1
|
Qu K, Zhou C, Liu D, Han B, Jiao Z, Niu S, El-Kassaby YA, Li W. CONSTANS-Like and SHORT VEGETATIVE PHASE-Like Genes Coordinately Modulate TERMINAL FLOWER 2 to Control Dormancy Transitions in Pinus tabuliformis. PLANT, CELL & ENVIRONMENT 2025; 48:3066-3084. [PMID: 39676713 DOI: 10.1111/pce.15313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
With global climate change, understanding how conifers manage seasonal dormancy is increasingly important. This study explores the physiological and molecular processes controlling dormancy transitions in P. tabuliformis, a key species in northern China. Using dormancy simulations and Time-Ordered Gene Co-Expression Network (TO-GCN) analysis, we identified low temperature, rather than photoperiod, as the primary trigger for dormancy release. The PtTFL2 gene functions as both an environmental sensor and dormancy marker, regulated by cold-dependent and independent pathways involving the photoperiod-responsive PtCOL1 and PtSVP-like (SVL) genes. During the autumn-to-winter transition, PtSVL controls PtTFL2 transcription, forming a regulatory complex to fine-tune dormancy. PtCOL1 also directly regulates PtTFL2 and indirectly modulates it by affecting PtSVL expression. The CO-TFL module controls fall dormancy (ecodormancy), while the SVP-TFL module manages the shift to endodormancy in winter. These findings reveal dual regulatory pathways governing dormancy in conifers, offering insights into their adaptation to cold environments and laying the foundation for further research into dormancy mechanisms in gymnosperms.
Collapse
Affiliation(s)
- Kai Qu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chengcheng Zhou
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Biao Han
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Zhiyuan Jiao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shihui Niu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Kiss T, Horváth ÁD, Cseh A, Berki Z, Balla K, Karsai I. Molecular genetic regulation of the vegetative-generative transition in wheat from an environmental perspective. ANNALS OF BOTANY 2025; 135:605-628. [PMID: 39364537 PMCID: PMC11904908 DOI: 10.1093/aob/mcae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The key to the wide geographical distribution of wheat is its high adaptability. One of the most commonly used methods for studying adaptation is investigation of the transition between the vegetative-generative phase and the subsequent intensive stem elongation process. These processes are determined largely by changes in ambient temperature, the diurnal and annual periodicity of daylength, and the composition of the light spectrum. Many genes are involved in the perception of external environmental signals, forming a complex network of interconnections that are then integrated by a few integrator genes. This hierarchical cascade system ensures the precise occurrence of the developmental stages that enable maximum productivity. This review presents the interrelationship of molecular-genetic pathways (Earliness per se, circadian/photoperiod length, vernalization - cold requirement, phytohormonal - gibberellic acid, light perception, ambient temperature perception and ageing - miRNA) responsible for environmental adaptation in wheat. Detailed molecular genetic mapping of wheat adaptability will allow breeders to incorporate new alleles that will create varieties best adapted to local environmental conditions.
Collapse
Affiliation(s)
- Tibor Kiss
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - Ádám D Horváth
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - András Cseh
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Zita Berki
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Krisztina Balla
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Ildikó Karsai
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| |
Collapse
|
3
|
Liu J, Dong C, Liu X, Guo J, Chai L, Guo W, Ni Z, Sun Q, Liu J. Decoupling the pleiotropic effects of VRT-A2 during reproductive development enhances wheat grain length and weight. THE PLANT CELL 2025; 37:koaf024. [PMID: 39951393 PMCID: PMC11827615 DOI: 10.1093/plcell/koaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/28/2025] [Indexed: 02/16/2025]
Abstract
VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT-A2) is a subspecies-forming gene that confers the long-glume and large-grain traits of tetraploid Polish wheat (Triticum polonicum; AABB) and hexaploid Xinjiang rice wheat (T. petropavlovskyi; AABBDD). Transcriptional activation of VRT-A2 due to a natural sequence variation in its Intron-1 region significantly enhances grain weight but also causes some basal spikelets to fail to completely develop, thus decreasing grain number per spike and yield. This yield penalty has presented a challenge for the use of VRT-A2 in breeding high-yield wheat. Here, we report the characterization of 2 regulatory modules that fine-tune VRT-A2 expression in bread wheat (T. aestivum): (i) the APETALA2/Ethylene Responsive Factor (AP2/ERF)-type transcription factor MULTI-FLORET SPIKELET1 (TaMFS1) represses VRT-A2 expression by recruiting a transcriptional corepressor and a histone deacetylase and (ii) the STRUCTURE-SPECIFIC RECOGNITION PROTEIN 1 (TaSSRP1) facilitates VRT-A2 activation by assembling Mediator and further RNA polymerase II. Deleting TaMFS1 triggered moderate upregulation of VRT-A2 results in significantly increased grain weight without the yield penalty. Our study thus provides a feasible strategy for overcoming the tradeoffs of pleotropic genes by editing their upstream transcriptional regulators.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Chaoqun Dong
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Xiangqing Liu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Jinquan Guo
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Lingling Chai
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Kennedy A, Li M, Vandeperre A, Hameed MU, Van Dyck M, Engelen S, Preston JC, Geuten K. Transcription factor VRT2 reinitiates vernalization when interrupted by warm temperatures in a temperate grass model. PLANT PHYSIOLOGY 2024; 196:2614-2624. [PMID: 39316702 PMCID: PMC11638104 DOI: 10.1093/plphys/kiae498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 09/26/2024]
Abstract
Vernalization-responsive plants use cold weather, or low temperature, as a cue to monitoring the passing of winter. Winter cereals can remember the extent of coldness they have experienced, even when winter is punctuated by warm days. However, in a seemingly unnatural process called "devernalization," hot temperatures can erase winter memory. Previous studies in bread wheat (Triticum aestivum) have implicated the MADS-box transcription factor VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT2) in vernalization based on transcriptional behavior and ectopic expression. Here, we characterized 3 BdVRT2 loss-of-function alleles in the temperate model grass Brachypodium distachyon. In addition to extended vernalization requirements, mutants showed delayed flowering relative to wild-type plants when exposed only briefly to warm temperatures after partial vernalization, with flowering being unaffected when vernalization was saturating. Together, these data suggest a role for BdVRT2 in both vernalization and in its reinitiation when interrupted by warm temperatures. In controlled constant conditions, BdVRT2 transcription was not strongly affected by vernalization or devernalization. Yet, by monitoring BdVRT2 expression in seasonally varying and fluctuating conditions in an unheated greenhouse, we observed strong upregulation, suggesting that its transcription is regulated by fluctuating vernalizing-devernalizing conditions. Our data suggest that devernalization by hot temperatures is not a peculiarity of domesticated cereal crops but is the extreme of the reversibility of vernalization by warm temperatures and has broader biological relevance across temperate grasses.
Collapse
Affiliation(s)
- Alice Kennedy
- Department of Biology, Leuven Plant Institute, KU Leuven, 3000 Leuven, Belgium
| | - Meixia Li
- Department of Biology, Leuven Plant Institute, KU Leuven, 3000 Leuven, Belgium
| | - Anja Vandeperre
- Department of Biology, Leuven Plant Institute, KU Leuven, 3000 Leuven, Belgium
| | | | - Michelle Van Dyck
- Department of Biology, Leuven Plant Institute, KU Leuven, 3000 Leuven, Belgium
| | - Sarah Engelen
- Department of Biology, Leuven Plant Institute, KU Leuven, 3000 Leuven, Belgium
| | - Jill C Preston
- Department of Plant Biology, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Koen Geuten
- Department of Biology, Leuven Plant Institute, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Luo X, Yang Y, Lin X, Xiao J. Deciphering spike architecture formation towards yield improvement in wheat. J Genet Genomics 2023; 50:835-845. [PMID: 36907353 DOI: 10.1016/j.jgg.2023.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023]
Abstract
Wheat is the most widely grown crop globally, providing 20% of the daily consumed calories and protein content around the world. With the growing global population and frequent occurrence of extreme weather caused by climate change, ensuring adequate wheat production is essential for food security. The architecture of the inflorescence plays a crucial role in determining the grain number and size, which is a key trait for improving yield. Recent advances in wheat genomics and gene cloning techniques have improved our understanding of wheat spike development and its applications in breeding practices. Here, we summarize the genetic regulation network governing wheat spike formation, the strategies used for identifying and studying the key factors affecting spike architecture, and the progress made in breeding applications. Additionally, we highlight future directions that will aid in the regulatory mechanistic study of wheat spike determination and targeted breeding for grain yield improvement.
Collapse
Affiliation(s)
- Xumei Luo
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
6
|
Wang F, Zhou Z, Zhu L, Gu Y, Guo B, Lv C, Zhu J, Xu R. Genome-wide analysis of the MADS-box gene family involved in salt and waterlogging tolerance in barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1178065. [PMID: 37229117 PMCID: PMC10203460 DOI: 10.3389/fpls.2023.1178065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/07/2023] [Indexed: 05/27/2023]
Abstract
MADS-box transcription factors are crucial members of regulatory networks underlying multiple developmental pathways and abiotic stress regulatory networks in plants. Studies on stress resistance-related functions of MADS-box genes are very limited in barley. To gain insight into this gene family and elucidate their roles in salt and waterlogging stress resistance, we performed genome-wide identification, characterization and expression analysis of MADS-box genes in barley. A whole-genome survey of barley revealed 83 MADS-box genes, which were categorized into type I (Mα, Mβ and Mγ) and type II (AP1, SEP1, AGL12, STK, AGL16, SVP and MIKC*) lineages based on phylogeny, protein motif structure. Twenty conserved motifs were determined and each HvMADS contained one to six motifs. We also found tandem repeat duplication was the driven force for HvMADS gene family expansion. Additionally, the co-expression regulatory network of 10 and 14 HvMADS genes was predicted in response to salt and waterlogging stress, and we proposed HvMADS11,13 and 35 as candidate genes for further exploration of the functions in abiotic stress. The extensive annotations and transcriptome profiling reported in this study ultimately provides the basis for MADS functional characterization in genetic engineering of barley and other gramineous crops.
Collapse
|
7
|
Zhu Z, Esche F, Babben S, Trenner J, Serfling A, Pillen K, Maurer A, Quint M. An exotic allele of barley EARLY FLOWERING 3 contributes to developmental plasticity at elevated temperatures. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2912-2931. [PMID: 36449391 DOI: 10.1093/jxb/erac470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/28/2022] [Indexed: 06/06/2023]
Abstract
Increase in ambient temperatures caused by climate change affects various morphological and developmental traits of plants, threatening crop yield stability. In the model plant Arabidopsis thaliana, EARLY FLOWERING 3 (ELF3) plays prominent roles in temperature sensing and thermomorphogenesis signal transduction. However, how crop species respond to elevated temperatures is poorly understood. Here, we show that the barley ortholog of AtELF3 interacts with high temperature to control growth and development. We used heterogeneous inbred family (HIF) pairs generated from a segregating mapping population and systematically studied the role of exotic ELF3 variants in barley temperature responses. An exotic ELF3 allele of Syrian origin promoted elongation growth in barley at elevated temperatures, whereas plant area and estimated biomass were drastically reduced, resulting in an open canopy architecture. The same allele accelerated inflorescence development at high temperature, which correlated with early transcriptional induction of MADS-box floral identity genes BM3 and BM8. Consequently, barley plants carrying the exotic ELF3 allele displayed stable total grain number at elevated temperatures. Our findings therefore demonstrate that exotic ELF3 variants can contribute to phenotypic and developmental acclimation to elevated temperatures, providing a stimulus for breeding of climate-resilient crops.
