1
|
Lin YH, Lin MZ, Tian HQ, Li DX. Advances in research on the control of pollen tube growth by calcium in higher plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112436. [PMID: 40020974 DOI: 10.1016/j.plantsci.2025.112436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/29/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
The function of the pollen tube in higher plants is to deliver two male gametes to the embryo sac to ensure successful double fertilization. During this process, many interactions occur among pollen tubes and pistil cells and tissues. Calcium ion (Ca2 +) dynamics mediate these interactions to ensure that the pollen tube grows with correct polarity and orientation to reach its target, the embryo sac. The pistil tissue, which contains abundant Ca2+, attracts the growing pollen tube via changes in Ca2+. Recent studies have shed light on the mechanisms of vacuole biogenesis and the Ca2+ action pathway in the growing pollen tube. This successfully explains the distribution characteristics of high Ca2+ at the tip of the pollen tube and the physiological mechanism of Ca2+ controlling pollen tube growth. In last stage of pollen tube growth, some studies indicated that the cessation of pollen tube growth and breaking of the tube in embryo sac maybe related to Ca2+ dynamic, which finishes its complex journey of pollen tube in vivo.
Collapse
Affiliation(s)
- Yi Hua Lin
- Zhangzhou Health Vocational College, Zhangzhou 363000, China
| | - Mei Zhen Lin
- Zhangzhou Health Vocational College, Zhangzhou 363000, China
| | - Hui Qiao Tian
- School of Life Science, Xiamen University, Xiamen 361002, China
| | - Dong Xiao Li
- Henan institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
2
|
Tangpranomkorn S, Kimura Y, Igarashi M, Ishizuna F, Kato Y, Suzuki T, Nagae T, Fujii S, Takayama S. A land plant-specific VPS13 mediates polarized vesicle trafficking in germinating pollen. THE NEW PHYTOLOGIST 2025; 245:1072-1089. [PMID: 39617642 PMCID: PMC11712023 DOI: 10.1111/nph.20277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025]
Abstract
Pollen has an extraordinary ability to convert from a dry state to an extremely rapidly growing state. During pollination, pollen receives water and Ca2+ from the contacting pistil, which will be a directional cue for pollen tube germination. The subsequent rapid activation of directional vesicular transport must support the pollen tube growth, but the molecular mechanism leading to this process is largely unknown. We established a luciferase-based pollination assay to screen genetic mutants defective in the early stage after pollination. We identified a plant-specific VPS13, Arabidopsis thaliana VPS13a as important for pollen germination, and studied its molecular function. AtVPS13a mutation severely affected pollen germination and lipid droplet discharge from the rough endoplasmic reticulum. Cellular accumulation patterns of AtVPS13a and a secretory vesicle marker were synchronized at the polarized site, with a slight delay to the local Ca2+ elevation. We found a brief Ca2+ spike after initiation of pollen hydration, which may be related to the directional cues for pollen tube emergence. Although this Ca2+ dynamics after pollination was unaffected by the absence of AtVPS13a, the mutant suffered reduced cell wall deposition during pollen germination. AtVPS13a mediates pollen polarization, by regulating proper directional vesicular transport following Ca2+ signaling for directional tube outgrowth.
Collapse
Grants
- JP15K14626 Ministry of Education, Culture, Sports, Science and Technology
- JP16H01467 Ministry of Education, Culture, Sports, Science and Technology
- JP16H06380 Ministry of Education, Culture, Sports, Science and Technology
- JP16H06464 Ministry of Education, Culture, Sports, Science and Technology
- JP16H06467 Ministry of Education, Culture, Sports, Science and Technology
- JP18H02456 Ministry of Education, Culture, Sports, Science and Technology
- JP18H04776 Ministry of Education, Culture, Sports, Science and Technology
- JP18J13423 Ministry of Education, Culture, Sports, Science and Technology
- JP19J01563 Ministry of Education, Culture, Sports, Science and Technology
- JP21H05030 Ministry of Education, Culture, Sports, Science and Technology
- JP22H05172 Ministry of Education, Culture, Sports, Science and Technology
- JP22H05174 Ministry of Education, Culture, Sports, Science and Technology
- JP23K17987 Ministry of Education, Culture, Sports, Science and Technology
- JP24K01692 Ministry of Education, Culture, Sports, Science and Technology
- Suntory Foundation for Life Sciences
- JPMJPR16Q8 Japan Science and Technology Agency (JST)
- Ministry of Education, Culture, Sports, Science and Technology
- Suntory Foundation for Life Sciences
Collapse
Affiliation(s)
| | - Yuka Kimura
- Graduate School of Agricultural and Life SciencesUniversity of TokyoTokyo113‐8657Japan
| | - Motoko Igarashi
- Graduate School of Biological SciencesNara Institute of Science and TechnologyNara630‐0192Japan
| | - Fumiko Ishizuna
- Department of Human Life Science and Design, Faculty of Contemporary Human Life ScienceTokyo Kasei Gakuin University2600 Aihara‐machi, Machida‐shiTokyo194‐0292Japan
| | - Yoshinobu Kato
- Graduate School of Agricultural and Life SciencesUniversity of TokyoTokyo113‐8657Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and TechnologySaitama332‐0012Japan
| | - Takamasa Suzuki
- Graduate School of Bioscience and BiotechnologyChubu UniversityAichi487‐8501Japan
| | - Takuya Nagae
- Graduate School of Agricultural and Life SciencesUniversity of TokyoTokyo113‐8657Japan
| | - Sota Fujii
- Graduate School of Agricultural and Life SciencesUniversity of TokyoTokyo113‐8657Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE)Kyoto619‐0284Japan
| | - Seiji Takayama
- Graduate School of Agricultural and Life SciencesUniversity of TokyoTokyo113‐8657Japan
| |
Collapse
|
3
|
Vilarrasa-Blasi J, Vellosillo T, Jinkerson RE, Fauser F, Xiang T, Minkoff BB, Wang L, Kniazev K, Guzman M, Osaki J, Barrett-Wilt GA, Sussman MR, Jonikas MC, Dinneny JR. Multi-omics analysis of green lineage osmotic stress pathways unveils crucial roles of different cellular compartments. Nat Commun 2024; 15:5988. [PMID: 39013881 PMCID: PMC11252407 DOI: 10.1038/s41467-024-49844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/21/2024] [Indexed: 07/18/2024] Open
Abstract
Maintenance of water homeostasis is a fundamental cellular process required by all living organisms. Here, we use the single-celled green alga Chlamydomonas reinhardtii to establish a foundational understanding of osmotic-stress signaling pathways through transcriptomics, phosphoproteomics, and functional genomics approaches. Comparison of pathways identified through these analyses with yeast and Arabidopsis allows us to infer their evolutionary conservation and divergence across these lineages. 76 genes, acting across diverse cellular compartments, were found to be important for osmotic-stress tolerance in Chlamydomonas through their functions in cytoskeletal organization, potassium transport, vesicle trafficking, mitogen-activated protein kinase and chloroplast signaling. We show that homologs for five of these genes have conserved functions in stress tolerance in Arabidopsis and reveal a novel PROFILIN-dependent stage of acclimation affecting the actin cytoskeleton that ensures tissue integrity upon osmotic stress. This study highlights the conservation of the stress response in algae and land plants, and establishes Chlamydomonas as a unicellular plant model system to dissect the osmotic stress signaling pathway.
Collapse
Affiliation(s)
- Josep Vilarrasa-Blasi
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA.
| | - Tamara Vellosillo
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | - Robert E Jinkerson
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - Friedrich Fauser
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Tingting Xiang
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Benjamin B Minkoff
- Department of Biochemistry and Center for Genomics Science Innovation, University of Wisconsin, Madison, WI, 53706, USA
| | - Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Kiril Kniazev
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Michael Guzman
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | - Jacqueline Osaki
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | | | - Michael R Sussman
- Department of Biochemistry and Center for Genomics Science Innovation, University of Wisconsin, Madison, WI, 53706, USA
| | - Martin C Jonikas
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA.
