1
|
Zulfiqar A, Azhar BJ, Shakeel SN, Thives Santos W, Barry TD, Ozimek D, DeLong K, Angelovici R, Greenham K, Schenck CA, Schaller GE. Molecular basis for thermogenesis and volatile production in the titan arum. PNAS NEXUS 2024; 3:pgae492. [PMID: 39544499 PMCID: PMC11563039 DOI: 10.1093/pnasnexus/pgae492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
The titan arum (Amorphophallus titanum), commonly known as the corpse flower, produces the largest unbranched inflorescence in the world. Its rare blooms last only a few days and are notable both for their burst of thermogenic activity and for the odor of rotting flesh by which they attract pollinators. Studies on the titan arum can therefor lend insight into the mechanisms underlying thermogenesis as well as the production of sulfur-based volatiles, about which little is known in plants. Here, we made use of transcriptome and metabolite analyses to uncover underlying mechanisms that enable thermogenesis and volatile production in the titan arum. The ability to perform thermogenesis correlated with the expression of genes involved in bypass steps for the mitochondrial electron transport chain, in particular alternative oxidase expression, and through our analysis is placed within the context of sugar transport and metabolism. The major odorants produced by the titan arum are dimethyl disulfide and dimethyl trisulfide, and we identified pathways for sulfur transport and metabolism that culminate in the production of methionine, which our analysis identifies as the amino acid substrate for production of these odorants. Putrescine, derived from arginine, was identified as an additional and previously unrecognized component of the titan arum's odor. Levels of free methionine and putrescine were rapidly depleted during thermogenesis, consistent with roles in production of the titan arum's odor. Models for how tissues of the titan arum contribute to thermogenesis and volatile production are proposed.
Collapse
Affiliation(s)
- Alveena Zulfiqar
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
- Department of Biochemistry, Quaid-i-azam University, Islamabad 45320, Pakistan
| | - Beenish J Azhar
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
- Department of Biochemistry, Quaid-i-azam University, Islamabad 45320, Pakistan
| | - Samina N Shakeel
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
- Department of Biochemistry, Quaid-i-azam University, Islamabad 45320, Pakistan
| | - William Thives Santos
- Division of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Theresa D Barry
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Dana Ozimek
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Kim DeLong
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Ruthie Angelovici
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Kathleen Greenham
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Craig A Schenck
- Division of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
2
|
Yin Y, Quan X, Cheng Y, Yang Z, Zhu J, Fang W. Proteome reveals the mechanism of selenium-sulfur interaction in regulating isothiocyanate biosynthesis and the physiological metabolism of broccoli sprouts. Food Chem 2023; 426:136603. [PMID: 37329791 DOI: 10.1016/j.foodchem.2023.136603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/19/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Broccoli sprouts have a strong ability to accumulate isothiocyanate and selenium. In this study, the isothiocyanate content increased significantly as a result of ZnSO4 stress. Particularly, based on the isothiocyanate content is not affected, the combined ZnSO4 and Na2SeO3 treatment alleviated the inhibition of ZnSO4 and induced selenium content. Gene transcription and protein expression analyses revealed the changes in isothiocyanate and selenium metabolite levels in broccoli sprouts. ZnSO4 combined with Na2SeO3 was proven to activate a series of isothiocyanate metabolite genes (UGT74B1, OX1, and ST5b) and selenium metabolite genes (BoSultr1;1, BoCOQ5-2, and BoHMT1). The relative abundance of the total 317 and 203 proteins, respectively, in 4-day-old broccoli sprouts varied, and the metabolic and biosynthetic pathways for secondary metabolites were significantly enriched in ZnSO4/control and ZnSO4 combined Na2SeO3/ZnSO4 comparisons. The findings demonstrated how ZnSO4 combined with Na2SeO3 treatment reduced stress inhibition and the accumulation of encouraged selenium and isothiocyanates during the growth of broccoli sprouts.
Collapse
Affiliation(s)
- Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Xiaolan Quan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Yuwei Cheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Zhengfei Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Jiangyu Zhu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China.
| |
Collapse
|
3
|
Martínez-Castro J, de Haro-Bailón A, Obregón-Cano S, García Magdaleno IM, Moreno Ortega A, Cámara-Martos F. Bioaccessibility of glucosinolates, isothiocyanates and inorganic micronutrients in cruciferous vegetables through INFOGEST static in vitro digestion model. Food Res Int 2023; 166:112598. [PMID: 36914324 DOI: 10.1016/j.foodres.2023.112598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Green tissues and seeds from cruciferous vegetables growing in conventional and ecological conditions (Brassica carinata; Brassica rapa; Eruca vesicaria and Sinapis alba) were analyzed to determine their contents of glucosinolates, isotihiocyanates (ITCs) and inorganic micronutrients (Ca, Cr, Cu, Fe, Mn, Ni, Se and Zn), and the bioaccessibility of these compounds. Regarding total contents and bioaccessibility values of these compounds, no clear difference was found between the organic and conventional systems. Glucosinolates bioaccessibility present in green tissues were high, with values around 60-78%. In additon, it was quantified in bioaccessible fraction ITCs concentrations such as Allyl - ITC; 3 - Buten - 1 - yl - ITC and 4 - Penten - 1 - yl - ITC. Trace elements bioaccessibility in green tissues was also high for Ca (2.26-7.66 mg/g), Cu (0.60-2.78 µg/g), Se (9.93-74.71 µg/Kg) and Zn (12.98-20.15 µg/g). By contrast, the bioaccessibility of glucosinolates and trace elements in cruciferous seeds was extremely low. With the exception of Cu, these bioaccessibility percentages did not exceed 1% in most cases.
Collapse
Affiliation(s)
- J Martínez-Castro
- Departamento de Bromatología y Tecnología de los Alimentos, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio C-1, 14014 Córdoba, Spain
| | - A de Haro-Bailón
- Departamento de Mejora Genética Vegetal, Instituto de Agricultura Sostenible (IAS - CSIC), 14004 Córdoba, Spain
| | - S Obregón-Cano
- Departamento de Mejora Genética Vegetal, Instituto de Agricultura Sostenible (IAS - CSIC), 14004 Córdoba, Spain
| | - I M García Magdaleno
- Servicios Centrales de Apoyo a la Investigación (SCAI), Universidad de Córdoba, Campus Universitario de Rabanales, Edificio Ramón y Cajal, 14014 Córdoba, Spain
| | - A Moreno Ortega
- Departamento de Bromatología y Tecnología de los Alimentos, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio C-1, 14014 Córdoba, Spain
| | - F Cámara-Martos
- Departamento de Bromatología y Tecnología de los Alimentos, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio C-1, 14014 Córdoba, Spain.
| |
Collapse
|
4
|
Quan X, Cheng Y, Yang Z, Yang J, Fang W, Yin Y. iTRAQ-Based Proteomic Analyses of Regulation of Isothiocyanate and Endogenous Selenium Metabolism in Broccoli Sprouts by Exogenous Sodium Selenite. Foods 2023; 12:foods12071397. [PMID: 37048216 PMCID: PMC10093868 DOI: 10.3390/foods12071397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Broccoli sprouts have high isothiocyanate and selenium accumulation capacity. This study used a combination of methods, including physiological and biochemical, gene transcription and proteomic, to investigate the isothiocyanate and endogenous selenium accumulation mechanisms in broccoli sprouts under exogenous sodium selenite treatment during germination. Compared with the control, the sprouts length of broccoli sprouts under exogenous selenium treatment was significantly lower, and the contents of total phenol and malondialdehyde in 6-day-old broccoli sprouts were substantially higher. The contents of isothiocyanate and sulforaphane in 4-day-old were increased by up-regulating the relative expression of genes of UGT74B1, OX-1, and ST5b. The relative expression of BoSultr1;1, BoSMT, BoHMT1, and BoCOQ5-2 genes regulating selenium metabolism was significantly up-regulated. In addition, 354 proteins in 4-day-old broccoli sprouts showed different relative abundance compared to the control under selenium treatment. These proteins were classified into 14 functional categories. It was discovered that metabolic pathways and biosynthetic pathways of secondary metabolites were significantly enriched. The above results showed that exogenous selenium was beneficial in inducing the accumulation of isothiocyanate and selenium during the growth of broccoli sprouts.
Collapse
|
5
|
Yin X, Zhou Y, Yang H, Liao Y, Ma T, Wang F. Enhanced selenocysteine biosynthesis for seleno-methylselenocysteine production in Bacillus subtilis. Appl Microbiol Biotechnol 2023; 107:2843-2854. [PMID: 36941436 DOI: 10.1007/s00253-023-12482-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/10/2023] [Accepted: 03/12/2023] [Indexed: 03/23/2023]
Abstract
Seleno-methylselenocysteine (SeMCys) is an effective component for selenium supplementation with anti-carcinogenic potential and can ameliorate neuropathology and cognitive deficits. In this study, we aimed to engineer Bacillus subtilis 168 for the microbial production of SeMCys. First, the accumulation of intracellular selenocysteine (SeCys) as the precursor of SeMCys was enhanced through overexpression of serine O-acetyltransferase, which was desensitized against feedback inhibition by cysteine. Next, the S-adenosylmethionine (SAM) synthetic pathway was optimized to improve methyl donor availability through expression of S-adenosylmethionine synthetase. Further, SeMCys was successfully produced through expression of the selenocysteine methyltransferase in SeCys and SAM-producing strain. The increased expression level of selenocysteine methyltransferase benefited the SeMCys production. Finally, all the heterologous genes were integrated into the genome of B. subtilis, and the strain produced SeMCys at a titer of 18.4 μg/L in fed-batch culture. This is the first report on the metabolic engineering of B. subtilis for microbial production of SeMCys and provides a good starting point for future pathway engineering to achieve the industrial-grade production of SeMCys. KEY POINTS: • Expression of the feedback-insensitive serine O-acetyltransferase provided B. subtilis the ability of accumulating SeCys. • SAM production was enhanced through expressing S-adenosylmethionine synthetase in B. subtilis. • Expression of selenocysteine methyltransferase in SeCys and SAM-accumulating strain facilitated SeMCys production.
Collapse
Affiliation(s)
- Xian Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
- School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
| | - Yu Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
- School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
| | - Hulin Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
- School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
| | - Yonghong Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
- School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
| | - Tengbo Ma
- Biological Defense Department, Institute of Chemical Defence, Zhongxin RD 1, Beijing, 102205, China
| | - Fenghuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China.
