1
|
Singh D, Zhao H, Gupta SK, Kumar Y, Kim J, Pawar PAM. Characterization of Arabidopsis eskimo1 reveals a metabolic link between xylan O-acetylation and aliphatic glucosinolate metabolism. PHYSIOLOGIA PLANTARUM 2024; 176:e14618. [PMID: 39542838 DOI: 10.1111/ppl.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Glucuronoxylan is present mainly in the dicot of the secondary cell walls, often O-acetylated, which stabilizes cell structure by maintaining interaction with cellulose and other cell wall components. Some members of the Golgi localized Trichome Birefringence-Like (TBL) family function as xylan O-acetyl transferase (XOAT). The primary XOAT in the stem of Arabidopsis is ESKIMO1/TBL29, and its disruption results in decreased xylan acetylation, stunted plant growth, and collapsed xylem vessels. To elucidate the effect on metabolic reprogramming and identify the underlying cause of the stunted growth in eskimo1, we performed transcriptomic, targeted, and untargeted metabolome analysis, mainly in the inflorescence stem tissue. RNA sequencing analysis revealed that the genes involved in the biosynthesis, regulation, and transport of aliphatic glucosinolates (GSLs) were upregulated, whereas those responsible for indolic GSL metabolism were unaffected in the eskimo1 inflorescence stem. Consistently, aliphatic GSLs, such as 4-methylsulfinylbutyl (4MSOB), were increased in stem tissues and seeds. This shift in the profile of aliphatic GSLs in eskimo1 was further supported by the quantification of the soluble acetate, decrease in accumulation of GSL precursor, i.e., methionine, and increase in the level of jasmonic acid.
Collapse
Affiliation(s)
- Deepika Singh
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Haohao Zhao
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Sonu Kumar Gupta
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Yashwant Kumar
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Prashant Anupama-Mohan Pawar
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| |
Collapse
|
2
|
Arouisse B, Thoen MPM, Kruijer W, Kunst JF, Jongsma MA, Keurentjes JJB, Kooke R, de Vos RCH, Mumm R, van Eeuwijk FA, Dicke M, Kloth KJ. Bivariate GWA mapping reveals associations between aliphatic glucosinolates and plant responses to thrips and heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:674-686. [PMID: 39316617 DOI: 10.1111/tpj.17009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
Although plants harbor a huge phytochemical diversity, only a fraction of plant metabolites is functionally characterized. In this work, we aimed to identify the genetic basis of metabolite functions during harsh environmental conditions in Arabidopsis thaliana. With machine learning algorithms we predicted stress-specific metabolomes for 23 (a)biotic stress phenotypes of 300 natural Arabidopsis accessions. The prediction models identified several aliphatic glucosinolates (GLSs) and their breakdown products to be implicated in responses to heat stress in siliques and herbivory by Western flower thrips, Frankliniella occidentalis. Bivariate GWA mapping of the metabolome predictions and their respective (a)biotic stress phenotype revealed genetic associations with MAM, AOP, and GS-OH, all three involved in aliphatic GSL biosynthesis. We, therefore, investigated thrips herbivory on AOP, MAM, and GS-OH loss-of-function and/or overexpression lines. Arabidopsis accessions with a combination of MAM2 and AOP3, leading to 3-hydroxypropyl dominance, suffered less from thrips feeding damage. The requirement of MAM2 for this effect could, however, not be confirmed with an introgression line of ecotypes Cvi and Ler, most likely due to other, unknown susceptibility factors in the Ler background. However, AOP2 and GS-OH, adding alkenyl or hydroxy-butenyl groups, respectively, did not have major effects on thrips feeding. Overall, this study illustrates the complex implications of aliphatic GSL diversity in plant responses to heat stress and a cell-content-feeding herbivore.
Collapse
Affiliation(s)
- Bader Arouisse
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
| | - Manus P M Thoen
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
- Enza Seeds, Enkhuizen, the Netherlands
| | - Willem Kruijer
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
| | - Jonathan F Kunst
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
| | - Maarten A Jongsma
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | - Rik Kooke
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | - Ric C H de Vos
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Roland Mumm
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Fred A van Eeuwijk
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
| | - Karen J Kloth
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
3
|
Kitainda V, Jez JM. Kinetic and catalytic mechanisms of the methionine-derived glucosinolate biosynthesis enzyme methylthioalkylmalate synthase. J Biol Chem 2024; 300:107814. [PMID: 39322014 PMCID: PMC11532901 DOI: 10.1016/j.jbc.2024.107814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
In Brassica plants, methionine-derived aliphatic glucosinolates are chemically diverse natural products that serve as plant defense compounds, as well as molecules with dietary health-promoting effects. During their biosynthesis, methylthioalkylmalate synthase (MAMS) catalyzes the elongation reaction of the aliphatic chain. The MAMS-catalyzed condensation of 4-methylthio-2-oxobutanoic acid and acetyl-CoA generates a 2-malate derivative that either enters the pathway for the synthesis of C3-glucosinolates or undergoes additional extension reactions, which lead to C4- to C9-glucosinolates. Recent determination of the x-ray crystal structure of MAMS from Brassica juncea (Indian mustard) provided insight on the molecular evolution of MAMS, especially substrate specificity changes, from the leucine biosynthesis enzyme α-isopropylmalate synthase but left details of the reaction mechanism unanswered. Here we use the B. juncea MAMS2A (BjMAMS2A) isoform to analyze the kinetic and catalytic mechanisms of this enzyme. Initial velocity studies indicate that MAMS follows an ordered bi bi kinetic mechanism, which based on the x-ray crystal structure, involves binding of 4-methylthio-2-oxobutanoic acid followed by acetyl-CoA. Examination of the pH-dependence of kcat and kcat/Km are consistent with acid/base catalysis. Site-directed mutagenesis of three residues originally proposed to function in the reaction mechanism-Arg89 (R89A, R89K, R89Q), Glu227 (E227A, E227D, E227Q), and His388 (H388A, H388N, H388Q, H388D, and H388E)-showed that only two mutants (E227Q and H388N) retained activity. Based on available structural and biochemical data, a revised reaction mechanism for MAMS-catalyzed elongation of methionine-derived aliphatic glucosinolates is proposed, which is likely also conserved in α-isopropylmalate synthase from leucine biosynthesis in plants and microbes.
Collapse
Affiliation(s)
- Vivian Kitainda
- Department of Biology, Washington University in St Louis, St Louis, Missouri, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St Louis, St Louis, Missouri, USA.
| |
Collapse
|
4
|
Cai C, de Vos RC, Qian H, Bucher J, Bonnema G. Metabolomic and Transcriptomic Profiles in Diverse Brassica oleracea Crops Provide Insights into the Genetic Regulation of Glucosinolate Profiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16032-16044. [PMID: 38975781 PMCID: PMC11261609 DOI: 10.1021/acs.jafc.4c02932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Glucosinolates (GSLs) are plant secondary metabolites commonly found in the cruciferous vegetables of the Brassicaceae family, offering health benefits to humans and defense against pathogens and pests to plants. In this study, we investigated 23 GSL compounds' relative abundance in four tissues of five different Brassica oleracea morphotypes. Using the five corresponding high-quality B. oleracea genome assemblies, we identified 183 GSL-related genes and analyzed their expression with mRNA-Seq data. GSL abundance and composition varied strongly, among both tissues and morphotypes, accompanied by different gene expression patterns. Interestingly, broccoli exhibited a nonfunctional AOP2 gene due to a conserved 2OG-FeII_Oxy domain loss, explaining the unique accumulation of two health-promoting GSLs. Additionally, transposable element (TE) insertions were found to affect the gene structure of MAM3 genes. Our findings deepen the understanding of GSL variation and genetic regulation in B. oleracea morphotypes, providing valuable insights for breeding with tailored GSL profiles in these crops.
Collapse
Affiliation(s)
- Chengcheng Cai
- Plant
Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
- State
Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology
and Genetic Improvement of Horticultural Crops of the Ministry of
Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural
Genomics, Institute of Vegetables and Flowers,
Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ric C.H. de Vos
- Bioscience, Wageningen
University and Research, Wageningen 6708 PB, The Netherlands
| | - Hao Qian
- Plant
Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Johan Bucher
- Plant
Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Guusje Bonnema
- Plant
Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| |
Collapse
|
5
|
Kitainda V, Jez J. 4-Aldrithiol-based photometric assay for detection of methylthioalkylmalate synthase activity. Methods Enzymol 2024; 702:229-245. [PMID: 39155114 DOI: 10.1016/bs.mie.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
In Brassica plants, glucosinolates are a diverse class of natural products, of which aliphatic methionine-derived glucosinolates are the most abundant form. Their structural diversity comes from the elongation of some side-chains by up to 9 carbons, which, after the formation of the core glucosinolate structure, can undergo further chemical modifications. Methylthioalkylmalate synthase (MAMS) catalyzes the iterative elongation process for aliphatic methionine-derived glucosinolates. Most biochemical studies on MAMS have been performed using liquid chromatography/mass spectrometry (LC/MS)-based assays or high-performance liquid chromatography (HPLC)-based assays. The LC/MS- and HPLC-based methods are endpoint assays, which cannot be monitored in real time and require a laborious process for data collection. These analytical methods are inefficient for performing multiple enzymatic assays needed to determine steady-state kinetic parameters or for mechanistic evaluation of pH-dependence and kinetic isotope effect studies. Although the function of MAMS has long been defined, there is a gap in knowledge as it pertains to biochemical characterization of this plant enzyme. Part of this may be due to the lack of efficient methods that can be used for this type of research. This chapter describes a continuous photometric assay to track MAMS activity in real time using the 4-aldrithiol reagent for reaction detection.
Collapse
Affiliation(s)
- Vivian Kitainda
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Joseph Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
6
|
Medhanavyn D, Muranaka T, Yasumoto S. Characterization of unique EDTA-insensitive methylthioalkylmalate synthase from Eutrema japonicum and its potential application in synthetic biology. J Biosci Bioeng 2024; 138:13-20. [PMID: 38614832 DOI: 10.1016/j.jbiosc.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 04/15/2024]
Abstract
6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), a derivative of glucosinolate with a six-carbon chain, is a compound found in wasabi and has diverse health-promoting properties. The biosynthesis of glucosinolates from methionine depends on a crucial step catalyzed methylthioalkylmalate synthases (MAMs), which are responsible for the generation of glucosinolates with varying chain lengths. In this study, our primary focus was the characterization of two methylthioalkyl malate synthases, MAM1-1 and MAM1-2, derived from Eutrema japonicum, commonly referred to as Japanese wasabi. Eutremajaponicum MAMs (EjMAMs) were expressed in an Escherichiacoli expression system, subsequently purified, and in vitro enzymatic activity was assayed. We explored the kinetic properties, optimal pH conditions, and cofactor preferences of EjMAMs and compared them with those of previously documented MAMs. Surprisingly, EjMAM1-2, categorized as a metallolyase family enzyme, displayed 20% of its maximum activity even in the absence of divalent metal cofactors or under high concentrations of EDTA. Additionally, we utilized AlphaFold2 to generate structural homology models of EjMAMs, and used in silico analysis and mutagenesis studies to investigate the key residues participating in catalytic activity. Moreover, we examined in vivo biosynthesis in E. coli containing Arabidopsis thaliana branched-chain amino acid transferase 3 (AtBCAT3) along with AtMAMs or EjMAMs and demonstrated that EjMAM1-2 exhibited the highest conversion rate among those MAMs, converting l-methionine to 2-(2-methylthio) ethyl malate (2-(2-MT)EM). EjMAM1-2 shows a unique property in vitro and highest activity on converting l-methionine to 2-(2-MT)EM in vivo which displays high potential for isothiocyanate biosynthesis in E. coli platform.