Collapse
Affiliation(s)
- Zihao Zhu
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
| | - Finn Esche
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
| | - Steve Babben
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
| | - Jana Trenner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
| | - Albrecht Serfling
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Erwin-Baur-Str. 27, D-06484, Quedlinburg, Germany
| | - Klaus Pillen
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120, Halle (Saale), Germany
| | - Andreas Maurer
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120, Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Puschstrasse 4, D-04103, Leipzig, Germany
| |
Collapse
|
8
|
Fan Z, Gao Y, Gao Y, Guan C, Liu R, Wang S, Zhang Q. Functional characterization of two flowering repressors SHORT VEGETATIVE PHASE and TERMINAL FLOWER 1 in reblooming bearded Iris (Iris spp.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111542. [PMID: 36563940 DOI: 10.1016/j.plantsci.2022.111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/23/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Reblooming bearded iris (Iris spp.) could bloom in both spring and autumn, which has extended the ornamental periods. Our previous transcriptome analysis has indicated the possible regulatory role of SHORT VEGETATIVE PHASE (SVP) in reblooming of bearded iris. Moreover, it has been revealed that the mutations of TERMINAL FLOWER 1 (TFL1) led to the continuous-flowering phenotypes in rose (Rosa spp.) and strawberry (Fragaria spp.). In order to verify the functions of these two genes on reblooming in bearded iris, IgSVP and IgTFL1 were isolated and functionally characterized. All the overexpression Arabidopsis lines of IgSVP and IgTFL1 generated the late-flowering phenotypes, indicating their functions as flowering repressors. The ectopic expression of IgSVP and IgTFL1 also generated phenotypic changes on flowers, inflorescences and branch structures. Moreover, the protein-protein interaction was found between a homologue of IgSVP and the floral meristem identity gene APETALA 1. The expression profiling showed that IgSVP was expressed significantly lower in the rebloomers in the second floral initiation stage (T5) than those of the first one (T1) in both the once-bloomers and the rebloomers, suggesting the possible regulation of IgSVP on reblooming. However, the expression level of IgTFL1 in the rebloomers was significantly higher in T5 than that in T1. The functional characterization of the two important flowering repressors IgSVP and IgTFL1 could lay solid foundation for future molecular breeding of iris, for example, knocking out the key repressors by CRISPR/Cas9 system to extend the ornamental periods of bearded iris.
Collapse
Affiliation(s)
- Zhuping Fan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
| | - Yike Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China.
| | - Yaohui Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
| | - Chunjing Guan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
| | - Rong Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
| | - Shiting Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, China
| |
Collapse
|
9
|
Overexpression of <italic>PvSVP1</italic>, an <italic>SVP</italic>-like gene of bamboo, causes early flowering and abnormal floral organs in <italic>Arabidopsis</italic> and rice. Acta Biochim Biophys Sin (Shanghai) 2023; 55:237-249. [PMID: 36647724 PMCID: PMC10160235 DOI: 10.3724/abbs.2022199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
<p indent="0mm">Bamboo is a nontimber woody plant featuring a long vegetative stage and uncertain flowering time. Therefore, the genes belonging to flowering repressors might be essential in regulating the transition from the vegetative to reproductive stage in bamboo. The <italic>Short Vegetative Phase</italic> ( <italic>SVP</italic>) gene plays a pivotal role in floral transition and development. However, little is known about the bamboo <italic>SVP</italic> homologues. In this study, <italic>Phyllostachys violascens</italic> <italic>PvSVP1</italic> is isolated by analysis of the <italic>P</italic>. <italic>edulis</italic> transcriptome database. Phylogenetic analysis shows that <italic>PvSVP1</italic> is closely related to <italic>OsMADS55</italic> (rice <italic>SVP</italic> homolog). <italic>PvSVP1</italic> is ubiquitously expressed in various tissues, predominantly in vegetative tissues. To investigate the function of <italic>PvSVP1</italic>, <italic>PvSVP1</italic> is overexpressed in <italic>Arabidopsis</italic> and rice under the influence of the 35S promoter. Overexpression of <italic>PvSVP1</italic> in <italic>Arabidopsis</italic> causes early flowering and produces abnormal petals and sepals. Quantitative real-time PCR reveals that overexpression in <italic>Arabidopsis</italic> produces an early flowering phenotype by downregulating <italic>FLC</italic> and upregulating <italic>FT</italic> and produces abnormal floral organs by upregulating <italic>AP1</italic>, <italic>AP3</italic> and <italic>PI</italic> expressions. Simultaneously, overexpression of <italic>PvSVP1</italic> in rice alters the expressions of flowering-related genes such as <italic>Hd3a</italic>, <italic>RFT1</italic>, <italic>OsMADS56</italic> and <italic>Ghd7</italic> and promotes flowering under field conditions. In addition, PvSVP1 may be a nuclear protein which interacts with PvVRN1 and PvMADS56 on the yeast two-hybrid and BiFC systems. Our study suggests that <italic>PvSVP1</italic> may play a vital role in flowering time and development by interacting with PvVRN1 and PvMADS56 in the nucleus. Furthermore, this study paves the way toward understanding the complex flowering process of bamboo. </p>.
Collapse
|
10
|
Gudi S, Kumar P, Singh S, Tanin MJ, Sharma A. Strategies for accelerating genetic gains in crop plants: special focus on speed breeding. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1921-1938. [PMID: 36484026 PMCID: PMC9723045 DOI: 10.1007/s12298-022-01247-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 05/02/2023]
Abstract
Feeding 10 billion people sustainably by 2050 in the era of slow genetic progress has spurred urgent calls to bring more crops per unit time. Over the last century, crop physiologists and breeders have been trying to alter plant biology to investigate and intervene in developmental processes under controlled chambers. Accelerating the breeding cycle via "speed breeding" was the outcome of these experiments. Speed breeding accelerates the genetic gain via phenome and genome-assisted trait introgression, re-domestication, and plant variety registration. Furthermore, early varietal release through speed breeding offers incremental benefits over conventional methods. However, a lack of resources and species-specific protocols encumber the technological implementation, which can be alleviated by reallocating funds to establish speed breeding units. This review discusses the limitations of conventional breeding methods and various alternative strategies to accelerate the breeding process. It also discusses the intervention at various developmental stages to reduce the generation time and global impacts of speed breeding protocols developed so far. Low-cost, field-based speed breeding protocol developed by Punjab Agricultural University, Ludhiana, Punjab, India to harvest at least three generations of wheat in a year without demanding the expensive greenhouses or growth chambers is also discussed.
Collapse
Affiliation(s)
- Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| | - Pradeep Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| | - Satinder Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| | - Mohammad Jafar Tanin
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| |
Collapse
|
11
|
Chen Y, Liu Y, Zhang J, Torrance A, Watanabe N, Adamski NM, Uauy C. The Triticum ispahanicum elongated glume locus P2 maps to chromosome 6A and is associated with the ectopic expression of SVP-A1. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2313-2331. [PMID: 35583655 PMCID: PMC9271103 DOI: 10.1007/s00122-022-04114-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/21/2022] [Indexed: 05/26/2023]
Abstract
We propose the MADS-box transcription factor SVP-A1 as a promising candidate gene for the elongated glume locus P2, which maps to chromosome 6A instead of the previously proposed chromosome 7B. In rice and wheat, glume and floral organ length are positively correlated with grain size, making them an important target to increase grain size and potentially yield. The wheat subspecies Triticum ispahanicum is known to develop elongated glumes and floral organs as well as long grains. These multiple phenotypic effects are controlled by the P2 locus, which was previously mapped to wheat chromosome 7B. Using three mapping populations, we show that the long glume locus P2 does not map to chromosome 7B, but instead maps to a 1.68 Mbp interval on chromosome 6A. Within this interval, we identified SVP-A1, a MADS box transcription factor which is the direct ortholog of the maize gene underlying the 'pod corn' Tunicate locus and is a paralog to the T. polonicum elongated glume P1 gene. In T. ispahanicum, we identified a unique allele which has a 482-bp deletion in the SVP-A1 promoter and is associated with ectopic and higher expression of SVP-A1 in the elongated glumes and floral organs. We used near-isogenic lines (NILs) to show that P2 has a consistent positive effect on the length of glume, lemma, palea, spike and grain. Based on the mapping data, natural variation, biological function of SVP genes in cereals and expression analyses, we propose the MADS-box transcription factor SVP-A1 as a promising candidate for P2.
Collapse
Affiliation(s)
- Yi Chen
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Yinqi Liu
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Junli Zhang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Adam Torrance
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Nobuyoshi Watanabe
- The Little Nursery, 1152 Ina, Toride, Ibaraki, 302-0026, Japan
- College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami, Inashiki, Ibaraki, 300-0393, Japan
| | | | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
12
|
Zhang J, Ma H, Liu Y. Analysis on characteristics of female gametophyte and functional identification of genes related to inflorescences development of Kentucky bluegrass. PROTOPLASMA 2022; 259:1061-1079. [PMID: 34743240 DOI: 10.1007/s00709-021-01720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The inflorescence is composed of spikes, and the spike is the carrier of grass seed formation and development, so the development status of inflorescence implies grass seed yield and quality. So far, the systematic analysis of inflorescence development of Kentucky bluegrass has not been reported. The development process of the female gametophyte of wild germplasm materials of Kentucky bluegrass in Gannan, Gansu Province of China (KB-GN), was observed. Based on this, the key developmental stages of inflorescence in KB-GN were divided into premeiosis (GPreM), meiosis (GM), postmeiosis (GPostM), and anthesis (GA), and four stages of inflorescence were selected to analyze the transcriptome expression profile. We found that its sexual reproduction formed a polygonum-type embryo sac. Transcriptome analysis showed that 4256, 1125, 1699, and 3127 genes were highly expressed in GPreM, GM, GPostM, and GA, respectively. And a large number of transcription factors (TFs) such as MADS-box, MYB and NAC, AP2, C2H2, FAR1, B3, bHLH, WRKY, and TCP were highly expressed throughout the inflorescence development stages. KEGG enrichment and MapMan analysis showed that genes involved in plant hormone metabolism were also highly expressed at the entire stages of inflorescence development. However, a few TFs belong to stage-specific genes, such as TRAF proteins with unknown function in plants was screened firstly, which was specifically and highly expressed in the GPreM, indicating that TRAF may regulate the preparatory events of meiosis or be essential for the development of megaspore mother cell (MMC). The expression patterns of 15 MADS-box genes were analyzed by qRT-PCR, and the expression results were consistent with that of the transcriptome. The study on the inflorescence development of KB-GN will be great significant works and contribution to illustrate the basic mechanism of grass seeds formation and development.
Collapse
Affiliation(s)
- Jinqing Zhang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China.
| | - Yan Liu
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| |
Collapse
|
13
|
Backhaus AE, Lister A, Tomkins M, Adamski NM, Simmonds J, Macaulay I, Morris RJ, Haerty W, Uauy C. High expression of the MADS-box gene VRT2 increases the number of rudimentary basal spikelets in wheat. PLANT PHYSIOLOGY 2022; 189:1536-1552. [PMID: 35377414 PMCID: PMC9237664 DOI: 10.1093/plphys/kiac156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/13/2022] [Indexed: 05/03/2023]
Abstract
Spikelets are the fundamental building blocks of Poaceae inflorescences, and their development and branching patterns determine the various inflorescence architectures and grain yield of grasses. In wheat (Triticum aestivum), the central spikelets produce the most and largest grains, while spikelet size gradually decreases acropetally and basipetally, giving rise to the characteristic lanceolate shape of wheat spikes. The acropetal gradient corresponds with the developmental age of spikelets; however, the basal spikelets are developed first, and the cause of their small size and rudimentary development is unclear. Here, we adapted G&T-seq, a low-input transcriptomics approach, to characterize gene expression profiles within spatial sections of individual spikes before and after the establishment of the lanceolate shape. We observed larger differences in gene expression profiles between the apical, central, and basal sections of a single spike than between any section belonging to consecutive developmental time points. We found that SHORT VEGETATIVE PHASE MADS-box transcription factors, including VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT-A2), are expressed highest in the basal section of the wheat spike and display the opposite expression gradient to flowering E-class SEPALLATA1 genes. Based on multi-year field trials and transgenic lines, we show that higher expression of VRT-A2 in the basal sections of the spike is associated with increased numbers of rudimentary basal spikelets. Our results, supported by computational modeling, suggest that the delayed transition of basal spikelets from vegetative to floral developmental programs results in the lanceolate shape of wheat spikes. This study highlights the value of spatially resolved transcriptomics to gain insights into developmental genetics pathways of grass inflorescences.