- School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China.
| |
Collapse
|
6
|
Antoshkina M, Golubkina N, Poluboyarinov P, Skrypnik L, Sekara A, Tallarita A, Caruso G. Effect of Sodium Selenate and Selenocystine on Savoy Cabbage Yield, Morphological and Biochemical Characteristics under Chlorella Supply. PLANTS (BASEL, SWITZERLAND) 2023; 12:1020. [PMID: 36903880 PMCID: PMC10005640 DOI: 10.3390/plants12051020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Biofortification of Brassica oleracea with selenium (Se) is highly valuable both for human Se status optimization and functional food production with direct anti-carcinogenic activity. To assess the effects of organic and inorganic Se supply for biofortifying Brassica representatives, foliar applications of sodium selenate and selenocystine (SeCys2) were performed on Savoy cabbage treated with the growth stimulator microalgae Chlorella. Compared to sodium selenate, SeCys2 exerted a stronger growth stimulation of heads (1.3 against 1.14 times) and an increase of leaf concentration of chlorophyll (1.56 against 1.2 times) and ascorbic acid (1.37 against 1.27 times). Head density was reduced by 1.22 times by foliar application of sodium selenate and by 1.58 times by SeCys2. Despite the greater growth stimulation effect of SeCys2, its application resulted in lower biofortification levels (2.9 times) compared to sodium selenate (11.6 times). Se concentration decreased according to the following sequence: leaves > roots > head. The antioxidant activity (AOA) was higher in water extracts compared to the ethanol ones in the heads, but the opposite trend was recorded in the leaves. Chlorella supply significantly increased the efficiency of biofortification with sodium selenate (by 1.57 times) but had no effect in the case of SeCys2 application. Positive correlations were found between leaf and head weight (r = 0.621); head weight and Se content under selenate supply (r = 0.897-0.954); leaf ascorbic acid and total yield (r = 0.559), and chlorophyll (r = +0.83-0.89). Significant varietal differences were recorded for all the parameters examined. The broad comparison performed between the effects of selenate and SeCys2 showed significant genetic differences as well as important peculiarities connected with the Se chemical form and its complex interaction with Chlorella treatment.
Collapse
Affiliation(s)
- Marina Antoshkina
- Analytical Laboratory Department, Federal Scientific Vegetable Center, 143072 Moscow, Russia
| | - Nadezhda Golubkina
- Analytical Laboratory Department, Federal Scientific Vegetable Center, 143072 Moscow, Russia
| | - Pavel Poluboyarinov
- Medical Faculty, Department of General and Clinical Pharmacology, Penza State University, 440026 Penza, Russia
| | - Liubov Skrypnik
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236040 Kaliningrad, Russia
| | - Agnieszka Sekara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland
| | - Alessio Tallarita
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| |
Collapse
|
7
|
Lashley A, Miller R, Provenzano S, Jarecki SA, Erba P, Salim V. Functional Diversification and Structural Origins of Plant Natural Product Methyltransferases. Molecules 2022; 28:43. [PMID: 36615239 PMCID: PMC9822479 DOI: 10.3390/molecules28010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In plants, methylation is a common step in specialized metabolic pathways, leading to a vast diversity of natural products. The methylation of these small molecules is catalyzed by S-adenosyl-l-methionine (SAM)-dependent methyltransferases, which are categorized based on the methyl-accepting atom (O, N, C, S, or Se). These methyltransferases are responsible for the transformation of metabolites involved in plant defense response, pigments, and cell signaling. Plant natural product methyltransferases are part of the Class I methyltransferase-superfamily containing the canonical Rossmann fold. Recent advances in genomics have accelerated the functional characterization of plant natural product methyltransferases, allowing for the determination of substrate specificities and regioselectivity and further realizing the potential for enzyme engineering. This review compiles known biochemically characterized plant natural product methyltransferases that have contributed to our knowledge in the diversification of small molecules mediated by methylation steps.
Collapse
Affiliation(s)
- Audrey Lashley
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
| | - Ryan Miller
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
- School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA
| | - Stephanie Provenzano
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Sara-Alexis Jarecki
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
| | - Paul Erba
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
- School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA
| | - Vonny Salim
- Department of Biological Sciences, Louisiana State University, Shreveport, LA 71115, USA
| |
Collapse
|
8
|
Hu H, Hu J, Wang Q, Xiang M, Zhang Y. Transcriptome analysis revealed accumulation-assimilation of selenium and physio-biochemical changes in alfalfa (Medicago sativa L.) leaves. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4577-4588. [PMID: 35170039 DOI: 10.1002/jsfa.11816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/29/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Selenium (Se) is an increasing concern for investigators predominantly because of its consumption in the human body mainly from crops. As the fourth largest plant crop globally, alfalfa is one of the most important forages. Alfalfa was fertilized with selenium(IV) (Se(IV)) under field conditions to study the accumulation and assimilation of Se(IV) and to assess the impact of Se fertilization. RESULTS It was analyzed that the physio-biochemistry, Se species, combined with transcriptome after spraying Se(IV) at different times (0, 12, and 48 h). 9402 and 12 607 differentially expressed genes (DEGs) were identified at 12 h (versus 0 h) and 48 h (versus 12 h). DEG functional enrichments proposed two time-specific biological processes: Se(IV) accumulation was the primary process at 0-12 h, and its assimilation mainly occurred during 12-48 h. This was further proved by the separation of various Se speciation at different times. It showed that Se-supplementation also affected the soluble protein, soluble sugar, pigment contents and antioxidant capacity. Selenium-biofortification could improve the stress resistance of alfalfa by enhancing antioxidant system to scavenge reactive oxygen species (e.g. hydrogen peroxide) and boosting carbohydrate metabolism. CONCLUSION By integrating physio-biochemistry, Se-related metabolites, and transcriptome under Se(IV) treatment, this study provides data to guide further work on Se-fortification in alfalfa. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huafeng Hu
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Forage Nutrition Regulation and Innovative Utilization of Zhengzhou, Zhengzhou, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, China
| | - Jinke Hu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Forage Nutrition Regulation and Innovative Utilization of Zhengzhou, Zhengzhou, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, China
| | - Qingdong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Forage Nutrition Regulation and Innovative Utilization of Zhengzhou, Zhengzhou, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, China
| | - Meiling Xiang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Forage Nutrition Regulation and Innovative Utilization of Zhengzhou, Zhengzhou, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, China
| | - Yaru Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Forage Nutrition Regulation and Innovative Utilization of Zhengzhou, Zhengzhou, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, China
| |
Collapse
|
9
|
Zhang L, Chu C. Selenium Uptake, Transport, Metabolism, Reutilization, and Biofortification in Rice. RICE (NEW YORK, N.Y.) 2022; 15:30. [PMID: 35701545 PMCID: PMC9198118 DOI: 10.1186/s12284-022-00572-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/29/2022] [Indexed: 05/13/2023]
Abstract
Selenium (Se) is an essential trace element for humans and other animals. The human body mainly acquires Se from plant foods, especially cereal grains. Rice is the staple food for more than half of the world's population. Increasing the Se concentration of rice grains can increase the average human dietary Se intake. This review summarizes recent advances in the molecular mechanisms of Se uptake, transport, subcellular distribution, retranslocation, volatilization, and Se-containing protein degradation in plants, especially rice. The strategies for improving Se concentration in rice grains by increasing Se accumulation, reducing Se volatilization, and optimizing Se form were proposed, which provide new insight into Se biofortification in rice by improving the utilization efficiency of Se.
Collapse
Affiliation(s)
- Lianhe Zhang
- Luoyang Key Laboratory of Plant Nutrition and Environmental Ecology, Agricultural College, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Chengcai Chu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture and Technology, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Exogenous Selenium Treatment Promotes Glucosinolate and Glucoraphanin Accumulation in Broccoli by Activating Their Biosynthesis and Transport Pathways. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplementation using selenium (Se) on plants is an effective and widely used approach. It can not only be converted to more Se rich compounds but promote the accumulation of glucosinolates (GSLs) with anti-carcinogenic properties. However, the molecular mechanism of Se in regulating GSLs synthesis remains unclear. In the present study, we analyzed the effects of Se treatment (50 μM sodium selenite) on GSLs, glucoraphanin (4MSOB), and sulforaphane compounds in broccoli tissues. The transcript levels of genes involved in sulfur absorption and transport, GSLs biosynthesis, translocation, and degradation pathways were also evaluated. The study showed that Se treatment remarkably promoted the accumulation of total sulfur and total Se contents and increased Trp-derived GSLs levels in roots by 2 times. The 4MSOB concentration and sulforaphane content in fresh leaves was increased by 67% and 30% after Se treatment, respectively. For genes expressions, some genes involved in sulfate uptake and transporters, GSLs biosynthesis, and transporters were induced strongly upon Se exposure. Results revealed that exogenous Se treatment promotes the overaccumulation of GSLs and 4MSOB content in broccoli by activating the transcript levels of genes involved in sulfur absorption, GSLs biosynthesis, and translocation pathways.
Collapse
|
11
|
Hu J, Wang Z, Zhang L, Peng J, Huang T, Yang X, Jeong BR, Yang Q. Seleno-Amino Acids in Vegetables: A Review of Their Forms and Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:804368. [PMID: 35185982 PMCID: PMC8847180 DOI: 10.3389/fpls.2022.804368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Seleno-amino acids are safe, health-promoting compounds for humans. Numerous studies have focused on the forms and metabolism of seleno-amino acids in vegetables. Based on research progress on seleno-amino acids, we provide insights into the production of selenium-enriched vegetables with high seleno-amino acids contents. To ensure safe and effective intake of selenium, several issues need to be addressed, including (1) how to improve the accumulation of seleno-amino acids and (2) how to control the total selenium and seleno-amino acids contents in vegetables. The combined use of plant factories with artificial lighting and multiple analytical technologies may help to resolve these issues. Moreover, we propose a Precise Control of Selenium Content production system, which has the potential to produce vegetables with specified amounts of selenium and high proportions of seleno-amino acids.