| |
Collapse
|
4
|
Stephan OOH. Bio-positive effects of ionizing radiation on pollen: The role of ROS. PHYSIOLOGIA PLANTARUM 2024; 176:e14163. [PMID: 39141204 DOI: 10.1111/ppl.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/19/2023] [Accepted: 12/18/2023] [Indexed: 08/15/2024]
Abstract
The concept of 'hormesis' is defined as a dose-response relationship whereby low doses of various toxic substances or physical stressors trigger bio-positive effects in diverse biological systems, whereas high doses cause inhibition of cellular performance (e.g. growth, viability). The two-sided phenomenon of specific low-dose stimulation and high-dose inhibition imposed by a 'hormetic-factor' has been well documented in toxicology and pharmacology. Multitudinous factors have been identified that correspondingly cause hormetic effects in diverse taxa of animals, fungi, and plants. This study particularly aims to elucidate the molecular basis for stimulatory implications of ionizing radiation (IR) on plant male gametophytes (pollen). Beyond that, this analysis impacts general research on cell growth, plant breeding, radiation protection, and, in a wider sense, medical treatment. For this purpose, IR-related data were surveyed and discussed in connection with the present knowledge about pollen physiology. It is concluded that IR-induced reactive oxygen species (ROS) have a key role here. Moreover, it is hypothesized that IR-exposure shifts the ratio between diverse types of ROS in the cell. The interrelation between ROS, intracellular Ca2+-gradient, NADPH oxidases, ROS-scavengers, actin dynamics, and cell wall properties are most probably involved in IR-hormesis of pollen germination and tube growth. Modulation of gene expression, phytohormone signalling, and cellular antioxidant capacity are also implicated in IR-hormesis.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Bavaria, Germany
| |
Collapse
|
5
|
Dong J, Van Norman J, Žárský V, Zhang Y. Plant cell polarity: The many facets of sidedness. PLANT PHYSIOLOGY 2023; 193:1-5. [PMID: 37565502 PMCID: PMC10469367 DOI: 10.1093/plphys/kiad436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Affiliation(s)
- Juan Dong
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08891, USA
| | - Jaimie Van Norman
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 44, Prague 2, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic
| | - Yan Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian’jin 300071, China
| |
Collapse
|
6
|
Zhang R, Xu Y, Yi R, Shen J, Huang S. Actin cytoskeleton in the control of vesicle transport, cytoplasmic organization, and pollen tube tip growth. PLANT PHYSIOLOGY 2023; 193:9-25. [PMID: 37002825 DOI: 10.1093/plphys/kiad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Pollen tubes extend rapidly via tip growth. This process depends on a dynamic actin cytoskeleton, which has been implicated in controlling organelle movements, cytoplasmic streaming, vesicle trafficking, and cytoplasm organization in pollen tubes. In this update review, we describe the progress in understanding the organization and regulation of the actin cytoskeleton and the function of the actin cytoskeleton in controlling vesicle traffic and cytoplasmic organization in pollen tubes. We also discuss the interplay between ion gradients and the actin cytoskeleton that regulates the spatial arrangement and dynamics of actin filaments and the organization of the cytoplasm in pollen tubes. Finally, we describe several signaling components that regulate actin dynamics in pollen tubes.
Collapse
Affiliation(s)
- Ruihui Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanan Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ran Yi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiangfeng Shen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Yang L, Liu J, Wong CK, Lim BL. Movement of Lipid Droplets in the Arabidopsis Pollen Tube Is Dependent on the Actomyosin System. PLANTS (BASEL, SWITZERLAND) 2023; 12:2489. [PMID: 37447050 DOI: 10.3390/plants12132489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
The growth of pollen tubes, which depends on actin filaments, is pivotal for plant reproduction. Pharmacological experiments showed that while oryzalin and brefeldin A treatments had no significant effect on the lipid droplets (LDs) trafficking, while 2,3-butanedione monoxime (BDM), latrunculin B, SMIFH2, and cytochalasin D treatments slowed down LDs trafficking, in such a manner that only residual wobbling was observed, suggesting that trafficking of LDs in pollen tube is related to F-actin. While the trafficking of LDs in the wild-type pollen tubes and in myo11-2, myo11b1-1, myo11c1-1, and myo11c2-1 single mutants and myo11a1-1/myo11a2-1 double mutant were normal, their trafficking slowed down in a myosin-XI double knockout (myo11c1-1/myo11c2-1) mutant. These observations suggest that Myo11C1 and Myo11C2 motors are involved in LDs movement in pollen tubes, and they share functional redundancy. Hence, LDs movement in Arabidopsis pollen tubes relies on the actomyosin system.
Collapse
Affiliation(s)
- Lang Yang
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jinhong Liu
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ching-Kiu Wong
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Stroppa N, Onelli E, Moreau P, Maneta-Peyret L, Berno V, Cammarota E, Ambrosini R, Caccianiga M, Scali M, Moscatelli A. Sterols and Sphingolipids as New Players in Cell Wall Building and Apical Growth of Nicotiana tabacum L. Pollen Tubes. PLANTS (BASEL, SWITZERLAND) 2022; 12:8. [PMID: 36616135 PMCID: PMC9824051 DOI: 10.3390/plants12010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Pollen tubes are tip-growing cells that create safe routes to convey sperm cells to the embryo sac for double fertilization. Recent studies have purified and biochemically characterized detergent-insoluble membranes from tobacco pollen tubes. These microdomains, called lipid rafts, are rich in sterols and sphingolipids and are involved in cell polarization in organisms evolutionarily distant, such as fungi and mammals. The presence of actin in tobacco pollen tube detergent-insoluble membranes and the preferential distribution of these domains on the apical plasma membrane encouraged us to formulate the intriguing hypothesis that sterols and sphingolipids could be a "trait d'union" between actin dynamics and polarized secretion at the tip. To unravel the role of sterols and sphingolipids in tobacco pollen tube growth, we used squalestatin and myriocin, inhibitors of sterol and sphingolipid biosynthesis, respectively, to determine whether lipid modifications affect actin fringe morphology and dynamics, leading to changes in clear zone organization and cell wall deposition, thus suggesting a role played by these lipids in successful fertilization.
Collapse
Affiliation(s)
- Nadia Stroppa
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Elisabetta Onelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Patrick Moreau
- CNRS, Laboratoire de Biogenèse Membranaire, University of Bordeaux, UMR 5200, 71 Avenue Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Lilly Maneta-Peyret
- CNRS, Laboratoire de Biogenèse Membranaire, University of Bordeaux, UMR 5200, 71 Avenue Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Valeria Berno
- ALEMBIC Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, DIBIT 1, Via Olgettina 58, 20132 Milan, Italy
| | - Eugenia Cammarota
- ALEMBIC Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, DIBIT 1, Via Olgettina 58, 20132 Milan, Italy
| | - Roberto Ambrosini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Marco Caccianiga
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Monica Scali
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Alessandra Moscatelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
9
|
Municio-Diaz C, Muller E, Drevensek S, Fruleux A, Lorenzetti E, Boudaoud A, Minc N. Mechanobiology of the cell wall – insights from tip-growing plant and fungal cells. J Cell Sci 2022; 135:280540. [DOI: 10.1242/jcs.259208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ABSTRACT
The cell wall (CW) is a thin and rigid layer encasing the membrane of all plant and fungal cells. It ensures mechanical integrity by bearing mechanical stresses derived from large cytoplasmic turgor pressure, contacts with growing neighbors or growth within restricted spaces. The CW is made of polysaccharides and proteins, but is dynamic in nature, changing composition and geometry during growth, reproduction or infection. Such continuous and often rapid remodeling entails risks of enhanced stress and consequent damages or fractures, raising the question of how the CW detects and measures surface mechanical stress and how it strengthens to ensure surface integrity? Although early studies in model fungal and plant cells have identified homeostatic pathways required for CW integrity, recent methodologies are now allowing the measurement of pressure and local mechanical properties of CWs in live cells, as well as addressing how forces and stresses can be detected at the CW surface, fostering the emergence of the field of CW mechanobiology. Here, using tip-growing cells of plants and fungi as case study models, we review recent progress on CW mechanosensation and mechanical regulation, and their implications for the control of cell growth, morphogenesis and survival.
Collapse
Affiliation(s)
- Celia Municio-Diaz
- Université de Paris, CNRS, Institut Jacques Monod 1 , F-75006 Paris , France
- Equipe Labellisée LIGUE Contre le Cancer 2 , 75013 Paris , France
| | - Elise Muller
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Stéphanie Drevensek
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Antoine Fruleux
- LPTMS, CNRS, Université Paris-Saclay 4 , 91405 Orsay , France
| | - Enrico Lorenzetti
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Arezki Boudaoud
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod 1 , F-75006 Paris , France
- Equipe Labellisée LIGUE Contre le Cancer 2 , 75013 Paris , France
| |
Collapse
|
10
|
Zhou Z, Zheng S, Haq SIU, Zheng D, Qiu QS. Regulation of pollen tube growth by cellular pH and ions. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153792. [PMID: 35973258 DOI: 10.1016/j.jplph.2022.153792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Tip growth of the pollen tube is a model system for the study of cell polarity establishment in flowering plants. The tip growth of the pollen tube displays an oscillating pattern corresponding to cellular ion and pH dynamics. Therefore, cellular pH and ions play an important role in pollen growth and development. In this review, we summarized the current advances in understanding the function of cellular pH and ions in regulating pollen tube growth. We analyzed the physiological roles and underlying mechanisms of cellular pH and ions, including Ca2+, K+, and Cl-, in regulating pollen tube growth. We further examined the function of Ca2+ in regulating cytoskeletons, small G proteins, and cell wall development in relation to pollen tube growth. We also examined the regulatory roles of cellular pH in pollen tube growth as well as pH regulation of ion flow, cell wall development, auxin signaling, and cytoskeleton function in pollen. In addition, we assessed the regulation of pollen tube growth by proton pumps and the maintenance of pH homeostasis in the trans-Golgi network by ion transporters. The interplay of ion homeostasis and pH dynamics was also assessed. We discussed the unanswered questions regarding pollen tube growth that need to be addressed in the future.
Collapse
Affiliation(s)
- Zhenguo Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China.
| | - Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai, 810016, China
| | - Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai, 810016, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
11
|
Çetinbaş-Genç A, Conti V, Cai G. Let's shape again: the concerted molecular action that builds the pollen tube. PLANT REPRODUCTION 2022; 35:77-103. [PMID: 35041045 DOI: 10.1007/s00497-022-00437-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The pollen tube is being subjected to control by a complex network of communication that regulates its shape and the misfunction of a single component causes specific deformations. In flowering plants, the pollen tube is a tubular extension of the pollen grain required for successful sexual reproduction. Indeed, maintaining the unique shape of the pollen tube is essential for the pollen tube to approach the embryo sac. Many processes and molecules (such as GTPase activity, phosphoinositides, Ca2+ gradient, distribution of reactive oxygen species and nitric oxide, nonuniform pH values, organization of the cytoskeleton, balance between exocytosis and endocytosis, and cell wall structure) play key and coordinated roles in maintaining the cylindrical shape of pollen tubes. In addition, the above factors must also interact with each other so that the cell shape is maintained while the pollen tube follows chemical signals in the pistil that guide it to the embryo sac. Any intrinsic changes (such as erroneous signals) or extrinsic changes (such as environmental stresses) can affect the above factors and thus fertilization by altering the tube morphology. In this review, the processes and molecules that enable the development and maintenance of the unique shape of pollen tubes in angiosperms are presented emphasizing their interaction with specific tube shape. Thus, the purpose of the review is to investigate whether specific deformations in pollen tubes can help us to better understand the mechanism underlying pollen tube shape.