Collapse
Affiliation(s)
- Dheeradhach Medhanavyn
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
7
|
Wang J, Shen Y, Sheng X, Yu H, Song M, Wang Q, Gu H. Unravelling Glucoraphanin and Glucoerucin Metabolism across Broccoli Sprout Development: Insights from Metabolite and Transcriptome Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:750. [PMID: 38592746 PMCID: PMC10976094 DOI: 10.3390/plants13060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024]
Abstract
Variations in the concentration of glucoraphanin (GRA) and glucoerucin (GER), as well as the corresponding breakdown products, isothiocyanates (ITCs) and nitriles, were investigated during the growth of broccoli sprouts. The concentrations of GRA and GER decreased sharply from 33.66 µmol/g to 11.48 µmol/g and 12.98 µmol/g to 8.23 µmol/g, respectively, after seed germination. From the third to the seventh day, both GRA and GER were maintained as relatively stable. The highest concentrations of sulforaphane (17.16 µmol/g) and erucin (12.26 µmol/g) were observed on the first day. Hereafter, the concentrations of nitrile hydrolyzed from GRA or GER were higher than those of the corresponding ITCs. Moreover, the ratio of sulforaphane to sulforaphane nitrile decreased from 1.35 to 0.164 from 1 d to 5 d, with a similar trend exhibited for erucin/erucin nitrile after 2 d. RNA-seq analysis showed that BolMYB28 and BolCYP83A1, involved in aliphatic glucosinolate (GSL) biosynthesis, remained largely unexpressed until the third day. In contrast, the genes operating within the GSL-myrosinase hydrolysis pathway were highly expressed right from the beginning, with their expression levels increasing significantly after the third day. Additionally, we identified two BolESPs and six BolNSPs that might play important roles in promoting the production of nitriles during the development of broccoli sprouts.
Collapse
Affiliation(s)
- Jiansheng Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Yusen Shen
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Xiaoguang Sheng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Huifang Yu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Mengfei Song
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Department of Horticulture, Zhejiang University, Hangzhou 310058, China;
| | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| |
Collapse
|
8
|
Naake T, Zhu F, Alseekh S, Scossa F, Perez de Souza L, Borghi M, Brotman Y, Mori T, Nakabayashi R, Tohge T, Fernie AR. Genome-wide association studies identify loci controlling specialized seed metabolites in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:1705-1721. [PMID: 37758174 PMCID: PMC10904349 DOI: 10.1093/plphys/kiad511] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Plants synthesize specialized metabolites to facilitate environmental and ecological interactions. During evolution, plants diversified in their potential to synthesize these metabolites. Quantitative differences in metabolite levels of natural Arabidopsis (Arabidopsis thaliana) accessions can be employed to unravel the genetic basis for metabolic traits using genome-wide association studies (GWAS). Here, we performed metabolic GWAS on seeds of a panel of 315 A. thaliana natural accessions, including the reference genotypes C24 and Col-0, for polar and semi-polar seed metabolites using untargeted ultra-performance liquid chromatography-mass spectrometry. As a complementary approach, we performed quantitative trait locus (QTL) mapping of near-isogenic introgression lines between C24 and Col-0 for specific seed specialized metabolites. Besides common QTL between seeds and leaves, GWAS revealed seed-specific QTL for specialized metabolites, indicating differences in the genetic architecture of seeds and leaves. In seeds, aliphatic methylsulfinylalkyl and methylthioalkyl glucosinolates associated with the ALKENYL HYDROXYALKYL PRODUCING loci (GS-ALK and GS-OHP) on chromosome 4 containing alkenyl hydroxyalkyl producing 2 (AOP2) and 3 (AOP3) or with the GS-ELONG locus on chromosome 5 containing methylthioalkyl malate synthase (MAM1) and MAM3. We detected two unknown sulfur-containing compounds that were also mapped to these loci. In GWAS, some of the annotated flavonoids (kaempferol 3-O-rhamnoside-7-O-rhamnoside, quercetin 3-O-rhamnoside-7-O-rhamnoside) were mapped to transparent testa 7 (AT5G07990), encoding a cytochrome P450 75B1 monooxygenase. Three additional mass signals corresponding to quercetin-containing flavonols were mapped to UGT78D2 (AT5G17050). The association of the loci and associating metabolic features were functionally verified in knockdown mutant lines. By performing GWAS and QTL mapping, we were able to leverage variation of natural populations and parental lines to study seed specialized metabolism. The GWAS data set generated here is a high-quality resource that can be investigated in further studies.
Collapse
Affiliation(s)
- Thomas Naake
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Feng Zhu
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Saleh Alseekh
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Federico Scossa
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Research Center for Genomics and Bioinformatics (CREA-GB), Council for Agricultural Research and Economics, Via Ardeatina 546, 00178 Rome, Italy
| | - Leonardo Perez de Souza
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Monica Borghi
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84321-5305, USA
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Be’er Sheva, Israel
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Tsurumi, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Takayuki Tohge
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Alisdair R Fernie
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
9
|
Chen L, Zeng Q, Zhang J, Li C, Bai X, Sun F, Kliebenstein DJ, Li B. Large-scale identification of novel transcriptional regulators of the aliphatic glucosinolate pathway in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:300-315. [PMID: 37738614 DOI: 10.1093/jxb/erad376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Aliphatic glucosinolates are a large group of plant secondary metabolites characteristic of Brassicaceae, including the model plant Arabidopsis. The diverse and complex degradation products of aliphatic glucosinolates contribute to plant responses to herbivory, pathogen attack, and environmental stresses. Most of the biosynthesis genes in the aliphatic glucosinolate pathway have been cloned in Arabidopsis, and the research focus has recently shifted to the regulatory mechanisms controlling aliphatic glucosinolate accumulation. Up till now, more than 40 transcriptional regulators have been identified as regulating the aliphatic glucosinolate pathway, but many more novel regulators likely remain to be discovered based on research evidence over the past decade. In the current study, we took a systemic approach to functionally test 155 candidate transcription factors in Arabidopsis identified by yeast one-hybrid assay, and successfully validated at least 30 novel regulators that could significantly influence the accumulation of aliphatic glucosinolates in our experimental set-up. We also showed that the regulators of the aliphatic glucosinolate pathway have balanced positive and negative effects, and glucosinolate metabolism and plant development can be coordinated. Our work is the largest scale effort so far to validate transcriptional regulators of a plant secondary metabolism pathway, and provides new insights into how the highly diverse plant secondary metabolism is regulated at the transcriptional level.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Qi Zeng
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Jiahao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xue Bai
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Baohua Li
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
10
|
Lyu X, Li YH, Li Y, Li D, Han C, Hong H, Tian Y, Han L, Liu B, Qiu LJ. The domestication-associated L1 gene encodes a eucomic acid synthase pleiotropically modulating pod pigmentation and shattering in soybean. MOLECULAR PLANT 2023:S1674-2052(23)00169-7. [PMID: 37433301 DOI: 10.1016/j.molp.2023.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023]
Abstract
Pod coloration is a domestication-related trait in soybean, with modern cultivars typically displaying brown or tan pods, while their wild relative, Glycine soja, possesses black pods. However, the factors regulating this color variation remain unknown. In this study, we cloned and characterized L1, the classical locus responsible for black pods in soybean. By using map-based cloning and genetic analyses, we identified the causal gene of L1 and revealed that it encodes a hydroxymethylglutaryl-coenzyme A (CoA) lyase-like (HMGL-like) domain protein. Biochemical assays showed that L1 functions as a eucomic acid synthase and facilitates the synthesis of eucomic acid and piscidic acid, both of which contribute to coloration of pods and seed coats in soybean. Interestingly, we found that L1 plants are more prone to pod shattering under light exposure than l1 null mutants because dark pigmentation increases photothermal efficiency. Hence, pleiotropic effects of L1 on pod color and shattering, as well as seed pigmentation, likely contributed to the preference for l1 alleles during soybean domestication and improvement. Collectively, our study provides new insights into the mechanism of pod coloration and identifies a new target for future de novo domestication of legume crops.
Collapse
Affiliation(s)
- Xiangguang Lyu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Ying-Hui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Yanfei Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People''s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Delin Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Chao Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Huilong Hong
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Yu Tian
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Lida Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China.
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China.
| |
Collapse
|
11
|
Yamane K, Yamada-Kato T, Haga N, Ishida K, Murayama S, Kobayashi K, Okunishi I. Allyl isothiocyanate and 6-(methylsulfinyl) hexyl isothiocyanate contents vary among wild and cultivated wasabi ( Eutrema japonium). BREEDING SCIENCE 2023; 73:237-245. [PMID: 37840977 PMCID: PMC10570882 DOI: 10.1270/jsbbs.22080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/13/2023] [Indexed: 10/17/2023]
Abstract
Wasabi (Japanese horseradish, Eutrema japonicum) is the only cultivated species in the genus Eutrema with functional components that provide a strong pungent flavor. To evaluate genetic resources for wasabi breeding, we surveyed variations in the two most abundant isothiocyanate (ITC) components in wasabi, allyl isothiocyanate (AITC) and 6-methylsulfinyl (hexyl) isothiocyanate (6-MSITC, hexaraphane). We also examined the phylogenetic relationships among 36 accessions of wild and cultivated wasabi in Japan using chloroplast DNA analysis. Our results showed that (i) the 6-MSITC content in currently cultivated wasabi accessions was significantly higher than in escaped cultivars, whereas the AITC content was not significantly different. (ii) Additionally, the 6-MSITC content in cultivated wasabi was significantly lower in the spring than during other seasons. This result suggested that the 6-MSITC content responds to environmental conditions. (iii) The phylogenetic position and the 6-MSITC content of accessions from Rebun, Hokkaido Prefecture had different profiles compared with those from southern Honshu, Japan, indicating heterogeneity of the Rebun populations from other Japanese wasabi accessions. (iv) The total content of AITC and 6-MSITC in cultivated wasabi was significantly higher than that of wild wasabi. In conclusion, old cultivars or landraces of wasabi, "zairai", are the most suitable candidates for immediate use as genetic resources.
Collapse
Affiliation(s)
- Kyoko Yamane
- Gifu University, Faculty of Applied Biological Sciences, 1-1 Yanagido, Gifu city, Gifu 501-1193, Japan
| | - Tomoe Yamada-Kato
- Kinjirushi Co., Ltd, 2-61 Yahata-hontori, Nakagawa-ku, Nagoya, Aichi 454-8526, Japan
| | - Natsuko Haga
- Gifu University, Faculty of Applied Biological Sciences, 1-1 Yanagido, Gifu city, Gifu 501-1193, Japan
| | - Kaori Ishida
- Kinjirushi Co., Ltd, 2-61 Yahata-hontori, Nakagawa-ku, Nagoya, Aichi 454-8526, Japan
| | - Seiji Murayama
- Rebun Botanical Garden, Uedomari, Funadomari-mura, Rebun-cho, Rebun city, Hokkaido 097-1111, Japan
| | - Keiko Kobayashi
- Gifu University, Faculty of Applied Biological Sciences, 1-1 Yanagido, Gifu city, Gifu 501-1193, Japan
| | - Isao Okunishi
- Kinjirushi Co., Ltd, 2-61 Yahata-hontori, Nakagawa-ku, Nagoya, Aichi 454-8526, Japan
| |
Collapse
|
12
|
Li L, Ma P, Nirasawa S, Liu H. Formation, immunomodulatory activities, and enhancement of glucosinolates and sulforaphane in broccoli sprouts: a review for maximizing the health benefits to human. Crit Rev Food Sci Nutr 2023; 64:7118-7148. [PMID: 36847125 DOI: 10.1080/10408398.2023.2181311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Broccoli sprouts have been considered as functional foods which have received increasing attention because they have been highly prized for glucosinolates, phenolics, and vitamins in particular glucosinolates. One of hydrolysates-sulforaphane from glucoraphanin is positively associated with the attenuation of inflammatory, which could reduce diabetes, cardiovascular and cancer risk. In recent decades, the great interest in natural bioactive components especially for sulforaphane promotes numerous researchers to investigate the methods to enhance glucoraphanin levels in broccoli sprouts and evaluate the immunomodulatory activities of sulforaphane. Therefore, glucosinolates profiles are different in broccoli sprouts varied with genotypes and inducers. Physicochemical, biological elicitors, and storage conditions were widely studied to promote the accumulation of glucosinolates and sulforaphane in broccoli sprouts. These inducers would stimulate the biosynthesis pathway gene expression and enzyme activities of glucosinolates and sulforaphane to increase the concentration in broccoli sprouts. The immunomodulatory activity of sulforaphane was summarized to be a new therapy for diseases with immune dysregulation. The perspective of this review served as a potential reference for customers and industries by application of broccoli sprouts as a functional food and clinical medicine.