Collapse
Affiliation(s)
- Jiangtao Hu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Zheng Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Li Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Jie Peng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Tao Huang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xiao Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Byoung Ryong Jeong
- Division of Applied Life Science (BK21 Four), Department of Horticulture, Graduate School of Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Qichang Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| |
Collapse
|
12
|
Kantorová V, Kaňa A, Krausová G, Hyršlová I, Mestek O. Effect of protease XXIII on selenium species interconversion during their extraction from biological samples. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Selvam AK, Jawad R, Gramignoli R, Achour A, Salter H, Björnstedt M. A Novel mRNA-Mediated and MicroRNA-Guided Approach to Specifically Eradicate Drug-Resistant Hepatocellular Carcinoma Cell Lines by Se-Methylselenocysteine. Antioxidants (Basel) 2021; 10:1094. [PMID: 34356326 PMCID: PMC8301172 DOI: 10.3390/antiox10071094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 01/25/2023] Open
Abstract
Despite progress in the treatment of non-visceral malignancies, the prognosis remains poor for malignancies of visceral organs and novel therapeutic approaches are urgently required. We evaluated a novel therapeutic regimen based on treatment with Se-methylselenocysteine (MSC) and concomitant tumor-specific induction of Kynurenine aminotransferase 1 (KYAT1) in hepatocellular carcinoma (HCC) cell lines, using either vector-based and/or lipid nanoparticle-mediated delivery of mRNA. Supplementation of MSC in KYAT1 overexpressed cells resulted in significantly increased cytotoxicity, due to ROS formation, as compared to MSC alone. Furthermore, microRNA antisense-targeted sites for miR122, known to be widely expressed in normal hepatocytes while downregulated in hepatocellular carcinoma, were added to specifically limit cytotoxicity in HCC cells, thereby limiting the off-target effects. KYAT1 expression was significantly reduced in cells with high levels of miR122 supporting the concept of miR-guided induction of tumor-specific cytotoxicity. The addition of alpha-ketoacid favored the production of methylselenol, enhancing the cytotoxic efficacy of MSC in HCC cells, with no effects on primary human hepatocytes. Altogether, the proposed regimen offers great potential to safely and specifically target hepatic tumors that are currently untreatable.
Collapse
Affiliation(s)
- Arun Kumar Selvam
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, S-141 86 Stockholm, Sweden; (A.K.S.); (R.J.); (R.G.); (H.S.)
| | - Rim Jawad
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, S-141 86 Stockholm, Sweden; (A.K.S.); (R.J.); (R.G.); (H.S.)
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, S-141 86 Stockholm, Sweden; (A.K.S.); (R.J.); (R.G.); (H.S.)
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, & Division of Infectious Diseases, Karolinska University Hospital, SE-171 77 Solna, Sweden;
| | - Hugh Salter
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, S-141 86 Stockholm, Sweden; (A.K.S.); (R.J.); (R.G.); (H.S.)
- Moderna, Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Mikael Björnstedt
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, S-141 86 Stockholm, Sweden; (A.K.S.); (R.J.); (R.G.); (H.S.)
| |
Collapse
|
14
|
Trippe RC, Pilon-Smits EAH. Selenium transport and metabolism in plants: Phytoremediation and biofortification implications. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124178. [PMID: 33068997 PMCID: PMC7538129 DOI: 10.1016/j.jhazmat.2020.124178] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/06/2020] [Accepted: 10/02/2020] [Indexed: 05/07/2023]
Abstract
The aim of this review is to synthesize current knowledge of selenium (Se) transport and metabolism in plants, with a focus on implications for biofortification and phytoremediation. Selenium is a necessary human micronutrient, and around a billion people worldwide may be Se deficient. This can be ameliorated by Se biofortification of staple crops. Selenium is also a potential toxin at higher concentrations, and multiple environmental disasters over the past 50 years have been caused by Se pollution from agricultural and industrial sources. Phytoremediation by plants able to take up large amounts of Se is an important tool to combat pollution issues. Both biofortification and phytoremediation applications require a thorough understanding of how Se is taken up and metabolized by plants. Selenium uptake and translocation in plants are largely accomplished via sulfur (S) transport proteins. Current understanding of these transporters is reviewed here, and transporters that may be manipulated to improve Se uptake are discussed. Plant Se metabolism also largely follows the S metabolic pathway. This pathway is reviewed here, with special focus on genes that have been, or may be manipulated to reduce the accumulation of toxic metabolites or enhance the accumulation of nontoxic metabolites. Finally, unique aspects of Se transport and metabolism in Se hyperaccumulators are reviewed. Hyperaccumulators, which can accumulate Se at up to 1000 times higher concentrations than normal plants, present interesting specialized systems of Se transport and metabolism. Selenium hyperaccumulation mechanisms and potential applications of these mechanisms to biofortification and phytoremediation are presented.
Collapse
Affiliation(s)
- Richard C Trippe
- Colorado State University, Biology Department, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
15
|
Ávila PA, Faquin V, Ávila FW, Kachinski WD, Carvalho GS, Guilherme LRG. Phosphorus and sulfur in a tropical soil and their effects on growth and selenium accumulation in Leucaena leucocephala (Lam.) de Wit. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44060-44072. [PMID: 32749645 DOI: 10.1007/s11356-020-10303-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Selenium (Se) is an essential metalloid element for mammals. Nonetheless, both deficiency and excess of Se in the environment are associated with several diseases in animals and humans. Here, we investigated the interaction of Se, supplied as selenate (Se+6) and selenite (Se+4), with phosphorus (P) and sulfur (S) in a weathered tropical soil and their effects on growth and Se accumulation in Leucaena leucocephala (Lam.) de Wit. The P-Se interaction effects on L. leucocephala growth differed between the Se forms (selenate and selenite) supplied in the soil. Selenate was prejudicial to plants grown in the soil with low P dose, while selenite was harmful to plants grown in soil with high P dose. The decreasing soil S dose increased the toxic effect of Se in L. leucocephala plants. Se tissue concentration and total Se accumulation in L. leucocephala shoot were higher with selenate supply in the soil when compared with selenite. Therefore, selenite proved to be less phytoavailable in the weathered tropical soil and, at the same time, more toxic to L. leucocephala plants than selenate. Thus, it is expected that L. leucocephala plants are more efficient to phytoextract and accumulate Se as selenate than Se as selenite from weathered tropical soils, for either strategy of phytoremediation (decontamination of Se-polluted soils) or purposes of biofortification for animal feed (fertilization of Se-poor soils).
Collapse
Affiliation(s)
- Patrícia Andressa Ávila
- Department of Forest Sciences, College of Agriculture Luiz de Queiroz (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
- Department of Soil Science, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Valdemar Faquin
- Department of Soil Science, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Fabricio William Ávila
- Department of Soil Science, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil.
- Department of Forest Engineering, State University of Midwest (UNICENTRO), Irati, Paraná, Brazil.
- Post-Graduate Program in Agronomy, UNICENTRO, Guarapuava, Paraná, Brazil.
- Departamento de Engenharia Florestal, UNICENTRO, Campus de Irati, Rua Professora Maria Roza Zanon de Almeida, Bairro Engenheiro Gutierrez, Irati, PR, CEP 84505-677, Brazil.
| | | | - Geila Santos Carvalho
- Department of Soil Science, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | | |
Collapse
|
16
|
Santiago FEM, Silva MLS, Cardoso AAS, Duan Y, Guilherme LRG, Liu J, Li L. Biochemical basis of differential selenium tolerance in arugula (Eruca sativa Mill.) and lettuce (Lactuca sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:328-338. [PMID: 33186850 DOI: 10.1016/j.plaphy.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Selenium (Se) biofortification in crops provides a valuable strategy to enhance human Se intake. However, crops vary greatly with their capacity in tolerating and metabolizing/accumulating Se, and the basis underlying such variations remains to be fully understood. Here, we compared the effects of Se and its analog S treatments on plant growth and biochemical responses between a Se accumulator (arugula) and a non-accumulator (lettuce). Arugula exhibited an increased biomass production in comparison with untreated controls at a higher selenate concentration than lettuce (20 μM vs. 10 μM Na2SeO4), showing better tolerance to Se. Arugula accumulated 3-folds more Se and S than lettuce plants under the same treatments. However, the Se/S assimilation as assessed by ATP sulfurylase and O-acetylserine (thiol)lyase activities was comparable between arugula and lettuce plants. Approximately 4-fold higher levels of Se in proteins under the same doses of Se treatments were observed in arugula than in lettuce, indicating that Se accumulators have better tolerance to selenoamino acids in proteins. Noticeably, arugula showed 6-fold higher ascorbate peroxidase activity and produced over 5-fold more glutathione and non-protein thiols than lettuce plants, which suggest critical roles of antioxidants in Se tolerance. Taken together, our results show that the elevated Se tolerance of arugula compared to lettuce is most likely due to an efficient antioxidant defense system. This study provides further insights into our understanding of the difference in tolerating and metabolizing/accumulating Se between Se accumulators and non-accumulators.
Collapse
Affiliation(s)
- Franklin E M Santiago
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA; Department of Soil Science, Federal University of Lavras, PO Box 3037, Lavras, MG, 37200-900, Brazil
| | - Maria L S Silva
- Department of Soil Science, Federal University of Lavras, PO Box 3037, Lavras, MG, 37200-900, Brazil
| | - Arnon A S Cardoso
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA; Department of Soil Science, Federal University of Lavras, PO Box 3037, Lavras, MG, 37200-900, Brazil
| | - Yongbo Duan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Luiz R G Guilherme
- Department of Soil Science, Federal University of Lavras, PO Box 3037, Lavras, MG, 37200-900, Brazil
| | - Jiping Liu
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
17
|
Duan Y, Eduardo Melo Santiago F, Rodrigues Dos Reis A, de Figueiredo MA, Zhou S, Thannhauser TW, Li L. Genotypic variation of flavonols and antioxidant capacity in broccoli. Food Chem 2020; 338:127997. [PMID: 33091988 DOI: 10.1016/j.foodchem.2020.127997] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/22/2022]
Abstract
Flavonols are gaining increasing interests due to their diverse health benefits for humans. Broccoli is a main flavonol source in our diet, but the genetic variation of flavonols and their correlation with antioxidant capacity remain to be understood. Here, we examined variations of the two major flavonols kaempferol and quercetin in florets and leaves of 15 diverse broccoli accessions by ultra-performance liquid chromatography. Broccoli accumulated more kaempferol than quercetin in most of the accessions tested, with the ratios varying from 4.4 to 27.9 in leaves and 0.4 to 4.4 in florets. Total flavonoids showed 2.5-fold and 3.3-fold differences in leaves and florets of these accessions, respectively. Principle component analysis revealed that flavonols, along with the key biosynthetic pathway genes, correlated with antioxidant capacity related indicators. This study provides important information for broccoli flavonol genotypic variations and correlation with antioxidant capacity, and will facilitate the development of flavonol enriched cultivars in broccoli.