Collapse
Affiliation(s)
- Anna E Backhaus
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ashleigh Lister
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Melissa Tomkins
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - James Simmonds
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Iain Macaulay
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | | | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | | |
Collapse
|
14
|
Sallam AH, Smith KP, Hu G, Sherman J, Baenziger PS, Wiersma J, Duley C, Stockinger EJ, Sorrells ME, Szinyei T, Loskutov IG, Kovaleva ON, Eberly J, Steffenson BJ. Cold Conditioned: Discovery of Novel Alleles for Low-Temperature Tolerance in the Vavilov Barley Collection. FRONTIERS IN PLANT SCIENCE 2021; 12:800284. [PMID: 34975991 PMCID: PMC8715003 DOI: 10.3389/fpls.2021.800284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Climate changes leading to higher summer temperatures can adversely affect cool season crops like spring barley. In the Upper Midwest region of the United States, one option for escaping this stress factor is to plant winter or facultative type cultivars in the autumn and then harvest in early summer before the onset of high-temperature stress. However, the major challenge in breeding such cultivars is incorporating sufficient winter hardiness to survive the extremely low temperatures that commonly occur in this production region. To broaden the genetic base for winter hardiness in the University of Minnesota breeding program, 2,214 accessions from the N. I. Vavilov Institute of Plant Industry (VIR) were evaluated for winter survival (WS) in St. Paul, Minnesota. From this field trial, 267 (>12%) accessions survived [designated as the VIR-low-temperature tolerant (LTT) panel] and were subsequently evaluated for WS across six northern and central Great Plains states. The VIR-LTT panel was genotyped with the Illumina 9K SNP chip, and then a genome-wide association study was performed on seven WS datasets. Twelve significant associations for WS were identified, including the previously reported frost resistance gene FR-H2 as well as several novel ones. Multi-allelic haplotype analysis revealed the most favorable alleles for WS in the VIR-LTT panel as well as another recently studied panel (CAP-LTT). Seventy-eight accessions from the VIR-LTT panel exhibited a high and consistent level of WS and select ones are being used in winter barley breeding programs in the United States and in a multiparent population.
Collapse
Affiliation(s)
- Ahmad H. Sallam
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Kevin P. Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
| | - Gongshe Hu
- USDA-ARS, Small Grains and Potato Germplasm Research, Aberdeen, ID, United States
| | - Jamie Sherman
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Peter Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Jochum Wiersma
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
| | - Carl Duley
- University of Wisconsin and UW-Extension, Alma, WI, United States
| | - Eric J. Stockinger
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center (OARDC), Wooster, OH, United States
| | - Mark E. Sorrells
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
| | - Tamas Szinyei
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Igor G. Loskutov
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), Saint Petersburg, Russia
| | - Olga N. Kovaleva
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), Saint Petersburg, Russia
| | - Jed Eberly
- Central Agricultural Research Center, Montana State University, Moccasin, MT, United States
| | - Brian J. Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
15
|
Li K, Debernardi JM, Li C, Lin H, Zhang C, Jernstedt J, von Korff M, Zhong J, Dubcovsky J. Interactions between SQUAMOSA and SHORT VEGETATIVE PHASE MADS-box proteins regulate meristem transitions during wheat spike development. THE PLANT CELL 2021; 33:3621-3644. [PMID: 34726755 PMCID: PMC8643710 DOI: 10.1093/plcell/koab243] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 05/20/2023]
Abstract
Inflorescence architecture is an important determinant of crop productivity. The number of spikelets produced by the wheat inflorescence meristem (IM) before its transition to a terminal spikelet (TS) influences the maximum number of grains per spike. Wheat MADS-box genes VERNALIZATION 1 (VRN1) and FRUITFULL 2 (FUL2) (in the SQUAMOSA-clade) are essential to promote the transition from IM to TS and for spikelet development. Here we show that SQUAMOSA genes contribute to spikelet identity by repressing MADS-box genes VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT2), SHORT VEGETATIVE PHASE 1 (SVP1), and SVP3 in the SVP clade. Constitutive expression of VRT2 resulted in leafy glumes and lemmas, reversion of spikelets to spikes, and downregulation of MADS-box genes involved in floret development, whereas the vrt2 mutant reduced vegetative characteristics in spikelets of squamosa mutants. Interestingly, the vrt2 svp1 mutant showed similar phenotypes to squamosa mutants regarding heading time, plant height, and spikelets per spike, but it exhibited unusual axillary inflorescences in the elongating stem. We propose that SQUAMOSA-SVP interactions are important to promote heading, formation of the TS, and stem elongation during the early reproductive phase, and that downregulation of SVP genes is then necessary for normal spikelet and floral development. Manipulating SVP and SQUAMOSA genes can contribute to engineering spike architectures with improved productivity.
Collapse
Affiliation(s)
| | | | - Chengxia Li
- Department of Plant Sciences, University of California, Davis, California 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, California 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Chaozhong Zhang
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Judy Jernstedt
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Maria von Korff
- Institute for Plant Genetics, Heinrich Heine University, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Sciences “SMART Plants for Tomorrow’s Needs”, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Jinshun Zhong
- Institute for Plant Genetics, Heinrich Heine University, Düsseldorf 40225, Germany
| | | |
Collapse
|
16
|
Ramírez-Ramírez JA, Madrigal Y, Alzate JF, Pabón-Mora N. Evolution and expression of the MADS-box flowering transition genes AGAMOUS-like 24/SHORT VEGETATIVE PHASE with emphasis in selected Neotropical orchids. Cells Dev 2021; 168:203755. [PMID: 34758403 DOI: 10.1016/j.cdev.2021.203755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 10/24/2021] [Accepted: 10/31/2021] [Indexed: 11/18/2022]
Abstract
In angiosperms the reproductive transition results in the transformation of a vegetative apical meristem (SAM) into an inflorescence meristem (IM), capable of forming floral meristems (FM). Two key players in the flowering transition are AGAMOUS-like 24 (AGL24) and SHORT VEGETATIVE PHASE (SVP). They are eudicot MADS-box paralogs performing opposite roles, as AGL24 positively regulates flowering while SVP represses the reproductive transition in Arabidopsis. We confirm that the Arabidopsis functional reference cannot be readily extrapolated to all eudicots as there are additional duplications of AGL24 in early divergent eudicots and core eudicots with significant sequence variation. In addition, we found that in monocots, two additional independent duplication events have resulted in at least three clades of AGL24/SVP homologs, some only found in Orchidaceae. Protein sequence analyses and comparative evolutionary rates point to higher rates of relaxed negative selection in the Core Eudicot AGL24 B and the Orch SVP-like B clades, in eudicots and monocots respectively. On the other hand, expression data points to plesiomorphic pleiotropic roles of AGL24/SVP genes likely similar to SVP core eudicot genes, and the acquisition of new roles as flowering positive regulators in Core Eudicot AGL24 A genes. Our research presents evidence on the diversification and recruitment of AGL24/SVP homologs in flowering transition in orchids. Although, broad expression of most copies does not allow to determine if they act as flowering repressors or promoters, the restricted expression of some homologs in the SAM suggests putative roles in maintaining the vegetative phase. If so studying in detail the function of AGL24/SVP homologs in orchids is critical to identify putative flowering repressors in a lineage where other canonical repressors remain elusive.
Collapse
Affiliation(s)
- Jessica A Ramírez-Ramírez
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.
| | - Yesenia Madrigal
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| | - Natalia Pabón-Mora
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
17
|
Liu Y, Gao Y, Yuan L, Zhang Q. Molecular Characterization and Expression Patterns of the HkSVP Gene Reveal Distinct Roles in Inflorescence Structure and Floral Organ Development in Hemerocallis fulva. Int J Mol Sci 2021; 22:12010. [PMID: 34769440 PMCID: PMC8585014 DOI: 10.3390/ijms222112010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
SHORT VEGETATIVE PHASE (SVP) genes are members of the well-known MADS-box gene family that play a key role in regulating vital developmental processes in plants. Hemerocallis are perennial herbs that exhibit continuous flowering development and have been extensively used in landscaping. However, there are few reports on the regulatory mechanism of flowering in Hemerocallis. To better understand the molecular basis of floral formation of Hemerocallis, we identified and characterized the SVP-like gene HkSVP from the Hemerocallis cultivar 'Kanai Sensei'. Quantitative RT-PCR (qRT-PCR) indicated that HkSVP transcript was mainly expressed in the vegetative growth stage and had the highest expression in leaves, low expression in petals, pedicels and fruits, and no expression in pistils. The HkSVP encoded protein was localized in the nucleus of Arabidopsis protoplasts and the nucleus of onion epidermal cells. Yeast two hybrid assay revealed that HKSVP interacted with Hemerocallis AP1 and TFL1. Moreover, overexpression of HkSVP in Arabidopsis resulted in delayed flowering and abnormal phenotypes, including enriched trichomes, increased basal inflorescence branches and inhibition of inflorescence formation. These observations suggest that the HkSVP gene may play an important role in maintaining vegetative growth by participating in the construction of inflorescence structure and the development of flower organs.
Collapse
Affiliation(s)
- Yingzhu Liu
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Y.L.); (L.Y.); (Q.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yike Gao
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Y.L.); (L.Y.); (Q.Z.)
| | - Lin Yuan
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Y.L.); (L.Y.); (Q.Z.)
| | - Qixiang Zhang
- National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Y.L.); (L.Y.); (Q.Z.)
| |
Collapse
|
18
|
Guan H, Wang H, Huang J, Liu M, Chen T, Shan X, Chen H, Shen J. Genome-Wide Identification and Expression Analysis of MADS-Box Family Genes in Litchi ( Litchi chinensis Sonn.) and Their Involvement in Floral Sex Determination. PLANTS 2021; 10:plants10102142. [PMID: 34685951 PMCID: PMC8540616 DOI: 10.3390/plants10102142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022]
Abstract
Litchi possesses unique flower morphology and adaptive reproduction strategies. Although previous attention has been intensively devoted to the mechanisms underlying its floral induction, the molecular basis of flower sex determination remains largely unknown. MADS-box genes are promising candidates for this due to their significant roles in various aspects of inflorescence and flower organogenesis. Here, we present a detailed overview of phylogeny and expression profiles of 101 MADS-box genes that were identified in litchi. These LcMADSs are unevenly located across the 15 chromosomes and can be divided into type I and type II genes. Fifty type I MADS-box genes are subdivided into Mα, Mβ and Mγ subgroups, while fifty-one type II LcMADSs consist of 37 MIKCC -type and 14 MIKC *-type genes. Promoters of both types of LcMADS genes contain mainly ABA and MeJA response elements. Tissue-specific and development-related expression analysis reveal that LcMADS51 could be positively involved in litchi carpel formation, while six MADS-box genes, including LcMADS42/46/47/75/93/100, play a possible role in stamen development. GA is positively involved in the sex determination of litchi flowers by regulating the expression of LcMADS51 (LcSTK). However, JA down-regulates the expression of floral organ identity genes, suggesting a negative role in litchi flower development.
Collapse
Affiliation(s)
- Hongling Guan
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Han Wang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianjun Huang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Mingxin Liu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ting Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaozhen Shan
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Houbin Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
- Correspondence: (H.C.); (J.S.); Tel.: +86-20-85280231 (H.C. & J.S.)
| | - Jiyuan Shen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
- Correspondence: (H.C.); (J.S.); Tel.: +86-20-85280231 (H.C. & J.S.)
| |
Collapse
|
19
|
Liu J, Chen Z, Wang Z, Zhang Z, Xie X, Wang Z, Chai L, Song L, Cheng X, Feng M, Wang X, Liu Y, Hu Z, Xing J, Su Z, Peng H, Xin M, Yao Y, Guo W, Sun Q, Liu J, Ni Z. Ectopic expression of VRT-A2 underlies the origin of Triticum polonicum and Triticum petropavlovskyi with long outer glumes and grains. MOLECULAR PLANT 2021; 14:1472-1488. [PMID: 34048948 DOI: 10.1016/j.molp.2021.05.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Polish wheat (Triticum polonicum) is a unique tetraploid wheat species characterized by an elongated outer glume. The genetic control of the long-glume trait by a single semi-dominant locus, P1 (from Polish wheat), was established more than 100 years ago, but the underlying causal gene and molecular nature remain elusive. Here, we report the isolation of VRT-A2, encoding an SVP-clade MADS-box transcription factor, as the P1 candidate gene. Genetic evidence suggests that in T. polonicum, a naturally occurring sequence rearrangement in the intron-1 region of VRT-A2 leads to ectopic expression of VRT-A2 in floral organs where the long-glume phenotype appears. Interestingly, we found that the intron-1 region is a key ON/OFF molecular switch for VRT-A2 expression, not only because it recruits transcriptional repressors, but also because it confers intron-mediated transcriptional enhancement. Genotypic analyses using wheat accessions indicated that the P1 locus is likely derived from a single natural mutation in tetraploid wheat, which was subsequently inherited by hexaploid T. petropavlovskyi. Taken together, our findings highlight the promoter-proximal intron variation as a molecular basis for phenotypic differentiation, and thus species formation in Triticum plants.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P. R. China
| | - Zhaoyan Chen
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P. R. China
| | - Zhihui Wang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P. R. China
| | - Zhaoheng Zhang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaoming Xie
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P. R. China
| | - Zihao Wang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P. R. China
| | - Lingling Chai
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P. R. China
| | - Long Song
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P. R. China
| | - Xuejiao Cheng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P. R. China
| | - Man Feng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaobo Wang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P. R. China
| | - Yanhong Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P. R. China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P. R. China
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P. R. China
| | - Zhenqi Su
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P. R. China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P. R. China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P. R. China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P. R. China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P. R. China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P. R. China
| | - Jie Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P. R. China.