Collapse
Affiliation(s)
- Lizhen Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Peihua Ma
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Satoru Nirasawa
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Science, Tsukuba, Ibaraki Japan
| | - Haijie Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Qin H, King GJ, Borpatragohain P, Zou J. Developing multifunctional crops by engineering Brassicaceae glucosinolate pathways. PLANT COMMUNICATIONS 2023:100565. [PMID: 36823985 PMCID: PMC10363516 DOI: 10.1016/j.xplc.2023.100565] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Glucosinolates (GSLs), found mainly in species of the Brassicaceae family, are one of the most well-studied classes of secondary metabolites. Produced by the action of myrosinase on GSLs, GSL-derived hydrolysis products (GHPs) primarily defend against biotic stress in planta. They also significantly affect the quality of crop products, with a subset of GHPs contributing unique food flavors and multiple therapeutic benefits or causing disagreeable food odors and health risks. Here, we explore the potential of these bioactive functions, which could be exploited for future sustainable agriculture. We first summarize our accumulated understanding of GSL diversity and distribution across representative Brassicaceae species. We then systematically discuss and evaluate the potential of exploited and unutilized genes involved in GSL biosynthesis, transport, and hydrolysis as candidate GSL engineering targets. Benefiting from available information on GSL and GHP functions, we explore options for multifunctional Brassicaceae crop ideotypes to meet future demand for food diversification and sustainable crop production. An integrated roadmap is subsequently proposed to guide ideotype development, in which maximization of beneficial effects and minimization of detrimental effects of GHPs could be combined and associated with various end uses. Based on several use-case examples, we discuss advantages and limitations of available biotechnological approaches that may contribute to effective deployment and could provide novel insights for optimization of future GSL engineering.
Collapse
Affiliation(s)
- Han Qin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | | | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
14
|
Chen B, Liu Y, Xiang C, Zhang D, Liu Z, Liu Y, Chen J. Identification and in vitro enzymatic activity analysis of the AOP2 gene family associated with glucosinolate biosynthesis in Tumorous stem mustard ( Brassica juncea var. tumida). FRONTIERS IN PLANT SCIENCE 2023; 14:1111418. [PMID: 36909383 PMCID: PMC9992552 DOI: 10.3389/fpls.2023.1111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The major enzyme encoded by the glucosinolate biosynthetic gene AOP2 is involved in catalyzing the conversion of glucoiberin (GIB) into sinigrin (SIN) in Brassicaceae crops. The AOP2 proteins have previously been identified in several Brassicaceae species, but not in Tumorous stem mustard. As per this research, the five identified members of the AOP2 family from the whole genome of Brassica juncea named BjuAOP2.1-BjuAOP2.5 were found to be evenly distributed on five chromosomes. The subcellular localization results implied that BjuAOP2 proteins were mainly concentrated in the cytoplasm. Phylogenetic analysis of the AOP2 proteins from the sequenced Brassicaceae species in BRAD showed that BjuAOP2 genes were more closely linked to Brassica carinata and Brassica rapa than Arabidopsis. In comparison with other Brassicaceae plants, the BjuAOP2 members were conserved in terms of gene structures, protein sequences, and motifs. The light response and hormone response elements were included in the BjuAOP2 genes' cis-regulatory elements. The expression pattern of BjuAOP2 genes was influenced by the different stages of development and the type of tissue being examined. The BjuAOP2 proteins were used to perform the heterologous expression experiment. The results showed that all the five BjuAOP2 proteins can catalyze the conversion of GIB to SIN with different catalytic activity. These results provide the basis for further investigation of the functional study of BjuAOP2 in Tumorous stem mustard glucosinolate biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Yihua Liu
- *Correspondence: Yihua Liu, ; Jingjing Chen,
| | | |
Collapse
|
15
|
Jhingan S, Harloff HJ, Abbadi A, Welsch C, Blümel M, Tasdemir D, Jung C. Reduced glucosinolate content in oilseed rape (Brassica napus L.) by random mutagenesis of BnMYB28 and BnCYP79F1 genes. Sci Rep 2023; 13:2344. [PMID: 36759657 PMCID: PMC9911628 DOI: 10.1038/s41598-023-28661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
The presence of anti-nutritive compounds like glucosinolates (GSLs) in the rapeseed meal severely restricts its utilization as animal feed. Therefore, reducing the GSL content to < 18 µmol/g dry weight in the seeds is a major breeding target. While candidate genes involved in the biosynthesis of GSLs have been described in rapeseed, comprehensive functional analyses are missing. By knocking out the aliphatic GSL biosynthesis genes BnMYB28 and BnCYP79F1 encoding an R2R3 MYB transcription factor and a cytochrome P450 enzyme, respectively, we aimed to reduce the seed GSL content in rapeseed. After expression analyses on single paralogs, we used an ethyl methanesulfonate (EMS) treated population of the inbred winter rapeseed 'Express617' to detect functional mutations in the two gene families. Our results provide the first functional analysis by knock-out for the two GSL biosynthesis genes in winter rapeseed. We demonstrate that independent knock-out mutants of the two genes possessed significantly reduced seed aliphatic GSLs, primarily progoitrin. Compared to the wildtype Express617 control plants (36.3 µmol/g DW), progoitrin levels were decreased by 55.3% and 32.4% in functional mutants of BnMYB28 (16.20 µmol/g DW) and BnCYP79F1 (24.5 µmol/g DW), respectively. Our study provides a strong basis for breeding rapeseed with improved meal quality in the future.
Collapse
Affiliation(s)
- Srijan Jhingan
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Hans-Joachim Harloff
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Amine Abbadi
- NPZ Innovation GmbH, Hohenlieth-Hof, 24363, Holtsee, Germany
| | - Claudia Welsch
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel Kanal 44, 24106, Kiel, Germany
| | - Martina Blümel
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel Kanal 44, 24106, Kiel, Germany
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel Kanal 44, 24106, Kiel, Germany
- Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| |
Collapse
|
16
|
Ghidoli M, Ponzoni E, Araniti F, Miglio D, Pilu R. Genetic Improvement of Camelina sativa (L.) Crantz: Opportunities and Challenges. PLANTS (BASEL, SWITZERLAND) 2023; 12:570. [PMID: 36771654 PMCID: PMC9920110 DOI: 10.3390/plants12030570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
In recent years, a renewed interest in novel crops has been developing due to the environmental issues associated with the sustainability of agricultural practices. In particular, a cover crop, Camelina sativa (L.) Crantz, belonging to the Brassicaceae family, is attracting the scientific community's interest for several desirable features. It is related to the model species Arabidopsis thaliana, and its oil extracted from the seeds can be used either for food and feed, or for industrial uses such as biofuel production. From an agronomic point of view, it can grow in marginal lands with little or no inputs, and is practically resistant to the most important pathogens of Brassicaceae. Although cultivated in the past, particularly in northern Europe and Italy, in the last century, it was abandoned. For this reason, little breeding work has been conducted to improve this plant, also because of the low genetic variability present in this hexaploid species. In this review, we summarize the main works on this crop, focused on genetic improvement with three main objectives: yield, seed oil content and quality, and reduction in glucosinolates content in the seed, which are the main anti-nutritional substances present in camelina. We also report the latest advances in utilising classical plant breeding, transgenic approaches, and CRISPR-Cas9 genome-editing.
Collapse
Affiliation(s)
- Martina Ghidoli
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Elena Ponzoni
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche, Via E. Bassini 15, 20133 Milan, Italy
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Daniela Miglio
- Laboratory for Mother and Child Health, Department of Public Health, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20133 Milan, Italy
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| |
Collapse
|
17
|
Zhou X, Zhang H, Xie Z, Liu Y, Wang P, Dai L, Zhang X, Wang Z, Wang Z, Wan L, Yang G, Hong D. Natural variation and artificial selection at the BnaC2.MYB28 locus modulate Brassica napus seed glucosinolate. PLANT PHYSIOLOGY 2023; 191:352-368. [PMID: 36179100 PMCID: PMC9806571 DOI: 10.1093/plphys/kiac463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/20/2022] [Indexed: 05/17/2023]
Abstract
The degradation products of glucosinolates (GSLs) greatly lower the nutritional value of rapeseed (Brassica napus) meal; thus, reduction of seed GSL content (SGC) has become an important objective of rapeseed breeding. In our previous study, we finely mapped a major QTL (qGSL-C2) for SGC to a 49-kb collinear region on B. rapa chromosome A2. Here, we experimentally validated that BnaC2.MYB28, encoding an R2R3-MYB transcription factor, is the causal gene of qGSL-C2. BnaC2.MYB28 is a nucleus-localized protein mainly expressed in vegetative tissues. Knockout of BnaC2.MYB28 in the high-SGC parent G120 reduced SGC to a value lower than that in the low-SGC parent ZY50, while overexpression of BnaC2.MYB28 in both parental lines (G120 and ZY50) led to extremely high SGC, indicating that BnaC2.MYB28 acts as a positive regulator of SGC in both parents. Molecular characterization revealed that BnaC2.MYB28 forms a homodimer and specifically interacts with BnaMYC3. Moreover, BnaC2.MYB28 can directly activate the expression of GSL biosynthesis genes. Differential expression abundance resulting from the polymorphic promoter sequences, in combination with the different capability in activating downstream genes involved in aliphatic GSL biosynthesis, caused the functional divergence of BnaC2.MYB28 in SGC regulation between the parents. Natural variation of BnaC2.MYB28 was highly associated with SGC in natural germplasm and has undergone artificial selection in modern low-GSL breeding. This study provides important insights into the core function of BnaC2.MYB28 in regulating SGC and a promising strategy for manipulating SGC in rapeseed.
Collapse
Affiliation(s)
- Xianming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops Hainan University, Hainan University, Haikou 570288, China
| | - Haiyan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops Hainan University, Hainan University, Haikou 570288, China
| | - Zhaoqi Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lihong Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoyang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuanrong Wang
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan 430065, China
| | - Lili Wan
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan 430065, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
18
|
Orf I, Tenenboim H, Omranian N, Nikoloski Z, Fernie AR, Lisec J, Brotman Y, Bromke MA. Transcriptomic and Metabolomic Analysis of a Pseudomonas-Resistant versus a Susceptible Arabidopsis Accession. Int J Mol Sci 2022; 23:ijms232012087. [PMID: 36292941 PMCID: PMC9603445 DOI: 10.3390/ijms232012087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022] Open
Abstract
Accessions of one plant species may show significantly different levels of susceptibility to stresses. The Arabidopsis thaliana accessions Col-0 and C24 differ significantly in their resistance to the pathogen Pseudomonas syringae pv. tomato (Pst). To help unravel the underlying mechanisms contributing to this naturally occurring variance in resistance to Pst, we analyzed changes in transcripts and compounds from primary and secondary metabolism of Col-0 and C24 at different time points after infection with Pst. Our results show that the differences in the resistance of Col-0 and C24 mainly involve mechanisms of salicylic-acid-dependent systemic acquired resistance, while responses of jasmonic-acid-dependent mechanisms are shared between the two accessions. In addition, arginine metabolism and differential activity of the biosynthesis pathways of aliphatic glucosinolates and indole glucosinolates may also contribute to the resistance. Thus, this study highlights the difference in the defense response strategies utilized by different genotypes.
Collapse
Affiliation(s)
- Isabel Orf
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Hezi Tenenboim
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Nooshin Omranian
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Jan Lisec
- Department of Analytical Chemistry, Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Correspondence: (Y.B.); (M.A.B.)
| | - Mariusz A. Bromke
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, ul. Chałubińskiego 10, 50-367 Wrocław, Poland
- Correspondence: (Y.B.); (M.A.B.)
| |
Collapse
|
19
|
Sikder MM, Vestergård M, Kyndt T, Topalović O, Kudjordjie EN, Nicolaisen M. Genetic disruption of Arabidopsis secondary metabolite synthesis leads to microbiome-mediated modulation of nematode invasion. THE ISME JOURNAL 2022; 16:2230-2241. [PMID: 35760884 PMCID: PMC9381567 DOI: 10.1038/s41396-022-01276-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 05/29/2023]
Abstract
In-depth understanding of metabolite-mediated plant-nematode interactions can guide us towards novel nematode management strategies. To improve our understanding of the effects of secondary metabolites on soil nematode communities, we grew Arabidopsis thaliana genetically altered in glucosinolate, camalexin, or flavonoid synthesis pathways, and analyzed their root-associated nematode communities using metabarcoding. To test for any modulating effects of the associated microbiota on the nematode responses, we characterized the bacterial and fungal communities. Finally, as a proxy of microbiome-modulating effects on nematode invasion, we isolated the root-associated microbiomes from the mutants and tested their effect on the ability of the plant parasitic nematode Meloidogyne incognita to penetrate tomato roots. Most mutants had altered relative abundances of several nematode taxa with stronger effects on the plant parasitic Meloidogyne hapla than on other root feeding taxa. This probably reflects that M. hapla invades and remains embedded within root tissues and is thus intimately associated with the host. When transferred to tomato, microbiomes from the flavonoid over-producing pap1-D enhanced M. incognita root-invasion, whereas microbiomes from flavonoid-deficient mutants reduced invasion. This suggests microbiome-mediated effect of flavonoids on Meloidogyne infectivity plausibly mediated by the alteration of the abundances of specific microbial taxa in the transferred microbiomes, although we could not conclusively pinpoint such causative microbial taxa.