Collapse
Affiliation(s)
- Yongbo Duan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Franklin Eduardo Melo Santiago
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Department of Soil Science, Federal University of Lavras, Zip Code 3037, Lavras, MG 37200-000, Brazil
| | - Andre Rodrigues Dos Reis
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; School of Science and Engineering, São Paulo State University (UNESP), Zip Code 17602-496, Tupã, SP, Brazil
| | - Marislaine A de Figueiredo
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Department of Agriculture, Federal University of Lavras, Zip Code 3037, Lavras, MG 37200-000, Brazil
| | - Suping Zhou
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209-1561, USA
| | - Theodore W Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
18
|
Wang Y, Wang K, Wang Q, Wan Y, Zhuang Z, Yu Y, Li H. Selenite Uptake and Transformation in Rice Seedlings ( Oryza sativa L.): Response to Phosphorus Nutrient Status. FRONTIERS IN PLANT SCIENCE 2020; 11:874. [PMID: 32655602 PMCID: PMC7324753 DOI: 10.3389/fpls.2020.00874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/28/2020] [Indexed: 05/26/2023]
Abstract
Selenite and phosphate share similar uptake mechanisms, as a phosphate transporter is involved in the selenite uptake process. However, the mechanism by which selenium (Se) transformation in plants is mediated by phosphorus (P) remains unclear. In this hydroponic study, the absorption, translocation, and biotransformation of Se in selenite-treated rice (Oryza sativa L.) seedlings were investigated under varying P nutrient status. The results showed that P-deficient cultivation increased the Se concentration in roots with Se-only treatment by 2.1 times relative to that of the P-normal condition. However, co-treating roots with additional P caused the Se concentration to decline by 20 and 73% compared to Se treatment alone under P-normal and P-deficient cultivation, respectively. A similar pattern was also observed in Se uptake by rice roots. With an Se-transfer factor elevated by 4.4 times, the shoot Se concentration was increased by 44% with additional P supply compared to the concentration under Se-only treatment of P deficiency; however, no significant differences were observed regarding P-normal cultivation. P deficiency increased the Se percentage by 28% within the cell wall, but reduced it by 60% in the soluble fraction of Se-only treated roots relative to that of the P-normal condition. Contrarily, compared with the Se-only treatment under P deficiency, additional P supply enhanced Se storage in the root soluble fraction by 1.3 times. The opposite tendency was observed for rice shoots. Moreover, P deficiency reduced the proportion of SeMet by 22%, but increased MeSeCys by 1.3 times in Se-only treated roots compared to those under the P-normal condition. Interestingly, MeSeCys was not detected when additional P was added to the two cultivation conditions. Unlike in the roots, only SeMet was generally detected in the rice shoots. The results demonstrate that the P nutrient status strongly affects the Se biofortification efficiency in rice seedlings by altering the Se subcellular distribution and speciation.
Collapse
|
19
|
Chen M, Zeng L, Luo X, Mehboob MZ, Ao T, Lang M. Identification and functional characterization of a novel selenocysteine methyltransferase from Brassica juncea L. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6401-6416. [PMID: 31504785 DOI: 10.1093/jxb/erz390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/09/2019] [Indexed: 05/13/2023]
Abstract
Organic selenium (Se), specifically Se-methylselenocysteine (MeSeCys), has demonstrated potential effects in human disease prevention including cancer and the emerging ameliorating effect on Alzheimer's disease. In plants, selenocysteine methyltransferase (SMT) is the key enzyme responsible for MeSeCys formation. In this study, we first isolated a novel SMT gene, designated as BjSMT, from the genome of a known Se accumulator, Brassica juncea L. BjSMT shows high sequence (amino acid) similarity with its orthologues from Brassica napus and Brassica oleracea var. oleracea, which can use homocysteine (HoCys) and selenocysteine (SeCys) as substrates. Similar to its closest homologues, BjSMT also possesses a conserved Thr187 which is involved in transferring a methyl group to HoCys by donating a hydrogen bond, suggesting that BjSMT can methylate both HoCys and SeCys substrates. Using quantitative real-time PCR (qRT-PCR) technology and BjSMT-transformed tobacco (Nicotiana tabacum) plants, we observed how BjSMT responds to selenite [Se(IV)] and selenate [Se(VI)] stress in B. juncea, and how the phenotypes of BjSMT-overexpressing tobacco cultured under selenite stress are affected. BjSMT expression was nearly undetectable in the B. juncea plant without Se exposure, but in the plant leaves it can be rapidly and significantly up-regulated upon a low level of selenite stress, and enormously up-regulated upon selenate treatment. Overexpression of BjSMT in tobacco substantially enhanced tolerance to selenite stress manifested as significantly higher fresh weight, plant height, and chlorophyll content than control plants. In addition, transgenic plants exhibited low glutathione peroxidase activity in response to a lower dose of selenite stress (with a higher dose of selenite stress resulting in a high activity response) compared with the controls. Importantly, the BjSMT-transformed tobacco plants accumulated a high level of Se upon selenite stress, and the plants also had significantly increased MeSeCys production potential in their leaves. This first study of B. juncea SMT demonstrates its potential applications in crop MeSeCys biofortification and phytoremediation of Se pollution.
Collapse
Affiliation(s)
- Meng Chen
- College of Life Science, Hebei Agricultural University, Baoding, China
| | - Liu Zeng
- College of Life Science, Hebei Agricultural University, Baoding, China
| | - Xiangguang Luo
- College of Life Science, Hebei Agricultural University, Baoding, China
| | | | - Tegenbaiyin Ao
- College of Life Science, Hebei Agricultural University, Baoding, China
| | - Minglin Lang
- College of Life Science, Hebei Agricultural University, Baoding, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Yu Y, Liu Z, Luo LY, Fu PN, Wang Q, Li HF. Selenium Uptake and Biotransformation in Brassica rapa Supplied with Selenite and Selenate: A Hydroponic Work with HPLC Speciation and RNA-Sequencing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12408-12418. [PMID: 31644287 DOI: 10.1021/acs.jafc.9b05359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Vegetables are an ideal source of human Se intake; it is important to understand selenium (Se) speciation in plants due to the distinct biological functions of selenocompounds. In this hydroponic study, the accumulation and assimilation of selenite and selenate in pak choi (Brassica rapa), a vastly consumed vegetable, were investigated at 1-168 h with HPLC speciation and RNA-sequencing. The results showed that the Se content in shoots and Se translocation factors with selenate addition were at least 10.81 and 11.62 times, respectively, higher than those with selenite addition. Selenite and selenate up-regulated the expression of SULT1;1 and PHT1;2 in roots by over 240% and 400%, respectively. Selenite addition always led to higher proportions of seleno-amino acids, while SeO42- was dominant under selenate addition (>49% of all Se species in shoots). However, in roots, SeO42- proportions declined substantially by 51% with a significant increase of selenomethionine proportions (63%) from 1 to 168 h. Moreover, with enhanced transcript of methionine gamma-lyase (60% of up-regulation compared to the control) plus high levels of methylselenium in shoots (approximately 70% of all Se species), almost 40% of Se was lost during the exposure under the selenite treatment. This work provides evidence that pak choi can rapidly transform selenite to methylselenium, and it is promising to use the plant for Se biofortification.
Collapse
Affiliation(s)
- Yao Yu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences , China Agricultural University , Beijing 100193 , The People's Republic of China
| | - Zhe Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences , China Agricultural University , Beijing 100193 , The People's Republic of China
| | - Li-Yun Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences , China Agricultural University , Beijing 100193 , The People's Republic of China
| | - Ping-Nan Fu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences , China Agricultural University , Beijing 100193 , The People's Republic of China
| | - Qi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences , China Agricultural University , Beijing 100193 , The People's Republic of China
| | - Hua-Fen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences , China Agricultural University , Beijing 100193 , The People's Republic of China
| |
Collapse
|
21
|
McKenzie M, Matich A, Hunter D, Esfandiari A, Trolove S, Chen R, Lill R. Selenium Application During Radish ( Raphanus sativus) Plant Development Alters Glucosinolate Metabolic Gene Expression and Results in the Production of 4-(methylseleno)but-3-enyl glucosinolate. PLANTS 2019; 8:plants8100427. [PMID: 31635372 PMCID: PMC6843385 DOI: 10.3390/plants8100427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 01/06/2023]
Abstract
Selenium (Se) is an essential micronutrient for human health, entering the diet mainly through the consumption of plant material. Members of the Brassicaceae are Se-accumulators that can accumulate up to 1g Se kg−1 dry weight (DW) from the environment without apparent ill effect. The Brassicaceae also produce glucosinolates (GSLs), sulfur (S)-rich compounds that benefit human health. Radish (Raphanussativus) has a unique GSL profile and is a Se-accumulating species that is part of the human diet as sprouts, greens and roots. In this report we describe the effects of Se-fertilisation on GSL production in radish during five stages of early development (from seed to mature salad greens) and on the transcript abundance of eight genes encoding enzymes involved in GSL metabolism. We tentatively identified (by tandem mass spectrometry) the selenium-containing glucosinolate, 4-(methylseleno)but-3-enyl glucosinolate, with the double bond geometry not resolved. Two related isothiocyanates were tentatively identified by Gas Chromatography-Mass Spectrometry as (E/Z?) isomers of 4-(methylseleno)but-3-enyl isothiocyanate. Se fertilisation of mature radish led to the presence of selenoglucosinolates in the seed. While GSL concentration generally reduced during radish development, GSL content was generally not affected by Se fertilisation, aside from the indole GSL, indol-3-ylmethyl glucosinolate, which increased on Se treatment, and the Se-GSLs, which significantly increased during development. The transcript abundance of genes involved in aliphatic GSL biosynthesis declined with Se treatment while that of genes involved in indole GSL biosynthesis tended to increase. APS kinase transcript abundance increased significantly in three of the four developmental stages following Se treatment. The remaining genes investigated were not significantly changed following Se treatment. We hypothesise that increased APS kinase expression in response to Se treatment is part of a general protection mechanism controlling the uptake of S and the production of S-containing compounds such as GSLs. The upregulation of genes encoding enzymes involved in indole GSL biosynthesis and a decrease in those involved in aliphatic GSL biosynthesis may be part of a similar mechanism protecting the plant’s GSL complement whilst limiting the amount of Se-GSLs produced.
