess light energy, which may help to restore the photo-carbon balance.
Collapse
Affiliation(s)
- Le Yu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Sciences, South China Normal University, 510631, Guangzhou, China; and College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, China
| | - Qilei Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Lina Lu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Hui Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Yonghai Liu
- College of Life Sciences, Zhaoqing University, Zhaoqing, 526061, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Changlian Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Sciences, South China Normal University, 510631, Guangzhou, China; and Corresponding author.
| |
Collapse
|
26
|
Ascorbate and Thiamin: Metabolic Modulators in Plant Acclimation Responses. PLANTS 2020; 9:plants9010101. [PMID: 31941157 PMCID: PMC7020166 DOI: 10.3390/plants9010101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Cell compartmentalization allows incompatible chemical reactions and localised responses to occur simultaneously, however, it also requires a complex system of communication between compartments in order to maintain the functionality of vital processes. It is clear that multiple such signals must exist, yet little is known about the identity of the key players orchestrating these interactions or about the role in the coordination of other processes. Mitochondria and chloroplasts have a considerable number of metabolites in common and are interdependent at multiple levels. Therefore, metabolites represent strong candidates as communicators between these organelles. In this context, vitamins and similar small molecules emerge as possible linkers to mediate metabolic crosstalk between compartments. This review focuses on two vitamins as potential metabolic signals within the plant cell, vitamin C (L-ascorbate) and vitamin B1 (thiamin). These two vitamins demonstrate the importance of metabolites in shaping cellular processes working as metabolic signals during acclimation processes. Inferences based on the combined studies of environment, genotype, and metabolite, in order to unravel signaling functions, are also highlighted.
Collapse
|
27
|
Vidal-Meireles A, Tóth D, Kovács L, Neupert J, Tóth SZ. Ascorbate Deficiency Does Not Limit Nonphotochemical Quenching in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2020; 182:597-611. [PMID: 31662419 PMCID: PMC6945847 DOI: 10.1104/pp.19.00916] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/21/2019] [Indexed: 05/06/2023]
Abstract
Ascorbate (Asc; vitamin C) plays essential roles in development, signaling, hormone biosynthesis, regulation of gene expression, stress resistance, and photoprotection. In vascular plants, violaxanthin de-epoxidase requires Asc as a reductant; thereby, Asc is required for the energy-dependent component of nonphotochemical quenching (NPQ). To assess the role of Asc in NPQ in green algae, which are known to contain low amounts of Asc, we searched for an insertional Chlamydomonas reinhardtii mutant affected in theVTC2 gene encoding GDP-l-Gal phosphorylase, which catalyzes the first committed step in the biosynthesis of Asc. The Crvtc2-1 knockout mutant was viable and, depending on the growth conditions, contained 10% to 20% Asc relative to its wild type. When C. reinhardtii was grown photomixotrophically at moderate light, the zeaxanthin-dependent component of NPQ emerged upon strong red illumination both in the Crvtc2-1 mutant and in its wild type. Deepoxidation was unaffected by Asc deficiency, demonstrating that the Chlorophycean violaxanthin de-epoxidase found in C. reinhardtii does not require Asc as a reductant. The rapidly induced, energy-dependent NPQ component characteristic of photoautotrophic C. reinhardtii cultures grown at high light was not limited by Asc deficiency either. On the other hand, a reactive oxygen species-induced photoinhibitory NPQ component was greatly enhanced upon Asc deficiency, both under photomixotrophic and photoautotrophic conditions. These results demonstrate that Asc has distinct roles in NPQ formation in C. reinhardtii as compared to vascular plants.
Collapse
Affiliation(s)
| | - Dávid Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Juliane Neupert
- Max-Planck Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
28
|
Bilska K, Wojciechowska N, Alipour S, Kalemba EM. Ascorbic Acid-The Little-Known Antioxidant in Woody Plants. Antioxidants (Basel) 2019; 8:E645. [PMID: 31847411 PMCID: PMC6943661 DOI: 10.3390/antiox8120645] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen species (ROS) are constantly produced by metabolically active plant cells. The concentration of ROS may determine their role, e.g., they may participate in signal transduction or cause oxidative damage to various cellular components. To ensure cellular homeostasis and minimize the negative effects of excess ROS, plant cells have evolved a complex antioxidant system, which includes ascorbic acid (AsA). AsA is a multifunctional metabolite with strong reducing properties that allows the neutralization of ROS and the reduction of molecules oxidized by ROS in cooperation with glutathione in the Foyer-Halliwell-Asada cycle. Antioxidant enzymes involved in AsA oxidation and reduction switches evolved uniquely in plants. Most experiments concerning the role of AsA have been performed on herbaceous plants. In addition to extending our understanding of this role in additional taxa, fundamental knowledge of the complex life cycle stages of woody plants, including their development and response to environmental factors, will enhance their breeding and amend their protection. Thus, the role of AsA in woody plants compared to that in nonwoody plants is the focus of this paper. The role of AsA in woody plants has been studied for nearly 20 years. Studies have demonstrated that AsA is important for the growth and development of woody plants. Substantial changes in AsA levels, as well as reduction and oxidation switches, have been reported in various physiological processes and transitions described mainly in leaves, fruits, buds, and seeds. Evidently, AsA exhibits a dual role in the photoprotection of the photosynthetic apparatus in woody plants, which are the most important scavengers of ozone. AsA is associated with proper seed production and, thus, woody plant reproduction. Similarly, an important function of AsA is described under drought, salinity, temperature, light stress, and biotic stress. This report emphasizes the involvement of AsA in the ecological advantages, such as nutrition recycling due to leaf senescence, of trees and shrubs compared to nonwoody plants.
Collapse
Affiliation(s)
- Karolina Bilska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (K.B.); (N.W.); (S.A.)
| | - Natalia Wojciechowska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (K.B.); (N.W.); (S.A.)
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Shirin Alipour
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (K.B.); (N.W.); (S.A.)