Collapse
Affiliation(s)
- Md Maniruzzaman Sikder
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark
- Department of Botany, Faculty of Biological Sciences, Jahangirnagar University, 1342 Savar, Dhaka, Bangladesh
| | - Mette Vestergård
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark
| | - Tina Kyndt
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000, Gent, Belgium
| | - Olivera Topalović
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark
| | - Enoch Narh Kudjordjie
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark.
| |
Collapse
|
20
|
Gloss AD, Vergnol A, Morton TC, Laurin PJ, Roux F, Bergelson J. Genome-wide association mapping within a local Arabidopsis thaliana population more fully reveals the genetic architecture for defensive metabolite diversity. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200512. [PMID: 35634919 PMCID: PMC9149790 DOI: 10.1098/rstb.2020.0512] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/08/2022] [Indexed: 12/16/2022] Open
Abstract
A paradoxical finding from genome-wide association studies (GWAS) in plants is that variation in metabolite profiles typically maps to a small number of loci, despite the complexity of underlying biosynthetic pathways. This discrepancy may partially arise from limitations presented by geographically diverse mapping panels. Properties of metabolic pathways that impede GWAS by diluting the additive effect of a causal variant, such as allelic and genetic heterogeneity and epistasis, would be expected to increase in severity with the geographical range of the mapping panel. We hypothesized that a population from a single locality would reveal an expanded set of associated loci. We tested this in a French Arabidopsis thaliana population (less than 1 km transect) by profiling and conducting GWAS for glucosinolates, a suite of defensive metabolites that have been studied in depth through functional and genetic mapping approaches. For two distinct classes of glucosinolates, we discovered more associations at biosynthetic loci than the previous GWAS with continental-scale mapping panels. Candidate genes underlying novel associations were supported by concordance between their observed effects in the TOU-A population and previous functional genetic and biochemical characterization. Local populations complement geographically diverse mapping panels to reveal a more complete genetic architecture for metabolic traits. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.
Collapse
Affiliation(s)
- Andrew D. Gloss
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY, USA
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Amélie Vergnol
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Timothy C. Morton
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Peter J. Laurin
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY, USA
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Fabrice Roux
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Joy Bergelson
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY, USA
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
21
|
Barnum CR, Endelman BJ, Ornelas IJ, Pignolet RM, Shih PM. Optimization of Heterologous Glucoraphanin Production In Planta. ACS Synth Biol 2022; 11:1865-1873. [PMID: 35438493 DOI: 10.1021/acssynbio.2c00030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glucoraphanin is a plant specialized metabolite found in cruciferous vegetables that has long been a target for production in a heterologous host because it can subsequently be hydrolyzed to form the chemopreventive compound sulforaphane before and during consumption. However, previous studies have only been able to produce small amounts of glucoraphanin in heterologous plant and microbial systems compared to the levels found in glucoraphanin-producing plants, suggesting that there may be missing auxiliary genes that play a role in improving production in planta. In an effort to identify auxiliary genes required for high glucoraphanin production, we leveraged transient expression in Nicotiana benthamiana to screen a combination of previously uncharacterized coexpressed genes and rationally selected genes alongside the glucoraphanin biosynthetic pathway. This strategy alleviated metabolic bottlenecks, which improved glucoraphanin production by 4.74-fold. Our optimized glucoraphanin biosynthetic pathway provides a pathway amenable for high glucoraphanin production.
Collapse
Affiliation(s)
- Collin R Barnum
- Department of Plant Biology, University of California, Davis, California 95616, United States
| | - Benjamin J Endelman
- Department of Plant Biology, University of California, Davis, California 95616, United States
| | - Izaiah J Ornelas
- Department of Plant Biology, University of California, Davis, California 95616, United States
| | - Roxanna M Pignolet
- Department of Plant Biology, University of California, Davis, California 95616, United States
| | - Patrick M Shih
- Department of Plant Biology, University of California, Davis, California 95616, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, United States
- Innovative Genomics Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Metabolic Profiling of Organic Acids Reveals the Involvement of HuIPMS2 in Citramalic Acid Synthesis in Pitaya. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pitayas are rich in organic acids, especially citramalic acid, which is significantly higher than the plants. However, the mechanism of citramalic acid biosynthesis remains to be fully elucidated. In this study, organic acid compositions and contents, as well as expression patterns of key genes related to organic acid metabolism were analyzed during fruit maturation of four different pitaya cultivars i.e., ‘Guanhuabai’ (GHB), ‘Guanhuahong’ (GHH), ‘Wucihuanglong’ (WCHL), and ‘Youcihuanglong’ (YCHL). The total organic acid contents increased first and then declined during fruit maturation. The main organic acids were citramalic acid during the early stages of GHB, GHH, and WCHL pitayas, and dominated by malic acid as fruit maturation. In comparison, citric acid and malic acid were main organic acid for ‘YCHL’ pitaya. Citramalate synthase (IPMS) was involved in the synthesis of citramalic acid, and three types of HuIPMS i.e., HuIPMS1, HuIPMS2, and HuIPMS3, were obtained in our study. Highest expression levels of HuIPMS1 were detected in sepals, while HuIPMS2 and HuIPMS3 exhibited preferential expression in tender stems and ovaries. The expression levels of HuIPMS2 and HuIPMS3 were positively correlated with the content of citramalic acid in the four pitaya cultivars. HuIPMS2 was a chloroplast-localized protein, while HuIPMS3 presented a cytoplasmic-like and nuclear subcellular localization. These findings provide an important basis for further understanding of the molecular mechanism that leads to citramalic acid metabolism during pitaya fruit maturation.
Collapse
|
23
|
Zhang A, Luo R, Li J, Miao R, An H, Yan X, Pang Q. Arabidopsis Glutathione-S-Transferases GSTF11 and GSTU20 Function in Aliphatic Glucosinolate Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 12:816233. [PMID: 35145536 PMCID: PMC8821908 DOI: 10.3389/fpls.2021.816233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/22/2021] [Indexed: 06/12/2023]
Abstract
Glutathione (GSH) conjugation with intermediates is required for the biosynthesis of glucosinolate (GSL) by serving as a sulfur supply. Glutathione-S-transferases (GSTs) primarily work on GSH conjugation, suggesting their involvement in GSL metabolism. Although several GSTs, including GSTF11 and GSTU20, have been recently postulated to act in GSL biosynthesis, molecular evidence is lacking. Here, we demonstrated that GSTF11 and GSTU20 play non-redundant, although partially overlapping, roles in aliphatic GSL biosynthesis. In addition, GSTU20 plays a more important role than GSTF11, which is manifested by the greater loss of aliphatic GSLs associated with GSTU20 mutant and a greater number of differentially expressed genes in GSTU20 mutant compared to GSTF11 mutant. Moreover, a double mutation leads to a greater aggregate loss of aliphatic GSLs, suggesting that GSTU20 and GSTF11 may function in GSL biosynthesis in a dosage-dependent manner. Together, our results provide direct evidence that GSTU20 and GSTF11 are critically involved in aliphatic GSL biosynthesis, filling the knowledge gap that has been speculated in recent decades.
Collapse
Affiliation(s)
- Aiqin Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Rui Luo
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Jiawen Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Rongqing Miao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Hui An
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Xiufeng Yan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Qiuying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| |
Collapse
|
24
|
Feng X, Ma J, Liu Z, Li X, Wu Y, Hou L, Li M. Analysis of Glucosinolate Content and Metabolism Related Genes in Different Parts of Chinese Flowering Cabbage. FRONTIERS IN PLANT SCIENCE 2022; 12:767898. [PMID: 35111173 PMCID: PMC8801782 DOI: 10.3389/fpls.2021.767898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Glucosinolates (GSLs) are important secondary metabolites that play important defensive roles in cruciferous plants. Chinese flowering cabbage, one of the most common vegetable crops, is rich in GSLs and thus has the potential to reduce the risk of cancer in humans. Many genes that are involved in GSL biosynthesis and metabolism have been identified in the model plant Arabidopsis thaliana; however, few studies investigated the genes related to GSL biosynthesis and metabolism in Chinese flowering cabbage. In the present study, the GSL composition and content in three different organs of Chinese flowering cabbage (leaf, stalk, and flower bud) were determined. Our results showed that the total GSL content in flower buds was significantly higher than in stalks and leaves, and aliphatic GSLs were the most abundant GSL type. To understand the molecular mechanisms underlying the variations of GSL content, we analyzed the expression of genes encoding enzymes involved in GSL biosynthesis and transport in different tissues of Chinese flowering cabbage using RNA sequencing; the expression levels of most genes were found to be consistent with the pattern of total GSL content. Correlation and consistency analysis of differentially expressed genes from different organs with the GSL content revealed that seven genes (Bra029966, Bra012640, Bra016787, Bra011761, Bra006830, Bra011759, and Bra029248) were positively correlated with GSL content. These findings provide a molecular basis for further elucidating GSL biosynthesis and transport in Chinese flowering cabbage.
Collapse
Affiliation(s)
- Xianjun Feng
- College of Horticulture, Shanxi Agricultural University, Taigu, China
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, Taigu, China
| | - Jiajun Ma
- College of Horticulture, Shanxi Agricultural University, Taigu, China
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, Taigu, China
| | - Zhiqian Liu
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, VIC, Australia
| | - Xuan Li
- College of Horticulture, Shanxi Agricultural University, Taigu, China
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, Taigu, China
| | - Yinghua Wu
- College of Horticulture, Shanxi Agricultural University, Taigu, China
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, Taigu, China
| | - Leiping Hou
- College of Horticulture, Shanxi Agricultural University, Taigu, China
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, Taigu, China
| | - Meilan Li
- College of Horticulture, Shanxi Agricultural University, Taigu, China
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, Taigu, China
| |
Collapse
|
25
|
Kumar R, Reichelt M, Bisht NC. An LC-MS/MS assay for enzymatic characterization of methylthioalkylmalate synthase (MAMS) involved in glucosinolate biosynthesis. Methods Enzymol 2022; 676:49-69. [DOI: 10.1016/bs.mie.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Tan Z, Xie Z, Dai L, Zhang Y, Zhao H, Tang S, Wan L, Yao X, Guo L, Hong D. Genome- and transcriptome-wide association studies reveal the genetic basis and the breeding history of seed glucosinolate content in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:211-225. [PMID: 34525252 PMCID: PMC8710833 DOI: 10.1111/pbi.13707] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/25/2021] [Accepted: 09/07/2021] [Indexed: 05/08/2023]
Abstract
A high content of seed glucosinolates and their degradation products imposes anti-nutritional effects on livestock; therefore, persistent efforts are made to reduce the seed GSL content to increase the commercial value of rapeseed meal. Here, we dissected the genetic structure of SGC by genome-wide association studies (GWAS) combined with transcriptome-wide association studies (TWAS). Fifteen reliable quantitative trait loci (QTLs) were identified to be associated with the reduced SGC in modern B. napus cultivars by GWAS. Analysis of the selection strength and haplotypes at these QTLs revealed that low SGC was predominantly generated by the co-selection of qGSL.A02.2, qGSL.C02.1, qGSL.A09.2, and qGSL.C09.1. Integration of the results from TWAS, comprehensive bioinformatics, and POCKET algorithm analyses indicated that BnaC02.GTR2 (BnaC02g42260D) is a candidate gene underlying qGSL.C02.1. Using CRISPR/Cas9-derived Bna.gtr2s knockout mutants, we experimentally verified that both BnaC02.GTR2 and its three paralogs positively regulate seed GSL accumulation but negatively regulated vegetative tissue GSL contents. In addition, we observed smaller seeds with higher seed oil content in these Bna.gtr2 mutants. Furthermore, both RNA-seq and correlation analyses suggested that Bna.GTR2s might play a comprehensive role in seed development, such as amino acid accumulation, GSL synthesis, sugar assimilation, and oil accumulation. This study unravels the breeding selection history of low-SGC improvement and provides new insights into the molecular function of Bna.GTR2s in both seed GSL accumulation and seed development in B. napus.