Collapse
Affiliation(s)
- Marian McKenzie
- The New Zealand Institute for Plant and Food Research, Ltd., Food Industry Science Centre, Private Bag 11600, Palmerston North 4442, New Zealand.
| | - Adam Matich
- The New Zealand Institute for Plant and Food Research, Ltd., Food Industry Science Centre, Private Bag 11600, Palmerston North 4442, New Zealand.
| | - Donald Hunter
- The New Zealand Institute for Plant and Food Research, Ltd., Food Industry Science Centre, Private Bag 11600, Palmerston North 4442, New Zealand.
| | - Azadeh Esfandiari
- The New Zealand Institute for Plant and Food Research, Ltd., Food Industry Science Centre, Private Bag 11600, Palmerston North 4442, New Zealand.
| | - Stephen Trolove
- The New Zealand Institute for Plant and Food Research, Ltd., Private Bag 1401, Havelock North 4157, New Zealand.
| | - Ronan Chen
- The New Zealand Institute for Plant and Food Research, Ltd., Food Industry Science Centre, Private Bag 11600, Palmerston North 4442, New Zealand.
| | - Ross Lill
- The New Zealand Institute for Plant and Food Research, Ltd., Food Industry Science Centre, Private Bag 11600, Palmerston North 4442, New Zealand.
| |
Collapse
|
22
|
Jiang L, Liu C, Cao H, Chen Z, Yang J, Cao S, Wei Z. The role of cytokinin in selenium stress response in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:122-132. [PMID: 30824045 DOI: 10.1016/j.plantsci.2019.01.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Cytokinins (CKs) regulate many developmental processes and environmental stress responses in plants. In this study, our data provide evidence that CK negatively regulates Arabidopsis selenium (Se) stress response. CK-deficient plant ipt1 3 5 7 exhibited enhanced Se tolerance which was abolished by exogenous benzylaminopurine (BA) application, while CK- receptor -deficient mutants ahk2 and ahk3 were sensitive to Se stress. Further investigation suggested that CK regulated Se tolerance of ipt1 3 5 7 through reduction of Se uptake and activation of metabolism detoxification, which had significantly lower transcriptions of high-affinity transporters PHT1;1, PHT1;8, PHT1;9 and the higher transcription of selenocysteine methyltransferase (SMT) respectively. Moreover, Se tolerance of ipt1 3 5 7 was associated with the enhanced antioxidant levels which had the higher catalase (CAT), ascorbate peroxidase (APX) and glutathione peroxidase (GPX) activities as well as the higher glutathione (GSH) content. On the other hand, loss-of-function mutations in single CK receptor genes could increase Se uptake and reactive oxygen species (ROS) accumulation, which caused Se sensitivity in ahk2 and ahk3 mutants. Taken together, these findings provide new insights to the role of CK in Se stress response in Arabidopsis.
Collapse
Affiliation(s)
- Li Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Changxuan Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Haimei Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Ziping Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Juan Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Zhaojun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| |
Collapse
|
23
|
Wu L, Liu T, Xu Y, Chen W, Liu B, Zhang L, Liu D, Zhang H, Zhang B. Comparative transcriptome analysis of two selenium-accumulating genotypes of Aegilops tauschii Coss. in response to selenium. BMC Genet 2019; 20:9. [PMID: 30642243 PMCID: PMC6332533 DOI: 10.1186/s12863-018-0700-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/26/2018] [Indexed: 11/18/2022] Open
Abstract
Background Selenium (Se), an essential micronutrient in both animals and humans, has various biological functions, and its deficiency can lead to various diseases. The most common method for increasing Se uptake is the consumption of Se-rich plants, which transform inorganic Se into organic forms. Wheat is eaten daily by many people. The Se content of Aegilops tauschii (Ae. tauschii), one of the ancestors of hexaploid common wheat, is generally higher than that of wheat. In this study, two genotypes of Ae. tauschii with contrasting Se-accumulating abilities were subjected to different Se treatments followed by high-throughput transcriptome sequencing. Results Sequencing of 12 transcriptome libraries of Ae. tauschii grown under different Se treatments produced about a total of 47.72 GB of clean reads. After filtering out rRNA sequences, approximately 19.3 million high-quality clean reads were mapped to the reference genome (ta IWGSC_MIPSv2.1 genome DA). The total number of reference genome gene is 32,920 and about 26,407 known genes were detected in four groups. Functional annotation of these mapped genes revealed a large number of genes and some pivotal pathways that may participate in Se metabolism. The expressions of several genes potentially involved in Se metabolism were confirmed by quantitative real-time PCR. Conclusions Our study, the first to examine Se metabolism in Ae. tauschii, has provided a theoretical foundation for future elucidation of the mechanism of Se metabolism in this species. Electronic supplementary material The online version of this article (10.1186/s12863-018-0700-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lijun Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23# Xinning Lu, Xining, 810008, Qinghai, China.,Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23# Xinning Lu, Xining, 810008, Qinghai, China.,Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongsheng Xu
- Xining Administration Center of Parks, Xining, 810001, China
| | - Wenjie Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23# Xinning Lu, Xining, 810008, Qinghai, China.,Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, 810008, China
| | - Baolong Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23# Xinning Lu, Xining, 810008, Qinghai, China.,Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, 810008, China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huaigang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23# Xinning Lu, Xining, 810008, Qinghai, China. .,Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, 810008, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23# Xinning Lu, Xining, 810008, Qinghai, China. .,Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, 810008, China.
| |
Collapse
|
24
|
Liu YR, Sun B, Zhu GH, Li WW, Tian YX, Wang LM, Zong SM, Sheng PZ, Li M, Chen S, Qin Y, Liu HJ, Zhou HG, Sun T, Yang C. Selenium–lentinan inhibits tumor progression by regulating epithelial–mesenchymal transition. Toxicol Appl Pharmacol 2018; 360:1-8. [DOI: 10.1016/j.taap.2018.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/07/2018] [Accepted: 09/16/2018] [Indexed: 10/28/2022]
|
25
|
White PJ. Selenium metabolism in plants. Biochim Biophys Acta Gen Subj 2018; 1862:2333-2342. [DOI: 10.1016/j.bbagen.2018.05.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 10/16/2022]
|
26
|
Plant selenium hyperaccumulation- Ecological effects and potential implications for selenium cycling and community structure. Biochim Biophys Acta Gen Subj 2018; 1862:2372-2382. [DOI: 10.1016/j.bbagen.2018.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/06/2018] [Accepted: 04/23/2018] [Indexed: 11/23/2022]
|
27
|
Tian M, Xu X, Liu F, Fan X, Pan S. Untargeted metabolomics reveals predominant alterations in primary metabolites of broccoli sprouts in response to pre-harvest selenium treatment. Food Res Int 2018; 111:205-211. [DOI: 10.1016/j.foodres.2018.04.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/01/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
|
28
|
Jiang L, Cao H, Chen Z, Liu C, Cao S, Wei Z, Han Y, Gao Q, Wang W. Cytokinin is involved in TPS22-mediated selenium tolerance in Arabidopsis thaliana. ANNALS OF BOTANY 2018; 122:501-512. [PMID: 29868879 PMCID: PMC6110340 DOI: 10.1093/aob/mcy093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/03/2018] [Indexed: 05/26/2023]
Abstract
Background and Aims Excess selenium (Se) is toxic to plants, but relatively little is known about the regulatory mechanism of plant Se tolerance. This study explored the role of the TPS22 gene in Se tolerance in Arabidopsis thaliana. Methods Arabidopsis wild type and XVE mutant seeds were grown on half-strength MS media containing Na2SeO3 for screening of the Se-tolerant mutant tps22. The XVE T-DNA-tagged genomic sequence in tps22 was identified by TAIL-PCR. The TPS22 gene was transformed into the mutant tps22 and wild type plants using the flower infiltration method. Wild type, tps22 mutant and transgenic seedlings were cultivated on vertical plates for phenotype analysis, physiological index measurement and gene expression analysis. Key Results We identified an Arabidopsis Se-tolerant mutant tps22 from the XVE pool lines, and cloned the gene which encodes the terpenoid synthase (TPS22). TPS22 was downregulated by Se stress, and loss-of-function of TPS22 resulted in decreased Se accumulation and enhanced Se tolerance; by contrast, overexpression of TPS22 showed similar traits to the wild type under Se stress. Further analysis revealed that TPS22 mediated Se tolerance through reduction of Se uptake and activation of metabolism detoxification, which decreased transcription of high-affinity transporters PHT1;1, PHT1;8 and PHT1;9 and significantly increased transcription of selenocysteine methyltransferase (SMT), respectively. Moreover, loss-of-function of TPS22 resulted in reduced cytokinin level and repression of cytokinin signalling components AHK3 and AHK4, and upregulation of ARR3, ARR15 and ARR16. Exogenous cytokinin increased transcription of PHT1;1, PHT2;1 and SMT and decreased Se tolerance of the tps22 mutant. In addition, enhanced Se resistance of the tps22 mutant was associated with glutathione (GSH). Conclusions Se stress downregulated TPS22, which reduced endogenous cytokinin level, and then affected the key factors of Se uptake and metabolism detoxification. This cascade of events resulted in reduced Se accumulation and enhanced Se tolerance.
Collapse
Affiliation(s)
- Li Jiang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Haimei Cao
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Ziping Chen
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
- School of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Changxuan Liu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Shuqing Cao
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Zhaojun Wei
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Yi Han
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Qiuchen Gao
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Weiyan Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
29
|
Tian M, Yang Y, Ávila FW, Fish T, Yuan H, Hui M, Pan S, Thannhauser TW, Li L. Effects of Selenium Supplementation on Glucosinolate Biosynthesis in Broccoli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8036-8044. [PMID: 29975053 DOI: 10.1021/acs.jafc.8b03396] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Selenium (Se)-enriched broccoli has health-beneficial selenium-containing compounds, but it may contain reduced amounts of chemopreventive glucosinolates. To investigate the basis by which Se treatment influences glucosinolate levels, we treated two broccoli cultivars with 25 μM Na2SeO4. We found that Se supplementation suppressed the accumulation of total glucosinolates, particularly glucoraphanin, the direct precursor of a potent anticancer compound, in broccoli florets and leaves. We showed that the suppression was not associated with plant sulfur nutrition. The levels of the glucosinolate precursors methionine and phenylalanine as well as the expression of genes involved in glucosinolate biosynthesis were greatly decreased following Se supplementation. Comparative proteomic analysis identified proteins in multiple metabolic and cellular processes that were greatly affected and detected an enzyme affecting methionine biosynthesis that was reduced in the Se-biofortified broccoli. These results indicate that Se-conferred glucosinolate reduction is associated with negative effects on precursor amino acid biosynthesis and glucosinolate-biosynthetic-gene expression and provide information for a better understanding of glucosinolate accumulation in response to Se supplementation in broccoli.