Collapse
Affiliation(s)
- Aslıhan Çetinbaş-Genç
- Department of Biology, Marmara University, Göztepe Campus, 34722, Kadıköy, Istanbul, Turkey.
| | - Veronica Conti
- Department of Life Sciences, University of Siena, via Mattioli 4, 53100, Siena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via Mattioli 4, 53100, Siena, Italy
| |
Collapse
|
12
|
Katano K, Suzuki N. What are the key mechanisms that alter the morphology of stigmatic papillae in Arabidopsis thaliana? PLANT SIGNALING & BEHAVIOR 2021; 16:1980999. [PMID: 34549683 PMCID: PMC9208798 DOI: 10.1080/15592324.2021.1980999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 05/31/2023]
Abstract
Pollination is one of the critical processes that determines crop yield and quality. Thus, it is an urgent need to elucidate the mechanisms underlying pollination. Our previous research has revealed a novel phenomenon that pollen attachment to stigma caused stigma shrinkage, whereas failure of pollen attachment to stigma due to the environmental stress induced elongation of stigmatic papillae. However, little is known about the mechanisms of these morphological alterations in stigmatic papillae. Since the RLK-ROPGEF-ROP network is a common mechanism for the elongation of pollen tubes and root hairs, this network may be also involved in the elongation of papillae in the stigma. In this review, we will discuss the known mechanisms regulating pollen tube growth and root hair elongation and attempt to propose an elongation mechanism of stigmatic papillae. In addition, we will suggest that the degradation of F-actin by a significant increase in Ca2+ induced by the components of pollen coat might be a putative molecular mechanism of stigmatic papillae shrinkage during pollen adhesion.
Collapse
Affiliation(s)
- Kazuma Katano
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Chiyoda, Japan
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, Tokyo, Japan
| | - Nobuhiro Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
13
|
Bibeau JP, Galotto G, Wu M, Tüzel E, Vidali L. Quantitative cell biology of tip growth in moss. PLANT MOLECULAR BIOLOGY 2021; 107:227-244. [PMID: 33825083 PMCID: PMC8492783 DOI: 10.1007/s11103-021-01147-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/25/2021] [Indexed: 05/16/2023]
Abstract
KEY MESSAGE Here we review, from a quantitative point of view, the cell biology of protonemal tip growth in the model moss Physcomitrium patens. We focus on the role of the cytoskeleton, vesicle trafficking, and cell wall mechanics, including reviewing some of the existing mathematical models of tip growth. We provide a primer for existing cell biological tools that can be applied to the future study of tip growth in moss. Polarized cell growth is a ubiquitous process throughout the plant kingdom in which the cell elongates in a self-similar manner. This process is important for nutrient uptake by root hairs, fertilization by pollen, and gametophyte development by the protonemata of bryophytes and ferns. In this review, we will focus on the tip growth of moss cells, emphasizing the role of cytoskeletal organization, cytoplasmic zonation, vesicle trafficking, cell wall composition, and dynamics. We compare some of the existing knowledge on tip growth in protonemata against what is known in pollen tubes and root hairs, which are better-studied tip growing cells. To fully understand how plant cells grow requires that we deepen our knowledge in a variety of forms of plant cell growth. We focus this review on the model plant Physcomitrium patens, which uses tip growth as the dominant form of growth at its protonemal stage. Because mosses and vascular plants shared a common ancestor more than 450 million years ago, we anticipate that both similarities and differences between tip growing plant cells will provide mechanistic information of tip growth as well as of plant cell growth in general. Towards this mechanistic understanding, we will also review some of the existing mathematical models of plant tip growth and their applicability to investigate protonemal morphogenesis. We attempt to integrate the conclusions and data across cell biology and physical modeling to our current state of knowledge of polarized cell growth in P. patens and highlight future directions in the field.
Collapse
Affiliation(s)
- Jeffrey P Bibeau
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Giulia Galotto
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Min Wu
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA, USA
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Erkan Tüzel
- Bioengineering Department, Temple University, Philadelphia, PA, USA
| | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA.
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
14
|
Dumais J. Mechanics and hydraulics of pollen tube growth. THE NEW PHYTOLOGIST 2021; 232:1549-1565. [PMID: 34492127 DOI: 10.1111/nph.17722] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
All kingdoms of life have evolved tip-growing cells able to mine their environment or deliver cargo to remote targets. The basic cellular processes supporting these functions are understood in increasing detail, but the multiple interactions between them lead to complex responses that require quantitative models to be disentangled. Here, I review the equations that capture the fundamental interactions between wall mechanics and cell hydraulics starting with a detailed presentation of James Lockhart's seminal model. The homeostatic feedbacks needed to maintain a steady tip velocity are then shown to offer a credible explanation for the pulsatile growth observed in some tip-growing cells. Turgor pressure emerges as a central variable whose role in the morphogenetic process has been a source of controversy for more than 50 yr. I argue that recasting Lockhart's work as a process of chemical stress relaxation can clarify how cells control tip growth and help us internalise the important but passive role played by turgor pressure in the morphogenetic process.
Collapse
Affiliation(s)
- Jacques Dumais
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar, Region of Valparaíso, Chile
| |
Collapse
|
15
|
Winship LJ, Rosen GA, Hepler PK. Apical pollen tube wall curvature correlates with growth and indicates localized changes in the yielding of the cell wall. PROTOPLASMA 2021; 258:1347-1358. [PMID: 34414478 DOI: 10.1007/s00709-021-01694-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/26/2021] [Indexed: 05/16/2023]
Abstract
The shape of the apical region of lily pollen tube changes rhythmically as the growth rate of the tube oscillates becoming alternately more prolate then back to oblate. We quantified shape change by calculating the curvature of the cross-sectional edge of the pollen tube tip and cross-correlating curvature changes with growth rate. The apical region takes the form of a partial elliptical spheroid, with variation in the length and location of the minor axis. During oscillation curvature profiles show a sharp increase in curvature at the "shoulders" of the apex when oblate, 4-7 μm from the flatter central zone. As the tip becomes more prolate, the "shoulders" decrease rapidly in curvature and move towards the growth axis as curvature at the tip increases. We understand curvature changes to represent differential changes in local wall expansion rates, driven by uniform turgor pressure and mediated by changes in wall polysaccharides. To become more oblate, the tip region must become less extensible than the "shoulder" region. And, as the tip becomes more prolate, the increased curvature must be due to increased local expansion. We found that changes in the growth velocity of the "shoulders" of the cell measured as the progress of the cell edge along the growth axis are cyclically out of phase with growth velocity at the tip such that the shoulder regions lag for part of the oscillation cycle, then "catch up" as the growth rate at the tip reaches a maximum and begins to decline. In this way the cell becomes oblate. Cell shape and growth rate oscillate in concert and are functionally related. Spatial change in edge growth rate points to important cellular locations for further investigation of vesicle movement and exocytosis, calcium gradients, and actin dynamics in lily pollen tubes.
Collapse
Affiliation(s)
| | - Grace A Rosen
- Hampshire College, Amherst, MA, 01002, USA
- VA Boston Healthcare System, 150 South Huntington Avenue, Boston, MA, 02130, USA
| | | |
Collapse
|
16
|
Li K, Prada J, Damineli DSC, Liese A, Romeis T, Dandekar T, Feijó JA, Hedrich R, Konrad KR. An optimized genetically encoded dual reporter for simultaneous ratio imaging of Ca 2+ and H + reveals new insights into ion signaling in plants. THE NEW PHYTOLOGIST 2021; 230:2292-2310. [PMID: 33455006 PMCID: PMC8383442 DOI: 10.1111/nph.17202] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/23/2020] [Indexed: 05/07/2023]
Abstract
Whereas the role of calcium ions (Ca2+ ) in plant signaling is well studied, the physiological significance of pH-changes remains largely undefined. Here we developed CapHensor, an optimized dual-reporter for simultaneous Ca2+ and pH ratio-imaging and studied signaling events in pollen tubes (PTs), guard cells (GCs), and mesophyll cells (MCs). Monitoring spatio-temporal relationships between membrane voltage, Ca2+ - and pH-dynamics revealed interconnections previously not described. In tobacco PTs, we demonstrated Ca2+ -dynamics lag behind pH-dynamics during oscillatory growth, and pH correlates more with growth than Ca2+ . In GCs, we demonstrated abscisic acid (ABA) to initiate stomatal closure via rapid cytosolic alkalization followed by Ca2+ elevation. Preventing the alkalization blocked GC ABA-responses and even opened stomata in the presence of ABA, disclosing an important pH-dependent GC signaling node. In MCs, a flg22-induced membrane depolarization preceded Ca2+ -increases and cytosolic acidification by c. 2 min, suggesting a Ca2+ /pH-independent early pathogen signaling step. Imaging Ca2+ and pH resolved similar cytosol and nuclear signals and demonstrated flg22, but not ABA and hydrogen peroxide to initiate rapid membrane voltage-, Ca2+ - and pH-responses. We propose close interrelation in Ca2+ - and pH-signaling that is cell type- and stimulus-specific and the pH having crucial roles in regulating PT growth and stomata movement.