- Department of Forestry, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
| | - Ewa Marzena Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (K.B.); (N.W.); (S.A.)
| |
Collapse
|
29
|
Yeh HL, Lin TH, Chen CC, Cheng TX, Chang HY, Lee TM. Monodehydroascorbate Reductase Plays a Role in the Tolerance of Chlamydomonas reinhardtii to Photooxidative Stress. PLANT & CELL PHYSIOLOGY 2019; 60:2167-2179. [PMID: 31198969 DOI: 10.1093/pcp/pcz110] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/21/2019] [Indexed: 05/26/2023]
Abstract
Monodehydroascorbate reductase (MDAR; EC 1.6.5.4) is one of the key enzymes in the conversion of oxidized ascorbate (AsA) back to reduced AsA in plants. This study investigated the role of MDAR in the tolerance of Chlamydomonas reinhardtii P.A. Dangeard to photooxidative stress by overexpression and downregulation of the CrMDAR1 gene. For overexpression of CrMDAR1 driven by a HSP70A:RBCS2 fusion promoter, the cells survived under very high-intensity light stress (VHL, 1,800 μmol�m-2�s-1), while the survival of CC-400 and vector only control (vector without insert) cells decreased for 1.5 h under VHL stress. VHL increased lipid peroxidation of CC-400 but did not alter lipid peroxidation in CrMDAR1 overexpression lines. Additionally, overexpression of CrMDAR1 showed an increase in viability, CrMDAR1 transcript abundance, enzyme activity and the AsA: dehydroascorbate (DHA) ratio. Next, MDAR was downregulated to examine the essential role of MDAR under high light condition (HL, 1,400 μmol�m-2�s-1). The CrMDAR1 knockdown amiRNA line exhibited a low MDAR transcript abundance and enzyme activity and the survival decreased under HL conditions. Additionally, HL illumination decreased CrMDAR1 transcript abundance, enzyme activity and AsA:DHA ratio of CrMDAR1-downregulation amiRNA lines. Methyl viologen (an O2�- generator), H2O2 and NaCl treatment could induce an increase in CrMDAR1 transcript level. It represents reactive oxygen species are one of the factor inducing CrMDAR1 gene expression. In conclusion, MDAR plays a role in the tolerance of Chlamydomonas cells to photooxidative stress.
Collapse
Affiliation(s)
- Hui-Ling Yeh
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tsen-Hung Lin
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chi-Chih Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tian-Xing Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsin-Yang Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
30
|
Beaugelin I, Chevalier A, D'Alessandro S, Ksas B, Novák O, Strnad M, Forzani C, Hirt H, Havaux M, Monnet F. OXI1 and DAD Regulate Light-Induced Cell Death Antagonistically through Jasmonate and Salicylate Levels. PLANT PHYSIOLOGY 2019; 180:1691-1708. [PMID: 31123095 PMCID: PMC6752932 DOI: 10.1104/pp.19.00353] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/07/2019] [Indexed: 05/09/2023]
Abstract
Singlet oxygen produced from triplet excited chlorophylls in photosynthesis is a signal molecule that can induce programmed cell death (PCD) through the action of the OXIDATIVE STRESS INDUCIBLE 1 (OXI1) kinase. Here, we identify two negative regulators of light-induced PCD that modulate OXI1 expression: DAD1 and DAD2, homologs of the human antiapoptotic protein DEFENDER AGAINST CELL DEATH. Overexpressing OXI1 in Arabidopsis (Arabidopsis thaliana) increased plant sensitivity to high light and induced early senescence of mature leaves. Both phenomena rely on a marked accumulation of jasmonate and salicylate. DAD1 or DAD2 overexpression decreased OXI1 expression, jasmonate levels, and sensitivity to photooxidative stress. Knock-out mutants of DAD1 or DAD2 exhibited the opposite responses. Exogenous applications of jasmonate upregulated salicylate biosynthesis genes and caused leaf damage in wild-type plants but not in the salicylate biosynthesis mutant Salicylic acid induction-deficient2, indicating that salicylate plays a crucial role in PCD downstream of jasmonate. Treating plants with salicylate upregulated the DAD genes and downregulated OXI1 We conclude that OXI1 and DAD are antagonistic regulators of cell death through modulating jasmonate and salicylate levels. High light-induced PCD thus results from a tight control of the relative activities of these regulating proteins, with DAD exerting a negative feedback control on OXI1 expression.
Collapse
Affiliation(s)
- Inès Beaugelin
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Anne Chevalier
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Stefano D'Alessandro
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Brigitte Ksas
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Céline Forzani
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, F-78000 Versailles, France
| | - Heribert Hirt
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Michel Havaux
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Fabien Monnet
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
- Université d'Avignon et des Pays de Vaucluse, F-84000 Avignon, France
| |
Collapse
|
31
|
Ma R, Zhao X, Xie Y, Ho SH, Chen J. Enhancing lutein productivity of Chlamydomonas sp. via high-intensity light exposure with corresponding carotenogenic genes expression profiles. BIORESOURCE TECHNOLOGY 2019; 275:416-420. [PMID: 30626542 DOI: 10.1016/j.biortech.2018.12.109] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 05/20/2023]
Abstract
The marine microalga Chlamydomonas sp. JSC4 is a potential lutein source with high light tolerance. In this study, light intensity was manipulated to enhance cell growth and lutein production of this microalga. High lutein productivity (5.08 mg/L/d) was achieved under high light irradiation of 625 μmol/m2/s. Further increase in light intensity to 750 μmol/m2/s enhanced the biomass productivity to 1821.5 mg/L/d, but led to a decrease in lutein content. Under high light conditions, most carotenoids and chlorophyll contents decreased, while zeaxanthin and antheraxanthin contents increased. Inspection of gene expression profile shows that the lut1 and zep genes, responsible for lutein synthesis and flow of zeaxanthin into violaxanthin, respectively, were downregulated, while zeaxanthin biosynthesis gene crtZ was upregulated when the microalga was exposed to a high light intensity. This is consistent with the decrease in lutein content and increase in zeaxanthin content under high light exposure.