Collapse
Affiliation(s)
- Ming Tian
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
| | - Fabricio William Ávila
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
- State University of Mid West, UNICENTRO , Irati , Paraná 84500-000 , Brazil
| | - Tara Fish
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science , Cornell University , Ithaca , New York 14853 , United States
| | - Maixia Hui
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
- College of Horticulture , Northwest A&F University , Yangling 712100 , China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Theodore W Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS , Cornell University , Ithaca , New York 14853 , United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
30
|
Lima LW, Pilon-Smits EAH, Schiavon M. Mechanisms of selenium hyperaccumulation in plants: A survey of molecular, biochemical and ecological cues. Biochim Biophys Acta Gen Subj 2018; 1862:2343-2353. [PMID: 29626605 DOI: 10.1016/j.bbagen.2018.03.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/20/2018] [Accepted: 03/25/2018] [Indexed: 12/01/2022]
Abstract
BACKGROUND Selenium (Se) is a micronutrient required for many life forms, but toxic at higher concentration. Plants do not have a Se requirement, but can benefit from Se via enhanced antioxidant activity. Some plant species can accumulate Se to concentrations above 0.1% of dry weight and seem to possess mechanisms that distinguish Se from its analog sulfur (S). Research on these so-called Se hyperaccumulators aims to identify key genes for this remarkable trait and to understand ecological implications. SCOPE OF REVIEW This review gives a broad overview of the current knowledge about Se uptake and metabolism in plants, with a special emphasis on hypothesized mechanisms of Se hyperaccumulation. The role of Se in plant defense responses and the associated ecological implications are discussed. MAJOR CONCLUSIONS Hyperaccumulators have enhanced expression of S transport and assimilation genes, and may possess transporters with higher specificity for selenate over sulfate. Genes involved in antioxidant reactions and biotic stress resistance are also upregulated. Key regulators in these processes appear to be the growth regulators jasmonic acid, salicylic acid and ethylene. Hyperaccumulation may have evolved owing to associated ecological benefits, particularly protection against pathogens and herbivores, and as a form of elemental allelopathy. GENERAL SIGNIFICANCE Understanding plant Se uptake and metabolism in hyperaccumulators has broad relevance for the environment, agriculture and human and animal nutrition and may help generate crops with selenate-specific uptake and high capacity to convert selenate to less toxic, anticarcinogenic, organic Se compounds.
Collapse
Affiliation(s)
| | | | - Michela Schiavon
- DAFNAE, University of Padova, Agripolis, 35020 Legnaro, PD, Italy.
| |
Collapse
|
31
|
|
32
|
McKenzie MJ, Chen RKY, Leung S, Joshi S, Rippon PE, Joyce NI, McManus MT. Selenium treatment differentially affects sulfur metabolism in high and low glucosinolate producing cultivars of broccoli (Brassica oleracea L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:176-186. [PMID: 29126060 DOI: 10.1016/j.plaphy.2017.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/19/2017] [Accepted: 10/27/2017] [Indexed: 05/21/2023]
Abstract
The effect of selenium (Se) application on the sulfur (S)-rich glucosinolate (GSL)-containing plant, broccoli (Brassica oleracea L. var. italica) was examined with a view to producing germplasm with increased Se and GSL content for human health, and to understanding the influence of Se on the regulation of GSL production. Two cultivars differing in GSL content were compared. Increased Se application resulted in an increase in Se uptake in planta, but no significant change in total S or total GSL content in either cultivar. Also no significant change was observed in the activity of ATP sulfurylase (ATPS, EC 2.7.7.4) or O-acetylserine(thiol) lyase (OASTL, EC 2.5.1.47) with increased Se application. However, in the first investigation of APS kinase (APSK, EC 2.7.1.25) expression in response to Se fertilisation, an increase in transcript abundance of one variant of APS kinase 1 (BoAPSK1A) was observed in both cultivars, and an increase in BoAPSK2 transcript abundance was observed in the low GSL producing cultivar. A mechanism by which increased APSK transcription may provide a means of controlling the content of S-containing compounds, including GSLs, following Se uptake is proposed.
Collapse
Affiliation(s)
- Marian J McKenzie
- New Zealand Institute for Plant & Food Research Ltd., Palmerston North, Private Bag 11600, Manawatu Mail Centre, Palmerston North, 4442, New Zealand.
| | - Ronan K Y Chen
- New Zealand Institute for Plant & Food Research Ltd., Palmerston North, Private Bag 11600, Manawatu Mail Centre, Palmerston North, 4442, New Zealand
| | - Susanna Leung
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Srishti Joshi
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Paula E Rippon
- New Zealand Institute for Plant & Food Research Ltd., Lincoln, Private Bag 4704, Christchurch Mail Centre, Christchurch, 8140, New Zealand
| | - Nigel I Joyce
- New Zealand Institute for Plant & Food Research Ltd., Lincoln, Private Bag 4704, Christchurch Mail Centre, Christchurch, 8140, New Zealand
| | - Michael T McManus
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
33
|
Garousi F. The essentiality of selenium for humans, animals, and plants, and the role of selenium in plant metabolism and physiology. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/ausal-2017-0005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
After its discovery, selenium was most noted for its harmful effects. Selenium was the first element identified to occur in native vegetation at levels toxic to animals. Poisoning of animals can occur through consumption of plants containing toxic levels of selenium. Livestock consuming excessive amounts of selenized forages are afflicted with “alkali disease” and “blind staggers”. Typical symptoms of these diseases include loss of hair, deformed hooves, blindness, colic, diarrhoea, lethargy, increased heart and respiration rates, and eventually death. On the other hand, selenium deficiency in animal feeds can cause “white muscle disease”, a degenerative disease of the cardiac and skeletal muscles. In this regard, this review paper attempts to summarize the essentiality of selenium for humans, animals, and plants and the role of selenium in plant metabolism and physiology.
Collapse
Affiliation(s)
- F. Garousi
- University of Debrecen , Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology , HU-4032 Debrecen , Böszörményi út 138., Hungary
| |
Collapse
|
34
|
|
35
|
Mahn A. Modelling of the effect of selenium fertilization on the content of bioactive compounds in broccoli heads. Food Chem 2017; 233:492-499. [PMID: 28530603 DOI: 10.1016/j.foodchem.2017.04.144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/15/2017] [Accepted: 04/24/2017] [Indexed: 02/04/2023]
Abstract
Selenium (Se) exerts many effects beneficial to health. Broccoli is a Se-hyperaccumulator plant, with Se-fertilization increasing its potential as a functional food. We studied the effect of dose, and the developmental stage at the beginning of Se-fortification, on antioxidant capacity, phenolics, glucosinolates, sulphoraphane, Se-methyl selenocysteine and myrosinase in broccoli. Se-fortification decreased the antioxidant properties and sulphur-containing compounds, but increased Se-methyl-selenocysteine content. Regression models gave r>0.77 confirming that Se dose and developmental stage largely determine the behaviour of the system. Correlation models gave r>0.95, allowing estimation of saturation concentration of Se-methyl-selenocysteine in broccoli cv. Traditional (3.13µmolg-1DM) and the concentration (2-mmol sodium selenate) above which the content of phenolic compounds decreases significantly. Sulphoraphane and glucosinolates' dependence on total Se supply was consistent with myrosinase activity below 3.5-mmol sodium selenate. Our results would enable design of optimal fertilization strategies to enrich broccoli in Se with minimal impairment of antioxidants properties.
Collapse
Affiliation(s)
- Andrea Mahn
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile.
| |
Collapse
|
36
|
Schiavon M, Pilon-Smits EAH. The fascinating facets of plant selenium accumulation - biochemistry, physiology, evolution and ecology. THE NEW PHYTOLOGIST 2017; 213:1582-1596. [PMID: 27991670 DOI: 10.1111/nph.14378] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/31/2016] [Indexed: 05/20/2023]
Abstract
Contents 1582 I. 1582 II. 1583 III. 1588 IV. 1590 V. 1592 1592 References 1592 SUMMARY: The importance of selenium (Se) for medicine, industry and the environment is increasingly apparent. Se is essential for many species, including humans, but toxic at elevated concentrations. Plant Se accumulation and volatilization may be applied in crop biofortification and phytoremediation. Topics covered here include beneficial and toxic effects of Se on plants, mechanisms of Se accumulation and tolerance in plants and algae, Se hyperaccumulation, and ecological and evolutionary aspects of these processes. Plant species differ in the concentration and forms of Se accumulated, Se partitioning at the whole-plant and tissue levels, and the capacity to distinguish Se from sulfur. Mechanisms of Se hyperaccumulation and its adaptive significance appear to involve constitutive up-regulation of sulfate/selenate uptake and assimilation, associated with elevated concentrations of defense-related hormones. Hyperaccumulation has evolved independently in at least three plant families, probably as an elemental defense mechanism and perhaps mediating elemental allelopathy. Elevated plant Se protects plants from generalist herbivores and pathogens, but also gives rise to the evolution of Se-resistant specialists. Plant Se accumulation affects ecological interactions with herbivores, pollinators, neighboring plants, and microbes. Hyperaccumulation tends to negatively affect Se-sensitive ecological partners while facilitating Se-resistant partners, potentially affecting species composition and Se cycling in seleniferous ecosystems.