Collapse
Affiliation(s)
- Kunkun Li
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Juan Prada
- Department of Bioinformatics, University of Wuerzburg, Wuerzburg 97074, Germany
| | - Daniel S. C. Damineli
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Bldg, College Park, MD 20742-5815, USA
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246-903, Brazil
| | - Anja Liese
- Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Tina Romeis
- Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University of Wuerzburg, Wuerzburg 97074, Germany
| | - José A. Feijó
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Bldg, College Park, MD 20742-5815, USA
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Kai Robert Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| |
Collapse
|
17
|
Scali M, Moscatelli A, Bini L, Onelli E, Vignani R, Wang W. Protein Analysis of Pollen Tubes after the Treatments of Membrane Trafficking Inhibitors Gains Insights on Molecular Mechanism Underlying Pollen Tube Polar Growth. Protein J 2021; 40:205-222. [PMID: 33751342 PMCID: PMC8019430 DOI: 10.1007/s10930-021-09972-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 12/03/2022]
Abstract
Pollen tube elongation is characterized by a highly-polarized tip growth process dependent on an efficient vesicular transport system and largely mobilized by actin cytoskeleton. Pollen tubes are an ideal model system to study exocytosis, endocytosis, membrane recycling, and signaling network coordinating cellular processes, structural organization and vesicular trafficking activities required for tip growth. Proteomic analysis was applied to identify Nicotiana tabacum Differentially Abundant Proteins (DAPs) after in vitro pollen tube treatment with membrane trafficking inhibitors Brefeldin A, Ikarugamycin and Wortmannin. Among roughly 360 proteins separated in two-dimensional gel electrophoresis, a total of 40 spots visibly changing between treated and control samples were identified by MALDI-TOF MS and LC-ESI-MS/MS analysis. The identified proteins were classified according to biological processes, and most proteins were related to pollen tube energy metabolism, including ammino acid synthesis and lipid metabolism, structural features of pollen tube growth as well modification and actin cytoskeleton organization, stress response, and protein degradation. In-depth analysis of proteins corresponding to energy-related pathways revealed the male gametophyte to be a reliable model of energy reservoir and dynamics.
Collapse
Affiliation(s)
- Monica Scali
- Department of Life Sciences, University of Siena, Siena, Italy.
| | | | - Luca Bini
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Rita Vignani
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Wei Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
18
|
Çetinbaş-Genç A, Cai G, Del Duca S. Treatment with spermidine alleviates the effects of concomitantly applied cold stress by modulating Ca 2+, pH and ROS homeostasis, actin filament organization and cell wall deposition in pollen tubes of Camellia sinensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:578-590. [PMID: 33065378 DOI: 10.1016/j.plaphy.2020.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
The aim of the current study was to examine the effect of spermidine treatment concomitant with cold stress on the elongation of Camellia sinensis pollen tube. When exogenous spermidine (0.05 mM) was applied concomitantly with cold stress, pollen germination rate and pollen tube length were significantly increased in comparison with cold stressed pollen tubes. In addition, spermidine treatment concomitantly with cold stress reduced pollen tube abnormalities induced by cold stress. Besides, cold-induced disorganizations of actin filaments were ameliorated after spermidine treatment along with cold stress because anisotropy levels of actin filaments in shank and apex of pollen tubes decreased. Changes in cold-induced callose distribution in the pollen tube cell wall were partially recovered after spermidine/cold stress treatment. Other cold-induced effects (decrease in Ca2+ content, reduction of pH gradient, accumulation of ROS) were reverted to adequate levels after spermidine treatment in conjunction with cold stress, indicating that pollen tubes are able to cope with stress. Thus, spermidine treatment reorganized the growth pattern of pollen tubes by modulating Ca2+ and ROS homeostasis, actin cytoskeleton organization, and cell wall deposition in Camellia sinensis pollen tubes under cold stress.
Collapse
Affiliation(s)
- Aslıhan Çetinbaş-Genç
- Department of Biology, Marmara University, Göztepe Campus, Kadıköy, 34722, Istanbul, Turkey.
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy.
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| |
Collapse
|
19
|
Adhikari PB, Liu X, Kasahara RD. Mechanics of Pollen Tube Elongation: A Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:589712. [PMID: 33193543 PMCID: PMC7606272 DOI: 10.3389/fpls.2020.589712] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 05/13/2023]
Abstract
Pollen tube (PT) serves as a vehicle that delivers male gametes (sperm cells) to a female gametophyte during double fertilization, which eventually leads to the seed formation. It is one of the fastest elongating structures in plants. Normally, PTs traverse through the extracellular matrix at the transmitting tract after penetrating the stigma. While the endeavor may appear simple, the molecular processes and mechanics of the PT elongation is yet to be fully resolved. Although it is the most studied "tip-growing" structure in plants, several features of the structure (e.g., Membrane dynamics, growth behavior, mechanosensing etc.) are only partially understood. In many aspects, PTs are still considered as a tissue rather than a "unique cell." In this review, we have attempted to discuss mainly on the mechanics behind PT-elongation and briefly on the molecular players involved in the process. Four aspects of PTs are particularly discussed: the PT as a cell, its membrane dynamics, mechanics of its elongation, and the potential mechanosensors involved in its elongation based on relevant findings in both plant and non-plant models.
Collapse
Affiliation(s)
- Prakash Babu Adhikari
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyan Liu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ryushiro D. Kasahara
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
20
|
Grebnev G, Cvitkovic M, Fritz C, Cai G, Smith AS, Kost B. Quantitative Structural Organization of Bulk Apical Membrane Traffic in Pollen Tubes. PLANT PHYSIOLOGY 2020; 183:1559-1585. [PMID: 32482906 PMCID: PMC7401101 DOI: 10.1104/pp.20.00380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 05/13/2023]
Abstract
Pollen tube tip growth depends on balancing secretion of cell wall material with endocytic recycling of excess material incorporated into the plasma membrane (PM). The classical model of tip growth, which predicts bulk secretion, occurs apically, and is compensated by subapical endocytosis, has been challenged in recent years. Many signaling proteins and lipids with important functions in the regulation of membrane traffic underlying tip growth associate with distinct regions of the pollen tube PM, and understanding the mechanisms responsible for the targeting of these regulatory factors to specific PM domains requires quantitative information concerning the sites of bulk secretion and endocytosis. Here, we quantitatively characterized the spatial organization of membrane traffic during tip growth by analyzing steady-state distributions and dynamics of FM4-64-labeled lipids and YFP-tagged transmembrane (TM) proteins in tobacco (Nicotiana tabacum) pollen tubes growing normally or treated with Brefeldin A to block secretion. We established that (1) secretion delivers TM proteins and recycled membrane lipids to the same apical PM domain, and (2) FM4-64-labeled lipids, but not the analyzed TM proteins, undergo endocytic recycling within a clearly defined subapical region. We mathematically modeled the steady-state PM distributions of all analyzed markers to better understand differences between them and to support the experimental data. Finally, we mapped subapical F-actin fringe and trans-Golgi network positioning relative to sites of bulk secretion and endocytosis to further characterize functions of these structures in apical membrane traffic. Our results support and further define the classical model of apical membrane traffic at the tip of elongating pollen tubes.
Collapse
Affiliation(s)
- Gleb Grebnev
- Cell Biology, Department of Biology, Friedrich-Alexander-University Erlangen Nuremberg, 91058 Erlangen, Germany
| | - Mislav Cvitkovic
- PULS Group, Department of Physics, Friedrich-Alexander-University Erlangen Nuremberg, 91058 Erlangen, Germany
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Carolin Fritz
- Cell Biology, Department of Biology, Friedrich-Alexander-University Erlangen Nuremberg, 91058 Erlangen, Germany
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Ana-Suncana Smith
- PULS Group, Department of Physics, Friedrich-Alexander-University Erlangen Nuremberg, 91058 Erlangen, Germany
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Benedikt Kost
- Cell Biology, Department of Biology, Friedrich-Alexander-University Erlangen Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
21
|
Katano K, Oi T, Suzuki N. Failure of Pollen Attachment to the Stigma Triggers Elongation of Stigmatic Papillae in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:989. [PMID: 32714359 PMCID: PMC7340091 DOI: 10.3389/fpls.2020.00989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/17/2020] [Indexed: 05/20/2023]
Abstract
Pollination is one of key determinants of yield production in important crops, such as grains and beans in which seeds are utilized as agricultural products. Thus, to fulfil food demand for growing world population, it is necessary to elucidate the mechanisms that regulate pollination, leading to increase in yield production. In this study, we compared detailed morphological characteristics of reproductive organs in Arabidopsis thaliana grown under control conditions or subjected to heat stress. Shorter length of anthers, filaments, and petals were observed in plants subjected to heat stress compared to those under control conditions. In contrast, heat stress resulted in enlargement of stigma via elongation of stigmatic papillae. Classification of stigmas based on patterns of pollen attachment indicated that pollen attachment to stigma clearly decreased under heat stress. In addition, artificial pollination experiment demonstrated that stigma shrank when pollen attached, but, continued to enlarge in the absence of pollen. Such modulation of stigma size depending on the presence or absence of pollen was observed both under control and heat stressed conditions. Taken together, these results suggest that elongation of stigmatic papillae is associated with failure of pollen attachment to the stigma, rather than heat stress. Furthermore, histochemical staining experiments suggest that Ca2+ derived from pollen together with O2 - might be associated with morphological alteration of stigma depending on the patterns of pollen attachment.