Collapse
Affiliation(s)
- Ruijuan Ma
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
| | - Xurui Zhao
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
| | - Youping Xie
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China.
| | - Shih-Hsin Ho
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China; State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jianfeng Chen
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
32
|
Tóth SZ, Lőrincz T, Szarka A. Concentration Does Matter: The Beneficial and Potentially Harmful Effects of Ascorbate in Humans and Plants. Antioxid Redox Signal 2018; 29:1516-1533. [PMID: 28974112 DOI: 10.1089/ars.2017.7125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Ascorbate (Asc) is an essential compound both in animals and plants, mostly due to its reducing properties, thereby playing a role in scavenging reactive oxygen species (ROS) and acting as a cofactor in various enzymatic reactions. Recent Advances: Growing number of evidence shows that excessive Asc accumulation may have negative effects on cellular functions both in humans and plants; inter alia it may negatively affect signaling mechanisms, cellular redox status, and contribute to the production of ROS via the Fenton reaction. CRITICAL ISSUES Both plants and humans tightly control cellular Asc levels, possibly via biosynthesis, transport, and degradation, to maintain them in an optimum concentration range, which, among other factors, is essential to minimize the potentially harmful effects of Asc. On the contrary, the Fenton reaction induced by a high-dose Asc treatment in humans enables a potential cancer-selective cell death pathway. FUTURE DIRECTIONS The elucidation of Asc induced cancer selective cell death mechanisms may give us a tool to apply Asc in cancer therapy. On the contrary, the regulatory mechanisms controlling cellular Asc levels are also to be considered, for example, when aiming at generating crops with elevated Asc levels.
Collapse
Affiliation(s)
- Szilvia Z Tóth
- 1 Institute of Plant Biology , Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Tamás Lőrincz
- 2 Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics , Budapest, Hungary
| | - András Szarka
- 2 Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics , Budapest, Hungary
| |
Collapse
|
33
|
Foyer CH. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2018; 154:134-142. [PMID: 30283160 PMCID: PMC6105748 DOI: 10.1016/j.envexpbot.2018.05.003] [Citation(s) in RCA: 388] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 05/18/2023]
Abstract
Reduction-oxidation (redox) reactions, in which electrons move from a donor to an acceptor, are the functional heart of photosynthesis. It is not surprising therefore that reactive oxygen species (ROS) are generated in abundance by photosynthesis, providing a plethora of redox signals as well as functioning as essential regulators of energy and metabolic fluxes. Chloroplasts are equipped with an elaborate and multifaceted protective network that allows photosynthesis to function with high productivity even in resource-limited natural environments. This includes numerous antioxidants with overlapping functions that provide enormous flexibility in redox control. ROS are an integral part of the repertoire of chloroplast signals that are transferred to the nucleus to convey essential information concerning redox pressure within the electron transport chain. Current evidence suggests that there is specificity in the gene-expression profiles triggered by the different ROS signals, so that singlet oxygen triggers programs related to over excitation of photosystem (PS) II while superoxide and hydrogen peroxide promote the expression of other suites of genes that may serve to alleviate electron pressure on the reducing side of PSI. Not all chloroplasts are equal in their signaling functions, with some sub-populations appearing to have better contacts/access to the nucleus than others to promote genetic and epigenetic responses. While the concept that light-induced increases in ROS result in damage to PSII and photoinhibition is embedded in the photosynthesis literature, there is little consensus concerning the extent to which such oxidative damage happens in nature. Slowly reversible decreases in photosynthetic capacity are not necessarily the result of light-induced damage to PSII reaction centers.
Collapse
|
34
|
Smirnoff N. Ascorbic acid metabolism and functions: A comparison of plants and mammals. Free Radic Biol Med 2018; 122:116-129. [PMID: 29567393 PMCID: PMC6191929 DOI: 10.1016/j.freeradbiomed.2018.03.033] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023]
Abstract
Ascorbic acid is synthesised by eukaryotes, the known exceptions being primates and some other animal groups which have lost functional gulonolactone oxidase. Prokaryotes do not synthesise ascorbate and do not need an ascorbate supply, so the functions that are essential for mammals and plants are not required or are substituted by other compounds. The ability of ascorbate to donate electrons enables it to act as a free radical scavenger and to reduce higher oxidation states of iron to Fe2+. These reactions are the basis of its biological activity along with the relative stability of the resulting resonance stabilised monodehydroascorbate radical. The importance of these properties is emphasised by the evolution of at least three biosynthetic pathways and production of an ascorbate analogue, erythroascorbate, by fungi. The iron reducing activity of ascorbate maintains the reactive centre Fe2+ of 2-oxoglutarate-dependent dioxygenases (2-ODDs) thus preventing inactivation. These enzymes have diverse functions and, recently, the possibility that ascorbate status in mammals could influence 2-ODDs involved in histone and DNA demethylation thereby influencing stem cell differentiation and cancer has been uncovered. Ascorbate is involved in iron uptake and transport in plants and animals. While the above biochemical functions are shared between mammals and plants, ascorbate peroxidase (APX) is an enzyme family limited to plants and photosynthetic protists. It provides these organisms with increased capacity to remove H2O2 produced by photosynthetic electron transport and photorespiration. The Fe reducing activity of ascorbate enables hydroxyl radical production (pro-oxidant effect) and the reactivity of dehydroascorbate (DHA) and reaction of its degradation products with proteins (dehydroascorbylation and glycation) is potentially damaging. Ascorbate status influences gene expression in plants and mammals but at present there is little evidence that it acts as a specific signalling molecule. It most likely acts indirectly by influencing the redox state of thiols and 2-ODD activity. However, the possibility that dehydroascorbylation is a regulatory post-translational protein modification could be explored.
Collapse
Affiliation(s)
- Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
35
|
Plumb W, Townsend AJ, Rasool B, Alomrani S, Razak N, Karpinska B, Ruban AV, Foyer CH. Ascorbate-mediated regulation of growth, photoprotection, and photoinhibition in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2823-2835. [PMID: 29726917 PMCID: PMC5961140 DOI: 10.1093/jxb/ery170] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/27/2018] [Indexed: 05/18/2023]
Abstract
The requirements for ascorbate for growth and photosynthesis were assessed under low (LL; 250 µmol m-2 s-1) or high (HL; 1600 µmol m-2 s-1) irradiance in wild-type Arabidopsis thaliana and two ascorbate synthesis mutants (vtc2-1 and vtc2-4) that have 30% wild-type ascorbate levels. The low ascorbate mutants had the same numbers of leaves but lower rosette area and biomass than the wild type under LL. Wild-type plants experiencing HL had higher leaf ascorbate, anthocyanin, and xanthophyll pigments than under LL. In contrast, leaf ascorbate levels were not increased under HL in the mutant lines. While the degree of oxidation measured using an in vivo redox reporter in the nuclei and cytosol of the leaf epidermal and stomatal cells was similar under both irradiances in all lines, anthocyanin levels were significantly lower in the low ascorbate mutants than in the wild type under HL. Differences in the photosynthetic responses of vtc2-1 and vtc2-4 mutants were observed. Unlike vtc2-1, the vtc2-4 mutants had wild-type zeaxanthin contents. While both low ascorbate mutants had lower levels of non-photochemical quenching of chlorophyll a fluorescence (NPQ) than the wild type under HL, qPd values were greater only in vtc2-1 leaves. Ascorbate is therefore essential for growth but not for photoprotection.