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P. R. China.
| |
Collapse
|
20
|
Dixon LE, Boden SA. A modified intron of VRT2 drives glume and grain elongation in wheat. MOLECULAR PLANT 2021; 14:1421-1423. [PMID: 34450345 DOI: 10.1016/j.molp.2021.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Laura E Dixon
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Scott A Boden
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia.
| |
Collapse
|
21
|
Kuijer HNJ, Shirley NJ, Khor SF, Shi J, Schwerdt J, Zhang D, Li G, Burton RA. Transcript Profiling of MIKCc MADS-Box Genes Reveals Conserved and Novel Roles in Barley Inflorescence Development. FRONTIERS IN PLANT SCIENCE 2021; 12:705286. [PMID: 34539699 PMCID: PMC8442994 DOI: 10.3389/fpls.2021.705286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/04/2021] [Indexed: 05/26/2023]
Abstract
MADS-box genes have a wide range of functions in plant reproductive development and grain production. The ABCDE model of floral organ development shows that MADS-box genes are central players in these events in dicotyledonous plants but the applicability of this model remains largely unknown in many grass crops. Here, we show that transcript analysis of all MIKCc MADS-box genes through barley (Hordeum vulgare L.) inflorescence development reveals co-expression groups that can be linked to developmental events. Thirty-four MIKCc MADS-box genes were identified in the barley genome and single-nucleotide polymorphism (SNP) scanning of 22,626 barley varieties revealed that the natural variation in the coding regions of these genes is low and the sequences have been extremely conserved during barley domestication. More detailed transcript analysis showed that MADS-box genes are generally expressed at key inflorescence developmental phases and across various floral organs in barley, as predicted by the ABCDE model. However, expression patterns of some MADS genes, for example HvMADS58 (AGAMOUS subfamily) and HvMADS34 (SEPALLATA subfamily), clearly deviate from predicted patterns. This places them outside the scope of the classical ABCDE model of floral development and demonstrates that the central tenet of antagonism between A- and C-class gene expression in the ABC model of other plants does not occur in barley. Co-expression across three correlation sets showed that specifically grouped members of the barley MIKCc MADS-box genes are likely to be involved in developmental events driving inflorescence meristem initiation, floral meristem identity and floral organ determination. Based on these observations, we propose a potential floral ABCDE working model in barley, where the classic model is generally upheld, but that also provides new insights into the role of MIKCc MADS-box genes in the developing barley inflorescence.
Collapse
Affiliation(s)
- Hendrik N. J. Kuijer
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Neil J. Shirley
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Shi F. Khor
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Jin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Julian Schwerdt
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Dabing Zhang
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Li
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Rachel A. Burton
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| |
Collapse
|
22
|
Adamski NM, Simmonds J, Brinton JF, Backhaus AE, Chen Y, Smedley M, Hayta S, Florio T, Crane P, Scott P, Pieri A, Hall O, Barclay JE, Clayton M, Doonan JH, Nibau C, Uauy C. Ectopic expression of Triticum polonicum VRT-A2 underlies elongated glumes and grains in hexaploid wheat in a dosage-dependent manner. THE PLANT CELL 2021; 33:2296-2319. [PMID: 34009390 PMCID: PMC8364232 DOI: 10.1093/plcell/koab119] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/17/2021] [Indexed: 05/20/2023]
Abstract
Flower development is an important determinant of grain yield in crops. In wheat (Triticum spp.), natural variation for the size of spikelet and floral organs is particularly evident in Triticum turgidum ssp. polonicum (also termed Triticum polonicum), a tetraploid subspecies of wheat with long glumes, lemmas, and grains. Using map-based cloning, we identified VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT2), which encodes a MADS-box transcription factor belonging to the SHORT VEGETATIVE PHASE family, as the gene underlying the T. polonicum long-glume (P1) locus. The causal P1 mutation is a sequence rearrangement in intron-1 that results in ectopic expression of the T. polonicum VRT-A2 allele. Based on allelic variation studies, we propose that the intron-1 mutation in VRT-A2 is the unique T. polonicum subspecies-defining polymorphism, which was later introduced into hexaploid wheat via natural hybridizations. Near-isogenic lines differing for the P1 locus revealed a gradient effect of P1 across spikelets and within florets. Transgenic lines of hexaploid wheat carrying the T. polonicum VRT-A2 allele show that expression levels of VRT-A2 are highly correlated with spike, glume, grain, and floral organ length. These results highlight how changes in expression profiles, through variation in cis-regulation, can affect agronomic traits in a dosage-dependent manner in polyploid crops.
Collapse
Affiliation(s)
| | - James Simmonds
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | | | - Yi Chen
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mark Smedley
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Sadiye Hayta
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Tobin Florio
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Pamela Crane
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Peter Scott
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Alice Pieri
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Olyvia Hall
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Myles Clayton
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE, UK
| | - John H. Doonan
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE, UK
| | - Candida Nibau
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE, UK
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
23
|
Xie L, Zhang Y, Wang K, Luo X, Xu D, Tian X, Li L, Ye X, Xia X, Li W, Yan L, Cao S. TaVrt2, an SVP-like gene, cooperates with TaVrn1 to regulate vernalization-induced flowering in wheat. THE NEW PHYTOLOGIST 2021; 231:834-848. [PMID: 31769506 DOI: 10.1111/nph.16339] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
TaVrn1, encoding a MADS-box transcription factor (TF), is the central regulator of wheat vernalization-induced flowering. Considering that the MADS-box TF usually works by forming hetero- or homodimers, we conducted yeast-two-hybrid screening and identified an SVP-like MADS-box protein TaVrt2 interacting with TaVrn1. However, the specific function of TaVrt2 and the biological implication of its interaction with TaVrn1 remained unknown. We validated the function of TaVrt2 and TaVrn1 by wheat transgenic experiments and their interaction through multiple protein-binding assays. Population genetic analysis also was used to display their interplay. Transcriptomic sequencing and chromatin immunoprecipitation assays were performed to identify their common targets. TaVrt2 and TaVrn1 are flowering promoters in the vernalization pathway and interact physically in vitro, in planta and in wheat cells. Additionally, TaVrt2 and TaVrn1 were significantly induced in leaves by vernalization, suggesting their spatio-temporal interaction during vernalization. Genetic analysis indicated that TaVrt2 and TaVrn1 had significant epistatic effects on flowering time. Furthermore, native TaVrn1 was up-regulated significantly in TaVrn1-OE (overexpression) and TaVrt2-OE lines. Moreover, TaVrt2 could bind with TaVrn1 promoter directly. A TaVrt2-mediated positive feedback loop of TaVrn1 during vernalization was proposed, providing additional understanding on the regulatory mechanism underlying vernalization-induced flowering.
Collapse
Affiliation(s)
- Li Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xumei Luo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dengan Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuling Tian
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lingli Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenxue Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liuling Yan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Shuanghe Cao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
24
|
Chae T, Harkess A, Moore RC. Sex-linked gene expression and the emergence of hermaphrodites in Carica papaya. AMERICAN JOURNAL OF BOTANY 2021; 108:1029-1041. [PMID: 34156700 DOI: 10.1002/ajb2.1689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/08/2021] [Indexed: 06/13/2023]
Abstract
PREMISE One evolutionary path from hermaphroditism to dioecy is via a gynodioecious intermediate. The evolution of dioecy may also coincide with the formation of sex chromosomes that possess sex-determining loci that are physically linked in a region of suppressed recombination. Dioecious papaya (Carica papaya) has an XY chromosome system, where the presence of a Y chromosome determines maleness. However, in cultivation, papaya is gynodioecious, due to the conversion of the male Y chromosome to a hermaphroditic Yh chromosome during its domestication. METHODS We investigated gene expression linked to the X, Y, and Yh chromosomes at different floral developmental stages to identify differentially expressed genes that may be involved in the sexual transition of males to hermaphrodites. RESULTS We identified 309 sex-biased genes found on the sex chromosomes, most of which are found in the pseudoautosomal regions. Female (XX) expression in the sex-determining region was almost double that of X-linked expression in males (XY) and hermaphrodites (XYh ), which rules out dosage compensation for most sex-linked genes; although, an analysis of hemizygous X-linked loci found evidence of partial dosage compensation. Furthermore, we identified a candidate gene associated with sex determination and the transition to hermaphroditism, a homolog of the MADS-box protein SHORT VEGETATIVE PHASE. CONCLUSIONS We identified a pattern of partial dosage compensation for hemizygous genes located in the papaya sex-determining region. Furthermore, we propose that loss-of-expression of the Y-linked SHORT VEGETATIVE PHASE homolog facilitated the transition from males to hermaphrodites in papaya.
Collapse
Affiliation(s)
- Taylor Chae
- Department of Biology, Miami University, Oxford, OH
| | - Alex Harkess
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL
- HudsonAlpha Institute for Biotechnology, Huntsville, AL
| | | |
Collapse
|
25
|
Hong L, Niu F, Lin Y, Wang S, Chen L, Jiang L. MYB117 is a negative regulator of flowering time in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2021; 16:1901448. [PMID: 33779489 PMCID: PMC8078523 DOI: 10.1080/15592324.2021.1901448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant flowering is crucial for the onset and progression of reproduction processes. The control of flowering time is a sophisticated system with multiple known regulatory mechanisms in plants. Here, we show that MYB117 participates in the flowering time regulation in Arabidopsis as myb117 mutants exhibited early flowering phenotypes under long-day condition. Transcriptome analysis of myb117 mutants revealed 410 differentially expressed genes between wild type and myb117-1 mutants, where selective genes including the Flowering Locus T (FT) were further confirmed by qRT-PCR analysis. Further, in vivo dual-luciferase and chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) assays showed that MYB117 directly binds to the promoter of FT to suppress its expression. Taken together, we have revealed the transcriptome profile of myb117 mutants and identified MYB117 as a negative regulator in controlling flowering time through regulating the expression of FT in Arabidopsis.
Collapse
Affiliation(s)
- Liu Hong
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Fangfang Niu
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- CONTACT Fangfang Niu
| | - Youshun Lin
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shuang Wang
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518000, China
| | - Liyuan Chen
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Nanshan District, 518055, China
- Liyuan Chen Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
26
|
Zinelabidine LH, Torres-Pérez R, Grimplet J, Baroja E, Ibáñez S, Carbonell-Bejerano P, Martínez-Zapater JM, Ibáñez J, Tello J. Genetic variation and association analyses identify genes linked to fruit set-related traits in grapevine. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110875. [PMID: 33775372 DOI: 10.1016/j.plantsci.2021.110875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Grapevine is one of the most valuable fruit crops in the world. Adverse environmental conditions reduce fruit quality and crop yield, so understanding the genetic and molecular mechanisms determining crop yield components is essential to optimize grape production. The analysis of a diverse collection of grapevine cultivars allowed us to evaluate the relationship between fruit set-related components of yield, including the incidence of reproductive disorders such as coulure and millerandage. The collection displayed a great phenotypic variation that we surveyed in a genetics association study using 15,309 single nucleotide polymorphisms (SNPs) detected in the sequence of 289 candidate genes scattered across the 19 grapevine linkage groups. After correcting statistical models for population structure and linkage disequilibrium effects, 164 SNPs from 34 of these genes were found to associate with fruit set-related traits, supporting a complex polygenic determinism. Many of them were found in the sequence of different putative MADS-box transcription factors, a gene family related with plant reproductive development control. In addition, we observed an additive effect of some of the associated SNPs on the phenotype, suggesting that advantageous alleles from different loci could be pyramided to generate superior cultivars with optimized fruit production.