Collapse
Affiliation(s)
- Kazuma Katano
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda, Japan
| | - Takao Oi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Nobuhiro Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda, Japan
| |
Collapse
|
22
|
Guo J, Yang Z. Exocytosis and endocytosis: coordinating and fine-tuning the polar tip growth domain in pollen tubes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2428-2438. [PMID: 32173729 PMCID: PMC7178420 DOI: 10.1093/jxb/eraa134] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/11/2020] [Indexed: 05/06/2023]
Abstract
Pollen tubes rapidly elongate, penetrate, and navigate through multiple female tissues to reach ovules for sperm delivery by utilizing a specialized form of polar growth known as tip growth. This process requires a battery of cellular activities differentially occurring at the apical growing region of the plasma membrane (PM), such as the differential cellular signaling involving calcium (Ca2+), phospholipids, and ROP-type Rho GTPases, fluctuation of ions and pH, exocytosis and endocytosis, and cell wall construction and remodeling. There is an emerging understanding of how at least some of these activities are coordinated and/or interconnected. The apical active ROP modulates exocytosis to the cell apex for PM and cell wall expansion differentially occurring at the tip. The differentiation of the cell wall involves at least the preferential distribution of deformable pectin polymers to the apex and non-deformable pectin polymers to the shank of pollen tubes, facilitating the apical cell expansion driven by high internal turgor pressure. Recent studies have generated inroads into how the ROP GTPase-based intracellular signaling is coordinated spatiotemporally with the external wall mechanics to maintain the tubular cell shape and how the apical cell wall mechanics are regulated to allow rapid tip growth while maintaining the cell wall integrity under the turgor pressure. Evidence suggests that exocytosis and endocytosis play crucial but distinct roles in this spatiotemporal coordination. In this review, we summarize recent advances in the regulation and coordination of the differential pectin distribution and the apical domain of active ROP by exocytosis and endocytosis in pollen tubes.
Collapse
Affiliation(s)
- Jingzhe Guo
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Zhenbiao Yang
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
- Correspondence:
| |
Collapse
|
23
|
Çetinbaş-Genç A. Putrescine modifies the pollen tube growth of tea (Camellia sinensis) by affecting actin organization and cell wall structure. PROTOPLASMA 2020; 257:89-101. [PMID: 31342152 DOI: 10.1007/s00709-019-01422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
The aim of the current study was to examine the effect of different exogenous putrescine concentrations (200, 400, 600, and 800 μM) on the tea pollen performance. It was shown that putrescine has a dose-dependent effect on pollen performance. Results exhibited that pollen germination and tube elongation were induced by 200 and 400 μM putrescine treatment, especially, 400 μM putrescine-enhanced pollen performance. However, pollen performance was inhibited by higher concentrations of putrescine. Putrescine concentrations above 400 μM changed the actin filament distribution in pollen tubes by affecting the distribution of sucrose synthase enzyme. Alterations of the distribution on sucrose synthase enzyme also caused the alterations in the dispersion of cellulose and callose in the cell wall, and morphological alterations such as balloon-shaped and snake-shaped pollen tube tip accompanied them. Moreover, putrescine concentrations above 400 μM caused a decrease of ROS level in apex and led to chromatin condensation of the generative nucleus. In conclusion, exogenous putrescine application can be used as a pollen performance enhancer at low concentrations while the high concentrations cause adverse effects reducing fertilization success.
Collapse
Affiliation(s)
- Aslıhan Çetinbaş-Genç
- Department of Biology, Marmara University, Göztepe Campus, Kadıköy, 34722, Istanbul, Turkey.
| |
Collapse
|
24
|
Podolyan A, Maksimov N, Breygina M. Redox-regulation of ion homeostasis in growing lily pollen tubes. JOURNAL OF PLANT PHYSIOLOGY 2019; 243:153050. [PMID: 31639533 DOI: 10.1016/j.jplph.2019.153050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 05/13/2023]
Abstract
The pollen tube is characterized by cytoplasm compartmentalization typical for cells with polar growth. This concept includes "ion zoning", i.e. gradient distribution of ionic currents across the plasma membrane and free inorganic ions in the cytoplasm. One of the putative mechanisms for maintaining "ion zoning" is indicated by the sensitivity of the ion transport systems to reactive oxygen species (ROS). Here we test the possibility of redox regulation of ionic gradients and membrane potential (MP) gradient in growing pollen tubes using quantitative fluorescence microscopy. ROS quencher MnTMPP and exogenic H2O2 cause different alterations of intracellular Ca2+ gradient, pH gradient and MP gradient during short-term exposure. MnTMPP significantly shifts the gradients of Ca2+ and MP at low concentrations while high concentration cause growth alterations (ballooned tips) and cytoplasm acidification. H2O2 at 0,5 and 1 mM affects ion homeostasis as well (MP, Ca2+, pH) but doesn't decrease viability or alter shape of the tubes. Here we present original quantitative data on the interconnection between ROS and ion transport during tip growth.
Collapse
Affiliation(s)
- Alexandra Podolyan
- Lomonosov Moscow State University, School of Biology, Department of Plant Physiology, Leninskiye Gory 1-12, Moscow, 119991, Russia
| | - Nikita Maksimov
- Lomonosov Moscow State University, School of Biology, Department of Plant Physiology, Leninskiye Gory 1-12, Moscow, 119991, Russia
| | - Maria Breygina
- Lomonosov Moscow State University, School of Biology, Department of Plant Physiology, Leninskiye Gory 1-12, Moscow, 119991, Russia; Pirogov Russian National Research Medical University, Ostrovitjanova Street 1, Moscow, 117997, Russia.
| |
Collapse
|
25
|
Parrotta L, Aloisi I, Suanno C, Faleri C, Kiełbowicz-Matuk A, Bini L, Cai G, Del Duca S. A low molecular-weight cyclophilin localizes in different cell compartments of Pyrus communis pollen and is released in vitro under Ca 2+ depletion. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:197-206. [PMID: 31585398 DOI: 10.1016/j.plaphy.2019.09.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Cyclophilins (CyPs) are ubiquitous proteins involved in a wide variety of processes including protein maturation and trafficking, receptor complex stabilization, apoptosis, receptor signaling, RNA processing, and spliceosome assembly. The ubiquitous presence is justified by their peptidyl-prolyl cis-trans isomerase (PPIase) activity, catalyzing the rotation of X-Pro peptide bonds from a cis to a trans conformation, a critical rate-limiting step in protein folding, as over 90% of proteins contain trans prolyl imide bonds. In Arabidopsis 35 CyPs involved in plant development have been reported, showing different subcellular localizations and tissue- and stage-specific expression. In the present work, we focused on the localization of CyPs in pear (Pyrus communis) pollen, a model system for studies on pollen tube elongation and on pollen-pistil self-incompatibility response. Fluorescent, confocal and immuno-electron microscopy showed that this protein is present in the cytoplasm, organelles and cell wall, as confirmed by protein fractionation. Moreover, an 18-kDa CyP isoform was specifically released extracellularly when pear pollen was incubated with the Ca2+ chelator EGTA.
Collapse
Affiliation(s)
- Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Chiara Suanno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Luca Bini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
26
|
Sato R, Maeshima M. The ER-localized aquaporin SIP2;1 is involved in pollen germination and pollen tube elongation in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2019; 100:335-349. [PMID: 30963359 DOI: 10.1007/s11103-019-00865-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
The ER membrane localized aquaporin SIP2;1 is involved in adaptation to ER stresses during pollen tube elongation. Aquaporins play multifaceted roles through selective transport of water and small neutral substrates. Here, we focused on the physiological roles of Arabidopsis thaliana aquaporins, namely SIP1;1, SIP1;2 and SIP2;1, which are localized to the endoplasmic reticulum (ER). While their loss-of-function mutants displayed normal vegetative growth. We identified defects in pollen of sip2;1. Whereas the germination rate of sip2;1 pollen was ~ 60% that of the wild type (WT), in vitro germinated sip2;1 pollen tube length was reduced up to 82% compared to the WT. Importantly, most pollen tubes on pistils from sip2;1 stopped elongation in the mid-region of pistils, and the bottom region of sip2;1 siliques lacked seeds. Consistently, silique of sip2;1 were short, whereby the average seed number per silique was nearly the half of the WT. The above phenotypes recovered in SIP2;1 complementation lines. We detected mRNA of SIP2;1 and protein in pollen, and further revealed that the GFP-linked SIP2;1 localization in the ER of growing pollen tubes. The basal mRNA level of BINDING PROTEIN 3 (BiP3), a key gene induced by ER stress, in pollen was markedly higher than that in roots, suggesting that the pollen underwent ER stress under normal growth conditions. BiP3 mRNA was dramatically increased in sip2;1 pollen. Altogether, our findings suggest that the aquaporin SIP2;1 is probably involved in the alleviation of ER stress and that the lack of SIP2;1 reduces both pollen germination and pollen tube elongation.