Collapse
Affiliation(s)
- William Plumb
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Alexandra J Townsend
- Department of Cell and Molecular Biology, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Brwa Rasool
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Technical College of Applied Science, Sulaimani Polytechnic University, Sulaimani, Kurdistan, Iraq
| | - Sarah Alomrani
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Nurhayati Razak
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Barbara Karpinska
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Alexander V Ruban
- Department of Cell and Molecular Biology, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Correspondence:
| |
Collapse
|
36
|
Molecular mechanisms involved in plant photoprotection. Biochem Soc Trans 2018; 46:467-482. [DOI: 10.1042/bst20170307] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 11/17/2022]
Abstract
Photosynthesis uses sunlight to convert water and carbon dioxide into biomass and oxygen. When in excess, light can be dangerous for the photosynthetic apparatus because it can cause photo-oxidative damage and decreases the efficiency of photosynthesis because of photoinhibition. Plants have evolved many photoprotective mechanisms in order to face reactive oxygen species production and thus avoid photoinhibition. These mechanisms include quenching of singlet and triplet excited states of chlorophyll, synthesis of antioxidant molecules and enzymes and repair processes for damaged photosystem II and photosystem I reaction centers. This review focuses on the mechanisms involved in photoprotection of chloroplasts through dissipation of energy absorbed in excess.
Collapse
|
37
|
Vidal-Meireles A, Neupert J, Zsigmond L, Rosado-Souza L, Kovács L, Nagy V, Galambos A, Fernie AR, Bock R, Tóth SZ. Regulation of ascorbate biosynthesis in green algae has evolved to enable rapid stress-induced response via the VTC2 gene encoding GDP-l-galactose phosphorylase. THE NEW PHYTOLOGIST 2017; 214:668-681. [PMID: 28112386 DOI: 10.1111/nph.14425] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/04/2016] [Indexed: 05/22/2023]
Abstract
Ascorbate (vitamin C) plays essential roles in stress resistance, development, signaling, hormone biosynthesis and regulation of gene expression; however, little is known about its biosynthesis in algae. In order to provide experimental proof for the operation of the Smirnoff-Wheeler pathway described for higher plants and to gain more information on the regulation of ascorbate biosynthesis in Chlamydomonas reinhardtii, we targeted the VTC2 gene encoding GDP-l-galactose phosphorylase using artificial microRNAs. Ascorbate concentrations in VTC2 amiRNA lines were reduced to 10% showing that GDP-l-galactose phosphorylase plays a pivotal role in ascorbate biosynthesis. The VTC2 amiRNA lines also grow more slowly, have lower chlorophyll content, and are more susceptible to stress than the control strains. We also demonstrate that: expression of the VTC2 gene is rapidly induced by H2 O2 and 1 O2 resulting in a manifold increase in ascorbate content; in contrast to plants, there is no circadian regulation of ascorbate biosynthesis; photosynthesis is not required per se for ascorbate biosynthesis; and Chlamydomonas VTC2 lacks negative feedback regulation by ascorbate in the physiological concentration range. Our work demonstrates that ascorbate biosynthesis is also highly regulated in Chlamydomonas albeit via mechanisms distinct from those previously described in land plants.
Collapse
Affiliation(s)
- André Vidal-Meireles
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Juliane Neupert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Laura Zsigmond
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Laise Rosado-Souza
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Valéria Nagy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Anikó Galambos
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| |
Collapse
|
38
|
Yu L, Liu Y, Lu L, Zhang Q, Chen Y, Zhou L, Chen H, Peng C. Ascorbic acid deficiency leads to increased grain chalkiness in transgenic rice for suppressed of L-GalLDH. JOURNAL OF PLANT PHYSIOLOGY 2017; 211:13-26. [PMID: 28142093 DOI: 10.1016/j.jplph.2016.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/25/2016] [Accepted: 11/30/2016] [Indexed: 05/15/2023]
Abstract
The grain chalkiness of rice (Oryza sativa L.), which determines the rice quality and price, is a major concern in rice breeding. Reactive oxygen species (ROS) plays a critical role in regulating rice endosperm chalkiness. Ascorbic acid (Asc) is a major plant antioxidant, which strictly regulates the levels of ROS. l-galactono-1, 4-lactone dehydrogenase (L-GalLDH, EC 1.3.2.3) is an enzyme that catalyzes the last step of Asc biosynthesis in higher plants. Here we show that the L-GalLDH-suppressed transgenic rice, GI-1 and GI-2, which have constitutively low (between 30% and 50%) leaf and grain Asc content compared with the wild-type (WT), exhibit significantly increased grain chalkiness. Further examination showed that the deficiency of Asc resulted in a higher lipid peroxidation and H2O2 content, accompanied by a lower hydroxyl radical scavenging rate, total antioxidant capacity and photosynthetic ability. In addition, changes of the enzyme activities and gene transcript abundances related to starch synthesis were also observed in GI-1 and GI-2 grains. The results we presented here suggest a close correlation between Asc deficiency and grain chalkiness in the L-GalLDH-suppressed transgenics. Asc deficiency leads to the accumulation of H2O2, affecting antioxidant capacity and photosynthetic function, changing enzyme activities and gene transcript abundances related to starch synthesis, finally leading to the increased grain chalkiness.