Collapse
Affiliation(s)
- Zengdong Tan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Zhaoqi Xie
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Lihong Dai
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Hu Zhao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Shan Tang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Lili Wan
- Institute of CropsWuhan Academy of Agricultural SciencesWuhanChina
| | - Xuan Yao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| |
Collapse
|
27
|
Herbivore feeding preference corroborates optimal defense theory for specialized metabolites within plants. Proc Natl Acad Sci U S A 2021; 118:2111977118. [PMID: 34795057 DOI: 10.1073/pnas.2111977118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous plants protect themselves from attackers by using specialized metabolites. The biosynthesis of these deterrent, often toxic metabolites is costly, as their synthesis diverts energy and resources on account of growth and development. How plants diversify investments into growth and defense is explained by the optimal defense theory. The central prediction of the optimal defense theory is that plants maximize growth and defense by concentrating specialized metabolites in tissues that are decisive for fitness. To date, supporting physiological evidence relies on the correlation between plant metabolite presence and animal feeding preference. Here, we use glucosinolates as a model to examine the effect of changes in chemical defense distribution on feeding preference. Taking advantage of the uniform glucosinolate distribution in transporter mutants, we show that high glucosinolate accumulation in tissues important to fitness protects them by guiding larvae of a generalist herbivore to feed on other tissues. Moreover, we show that the mature leaves of Arabidopsis thaliana supply young leaves with glucosinolates to optimize defense against herbivores. Our study provides physiological evidence for the central hypothesis of the optimal defense theory and sheds light on the importance of integrating glucosinolate biosynthesis and transport for optimizing plant defense.
Collapse
|
28
|
Jeon JS, Etalo DW, Carreno-Quintero N, de Vos RCH, Raaijmakers JM. Effects of Sulfur Assimilation in Pseudomonas fluorescens SS101 on Growth, Defense, and Metabolome of Different Brassicaceae. Biomolecules 2021; 11:1704. [PMID: 34827700 PMCID: PMC8615669 DOI: 10.3390/biom11111704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/04/2021] [Accepted: 11/13/2021] [Indexed: 01/07/2023] Open
Abstract
Genome-wide analysis of plant-growth-promoting Pseudomonas fluorescens strain SS101 (PfSS101) followed by site-directed mutagenesis previously suggested that sulfur assimilation may play an important role in growth promotion and induced systemic resistance in Arabidopsis. Here, we investigated the effects of sulfur metabolism in PfSS101 on growth, defense, and shoot metabolomes of Arabidopsis and the Brassica crop, Broccoli. Root tips of seedlings of Arabidopsis and two Broccoli cultivars were treated with PfSS101 or with a mutant disrupted in the adenylsulfate reductase cysH, a key gene in cysteine and methionine biosynthesis. Phenotyping of plants treated with wild-type PfSS101 or its cysH mutant revealed that sulfur assimilation in PfSS101 was associated with enhanced growth of Arabidopsis but with a reduction in shoot biomass of two Broccoli cultivars. Untargeted metabolomics revealed that cysH-mediated sulfur assimilation in PfSS101 had significant effects on shoot chemistry of Arabidopsis, in particular on chain elongation of aliphatic glucosinolates (GLSs) and on indole metabolites, including camalexin and the growth hormone indole-3-acetic acid. In Broccoli, PfSS101 sulfur assimilation significantly upregulated the relative abundance of several shoot metabolites, in particular, indolic GLSs and phenylpropanoids. These metabolome changes in Broccoli plants coincided with PfSS101-mediated suppression of leaf infections by Xanthomonas campestris. Our study showed the metabolic interconnectedness of plants and their root-associated microbiota.
Collapse
Affiliation(s)
- Je-Seung Jeon
- Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands; (J.-S.J.); (D.W.E.)
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | - Desalegn W. Etalo
- Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands; (J.-S.J.); (D.W.E.)
| | | | - Ric C. H. de Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), 6700 AA Wageningen, The Netherlands;
| | - Jos M. Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands; (J.-S.J.); (D.W.E.)
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
29
|
Kitainda V, Jez JM. Structural Studies of Aliphatic Glucosinolate Chain-Elongation Enzymes. Antioxidants (Basel) 2021; 10:antiox10091500. [PMID: 34573132 PMCID: PMC8468904 DOI: 10.3390/antiox10091500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022] Open
Abstract
Plants evolved specialized metabolic pathways through gene duplication and functional divergence of enzymes involved in primary metabolism. The results of this process are varied pathways that produce an array of natural products useful to both plants and humans. In plants, glucosinolates are a diverse class of natural products. Glucosinolate function stems from their hydrolysis products, which are responsible for the strong flavors of Brassicales plants, such as mustard, and serve as plant defense molecules by repelling insects, fighting fungal infections, and discouraging herbivory. Additionally, certain hydrolysis products such as isothiocyanates can potentially serve as cancer prevention agents in humans. The breadth of glucosinolate function is a result of its great structural diversity, which comes from the use of aliphatic, aromatic and indole amino acids as precursors and elongation of some side chains by up to nine carbons, which, after the formation of the core glucosinolate structure, can undergo further chemical modifications. Aliphatic methionine-derived glucosinolates are the most abundant form of these compounds. Although both elongation and chemical modification of amino acid side chains are important for aliphatic glucosinolate diversity, its elongation process has not been well described at the molecular level. Here, we summarize new insights on the iterative chain-elongation enzymes methylthioalkylmalate synthase (MAMS) and isopropylmalate dehydrogenase (IPMDH).
Collapse
|
30
|
Zhao Y, Chen Z, Chen J, Chen B, Tang W, Chen X, Lai Z, Guo R. Comparative transcriptomic analyses of glucosinolate metabolic genes during the formation of Chinese kale seeds. BMC PLANT BIOLOGY 2021; 21:394. [PMID: 34418959 PMCID: PMC8380351 DOI: 10.1186/s12870-021-03168-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/10/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND To understand the mechanism of glucosinolates (GSs) accumulation in the specific organs, combined analysis of physiological change and transcriptome sequencing were applied in the current study. Taking Chinese kale as material, seeds and silique walls were divided into different stages based on the development of the embryo in seeds and then subjected to GS analysis and transcriptome sequencing. RESULTS The main GS in seeds of Chinese kale were glucoiberin and gluconapin and their content changed with the development of the seed. During the transition of the embryo from torpedo- to the early cotyledonary-embryo stage, the accumulation of GS in the seed was accompanied by the salient decline of GS in the corresponding silique wall. Thus, the seed and corresponding silique wall at these two stages were subjected to transcriptomic sequencing analysis. 135 genes related to GS metabolism were identified, of which 24 genes were transcription factors, 81 genes were related to biosynthetic pathway, 25 genes encoded catabolic enzymes, and 5 genes matched with transporters. The expression of GS biosynthetic genes was detected both in seeds and silique walls. The high expression of FMOGS-OX and AOP2, which is related to the production of gluconapin by side modification, was noted in seeds at both stages. Interestingly, the expression of GS biosynthetic genes was higher in the silique wall compared with that in the seed albeit lower content of GS existed in the silique wall than in the seed. Combined with the higher expression of transporter genes GTRs in silique walls than in seeds, it was proposed that the transportation of GS from the silique wall to the seed is an important source for seed GS accumulation. In addition, genes related to GS degradation expressed abundantly in the seed at the early cotyledonary-embryo stage indicating its potential role in balancing seed GS content. CONCLUSIONS Two stages including the torpedo-embryo and the early cotyledonary-embryo stage were identified as crucial in GS accumulation during seed development. Moreover, we confirmed the transportation of GS from the silique wall to the seed and proposed possible sidechain modification of GS biosynthesis may exist during seed formation.
Collapse
Affiliation(s)
- Yijiao Zhao
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zeyuan Chen
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jiaxuan Chen
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Bingxing Chen
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Weiling Tang
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiaodong Chen
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhongxiong Lai
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Rongfang Guo
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
31
|
Soundararajan P, Park SG, Won SY, Moon MS, Park HW, Ku KM, Kim JS. Influence of Genotype on High Glucosinolate Synthesis Lines of Brassica rapa. Int J Mol Sci 2021; 22:ijms22147301. [PMID: 34298919 PMCID: PMC8305852 DOI: 10.3390/ijms22147301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
This study was conducted to investigate doubled haploid (DH) lines produced between high GSL (HGSL) Brassica rapa ssp. trilocularis (yellow sarson) and low GSL (LGSL) B. rapa ssp. chinensis (pak choi) parents. In total, 161 DH lines were generated. GSL content of HGSL DH lines ranged from 44.12 to 57.04 μmol·g−1·dry weight (dw), which is within the level of high GSL B. rapa ssp. trilocularis (47.46 to 59.56 μmol g−1 dw). We resequenced five of the HGSL DH lines and three of the LGSL DH lines. Recombination blocks were formed between the parental and DH lines with 108,328 single-nucleotide polymorphisms in all chromosomes. In the measured GSL, gluconapin occurred as the major substrate in HGSL DH lines. Among the HGSL DH lines, BrYSP_DH005 had glucoraphanin levels approximately 12-fold higher than those of the HGSL mother plant. The hydrolysis capacity of GSL was analyzed in HGSL DH lines with a Korean pak choi cultivar as a control. Bioactive compounds, such as 3-butenyl isothiocyanate, 4-pentenyl isothiocyanate, 2-phenethyl isothiocyanate, and sulforaphane, were present in the HGSL DH lines at 3-fold to 6.3-fold higher levels compared to the commercial cultivar. The selected HGSL DH lines, resequencing data, and SNP identification were utilized for genome-assisted selection to develop elite GSL-enriched cultivars and the industrial production of potential anti-cancerous metabolites such as gluconapin and glucoraphanin.
Collapse
Affiliation(s)
- Prabhakaran Soundararajan
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
| | - Sin-Gi Park
- Bioinformatics Team of Theragen Etex Institute, Suwon 16229, Korea;
| | - So Youn Won
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
| | - Mi-Sun Moon
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
| | - Hyun Woo Park
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
| | - Kang-Mo Ku
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Korea;
- Department of Horticulture, Chonnam National University, Gwangju 61186, Korea
| | - Jung Sun Kim
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
- Correspondence:
| |
Collapse
|
32
|
Song X, Wei Y, Xiao D, Gong K, Sun P, Ren Y, Yuan J, Wu T, Yang Q, Li X, Nie F, Li N, Feng S, Pei Q, Yu T, Zhang C, Liu T, Wang X, Yang J. Brassica carinata genome characterization clarifies U's triangle model of evolution and polyploidy in Brassica. PLANT PHYSIOLOGY 2021; 186:388-406. [PMID: 33599732 PMCID: PMC8154070 DOI: 10.1093/plphys/kiab048] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/12/2021] [Indexed: 05/03/2023]
Abstract
Ethiopian mustard (Brassica carinata) in the Brassicaceae family possesses many excellent agronomic traits. Here, the high-quality genome sequence of B. carinata is reported. Characterization revealed a genome anchored to 17 chromosomes with a total length of 1.087 Gb and an N50 scaffold length of 60 Mb. Repetitive sequences account for approximately 634 Mb or 58.34% of the B. carinata genome. Notably, 51.91% of 97,149 genes are confined to the terminal 20% of chromosomes as a result of the expansion of repeats in pericentromeric regions. Brassica carinata shares one whole-genome triplication event with the five other species in U's triangle, a classic model of evolution and polyploidy in Brassica. Brassica carinata was deduced to have formed ∼0.047 Mya, which is slightly earlier than B. napus but later than B. juncea. Our analysis indicated that the relationship between the two subgenomes (BcaB and BcaC) is greater than that between other two tetraploid subgenomes (BjuB and BnaC) and their respective diploid parents. RNA-seq datasets and comparative genomic analysis were used to identify several key genes in pathways regulating disease resistance and glucosinolate metabolism. Further analyses revealed that genome triplication and tandem duplication played important roles in the expansion of those genes in Brassica species. With the genome sequencing of B. carinata completed, the genomes of all six Brassica species in U's triangle are now resolved. The data obtained from genome sequencing, transcriptome analysis, and comparative genomic efforts in this study provide valuable insights into the genome evolution of the six Brassica species in U's triangle.