Collapse
Affiliation(s)
- Ryosuke Sato
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan.
| |
Collapse
|
27
|
Qian D, Xiang Y. Actin Cytoskeleton as Actor in Upstream and Downstream of Calcium Signaling in Plant Cells. Int J Mol Sci 2019; 20:ijms20061403. [PMID: 30897737 PMCID: PMC6471457 DOI: 10.3390/ijms20061403] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/04/2023] Open
Abstract
In plant cells, calcium (Ca2+) serves as a versatile intracellular messenger, participating in several fundamental and important biological processes. Recent studies have shown that the actin cytoskeleton is not only an upstream regulator of Ca2+ signaling, but also a downstream regulator. Ca2+ has been shown to regulates actin dynamics and rearrangements via different mechanisms in plants, and on this basis, the upstream signaling encoded within the Ca2+ transient can be decoded. Moreover, actin dynamics have also been proposed to act as an upstream of Ca2+, adjust Ca2+ oscillations, and establish cytosolic Ca2+ ([Ca2+]cyt) gradients in plant cells. In the current review, we focus on the advances in uncovering the relationship between the actin cytoskeleton and calcium in plant cells and summarize our current understanding of this relationship.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
28
|
Filipin EP, Pereira DT, Ouriques LC, Bouzon ZL, Simioni C. Participation of actin filaments, myosin and phosphatidylinositol 3-kinase in the formation and polarisation of tetraspore germ tube of Gelidium floridanum (Rhodophyta, Florideophyceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:352-360. [PMID: 30472775 DOI: 10.1111/plb.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
This study aimed to examine the evidence of direct interaction among actin, myosin and phosphatidylinositol 3-kinase (PI3K) in the polarisation and formation of the tetraspore germ tube of Gelidium floridanum. After release, tetraspores were exposed to cytochalasin B, latrunculin B, LY294002 and BDM for a period of 6 h. In control samples, formation of the germ tube occurred after the experimental period, with cellulose formation and elongated chloroplasts moving through the tube region in the presence of F-actin. In the presence of cytochalasin B, an inhibitor of F-actin, latrunculin B, an inhibitor of G-actin, and BDM, a myosin inhibitor, tetraspores showed no formation of the germ tube or cellulose. Spherical-shaped chloroplasts were observed in the central region with a few F-actin filaments in the periphery of the cytoplasm. Tetraspores treated with LY294002, a PI3K inhibitor, showed no formation of the tube at the highest concentrations. Polarisation of cytoplasmic contents did not occur, only cellulose formation. It was concluded that F-actin directs the cell wall components and contributes to the maintenance of chloroplast shape and elongation during germ tube formation. PI3K plays a fundamental role in signalling for the asymmetric polarisation of F-actin. Thus, F-actin regulates the polarisation and germination processes of tetraspores of G. floridanum.
Collapse
Affiliation(s)
- E P Filipin
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - D T Pereira
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - L C Ouriques
- Central Laboratory of Electron Microscopy, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Z L Bouzon
- Central Laboratory of Electron Microscopy, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - C Simioni
- Postdoctoral Research of Postgraduate Program in Cell Biology and Development, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
29
|
Fang KF, Du BS, Zhang Q, Xing Y, Cao QQ, Qin L. Boron deficiency alters cytosolic Ca 2+ concentration and affects the cell wall components of pollen tubes in Malus domestica. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:343-351. [PMID: 30444945 DOI: 10.1111/plb.12941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Boron (B) is essential for normal plant growth, including pollen tube growth. B deficiency influences various physiological and metabolic processes in plants. However, the underlying mechanism of B deficiency in pollen tube growth is not sufficiently understood. In the present research, the influence of B deficiency on apple (Malus domestica) pollen tube growth was studied and the possible regulatory mechanism evaluated. Apple pollen grains were cultured under different concentrations of B. Scanning ion-selective electrode technique, fluorescence labelling and Fourier-transform infrared (FTIR) analysis were used to detect calcium ion flux, cytosolic Ca2+ concentration ([Ca2+ ]cyt), actin filaments and cell wall components of pollen tubes. B deficiency inhibited apple pollen germination and induced retardation of tube growth. B deficiency increased extracellular Ca2+ influx and thus led to increased [Ca2+ ]cyt in the pollen tube tip. In addition, B deficiency modified actin filament arrangement at the pollen tube apex. B deficiency also altered the deposition of pollen tube wall components. Clear differences were not observed in the distribution patterns of cellulose and callose between control and B deficiency treated pollen tubes. However, B deficiency affected distribution patterns of pectin and arabinogalactan proteins (AGP). Clear ring-like signals of pectins and AGP on control pollen tubes varied according to B deficiency. B deficiency further decreased acid pectins, esterified pectins and AGP content at the tip of the pollen tube, which were supported by changes in chemical composition of the tube walls. B appears to have an active role in pollen tube growth by affecting [Ca2+ ]cyt, actin filament assembly and pectin and AGP deposition in the pollen tube. These findings provide valuable information that enhances our current understanding of the mechanism regulating pollen tube growth.
Collapse
Affiliation(s)
- K F Fang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - B S Du
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Q Zhang
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Y Xing
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Q Q Cao
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - L Qin
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
30
|
Wu Y, Qin B, Feng K, Yan R, Kang E, Liu T, Shang Z. Extracellular ATP promoted pollen germination and tube growth of Nicotiana tabacum through promoting K + and Ca 2+ absorption. PLANT REPRODUCTION 2018; 31:399-410. [PMID: 29934740 DOI: 10.1007/s00497-018-0341-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 06/15/2018] [Indexed: 05/15/2023]
Abstract
Extracellular ATP (eATP) plays an essential role in plant growth, development, and stress tolerance. Here, we report that eATP participated in Nicotiana tabacum pollen germination (PG) and pollen tube growth (PTG) by regulating K+ and Ca2+ influx. Exogenous ATP or ADP effectively promoted PG and PTG in a dose-dependent manner; weakly hydrolysable ATP analog (ATPγS) showed a similar effect. AMP, adenosine, adenine, and phosphate did not affect PG or PTG. Within a certain range, higher concentrations of K+ or Ca2+ in the medium increased the effect of ATP in promoting PG and PTG. However, in mediums containing K+ or Ca2+ concentrations above this range, the effect of ATP was reversed, resulting in PG and PTG inhibition. Ca2+ chelators (EGTA), Ca2+ channel blockers, and K+ channel blockers suppressed ATP-promoted PG and PTG. Results from a patch clamp showed that ATP activated a K+ and Ca2+ influx in pollen protoplasts. These results suggest that, as an apoplastic signal, eATP may be involved in PG and PTG via regulating Ca2+ and K+ absorption.
Collapse
Affiliation(s)
- Yansheng Wu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
- Department of Chemistry Engineering and Biological Technology, Xingtai University, Xingtai, 054001, Hebei, China
| | - Baozhi Qin
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Kaili Feng
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Ruolin Yan
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Erfang Kang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Ting Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Zhonglin Shang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| |
Collapse
|
31
|
Banerjee H, Roy B, Chaudhury K, Srinivasan B, Chakraborty S, Ren H. Frequency-induced morphology alterations in microconfined biological cells. Med Biol Eng Comput 2018; 57:819-835. [PMID: 30415434 DOI: 10.1007/s11517-018-1908-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 09/29/2018] [Indexed: 01/09/2023]
Abstract
Low-intensity therapeutic ultrasound has demonstrated an impetus in bone signaling and tissue healing for decades now. Though this technology is clinically well proven, still there are breaches in studies to understand the fundamental principle of how osteoblast tissue regenerates physiologically at the cellular level with ultrasound interaction as a form of acoustic wave stimuli. Through this article, we illustrate an analysis for cytomechanical changes of cell membrane periphery as a basic first physical principle for facilitating late downstream biochemical pathways. With the help of in situ single-cell direct analysis in a microfluidic confinement, we demonstrate that alteration of low-intensity pulse ultrasound (LIPUS) frequency would physically perturb cell membrane and establish inherent cell oscillation. We experimentally demonstrate here that, at LIPUS resonance near 1.7 MHz (during 1-3 MHz alteration), cell membrane area would expand to 6.85 ± 0.7% during ultrasound exposure while it contracts 44.68 ± 0.8% in post actuation. Conversely, cell cross-sectional area change (%) from its previous morphology during and after switching off LIPUS was reversibly different before and after resonance. For instance, at 1.5 MHz, LIPUS exposure produced 1.44 ± 0.5% expansion while in contrast 2 MHz instigates 1.6 ± 0.3% contraction. We conclude that alteration of LIPUS frequency from 1-3 MHz keeping other ultrasound parameters like exposure time, pulse repetition frequency (PRF), etc., constant, if applied to a microconfined biological single living cell, would perturb physical structure reversibly based on the system resonance during and post exposure ultrasound pulsing. We envision, in the near future, our results would constitute the foundation of mechanistic effects of low-intensity therapeutic ultrasound and its allied potential in medical applications. Graphical Abstract Frequency Dependent Characterization of Area Strain in Cell Membrane by Microfluidic Based Single Cell Analysis.