Collapse
Affiliation(s)
- Le Yu
- College of Life Sciences, Zhaoqing University, Zhaoqing 526061, People's Republic of China
| | - Yonghai Liu
- College of Life Sciences, Zhaoqing University, Zhaoqing 526061, People's Republic of China
| | - Lina Lu
- College of Life Sciences, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Qilei Zhang
- College of Life Sciences, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Yezheng Chen
- College of Life Sciences, Zhaoqing University, Zhaoqing 526061, People's Republic of China
| | - Liping Zhou
- College of Life Sciences, Zhaoqing University, Zhaoqing 526061, People's Republic of China
| | - Hua Chen
- College of Life Sciences, Zhaoqing University, Zhaoqing 526061, People's Republic of China
| | - Changlian Peng
- College of Life Sciences, South China Normal University, Guangzhou 510631, People's Republic of China.
| |
Collapse
|
39
|
Lin ST, Chiou CW, Chu YL, Hsiao Y, Tseng YF, Chen YC, Chen HJ, Chang HY, Lee TM. Enhanced Ascorbate Regeneration Via Dehydroascorbate Reductase Confers Tolerance to Photo-Oxidative Stress in Chlamydomonas reinhardtii. PLANT & CELL PHYSIOLOGY 2016; 57:2104-2121. [PMID: 27440549 DOI: 10.1093/pcp/pcw129] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 07/12/2016] [Indexed: 05/26/2023]
Abstract
The role of ascorbate (AsA) recycling via dehydroascorbate reductase (DHAR) in the tolerance of Chlamydomonas reinhardtii to photo-oxidative stress was examined. The activity of DHAR and the abundance of the CrDHAR1 (Cre10.g456750) transcript increased after moderate light (ML; 750 µmol m-2 s-1) or high light (HL; 1,800 µmol m-2 s-1) illumination, accompanied by dehydroascorbate (DHA) accumulation, decreased AsA redox state, photo-inhibition, lipid peroxidation, H2O2 overaccumulation, growth inhibition and cell death. It suggests that DHAR and AsA recycling is limiting under high-intensity light stress. The CrDHAR1 gene was cloned and its recombinant CrDHAR1 protein was a monomer (25 kDa) detected by Western blot that exhibits an enzymatic activity of 965 µmol min-1 mg-1 protein. CrDHAR1 was overexpressed driven by a HSP70A:RBCS2 fusion promoter or down-regulated by artificial microRNA (amiRNA) to examine whether DHAR-mediated AsA recycling is critical for the tolerance of C. reinahartii cells to photo-oxidative stress. The overexpression of CrDHAR1 increased DHAR protein abundance and enzyme activity, AsA pool size, AsA:DHA ratio and the tolerance to ML-, HL-, methyl viologen- or H2O2-induced oxidative stress. The CrDHAR1-knockdown amiRNA lines that have lower DHAR expression and AsA recycling ability were sensitive to high-intensity illumination and oxidative stress. The glutathione pool size, glutathione:oxidized glutathione ratio and glutathione reductase and ascorbate peroxidase activities were increased in CrDHAR1-overexpressing cells and showed a further increase after high-intensity illumination but decreased in wild-type cells after light stress. The present results suggest that increasing AsA regeneration via enhanced DHAR activity modulates the ascorbate-glutathione cycle activity in C. reinhardtii against photo-oxidative stress.
Collapse
Affiliation(s)
- Shu-Tseng Lin
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- These authors contributed equally to this work
| | - Chih-Wen Chiou
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- These authors contributed equally to this work
| | - Yen-Lin Chu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yu Hsiao
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yu-Fei Tseng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yi-Chun Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Hsien-Jung Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Hsin-Yang Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- The Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- The Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
40
|
Xie X, Huang A, Gu W, Zang Z, Pan G, Gao S, He L, Zhang B, Niu J, Lin A, Wang G. Photorespiration participates in the assimilation of acetate in Chlorella sorokiniana under high light. THE NEW PHYTOLOGIST 2016; 209:987-998. [PMID: 26439434 DOI: 10.1111/nph.13659] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/17/2015] [Indexed: 06/05/2023]
Abstract
The development of microalgae on an industrial scale largely depends on the economic feasibility of mass production. High light induces productive suspensions during cultivation in a tubular photobioreactor. Herein, we report that high light, which inhibited the growth of Chlorella sorokiniana under autotrophic conditions, enhanced the growth of this alga in the presence of acetate. We compared pigments, proteomics and the metabolic flux ratio in C. sorokiniana cultivated under high light (HL) and under low light (LL) in the presence of acetate. Our results showed that high light induced the synthesis of xanthophyll and suppressed the synthesis of chlorophylls. Acetate in the medium was exhausted much more rapidly in HL than in LL. The data obtained from LC-MS/MS indicated that high light enhanced photorespiration, the Calvin cycle and the glyoxylate cycle of mixotrophic C. sorokiniana. The results of metabolic flux ratio analysis showed that the majority of the assimilated carbon derived from supplemented acetate, and photorespiratory glyoxylate could enter the glyoxylate cycle. Based on these data, we conclude that photorespiration provides glyoxylate to speed up the glyoxylate cycle, and releases acetate-derived CO2 for the Calvin cycle. Thus, photorespiration connects the glyoxylate cycle and the Calvin cycle, and participates in the assimilation of supplemented acetate in C. sorokiniana under high light.
Collapse
Affiliation(s)
- Xiujun Xie
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Aiyou Huang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wenhui Gu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Zhengrong Zang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Guanghua Pan
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shan Gao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Linwen He
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Baoyu Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jianfeng Niu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Apeng Lin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
41
|
Lim B, Smirnoff N, Cobbett CS, Golz JF. Ascorbate-Deficient vtc2 Mutants in Arabidopsis Do Not Exhibit Decreased Growth. FRONTIERS IN PLANT SCIENCE 2016; 7:1025. [PMID: 27468291 PMCID: PMC4943039 DOI: 10.3389/fpls.2016.01025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/28/2016] [Indexed: 05/09/2023]
Abstract
In higher plants the L-galactose pathway represents the major route for ascorbate biosynthesis. The first committed step of this pathway is catalyzed by the enzyme GDP-L-galactose phosphorylase and is encoded by two paralogs in Arabidopsis - VITAMIN C2 (VTC2) and VTC5. The first mutant of this enzyme, vtc2-1, isolated via an EMS mutagenesis screen, has approximately 20-30% of wildtype ascorbate levels and has been reported to have decreased growth under standard laboratory conditions. Here, we show that a T-DNA insertion into the VTC2 causes a similar reduction in ascorbate levels, but does not greatly affect plant growth. Subsequent segregation analysis revealed the growth defects of vtc2-1 mutants segregate independently of the vtc2-1 mutation. These observations suggest that it is the presence of an independent cryptic mutation that affects growth of vtc2-1 mutants, and not the 70-80% decrease in ascorbate levels that has been assumed in past studies.
