1
|
Mikhaylova E. Virus-Induced Genome Editing (VIGE): One Step Away from an Agricultural Revolution. Int J Mol Sci 2025; 26:4599. [PMID: 40429744 PMCID: PMC12111327 DOI: 10.3390/ijms26104599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
There is currently a worldwide trend towards deregulating the use of genome-edited plants. Virus-induced genome editing (VIGE) is a novel technique that utilizes viral vectors to transiently deliver clustered regularly interspaced short palindromic repeat (CRISPR) components into plant cells. It potentially allows us to obtain transgene-free events in any plant species in a single generation without in vitro tissue culture. This technology has great potential for agriculture and is already being applied to more than 14 plant species using more than 20 viruses. The main limitations of VIGE include insufficient vector capacity, unstable expression of CRISPR-associated (Cas) protein, plant immune reaction, host specificity, and reduced viral activity in meristem. Various solutions to these problems have been proposed, such as fusion of mobile elements, RNAi suppressors, novel miniature Cas proteins, and seed-borne viruses, but the final goal has not yet been achieved. In this review, the mechanism underlying the ability of different classes of plant viruses to transiently edit genomes is explained. It not only focuses on the latest achievements in virus-induced editing of crops but also provides suggestions for improving the technology. This review may serve as a source of new ideas for those planning to develop new approaches in VIGE.
Collapse
Affiliation(s)
- Elena Mikhaylova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| |
Collapse
|
2
|
Goralogia GS, Willig C, Strauss SH. Engineering Agrobacterium for improved plant transformation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70015. [PMID: 40051182 PMCID: PMC11885899 DOI: 10.1111/tpj.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 03/10/2025]
Abstract
Outside of a few model systems and selected taxa, the insertion of transgenes and regeneration of modified plants are difficult or impossible. This is a major bottleneck both for biotechnology and scientific research with many important species. Agrobacterium-mediated transformation (AMT) remains the most common approach to insert DNA into plant cells, and is also an important means to stimulate regeneration of organized tissues. However, the strains and transformation methods available today have been largely unchanged since the 1990s. New sources of Agrobacterium germplasm and associated genomic information are available for hundreds of wild strains in public repositories, providing new opportunities for research. Many of these strains contain novel gene variants or arrangements of genes in their T-DNA, potentially providing new tools for strain enhancement. There are also several new techniques for Agrobacterium modification, including base editing, CRISPR-associated transposases, and tailored recombineering, that make the process of domesticating wild strains more precise and efficient. We review the novel germplasm, genomic resources, and new methods available, which together should lead to a renaissance in Agrobacterium research and the generation of many new domesticated strains capable of promoting plant transformation and/or regeneration in diverse plant species.
Collapse
Affiliation(s)
- Greg S. Goralogia
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregon97331USA
| | - Chris Willig
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregon97331USA
| | - Steven H. Strauss
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregon97331USA
| |
Collapse
|
3
|
Zhu F, Li K, Cao M, Zhang Q, Zhou Y, Chen H, AlKhazindar M, Ji Z. NbNAC1 enhances plant immunity against TMV by regulating isochorismate synthase 1 expression and the SA pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17242. [PMID: 39968571 DOI: 10.1111/tpj.17242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025]
Abstract
Salicylic acid (SA) plays important roles in plant local and systemic resistance. Isochorismate synthase 1 (ICS1) is a key enzyme in SA synthesis. Pathogens infection triggered the ICS1 expression and induced SA production. However, the molecular regulation mechanism of ICS1 against virus infection remains unclear. Here, we employed molecular genetics and physiobiochemical approaches to confirm a transcription factor NbNAC1 from Nicotiana benthamiana is a positive regulator of resistance against tobacco mosaic virus (TMV). The pathways NbNAC1 and NbICS1 can be triggered by TMV infection. Silencing NbNAC1 accelerated TMV-induced oxidative damage and increased reactive oxygen species (ROS) production. It also weakened both local and systemic resistance against TMV and decreased the expression of NbICS1, SA signaling gene NbNPR1, and SA defense-related genes. The effects of NbNAC1-silencing were restored by overexpression of NbICS1 or foliar SA applications. Overexpressing NbNAC1 prevented oxidative damage and reduced the production of ROS, enhanced plant resistance against viral pathogen, and activated NbICS1 expression, and SA downstream signaling and defense-related genes. NbNAC1 localized in nuclear and emerged the ability of transcriptional regulation. ChIP and EMSA results indicated that NbNAC1 directly binds to a fragment containing GAAATT motif of NbICS1 promoter. Luciferase reporter assays confirmed that NbNAC1 activates NbICS1 expression. Taken together, our results demonstrate that NbNAC1 plays a critical role in plant immunity through activation of SA production.
Collapse
Affiliation(s)
- Feng Zhu
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Kainan Li
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Mengyao Cao
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Qiping Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yangkai Zhou
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Huan Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Maha AlKhazindar
- Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Zhaolin Ji
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
4
|
Kumar A, Priyanka, K. J, Kaushik M, Mulani E, S. M, Roy J, Phogat S, Sareen B, Madhavan J, Sevanthi AM, Solanke AU, Kumar P, Mandal PK. Low titre of agroinoculum with prolonged incubation period and low auxin concentration in the regeneration media are the key to high frequency of transformation in climate-resilient Aus-type rice genotype Nagina 22. 3 Biotech 2025; 15:53. [PMID: 39898234 PMCID: PMC11785844 DOI: 10.1007/s13205-025-04210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Developing an efficient and reproducible regeneration protocol holds paramount significance for advancing genetic transformation technologies in rice, facilitating their utilisation in crop improvement. Nagina 22 (N22), a climate-resilient Aus-type rice genotype known for its tolerance against multiple stresses, lacks a standardised transformation protocol, limiting its utilisation as a background for genetic transformation. This study reports, for the first time, a highly efficient transformation and regeneration protocol for N22 using a CRISPR/Cas9 vector. Mature seeds were used to induce embryogenic calli on CHU(N6)-based callus induction media (CIM) with varying concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D). The highest callus induction efficiency (~ 94%) was achieved using 3 mgL-1 2,4-D. For regeneration, calli were transferred to different regeneration media-I (RM-Ia to RM-Ie), where a combination of 5 mgL-1 6-benzylaminopurine (BAP) and 0.02 mgL-1 naphthalene acetic acid (NAA) resulted in ~ 44% regeneration frequency. Subsequent optimisation of regeneration media-II (RM-II) with low NAA concentration enhanced shoot elongation and root development. Furthermore, reducing basal salt concentration in the resuspension media significantly enhanced transformation efficiency to 44%, achieved, by only using sterile distilled water (SDW) with 150 mM acetosyringone for calli infection. The optimised protocol was successfully validated using CRISPR/Cas9 vector, facilitating targeted gene knockouts for functional genomic studies. This approach addresses a critical gap in N22 genetic transformation, providing a reliable protocol for advancing rice improvement through gene editing. It offers valuable insights for future research and practical applications in genetic transformation of this elite rice genotype for various agronomic and scientific purposes. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04210-y.
Collapse
Affiliation(s)
- Amit Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, UP 201313 India
| | - Priyanka
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Jeevanandhan K.
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Megha Kaushik
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Ekta Mulani
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Meena S.
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Jeet Roy
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Sachin Phogat
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Bhuvnesh Sareen
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Jayanthi Madhavan
- Division of Genetics, ICAR-Indian Agriculture Research Institute, Pusa Campus, New Delhi, 110012 India
| | | | | | - Prabhanshu Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, UP 201313 India
| | | |
Collapse
|
5
|
Kopertekh L. Improving transient expression in N. benthamiana by suppression of the Nb-SABP2 and Nb-COI1 plant defence response related genes. FRONTIERS IN PLANT SCIENCE 2024; 15:1453930. [PMID: 39315373 PMCID: PMC11416979 DOI: 10.3389/fpls.2024.1453930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024]
Abstract
Currently transient expression is one of the preferred plant-based technologies for recombinant protein manufacturing, particularly in respect to pharmaceutically relevant products. Modern hybrid transient expression systems combine the features of Agrobacterium tumefaciens and viral vectors. However, host plant reaction to Agrobacterium-mediated delivery of gene of interest can negatively affect foreign protein accumulation. In this study, we investigated whether the modulation of plant immune response through knockdown of the Nb-SABP2 and Nb-COI1 N. benthamiana genes could improve recombinant protein yield. In plants, the SABP2 and COI1 proteins are involved in the salicylic acid and jasmonic acid metabolism, respectively. We exemplified the utility of this approach with the green fluorescence (GFP) and β nerve growth factor (βNGF) proteins: compared to the tobacco mosaic virus (TMV)-based vector the Nb-SABP2 and Nb-COI1-suppressed plants provided an increased recombinant protein accumulation. We also show that this strategy is extendable to the expression systems utilizing potato virus X (PVX) as the vector backbone: the enhanced amounts of βNGF were detected in the Nb-SABP2 and Nb-COI1-depleted leaves co-infiltrated with the PVX-βNGF. These findings suggest that modulating host plant reaction to agrodelivery of expression vectors could be useful for improving transient foreign protein production in N. benthamiana.
Collapse
Affiliation(s)
- Lilya Kopertekh
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| |
Collapse
|
6
|
Song K, Li R, Cui Y, Chen B, Zhou L, Han W, Jiang B, He Y. The phytopathogen Xanthomonas campestris senses and effluxes salicylic acid via a sensor HepR and an RND family efflux pump to promote virulence in host plants. MLIFE 2024; 3:430-444. [PMID: 39359673 PMCID: PMC11442134 DOI: 10.1002/mlf2.12140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 10/04/2024]
Abstract
Salicylic acid (SA) plays an essential role in plant defense against biotrophic and semi-biotrophic pathogens. Following pathogen recognition, SA biosynthesis dramatically increases at the infection site of the host plant. The manner in which pathogens sense and tolerate the onslaught of SA stress to survive in the plant following infection remains to be understood. The objective of this work was to determine how the model phytopathogen Xanthomonas campestris pv. campestris (Xcc) senses and effluxes SA during infection inside host plants. First, RNA-Seq analysis identified an SA-responsive operon Xcc4167-Xcc4171, encoding a MarR family transcription factor HepR and an RND (resistance-nodulation-cell division) family efflux pump HepABCD in Xcc. Electrophoretic mobility shift assays and DNase I footprint analysis revealed that HepR negatively regulated hepABCD expression by specifically binding to an AT-rich region of the promoter of the hepRABCD operon, Phep. Second, isothermal titration calorimetry and further genetic analysis suggest that HepR is a novel SA sensor. SA binding released HepR from its cognate promoter Phep and then induced the expression of hepABCD. Third, the RND family efflux pump HepABCD was responsible for SA efflux. The hepRABCD cluster was also involved in the regulation of culture pH and quorum sensing signal diffusible signaling factor turnover. Finally, the hepRABCD cluster was transcribed during the XC1 infection of Chinese radish and was required for the full virulence of Xcc in Chinese radish and cabbage. These findings suggest that the ability of Xcc to co-opt the plant defense signal SA to activate the multidrug efflux pump may have evolved to ensure Xcc survival and virulence in susceptible host plants.