Collapse
Affiliation(s)
- Hritwick Banerjee
- Department of Electrical Engineering, Indian Institute of Technology Gandhinagar, Village Palaj Simkheda, Gandhinagar, Gujarat, 382355, India. .,Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India. .,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore. .,Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, 28 Medical Drive, #05-COR, Singapore, 117456, Singapore.
| | - Bibhas Roy
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.,Mechanobiology Institute, National University of Singapore, T-Lab, #10-01 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Kaustav Chaudhury
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.,National Institute of Technology Rourkela, Odisha, 769008, India
| | - Babji Srinivasan
- Department of Electrical Engineering, Indian Institute of Technology Gandhinagar, Village Palaj Simkheda, Gandhinagar, Gujarat, 382355, India.,Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Village Palaj Simkheda, Gandhinagar, Gujarat, 382355, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.,School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Hongliang Ren
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore. .,Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, 28 Medical Drive, #05-COR, Singapore, 117456, Singapore. .,National University of Singapore (Suzhou) Research Institute (NUSRI), Wuzhong Dist., Suzhou, Jiangsu Province, China.
| |
Collapse
|
32
|
Onelli E, Scali M, Caccianiga M, Stroppa N, Morandini P, Pavesi G, Moscatelli A. Microtubules play a role in trafficking prevacuolar compartments to vacuoles in tobacco pollen tubes. Open Biol 2018; 8:180078. [PMID: 30381363 PMCID: PMC6223213 DOI: 10.1098/rsob.180078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/04/2018] [Indexed: 12/23/2022] Open
Abstract
Fine regulation of exocytosis and endocytosis plays a basic role in pollen tube growth. Excess plasma membrane secreted during pollen tube elongation is known to be retrieved by endocytosis and partially reused in secretory pathways through the Golgi apparatus. Dissection of endocytosis has enabled distinct degradation pathways to be identified in tobacco pollen tubes and has shown that microtubules influence the transport of plasma membrane internalized in the tip region to vacuoles. Here, we used different drugs affecting the polymerization state of microtubules together with SYP21, a marker of prevacuolar compartments, to characterize trafficking of prevacuolar compartments in Nicotiana tabacum pollen tubes. Ultrastructural and biochemical analysis showed that microtubules bind SYP21-positive microsomes. Transient transformation of pollen tubes with LAT52-YFP-SYP21 revealed that microtubules play a key role in the delivery of prevacuolar compartments to tubular vacuoles.
Collapse
Affiliation(s)
- Elisabetta Onelli
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | - Monica Scali
- Department of Life Science, Siena University, Via A. Moro 2, 53100 Siena, Italy
| | - Marco Caccianiga
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | - Nadia Stroppa
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | - Piero Morandini
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | - Giulio Pavesi
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | | |
Collapse
|
33
|
Hemelryck MV, Bernal R, Ispolatov Y, Dumais J. Lily Pollen Tubes Pulse According to a Simple Spatial Oscillator. Sci Rep 2018; 8:12135. [PMID: 30108317 PMCID: PMC6092427 DOI: 10.1038/s41598-018-30635-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/07/2018] [Indexed: 11/23/2022] Open
Abstract
Polar growth is a fundamental mode of cell morphogenesis observed in nearly all major groups of organisms. Among polarly growing cells, the angiosperm pollen tubes have emerged as powerful experimental systems in large part because of their oscillatory growth, which provides a window into the network of interactions regulating morphogenesis. Empirical studies of oscillatory pollen tubes have sought to uncover the temporal sequence of cellular and molecular events that constitutes an oscillatory cycle. Here we show that in lily pollen tubes the distance or wavelength (λ = 6.3 ± 1.7 μm) over which an oscillatory cycle unfolds is more robust than the period of oscillation (τ = 39.1 ± 17.6 s) (n = 159 cells). Moreover, the oscillatory cycle is divided into slow and fast phases, with each phase unfolding over precisely one half of the wavelength. Using these observations, we show that a simple spatial bi-oscillator predicts the most common modes of oscillation observed in pollen tubes. These results call into question the traditional view of pollen tube morphogenesis as a temporal succession of cellular events. Space, not time, may be the most natural metric to inteprete the morphogenetic dynamics of these cells.
Collapse
Affiliation(s)
| | - Roberto Bernal
- Departamento de Física, Universidad de Santiago de Chile, Santiago, 9170124, Chile
| | - Yaroslav Ispolatov
- Departamento de Física, Universidad de Santiago de Chile, Santiago, 9170124, Chile
| | - Jacques Dumais
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Region V, Chile.
| |
Collapse
|
34
|
Barberini ML, Sigaut L, Huang W, Mangano S, Juarez SPD, Marzol E, Estevez J, Obertello M, Pietrasanta L, Tang W, Muschietti J. Calcium dynamics in tomato pollen tubes using the Yellow Cameleon 3.6 sensor. PLANT REPRODUCTION 2018; 31:159-169. [PMID: 29236154 DOI: 10.1007/s00497-017-0317-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
In vitro tomato pollen tubes show a cytoplasmic calcium gradient that oscillates with the same period as growth. Pollen tube growth requires coordination between the tip-focused cytoplasmic calcium concentration ([Ca2+]cyt) gradient and the actin cytoskeleton. This [Ca2+]cyt gradient is necessary for exocytosis of small vesicles, which contributes to the delivery of new membrane and cell wall at the pollen tube tip. The mechanisms that generate and maintain this [Ca2+]cyt gradient are not completely understood. Here, we studied calcium dynamics in tomato (Solanum lycopersicum) pollen tubes using transgenic tomato plants expressing the Yellow Cameleon 3.6 gene under the pollen-specific promoter LAT52. We use tomato as an experimental model because tomato is a Solanaceous plant that is easy to transform, and has an excellent genomic database and genetic stock center, and unlike Arabidopsis, tomato pollen is a good system to do biochemistry. We found that tomato pollen tubes showed an oscillating tip-focused [Ca2+]cyt gradient with the same period as growth. Then, we used a pharmacological approach to disturb the intracellular Ca2+ homeostasis, evaluating how the [Ca2+]cyt gradient, pollen germination and in vitro pollen tube growth were affected. We found that cyclopiazonic acid (CPA), a drug that inhibits plant PIIA-type Ca2+-ATPases, increased [Ca2+]cyt in the subapical zone, leading to the disappearance of the Ca2+ oscillations and inhibition of pollen tube growth. In contrast, 2-aminoethoxydiphenyl borate (2-APB), an inhibitor of Ca2+ released from the endoplasmic reticulum to the cytoplasm in animals cells, completely reduced [Ca2+]cyt at the tip of the tube, blocked the gradient and arrested pollen tube growth. Although both drugs have antagonistic effects on [Ca2+]cyt, both inhibited pollen tube growth triggering the disappearance of the [Ca2+]cyt gradient. When CPA and 2-APB were combined, their individual inhibitory effects on pollen tube growth were partially compensated. Finally, we found that GsMTx-4, a peptide from spider venom that blocks stretch-activated Ca2+ channels, inhibited tomato pollen germination and had a heterogeneous effect on pollen tube growth, suggesting that these channels are also involved in the maintenance of the [Ca2+]cyt gradient. All these results indicate that tomato pollen tube is an excellent model to study calcium dynamics.
Collapse
Affiliation(s)
- María Laura Barberini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Lorena Sigaut
- Instituto de Física de Buenos Aires (IFIBA-CONICET), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires, Argentina
| | - Weijie Huang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Silvina Mangano
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, CP C1405BWE, Buenos Aires, Argentina
| | - Silvina Paola Denita Juarez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, CP C1405BWE, Buenos Aires, Argentina
| | - Eliana Marzol
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, CP C1405BWE, Buenos Aires, Argentina
| | - José Estevez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, CP C1405BWE, Buenos Aires, Argentina
| | - Mariana Obertello
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Lía Pietrasanta
- Instituto de Física de Buenos Aires (IFIBA-CONICET), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires, Argentina
- Centro de Microscopías Avanzadas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires, Argentina
| | - Weihua Tang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Jorge Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Cameron C, Geitmann A. Cell mechanics of pollen tube growth. Curr Opin Genet Dev 2018; 51:11-17. [PMID: 29602058 DOI: 10.1016/j.gde.2018.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/03/2018] [Accepted: 03/09/2018] [Indexed: 12/13/2022]
Abstract
The pollen tube features particular traits that can only be understood when integrating cell biological with cell mechanical concepts. Firstly, regular temporal variations in the growth rate are governed by a feedback mechanism thought to involve mechanosensitive ion channels. Secondly, the tube uses invasive growth to penetrate the flower tissues with the aim to transport the male sperm cells to their target. Thirdly, the pollen tube is able to reorient its growth direction upon exposure to a guidance cue; the steering mechanism involves the sophisticated choreography of intracellular transport processes. Sophisticated imaging and micromanipulation techniques have been instrumental for the advancement in characterizing the biomechanical features of this crucial cell in the plant reproductive cycle.
Collapse
Affiliation(s)
- Christine Cameron
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Anja Geitmann
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec H9X 3V9, Canada.
| |
Collapse
|
36
|
Simultaneous imaging and functional studies reveal a tight correlation between calcium and actin networks. Proc Natl Acad Sci U S A 2018; 115:E2869-E2878. [PMID: 29507239 DOI: 10.1073/pnas.1711037115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tip-growing cells elongate in a highly polarized manner via focused secretion of flexible cell-wall material. Calcium has been implicated as a vital factor in regulating the deposition of cell-wall material. However, deciphering the molecular and mechanistic calcium targets in vivo has remained challenging. Here, we investigated intracellular calcium dynamics in the moss Physcomitrella patens, which provides a system with an abundant source of genetically identical tip-growing cells, excellent cytology, and a large molecular genetic tool kit. To visualize calcium we used a genetically encoded cytosolic FRET probe, revealing a fluctuating tipward gradient with a complex oscillatory profile. Wavelet analysis coupled with a signal-sifting algorithm enabled the quantitative comparison of the calcium behavior in cells where growth was inhibited mechanically, pharmacologically, or genetically. We found that cells with suppressed growth have calcium oscillatory profiles with longer frequencies, suggesting that there is a feedback between the calcium gradient and growth. To investigate the mechanistic basis for this feedback we simultaneously imaged cytosolic calcium and actin, which has been shown to be essential for tip growth. We found that high cytosolic calcium promotes disassembly of a tip-focused actin spot, while low calcium promotes assembly. In support of this, abolishing the calcium gradient resulted in dramatic actin accumulation at the tip. Together these data demonstrate that tipward calcium is quantitatively linked to actin accumulation in vivo and that the moss P. patens provides a powerful system to uncover mechanistic links between calcium, actin, and growth.