Collapse
Affiliation(s)
- Benson Lim
- School of BioSciences, University of Melbourne, ParkvilleVIC, Australia
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of ExeterExeter, UK
| | | | - John F. Golz
- School of BioSciences, University of Melbourne, ParkvilleVIC, Australia
- *Correspondence: John F. Golz, orcid.org/0000-0001-9478-5459
| |
Collapse
|
42
|
Imam S, Schäuble S, Valenzuela J, de Lomana ALG, Carter W, Price ND, Baliga NS. A refined genome-scale reconstruction of Chlamydomonas metabolism provides a platform for systems-level analyses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1239-56. [PMID: 26485611 PMCID: PMC4715634 DOI: 10.1111/tpj.13059] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 05/11/2023]
Abstract
Microalgae have reemerged as organisms of prime biotechnological interest due to their ability to synthesize a suite of valuable chemicals. To harness the capabilities of these organisms, we need a comprehensive systems-level understanding of their metabolism, which can be fundamentally achieved through large-scale mechanistic models of metabolism. In this study, we present a revised and significantly improved genome-scale metabolic model for the widely-studied microalga, Chlamydomonas reinhardtii. The model, iCre1355, represents a major advance over previous models, both in content and predictive power. iCre1355 encompasses a broad range of metabolic functions encoded across the nuclear, chloroplast and mitochondrial genomes accounting for 1355 genes (1460 transcripts), 2394 and 1133 metabolites. We found improved performance over the previous metabolic model based on comparisons of predictive accuracy across 306 phenotypes (from 81 mutants), lipid yield analysis and growth rates derived from chemostat-grown cells (under three conditions). Measurement of macronutrient uptake revealed carbon and phosphate to be good predictors of growth rate, while nitrogen consumption appeared to be in excess. We analyzed high-resolution time series transcriptomics data using iCre1355 to uncover dynamic pathway-level changes that occur in response to nitrogen starvation and changes in light intensity. This approach enabled accurate prediction of growth rates, the cessation of growth and accumulation of triacylglycerols during nitrogen starvation, and the temporal response of different growth-associated pathways to increased light intensity. Thus, iCre1355 represents an experimentally validated genome-scale reconstruction of C. reinhardtii metabolism that should serve as a useful resource for studying the metabolic processes of this and related microalgae.
Collapse
Affiliation(s)
- Saheed Imam
- Institute for Systems Biology, Seattle, WA, USA
| | - Sascha Schäuble
- Institute for Systems Biology, Seattle, WA, USA
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich-Schiller-University Jena, Jena, Germany
- Research Group Theoretical Systems Biology, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | | | | | | | - Nathan D. Price
- Institute for Systems Biology, Seattle, WA, USA
- Departments of Bioengineering and Computer Science & Engineering, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, WA, USA
- Departments of Biology and Microbiology, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
- Lawrence Berkeley National Lab, Berkeley, CA
- Correspondence: Nitin S. Baliga, Institute for Systems Biology, 401 Terry Ave N., Seattle, WA 98109, Telephone: 206.732.1266, Fax: 206.732.1299,
| |
Collapse
|
43
|
Nie S, Yue H, Xing D. A Potential Role for Mitochondrial Produced Reactive Oxygen Species in Salicylic Acid-Mediated Plant Acquired Thermotolerance. PLANT PHYSIOLOGY 2015:pp.00719.2015. [PMID: 26099269 PMCID: PMC5096039 DOI: 10.1104/pp.15.00719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
To characterize the function of salicylic acid (SA) in acquired thermotolerance, the effects of heat shock (HS) on wild-type and sid2 (for SA induction deficient 2) was investigated. After HS treatment, the survival ratio of sid2 mutant was lower than that of wild-type. However, pretreatment with hydrogen peroxide (H2O2) rescued the sid2 heat sensitivity. HsfA2 is a key component of acquired thermotolerance in Arabidopsis. The expression of HsfA2 induced by SA was highest among those of heat-inducible Hsfs (HsfA2, HsfA7a, HsfA3, HsfB1, and HsfB2) in response to HS. Furthermore, the application of AsA, an H2O2 scavenger, significantly reduced the expression level of HsfA2 induced by SA. Although SA enhanced the survival of sid2 mutant, no significant effect on the hsfA2 mutant was observed, suggesting that HsfA2 is responsible for SA-induced acquired thermotolerance as a downstream factor. Further, real-time PCR analysis revealed that after HS treatment, SA also up-regulated mRNA transcription of HS protein (Hsp) genes through AtHsfA2. Time course experiments showed an increase in the fluorescence intensity of DCF in the mitochondria occurred earlier than in other regions of the protoplasts in response to SA. The cytochrome reductase activity analysis in isolated mitochondria demonstrated that SA-induced mitochondrial ROS possibly originated from complex III in the respiration chain. Collectively, our data suggest that SA functions and acts upstream of AtHsfA2 in acquired thermotolerance, which requires a pathway with H2O2 production involved and is dependent on increased expression of Hsp genes.