Collapse
Affiliation(s)
- Kai Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ruifang Li
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Ying Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Bo Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Lian Zhou
- Zhiyuan Innovative Research CenterShanghai Jiao Tong UniversityShanghaiChina
| | - Wenying Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Bo‐Le Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Ya‐Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
7
|
Hamel L, Tardif R, Poirier‐Gravel F, Rasoolizadeh A, Brosseau C, Giroux G, Lucier J, Goulet M, Barrada A, Paré M, Roussel É, Comeau M, Lavoie P, Moffett P, Michaud D, D'Aoust M. Molecular responses of agroinfiltrated Nicotiana benthamiana leaves expressing suppressor of silencing P19 and influenza virus-like particles. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1078-1100. [PMID: 38041470 PMCID: PMC11022802 DOI: 10.1111/pbi.14247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
The production of influenza vaccines in plants is achieved through transient expression of viral hemagglutinins (HAs), a process mediated by the bacterial vector Agrobacterium tumefaciens. HA proteins are then produced and matured through the secretory pathway of plant cells, before being trafficked to the plasma membrane where they induce formation of virus-like particles (VLPs). Production of VLPs unavoidably impacts plant cells, as do viral suppressors of RNA silencing (VSRs) that are co-expressed to increase recombinant protein yields. However, little information is available on host molecular responses to foreign protein expression. This work provides a comprehensive overview of molecular changes occurring in Nicotiana benthamiana leaf cells transiently expressing the VSR P19, or co-expressing P19 and an influenza HA. Our data identifies general responses to Agrobacterium-mediated expression of foreign proteins, including shutdown of chloroplast gene expression, activation of oxidative stress responses and reinforcement of the plant cell wall through lignification. Our results also indicate that P19 expression promotes salicylic acid (SA) signalling, a process dampened by co-expression of the HA protein. While reducing P19 level, HA expression also induces specific signatures, with effects on lipid metabolism, lipid distribution within membranes and oxylipin-related signalling. When producing VLPs, dampening of P19 responses thus likely results from lower expression of the VSR, crosstalk between SA and oxylipin pathways, or a combination of both outcomes. Consistent with the upregulation of oxidative stress responses, we finally show that reduction of oxidative stress damage through exogenous application of ascorbic acid improves plant biomass quality during production of VLPs.
Collapse
Affiliation(s)
| | | | | | - Asieh Rasoolizadeh
- Centre SÈVE, Faculté des Sciences, Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | - Chantal Brosseau
- Centre SÈVE, Faculté des Sciences, Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | - Geneviève Giroux
- Centre SÈVE, Faculté des Sciences, Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | - Jean‐François Lucier
- Centre SÈVE, Faculté des Sciences, Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | - Marie‐Claire Goulet
- Centre de Recherche et d'innovation sur les Végétaux, Département de PhytologieUniversité LavalQuébecQuébecCanada
| | - Adam Barrada
- Centre de Recherche et d'innovation sur les Végétaux, Département de PhytologieUniversité LavalQuébecQuébecCanada
| | | | | | | | | | - Peter Moffett
- Centre SÈVE, Faculté des Sciences, Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | - Dominique Michaud
- Centre de Recherche et d'innovation sur les Végétaux, Département de PhytologieUniversité LavalQuébecQuébecCanada
| | | |
Collapse
|
8
|
Hendrickson H, Islam M, Wabo GF, Mafu S. Biochemical analysis of the TPS-a subfamily in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2024; 15:1349009. [PMID: 38425791 PMCID: PMC10902008 DOI: 10.3389/fpls.2024.1349009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
Terpenes are important mediators of plant chemical response to environmental cues. Here, we describe the genome-wide identification and biochemical characterization of TPS-a members in Medicago truncatula, a model legume crop. Genome mining identified thirty-nine full-length terpene synthases with a significant number predicted to produce monoterpenes and sesquiterpenes. Biochemical characterization of the TPS-a subfamily associated with sesquiterpene biosynthesis revealed such compounds, that exhibit substantial biological activity in other plants. Gene expression analysis using qPCR and the Medicago gene atlas illustrated distinct tissue and time-based variation in expression in leaves and roots. Together our work establishes the gene-to-metabolite relationships for sesquiterpene synthases in M. truncatula. Understanding the biosynthetic capacity is a foundational step to defining the ecological roles of this important family of compounds.
Collapse
Affiliation(s)
- Hannah Hendrickson
- Plant Biology Graduate Program, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Monirul Islam
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Life Science Laboratories, Amherst, MA, United States
| | | | - Sibongile Mafu
- Plant Biology Graduate Program, University of Massachusetts-Amherst, Amherst, MA, United States
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Life Science Laboratories, Amherst, MA, United States
| |
Collapse
|
9
|
Zhou J, Ma H, Zhang L. Mechanisms of Virulence Reprogramming in Bacterial Pathogens. Annu Rev Microbiol 2023; 77:561-581. [PMID: 37406345 DOI: 10.1146/annurev-micro-032521-025954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Bacteria are single-celled organisms that carry a comparatively small set of genetic information, typically consisting of a few thousand genes that can be selectively activated or repressed in an energy-efficient manner and transcribed to encode various biological functions in accordance with environmental changes. Research over the last few decades has uncovered various ingenious molecular mechanisms that allow bacterial pathogens to sense and respond to different environmental cues or signals to activate or suppress the expression of specific genes in order to suppress host defenses and establish infections. In the setting of infection, pathogenic bacteria have evolved various intelligent mechanisms to reprogram their virulence to adapt to environmental changes and maintain a dominant advantage over host and microbial competitors in new niches. This review summarizes the bacterial virulence programming mechanisms that enable pathogens to switch from acute to chronic infection, from local to systemic infection, and from infection to colonization. It also discusses the implications of these findings for the development of new strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| | - Hongmei Ma
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| | - Lianhui Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| |
Collapse
|
10
|
Widyawan A, Al-Saleh MA, El Komy MH, Al Dhafer HM, Ibrahim YE. Potential of resistance inducers for citrus huanglongbing management via soil application and assessment of induction of pathogenesis-related protein genes. Heliyon 2023; 9:e19715. [PMID: 37809984 PMCID: PMC10558989 DOI: 10.1016/j.heliyon.2023.e19715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Huanglongbing (HLB) or citrus greening currently is the most devastating citrus disease worldwide. Unfortunately, no practical cure has been available up to now. This makes the control of HLB as early as possible very important to be conducted. The objective of this study was to investigate the efficacy of the application of salicylic acid (SA) and Phenylacetic acid (PAA) on one-year-old seedlings of different citrus species (Citrus reticulata, C. sinensis, C. aurantifolii) growing on C. volkameriana and C. aurantium by soil drench methods. Factorial analysis of variance showed the percent change in "Candidatus Liberibacter asiaticus" titer and disease severity on a different combination of citrus species growing on the two rootstocks treated with inducers and Oxytetracycline (OTC) were significantly different compared to the untreated plants. SA alone or in combination with OTC provided excellent (P-value < 0.05) control of HLB based on all parameters. The interaction between both factors (Rootstocks x Citrus species) significantly influenced the Ct value (P-value = 0.0001). "Candidatus Liberibacter asiaticus" titer in plants treated with OTC was reduced significantly with a range of -18.75 up to -78.42. Overall, the highest reduction was observed in the application of OTC on sweet orange growing on C. volkameriana (-78.42), while the lowest reduction was observed in the same cultivar which was treated with a combination of SA and OTC (-3.36). Induction of pathogenesis-related (PR) genes, i.e., PR1, PR2, and PR15, biosynthesis of Jasmonic acid and ethylene which are also important pathways to defense activity were also significantly increased in treated plants compared to untreated plants. This study suggests that the application of inducer alone is acceptable for HLB management. We proposed the application of SA and PAA as a soil drench on the citrus seedlings as promising, easy, and environmentally safe for HLB disease control on citrus seedlings.
Collapse
Affiliation(s)
- Arya Widyawan
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Saudi Arabia
| | - Mohammed A. Al-Saleh
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Saudi Arabia
| | - Mahmoud H. El Komy
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Saudi Arabia
| | - Hathal M. Al Dhafer
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Saudi Arabia
| | - Yasser E. Ibrahim
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Saudi Arabia
| |
Collapse
|
11
|
D’Errico C, Forgia M, Pisani M, Pavan S, Noris E, Matić S. Overexpression of the C4 protein of tomato yellow leaf curl Sardinia virus increases tomato resistance to powdery mildew. FRONTIERS IN PLANT SCIENCE 2023; 14:1163315. [PMID: 37063219 PMCID: PMC10102596 DOI: 10.3389/fpls.2023.1163315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Powdery mildew (PM) is one of the most important diseases of greenhouse and field-grown tomatoes. Viruses can intervene beneficially on plant performance in coping with biotic and abiotic stresses. Tomato yellow leaf curl Sardinia virus (TYLCSV) has been reported recently to induce tolerance against drought stress in tomato, and its C4 protein acts as the main causal factor of tolerance. However, its role in response to biotic stresses is still unknown. In this study, transgenic tomato plants carrying the TYLCSV C4 protein were exposed to biotic stress following the inoculation with Oidium neolycopersici, the causal agent of tomato PM. Phytopathological, anatomic, molecular, and physiological parameters were evaluated in this plant pathosystem. Heterologous TYLCSV C4 expression increased the tolerance of transgenic tomato plants to PM, not only reducing symptom occurrence, but also counteracting conidia adhesion and secondary hyphae elongation. Pathogenesis-related gene expression and salicylic acid production were found to be higher in tomato transgenic plants able to cope with PM compared to infected wild-type tomato plants. Our study contributes to unraveling the mechanism leading to PM tolerance in TYLCSV C4-expressing tomato plants. In a larger context, the findings of TYLCSV C4 as a novel PM defense inducer could have important implications in deepening the mechanisms regulating the management of this kind of protein to both biotic and abiotic stresses.
Collapse
Affiliation(s)
- Chiara D’Errico
- Institute for Sustainable Plant Protection, National Research Council, Turin, Italy
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
| | - Marco Forgia
- Institute for Sustainable Plant Protection, National Research Council, Turin, Italy
| | - Marco Pisani
- Istituto Nazionale di Ricerca Metrologica, Applied Metrology and Engineering Division, Torino, Italy
| | - Stefano Pavan
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro, Bari, Italy
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council, Turin, Italy
| | - Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council, Turin, Italy
| |
Collapse
|
12
|
Plant Protection against Viruses: An Integrated Review of Plant Immunity Agents. Int J Mol Sci 2023; 24:ijms24054453. [PMID: 36901884 PMCID: PMC10002506 DOI: 10.3390/ijms24054453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Plant viruses are an important class of pathogens that seriously affect plant growth and harm crop production. Viruses are simple in structure but complex in mutation and have thus always posed a continuous threat to agricultural development. Low resistance and eco-friendliness are important features of green pesticides. Plant immunity agents can enhance the resilience of the immune system by activating plants to regulate their metabolism. Therefore, plant immune agents are of great importance in pesticide science. In this paper, we review plant immunity agents, such as ningnanmycin, vanisulfane, dufulin, cytosinpeptidemycin, and oligosaccharins, and their antiviral molecular mechanisms and discuss the antiviral applications and development of plant immunity agents. Plant immunity agents can trigger defense responses and confer disease resistance to plants, and the development trends and application prospects of plant immunity agents in plant protection are analyzed in depth.