Collapse
Affiliation(s)
- Xiaoming Song
- Center for Genomics and Bio-computing/School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
- Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE 68526, USA
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yanping Wei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ke Gong
- Center for Genomics and Bio-computing/School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Pengchuan Sun
- Center for Genomics and Bio-computing/School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yiming Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaqing Yuan
- Center for Genomics and Bio-computing/School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tong Wu
- Center for Genomics and Bio-computing/School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Qihang Yang
- Center for Genomics and Bio-computing/School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xinyu Li
- Center for Genomics and Bio-computing/School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Fulei Nie
- Center for Genomics and Bio-computing/School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Nan Li
- Center for Genomics and Bio-computing/School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Shuyan Feng
- Center for Genomics and Bio-computing/School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Qiaoying Pei
- Center for Genomics and Bio-computing/School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tong Yu
- Center for Genomics and Bio-computing/School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Changwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Author for communication:
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiyin Wang
- Center for Genomics and Bio-computing/School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
33
|
Katz E, Li JJ, Jaegle B, Ashkenazy H, Abrahams SR, Bagaza C, Holden S, Pires CJ, Angelovici R, Kliebenstein DJ. Genetic variation, environment and demography intersect to shape Arabidopsis defense metabolite variation across Europe. eLife 2021; 10:67784. [PMID: 33949309 PMCID: PMC8205490 DOI: 10.7554/elife.67784] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/02/2021] [Indexed: 12/03/2022] Open
Abstract
Plants produce diverse metabolites to cope with the challenges presented by complex and ever-changing environments. These challenges drive the diversification of specialized metabolites within and between plant species. However, we are just beginning to understand how frequently new alleles arise controlling specialized metabolite diversity and how the geographic distribution of these alleles may be structured by ecological and demographic pressures. Here, we measure the variation in specialized metabolites across a population of 797 natural Arabidopsis thaliana accessions. We show that a combination of geography, environmental parameters, demography and different genetic processes all combine to influence the specific chemotypes and their distribution. This showed that causal loci in specialized metabolism contain frequent independently generated alleles with patterns suggesting potential within-species convergence. This provides a new perspective about the complexity of the selective forces and mechanisms that shape the generation and distribution of allelic variation that may influence local adaptation. Since plants cannot move, they have evolved chemical defenses to help them respond to changes in their surroundings. For example, where animals run from predators, plants may produce toxins to put predators off. This approach is why plants are such a rich source of drugs, poisons, dyes and other useful substances. The chemicals plants produce are known as specialized metabolites, and they can change a lot between, and even within, plant species. The variety of specialized metabolites is a result of genetic changes and evolution over millions of years. Evolution is a slow process, yet plants are able to rapidly develop new specialized metabolites to protect them from new threats. Even different populations of the same species produce many distinct metabolites that help them survive in their surroundings. However, the factors that lead plants to produce new metabolites are not well understood, and it is not known how this affects genetic variation. To gain a better understanding of this process, Katz et al. studied 797 European variants of a common weed species called Arabidopsis thaliana, which is widely studied. The investigation found that many factors affect the range of specialized metabolites in each variant. These included local geography and environment, as well as genetics and population history (demography). Katz et al. revealed a pattern of relationships between the variants that could mirror their evolutionary history as the species spread and adapted to new locations. These results highlight the complex network of factors that affect plant evolution. Rapid diversification is key to plant survival in new and changing environments and has resulted in a wide range of specialized metabolites. As such they are of interest both for studying plant evolution and for understanding their ecology. Expanding similar work to more populations and other species will broaden the scope of our ability to understand how plants adapt to their surroundings.
Collapse
Affiliation(s)
- Ella Katz
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Jia-Jie Li
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Benjamin Jaegle
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Haim Ashkenazy
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Shawn R Abrahams
- Division of Biological Sciences, Bond Life Sciences Center, University of Missouri, Columbia, United States
| | - Clement Bagaza
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, United States
| | - Samuel Holden
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, United States
| | - Chris J Pires
- Division of Biological Sciences, Bond Life Sciences Center, University of Missouri, Columbia, United States
| | - Ruthie Angelovici
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, United States
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, Davis, United States.,DynaMo Center of Excellence, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
34
|
Wang C, Crocoll C, Agerbirk N, Halkier BA. Engineering and optimization of the 2-phenylethylglucosinolate production in Nicotiana benthamiana by combining biosynthetic genes from Barbarea vulgaris and Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:978-992. [PMID: 33624307 DOI: 10.1111/tpj.15212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
2-Phenylethylglucosinolate (2PE) derived from homophenylalanine is present in plants of the Brassicales order as a defense compound. It is associated with multiple biological properties, including deterrent effects on pests and antimicrobial and health-promoting functions, due to its hydrolysis product 2-phenylethyl isothiocyanate, which confers 2PE as a potential application in agriculture and industry. In this study, we characterized the putative key genes for 2PE biosynthesis from Barbarea vulgaris W.T. Aiton and demonstrated the feasibility of engineering 2PE production in Nicotiana benthamiana Domin. We used different combinations of genes from B. vulgaris and Arabidopsis thaliana (L.) Heynh. to demonstrate that: (i) BvBCAT4 performed more efficiently than AtBCAT4 in biosynthesis of both homophenylalanine and dihomomethionine; (ii) MAM1 enzymes were critical for the chain-elongated profile, while CYP79F enzymes accepted both chain-elongated methionine and homophenylalanine; (iii) aliphatic but not aromatic core structure pathway catalyzed the 2PE biosynthesis; (iv) a chimeric pathway containing BvBCAT4, BvMAM1, AtIPMI and AtIPMDH1 resulted in a two-fold increase in 2PE production compared with the B. vulgaris-specific chain elongation pathway; and (v) profiles of chain-elongated products and glucosinolates partially mirrored the profiles in the gene donor plant, but were wider in N. benthamiana than in the native plants. Our study provides a strategy to produce the important homophenylalanine and 2PE in a heterologous host. Furthermore, chimeric engineering of the complex 2PE biosynthetic pathway enabled detailed understanding of catalytic properties of individual enzymes - a prerequisite for understanding biochemical evolution. The new-to-nature gene combinations have the potential for application in biotechnological and plant breeding.
Collapse
Affiliation(s)
- Cuiwei Wang
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Niels Agerbirk
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Barbara Ann Halkier
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| |
Collapse
|
35
|
Agerbirk N, Hansen CC, Olsen CE, Kiefer C, Hauser TP, Christensen S, Jensen KR, Ørgaard M, Pattison DI, Lange CBA, Cipollini D, Koch MA. Glucosinolate profiles and phylogeny in Barbarea compared to other tribe Cardamineae (Brassicaceae) and Reseda (Resedaceae), based on a library of ion trap HPLC-MS/MS data of reference desulfoglucosinolates. PHYTOCHEMISTRY 2021; 185:112658. [PMID: 33744557 DOI: 10.1016/j.phytochem.2021.112658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
A library of ion trap MS2 spectra and HPLC retention times reported here allowed distinction in plants of at least 70 known glucosinolates (GSLs) and some additional proposed GSLs. We determined GSL profiles of selected members of the tribe Cardamineae (Brassicaceae) as well as Reseda (Resedaceae) used as outgroup in evolutionary studies. We included several accessions of each species and a range of organs, and paid attention to minor peaks and GSLs not detected. In this way, we obtained GSL profiles of Barbarea australis, Barbarea grayi, Planodes virginica selected for its apparent intermediacy between Barbarea and the remaining tribe and family, and Rorippa sylvestris and Nasturtium officinale, for which the presence of acyl derivatives of GSLs was previously untested. We also screened Armoracia rusticana, with a remarkably diverse GSL profile, the emerging model species Cardamine hirsuta, for which we discovered a GSL polymorphism, and Reseda luteola and Reseda odorata. The potential for aliphatic GSL biosynthesis in Barbarea vulgaris was of interest, and we subjected P-type and G-type B. vulgaris to several induction regimes in an attempt to induce aliphatic GSL. However, aliphatic GSLs were not detected in any of the B. vulgaris types. We characterized the investigated chemotypes phylogenetically, based on nuclear rDNA internal transcribed spacer (ITS) sequences, in order to understand their relation to the species B. vulgaris in general, and found them to be representative of the species as it occurs in Europe, as far as documented in available ITS-sequence repositories. In short, we provide GSL profiles of a wide variety of tribe Cardamineae plants and conclude aliphatic GSLs to be absent or below our limit of detection in two major evolutionary lines of B. vulgaris. Concerning analytical chemistry, we conclude that availability of authentic reference compounds or reference materials is critical for reliable GSL analysis and characterize two publicly available reference materials: seeds of P. virginica and N. officinale.
Collapse
Affiliation(s)
- Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Cecilie Cetti Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Carl Erik Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Christiane Kiefer
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Thure P Hauser
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Stina Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Karen R Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Marian Ørgaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - David I Pattison
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Conny Bruun Asmussen Lange
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Don Cipollini
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Marcus A Koch
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
36
|
Agerbirk N, Hansen CC, Kiefer C, Hauser TP, Ørgaard M, Asmussen Lange CB, Cipollini D, Koch MA. Comparison of glucosinolate diversity in the crucifer tribe Cardamineae and the remaining order Brassicales highlights repetitive evolutionary loss and gain of biosynthetic steps. PHYTOCHEMISTRY 2021; 185:112668. [PMID: 33743499 DOI: 10.1016/j.phytochem.2021.112668] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
We review glucosinolate (GSL) diversity and analyze phylogeny in the crucifer tribe Cardamineae as well as selected species from Brassicaceae (tribe Brassiceae) and Resedaceae. Some GSLs occur widely, while there is a scattered distribution of many less common GSLs, tentatively sorted into three classes: ancient, intermediate and more recently evolved. The number of conclusively identified GSLs in the tribe (53 GSLs) constitute 60% of all GSLs known with certainty from any plant (89 GSLs) and apparently unique GSLs in the tribe constitute 10 of those GSLs conclusively identified (19%). Intraspecific, qualitative GSL polymorphism is known from at least four species in the tribe. The most ancient GSL biosynthesis in Brassicales probably involved biosynthesis from Phe, Val, Leu, Ile and possibly Trp, and hydroxylation at the β-position. From a broad comparison of families in Brassicales and tribes in Brassicaceae, we estimate that a common ancestor of the tribe Cardamineae and the family Brassicaceae exhibited GSL biosynthesis from Phe, Val, Ile, Leu, possibly Tyr, Trp and homoPhe (ancient GSLs), as well as homologs of Met and possibly homoIle (intermediate age GSLs). From the comparison of phylogeny and GSL diversity, we also suggest that hydroxylation and subsequent methylation of indole GSLs and usual modifications of Met-derived GSLs (formation of sulfinyls, sulfonyls and alkenyls) occur due to conserved biochemical mechanisms and was present in a common ancestor of the family. Apparent loss of homologs of Met as biosynthetic precursors was deduced in the entire genus Barbarea and was frequent in Cardamine (e.g. C. pratensis, C. diphylla, C. concatenata, possibly C. amara). The loss was often associated with appearance of significant levels of unique or rare GSLs as well as recapitulation of ancient types of GSLs. Biosynthetic traits interpreted as de novo evolution included hydroxylation at rare positions, acylation at the thioglucose and use of dihomoIle and possibly homoIle as biosynthetic precursors. Biochemical aspects of the deduced evolution are discussed and testable hypotheses proposed. Biosyntheses from Val, Leu, Ile, Phe, Trp, homoPhe and homologs of Met are increasingly well understood, while GSL biosynthesis from mono- and dihomoIle is poorly understood. Overall, interpretation of known diversity suggests that evolution of GSL biosynthesis often seems to recapitulate ancient biosynthesis. In contrast, unprecedented GSL biosynthetic innovation seems to be rare.