Collapse
Affiliation(s)
- Lalla Hasna Zinelabidine
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), Logroño, 26007, Spain; Laboratory of Biotechnology and Valorisation of Plant Genetic Resources, Faculty of Sciences and Techniques, University of Sultan Moulay Slimane, Beni Mellal, 23000, Morocco
| | - Rafael Torres-Pérez
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), Logroño, 26007, Spain; Servicio de Bioinformática para Genómica y Proteómica (BioinfoGP), Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| | - Jérôme Grimplet
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), Logroño, 26007, Spain; Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, 50059, Spain; Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, 50059, Spain
| | - Elisa Baroja
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), Logroño, 26007, Spain
| | - Sergio Ibáñez
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), Logroño, 26007, Spain
| | - Pablo Carbonell-Bejerano
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), Logroño, 26007, Spain; Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tuebingen, Germany
| | | | - Javier Ibáñez
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), Logroño, 26007, Spain
| | - Javier Tello
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), Logroño, 26007, Spain.
| |
Collapse
|
27
|
Gol L, Haraldsson EB, von Korff M. Ppd-H1 integrates drought stress signals to control spike development and flowering time in barley. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:122-136. [PMID: 32459309 PMCID: PMC7816852 DOI: 10.1093/jxb/eraa261] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/21/2020] [Indexed: 05/10/2023]
Abstract
Drought impairs growth and spike development, and is therefore a major cause of yield losses in the temperate cereals barley and wheat. Here, we show that the photoperiod response gene PHOTOPERIOD-H1 (Ppd-H1) interacts with drought stress signals to modulate spike development. We tested the effects of a continuous mild and a transient severe drought stress on developmental timing and spike development in spring barley cultivars with a natural mutation in ppd-H1 and derived introgression lines carrying the wild-type Ppd-H1 allele from wild barley. Mild drought reduced the spikelet number and delayed floral development in spring cultivars but not in the introgression lines with a wild-type Ppd-H1 allele. Similarly, drought-triggered reductions in plant height, and tiller and spike number were more pronounced in the parental lines compared with the introgression lines. Transient severe stress halted growth and floral development; upon rewatering, introgression lines, but not the spring cultivars, accelerated development so that control and stressed plants flowered almost simultaneously. These genetic differences in development were correlated with a differential down-regulation of the flowering promotors FLOWERING LOCUS T1 and the BARLEY MADS-box genes BM3 and BM8. Our findings therefore demonstrate that Ppd-H1 affects developmental plasticity in response to drought in barley.
Collapse
Affiliation(s)
- Leonard Gol
- Institute for Plant Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Einar B Haraldsson
- Institute for Plant Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Maria von Korff
- Institute for Plant Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, ‘SMART Plants for Tomorrows Needs’, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
28
|
Pieper R, Tomé F, Pankin A, von Korff M. FLOWERING LOCUS T4 delays flowering and decreases floret fertility in barley. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:107-121. [PMID: 33048122 PMCID: PMC7816854 DOI: 10.1093/jxb/eraa466] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/07/2020] [Indexed: 05/04/2023]
Abstract
FLOWERING LOCUS T-like (FT-like) genes control the photoperiodic regulation of flowering in many angiosperm plants. The family of FT-like genes is characterized by extensive gene duplication and subsequent diversification of FT functions which occurred independently in modern angiosperm lineages. In barley, there are 12 known FT-like genes (HvFT), but the function of most of them remains uncharacterized. This study aimed to characterize the role of HvFT4 in flowering time control and development in barley. The overexpression of HvFT4 in the spring cultivar Golden Promise delayed flowering time under long-day conditions. Microscopic dissection of the shoot apical meristem revealed that overexpression of HvFT4 specifically delayed spikelet initiation and reduced the number of spikelet primordia and grains per spike. Furthermore, ectopic overexpression of HvFT4 was associated with floret abortion and with the down-regulation of the barley MADS-box genes VRN-H1, HvBM3, and HvBM8 which promote floral development. This suggests that HvFT4 functions as a repressor of reproductive development in barley. Unraveling the genetic basis of FT-like genes can contribute to the identification of novel breeding targets to modify reproductive development and thereby spike morphology and grain yield.
Collapse
Affiliation(s)
- Rebecca Pieper
- Institute for Plant Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Filipa Tomé
- Institute for Plant Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, ‘SMART Plants for Tomorrow’s Needs’, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Artem Pankin
- Institute for Plant Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, ‘SMART Plants for Tomorrow’s Needs’, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maria von Korff
- Institute for Plant Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, ‘SMART Plants for Tomorrow’s Needs’, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
29
|
Expression profiling of MADS-box gene family revealed its role in vegetative development and stem ripening in S. spontaneum. Sci Rep 2020; 10:20536. [PMID: 33239664 PMCID: PMC7688973 DOI: 10.1038/s41598-020-77375-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
Sugarcane is the most important sugar and biofuel crop. MADS-box genes encode transcription factors that are involved in developmental control and signal transduction in plants. Systematic analyses of MADS-box genes have been reported in many plant species, but its identification and characterization were not possible until a reference genome of autotetraploid wild type sugarcane specie, Saccharum spontaneum is available recently. We identified 182 MADS-box sequences in the S. spontaneum genome, which were annotated into 63 genes, including 6 (9.5%) genes with four alleles, 21 (33.3%) with three, 29 (46%) with two, 7 (11.1%) with one allele. Paralogs (tandem duplication and disperse duplicated) were also identified and characterized. These MADS-box genes were divided into two groups; Type-I (21 Mα, 4 Mβ, 4 Mγ) and Type-II (32 MIKCc, 2 MIKC*) through phylogenetic analysis with orthologs in Arabidopsis and sorghum. Structural diversity and distribution of motifs were studied in detail. Chromosomal localizations revealed that S. spontaneum MADS-box genes were randomly distributed across eight homologous chromosome groups. The expression profiles of these MADS-box genes were analyzed in leaves, roots, stem sections and after hormones treatment. Important alleles based on promoter analysis and expression variations were dissected. qRT-PCR analysis was performed to verify the expression pattern of pivotal S. spontaneum MADS-box genes and suggested that flower timing genes (SOC1 and SVP) may regulate vegetative development.
Collapse
|
30
|
Walla A, Wilma van Esse G, Kirschner GK, Guo G, Brünje A, Finkemeier I, Simon R, von Korff M. An Acyl-CoA N-Acyltransferase Regulates Meristem Phase Change and Plant Architecture in Barley. PLANT PHYSIOLOGY 2020; 183:1088-1109. [PMID: 32376761 PMCID: PMC7333700 DOI: 10.1104/pp.20.00087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/19/2020] [Indexed: 05/04/2023]
Abstract
The modification of shoot architecture and increased investment into reproductive structures is key for crop improvement and is achieved through coordinated changes in the development and determinacy of different shoot meristems. A fundamental question is how the development of different shoot meristems is genetically coordinated to optimize the balance between vegetative and reproductive organs. Here we identify the MANY NODED DWARF1 (HvMND1) gene as a major regulator of plant architecture in barley (Hordeum vulgare). The mnd1.a mutant displayed an extended vegetative program with increased phytomer, leaf, and tiller production but a reduction in the number and size of grains. The induction of vegetative structures continued even after the transition to reproductive growth, resulting in a marked increase in longevity. Using mapping by RNA sequencing, we found that the HvMND1 gene encodes an acyl-CoA N-acyltransferase that is predominately expressed in developing axillary meristems and young inflorescences. Exploration of the expression network modulated by HvMND1 revealed differential expression of the developmental microRNAs miR156 and miR172 and several key cell cycle and developmental genes. Our data suggest that HvMND1 plays a significant role in the coordinated regulation of reproductive phase transitions, thereby promoting reproductive growth and whole plant senescence in barley.
Collapse
Affiliation(s)
- Agatha Walla
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Köln, Germany
- Cluster of Excellence on Plant Sciences "SMART Plants for Tomorrow's Needs", 40225 Düsseldorf, Germany
| | - G Wilma van Esse
- Cluster of Excellence on Plant Sciences "SMART Plants for Tomorrow's Needs", 40225 Düsseldorf, Germany
- Laboratory for Molecular Biology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Gwendolyn K Kirschner
- Cluster of Excellence on Plant Sciences "SMART Plants for Tomorrow's Needs", 40225 Düsseldorf, Germany
- Institute for Developmental Genetics, Heinrich-Heine-Universität Düsseldorf, 40255 Düsseldorf, Germany
| | - Ganggang Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Annika Brünje
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, 48149 Münster, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, 48149 Münster, Germany
| | - Rüdiger Simon
- Cluster of Excellence on Plant Sciences "SMART Plants for Tomorrow's Needs", 40225 Düsseldorf, Germany
- Institute for Developmental Genetics, Heinrich-Heine-Universität Düsseldorf, 40255 Düsseldorf, Germany
| | - Maria von Korff
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Köln, Germany
- Cluster of Excellence on Plant Sciences "SMART Plants for Tomorrow's Needs", 40225 Düsseldorf, Germany
| |
Collapse
|
31
|
Phenology and related traits for wheat adaptation. Heredity (Edinb) 2020; 125:417-430. [PMID: 32457509 PMCID: PMC7784700 DOI: 10.1038/s41437-020-0320-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
Wheat is a major food crop, with around 765 million tonnes produced globally. The largest wheat producers include the European Union, China, India, Russia, United States, Canada, Pakistan, Australia, Ukraine and Argentina. Cultivation of wheat across such diverse global environments with variation in climate, biotic and abiotic stresses, requires cultivars adapted to a range of growing conditions. One intrinsic way that wheat achieves adaptation is through variation in phenology (seasonal timing of the lifecycle) and related traits (e.g., those affecting plant architecture). It is important to understand the genes that underlie this variation, and how they interact with each other, other traits and the growing environment. This review summarises the current understanding of phenology and developmental traits that adapt wheat to different environments. Examples are provided to illustrate how different combinations of alleles can facilitate breeding of wheat varieties with optimal crop performance for different growing regions or farming systems.
Collapse
|
32
|
Haghighi R, Sayed Tabatabaei BE, Maibody SAMM, Talebi M, Molina RV, Nebauer SG, Renau-Morata B. A flowering inhibitor of the temperature-dependent pathway in Crocus sativus L. Mol Biol Rep 2020; 47:2171-2179. [PMID: 32065325 DOI: 10.1007/s11033-020-05316-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/07/2020] [Indexed: 12/26/2022]
Abstract
Saffron is the world highest-priced spice because its production requires intensive hand labour. Reduce saffron production costs require containerised plant production under controlled conditions and expand the flowering period. Controlling the flowering process and identify the factors involved in saffron flowering is crucial to introduce technical improvements. The research carried out so far in saffron has allowed an extensive knowledge of the influence of temperature on the flower induction, but the molecular mechanisms controlling flowering induction processes are largely unknown. The present study is the first conducted to isolate and characterize a regulator gene of saffron floral induction the Short Vegetative Phase (SVP) gene, which represses the floral initiation genes in the temperature response pathway, which involved in saffron flower induction. The results obtained from both phylogenetic analysis and T-coffee alignment confirms that the isolated sequence belongs to the SVP gene clades of MADS-box gene family. Gene expression analysis in different developmental stages revealed the highest expression of SVP transcript (CsSVP) during the dormancy and the vegetative stages, but decrease when flower development initiated and it was the least in late September when flower primordia are developed. Furthermore, its expression increased in the apical bud when corms are storage at 9-10 ºC, thus inhibiting flower induction. Additionally, comparison of the CsSVP transcript in apical buds from big and small corms, differing in their flowering capacity, indicates that the CsSVP transcript is present only in vegetative buds. Taken together, these results suggested inhibitory role of the SVP gene.
Collapse
Affiliation(s)
- Roya Haghighi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | | | | | - Majid Talebi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | - R V Molina
- Departamento de Producciόn Vegetal, Universitat Politècnica de València, Camino de vera s.n, 46022, Valencia, Spain
| | - Sergio G Nebauer
- Departamento de Producciόn Vegetal, Universitat Politècnica de València, Camino de vera s.n, 46022, Valencia, Spain
| | - Begoña Renau-Morata
- Departamento de Producciόn Vegetal, Universitat Politècnica de València, Camino de vera s.n, 46022, Valencia, Spain
| |
Collapse
|
33
|
Tang X, Liang M, Han J, Cheng J, Zhang H, Liu X. Ectopic expression of LoSVP, a MADS-domain transcription factor from lily, leads to delayed flowering in transgenic Arabidopsis. PLANT CELL REPORTS 2020; 39:289-298. [PMID: 31741036 DOI: 10.1007/s00299-019-02491-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/11/2019] [Indexed: 05/17/2023]
Abstract
A MADS-domain transcription factorLoSVP, which could delay flowering through vernalization pathway, was isolated from lily. MADS-domain transcription factors play important roles in plant growth and development, especially in the transition from vegetative phase to reproductive phase. However, their functions in bulbous flowering plants are largely unknown. In this work, a SHORT VEGETATIVE PHASE (SVP) encoding genes LoSVP from oriental lily was isolated. Bioinformatic analyses demonstrated that LoSVP encodes a type II MADS-box protein containing a conserved MADS-box, as well as a conserved K-box domain. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) revealed ubiquitous expression of LoSVP in various tissues, including petals, stamens, pistils, leaves and scales. Real-time polymerase chain reaction (PCR) analyses demonstrated that LoSVP was predominantly expressed in the early stage of developing flowers. Constitutive expression of LoSVP in Arabidopsis led to significantly delayed flowering of transgenic plants. These results suggest that LoSVP is involved in plant flowering and could be used as a potential candidate gene for the genetic regulation of flowering time in higher plants.