Collapse
Affiliation(s)
- Michela Schiavon
- Biology Department, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | | |
Collapse
|
37
|
Wiesner-Reinhold M, Schreiner M, Baldermann S, Schwarz D, Hanschen FS, Kipp AP, Rowan DD, Bentley-Hewitt KL, McKenzie MJ. Mechanisms of Selenium Enrichment and Measurement in Brassicaceous Vegetables, and Their Application to Human Health. FRONTIERS IN PLANT SCIENCE 2017; 8:1365. [PMID: 28824693 PMCID: PMC5540907 DOI: 10.3389/fpls.2017.01365] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/21/2017] [Indexed: 05/04/2023]
Abstract
Selenium (Se) is an essential micronutrient for human health. Se deficiency affects hundreds of millions of people worldwide, particularly in developing countries, and there is increasing awareness that suboptimal supply of Se can also negatively affect human health. Selenium enters the diet primarily through the ingestion of plant and animal products. Although, plants are not dependent on Se they take it up from the soil through the sulphur (S) uptake and assimilation pathways. Therefore, geographic differences in the availability of soil Se and agricultural practices have a profound influence on the Se content of many foods, and there are increasing efforts to biofortify crop plants with Se. Plants from the Brassicales are of particular interest as they accumulate and synthesize Se into forms with additional health benefits, such as methylselenocysteine (MeSeCys). The Brassicaceae are also well-known to produce the glucosinolates; S-containing compounds with demonstrated human health value. Furthermore, the recent discovery of the selenoglucosinolates in the Brassicaceae raises questions regarding their potential bioefficacy. In this review we focus on Se uptake and metabolism in the Brassicaceae in the context of human health, particularly cancer prevention and immunity. We investigate the close relationship between Se and S metabolism in this plant family, with particular emphasis on the selenoglucosinolates, and consider the methodologies available for identifying and quantifying further novel Se-containing compounds in plants. Finally, we summarize the research of multiple groups investigating biofortification of the Brassicaceae and discuss which approaches might be most successful for supplying Se deficient populations in the future.
Collapse
Affiliation(s)
- Melanie Wiesner-Reinhold
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
- *Correspondence: Melanie Wiesner-Reinhold
| | - Monika Schreiner
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
| | - Susanne Baldermann
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
- Food Chemistry, Institute of Nutritional Science, University of PotsdamNuthethal, Germany
| | - Dietmar Schwarz
- Functional Plant Biology, Leibniz Institute of Vegetable and Ornamental CropGrossbeeren, Germany
| | - Franziska S. Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
| | - Anna P. Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutrition, Friedrich Schiller University JenaJena, Germany
| | - Daryl D. Rowan
- Food Innovation, The New Zealand Institute for Plant & Food Research LimitedPalmerston North, New Zealand
| | - Kerry L. Bentley-Hewitt
- Food Innovation, The New Zealand Institute for Plant & Food Research LimitedPalmerston North, New Zealand
| | - Marian J. McKenzie
- Food Innovation, The New Zealand Institute for Plant & Food Research LimitedPalmerston North, New Zealand
| |
Collapse
|
38
|
Tian M, Hui M, Thannhauser TW, Pan S, Li L. Selenium-Induced Toxicity Is Counteracted by Sulfur in Broccoli ( Brassica oleracea L. var. italica). FRONTIERS IN PLANT SCIENCE 2017; 8:1425. [PMID: 28868057 PMCID: PMC5563375 DOI: 10.3389/fpls.2017.01425] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/02/2017] [Indexed: 05/09/2023]
Abstract
Selenium (Se) is an essential micronutrient for humans. Increasing Se content in food crops offers an effective approach to enhance the consumption of Se in human diets. A thoroughly understanding of the effects of Se on plant growth is important for Se biofortification in food crops. Given that Se is an analog of sulfur (S) and can be toxic to plants, its effect on plant growth is expected to be greatly affected by S nutrition. However, this remains to be further understood. Here, we evaluated the influence of Se treatments on broccoli (Brassica oleracea L. var. italica) growth when S was withheld from the growth nutrient solution. We found that Se was highly toxic to plants when S nutrition was poor. In contrast to Se treatments with adequate S nutrition that slightly reduced broccoli growth, the same concentration of Se treatments without S supplementation dramatically reduced plant sizes. Higher Se toxicity was observed with selenate than selenite under low S nutrition. We examined the bases underlying the toxicity. We discovered that the high Se toxicity in low S nutrition was specifically associated with an increased ratio of Se in proteins verse total Se level, enhanced generation of reactive oxygen species, elevated lipid peroxidation causing increased cell membrane damage, and reduced antioxidant enzyme activities. Se toxicity could be counteracted with increased supplementation of S, which is likely through decreasing non-specific integration of Se into proteins and altering the redox system. The present study provides information for better understanding of Se toxicity and shows that adequate S nutrition is important to prevent Se toxicity during biofortification of crops by Se fertilization.
Collapse
Affiliation(s)
- Ming Tian
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural UniversityWuhan, China
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture – Agricultural Research Service, Cornell University, IthacaNY, United States
| | - Maixia Hui
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture – Agricultural Research Service, Cornell University, IthacaNY, United States
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Theodore W. Thannhauser
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture – Agricultural Research Service, Cornell University, IthacaNY, United States
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Li Li, Siyi Pan,
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture – Agricultural Research Service, Cornell University, IthacaNY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, IthacaNY, United States
- *Correspondence: Li Li, Siyi Pan,
| |
Collapse
|
39
|
Boldrin PF, de Figueiredo MA, Yang Y, Luo H, Giri S, Hart JJ, Faquin V, Guilherme LRG, Thannhauser TW, Li L. Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum). PHYSIOLOGIA PLANTARUM 2016; 158:80-91. [PMID: 27152969 DOI: 10.1111/ppl.12465] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 03/31/2016] [Indexed: 05/19/2023]
Abstract
Selenium (Se) is an essential micronutrient for animals and humans and a target for biofortification in crops. Sulfur (S) is a crucial nutrient for plant growth. To gain better understanding of Se and S nutrition and interaction in plants, the effects of Se dosages and forms on plant growth as well as on S level in seven wheat lines were examined. Low dosages of both selenate and selenite supplements were found to enhance wheat shoot biomass and show no inhibitory effect on grain production. The stimulation on plant growth was correlated with increased APX antioxidant enzyme activity. Se forms were found to exert different effects on S metabolism in wheat plants. Selenate treatment promoted S accumulation, which was not observed with selenite supplement. An over threefold increase of S levels following selenate treatment at low dosages was observed in shoots of all wheat lines. Analysis of the sulfate transporter gene expression revealed an increased transcription of SULTR1;1, SULTR1;3 and SULTR4;1 in roots following 10 μM Na2 SeO4 treatment. Mass spectrometry-based targeted protein quantification confirmed the gene expression results and showed enhanced protein levels. The results suggest that Se treatment mimics S deficiency to activate specific sulfate transporter expression to stimulate S uptake, resulting in the selenate-induced S accumulation. This study supports that plant growth and nutrition benefit from low dosages of Se fertilization and provides information on the basis underlying Se-induced S accumulation in plants.
Collapse
Affiliation(s)
- Paulo F Boldrin
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Department of Soil Science, Federal University of Lavras, Lavras 37200-000, Brazil
| | - Marislaine A de Figueiredo
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Department of Agriculture, Federal University of Lavras, Lavras, Brazil
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Hongmei Luo
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Shree Giri
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Jonathan J Hart
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Valdemar Faquin
- Department of Soil Science, Federal University of Lavras, Lavras 37200-000, Brazil
| | - Luiz R G Guilherme
- Department of Soil Science, Federal University of Lavras, Lavras 37200-000, Brazil
| | - Theorodore W Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
40
|
Lv J, Wu J, Zuo J, Fan L, Shi J, Gao L, Li M, Wang Q. Effect of Se treatment on the volatile compounds in broccoli. Food Chem 2016; 216:225-33. [PMID: 27596413 DOI: 10.1016/j.foodchem.2016.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/06/2016] [Accepted: 08/03/2016] [Indexed: 11/28/2022]
Abstract
Broccoli contains high levels of bioactive compounds but deteriorates and senesces easily. In the present study, freshly harvested broccoli was treated with selenite and stored at two different temperatures. The effect of selenite treatment on sensory quality and postharvest physiology were analyzed. Volatile components were assessed by HS-SPME combined with GC-MS and EN. The metabolism of Se and S was also examined. Results indicated that Se treatment had a significant effect on maintaining the sensory quality, suppressing the respiration intensity and ethylene production, as well as increasing the content of Se and decreasing the content of S. In particular, significant differences in the composition of volatile compounds were present between control and Se-treated. The differences were mainly due to differences in alcohols and sulfide compounds. These results demonstrate that Se treatment can have a positive effect on maintaining quality and enhancing its sensory quality through the release of volatile compounds.
Collapse
Affiliation(s)
- Jiayu Lv
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China
| | - Jie Wu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China; Key Laboratory of Agri-Food Safety of Anhui Province and Laboratory of Quality and Safty Risk Assessment for Agricultural Products on Storage and Preservation of the Ministry of Agriculture (Hefei), School of Plant Protection - School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jinhua Zuo
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China
| | - Linlin Fan
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China
| | - Junyan Shi
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China
| | - Lipu Gao
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China
| | - Miao Li
- Key Laboratory of Agri-Food Safety of Anhui Province and Laboratory of Quality and Safty Risk Assessment for Agricultural Products on Storage and Preservation of the Ministry of Agriculture (Hefei), School of Plant Protection - School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Qing Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing 100097, China.
| |
Collapse
|
41
|
Zhang J, Yuan H, Yang Y, Fish T, Lyi SM, Thannhauser TW, Zhang L, Li L. Plastid ribosomal protein S5 is involved in photosynthesis, plant development, and cold stress tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2731-44. [PMID: 27006483 PMCID: PMC4861020 DOI: 10.1093/jxb/erw106] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plastid ribosomal proteins are essential components of protein synthesis machinery and have diverse roles in plant growth and development. Mutations in plastid ribosomal proteins lead to a range of developmental phenotypes in plants. However, how they regulate these processes is not fully understood, and the functions of some individual plastid ribosomal proteins remain unknown. To identify genes responsible for chloroplast development, we isolated and characterized a mutant that exhibited pale yellow inner leaves with a reduced growth rate in Arabidopsis. The mutant (rps5) contained a missense mutation of plastid ribosomal protein S5 (RPS5), which caused a dramatically reduced abundance of chloroplast 16S rRNA and seriously impaired 16S rRNA processing to affect ribosome function and plastid translation. Comparative proteomic analysis revealed that the rps5 mutation suppressed the expression of a large number of core components involved in photosystems I and II as well as many plastid ribosomal proteins. Unexpectedly, a number of proteins associated with cold stress responses were greatly decreased in rps5, and overexpression of the plastid RPS5 improved plant cold stress tolerance. Our results indicate that RPS5 is an important constituent of the plastid 30S subunit and affects proteins involved in photosynthesis and cold stress responses to mediate plant growth and development.