Collapse
Affiliation(s)
- Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Cecilie Cetti Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Christiane Kiefer
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Thure P Hauser
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Marian Ørgaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Conny Bruun Asmussen Lange
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Don Cipollini
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Marcus A Koch
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
37
|
Protein complex formation in methionine chain-elongation and leucine biosynthesis. Sci Rep 2021; 11:3524. [PMID: 33568694 PMCID: PMC7876033 DOI: 10.1038/s41598-021-82790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/26/2021] [Indexed: 11/08/2022] Open
Abstract
During the past two decades, glucosinolate (GLS) metabolic pathways have been under extensive studies because of the importance of the specialized metabolites in plant defense against herbivores and pathogens. The studies have led to a nearly complete characterization of biosynthetic genes in the reference plant Arabidopsis thaliana. Before methionine incorporation into the core structure of aliphatic GLS, it undergoes chain-elongation through an iterative three-step process recruited from leucine biosynthesis. Although enzymes catalyzing each step of the reaction have been characterized, the regulatory mode is largely unknown. In this study, using three independent approaches, yeast two-hybrid (Y2H), coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC), we uncovered the presence of protein complexes consisting of isopropylmalate isomerase (IPMI) and isopropylmalate dehydrogenase (IPMDH). In addition, simultaneous decreases in both IPMI and IPMDH activities in a leuc:ipmdh1 double mutants resulted in aggregated changes of GLS profiles compared to either leuc or ipmdh1 single mutants. Although the biological importance of the formation of IPMI and IPMDH protein complexes has not been documented in any organisms, these complexes may represent a new regulatory mechanism of substrate channeling in GLS and/or leucine biosynthesis. Since genes encoding the two enzymes are widely distributed in eukaryotic and prokaryotic genomes, such complexes may have universal significance in the regulation of leucine biosynthesis.
Collapse
|
38
|
Sugimoto N, Engelgau P, Jones AD, Song J, Beaudry R. Citramalate synthase yields a biosynthetic pathway for isoleucine and straight- and branched-chain ester formation in ripening apple fruit. Proc Natl Acad Sci U S A 2021; 118:e2009988118. [PMID: 33431667 PMCID: PMC7826400 DOI: 10.1073/pnas.2009988118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A plant pathway that initiates with the formation of citramalate from pyruvate and acetyl-CoA by citramalate synthase (CMS) is shown to contribute to the synthesis of α-ketoacids and important odor-active esters in apple (Malus × domestica) fruit. Microarray screening led to the discovery of a gene with high amino acid similarity to 2-isopropylmalate synthase (IPMS). However, functional analysis of recombinant protein revealed its substrate preference differed substantially from IPMS and was more typical of CMS. MdCMS also lacked the regulatory region present in MdIPMS and was not sensitive to feedback inhibition. 13C-acetate feeding of apple tissue labeled citramalate and α-ketoacids in a manner consistent with the presence of the citramalate pathway, labeling both straight- and branched-chain esters. Analysis of genomic DNA (gDNA) revealed the presence of two nearly identical alleles in "Jonagold" fruit (MdCMS_1 and MdCMS_2), differing by two nonsynonymous single-nucleotide polymorphisms (SNPs). The mature proteins differed only at amino acid 387, possessing either glutamine387 (MdCMS_1) or glutamate387 (MdCMS_2). Glutamate387 was associated with near complete loss of activity. MdCMS expression was fruit-specific, increasing severalfold during ripening. The translated protein product was detected in ripe fruit. Transient expression of MdCMS_1 in Nicotiana benthamiana induced the accumulation of high levels of citramalate, whereas MdCMS_2 did not. Domesticated apple lines with MdCMS isozymes containing only glutamate387 produced a very low proportion of 2-methylbutanol- and 2-methylbutanoate (2MB) and 1-propanol and propanoate (PROP) esters. The citramalate pathway, previously only described in microorganisms, is shown to function in ripening apple and contribute to isoleucine and 2MB and PROP ester biosynthesis without feedback regulation.
Collapse
Affiliation(s)
- Nobuko Sugimoto
- Department of Horticulture, Michigan State University, East Lansing, MI 48824
| | - Philip Engelgau
- Department of Horticulture, Michigan State University, East Lansing, MI 48824
| | - A Daniel Jones
- Mass Spectrometry and Metabolomics Core, Research Technology Support Facility, Michigan State University, East Lansing, MI 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Jun Song
- Kentville Research and Development Center, Agriculture and Agri-Food Canada, Kentville, NS B4N 1J5, Canada
| | - Randolph Beaudry
- Department of Horticulture, Michigan State University, East Lansing, MI 48824;
| |
Collapse
|
39
|
Glucosinolate Biosynthesis and the Glucosinolate–Myrosinase System in Plant Defense. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10111786] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Insect pests represent a major global challenge to important agricultural crops. Insecticides are often applied to combat such pests, but their use has caused additional challenges such as environmental contamination and human health issues. Over millions of years, plants have evolved natural defense mechanisms to overcome insect pests and pathogens. One such mechanism is the production of natural repellents or specialized metabolites like glucosinolates. There are three types of glucosinolates produced in the order Brassicales: aliphatic, indole, and benzenic glucosinolates. Upon insect herbivory, a “mustard oil bomb” consisting of glucosinolates and their hydrolyzing enzymes (myrosinases) is triggered to release toxic degradation products that act as insect deterrents. This review aims to provide a comprehensive summary of glucosinolate biosynthesis, the “mustard oil bomb”, and how these metabolites function in plant defense against pathogens and insects. Understanding these defense mechanisms will not only allow us to harness the benefits of this group of natural metabolites for enhancing pest control in Brassicales crops but also to transfer the “mustard oil bomb” to non-glucosinolate producing crops to boost their defense and thereby reduce the use of chemical pesticides.
Collapse
|
40
|
Mao S, Wang J, Wu Q, Liang M, Yuan Y, Wu T, Liu M, Wu Q, Huang K. Effect of selenium-sulfur interaction on the anabolism of sulforaphane in broccoli. PHYTOCHEMISTRY 2020; 179:112499. [PMID: 32980712 DOI: 10.1016/j.phytochem.2020.112499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
The effects of S (as sulphate) and Se (as selenite) treatment (S mM/Se μM: 1/0, 1/50, 1/100, 1/150, 4/0, 4/50, 4/100, and 4/150) on the production of sulforaphane (an anticancer compound), the accumulation of its precursor substance, and the expression of genes related to glucoraphanin biosynthesis in broccoli were examined. Sulforaphane yield and myrosinase activity increased significantly with the combined application of 4 mM S and 100 μM Se on broccoli. Furthermore, the concentrations of glucoraphanin (a sulforaphane precursor) and methionine (a glucoraphanin substrate) slightly changed after Se application. And the strong anticancer activity of compound Se-SMC was further improved. Analysis of related gene expression showed that MY, which encodes myrosinase, was strongly induced by Se treatment. Thus, the myrosinase activity induced by Se treatment is the dominant factor affecting sulforaphane yield from glucoraphanin hydrolyzation. Selenium-sulfur biofortification provides a technical support for the cultivation of broccoli with high sulforaphane and high anti-cancer selenium compounds.
Collapse
Affiliation(s)
- Shuxiang Mao
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China; Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, 410128, China; Key Laboratory for Vegetable Biology of Hunan Province, Changsha, 410128, China
| | - Junwei Wang
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China; Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, 410128, China; Key Laboratory for Vegetable Biology of Hunan Province, Changsha, 410128, China
| | - Qi Wu
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China; Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, 410128, China; Key Laboratory for Vegetable Biology of Hunan Province, Changsha, 410128, China
| | - Mantian Liang
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China; Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, 410128, China; Key Laboratory for Vegetable Biology of Hunan Province, Changsha, 410128, China
| | - Yiming Yuan
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China; Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, 410128, China; Key Laboratory for Vegetable Biology of Hunan Province, Changsha, 410128, China
| | - Tao Wu
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China; Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, 410128, China; Key Laboratory for Vegetable Biology of Hunan Province, Changsha, 410128, China
| | - Mingyue Liu
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China; Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, 410128, China; Key Laboratory for Vegetable Biology of Hunan Province, Changsha, 410128, China
| | - Qiuyun Wu
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China; Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, 410128, China; Key Laboratory for Vegetable Biology of Hunan Province, Changsha, 410128, China.
| | - Ke Huang
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China; Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, 410128, China; Key Laboratory for Vegetable Biology of Hunan Province, Changsha, 410128, China.
| |
Collapse
|
41
|
Guo LX, Hussain SB, Fernie AR, Liu YZ, Yan M, Chen H, Alam SM. Multiomic Analysis Elucidates the Reasons Underlying the Differential Metabolite Accumulation in Citrus Mature Leaves and Fruit Juice Sacs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11863-11874. [PMID: 33030895 DOI: 10.1021/acs.jafc.0c05153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fruit and leaf possess distinctly different metabolites. Here, metabolites and transcriptome were compared between mature leaves (ML) and juice sacs (JS) of Citrus grandis "Hirado Buntan" to investigate the possible reasons. Results indicated that the remarkable difference in starch, total flavonoids and carotenoids, l-ascorbate, and jasmonic acid between ML and JS was tightly related to the expression levels of their biosynthesis-related genes, while the significant difference in abscisic acid and citrate was mainly related to the gene expression level(s) of 9-cis-epoxycarotenoid dioxygenase and proton pump genes, respectively. In addition, ATP citrate lyase probably plays a key role in the levels of flavonoids between ML and JS via providing different levels of acetyl-CoA. Taken together, these results identified some key candidate genes responsible for the content of a given metabolite and will contribute to research in regulating such metabolite content in citrus fruits.
Collapse
Affiliation(s)
- Ling-Xia Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P.R. China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Syed Bilal Hussain
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P.R. China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Yong-Zhong Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P.R. China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Min Yan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P.R. China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Huan Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P.R. China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Shariq Mahmood Alam
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P.R. China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
42
|
Harun S, Abdullah-Zawawi MR, Goh HH, Mohamed-Hussein ZA. A Comprehensive Gene Inventory for Glucosinolate Biosynthetic Pathway in Arabidopsis thaliana. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7281-7297. [PMID: 32551569 DOI: 10.1021/acs.jafc.0c01916] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Glucosinolates (GSLs) are plant secondary metabolites comprising sulfur and nitrogen mainly found in plants from the order of Brassicales, such as broccoli, cabbage, and Arabidopsis thaliana. The activated forms of GSL play important roles in fighting against pathogens and have health benefits to humans. The increasing amount of data on A. thaliana generated from various omics technologies can be investigated more deeply in search of new genes or compounds involved in GSL biosynthesis and metabolism. This review describes a comprehensive inventory of A. thaliana GSLs identified from published literature and databases such as KNApSAcK, KEGG, and AraCyc. A total of 113 GSL genes encoding for 23 transcription components, 85 enzymes, and five protein transporters were experimentally characterized in the past two decades. Continuous efforts are still on going to identify all molecules related to the production of GSLs. A manually curated database known as SuCCombase (http://plant-scc.org) was developed to serve as a comprehensive GSL inventory. Realizing lack of information on the regulation of GSL biosynthesis and degradation mechanisms, this review also includes relevant information and their connections with crosstalk among various factors, such as light, sulfur metabolism, and nitrogen metabolism, not only in A. thaliana but also in other crucifers.
Collapse
Affiliation(s)
- Sarahani Harun
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Muhammad-Redha Abdullah-Zawawi
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Hoe-Han Goh
- Centre for Plant Biotechnology, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
43
|
Lächler K, Clauss K, Imhof J, Crocoll C, Schulz A, Halkier BA, Binder S. In Arabidopsis thaliana Substrate Recognition and Tissue- as Well as Plastid Type-Specific Expression Define the Roles of Distinct Small Subunits of Isopropylmalate Isomerase. FRONTIERS IN PLANT SCIENCE 2020; 11:808. [PMID: 32612621 PMCID: PMC7308503 DOI: 10.3389/fpls.2020.00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
In Arabidopsis thaliana, the heterodimeric isopropylmalate isomerase (IPMI) is composed of a single large (IPMI LSU1) and one of three different small subunits (IPMI SSU1 to 3). The function of IPMI is defined by the small subunits. IPMI SSU1 is required for Leu biosynthesis and has previously also been proposed to be involved in the first cycle of Met chain elongation, the first phase of the synthesis of Met-derived glucosinolates. IPMI SSU2 and IPMI SSU3 participate in the Met chain elongation pathway. Here, we investigate the role of the three IPMI SSUs through the analysis of the role of the substrate recognition region spanning five amino acids on the substrate specificity of IPMI SSU1. Furthermore, we analyze in detail the expression pattern of fluorophore-tagged IPMI SSUs throughout plant development. Our study shows that the substrate recognition region that differs between IPMI SSU1 and the other two IMPI SSUs determines the substrate preference of IPMI. Expression of IPMI SSU1 is spatially separated from the expression of IPMI SSU2 and IPMI SSU3, and IPMI SSU1 is found in small plastids, whereas IMPI SSU2 and SSU3 are found in chloroplasts. Our data show a distinct role for IMPI SSU1 in Leu biosynthesis and for IMPI SSU2 and SSU3 in the Met chain elongation pathway.