Collapse
|
13
|
Choi SW, Kumaishi K, Motohashi R, Enoki H, Chacuttayapong W, Takamizo T, Saika H, Endo M, Yamada T, Hirose A, Koizuka N, Kimura S, Kawakatsu Y, Koga H, Ito E, Shirasu K, Ichihashi Y. Oxicam-type nonsteroidal anti-inflammatory drugs enhance Agrobacterium-mediated transient transformation in plants. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:323-327. [PMID: 36349241 PMCID: PMC9592935 DOI: 10.5511/plantbiotechnology.22.0312a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/12/2022] [Indexed: 06/16/2023]
Abstract
Agrobacterium-mediated transformation is a key innovation for plant breeding, and routinely used in basic researches and applied biology. However, the transformation efficiency is often the limiting factor of this technique. In this study, we discovered that oxicam-type nonsteroidal anti-inflammatory drugs, including tenoxicam (TNX), increase the efficiency of Agrobacterium-mediated transient transformation. TNX treatment increased the transformation efficiency of Agrobacterium-mediated transformation of Arabidopsis thaliana mature leaves by agroinfiltration. The increase of efficiency by TNX treatment was not observed in dde2/ein2/pad4/sid2 quadruple mutant, indicating that TNX inhibits the immune system mediated by jasmonic acid, ethylene, and salicylic acid against to Agrobacterium. We also found that TNX-treatment is applicable for the transient expression and subcellular localization analysis of fluorescent-tagged proteins in Arabidopsis leaf cells. In addition, we found that TNX increases the efficiency of Agrobacterium-mediated transient transformation of Jatropha. Given that treatment with oxicam compounds is a simple and cost effective method, our findings will provide a new option to overcome limitations associated with Agrobacterium-mediated transformation of various plant species.
Collapse
Affiliation(s)
- Seung-won Choi
- Riken Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Department of Natural Sciences, International Christian University (ICU), Mitaka, Tokyo 181-8585, Japan
| | - Kie Kumaishi
- Riken BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Reiko Motohashi
- Faculty of Agriculture, Department of Applied Life Sciences, Shizuoka University, Shizuoka, Shizuoka 422-8529, Japan
| | - Harumi Enoki
- Faculty of Agriculture, Department of Applied Life Sciences, Shizuoka University, Shizuoka, Shizuoka 422-8529, Japan
| | - Wiluk Chacuttayapong
- Faculty of Agriculture, Department of Applied Life Sciences, Shizuoka University, Shizuoka, Shizuoka 422-8529, Japan
| | - Tadashi Takamizo
- National Institute of Livestock and Grassland Science, Nasushiobara, Tochigi 329-2793, Japan
| | - Hiroaki Saika
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8634, Japan
| | - Masaki Endo
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8634, Japan
| | - Tetsuya Yamada
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Aya Hirose
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Nobuya Koizuka
- College of Agriculture, Tamagawa University, , Machida, Tokyo 194-8610, Japan
| | - Seisuke Kimura
- Department of Industrial Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Kyoto 603-8555, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kyoto, Kyoto 603-8555, Japan
| | - Yaichi Kawakatsu
- Department of Industrial Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Kyoto 603-8555, Japan
| | - Hiroyuki Koga
- Department of Biological Sciences, Graduate school of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Emi Ito
- Department of Natural Sciences, International Christian University (ICU), Mitaka, Tokyo 181-8585, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Ken Shirasu
- Riken Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | | |
Collapse
|
14
|
Lacroix B, Citovsky V. Genetic factors governing bacterial virulence and host plant susceptibility during Agrobacterium infection. ADVANCES IN GENETICS 2022; 110:1-29. [PMID: 37283660 PMCID: PMC10241481 DOI: 10.1016/bs.adgen.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Several species of the Agrobacterium genus represent unique bacterial pathogens able to genetically transform plants, by transferring and integrating a segment of their own DNA (T-DNA, transferred DNA) in their host genome. Whereas in nature this process results in uncontrolled growth of the infected plant cells (tumors), this capability of Agrobacterium has been widely used as a crucial tool to generate transgenic plants, for research and biotechnology. The virulence of Agrobacterium relies on a series of virulence genes, mostly encoded on a large plasmid (Ti-plasmid, tumor inducing plasmid), involved in the different steps of the DNA transfer to the host cell genome: activation of bacterial virulence, synthesis and export of the T-DNA and its associated proteins, intracellular trafficking of the T-DNA and effector proteins in the host cell, and integration of the T-DNA in the host genomic DNA. Multiple interactions between these bacterial encoded proteins and host factors occur during the infection process, which determine the outcome of the infection. Here, we review our current knowledge of the mechanisms by which bacterial and plant factors control Agrobacterium virulence and host plant susceptibility.
Collapse
|
15
|
Raman V, Rojas CM, Vasudevan B, Dunning K, Kolape J, Oh S, Yun J, Yang L, Li G, Pant BD, Jiang Q, Mysore KS. Agrobacterium expressing a type III secretion system delivers Pseudomonas effectors into plant cells to enhance transformation. Nat Commun 2022; 13:2581. [PMID: 35546550 PMCID: PMC9095702 DOI: 10.1038/s41467-022-30180-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/20/2022] [Indexed: 01/07/2023] Open
Abstract
Agrobacterium-mediated plant transformation (AMT) is the basis of modern-day plant biotechnology. One major drawback of this technology is the recalcitrance of many plant species/varieties to Agrobacterium infection, most likely caused by elicitation of plant defense responses. Here, we develop a strategy to increase AMT by engineering Agrobacterium tumefaciens to express a type III secretion system (T3SS) from Pseudomonas syringae and individually deliver the P. syringae effectors AvrPto, AvrPtoB, or HopAO1 to suppress host defense responses. Using the engineered Agrobacterium, we demonstrate increase in AMT of wheat, alfalfa and switchgrass by ~250%-400%. We also show that engineered A. tumefaciens expressing a T3SS can deliver a plant protein, histone H2A-1, to enhance AMT. This strategy is of great significance to both basic research and agricultural biotechnology for transient and stable transformation of recalcitrant plant species/varieties and to deliver proteins into plant cells in a non-transgenic manner.
Collapse
Affiliation(s)
- Vidhyavathi Raman
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Clemencia M Rojas
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | | | - Kevin Dunning
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | | | - Sunhee Oh
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Jianfei Yun
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Lishan Yang
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Guangming Li
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Bikram D Pant
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | | | - Kirankumar S Mysore
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA.
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA.
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
16
|
The Plant Defense Signal Salicylic Acid Activates the RpfB-Dependent Quorum Sensing Signal Turnover via Altering the Culture and Cytoplasmic pH in the Phytopathogen Xanthomonas campestris. mBio 2022; 13:e0364421. [PMID: 35254135 PMCID: PMC9040794 DOI: 10.1128/mbio.03644-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Plant colonization by phytopathogens is a very complex process in which numerous factors are involved. Upon infection by phytopathogens, plants produce salicylic acid (SA) that triggers gene expression within the plant to counter the invading pathogens. The present study demonstrated that SA signal also directly acts on the quorum-sensing (QS) system of the invading pathogen Xanthomonas campestris pv. campestris to affect its virulence by inducing turnover of the diffusible signaling factor (DSF) family QS signal. First, Xanthomonas campestris pv. campestris infection induces SA biosynthesis in the cabbage host plant. SA cannot be degraded by Xanthomonas campestris pv. campestris during culturing. Exogenous addition of SA or endogenous production of SA induces DSF signal turnover during late growth phase of Xanthomonas campestris pv. campestris in XYS medium that mimics plant vascular environments. Further, the DSF turnover gene rpfB is required for SA induction of DSF turnover. However, SA does not affect the expression of rpfB and DSF biosynthesis gene rpfF at the transcriptional level. SA induction of DSF turnover only occurs under acidic conditions in XYS medium. Furthermore, addition of SA to XYS medium significantly increased both culture and cytoplasmic pH. Increased cytoplasmic pH induced DSF turnover in a rpfB-dependent manner. In vitro RpfB-dependent DSF turnover activity increased when pH increased from 6 to 8. SA exposure did not affect the RpfB-dependent DSF turnover in vitro. Finally, SA-treated Xanthomonas campestris pv. campestris strain exhibited enhanced virulence when inoculated on cabbage. These results provide new insight into the roles of SA in host plants and the molecular interactions between Xanthomonas campestris pv. campestris and cruciferous plants.
Collapse
|
17
|
Hu A, Hu M, Chen S, Xue Y, Tan X, Zhou J. Five Plant Natural Products Are Potential Type III Secretion System Inhibitors to Effectively Control Soft-Rot Disease Caused by Dickeya. Front Microbiol 2022; 13:839025. [PMID: 35273588 PMCID: PMC8901885 DOI: 10.3389/fmicb.2022.839025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Dickeya zeae, a plant soft-rot pathogen, possesses a type III secretion system (T3SS) as one of the major virulence factors, infecting a wide variety of monocotyledonous and dicotyledonous plants and causing serious losses to the production of economic crops. In order to alleviate the problem of pesticide resistance during bacterial disease treatment, compounds targeting at T3SS have been screened using a hrpA-gfp bioreporter. After screening by Multifunctional Microplate Reader and determining by flow cytometer, five compounds including salicylic acid (SA), p-hydroxybenzoic acid (PHBA), cinnamyl alcohol (CA), p-coumaric acid (PCA), and hydrocinnamic acid (HA) significantly inhibiting hrpA promoter activity without affecting bacterial growth have been screened out. All the five compounds reduced hypersensitive response (HR) on non-host tobacco leaves and downregulated the expression of T3SS, especially the master regulator encoding gene hrpL. Inhibition efficacy of the five compounds against soft rot were also evaluated and results confirmed that the above compounds significantly lessened the soft-rot symptoms caused by Dickeya dadantii 3937 on potato, Dickeya fangzhongdai CL3 on taro, Dickeya oryzae EC1 on rice, and D. zeae MS2 on banana seedlings. Findings in this study provide potential biocontrol agents for prevention of soft-rot disease caused by Dickeya spp.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Al-Hayawi A. The multiplex PCR assay detection of Staphylococcus sciuri antibiotic resistance, mecA gene, and the inhibitory effect of root exudate of Nigella sativa (black seeds) treated with magnetized water. J Med Life 2022; 15:228-233. [PMID: 35419114 PMCID: PMC8999102 DOI: 10.25122/jml-2021-0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
121 bacterial samples isolated from wounds from both sexes and all age groups were collected from Salahadin General Hospital, Salahadin provenance, Iraq. Only 8 Staphylococcus sciuri (S. sciuri) isolates were identified. The bacterial isolation showed the highest sensitivity to Amoxicillin/Clavulanic acid, Cefotaxime, Methicillin, Streptomycin, and Vancomycin and resistance to all other antibiotics. The root exudates of black seeds were used for 10 and 20 days for both treatments with and without magnetized water, and the exudates were superior when using magnetized water for 20 days. Antibiotic resistance and the mecA gene were investigated, and a multiplex PCR assay was used to detect the mecA gene in S. sciuri. Optimized conditions were used to amplify mecA fragments that encode methicillin resistance.