Collapse
Affiliation(s)
- Junxiang Zhang
- College of Horticulture, State Key Laboratory of Crop Stress Biology for Arid Area, Northwest A&F University, Yangling, 712100, China Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hui Yuan
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Tara Fish
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Sangbom M Lyi
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Theodore W Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Lugang Zhang
- College of Horticulture, State Key Laboratory of Crop Stress Biology for Arid Area, Northwest A&F University, Yangling, 712100, China
| | - Li Li
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
42
|
White PJ. Selenium accumulation by plants. ANNALS OF BOTANY 2016; 117:217-35. [PMID: 26718221 PMCID: PMC4724052 DOI: 10.1093/aob/mcv180] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/09/2015] [Accepted: 10/19/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg(-1) dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators. SCOPE This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. CONCLUSIONS The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which might be used to increase dietary Se intakes of animals and humans.
Collapse
Affiliation(s)
- Philip J White
- Ecological Sciences Group, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK and Distinguished Scientist Fellowship Program, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
43
|
Lyubenova L, Sabodash X, Schröder P, Michalke B. Selenium species in the roots and shoots of chickpea plants treated with different concentrations of sodium selenite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16978-16986. [PMID: 26122563 DOI: 10.1007/s11356-015-4755-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
The trace element selenium has an essential role for human health. It is involved in redox center functions, and it is related to the immune system response. Legumes are among the main suppliers of selenium into the human food chain. Not only Se concentration as such but also more the chemical species of Se is of higher importance for successful Se supply to the human diet and its bioavailability. The current study was focused on the investigation of the Se species present in chickpea plants exposed to 0, 10, 25, 50, and 100 μM selenite in short- and long-term treatment studies. The linear increase of total Se concentration could be linked to the increased concentrations of Se exposure. The selenium species (SeMet, SeCys, selenite, selenate, GPx) detected in varying concentrations in shoots and roots depend on the exposure's concentration and duration. The investigation showed that chickpea can accumulate Se in favorable concentrations and its transformation to bioavailable Se species may have positive impacts on human health and aid to implement Se into the diet.
Collapse
Affiliation(s)
- Lyudmila Lyubenova
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| | - Xenia Sabodash
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Peter Schröder
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
44
|
Tian M, Xu X, Liu Y, Xie L, Pan S. Effect of Se treatment on glucosinolate metabolism and health-promoting compounds in the broccoli sprouts of three cultivars. Food Chem 2015. [PMID: 26212985 DOI: 10.1016/j.foodchem.2015.05.098] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Broccoli sprouts are natural functional foods for cancer prevention because of their high glucosinolate (GSL) content and high selenium (Se) accumulation capacity. The regulation mechanism of Se on GSL metabolism in broccoli sprouts was explored. In particular, the effects of Se treatment (100 μmol/L selenite and selenate) on the Se, sulfur (S), glucosinolate and sulforaphane contents; myrosinase activity and health-promoting compounds (ascorbic acid, anthocyanin, total phenolics and flavonoids) of three, 5 day old, cultivars were investigated. The treatment did not influence the total GSL and ascorbic acid contents; significantly increased the myrosinase activity and sulforaphane, anthocyanin and flavonoids contents; and decreased the total phenolics content. The increase in sulforaphane during early growth can be primarily attributed to the increased myrosinase activity caused by Se treatment. Broccoli sprouts with suitable selenite and selenate concentrations, in the early growth days, could be desirable for improved human health.
Collapse
Affiliation(s)
- Ming Tian
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China
| | - Yanlong Liu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China
| | - Lin Xie
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
45
|
El-Ramady H, Abdalla N, Alshaal T, El-Henawy A, Faizy SEDA, Shams MS, Shalaby T, Bayoumi Y, Elhawat N, Shehata S, Sztrik A, Prokisch J, Fári M, Pilon-Smits EA, Domokos-Szabolcsy É. Selenium and its Role in Higher Plants. POLLUTANTS IN BUILDINGS, WATER AND LIVING ORGANISMS 2015. [DOI: 10.1007/978-3-319-19276-5_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
46
|
|
47
|
Malagoli M, Schiavon M, dall’Acqua S, Pilon-Smits EAH. Effects of selenium biofortification on crop nutritional quality. FRONTIERS IN PLANT SCIENCE 2015; 6:280. [PMID: 25954299 PMCID: PMC4404738 DOI: 10.3389/fpls.2015.00280] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/08/2015] [Indexed: 05/02/2023]
Abstract
Selenium (Se) at very low doses has crucial functions in humans and animals. Since plants represent the main dietary source of this element, Se-containing crops may be used as a means to deliver Se to consumers (biofortification). Several strategies have been exploited to increase plant Se content. Selenium assimilation in plants affects both sulfur (S) and nitrogen (N) metabolic pathways, which is why recent research has also focused on the effect of Se fertilization on the production of S- and N- secondary metabolites with putative health benefits. In this review we discuss the function of Se in plant and human nutrition and the progress in the genetic engineering of Se metabolism to increase the levels and bioavailability of this element in food crops. Particular attention is paid to Se biofortification and the synthesis of compounds with beneficial effects on health.
Collapse
Affiliation(s)
- Mario Malagoli
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Padova, Italy
- *Correspondence: Mario Malagoli, Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Agripolis, 35020 Legnaro Padova, Italy
| | - Michela Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Padova, Italy
| | - Stefano dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | |
Collapse
|
48
|
Yang H, Jia X. Safety evaluation of Se-methylselenocysteine as nutritional selenium supplement: Acute toxicity, genotoxicity and subchronic toxicity. Regul Toxicol Pharmacol 2014; 70:720-7. [DOI: 10.1016/j.yrtph.2014.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/16/2014] [Accepted: 10/25/2014] [Indexed: 12/24/2022]
|
49
|
Souza GA, Hart JJ, Carvalho JG, Rutzke MA, Albrecht JC, Guilherme LRG, Kochian LV, Li L. Genotypic variation of zinc and selenium concentration in grains of Brazilian wheat lines. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 224:27-35. [PMID: 24908503 DOI: 10.1016/j.plantsci.2014.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/29/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
Exploration of genetic resources for micronutrient concentrations facilitates the breeding of nutrient-dense crops, which is increasingly seen as an additional, sustainable strategy to combat global micronutrient deficiency. In this work, we evaluated genotypic variation in grain nutrient concentrations of 20 Brazil wheat (Triticum aestivum L.) accessions in response to zinc (Zn) and Zn plus selenium (Se) treatment. Zn and Se concentrations in grains exhibited 2- and 1.5-fold difference, respectively, between these wheat accessions. A variation of up to 3-fold enhancement of grain Zn concentration was observed when additionally Zn was supplied, indicating a wide range capacity of the wheat lines in accumulating Zn in grains. Moreover, grain Zn concentration was further enhanced in some lines following supply of Zn plus Se, showing stimulative effect by Se and the feasibility of simultaneous biofortification of Zn and Se in grains of some wheat lines. In addition, Se supply with Zn improved the accumulation of another important micronutrient, iron (Fe), in grains of half of these wheat lines, suggesting a beneficial role of simultaneous biofortification of Zn with Se. The significant diversity in these wheat accessions offers genetic potential for developing cultivars with better ability to accumulate important micronutrients in grains.
Collapse
Affiliation(s)
- Guilherme A Souza
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA; Soil Science Department at Federal University of Lavras, P.O. Box 3037, 37200-000 Lavras, MG, Brazil.
| | - Jonathan J Hart
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA.
| | - Janice G Carvalho
- Soil Science Department at Federal University of Lavras, P.O. Box 3037, 37200-000 Lavras, MG, Brazil.
| | - Michael A Rutzke
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA.
| | - Júlio César Albrecht
- Embrapa Cerrados (CPAC), BR 020 km 18, P.O. Box 08223, CEP 73310-970 Planaltina, DF, Brazil.
| | - Luiz Roberto G Guilherme
- Soil Science Department at Federal University of Lavras, P.O. Box 3037, 37200-000 Lavras, MG, Brazil.
| | - Leon V Kochian
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA.
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
50
|
Avila FW, Yang Y, Faquin V, Ramos SJ, Guilherme LRG, Thannhauser TW, Li L. Impact of selenium supply on Se-methylselenocysteine and glucosinolate accumulation in selenium-biofortified Brassica sprouts. Food Chem 2014; 165:578-86. [PMID: 25038715 DOI: 10.1016/j.foodchem.2014.05.134] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 01/20/2014] [Accepted: 05/26/2014] [Indexed: 12/11/2022]
Abstract
Brassica sprouts are widely marketed as functional foods. Here we examined the effects of Se treatment on the accumulation of anticancer compound Se-methylselenocysteine (SeMSCys) and glucosinolates in Brassica sprouts. Cultivars from the six most extensively consumed Brassica vegetables (broccoli, cauliflower, green cabbage, Chinese cabbage, kale, and Brussels sprouts) were used. We found that Se-biofortified Brassica sprouts all were able to synthesize significant amounts of SeMSCys. Analysis of glucosinolate profiles revealed that each Brassica crop accumulated different types and amounts of glucosinolates. Cauliflower sprouts had high total glucosinolate content. Broccoli sprouts contained high levels of glucoraphanin, a precursor for potent anticancer compound. Although studies have reported an inverse relationship between accumulation of Se and glucosinolates in mature Brassica plants, Se supply generally did not affect glucosinolate accumulation in Brassica sprouts. Thus, Brassica vegetable sprouts can be biofortified with Se for the accumulation of SeMSCys without negative effects on chemopreventive glucosinolate contents.
Collapse
Affiliation(s)
- Fabricio William Avila
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Departamento de Ciência do Solo, Universidade Federal de Lavras, Lavras, MG 37200-000, Brazil; Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Valdemar Faquin
- Departamento de Ciência do Solo, Universidade Federal de Lavras, Lavras, MG 37200-000, Brazil
| | | | | | - Theodore W Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|