Collapse
Affiliation(s)
- Xiaoli Tang
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Meixia Liang
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Junjie Han
- Yantai Academy of Agricultural Sciences, 26 West Gangcheng Street, Yantai, 265500, Shandong, China
| | - Jieshan Cheng
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Hongxia Zhang
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- Institute for Advanced Study of Coastal Ecology, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Xiaohua Liu
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China.
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China.
| |
Collapse
|
34
|
Liu H, Li G, Yang X, Kuijer HN, Liang W, Zhang D. Transcriptome profiling reveals phase-specific gene expression in the developing barley inflorescence. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cj.2019.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Muñoz-Amatriaín M, Hernandez J, Herb D, Baenziger PS, Bochard AM, Capettini F, Casas A, Cuesta-Marcos A, Einfeldt C, Fisk S, Genty A, Helgerson L, Herz M, Hu G, Igartua E, Karsai I, Nakamura T, Sato K, Smith K, Stockinger E, Thomas W, Hayes P. Perspectives on Low Temperature Tolerance and Vernalization Sensitivity in Barley: Prospects for Facultative Growth Habit. FRONTIERS IN PLANT SCIENCE 2020; 11:585927. [PMID: 33469459 PMCID: PMC7814503 DOI: 10.3389/fpls.2020.585927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/01/2020] [Indexed: 05/13/2023]
Abstract
One option to achieving greater resiliency for barley production in the face of climate change is to explore the potential of winter and facultative growth habits: for both types, low temperature tolerance (LTT) and vernalization sensitivity are key traits. Sensitivity to short-day photoperiod is a desirable attribute for facultative types. In order to broaden our understanding of the genetics of these phenotypes, we mapped quantitative trait loci (QTLs) and identified candidate genes using a genome-wide association studies (GWAS) panel composed of 882 barley accessions that was genotyped with the Illumina 9K single-nucleotide polymorphism (SNP) chip. Fifteen loci including 5 known and 10 novel QTL/genes were identified for LTT-assessed as winter survival in 10 field tests and mapped using a GWAS meta-analysis. FR-H1, FR-H2, and FR-H3 were major drivers of LTT, and candidate genes were identified for FR-H3. The principal determinants of vernalization sensitivity were VRN-H1, VRN-H2, and PPD-H1. VRN-H2 deletions conferred insensitive or intermediate sensitivity to vernalization. A subset of accessions with maximum LTT were identified as a resource for allele mining and further characterization. Facultative types comprised a small portion of the GWAS panel but may be useful for developing germplasm with this growth habit.
Collapse
Affiliation(s)
- María Muñoz-Amatriaín
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
- *Correspondence: María Muñoz-Amatriaín,
| | - Javier Hernandez
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
- Javier Hernandez,
| | - Dustin Herb
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | - P. Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | - Flavio Capettini
- Field Crop Development Centre, Alberta Agriculture and Forestry, Lacombe, AB, Canada
| | - Ana Casas
- Consejo Superior de Investigaciones Científicas (CSIC), Aula Dei Experimental Station, Zaragoza, Spain
| | | | | | - Scott Fisk
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | - Amelie Genty
- Secobra Recherches, Centre de Bois Henry, Maule, France
| | - Laura Helgerson
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | - Markus Herz
- Bavarian State Research Center for Agriculture, Institute for Crop Science, Freising, Germany
| | - Gongshe Hu
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Aberdeen, ID, United States
| | - Ernesto Igartua
- Consejo Superior de Investigaciones Científicas (CSIC), Aula Dei Experimental Station, Zaragoza, Spain
| | - Ildiko Karsai
- Department of Molecular Breeding, Center for Agricultural Research, Martonvásár, Hungary
| | - Toshiki Nakamura
- Division of Field Crops and Horticulture Research Tohoku Agricultural Research Center National Agriculture and Food Research Organization (NARO), Morioka, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Kevin Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
| | - Eric Stockinger
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center (OARDC), Wooster, OH, United States
| | - William Thomas
- The James Hutton Institute (JHI), Invergowrie, United Kingdom
| | - Patrick Hayes
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
36
|
Dhanagond S, Liu G, Zhao Y, Chen D, Grieco M, Reif J, Kilian B, Graner A, Neumann K. Non-Invasive Phenotyping Reveals Genomic Regions Involved in Pre-Anthesis Drought Tolerance and Recovery in Spring Barley. FRONTIERS IN PLANT SCIENCE 2019; 10:1307. [PMID: 31708943 PMCID: PMC6823269 DOI: 10.3389/fpls.2019.01307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/19/2019] [Indexed: 05/07/2023]
Abstract
With ongoing climate change, drought events are becoming more frequent and will affect biomass formation when occurring during pre-flowering stages. We explored growth over time under such a drought scenario, via non-invasive imaging and revealed the underlying key genetic factors in spring barley. By comparing with well-watered conditions investigated in an earlier study and including information on timing, QTL could be classified as constitutive, drought or recovery-adaptive. Drought-adaptive QTL were found in the vicinity of genes involved in dehydration tolerance such as dehydrins (Dhn4, Dhn7, Dhn8, and Dhn9) and aquaporins (e.g. HvPIP1;5, HvPIP2;7, and HvTIP2;1). The influence of phenology on biomass formation increased under drought. Accordingly, the main QTL during recovery was the region of HvPPD-H1. The most important constitutive QTL for late biomass was located in the vicinity of HvDIM, while the main locus for seedling biomass was the HvWAXY region. The disappearance of QTL marked the genetic architecture of tiller number. The most important constitutive QTL was located on 6HS in the region of 1-FEH. Stage and tolerance specific QTL might provide opportunities for genetic manipulation to stabilize biomass and tiller number under drought conditions and thereby also grain yield.
Collapse
Affiliation(s)
- Sidram Dhanagond
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Guozheng Liu
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- BBCC – Innovation Center Gent, Gent Zwijnaarde, Belgium
| | - Yusheng Zhao
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Dijun Chen
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michele Grieco
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Jochen Reif
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Plant Breeding Department, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Benjamin Kilian
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Global Crop Diversity Trust (GCDT), Bonn, Germany
| | - Andreas Graner
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Plant Breeding Department, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Kerstin Neumann
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| |
Collapse
|
37
|
Li C, Lin H, Chen A, Lau M, Jernstedt J, Dubcovsky J. Wheat VRN1, FUL2 and FUL3 play critical and redundant roles in spikelet development and spike determinacy. Development 2019; 146:dev.175398. [PMID: 31337701 PMCID: PMC6679363 DOI: 10.1242/dev.175398] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/21/2019] [Indexed: 01/03/2023]
Abstract
The spikelet is the basic unit of the grass inflorescence. In this study, we show that wheat MADS-box genes VRN1, FUL2 and FUL3 play critical and redundant roles in spikelet and spike development, and also affect flowering time and plant height. In the vrn1ful2ful3-null triple mutant, the inflorescence meristem formed a normal double-ridge structure, but then the lateral meristems generated vegetative tillers subtended by leaves instead of spikelets. These results suggest an essential role of these three genes in the fate of the upper spikelet ridge and the suppression of the lower leaf ridge. Inflorescence meristems of vrn1ful2ful3-null and vrn1ful2-null remained indeterminate and single vrn1-null and ful2-null mutants showed delayed formation of the terminal spikelet and increased number of spikelets per spike. Moreover, the ful2-null mutant showed more florets per spikelet, which together with a higher number of spikelets, resulted in a significant increase in the number of grains per spike in the field. Our results suggest that a better understanding of the mechanisms underlying wheat spikelet and spike development can inform future strategies to improve grain yield in wheat. Summary: The wheat MADS-box proteins VRN1, FUL2 and FUL3 are essential for the initial development of the lateral and terminal spikelets, and control the number of spikelets per spike.
Collapse
Affiliation(s)
- Chengxia Li
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Andrew Chen
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Meiyee Lau
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Judy Jernstedt
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA 95616, USA .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
38
|
Abdel-Ghani AH, Sharma R, Wabila C, Dhanagond S, Owais SJ, Duwayri MA, Al-Dalain SA, Klukas C, Chen D, Lübberstedt T, von Wirén N, Graner A, Kilian B, Neumann K. Genome-wide association mapping in a diverse spring barley collection reveals the presence of QTL hotspots and candidate genes for root and shoot architecture traits at seedling stage. BMC PLANT BIOLOGY 2019; 19:216. [PMID: 31122195 PMCID: PMC6533710 DOI: 10.1186/s12870-019-1828-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Adaptation to drought-prone environments requires robust root architecture. Genotypes with a more vigorous root system have the potential to better adapt to soils with limited moisture content. However, root architecture is complex at both, phenotypic and genetic level. Customized mapping panels in combination with efficient screenings methods can resolve the underlying genetic factors of root traits. RESULTS A mapping panel of 233 spring barley genotypes was evaluated for root and shoot architecture traits under non-stress and osmotic stress. A genome-wide association study elucidated 65 involved genomic regions. Among them were 34 root-specific loci, eleven hotspots with associations to up to eight traits and twelve stress-specific loci. A list of candidate genes was established based on educated guess. Selected genes were tested for associated polymorphisms. By this, 14 genes were identified as promising candidates, ten remained suggestive and 15 were rejected. The data support the important role of flowering time genes, including HvPpd-H1, HvCry2, HvCO4 and HvPRR73. Moreover, seven root-related genes, HERK2, HvARF04, HvEXPB1, PIN5, PIN7, PME5 and WOX5 are confirmed as promising candidates. For the QTL with the highest allelic effect for root thickness and plant biomass a homologue of the Arabidopsis Trx-m3 was revealed as the most promising candidate. CONCLUSIONS This study provides a catalogue of hotspots for seedling growth, root and stress-specific genomic regions along with candidate genes for future potential incorporation in breeding attempts for enhanced yield potential, particularly in drought-prone environments. Root architecture is under polygenic control. The co-localization of well-known major genes for barley development and flowering time with QTL hotspots highlights their importance for seedling growth. Association analysis revealed the involvement of HvPpd-H1 in the development of the root system. The co-localization of root QTL with HERK2, HvARF04, HvEXPB1, PIN5, PIN7, PME5 and WOX5 represents a starting point to explore the roles of these genes in barley. Accordingly, the genes HvHOX2, HsfA2b, HvHAK2, and Dhn9, known to be involved in abiotic stress response, were located within stress-specific QTL regions and await future validation.
Collapse
Affiliation(s)
- Adel H. Abdel-Ghani
- Department of Plant Production, Faculty of Agriculture, Mutah University, Mutah, Karak, 61710 Jordan
| | - Rajiv Sharma
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
- Division of Plant Science, University of Dundee at JHI, Invergowrie, Dundee, DD2 5DA UK
| | - Celestine Wabila
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
| | - Sidram Dhanagond
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
| | - Saed J. Owais
- Department of Plant Production, Faculty of Agriculture, Mutah University, Mutah, Karak, 61710 Jordan
| | - Mahmud A. Duwayri
- Department of Horticulture and Agronomy, Faculty of Agriculture, University of Jordan, Amman, Jordan
| | - Saddam A. Al-Dalain
- Al-Shoubak University College, Al-Balqa’ Applied University, Al-, Salt, 19117 Jordan
| | - Christian Klukas
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
- Digitalization in Research & Development (ROM), BASF SE, 67056 Ludwigshafen, Germany
| | - Dijun Chen
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt University Berlin, 10115 Berlin, Germany
| | - Thomas Lübberstedt
- Department of Agronomy, Agronomy Hall, Iowa State University, Ames, IA 50011 USA
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
- Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle/Saale, Germany
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, 53113 Bonn, Germany
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland, Germany
| |
Collapse
|
39
|
Zwirek M, Waugh R, McKim SM. Interaction between row-type genes in barley controls meristem determinacy and reveals novel routes to improved grain. THE NEW PHYTOLOGIST 2019; 221:1950-1965. [PMID: 30339269 PMCID: PMC6492131 DOI: 10.1111/nph.15548] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/22/2018] [Indexed: 05/24/2023]
Abstract
Hordeum species develop a central spikelet flanked by two lateral spikelets at each inflorescence node. In 'two-rowed' spikes, the central spikelet alone is fertile and sets grain, while in 'six-rowed' spikes, lateral spikelets can also produce grain. Induced loss-of-function alleles of any of five Six-rowed spike (VRS) genes (VRS1-5) cause complete to intermediate gains of lateral spikelet fertility. Current six-row cultivars contain natural defective vrs1 and vrs5 alleles. Little information is known about VRS mechanism(s). We used comparative developmental, expression and genetic analyses on single and double vrs mutants to learn more about how VRS genes control development and assess their agronomic potential. We show that all VRS genes repress fertility at carpel and awn emergence in developing lateral spikelets. VRS4, VRS3 and VRS5 work through VRS1 to suppress fertility, probably by inducing VRS1 expression. Pairing vrs3, vrs4 or vrs5 alleles increased lateral spikelet fertility, despite the presence of a functional VRS1 allele. The vrs3 allele caused loss of spikelet identity and determinacy, improved grain homogeneity and increased tillering in a vrs4 background, while with vrs5, decreased tiller number and increased grain weight. Interactions amongst VRS genes control spikelet infertility, determinacy and outgrowth, and novel routes to improving six-row grain.