Collapse
Affiliation(s)
- Kurt Lächler
- Institut für Molekulare Botanik, Fakultät für Naturwissenschaften, Universität Ulm, Ulm, Germany
| | - Karen Clauss
- Institut für Molekulare Botanik, Fakultät für Naturwissenschaften, Universität Ulm, Ulm, Germany
| | - Janet Imhof
- Institut für Molekulare Botanik, Fakultät für Naturwissenschaften, Universität Ulm, Ulm, Germany
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Alexander Schulz
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Barbara Ann Halkier
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Stefan Binder
- Institut für Molekulare Botanik, Fakultät für Naturwissenschaften, Universität Ulm, Ulm, Germany
| |
Collapse
|
44
|
Liu S, Huang H, Yi X, Zhang Y, Yang Q, Zhang C, Fan C, Zhou Y. Dissection of genetic architecture for glucosinolate accumulations in leaves and seeds of Brassica napus by genome-wide association study. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1472-1484. [PMID: 31820843 PMCID: PMC7206990 DOI: 10.1111/pbi.13314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 05/04/2023]
Abstract
Glucosinolates (GSLs), whose degradation products have been shown to be increasingly important for human health and plant defence, compose important secondary metabolites found in the order Brassicales. It is highly desired to enhance pest and disease resistance by increasing the leaf GSL content while keeping the content low in seeds of Brassica napus, one of the most important oil crops worldwide. Little is known about the regulation of GSL accumulation in the leaves. We quantified the levels of 9 different GSLs and 15 related traits in the leaves of 366 accessions and found that the seed and leaf GSL content were highly correlated (r = 0.79). A total of 78 loci were associated with GSL traits, and five common and eleven tissue-specific associated loci were related to total leaf and seed GSL content. Thirty-six candidate genes were inferred to be involved in GSL biosynthesis. The candidate gene BnaA03g40190D (BnaA3.MYB28) was validated by DNA polymorphisms and gene expression analysis. This gene was responsible for high leaf/low seed GSL content and could explain 30.62% of the total leaf GSL variation in the low seed GSL panel and was not fixed during double-low rapeseed breeding. Our results provide new insights into the genetic basis of GSL variation in leaves and seeds and may facilitate the metabolic engineering of GSLs and the breeding of high leaf/low seed GSL content in B. napus.
Collapse
Affiliation(s)
- Sheng Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Huibin Huang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xinqi Yi
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yuanyuan Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Qingyong Yang
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
45
|
Züst T, Strickler SR, Powell AF, Mabry ME, An H, Mirzaei M, York T, Holland CK, Kumar P, Erb M, Petschenka G, Gómez JM, Perfectti F, Müller C, Pires JC, Mueller LA, Jander G. Independent evolution of ancestral and novel defenses in a genus of toxic plants ( Erysimum, Brassicaceae). eLife 2020; 9:e51712. [PMID: 32252891 PMCID: PMC7180059 DOI: 10.7554/elife.51712] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
Phytochemical diversity is thought to result from coevolutionary cycles as specialization in herbivores imposes diversifying selection on plant chemical defenses. Plants in the speciose genus Erysimum (Brassicaceae) produce both ancestral glucosinolates and evolutionarily novel cardenolides as defenses. Here we test macroevolutionary hypotheses on co-expression, co-regulation, and diversification of these potentially redundant defenses across this genus. We sequenced and assembled the genome of E. cheiranthoides and foliar transcriptomes of 47 additional Erysimum species to construct a phylogeny from 9868 orthologous genes, revealing several geographic clades but also high levels of gene discordance. Concentrations, inducibility, and diversity of the two defenses varied independently among species, with no evidence for trade-offs. Closely related, geographically co-occurring species shared similar cardenolide traits, but not glucosinolate traits, likely as a result of specific selective pressures acting on each defense. Ancestral and novel chemical defenses in Erysimum thus appear to provide complementary rather than redundant functions.
Collapse
Affiliation(s)
- Tobias Züst
- Institute of Plant Sciences, University of BernBernSwitzerland
| | | | | | - Makenzie E Mabry
- Division of Biological Sciences, University of MissouriColumbiaUnited States
| | - Hong An
- Division of Biological Sciences, University of MissouriColumbiaUnited States
| | | | | | | | | | - Matthias Erb
- Institute of Plant Sciences, University of BernBernSwitzerland
| | - Georg Petschenka
- Institut für Insektenbiotechnologie, Justus-Liebig-Universität GiessenGiessenGermany
| | - José-María Gómez
- Department of Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas (EEZA-CSIC)AlmeríaSpain
| | - Francisco Perfectti
- Research Unit Modeling Nature, Department of Genetics, University of GranadaGranadaSpain
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld UniversityBielefeldGermany
| | - J Chris Pires
- Division of Biological Sciences, University of MissouriColumbiaUnited States
| | | | | |
Collapse
|
46
|
Wang N, Shao X, Wei Y, Jiang S, Xu F, Wang H. Quantitative proteomics reveals that tea tree oil effects Botrytis cinerea mitochondria function. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 164:156-164. [PMID: 32284122 DOI: 10.1016/j.pestbp.2020.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 06/11/2023]
Abstract
Tea tree oil (TTO) inhibits the spore germination and mycelial growth of Botrytis cinerea, and induces mitochondrial dysfunction of B. cinerea. To further determine the effects of TTO on mitochondria in B. cinerea, label-free quantitative proteomics analysis was performed. A total of 85 differentially expression proteins (DEPs) were identified; Among them 51 were more abundant in TTO-treated samples, and 34 were less abundant. DEPs were then annotated and classified into 34 functional groups based on Gene Ontology analysis. Subsequent Kyoto Encyclopedia of Genes and Genomes analysis linked identified DEPs to 83 different pathways. This study suggests that TTO inhibits the tricarboxylic acid cycle, pyruvate metabolism, amino acid metabolism, and membrane-related pathways in mitochondria, and also promotes sphingolipid metabolism, which may accelerate cell death in B. cinerea.
Collapse
Affiliation(s)
- Nan Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xingfeng Shao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China.
| | - Yingying Wei
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Shu Jiang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Feng Xu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Hongfei Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
47
|
Abrahams RS, Pires JC, Schranz ME. Genomic Origin and Diversification of the Glucosinolate MAM Locus. FRONTIERS IN PLANT SCIENCE 2020; 11:711. [PMID: 32582245 PMCID: PMC7289053 DOI: 10.3389/fpls.2020.00711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/05/2020] [Indexed: 05/06/2023]
Abstract
Glucosinolates are a diverse group of plant metabolites that characterize the order Brassicales. The MAM locus is one of the most significant QTLs for glucosinolate diversity. However, most of what we understand about evolution at the locus is focused on only a few species and not within a phylogenetic context. In this study, we utilize a micro-synteny network and phylogenetic inference to investigate the origin and diversification of the MAM/IPMS gene family. We uncover unique MAM-like genes found at the orthologous locus in the Cleomaceae that shed light on the transition from IPMS to MAM. In the Brassicaceae, we identify six distinct MAM clades across Lineages I, II, and III. We characterize the evolutionary impact and consequences of local duplications, transpositions, whole genome duplications, and gene fusion events, generating several new hypothesizes on the function and diversity of the MAM locus.
Collapse
Affiliation(s)
- R. Shawn Abrahams
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Biosystematics Group, Wageningen University, Wageningen, Netherlands
| | - J. Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - M. Eric Schranz
- Biosystematics Group, Wageningen University, Wageningen, Netherlands
- *Correspondence: M. Eric Schranz,
| |
Collapse
|
48
|
Liao P, Lung SC, Chan WL, Bach TJ, Lo C, Chye ML. Overexpression of HMG-CoA synthase promotes Arabidopsis root growth and adversely affects glucosinolate biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:272-289. [PMID: 31557302 PMCID: PMC6913736 DOI: 10.1093/jxb/erz420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/10/2019] [Indexed: 05/06/2023]
Abstract
3-Hydroxy-3-methylglutaryl-CoA synthase (HMGS) catalyses the second step of the mevalonate (MVA) pathway. An HMGS inhibitor (F-244) has been reported to retard growth in wheat, tobacco, and Brassica juncea, but the mechanism remains unknown. Although the effects of HMGS on downstream isoprenoid metabolites have been extensively reported, not much is known on how it might affect non-isoprenoid metabolic pathways. Here, the mechanism of F-244-mediated inhibition of primary root growth in Arabidopsis and the relationship between HMGS and non-isoprenoid metabolic pathways were investigated by untargeted SWATH-MS quantitative proteomics, quantitative real-time PCR, and target metabolite analysis. Our results revealed that the inhibition of primary root growth caused by F-244 was a consequence of reduced stigmasterol, auxin, and cytokinin levels. Interestingly, proteomic analyses identified a relationship between HMGS and glucosinolate biosynthesis. Inhibition of HMGS activated glucosinolate biosynthesis, resulting from the induction of glucosinolate biosynthesis-related genes, suppression of sterol biosynthesis-related genes, and reduction in sterol levels. In contrast, HMGS overexpression inhibited glucosinolate biosynthesis, due to down-regulation of glucosinolate biosynthesis-related genes, up-regulation of sterol biosynthesis-related genes, and increase in sterol content. Thus, HMGS might represent a target for the manipulation of glucosinolate biosynthesis, given the regulatory relationship between HMGS in the MVA pathway and glucosinolate biosynthesis.
Collapse
Affiliation(s)
- Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, CUHK, Shatin, Hong Kong, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wai Lung Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Thomas J Bach
- Centre National de la Recherche Scientifique, UPR 2357, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, CUHK, Shatin, Hong Kong, China
| |
Collapse
|
49
|
Production of nonnatural straight-chain amino acid 6-aminocaproate via an artificial iterative carbon-chain-extension cycle. Metab Eng 2019; 55:23-32. [DOI: 10.1016/j.ymben.2019.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 12/23/2022]
|
50
|
Kittipol V, He Z, Wang L, Doheny-Adams T, Langer S, Bancroft I. Genetic architecture of glucosinolate variation in Brassica napus. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:152988. [PMID: 31255878 PMCID: PMC6739596 DOI: 10.1016/j.jplph.2019.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 05/18/2023]
Abstract
The diverse biological activities of glucosinolate (GSL) hydrolysis products play significant biological and economical roles in the defense system and nutritional qualities of Brassica napus (oilseed rape). Yet, genomic-based study of the B. napus GSL regulatory mechanisms are scarce due to the complexity of working with polyploid species. To address these challenges, we used transcriptome-based GWAS approach, Associative Transcriptomics (AT), across a diversity panel of 288 B. napus genotypes to uncover the underlying genetic basis controlling quantitative variation of GSLs in B. napus vegetative tissues. Single nucleotide polymorphism (SNP) markers and gene expression markers (GEMs) associations identify orthologues of MYB28/HAG1 (AT5G61420), specifically the copies on chromosome A9 and C2, to be the key regulators of aliphatic GSL variation in leaves. We show that the positive correlation observed between aliphatic GSLs in seed and leaf is due to the amount synthesized, as controlled by Bna.HAG1.A9 and Bna.HAG1.C2, rather than by variation in the transport processes. In addition, AT and differential expression analysis in root tissues implicate an orthologue of MYB29/HAG3 (AT5G07690), Bna.HAG3.A3, as controlling root aromatic GSL variation. Based on the root expression data we also propose Bna.MAM3.A3 to have a role in controlling phenylalanine chain elongation for aromatic GSL biosynthesis. This work uncovers a regulator of homophenylalanine-derived aromatic GSLs and implicates the shared biosynthetic pathways between aliphatic and aromatic GSLs.
Collapse
Affiliation(s)
- Varanya Kittipol
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Zhesi He
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Lihong Wang
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Tim Doheny-Adams
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Swen Langer
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Ian Bancroft
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|