Collapse
Affiliation(s)
- Anas Al-Hayawi
- Biology Department, College of Education for Pure Sciences, Tikrit University, Tikrit, Iraq,Corresponding Author: Anas Al-Hayawi, Biology Department, College of Education for Pure Sciences, Tikrit University, Tikrit, Iraq. E-mail:
| |
Collapse
|
19
|
Song GC, Jeon J, Choi HK, Sim H, Kim S, Ryu C. Bacterial type III effector-induced plant C8 volatiles elicit antibacterial immunity in heterospecific neighbouring plants via airborne signalling. PLANT, CELL & ENVIRONMENT 2022; 45:236-247. [PMID: 34708407 PMCID: PMC9298316 DOI: 10.1111/pce.14209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 05/10/2023]
Abstract
Upon sensing attack by pathogens and insect herbivores, plants release complex mixtures of volatile compounds. Here, we show that the infection of lima bean (Phaseolus lunatus L.) plants with the non-host bacterial pathogen Pseudomonas syringae pv. tomato led to the production of microbe-induced plant volatiles (MIPVs). Surprisingly, the bacterial type III secretion system, which injects effector proteins directly into the plant cytosol to subvert host functions, was found to prime both intra- and inter-specific defense responses in neighbouring wild tobacco (Nicotiana benthamiana) plants. Screening of each of 16 effectors using the Pseudomonas fluorescens effector-to-host analyser revealed that an effector, HopP1, was responsible for immune activation in receiver tobacco plants. Further study demonstrated that 1-octen-3-ol, 3-octanone and 3-octanol are novel MIPVs emitted by the lima bean plant in a HopP1-dependent manner. Exposure to synthetic 1-octen-3-ol activated immunity in tobacco plants against a virulent pathogen Pseudomonas syringae pv. tabaci. Our results show for the first time that a bacterial type III effector can trigger the emission of C8 plant volatiles that mediate defense priming via plant-plant interactions. These results provide novel insights into the role of airborne chemicals in bacterial pathogen-induced inter-specific plant-plant interactions.
Collapse
Affiliation(s)
- Geun Cheol Song
- Molecular Phytobacteriology LaboratoryInfectious Disease Research Center, KRIBBDaejeonSouth Korea
| | - Je‐Seung Jeon
- Molecular Phytobacteriology LaboratoryInfectious Disease Research Center, KRIBBDaejeonSouth Korea
| | - Hye Kyung Choi
- Molecular Phytobacteriology LaboratoryInfectious Disease Research Center, KRIBBDaejeonSouth Korea
| | - Hee‐Jung Sim
- Environmental Chemistry Research GroupKorea Institute of Toxicology (KIT)JinjuSouth Korea
| | - Sang‐Gyu Kim
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Choong‐Min Ryu
- Molecular Phytobacteriology LaboratoryInfectious Disease Research Center, KRIBBDaejeonSouth Korea
- Biosystems and Bioengineering ProgramUniversity of Science and Technology (UST)DaejeonSouth Korea
| |
Collapse
|
20
|
Liu T, Cao L, Cheng Y, Ji J, Wei Y, Wang C, Duan K. MKK4/5-MPK3/6 Cascade Regulates Agrobacterium-Mediated Transformation by Modulating Plant Immunity in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:731690. [PMID: 34659297 PMCID: PMC8514879 DOI: 10.3389/fpls.2021.731690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/01/2021] [Indexed: 05/25/2023]
Abstract
Agrobacterium tumefaciens is a specialized plant pathogen that causes crown gall disease and is commonly used for Agrobacterium-mediated transformation. As a pathogen, Agrobacterium triggers plant immunity, which affects transformation. However, the signaling components and pathways in plant immunity to Agrobacterium remain elusive. We demonstrate that two Arabidopsis mitogen-activated protein kinase kinases (MAPKKs) MKK4/MKK5 and their downstream mitogen-activated protein kinases (MAPKs) MPK3/MPK6 play major roles in both Agrobacterium-triggered immunity and Agrobacterium-mediated transformation. Agrobacteria induce MPK3/MPK6 activity and the expression of plant defense response genes at a very early stage. This process is dependent on the MKK4/MKK5 function. The loss of the function of MKK4 and MKK5 or their downstream MPK3 and MPK6 abolishes plant immunity to agrobacteria and increases transformation frequency, whereas the activation of MKK4 and MKK5 enhances plant immunity and represses transformation. Global transcriptome analysis indicates that agrobacteria induce various plant defense pathways, including reactive oxygen species (ROS) production, ethylene (ET), and salicylic acid- (SA-) mediated defense responses, and that MKK4/MKK5 is essential for the induction of these pathways. The activation of MKK4 and MKK5 promotes ROS production and cell death during agrobacteria infection. Based on these results, we propose that the MKK4/5-MPK3/6 cascade is an essential signaling pathway regulating Agrobacterium-mediated transformation through the modulation of Agrobacterium-triggered plant immunity.
Collapse
|
21
|
Noman M, Ahmed T, Ijaz U, Shahid M, Azizullah, Li D, Manzoor I, Song F. Plant-Microbiome Crosstalk: Dawning from Composition and Assembly of Microbial Community to Improvement of Disease Resilience in Plants. Int J Mol Sci 2021; 22:6852. [PMID: 34202205 PMCID: PMC8269294 DOI: 10.3390/ijms22136852] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Plants host diverse but taxonomically structured communities of microorganisms, called microbiome, which colonize various parts of host plants. Plant-associated microbial communities have been shown to confer multiple beneficial advantages to their host plants, such as nutrient acquisition, growth promotion, pathogen resistance, and environmental stress tolerance. Systematic studies have provided new insights into the economically and ecologically important microbial communities as hubs of core microbiota and revealed their beneficial impacts on the host plants. Microbiome engineering, which can improve the functional capabilities of native microbial species under challenging agricultural ambiance, is an emerging biotechnological strategy to improve crop yield and resilience against variety of environmental constraints of both biotic and abiotic nature. This review highlights the importance of indigenous microbial communities in improving plant health under pathogen-induced stress. Moreover, the potential solutions leading towards commercialization of proficient bioformulations for sustainable and improved crop production are also described.
Collapse
Affiliation(s)
- Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| | - Usman Ijaz
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Azizullah
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| | - Dayong Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| | - Irfan Manzoor
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; or
| | - Fengming Song
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| |
Collapse
|
22
|
Singh A, Rajput V, Singh AK, Sengar RS, Singh RK, Minkina T. Transformation Techniques and Their Role in Crop Improvements: A Global Scenario of GM Crops. POLICY ISSUES IN GENETICALLY MODIFIED CROPS 2021:515-542. [DOI: 10.1016/b978-0-12-820780-2.00023-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
23
|
Li S, Xu B, Niu X, Lu X, Cheng J, Zhou M, Hooykaas PJJ. JAZ8 Interacts With VirE3 Attenuating Agrobacterium Mediated Root Tumorigenesis. FRONTIERS IN PLANT SCIENCE 2021; 12:685533. [PMID: 34868098 PMCID: PMC8639510 DOI: 10.3389/fpls.2021.685533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/11/2021] [Indexed: 05/22/2023]
Abstract
Agrobacterium tumefaciens can cause crown gall tumors by transferring both an oncogenic piece of DNA (T-DNA) and several effector proteins into a wide range of host plants. For the translocated effector VirE3 multiple functions have been reported. It acts as a transcription factor in the nucleus binding to the Arabidopsis thaliana pBrp TFIIB-like protein to activate the expression of VBF, an F-box protein involved in degradation of the VirE2 and VIP1 proteins, facilitating Agrobacterium-mediated transformation. Also VirE3 has been found at the plasma membrane, where it could interact with VirE2. Here, we identified AtJAZ8 in a yeast two-hybrid screening with VirE3 as a bait and confirmed the interaction by pull-down and bimolecular fluorescence complementation assays. We also found that the deletion of virE3 reduced Agrobacterium virulence in a root tumor assay. Overexpression of virE3 in Arabidopsis enhanced tumorigenesis, whereas overexpression of AtJAZ8 in Arabidopsis significantly decreased the numbers of tumors formed. Further experiments demonstrated that AtJAZ8 inhibited the activity of VirE3 as a plant transcriptional regulator, and overexpression of AtJAZ8 in Arabidopsis activated AtPR1 gene expression while it repressed the expression of AtPDF1.2. Conversely, overexpression of virE3 in Arabidopsis suppressed the expression of AtPR1 whereas activated the expression of AtPDF1.2. Our results proposed a novel mechanism of counter defense signaling pathways used by Agrobacterium, suggesting that VirE3 and JAZ8 may antagonistically modulate the salicylic acid/jasmonic acid (SA/JA)-mediated plant defense signaling response during Agrobacterium infection.
Collapse
Affiliation(s)
- Shijuan Li
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Bingliang Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Bingliang Xu,
| | - Xiaolei Niu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Xiaolei Niu,
| | - Xiang Lu
- College of Agriculture, Guizhou University, Guiyang, China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang, China
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Meiliang Zhou,
| | - Paul J. J. Hooykaas
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
24
|
Heidari-Japelaghi R, Valizadeh M, Haddad R, Dorani-Uliaie E, Jalali-Javaran M. Production of bioactive human IFN-γ protein by agroinfiltration in tobacco. Protein Expr Purif 2020; 173:105616. [PMID: 32179088 DOI: 10.1016/j.pep.2020.105616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 11/25/2022]
Abstract
In animals, interferon-γ (IFN-γ) is known as a cytokine involved in antiviral and anticancer activities with a higher biochemical activity in contrast to other IFNs. To produce recombinant human IFN-γ (hIFN-γ) protein in tobacco, factors influencing gene delivery were first evaluated for higher efficiency of transient expression by fluorometric measurement of GUS activity. Higher levels of transient expression were observed in leaves of Nicotiana tabacum cv. Samsun infiltrated with GV3101 strain (optical density equal to 1.0 at 600 nm) under treatment of 200 μM AS at 4 days post agroinfiltration (dpa). The Samsun cv. proved to be amenable with 1.4- and 1.5-fold higher levels of transient expression than Xanthi and N. benthamiana, respectively. In addition, the GV3101 remained the best strain for use in transient assays without any necrotic response in tobacco. The levels of transient hIFN-γ expression were also estimated in the Samsun cv. infiltrated with different Agrobacterium tumefaciens strains carrying various expression constructs. Higher levels of accumulation were obtained with targeting the hIFN-γ protein to endoplasmic reticulum (ER) or apoplastic space than those expressed into cytoplasm. Moreover, antiviral bioassay revealed that recombinant hIFN-γ protein produced in tobacco is biologically active and protects the Vero cells from infection generated by vesicular stomatitis virus (VSV).
Collapse
Affiliation(s)
- Reza Heidari-Japelaghi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Mostafa Valizadeh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Raheem Haddad
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Ebrahim Dorani-Uliaie
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mokhtar Jalali-Javaran
- Department of Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
25
|
Sorokin A, Yadav NS, Gaudet D, Kovalchuk I. Transient expression of the β-glucuronidase gene in Cannabis sativa varieties. PLANT SIGNALING & BEHAVIOR 2020; 15:1780037. [PMID: 32552427 PMCID: PMC8570765 DOI: 10.1080/15592324.2020.1780037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 05/30/2023]
Abstract
In plant biology, transient expression analysis plays a vital role to provide a fast method to study the gene of interest. In this study, we report a rapid and efficient method for transient expression in Cannabis sativa seedlings using Agrobacterium tumefaciens-mediated transformation. A. tumefaciens strain EHA105 carrying the pCAMBIA1301 construct with uidA gene was used to transform cannabis seedlings and the GUS assay (a measurement of β-glucuronidase activity) was used to detect the uidA expression. In the current study, we have also established a rapid germination protocol for cannabis seeds. The all three steps seed sterilization, germination and seedlings development were carried out in a 1% H2O2 solution. Transient transformation revealed that both cotyledons and young true leaves are amenable to transformation. Compared with tobacco (Nicotiana benthamiana), cannabis seedlings were less susceptible to transformation with A. tumefaciens. Susceptibility to Agrobacterium transformation also varied with the different cannabis varieties. The method established in this study has the potential to be an important tool for gene function studies and genetic improvement in cannabis.