Collapse
Affiliation(s)
- Monika Zwirek
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Robbie Waugh
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
- Division of Plant SciencesUniversity of Dundee at The James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Sarah M. McKim
- Division of Plant SciencesUniversity of Dundee at The James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| |
Collapse
|
40
|
Yang F, Zhu G, Wei Y, Gao J, Liang G, Peng L, Lu C, Jin J. Low-temperature-induced changes in the transcriptome reveal a major role of CgSVP genes in regulating flowering of Cymbidium goeringii. BMC Genomics 2019; 20:53. [PMID: 30654752 PMCID: PMC6335714 DOI: 10.1186/s12864-019-5425-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cymbidium goeringii is one of the most horticulturally important and popular ornamental plants in the orchid family (Orchidaceae). It blooms in winter during January-March and a period of low temperature is necessary for its normal flowering, otherwise there is flower bud abortion, which seriously affects the economic benefits. However, the molecular mechanism underlying winter-blooming behavior in C. goeringii is unclear. RESULTS In this research, we firstly study the flowering physiology of C. goeringii by cytobiology observations and physiological experiments. Using comparative transcriptome analysis, we identified 582 differentially expressed unigenes responding to cold treatment that were involved in metabolic process, flowering time, hormone signaling, stress response, and cell cycle, implying their potential roles in regulating winter-blooming of C. goeringii. Twelve MADS-box genes among them were investigated by full-length cDNA sequence analysis and expression validation, which indicated that three genes within the SHORT VEGETATIVE PHASE (SVP) sub-group had the most significant repressed expression after cold treatment. Further analysis revealed that the SVP genes showed population variation in expression that correlated with cold-regulated flowering and responded to low temperature earlier than the flowering pathway integrators CgAP1, CgSOC1, and CgLFY, suggesting a potential role of CgSVP genes in the early stage of low-temperature-induced blooming of C. goeringii. Moreover, a yeast two-hybrid experiment confirmed that CgSVP proteins interacted with CgAP1 and CgSOC1, suggesting that they may synergistically control the process of C. goeringii flowering in winter. CONCLUSIONS This study represents the first exploration of flowering physiology of C. goeringii and provides gene expression information that could facilitate our understanding of molecular regulation of orchid plant winter-flowering, which could provide new insights and practical guidance for improving their flowering regulation and molecular breeding.
Collapse
Affiliation(s)
- Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China.
| | - Yonglu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, 650223, People's Republic of China
| | - Lingyuan Peng
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Chuqiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Jianpeng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| |
Collapse
|
41
|
Liu X, Sun Z, Dong W, Wang Z, Zhang L. Expansion and Functional Divergence of the SHORT VEGETATIVE PHASE (SVP) Genes in Eudicots. Genome Biol Evol 2018; 10:3026-3037. [PMID: 30364940 PMCID: PMC6251477 DOI: 10.1093/gbe/evy235] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2018] [Indexed: 12/31/2022] Open
Abstract
SHORT VEGETATIVE PHASE (SVP) genes are members of the well-known MADS-box gene family that regulates vital developmental processes in plants. In Arabidopsis, there are two SVP paralogs, SVP/AGAMOUS-LIKE22 (SVP/AGL22) and AGL24. SVP protein suppresses the flowering process, whereas AGL24 acts as a flowering activator. Phylogenetic analysis of SVP genes representing most of the sequenced eudicot species showed that the SVP gene family could be divided into three major clades in eudicots (SVP1, SVP2, and SVP3), most likely resulting from an ancient whole-genome triplication in core eudicots. Among them, the SVP1 (SVP) and SVP2 (AGL24) clades are retained in nearly all species, whereas the SVP3 clade has been lost in Brassicaceae, Myrtaceae, and some species in other families. Reflecting lineage-specific tandem duplication and whole-genome duplication, SVP gene copy numbers ranged from 3 to 11 in the analyzed species. Sequence analysis showed that SVP3 proteins have obvious differences with SVP1 and SVP2 in the C-terminal (C) domain and intervening (I) domain. Positive selection analysis also showed that the ω (dN/dS) value was highest in the SVP3 clade, with 17 positive selection sites detected in the SVP3 clade. Promoter analysis for cis-regulatory elements showed that some genes in the SVP2 and SVP3 clades may be regulated by abscisic acid, ethylene, and gibberellin. RNA-seq data from grape, poplar, and apple revealed that genes in SVP3 group are highly expressed in vegetative organs such as buds, leaves, cotyledons, and dormant buds in particular, indicating the involvement of genes belong to SVP3 group in the dormancy process. Overall, the findings underscore the functional diversity of the SVP genes in eudicots.
Collapse
Affiliation(s)
- Xing Liu
- Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Life Science; Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhichao Sun
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Wei Dong
- Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Life Science; Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Liangsheng Zhang
- Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Life Science; Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
42
|
Su M, Wang N, Jiang S, Fang H, Xu H, Wang Y, Zhang Z, Zhang J, Xu L, Zhang Z, Chen X. Molecular characterization and expression analysis of the critical floral gene MdAGL24-like in red-fleshed apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:189-198. [PMID: 30348318 DOI: 10.1016/j.plantsci.2018.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
The transition from vegetative to reproductive growth is the most dramatic phase change in plants. To better understand the molecular regulation of floral transition and flower development in red-fleshed apple (Malus sieversii f. niedzwetzkyana), we isolated and characterized a floral MADS-box gene, MdAGL24-like, which shares sequence similarity with AGAMOUS-LIKE 24 (AGL24) from other species. Spatial expression analysis showed that MdAGL24-like dynamically expressed in flowers, followed by roots and fruits. Subcellular localization analysis indicated that, like other transcript factors, MdAGL24-like was localized in the nucleus. Protein interaction analysis showed that MdAGL24-like could interact with MdSOC1 and MdAP1 in vivo and in vitro. MdAGL24-like and MdSOC1 could increase each other's expression by binding the CArG motifs in their promoters. Unlike MdSOC1, MdAGL24-like might indirectly promote the expression of MdLFY by upregulating the expression of MdSOC1. Ectopic expression of MdAGL24-like in wild-type Arabidopsis induced early flowering like the phenotypes induced by other AGL24 genes. Similar to AGL24 in Arabidopsis, MdAGL24-like could rescue the late-flowering phenotype of the agl24 mutant to some extent. These results help clarify the molecular mechanism underlying flowering and provide a means of shortening the juvenile period in red-fleshed apples and other fruit trees.
Collapse
Affiliation(s)
- Mengyu Su
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Shenghui Jiang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hongcheng Fang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Haifeng Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yicheng Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhen Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Lin Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
43
|
Finnegan EJ, Ford B, Wallace X, Pettolino F, Griffin PT, Schmitz RJ, Zhang P, Barrero JM, Hayden MJ, Boden SA, Cavanagh CA, Swain SM, Trevaskis B. Zebularine treatment is associated with deletion of FT-B1 leading to an increase in spikelet number in bread wheat. PLANT, CELL & ENVIRONMENT 2018; 41:1346-1360. [PMID: 29430678 DOI: 10.1111/pce.13164] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/16/2018] [Accepted: 01/21/2018] [Indexed: 05/09/2023]
Abstract
The number of rachis nodes (spikelets) on a wheat spike is a component of grain yield that correlates with flowering time. The genetic basis regulating flowering in cereals is well understood, but there are reports that flowering time can be modified at a high frequency by selective breeding, suggesting that it may be regulated by both epigenetic and genetic mechanisms. We investigated the role of DNA methylation in regulating spikelet number and flowering time by treating a semi-spring wheat with the demethylating agent, Zebularine. Three lines with a heritable increase in spikelet number were identified. The molecular basis for increased spikelet number was not determined in 2 lines, but the phenotype showed non-Mendelian inheritance, suggesting that it could have an epigenetic basis. In the remaining line, the increased spikelet phenotype behaved as a Mendelian recessive trait and late flowering was associated with a deletion encompassing the floral promoter, FT-B1. Deletion of FT-B1 delayed the transition to reproductive growth, extended the duration of spike development, and increased spikelet number under different temperature regimes and photoperiod. Transiently disrupting DNA methylation can generate novel flowering behaviour in wheat, but these changes may not be sufficiently stable for use in breeding programs.
Collapse
Affiliation(s)
| | - Brett Ford
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | | | | | - Patrick T Griffin
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Peng Zhang
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, New South Wales, 2570, Australia
| | - Jose M Barrero
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Matthew J Hayden
- Agriculture Victoria Research, Agribio Center, Bundoora, Victoria, 3083, Australia
| | - Scott A Boden
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | | | - Steve M Swain
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Ben Trevaskis
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| |
Collapse
|
44
|
Wu R, Wang T, Warren BAW, Thomson SJ, Allan AC, Macknight RC, Varkonyi-Gasic E. Kiwifruit SVP2 controls developmental and drought-stress pathways. PLANT MOLECULAR BIOLOGY 2018; 96:233-244. [PMID: 29222611 DOI: 10.1007/s11103-017-0688-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/30/2017] [Indexed: 05/20/2023]
Abstract
Genome-wide targets of Actinidia chinensis SVP2 confirm roles in ABA- and dehydration-mediated growth repression and reveal a conservation in mechanism of action between SVP genes of taxonomically distant Arabidopsis and a woody perennial kiwifruit. The molecular mechanisms underlying growth and dormancy in woody perennials are largely unknown. In Arabidopsis, the MADS-box transcription factor SHORT VEGETATIVE PHASE (SVP) plays a key role in the progression from vegetative to floral development, and in woody perennials SVP-like genes are also proposed to be involved in controlling dormancy. During kiwifruit development SVP2 has a role in growth inhibition, with high-chill kiwifruit Actinidia deliciosa transgenic lines overexpressing SVP2 showing suppressed bud outgrowth. Transcriptomic analyses of these plants suggests that SVP2 mimics the well-documented abscisic acid (ABA) effect on the plant dehydration response. To corroborate the growth inhibition role of SVP2 in kiwifruit development at the molecular level, we analysed the genome-wide direct targets of SVP2 using chromatin immunoprecipitation followed by high-throughput sequencing in kiwifruit A. chinensis. SVP2 was found to bind to at least 297 target sites in the kiwifruit genome, and potentially modulates 252 genes that function in a range of biological processes, especially those involved in repressing meristem activity and ABA-mediated dehydration pathways. In addition, our ChIP-seq analysis reveals remarkable conservation in mechanism of action between SVP genes of taxonomically distant plant species.
Collapse
Affiliation(s)
- Rongmei Wu
- The New Zealand Institute for Plant and Food Research Limited (PFR) Mt Albert, Auckland Mail Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Tianchi Wang
- The New Zealand Institute for Plant and Food Research Limited (PFR) Mt Albert, Auckland Mail Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Ben A W Warren
- The New Zealand Institute for Plant and Food Research Limited (PFR) Mt Albert, Auckland Mail Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Susan J Thomson
- The New Zealand Institute for Plant and Food Research Limited (PFR) Lincoln, Christchurch Mail Centre, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (PFR) Mt Albert, Auckland Mail Centre, Private Bag 92169, Auckland, 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Richard C Macknight
- Department of Biochemistry, The New Zealand Institute for Plant and Food Research Limited, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited (PFR) Mt Albert, Auckland Mail Centre, Private Bag 92169, Auckland, 1142, New Zealand.
| |
Collapse
|
45
|
Šiukšta R, Vaitkūnienė V, Rančelis V. Is auxin involved in the induction of genetic instability in barley homeotic double mutants? PLANTA 2018; 247:483-498. [PMID: 29080070 DOI: 10.1007/s00425-017-2802-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
The triggers of genetic instability in barley homeotic double mutants are tweaky spike -type mutations associated with an auxin imbalance in separate spike phytomeres. Barley homeotic tweaky spike;Hooded (tw;Hd) double mutants are characterized by an inherited instability of spike and flower development, which is absent in the single parental constituents. The aim of the present study was to show that the trigger of genetic instability in the double mutants is the tw mutations, which are associated with an auxin imbalance in the developing spikes. Their pleiotropic effects on genes related to spike/flower development may cause the genetic instability of double mutants. The study of four double-mutant groups composed of different mutant alleles showed that the instability arose only if the mutant allele tw was a constituent of the double mutants. Application of auxin inhibitors and 2,4-dichlorophenoxyacetic acid (2,4-D) demonstrated the relationship of the instability of the double mutants and the phenotype of the tw mutants to auxin imbalance. 2,4-D induced phenocopies of the tw mutation in wild-type plants and rescued the phenotypes of three allelic tw mutants. The differential display (dd-PCR) method allowed the identification of several putative candidate genes in tw that may be responsible for the initiation of instability in the double mutants by pleiotropic variations of their expression in the tw mutant associated with auxin imbalance in the developing spikes. The results of the present study linked the genetic instability of homeotic double mutants with an auxin imbalance caused by one of the constituents (tw). The genetic instability of the double mutants in relation to auxin imbalance was studied for the first time. A matrocliny on instability expression was also observed.