Collapse
Affiliation(s)
- Shengjun Nie
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University CITY: Guangzhou China [CN]
| | - Haiyun Yue
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University CITY: Guangzhou China [CN]
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China CITY: Guangzhou POSTAL_CODE: 510631 China [CN]
| |
Collapse
|
44
|
Yang S, Meng DY, Hou LL, Li Y, Guo F, Meng JJ, Wan SB, Li XG. Peanut violaxanthin de-epoxidase alleviates the sensitivity of PSII photoinhibition to heat and high irradiance stress in transgenic tobacco. PLANT CELL REPORTS 2015; 34:1417-28. [PMID: 25916178 DOI: 10.1007/s00299-015-1797-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/25/2015] [Accepted: 04/19/2015] [Indexed: 06/04/2023]
Abstract
KEY MESSAGE This is the first study on peanut VDE, which led to multiple biochemical and physiological changes to heat and HI stress by improving de-epoxidation of the xanthophylls cycle. A peanut (Arachis hypogaea L.) violaxanthin de-epoxidase gene (AhVDE) was isolated by RT-PCR and RACE methods. The deduced amino acid sequence of AhVDE showed high identities with violaxanthin de-epoxidase of other plant species. The expression of AhVDE was obviously upregulated by 4, 40 °C and high light, NaCl, and abscisic acid. Sense and RNAi transgenic tobaccos were further used to investigate the physiological effects and functional mechanism of AhVDE. Compared with WT, the content of Z, the ratio of (A + Z)/(V + A + Z) and the non-photochemical quenching were higher in sense plants, and lower in the RNAi lines under heat and high irradiance (HI) stress, respectively. Additionally, photoinhibition of photosystem II (PSII) reflected by the maximal photochemical efficiency in WT lines was more severe, and in the RNAi lines was the most severe compared with that in the sense lines. Meanwhile, overexpressing AhVDE also led to multiple biochemical and physiological changes under heat and HI stress. Higher activities of superoxide dismutase and ascorbate peroxidase, lower content of reactive oxygen species and slighter membrane damage were observed in sense lines after heat and HI stress. These results suggested that, peanut VDE can alleviate PSII photoinhibition to heat and HI stress by improving the xanthophyll cycle-dependent energy dissipation.
Collapse
Affiliation(s)
- Sha Yang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang J, Niu J, Duan Y, Zhang M, Liu J, Li P, Ma F. Photoprotection mechanism in the 'Fuji' apple peel at different levels of photooxidative sunburn. PHYSIOLOGIA PLANTARUM 2015; 154:54-65. [PMID: 25185895 DOI: 10.1111/ppl.12272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/18/2014] [Accepted: 07/23/2014] [Indexed: 05/06/2023]
Abstract
The xanthophyll cycle, flavonoid metabolism, the antioxidant system and the production of active oxygen species were analyzed in the peel of 'Fuji' apples re-exposed to sunlight after extended periods of fruit bagging treatment, resulting in different levels of photooxidative sunburn. After re-exposing bagged fruits to sunlight, the production of active oxygen species and the photoprotective capacity in apple peels were both significantly enhanced. As sunburn severity increased, the concentration of hydrogen peroxide increased, while xanthophyll cycle pool size decreased. For the key genes involved in flavonoid synthesis, expressions of MdMYB10 and MdPAL were upregulated, whereas the expressions of MdCHS, MdANS, MdFLS and MdUFGT were downregulated in sunburnt fruit peel. Correspondingly, concentrations of both quercetin-3-glycoside and cyanidin-3-galactoside decreased. Total ascorbate concentrations decreased as sunburn severity increased, with the decrease being faster for oxidized than for reduced ascorbate. Transcription levels of MdGMP, MdGME, MdGGP, MdGPP, MdGalDH and MdGalLDH, the genes involved in ascorbate synthesis, were similar in non-sunburnt and sunburnt fruit peels, whereas activities of l-galactose dehydrogenase and l-galactono-1,4-lactone dehydrogenase decreased in severely sunburnt peel. Although activities of superoxide dismutase and ascorbate peroxidase increased, the activities of monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase decreased as sunburn severity increased. In summary, the occurrence of photooxidative sunburn in 'Fuji' apple peel is closely associated with a relatively lower xanthophyll cycle pool size, reduced levels of ascorbate reduction and synthesis and reduced flavonoid synthesis. Our data are consistent with the idea that ascorbate plays a key role in protecting apple fruit from photooxidative sunburn.
Collapse
Affiliation(s)
- Jiangli Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Venkatesh J, Park SW. Role of L-ascorbate in alleviating abiotic stresses in crop plants. BOTANICAL STUDIES 2014; 55:38. [PMID: 28510969 PMCID: PMC5432849 DOI: 10.1186/1999-3110-55-38] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/16/2013] [Indexed: 05/21/2023]
Abstract
L-ascorbic acid (vitamin C) is a major antioxidant in plants and plays a significant role in mitigation of excessive cellular reactive oxygen species activities caused by number of abiotic stresses. Plant ascorbate levels change differentially in response to varying environmental stress conditions, depending on the degree of stress and species sensitivity. Successful modulation of ascorbate biosynthesis through genetic manipulation of genes involved in biosynthesis, catabolism and recycling of ascorbate has been achieved. Recently, role of ascorbate in alleviating number of abiotic stresses has been highlighted in crop plants. In this article, we discuss the current understanding of ascorbate biosynthesis and its antioxidant role in order to increase our comprehension of how ascorbate helps plants to counteract or cope with various abiotic stresses.