Collapse
Affiliation(s)
- Aleksei Sorokin
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | | | - Daniel Gaudet
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|
26
|
Aarrouf J, Urban L. Flashes of UV-C light: An innovative method for stimulating plant defences. PLoS One 2020; 15:e0235918. [PMID: 32645090 PMCID: PMC7347194 DOI: 10.1371/journal.pone.0235918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/25/2020] [Indexed: 12/04/2022] Open
Abstract
Leaves of lettuce, pepper, tomato and grapevine plants grown in greenhouse conditions were exposed to UV-C light for either 60 s or 1 s, using a specific LEDs-based device, and wavelengths and energy were the same among different light treatments. Doses of UV-C light that both effectively stimulated plant defences and were innocuous were determined beforehand. Tomato plants and lettuce plants were inoculated with Botrytis cinerea, pepper plants with Phytophthora capsici, and grapevine with Plasmopara viticola. In some experiments we investigated the effect of a repetition of treatments over periods of several days. All plants were inoculated 48 h after exposure to the last UV-C treatment. Lesions on surfaces were measured up to 12 days after inoculation, depending on the experiment and the pathogen. The results confirmed that UV-C light stimulates plant resistance; they show that irradiation for one second is more effective than irradiation for 60 s, and that repetition of treatments is more effective than single light treatments. Moreover a systemic effect was observed in unexposed leaves that were close to exposed leaves. The mechanisms of perception and of the signalling and metabolic pathways triggered by flashes of UV-C light vs. 60 s irradiation exposures are briefly discussed, as well as the prospects for field use of UV-C flashes in viticulture and horticulture.
Collapse
|
27
|
Peng C, Zhang A, Wang Q, Song Y, Zhang M, Ding X, Li Y, Geng Q, Zhu C. Ultrahigh-activity immune inducer from Endophytic Fungi induces tobacco resistance to virus by SA pathway and RNA silencing. BMC PLANT BIOLOGY 2020; 20:169. [PMID: 32293278 PMCID: PMC7160901 DOI: 10.1186/s12870-020-02386-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/05/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Plant viruses cause severe economic losses in agricultural production. An ultrahigh activity plant immune inducer (i.e., ZhiNengCong, ZNC) was extracted from endophytic fungi, and it could promote plant growth and enhance resistance to bacteria. However, the antiviral function has not been studied. Our study aims to evaluate the antiviral molecular mechanisms of ZNC in tobacco. RESULTS Here, we used Potato X virus (PVX), wild-type tobacco and NahG transgenic tobacco as materials to study the resistance of ZNC to virus. ZNC exhibited a high activity in enhancing resistance to viruses and showed optimal use concentration at 100-150 ng/mL. ZNC also induced reactive oxygen species accumulation, increased salicylic acid (SA) content by upregulating the expression of phenylalanine ammonia lyase (PAL) gene and activated SA signaling pathway. We generated transcriptome profiles from ZNC-treated seedlings using RNA sequencing. The first GO term in biological process was positive regulation of post-transcriptional gene silencing, and the subsequent results showed that ZNC promoted RNA silencing. ZNC-sprayed wild-type leaves showed decreased infection areas, whereas ZNC failed to induce a protective effect against PVX in NahG leaves. CONCLUSION All results indicate that ZNC is an ultrahigh-activity immune inducer, and it could enhance tobacco resistance to PVX at low concentration by positively regulating the RNA silencing via SA pathway. The antiviral mechanism of ZNC was first revealed in this study, and this study provides a new antiviral bioagent.
Collapse
Affiliation(s)
- Chune Peng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Ailing Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Qingbin Wang
- Shandong Pengbo Biotechnology Co., LTD, Tai'an, Shandong, 271018, P.R. China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Yunzhi Song
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Min Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Yang Li
- Shandong Pengbo Biotechnology Co., LTD, Tai'an, Shandong, 271018, P.R. China
| | - Quanzheng Geng
- Shandong Pengbo Biotechnology Co., LTD, Tai'an, Shandong, 271018, P.R. China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China.
| |
Collapse
|
28
|
Khattab AR, Farag MA. Current status and perspectives of xanthones production using cultured plant biocatalyst models aided by in-silico tools for its optimization. Crit Rev Biotechnol 2020; 40:415-431. [DOI: 10.1080/07388551.2020.1721426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Amira R. Khattab
- Pharmacognosy Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
- Chemistry Department, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
29
|
Jutras PV, Sainsbury F, Goulet MC, Lavoie PO, Tardif R, Hamel LP, D'Aoust MA, Michaud D. pH Gradient Mitigation in the Leaf Cell Secretory Pathway Attenuates the Defense Response of Nicotiana benthamiana to Agroinfiltration. J Proteome Res 2020; 19:106-118. [PMID: 31789035 DOI: 10.1021/acs.jproteome.9b00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Partial neutralization of the Golgi lumen pH by the ectopic expression of influenza virus M2 proton channel is useful to stabilize acid-labile recombinant proteins in plant cells, but the impact of pH gradient mitigation on host cellular functions has not been investigated. Here, we assessed the unintended effects of M2 expression on the leaf proteome of Nicotiana benthamiana infiltrated with the bacterial gene vector Agrobacterium tumefaciens. An isobaric tags for relative and absolute quantification quantitative proteomics procedure was followed to compare the leaf proteomes of plants agroinfiltrated with either an "empty" vector or an M2-encoding vector. Leaves infiltrated with the empty vector had a low soluble protein content compared to noninfiltrated control leaves, associated with increased levels of stress-related proteins but decreased levels of photosynthesis-associated proteins. M2 expression partly compromised these effects of agroinfiltration to restore soluble protein content in the leaf tissue, associated with restored levels of photosynthesis-associated proteins and reduced levels of stress-related proteins in the apoplast. These data illustrate the cell-wide influence of the Golgi lumen pH homeostasis on the leaf proteome of N. benthamiana responding to microbial challenge. They also underline the relevance of assessing the eventual unintended effects of accessory proteins used to modulate specific cellular or metabolic functions in plant protein biofactories.
Collapse
Affiliation(s)
- Philippe V Jutras
- Centre de Recherche et d'Innovation sur les Végétaux , Université Laval , Québec G1V 0A6 , Canada
| | - Frank Sainsbury
- Griffith Institute for Drug Discovery , Griffith University , Nathan , QLD 4111 , Australia
| | - Marie-Claire Goulet
- Centre de Recherche et d'Innovation sur les Végétaux , Université Laval , Québec G1V 0A6 , Canada
| | | | | | | | | | - Dominique Michaud
- Centre de Recherche et d'Innovation sur les Végétaux , Université Laval , Québec G1V 0A6 , Canada
| |
Collapse
|
30
|
Islam MN, Ali MS, Choi SJ, Park YI, Baek KH. Salicylic Acid-Producing Endophytic Bacteria Increase Nicotine Accumulation and Resistance against Wildfire Disease in Tobacco Plants. Microorganisms 2019; 8:E31. [PMID: 31877906 PMCID: PMC7022923 DOI: 10.3390/microorganisms8010031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022] Open
Abstract
Endophytic bacteria (EB) are both a novel source of bioactive compounds that confer phytopathogen resistance and inducers of secondary metabolites in host plants. Twenty-seven EB isolated from various parts of Metasequoia glyptostroboides, Ginkgo biloba, Taxus brevifolia, Pinus densiflora, Salix babylonica, and S. chaenomeloides could produce salicylic acid (SA). The highest producers were isolates EB-44 and EB-47, identified as Pseudomonas tremae and Curtobacterium herbarum, respectively. Nicotiana benthamiana grown from EB-44-soaked seeds exhibited a 2.3-fold higher endogenous SA concentration and increased resistance against P. syringae pv. tabaci, the causative agent of tobacco wildfire disease, than plants grown from water-soaked seeds. N benthamiana and N. tabacum grown from EB-44-treated seeds developed 33% and 54% disease lesions, respectively, when infected with P. syringae pv. tabaci, and showed increased height and weight, in addition to 4.6 and 1.4-fold increases in nicotine accumulation, respectively. The results suggest that SA-producing EB-44 can successfully colonize Nicotiana spp., leading to increased endogenous SA production and resistance to tobacco wildfire disease. The newly isolated EB can offer an efficient and eco-friendly solution for controlling wildfire disease and nicotine accumulation in Nicotiana, with additional application for other important crops to increase both productivity and the generation of bioactive compounds.
Collapse
Affiliation(s)
- Md. Nurul Islam
- Soil Resource Development Institute, Regional Office, Rajshahi 6000, Bangladesh;
| | - Md. Sarafat Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| | - Seong-Jin Choi
- Department of Biotechnology, Catholic University of Daegu, Gyeongsan 38430, Korea;
| | - Youn-Il Park
- College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 34134, Korea;
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| |
Collapse
|
31
|
Cappellari LDR, Santoro MV, Schmidt A, Gershenzon J, Banchio E. Improving Phenolic Total Content and Monoterpene in Mentha x piperita by Using Salicylic Acid or Methyl Jasmonate Combined with Rhizobacteria Inoculation. Int J Mol Sci 2019; 21:E50. [PMID: 31861733 PMCID: PMC6981552 DOI: 10.3390/ijms21010050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 01/23/2023] Open
Abstract
The effects of plant inoculation with plant growth-promoting rhizobacteria (PGPR) and those resulting from the exogenous application of salicylic acid (SA) or methyl jasmonte (MeJA) on total phenolic content (TPC) and monoterpenes in Mentha x piperita plants were investigated. Although the PGPR inoculation response has been studied for many plant species, the combination of PGPR and exogenous phytohormones has not been investigated in aromatic plant species. The exogenous application of SA produced an increase in TPC that, in general, was of a similar level when applied alone as when combined with PGPR. This increase in TPC was correlated with an increase in the activity of the enzyme phenylalanine ammonia lyase (PAL). Also, the application of MeJA at different concentrations in combination with inoculation with PGPR produced an increase in TPC, which was more relevant at 4 mM, with a synergism effect being observed. With respect to the main monoterpene concentrations present in peppermint essential oil (EO), it was observed that SA or MeJA application produced a significant increase similar to that of the combination with rhizobacteria. However, when plants were exposed to 2 mM MeJA and inoculated, an important increase was produced in the concentration on menthol, pulegone, linalool, limonene, and menthone concentrations. Rhizobacteria inoculation, the treatment with SA and MeJA, and the combination of both were found to affect the amount of the main monoterpenes present in the EO of M. piperita. For this reason, the expressions of genes related to the biosynthesis of monoterpene were evaluated, with this expression being positively affected by MeJA application and PGPR inoculation, but was not modified by SA application. Our results demonstrate that MeJA or SA application combined with inoculation with PGPR constitutes an advantageous management practice for improving the production of secondary metabolites from M. piperita.
Collapse
Affiliation(s)
| | - Maricel Valeria Santoro
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany; (M.V.S.); (A.S.)