Collapse
Affiliation(s)
- Raimondas Šiukšta
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Saulėtekis Ave. 7, 10257, Vilnius, Lithuania.
- Botanical Garden of Vilnius University, Kairėnai Str. 43, 10239, Vilnius, Lithuania.
| | - Virginija Vaitkūnienė
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Saulėtekis Ave. 7, 10257, Vilnius, Lithuania
- Botanical Garden of Vilnius University, Kairėnai Str. 43, 10239, Vilnius, Lithuania
| | - Vytautas Rančelis
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Saulėtekis Ave. 7, 10257, Vilnius, Lithuania
| |
Collapse
|
46
|
|
47
|
Yongfeng W, Aiquan Z, Fengli S, Mao L, Kaijie X, Chao Z, Shudong L, Yajun X. Using Transcriptome Analysis to Identify Genes Involved in Switchgrass Flower Reversion. FRONTIERS IN PLANT SCIENCE 2018; 9:1805. [PMID: 30564266 PMCID: PMC6288819 DOI: 10.3389/fpls.2018.01805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/20/2018] [Indexed: 05/06/2023]
Abstract
Floral reversion is a process in which differentiated floral organs revert back to vegetative organs. Although this phenomenon has been described for decades, the underlying molecular mechanisms remain unclear. In this study, we found that immature switchgrass (Panicum virgatum) inflorescences can revert to neonatal shoots when incubated on a basal medium with benzylaminopurine. We used anatomical and histological methods to verify that these shoots were formed from floret primordia through flower reversion. To further explore the gene regulation of floral reversion in switchgrass, the transcriptome of reversed, unreversed, and uncultured immature inflorescences were analyzed and 517 genes were identified as participating in flower reversion. Annotation using non-redundant databases revealed that these genes are involved in plant hormone biosynthesis and signal transduction, starch and sucrose metabolism, DNA replication and modification, and other processes crucial for switchgrass flower reversion. When four of the genes were overexpressed in Arabidopsis thaliana, vegetative growth was facilitated and reproductive growth was inhibited in transgenic plants. This study provides a basic understanding of genes regulating the floral transition in switchgrass and will promote the research of floral reversion and flower maintenance.
Collapse
Affiliation(s)
- Wang Yongfeng
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Zheng Aiquan
- College of Agronomy, Northwest A&F University, Yangling, China
- Yangling Vocational & Technical College, Yangling, China
| | - Sun Fengli
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Li Mao
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Xu Kaijie
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhang Chao
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Liu Shudong
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Xi Yajun
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- *Correspondence: Xi Yajun,
| |
Collapse
|
48
|
Li Z, Zeng S, Li Y, Li M, Souer E. Leaf-Like Sepals Induced by Ectopic Expression of a SHORT VEGETATIVE PHASE ( SVP)-Like MADS-Box Gene from the Basal Eudicot Epimedium sagittatum. FRONTIERS IN PLANT SCIENCE 2016; 7:1461. [PMID: 27733858 PMCID: PMC5039176 DOI: 10.3389/fpls.2016.01461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 09/13/2016] [Indexed: 05/11/2023]
Abstract
Epimedium L. (Berberidaceae, Ranales), a perennial traditional Chinese medicinal herb, has become a new popular landscape plant for ground cover and pot culture in many countries based on its excellent ornamental characteristics and, distinctive and diverse floral morphology. However, little is known about the molecular genetics of flower development in Epimedium sagittatum. Here, we describe the characterization of EsSVP that encodes a protein sharing 68, 54, and 35% similarity with SVP, AGAMOUS-like 24 (AGL24) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) in Arabidopsis, respectively. Quantitative RT-PCR (qRT-PCR) indicated that EsSVP transcripts were principally found in petiole and leaf tissues, with little expression in roots and flowers and no in fruits. The highest EsSVP expression was observed in leaves. The flowering time of 35S::EsSVP in most Arabidopsis thaliana and in all petunia plants was not affected in both photoperiod conditions, but 35S::EsSVP 5# and 35S::EsSVP 1# Arabidopsis lines induced late and early flowering under long day (LD, 14 h light/10 h dark) and short day (SD, 10 h light/14 h dark) conditions, respectively. The 35S::EsSVP Arabidopsis produced extra secondary inflorescence or floral meristems in the axils of the leaf-like sepals with excrescent trichomes, and leaf-like sepals not able to enclose the inner three whorls completely. Moreover, almost all transgenic Arabidopsis plants showed persistent sepals around the completely matured fruits. Upon ectopic expression of 35S::EsSVP in Petunia W115, sepals were enlarged, sometimes to the size of leaves; corollas were greenish and did not fully open. These results suggest that EsSVP is involved in inflorescence meristem identity and flowering time regulation in some conditions. Although, the SVP homologs might have suffered functional diversification among diverse species between core and basal eudicots, the protein functions are conserved between Arabidopsis/Petunia and Epimedium.
Collapse
Affiliation(s)
- Zhineng Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Achitecture, Southwest UniversityChongqing, China
| | - Shaohua Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of SciencesGuangzhou, China
| | - Yanbang Li
- Institute for Molecular Cell Biology, Graduate School of Experimental Plant Sciences, Vrije Universiteit AmsterdamAmsterdam, Netherlands
| | - Mingyang Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Achitecture, Southwest UniversityChongqing, China
| | - Erik Souer
- Institute for Molecular Cell Biology, Graduate School of Experimental Plant Sciences, Vrije Universiteit AmsterdamAmsterdam, Netherlands
| |
Collapse
|
49
|
Alter P, Bircheneder S, Zhou LZ, Schlüter U, Gahrtz M, Sonnewald U, Dresselhaus T. Flowering Time-Regulated Genes in Maize Include the Transcription Factor ZmMADS1. PLANT PHYSIOLOGY 2016; 172:389-404. [PMID: 27457125 PMCID: PMC5074603 DOI: 10.1104/pp.16.00285] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/23/2016] [Indexed: 05/08/2023]
Abstract
Flowering time (FTi) control is well examined in the long-day plant Arabidopsis (Arabidopsis thaliana), and increasing knowledge is available for the short-day plant rice (Oryza sativa). In contrast, little is known in the day-neutral and agronomically important crop plant maize (Zea mays). To learn more about FTi and to identify novel regulators in this species, we first compared the time points of floral transition of almost 30 maize inbred lines and show that tropical lines exhibit a delay in flowering transition of more than 3 weeks under long-day conditions compared with European flint lines adapted to temperate climate zones. We further analyzed the leaf transcriptomes of four lines that exhibit strong differences in flowering transition to identify new key players of the flowering control network in maize. We found strong differences among regulated genes between these lines and thus assume that the regulation of FTi is very complex in maize. Especially genes encoding MADS box transcriptional regulators are up-regulated in leaves during the meristem transition. ZmMADS1 was selected for functional studies. We demonstrate that it represents a functional ortholog of the central FTi integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) of Arabidopsis. RNA interference-mediated down-regulation of ZmMADS1 resulted in a delay of FTi in maize, while strong overexpression caused an early-flowering phenotype, indicating its role as a flowering activator. Taken together, we report that ZmMADS1 represents a positive FTi regulator that shares an evolutionarily conserved function with SOC1 and may now serve as an ideal stating point to study the integration and variation of FTi pathways also in maize.
Collapse
Affiliation(s)
- Philipp Alter
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040 Regensburg, Germany (P.A., S.B., L.-Z.Z., M.G., T.D.);Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany (U.Sc.); andBiochemistry, Department of Biology, University of Erlangen-Nürnberg, 91058 Erlangen, Germany (U.So.)
| | - Susanne Bircheneder
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040 Regensburg, Germany (P.A., S.B., L.-Z.Z., M.G., T.D.);Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany (U.Sc.); andBiochemistry, Department of Biology, University of Erlangen-Nürnberg, 91058 Erlangen, Germany (U.So.)
| | - Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040 Regensburg, Germany (P.A., S.B., L.-Z.Z., M.G., T.D.);Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany (U.Sc.); andBiochemistry, Department of Biology, University of Erlangen-Nürnberg, 91058 Erlangen, Germany (U.So.)
| | - Urte Schlüter
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040 Regensburg, Germany (P.A., S.B., L.-Z.Z., M.G., T.D.);Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany (U.Sc.); andBiochemistry, Department of Biology, University of Erlangen-Nürnberg, 91058 Erlangen, Germany (U.So.)
| | - Manfred Gahrtz
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040 Regensburg, Germany (P.A., S.B., L.-Z.Z., M.G., T.D.);Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany (U.Sc.); andBiochemistry, Department of Biology, University of Erlangen-Nürnberg, 91058 Erlangen, Germany (U.So.)
| | - Uwe Sonnewald
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040 Regensburg, Germany (P.A., S.B., L.-Z.Z., M.G., T.D.);Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany (U.Sc.); andBiochemistry, Department of Biology, University of Erlangen-Nürnberg, 91058 Erlangen, Germany (U.So.)
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040 Regensburg, Germany (P.A., S.B., L.-Z.Z., M.G., T.D.);Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany (U.Sc.); andBiochemistry, Department of Biology, University of Erlangen-Nürnberg, 91058 Erlangen, Germany (U.So.)
| |
Collapse
|
50
|
Li W, Liu X, Lu Y. Transcriptome comparison reveals key candidate genes in response to vernalization of Oriental lily. BMC Genomics 2016; 17:664. [PMID: 27549794 PMCID: PMC4994294 DOI: 10.1186/s12864-016-2955-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 07/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oriental hybrid lily 'Sorbonne', a very important cut flower for lily, is enjoyed great popularity in the world, but it must experience a period of low winter temperature to initiate or accelerate the flowering process. To gain a better understanding of the temperature signaling pathway and the molecular metabolic reactions involved in the vernalization response, a genome-wide transcriptional analysis using RNA-Seq was performed. RESULTS 188,447,956 sequencing reads was assembled into 66,327 unigenes and showed similarity to known proteins in the Swiss-Prot protein database, and 2,893, 30,406 and 60,737 unigenes aligned to existing sequences in the KEGG, COG, and GO databases. Based on qRT-PCR results, we studied the expression of three signal regulation pathways genes-the plant hormones signal transduction (LoAP2, LoIAA1, LoARF10), the DNA methylation (LoCMT, LoFLD), and vernalizatin pathway (LoFLC, LoVRN1, LoVRN2, LoFT, LoSOC1, LoLFY, LoSVP) in the immature flower buds of Oriental hybrid lily. In addition, we identified two vernalizaiton-related genes (LoSVP and LoVRN1) from the cDNA library, which appear to be promising candidates for playing key roles in the development and response of flowering in Oriental lily plants, and LoSVP had a function in delaying flowering but LoVRN1could promote flowering early. CONCLUSIONS We collected a sample for transcriptome sequencing and comparison when the bulb's apical meristem was in the time of floral transition when the apical meristem had not converted into the morphological differentiation process, which helped to obtain more genes playing key roles in the floral induction pathways. The upstream and downstream relationship between different genes were forecasted by the analysis of genes' expression levels in a wide range of time. Future research that is targeted towards how genes interact on each other, which will promote establishing and perfecting the molecular mechanisms of floral induction pathway by vernalization.
Collapse
Affiliation(s)
- Wenqi Li
- College of Landscape Architecture & China National Engineering Research Center for Floriculture, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Xiaohua Liu
- College of Landscape Architecture & China National Engineering Research Center for Floriculture, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Yingmin Lu
- College of Landscape Architecture & China National Engineering Research Center for Floriculture, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|