Collapse
Affiliation(s)
- Jelli Venkatesh
- Department of Molecular Biotechnology, Konkuk University, 1, Hwayang-dong, Seoul, Gwangjin-gu South Korea
| | - Se Won Park
- Department of Molecular Biotechnology, Konkuk University, 1, Hwayang-dong, Seoul, Gwangjin-gu South Korea
| |
Collapse
|
47
|
The chloroplast protein LTO1/AtVKOR is involved in the xanthophyll cycle and the acceleration of D1 protein degradation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 130:68-75. [DOI: 10.1016/j.jphotobiol.2013.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 10/11/2013] [Accepted: 11/05/2013] [Indexed: 11/19/2022]
|
48
|
Cazzaniga S, Dall' Osto L, Kong SG, Wada M, Bassi R. Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:568-79. [PMID: 24033721 DOI: 10.1111/tpj.12314] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 08/06/2013] [Accepted: 08/12/2013] [Indexed: 05/22/2023]
Abstract
Plants evolved photoprotective mechanisms in order to counteract the damaging effects of excess light in oxygenic environments. Among them, chloroplast avoidance and non-photochemical quenching concur in reducing the concentration of chlorophyll excited states in the photosynthetic apparatus to avoid photooxidation. We evaluated their relative importance in regulating excitation pressure on photosystem II. To this aim, genotypes were constructed carrying mutations impairing the chloroplast avoidance response (phot2) as well as mutations affecting the biosynthesis of the photoprotective xanthophyll zeaxanthin (npq1) or the activation of non-photochemical quenching (npq4), followed by evaluation of their photosensitivity in vivo. Suppression of avoidance response resulted in oxidative stress under excess light at low temperature, while removing either zeaxanthin or PsbS had a milder effect. The double mutants phot2 npq1 and phot2 npq4 showed the highest sensitivity to photooxidative stress, indicating that xanthophyll cycle and qE have additive effects over the avoidance response. The interactions between non-photochemical quenching and avoidance responses were studied by analyzing the kinetics of fluorescence decay and recovery at different light intensities. phot2 fluorescence decay lacked a component, here named as qM. This kinetic component linearly correlated with the leaf transmittance changes due to chloroplast relocation induced by white light and was absent when red light was used as actinic source. On these basis we conclude that a decrease in leaf optical density affects the apparent non-photochemical quenching (NPQ) rise kinetic. Thus, excess light-induced fluorescence decrease is in part due to avoidance of photon absorption rather than to a genuine quenching process.
Collapse
|
49
|
Yang S, Wang F, Guo F, Meng JJ, Li XG, Dong ST, Wan SB. Exogenous calcium alleviates photoinhibition of PSII by improving the xanthophyll cycle in peanut (Arachis hypogaea) leaves during heat stress under high irradiance. PLoS One 2013; 8:e71214. [PMID: 23940721 PMCID: PMC3737129 DOI: 10.1371/journal.pone.0071214] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/27/2013] [Indexed: 11/24/2022] Open
Abstract
Peanut is one of the calciphilous plants. Calcium (Ca) serves as a ubiquitous central hub in a large number of signaling pathways. The effect of exogenous calcium nitrate [Ca(NO3)2] (6 mM) on the dissipation of excess excitation energy in the photosystem II (PSII) antenna, especially on the level of D1 protein and the xanthophyll cycle in peanut plants under heat (40°C) and high irradiance (HI) (1 200 µmol m(-2) s(-1)) stress were investigated. Compared with the control plants [cultivated in 0 mM Ca(NO3)2 medium], the maximal photochemical efficiency of PSII (Fv/Fm) in Ca(2+)-treated plants showed a slighter decrease after 5 h of stress, accompanied by higher non-photochemical quenching (NPQ), higher expression of antioxidative genes and less reactive oxygen species (ROS) accumulation. Meanwhile, higher content of D1 protein and higher ratio of (A+Z)/(V+A+Z) were also detected in Ca(2+)-treated plants under such stress. These results showed that Ca(2+) could help protect the peanut photosynthetic system from severe photoinhibition under heat and HI stress by accelerating the repair of D1 protein and improving the de-epoxidation ratio of the xanthophyll cycle. Furthermore, EGTA (a chelant of Ca ion), LaCl3 (a blocker of Ca(2+) channel in cytoplasmic membrane), and CPZ [a calmodulin (CaM) antagonist] were used to analyze the effects of Ca(2+)/CaM on the variation of (A+Z)/(V+A+Z) (%) and the expression of violaxanthin de-epoxidase (VDE). The results indicated that CaM, an important component of the Ca(2+) signal transduction pathway, mediated the expression of the VDE gene in the presence of Ca to improve the xanthophyll cycle.
Collapse
Affiliation(s)
- Sha Yang
- High-Tech Research Center of Shandong Academy of Agricultural Sciences, Ji’nan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Ji’nan, China
| | - Fang Wang
- High-Tech Research Center of Shandong Academy of Agricultural Sciences, Ji’nan, China
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Feng Guo
- High-Tech Research Center of Shandong Academy of Agricultural Sciences, Ji’nan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Ji’nan, China
| | - Jing-Jing Meng
- High-Tech Research Center of Shandong Academy of Agricultural Sciences, Ji’nan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Ji’nan, China
| | - Xin-Guo Li
- High-Tech Research Center of Shandong Academy of Agricultural Sciences, Ji’nan, China
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Ji’nan, China
| | - Shu-Ting Dong
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Shu-Bo Wan
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Ji’nan, China
| |
Collapse
|
50
|
Tóth SZ, Schansker G, Garab G. The physiological roles and metabolism of ascorbate in chloroplasts. PHYSIOLOGIA PLANTARUM 2013; 148:161-75. [PMID: 23163968 DOI: 10.1111/ppl.12006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 05/03/2023]
Abstract
Ascorbate is a multifunctional metabolite in plants. It is essential for growth control, involving cell division and cell wall synthesis and also involved in redox signaling, in the modulation of gene expression and regulation of enzymatic activities. Ascorbate also fulfills crucial roles in scavenging reactive oxygen species, both enzymatically and nonenzymatically, a well-established phenomenon in the chloroplasts stroma. We give an overview on these important physiological functions and would like to give emphasis to less well-known roles of ascorbate, in the thylakoid lumen, where it also plays multiple roles. It is essential for photoprotection as a cofactor for violaxanthin de-epoxidase, a key enzyme in the formation of nonphotochemical quenching. Lumenal ascorbate has recently also been shown to act as an alternative electron donor of photosystem II once the oxygen-evolving complex is inactivated and to protect the photosynthetic machinery by slowing down donor-side induced photoinactivation; it is yet to be established if ascorbate has a similar role in the case of other stress effects, such as high light and UV-B stress. In bundle sheath cells, deficient in oxygen evolution, ascorbate provides electrons to photosystem II, thereby poising cyclic electron transport around photosystem I. It has also been shown that, by supporting linear electron transport through photosystem II in sulfur-deprived Chlamydomonas reinhardtii cells, in which oxygen evolution is largely inhibited, externally added ascorbate enhances hydrogen production. For fulfilling its multiple roles, Asc has to be transported into the thylakoid lumen and efficiently regenerated; however, very little is known yet about these processes.
Collapse
Affiliation(s)
- Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, P.O. Box 521, H-6701, Hungary.
| | | | | |
Collapse
|