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany; (M.V.S.); (A.S.)
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany; (M.V.S.); (A.S.)
| | - Erika Banchio
- INBIAS (CONICET-Universidad Nacional de Río Cuarto), Campus Universitario, 5800 Río Cuarto, Argentina;
| |
Collapse
|
32
|
Hou W, Singh RK, Zhao P, Martins V, Aguilar E, Canto T, Tenllado F, Dias ACP. Transgenic expression of Hyp-1 gene from Hypericum perforatum L. alters expression of defense-related genes and modulates recalcitrance to Agrobacterium tumefaciens. PLANTA 2019; 251:13. [PMID: 31776675 DOI: 10.1007/s00425-019-03310-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/02/2019] [Indexed: 05/23/2023]
Abstract
MAIN CONCLUSION Phenolic oxidative coupling protein (Hyp-1) isolated from Hypericum perforatum L. was characterized as a defense gene involved in H. perforatum recalcitrance to Agrobacterium tumefaciens-mediated transformation Hypericum perforatum L. is a reservoir of high-value secondary metabolites of increasing interest to researchers and to the pharmaceutical industry. However, improving their production via genetic manipulation is a challenging task, as H. perforatum is recalcitrant to Agrobacterium tumefaciens-mediated transformation. Here, phenolic oxidative coupling protein (Hyp-1), a pathogenesis-related (PR) class 10 family gene, was selected from a subtractive cDNA library from A. tumefaciens-treated H. perforatum suspension cells. The role of Hyp-1 in defense against A. tumefaciens was analyzed in transgenic Nicotiana tabacum and Lactuca sativa overexpressing Hyp-1, and in Catharanthus roseus silenced for its homologous Hyp-1 gene, CrIPR. Results showed that Agrobacterium-mediated expression efficiency greatly decreased in Hyp-1 transgenic plants. However, silencing of CrIPR induced CrPR-5 expression and decreased expression efficiency of Agrobacterium. The expression of core genes involved in several defense pathways was also analyzed in Hyp-1 transgenic tobacco plants. Overexpression of Hyp-1 led to an ample down-regulation of key genes involved in auxin signaling, microRNA-based gene silencing, detoxification of reactive oxygen species, phenylpropanoid pathway and PRs. Moreover, Hyp-1 was detected in the nucleus, plasma membrane and the cytoplasm of epidermal cells by confocal microscopy. Overall, our findings suggest Hyp-1 modulates recalcitrance to A. tumefaciens-mediated transformation in H. perforatum.
Collapse
Affiliation(s)
- Weina Hou
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Rupesh Kumar Singh
- Centro de Química de Vila Real (CQ-VR), UTAD, 5000-801, Vila Real, Portugal
| | - Pan Zhao
- National Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Viviana Martins
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Emmanuel Aguilar
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Tomás Canto
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Francisco Tenllado
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain.
| | - Alberto Carlos Pires Dias
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, 4710-057, Braga, Portugal.
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal.
- Center of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
33
|
Agrobacteria reprogram virulence gene expression by controlled release of host-conjugated signals. Proc Natl Acad Sci U S A 2019; 116:22331-22340. [PMID: 31604827 PMCID: PMC6825286 DOI: 10.1073/pnas.1903695116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in Agrobacterium tumefaciens, which releases plant defense signal salicylic acid (SA) from its storage form SA β-glucoside (SAG). Addition of SA substantially reduces gene expression of bacterial virulence. Bacterial vir genes and sghA are differentially transcribed at early and later infection stages, respectively. Plant metabolite sucrose is a signal ligand that inactivates SghR and consequently induces sghA expression. Disruption of sghA leads to increased vir expression in planta and enhances tumor formation whereas mutation of sghR decreases vir expression and tumor formation. These results depict a remarkable mechanism by which A. tumefaciens taps on the reserved pool of plant signal SA to reprogram its virulence upon establishment of infection.
Collapse
|
34
|
Lacroix B, Citovsky V. Pathways of DNA Transfer to Plants from Agrobacterium tumefaciens and Related Bacterial Species. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:231-251. [PMID: 31226020 PMCID: PMC6717549 DOI: 10.1146/annurev-phyto-082718-100101] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Genetic transformation of host plants by Agrobacterium tumefaciens and related species represents a unique model for natural horizontal gene transfer. Almost five decades of studying the molecular interactions between Agrobacterium and its host cells have yielded countless fundamental insights into bacterial and plant biology, even though several steps of the DNA transfer process remain poorly understood. Agrobacterium spp. may utilize different pathways for transferring DNA, which likely reflects the very wide host range of Agrobacterium. Furthermore, closely related bacterial species, such as rhizobia, are able to transfer DNA to host plant cells when they are provided with Agrobacterium DNA transfer machinery and T-DNA. Homologs of Agrobacterium virulence genes are found in many bacterial genomes, but only one non-Agrobacterium bacterial strain, Rhizobium etli CFN42, harbors a complete set of virulence genes and can mediate plant genetic transformation when carrying a T-DNA-containing plasmid.
Collapse
Affiliation(s)
- Benoît Lacroix
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA;
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA;
| |
Collapse
|
35
|
Meyer T, Thiour-Mauprivez C, Wisniewski-Dyé F, Kerzaon I, Comte G, Vial L, Lavire C. Ecological Conditions and Molecular Determinants Involved in Agrobacterium Lifestyle in Tumors. FRONTIERS IN PLANT SCIENCE 2019; 10:978. [PMID: 31417593 PMCID: PMC6683767 DOI: 10.3389/fpls.2019.00978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/11/2019] [Indexed: 05/07/2023]
Abstract
The study of pathogenic agents in their natural niches allows for a better understanding of disease persistence and dissemination. Bacteria belonging to the Agrobacterium genus are soil-borne and can colonize the rhizosphere. These bacteria are also well known as phytopathogens as they can cause tumors (crown gall disease) by transferring a DNA region (T-DNA) into a wide range of plants. Most reviews on Agrobacterium are focused on virulence determinants, T-DNA integration, bacterial and plant factors influencing the efficiency of genetic transformation. Recent research papers have focused on the plant tumor environment on the one hand, and genetic traits potentially involved in bacterium-plant interactions on the other hand. The present review gathers current knowledge about the special conditions encountered in the tumor environment along with the Agrobacterium genetic determinants putatively involved in bacterial persistence inside a tumor. By integrating recent metabolomic and transcriptomic studies, we describe how tumors develop and how Agrobacterium can maintain itself in this nutrient-rich but stressful and competitive environment.
Collapse
Affiliation(s)
- Thibault Meyer
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Clémence Thiour-Mauprivez
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
- Biocapteurs-Analyses-Environment, Universite de Perpignan Via Domitia, Perpignan, France
- Laboratoire de Biodiversite et Biotechnologies Microbiennes, USR 3579 Sorbonne Universites (UPMC) Paris 6 et CNRS Observatoire Oceanologique, Paris, France
| | | | - Isabelle Kerzaon
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Gilles Comte
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Ludovic Vial
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| | - Céline Lavire
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Lyon, France
| |
Collapse
|
36
|
Zuniga-Soto E, Fitzpatrick DA, Doohan FM, Mullins E. Insights into the transcriptomic response of the plant engineering bacterium Ensifer adhaerens OV14 during transformation. Sci Rep 2019; 9:10344. [PMID: 31316079 PMCID: PMC6637203 DOI: 10.1038/s41598-019-44648-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 05/08/2019] [Indexed: 11/08/2022] Open
Abstract
The ability to engineer plant genomes has been primarily driven by the soil bacterium Agrobacterium tumefaciens but recently the potential of alternative rhizobia such as Rhizobium etli and Ensifer adhaerens OV14, the latter of which supports Ensifer Mediated Transformation (EMT) has been reported. Surprisingly, a knowledge deficit exists in regards to understanding the whole genome processes underway in plant transforming bacteria, irrespective of the species. To begin to address the issue, we undertook a temporal RNAseq-based profiling study of E. adhaerens OV14 in the presence/absence of Arabidopsis thaliana tissues. Following co-cultivation with root tissues, 2333 differentially expressed genes (DEGs) were noted. Meta-analysis of the RNAseq data sets identified a clear shift from plasmid-derived gene expression to chromosomal-based transcription within the early stages of bacterium-plant co-cultivation. During this time, the number of differentially expressed prokaryotic genes increased steadily out to 7 days co-cultivation, a time at which optimum rates of transformation were observed. Gene ontology evaluations indicated a role for both chromosomal and plasmid-based gene families linked specifically with quorum sensing, flagellin production and biofilm formation in the process of EMT. Transcriptional evaluation of vir genes, housed on the pCAMBIA 5105 plasmid in E. adhaerens OV14 confirmed the ability of E. adhaerens OV14 to perceive and activate its transcriptome in response to the presence of 200 µM of acetosyringone. Significantly, this is the first study to characterise the whole transcriptomic response of a plant engineering bacterium in the presence of plant tissues and provides a novel insight into prokaryotic genetic processes that support T-DNA transfer.
Collapse
Affiliation(s)
- Evelyn Zuniga-Soto
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - David A Fitzpatrick
- Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | - Fiona M Doohan
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ewen Mullins
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland.
| |
Collapse
|
37
|
Novel Salicylic Acid Analogs Induce a Potent Defense Response in Arabidopsis. Int J Mol Sci 2019; 20:ijms20133356. [PMID: 31288496 PMCID: PMC6651783 DOI: 10.3390/ijms20133356] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 11/17/2022] Open
Abstract
The master regulator of salicylic acid (SA)-mediated plant defense, NPR1 (NONEXPRESSER OF PR GENES 1) and its paralogs NPR3 and NPR4, act as SA receptors. After the perception of a pathogen, plant cells produce SA in the chloroplast. In the presence of SA, NPR1 protein is reduced from oligomers to monomers, and translocated into the nucleus. There, NPR1 binds to TGA, TCP, and WRKY transcription factors to induce expression of plant defense genes. A list of compounds structurally similar to SA was generated using ChemMine Tools and its Clustering Toolbox. Several of these analogs can induce SA-mediated defense and inhibit growth of Pseudomonas syringae in Arabidopsis. These analogs, when sprayed on Arabidopsis, can induce the accumulation of the master regulator of plant defense NPR1. In a yeast two-hybrid system, these analogs can strengthen the interactions among NPR proteins. We demonstrated that these analogs can induce the expression of the defense marker gene PR1. Furthermore, we hypothesized that these SA analogs could be potent tools against the citrus greening pathogen Candidatus liberibacter spp. In fact, our results suggest that the SA analogs we tested using Arabidopsis may also be effective for inducing a defense response in citrus. Several SA analogs consistently strengthened the interactions between citrus NPR1 and NPR3 proteins in a yeast two-hybrid system. In future assays, we plan to test whether these analogs avoid degradation by SA hydroxylases from plant pathogens. In future assays, we plan to test whether these analogs avoid degradation by SA hydroxylases from plant pathogens.
Collapse
|
38
|
Zhang X, Niu M, Teixeira da Silva JA, Zhang Y, Yuan Y, Jia Y, Xiao Y, Li Y, Fang L, Zeng S, Ma G. Identification and functional characterization of three new terpene synthase genes involved in chemical defense and abiotic stresses in Santalum album. BMC PLANT BIOLOGY 2019; 19:115. [PMID: 30922222 PMCID: PMC6437863 DOI: 10.1186/s12870-019-1720-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/14/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND It is well known that aromatic essential oils extracted from the heartwood of Santalum album L. have wide economic value. However, little is known about the role of terpenoids in response to various adverse environmental stresses as other plants do in the form of signals during plant-environment interactions. RESULTS In this study, trace amounts of volatiles consisting of α-santalene, epi-β-santalene, β-santalene, α-santalol, β-santalol, (E)-α-bergamotene, (E)-β-farnesene and β-bisabolene were found in the leaves of mature S. album trees. We identified more than 40 candidate terpene synthase (TPS) unigenes by mining publicly-available RNA-seq data and characterized the enzymes encoded by three cDNAs: one mono-TPS catalyzes the formation of mostly α-terpineol, and two multifunctional sesqui-TPSs, one of which produces (E)-α-bergamotene and sesquisabinene as major products and another which catalyzes the formation of (E)-β-farnesene, (E)-nerolidol and (E,E)-farnesol as main products. Metabolite signatures and gene expression studies confirmed that santalol content is closely related with santalene synthase (SaSSY) transcripts in heartwood, which is key enzyme responsible for santalol biosynthesis. However, the expression of three new SaTPS genes differed significantly from SaSSY in the essential oil-producing heartwood. Increased activities of antioxidant enzymes, superoxide dismutase, catalase, peroxidase and ascorbate peroxidase, were detected in different tissues of S. album plants after applying 1 mM methyl jasmonate (MeJA) and 1 mM salicylic acid (SA), or exposure to 4°C, 38°C and high light intensity. MeJA and SA dramatically induced the expression of SaTPS1 and SaTPS2 in leaves. SaTPS1 to 3 transcripts were differentially activated among different tissues under adverse temperature and light stresses. In contrast, almost all SaSSY transcripts decreased in response to these environmental stresses, unlike SaTPS1 to 3. CONCLUSIONS Multifunctional enzymes were biochemically characterized, including one chloroplastic mono-TPS and two cytosolic sesqui-TPSs in sandalwood. Our results suggest the ecological importance of these three new SaTPS genes in defensive response to biotic attack and abiotic stresses in S. album.
Collapse
Affiliation(s)
- Xinhua Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Meiyun Niu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | | | - Yueya Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yunfei Yuan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yongxia Jia
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yangyang Xiao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuan Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guohua Ma
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
39
|
Hao G, Naumann TA, Vaughan MM, McCormick S, Usgaard T, Kelly A, Ward TJ. Characterization of a Fusarium graminearum Salicylate Hydroxylase. Front Microbiol 2019; 9:3219. [PMID: 30671040 PMCID: PMC6331432 DOI: 10.3389/fmicb.2018.03219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/11/2018] [Indexed: 11/13/2022] Open
Abstract
Salicylic acid (SA) plays an important role in regulating plant defense responses against pathogens. However, pathogens have evolved ways to manipulate plant SA-mediated defense signaling. Fusarium graminearum causes Fusarium head blight (FHB) and reduces crop yields and quality by producing various mycotoxins. In this study, we aimed to identify the salicylate hydroxylase in F. graminearum and determine its role in wheat head blight development. We initially identified a gene in F. graminearum strain NRRL 46422 that encodes a putative salicylate hydroxylase (designated FgShyC). However, the FgShyC deletion mutant showed a similar ability to degrade SA as wild-type strain 46422; nor did overexpression of FgShyC in E. coli convert SA to catechol. The results indicate that FgShyC is not involved in SA degradation. Further genome sequence analyses resulted in the identification of eight salicylate hydroxylase candidates. Upon addition of 1 mM SA, FGSG_03657 (designated FgShy1), was induced approximately 400-fold. Heterologous expression of FgShy1 in E. coli converted SA to catechol, confirming that FgShy1 is a salicylate hydroxylase. Deletion mutants of FgShy1 were greatly impaired but not completely blocked in SA degradation. Expression analyses of infected tissue showed that FgShy1 was induced during infection, but virulence assays revealed that deletion of FgShy1 alone was not sufficient to affect FHB severity. Although the Fgshy1 deletion mutant did not reduce pathogenicity, we cannot rule out that additional salicylate hydroxylases are present in F. graminearum and characterization of these enzymes will be necessary to fully understand the role of SA-degradation in FHB pathogenesis.
Collapse
Affiliation(s)
- Guixia Hao
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture – Agricultural Research Service, Peoria, IL, United States
| | | | | | | | | | | | | |
Collapse
|
40
|
Pascale A, Proietti S, Pantelides IS, Stringlis IA. Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. FRONTIERS IN PLANT SCIENCE 2019; 10:1741. [PMID: 32038698 PMCID: PMC6992662 DOI: 10.3389/fpls.2019.01741] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/11/2019] [Indexed: 05/18/2023]
Abstract
Plants host a mesmerizing diversity of microbes inside and around their roots, known as the microbiome. The microbiome is composed mostly of fungi, bacteria, oomycetes, and archaea that can be either pathogenic or beneficial for plant health and fitness. To grow healthy, plants need to surveil soil niches around the roots for the detection of pathogenic microbes, and in parallel maximize the services of beneficial microbes in nutrients uptake and growth promotion. Plants employ a palette of mechanisms to modulate their microbiome including structural modifications, the exudation of secondary metabolites and the coordinated action of different defence responses. Here, we review the current understanding on the composition and activity of the root microbiome and how different plant molecules can shape the structure of the root-associated microbial communities. Examples are given on interactions that occur in the rhizosphere between plants and soilborne fungi. We also present some well-established examples of microbiome harnessing to highlight how plants can maximize their fitness by selecting their microbiome. Understanding how plants manipulate their microbiome can aid in the design of next-generation microbial inoculants for targeted disease suppression and enhanced plant growth.
Collapse
Affiliation(s)
- Alberto Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Iakovos S. Pantelides
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
- *Correspondence: Iakovos S. Pantelides, ; Ioannis A. Stringlis,
| | - Ioannis A. Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
- *Correspondence: Iakovos S. Pantelides, ; Ioannis A. Stringlis,
| |
Collapse
|
41
|
Nonaka S, Someya T, Kadota Y, Nakamura K, Ezura H. Super- Agrobacterium ver. 4: Improving the Transformation Frequencies and Genetic Engineering Possibilities for Crop Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1204. [PMID: 31649690 PMCID: PMC6791131 DOI: 10.3389/fpls.2019.01204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/02/2019] [Indexed: 05/07/2023]
Abstract
Agrobacterium tumefaciens has been utilized for both transient and stable transformations of plants. These transformation methods have been used in fields such as breeding GM crops, protein production in plant cells, and the functional analysis of genes. However, some plants have significantly lower transient gene transfer and stable transformation rates, creating a technical barrier that needs to be resolved. In this study, Super-Agrobacterium was updated to ver. 4 by introducing both the ACC deaminase (acdS) and GABA transaminase (gabT) genes, whose resultant enzymes degrade ACC, the ethylene precursor, and GABA, respectively. A. tumefaciens strain GV2260, which is similar to other major strains (EHA105, GV3101, LBA4404, and MP90), was used in this study. The abilities of the Super-Agrobacterium ver. 4 were evaluated in Erianthus ravennae, Solanum lycopersicum "Micro-Tom," Nicotiana benthamiana, and S. torvum. Super-Agrobacterium ver. 4 showed the highest T-DNA transfer (transient transformation) frequencies in E. ravennae and S. lycopersicum, but not in N. benthamiana and S. torvum. In tomato, Super-Agrobacterium ver. 4 increased the stable transformation rate by 3.6-fold compared to the original GV2260 strain. Super-Agrobacterium ver. 4 enables reduction of the amount of time and labor required for transformations by approximately 72%, and is therefore a more effective and powerful tool for plant genetic engineering and functional analysis, than the previously developed strains. As our system has a plasmid containing the acdS and gabT genes, it could be used in combination with other major strains such as EHA105, EHA101, LBA4404, MP90, and AGL1. Super-Agrobacterium ver. 4, could thus possibly be a breakthrough application for improving basic plant science research methods.
Collapse
Affiliation(s)
- Satoko Nonaka
- Tsukuba Plant Innovation Research Center, Gene Research Center, University of Tsukuba, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Satoko Nonaka, ; Hiroshi Ezura,
| | - Tatsuhiko Someya
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yasuhiro Kadota
- RIKEN Center for Sustainable Resource Science, Plant Immunity Group, Yokohama, Japan
| | - Kouji Nakamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ezura
- Tsukuba Plant Innovation Research Center, Gene Research Center, University of Tsukuba, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Satoko Nonaka, ; Hiroshi Ezura,
| |
Collapse
|
42
|
Vaghchhipawala Z, Radke S, Nagy E, Russell ML, Johnson S, Gelvin SB, Gilbertson LA, Ye X. RepB C-terminus mutation of a pRi-repABC binary vector affects plasmid copy number in Agrobacterium and transgene copy number in plants. PLoS One 2018; 13:e0200972. [PMID: 30412579 PMCID: PMC6226153 DOI: 10.1371/journal.pone.0200972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/26/2018] [Indexed: 12/23/2022] Open
Abstract
A native repABC replication origin from pRiA4b was previously reported as a single copy plasmid in Agrobacterium tumefaciens and can improve the production of transgenic plants with a single copy insertion of transgenes when it is used in binary vectors for Agrobacterium-mediated transformation. A high copy pRi-repABC variant plasmid, pTF::Ri, which does not improve the frequency of single copy transgenic plants, has been reported in the literature. Sequencing the high copy pTF::Ri repABC operon revealed the presence of two mutations: one silent mutation and one missense mutation that changes a tyrosine to a histidine (Y299H) in a highly conserved area of the C-terminus of the RepB protein (RepBY299H). Reproducing these mutations in the wild-type pRi-repABC binary vector showed that Agrobacterium cells with the RepBY299H mutation grow faster on both solidified and in liquid medium, and have higher plasmid copy number as determined by ddPCR. In order to investigate the impact of the RepBY299H mutation on transformation and quality plant production, the RepBY299H mutated pRi-repABC binary vector was compared with the original wild-type pRi-repABC binary vector and a multi-copy oriV binary vector in canola transformation. Molecular analyses of the canola transgenic plants demonstrated that the multi-copy pRi-repABC with the RepBY299H mutation provides no advantage in generating high frequency single copy, backbone-free transgenic plants in comparison with the single copy wild-type pRi-repABC binary vector.
Collapse
Affiliation(s)
| | - Sharon Radke
- Woodland Campus, Monsanto Company, Woodland, CA, United States of America
| | - Ervin Nagy
- Monsanto Company, St. Louis, MO, United States of America
| | - Mary L. Russell
- Woodland Campus, Monsanto Company, Woodland, CA, United States of America
| | - Susan Johnson
- Monsanto Company, St. Louis, MO, United States of America
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Stanton B. Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | | | - Xudong Ye
- Monsanto Company, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
43
|
Zhu F, Heinen R, van der Sluijs M, Raaijmakers C, Biere A, Bezemer TM. Species-specific plant-soil feedbacks alter herbivore-induced gene expression and defense chemistry in Plantago lanceolata. Oecologia 2018; 188:801-811. [PMID: 30109421 PMCID: PMC6208702 DOI: 10.1007/s00442-018-4245-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/18/2018] [Indexed: 12/24/2022]
Abstract
Plants actively interact with antagonists and beneficial organisms occurring in the above- and belowground domains of terrestrial ecosystems. In the past decade, studies have focused on the role of plant-soil feedbacks (PSF) in a broad range of ecological processes. However, PSF and its legacy effects on plant defense traits, such as induction of defense-related genes and production of defensive secondary metabolites, have not received much attention. Here, we study soil legacy effects created by twelve common grassland plant species on the induction of four defense-related genes, involved in jasmonic acid signaling, related to chewing herbivore defense (LOX2, PPO7), and in salicylic acid signaling, related to pathogen defense (PR1 and PR2) in Plantago lanceolata in response to aboveground herbivory by Mamestra brassicae. We also assessed soil legacy and herbivory effects on the production of terpenoid defense compounds (the iridoid glycosides aucubin and catalpol) in P. lanceolata. Our results show that both soil legacy and herbivory influence phenotypes of P. lanceolata in terms of induction of Pl PPO7 and Pl LOX2, whereas the expression of Pl PR1 and Pl PR2-1 is not affected by soil legacies, nor by herbivory. We also find species-specific soil legacy effects on the production of aucubin. Moreover, P. lanceolata accumulates more catalpol when they are grown in soils conditioned by grass species. Our study highlights that PSF can influence aboveground plant-insect interactions through the impacts on plant defense traits and suggests that aboveground plant defense responses can be determined, at least partly, by plant-specific legacy effects induced by belowground organisms.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands.
| | - Robin Heinen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands.
- Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, P.O. Box 9505, 2300RA, Leiden, The Netherlands.
| | - Martijn van der Sluijs
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands
| | - Ciska Raaijmakers
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands
| | - Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands
| | - T Martijn Bezemer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands
- Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, P.O. Box 9505, 2300RA, Leiden, The Netherlands
| |
Collapse
|
44
|
N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E4920-E4929. [PMID: 29735713 DOI: 10.1073/pnas.1805291115] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Systemic acquired resistance (SAR) is a global response in plants induced at the site of infection that leads to long-lasting and broad-spectrum disease resistance at distal, uninfected tissues. Despite the importance of this priming mechanism, the identity and complexity of defense signals that are required to initiate SAR signaling is not well understood. In this paper, we describe a metabolite, N-hydroxy-pipecolic acid (N-OH-Pip) and provide evidence that this mobile molecule plays a role in initiating SAR signal transduction in Arabidopsis thaliana We demonstrate that FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1), a key regulator of SAR-associated defense priming, can synthesize N-OH-Pip from pipecolic acid in planta, and exogenously applied N-OH-Pip moves systemically in Arabidopsis and can rescue the SAR-deficiency of fmo1 mutants. We also demonstrate that N-OH-Pip treatment causes systemic changes in the expression of pathogenesis-related genes and metabolic pathways throughout the plant and enhances resistance to a bacterial pathogen. This work provides insight into the chemical nature of a signal for SAR and also suggests that the N-OH-Pip pathway is a promising target for metabolic engineering to enhance disease resistance.
Collapse
|
45
|
Su H, Song S, Yan X, Fang L, Zeng B, Zhu Y. Endogenous salicylic acid shows different correlation with baicalin and baicalein in the medicinal plant Scutellaria baicalensis Georgi subjected to stress and exogenous salicylic acid. PLoS One 2018; 13:e0192114. [PMID: 29438420 PMCID: PMC5810995 DOI: 10.1371/journal.pone.0192114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
Salicylic acid (SA) is synthesized via the phenylalanine lyase (PAL) and isochorismate synthase (ICS) pathways and can influence the stress response in plants by regulating certain secondary metabolites. However, the association between SA and particular secondary metabolites in the Chinese medicinal plant Scutellaria baicalensis Georgi is unclear. To elucidate the association between SA and the secondary metabolites baicalin and baicalein, which constitute the primary effective components of S. baicalensis, we subjected seedlings to drought and salt stress and exogenous SA treatment in a laboratory setting and tested the expression of PAL and ICS, as well as the content of free SA (FSA), total SA (TSA), baicalin, and baicalein. We also assessed the correlation of FSA and TSA with PAL and ICS, and with baicalin and baicalein accumulation, respectively. The results indicated that both FSA and TSA were positively correlated with PAL, ICS, and baicalin, but negatively correlated with baicalein. The findings of this study improve our understanding of the manner in which SA regulates secondary metabolites in S. baicalensis.
Collapse
Affiliation(s)
- Hu Su
- Life Science Department, Nanchang University, Nanchang, Jiangxi Province, China
- Life Science Department, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province, China
| | - Shurui Song
- Life Science Department, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province, China
| | - Xin Yan
- Life Science Department, Nanchang University, Nanchang, Jiangxi Province, China
| | - Limin Fang
- Life Science Department, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province, China
| | - Bin Zeng
- Life Science Department, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province, China
| | - Youlin Zhu
- Life Science Department, Nanchang University, Nanchang, Jiangxi Province, China
- * E-mail:
| |
Collapse
|
46
|
Functional Analogues of Salicylic Acid and Their Use in Crop Protection. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8010005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
47
|
Attai H, Rimbey J, Smith GP, Brown PJB. Expression of a Peptidoglycan Hydrolase from Lytic Bacteriophages Atu_ph02 and Atu_ph03 Triggers Lysis of Agrobacterium tumefaciens. Appl Environ Microbiol 2017; 83:e01498-17. [PMID: 28970228 PMCID: PMC5691410 DOI: 10.1128/aem.01498-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/23/2017] [Indexed: 01/07/2023] Open
Abstract
To provide food security, innovative approaches to preventing plant disease are currently being explored. Here, we demonstrate that lytic bacteriophages and phage lysis proteins are effective at triggering lysis of the phytopathogen Agrobacterium tumefaciens Phages Atu_ph02 and Atu_ph03 were isolated from wastewater and induced lysis of C58-derived strains of A. tumefaciens The coinoculation of A. tumefaciens with phages on potato discs limited tumor formation. The genomes of Atu_ph02 and Atu_ph03 are nearly identical and are ∼42% identical to those of T7 supercluster phages. In silico attempts to find a canonical lysis cassette were unsuccessful; however, we found a putative phage peptidoglycan hydrolase (PPH), which contains a C-terminal transmembrane domain. Remarkably, the endogenous expression of pph in the absence of additional phage genes causes a block in cell division and subsequent lysis of A. tumefaciens cells. When the presumed active site of the N-acetylmuramidase domain carries an inactivating mutation, PPH expression causes extensive cell branching due to a block in cell division but does not trigger rapid cell lysis. In contrast, the mutation of positively charged residues at the extreme C terminus of PPH causes more rapid cell lysis. Together, these results suggest that PPH causes a block in cell division and triggers cell lysis through two distinct activities. Finally, the potent killing activity of this single lysis protein can be modulated, suggesting that it could be engineered to be an effective enzybiotic.IMPORTANCE The characterization of bacteriophages such as Atu_ph02 and Atu_ph03, which infect plant pathogens such as Agrobacterium tumefaciens, may be the basis of new biocontrol strategies. First, cocktails of diverse bacteriophages could be used as a preventative measure to limit plant diseases caused by bacteria; a bacterial pathogen is unlikely to simultaneously develop resistances to multiple bacteriophage species. The specificity of bacteriophage treatment for the host is an asset in complex communities, such as in orchards where it would be detrimental to harm the symbiotic bacteria in the environment. Second, bacteriophages are potential sources of enzymes that efficiently lyse bacterial cells. These phage proteins may have a broad specificity, but since proteins do not replicate as phages do, their effect is highly localized, providing an alternative to traditional antibiotic treatments. Thus, studies of lytic bacteriophages that infect A. tumefaciens may provide insights for designing preventative strategies against bacterial pathogens.
Collapse
Affiliation(s)
- Hedieh Attai
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jeanette Rimbey
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - George P Smith
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
48
|
Zehra A, Meena M, Dubey MK, Aamir M, Upadhyay RS. Synergistic effects of plant defense elicitors and Trichoderma harzianum on enhanced induction of antioxidant defense system in tomato against Fusarium wilt disease. BOTANICAL STUDIES 2017; 58:44. [PMID: 29098503 PMCID: PMC5668223 DOI: 10.1186/s40529-017-0198-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/20/2017] [Indexed: 05/20/2023]
Abstract
Plant defense against their pathogens can be induced by a complex network of different inducers. The present study investigates the synergistic effect of Trichoderma harzianum, exogenous salicylic acid (SA) and methyl jasmonate (MeJA) over the response and regulation of the antioxidant defense mechanisms and lipid peroxidation in tomato plants against Fusarium wilt disease. In the present work, tomato plants were infected by Fusarium oxysporum f. sp. lycopersici 3 days after inoculated with T. harzianum and/or sprayed daily for 3 days with chemical inducers (SA and MeJA). Plants were analysed at 0, 24, 48, 72 and 96 h after inoculation with Fusarium oxysporum f. sp. lycopersici. Infection of tomato plants by pathogen led to strong reduction in the dry weight of roots and shoots with the enhanced concentration of H2O2 and varying degree of lipid peroxidation. Concurrently, exogenous SA, when applied with pathogen greatly enhanced H2O2 content as well as activities of antioxidant enzymes except catalase (CAT) and ascorbate peroxidase (APx). The pathogen challenged plants pretreated with T. harzianum and MeJA together exhibited less lipid peroxidation and as well as the elevated level of ascorbic acid and enhanced activities of antioxidant enzymes. All applied treatments protected tomato seedlings against Fusarium wilt disease but the percentage of protection was found higher in plants pretreated with the combination of T. harzianum and chemical inducers.
Collapse
Affiliation(s)
- Andleeb Zehra
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh 221 005 India
- Department of Botany, Banaras Hindu University, Varanasi, 221 005 India
| | - Mukesh Meena
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh 221 005 India
| | - Manish Kumar Dubey
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh 221 005 India
| | - Mohd. Aamir
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh 221 005 India
| | - R. S. Upadhyay
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh 221 005 India
| |
Collapse
|
49
|
Hwang HH, Yu M, Lai EM. Agrobacterium-mediated plant transformation: biology and applications. THE ARABIDOPSIS BOOK 2017; 15:e0186. [PMID: 31068763 PMCID: PMC6501860 DOI: 10.1199/tab.0186] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant genetic transformation heavily relies on the bacterial pathogen Agrobacterium tumefaciens as a powerful tool to deliver genes of interest into a host plant. Inside the plant nucleus, the transferred DNA is capable of integrating into the plant genome for inheritance to the next generation (i.e. stable transformation). Alternatively, the foreign DNA can transiently remain in the nucleus without integrating into the genome but still be transcribed to produce desirable gene products (i.e. transient transformation). From the discovery of A. tumefaciens to its wide application in plant biotechnology, numerous aspects of the interaction between A. tumefaciens and plants have been elucidated. This article aims to provide a comprehensive review of the biology and the applications of Agrobacterium-mediated plant transformation, which may be useful for both microbiologists and plant biologists who desire a better understanding of plant transformation, protein expression in plants, and plant-microbe interaction.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, 402
| | - Manda Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| |
Collapse
|
50
|
Palmer IA, Shang Z, Fu ZQ. Salicylic acid-mediated plant defense: Recent developments, missing links, and future outlook. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11515-017-1460-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|