Collapse
|
37
|
Mizuta Y, Higashiyama T. Chemical signaling for pollen tube guidance at a glance. J Cell Sci 2018; 131:131/2/jcs208447. [DOI: 10.1242/jcs.208447] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT
Pollen tube guidance is a unique navigating system that is required for the successful sexual reproduction of plants. As plant sperm cells are non-motile and egg cells are embedded deep inside the female tissues, a pollen tube delivers the two sperm cells that it contains by growing towards the ovule, in which the egg cell resides. Pollen tube growth towards the ovule is precisely controlled and divided into two stages, preovular and ovular guidance. In this Cell Science at a Glance article and accompanying poster, we provide a comprehensive overview of pollen tube guidance and highlight some of the attractant peptides used during ovular guidance. We further discuss the precise one-to-one guidance system that exists in multi-ovular plants. The pollen tube-blocking system, which is mediated by male–female crosstalk communication, to avoid attraction of multiple pollen tubes, is also reviewed.
Collapse
Affiliation(s)
- Yoko Mizuta
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
38
|
Feiguelman G, Fu Y, Yalovsky S. ROP GTPases Structure-Function and Signaling Pathways. PLANT PHYSIOLOGY 2018; 176:57-79. [PMID: 29150557 PMCID: PMC5761820 DOI: 10.1104/pp.17.01415] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/13/2017] [Indexed: 05/19/2023]
Abstract
Interactions between receptor like kinases and guanyl nucleotide exchange factors together with identification of effector proteins reveal putative ROP GTPases signaling cascades.
Collapse
Affiliation(s)
- Gil Feiguelman
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaul Yalovsky
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
39
|
Bibeau JP, Kingsley JL, Furt F, Tüzel E, Vidali L. F-Actin Mediated Focusing of Vesicles at the Cell Tip Is Essential for Polarized Growth. PLANT PHYSIOLOGY 2018; 176:352-363. [PMID: 28972078 PMCID: PMC5761772 DOI: 10.1104/pp.17.00753] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/26/2017] [Indexed: 05/18/2023]
Abstract
F-actin has been shown to be essential for tip growth in an array of plant models, including Physcomitrella patens One hypothesis is that diffusion can transport secretory vesicles, while actin plays a regulatory role during secretion. Alternatively, it is possible that actin-based transport is necessary to overcome vesicle transport limitations to sustain secretion. Therefore, a quantitative analysis of diffusion, secretion kinetics, and cell geometry is necessary to clarify the role of actin in polarized growth. Using fluorescence recovery after photobleaching analysis, we first show that secretory vesicles move toward and accumulate at the tip in an actin-dependent manner. We then depolymerized F-actin to decouple vesicle diffusion from actin-mediated transport and measured the diffusion coefficient and concentration of vesicles. Using these values, we constructed a theoretical diffusion-based model for growth, demonstrating that with fast-enough vesicle fusion kinetics, diffusion could support normal cell growth rates. We further refined our model to explore how experimentally extrapolated vesicle fusion kinetics and the size of the secretion zone limit diffusion-based growth. This model predicts that diffusion-mediated growth is dependent on the size of the region of exocytosis at the tip and that diffusion-based growth would be significantly slower than normal cell growth. To further explore the size of the secretion zone, we used a cell wall degradation enzyme cocktail and determined that the secretion zone is smaller than 6 μm in diameter at the tip. Taken together, our results highlight the requirement for active transport in polarized growth and provide important insight into vesicle secretion during tip growth.
Collapse
Affiliation(s)
- Jeffrey P Bibeau
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - James L Kingsley
- Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Fabienne Furt
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Erkan Tüzel
- Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| |
Collapse
|
40
|
Bascom CS, Hepler PK, Bezanilla M. Interplay between Ions, the Cytoskeleton, and Cell Wall Properties during Tip Growth. PLANT PHYSIOLOGY 2018; 176:28-40. [PMID: 29138353 PMCID: PMC5761822 DOI: 10.1104/pp.17.01466] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/05/2017] [Indexed: 05/08/2023]
Abstract
Tip growth is a focused and tightly regulated apical explosion that depends on the interconnected activities of ions, the cytoskeleton, and the cell wall.
Collapse
Affiliation(s)
- Carlisle S Bascom
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
- Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01002
| | - Peter K Hepler
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01002
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
41
|
Szymanski D, Staiger CJ. The Actin Cytoskeleton: Functional Arrays for Cytoplasmic Organization and Cell Shape Control. PLANT PHYSIOLOGY 2018; 176:106-118. [PMID: 29192029 PMCID: PMC5761824 DOI: 10.1104/pp.17.01519] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/29/2017] [Indexed: 05/18/2023]
Abstract
Functionally distinct actin filament arrays cluster organelles and define cellular scale flow patterns for secretion.
Collapse
Affiliation(s)
- Dan Szymanski
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Christopher J Staiger
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
42
|
Zhu J, Nan Q, Qin T, Qian D, Mao T, Yuan S, Wu X, Niu Y, Bai Q, An L, Xiang Y. Higher-Ordered Actin Structures Remodeled by Arabidopsis ACTIN-DEPOLYMERIZING FACTOR5 Are Important for Pollen Germination and Pollen Tube Growth. MOLECULAR PLANT 2017; 10:1065-1081. [PMID: 28606871 DOI: 10.1016/j.molp.2017.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
Dynamics of the actin cytoskeleton are essential for pollen germination and pollen tube growth. ACTIN-DEPOLYMERIZING FACTORs (ADFs) typically contribute to actin turnover by severing/depolymerizing actin filaments. Recently, we demonstrated that Arabidopsis subclass III ADFs (ADF5 and ADF9) evolved F-actin-bundling function from conserved F-actin-depolymerizing function. However, little is known about the physiological function, the evolutional significance, and the actin-bundling mechanism of these neofunctionalized ADFs. Here, we report that loss of ADF5 function caused delayed pollen germination, retarded pollen tube growth, and increased sensitive to latrunculin B (LatB) treatment by affecting the generation and maintenance of actin bundles. Examination of actin filament dynamics in living cells revealed that the bundling frequency was significantly decreased in adf5 pollen tubes, consistent with its biochemical functions. Further biochemical and genetic complementation analyses demonstrated that both the N- and C-terminal actin-binding domains of ADF5 are required for its physiological and biochemical functions. Interestingly, while both are atypical actin-bundling ADFs, ADF5, but not ADF9, plays an important role in mature pollen physiological activities. Taken together, our results suggest that ADF5 has evolved the function of bundling actin filaments and plays an important role in the formation, organization, and maintenance of actin bundles during pollen germination and pollen tube growth.
Collapse
Affiliation(s)
- Jingen Zhu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiong Nan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tao Qin
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shunjie Yuan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaorong Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qifeng Bai
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
43
|
Abstract
The eukaryotic actin cytoskeleton is a highly dynamic framework that is involved in many biological processes, such as cell growth, division, morphology, and motility. G-actin polymerizes into microfilaments that associate into bundles, patches, and networks, which, in turn, organize into higher order structures that are fundamental for the course of important physiological events. Actin rings are an example for such higher order actin entities, but this term represents an actually diverse set of subcellular structures that are involved in various processes. This review especially sheds light on a crucial type of non-constricting ring-like actin networks, and categorizes them under the term 'actin fringe'. These 'actin fringes' are visualized as highly dynamic and yet steady structures in the tip of various polarized growing cells. The present comprehensive overview compares the actin fringe characteristics of rapidly elongating pollen tubes with several related actin arrays in other cell types of diverse species. The current state of knowledge about various actin fringe functions is summarized, and the key role of this structure in the polar growth process is discussed.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Bavaria 91058, Germany
| |
Collapse
|
44
|
Suwińska A, Wasąg P, Zakrzewski P, Lenartowska M, Lenartowski R. Calreticulin is required for calcium homeostasis and proper pollen tube tip growth in Petunia. PLANTA 2017; 245:909-926. [PMID: 28078426 PMCID: PMC5391374 DOI: 10.1007/s00425-017-2649-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/05/2017] [Indexed: 05/19/2023]
Abstract
MAIN CONCLUSION Calreticulin is involved in stabilization of the tip-focused Ca 2+ gradient and the actin cytoskeleton arrangement and function that is required for several key processes driving Petunia pollen tube tip growth. Although the precise mechanism is unclear, stabilization of a tip-focused calcium (Ca2+) gradient seems to be critical for pollen germination and pollen tube growth. We hypothesize that calreticulin (CRT), a Ca2+-binding/buffering chaperone typically residing in the lumen of the endoplasmic reticulum (ER) of eukaryotic cells, is an excellent candidate to fulfill this role. We previously showed that in Petunia pollen tubes growing in vitro, CRT is translated on ER membrane-bound ribosomes that are abundant in the subapical zone of the tube, where CRT's Ca2+-buffering and chaperone activities might be particularly required. Here, we sought to determine the function of CRT using small interfering RNA (siRNA) to, for the first time in pollen tubes growing in vitro, knockdown expression of a gene. We demonstrate that siRNA-mediated post-transcriptional silencing of Petunia hybrida CRT gene (PhCRT) expression strongly impairs pollen tube growth, cytoplasmic zonation, actin cytoskeleton organization, and the tip-focused Ca2+ gradient. Moreover, reduction of CRT alters the localization and disturbs the structure of the ER in abnormally elongating pollen tubes. Finally, cytoplasmic streaming is inhibited, and most of the pollen tubes rupture. Our data clearly show an interplay between CRT, Ca2+ gradient, actin-dependent cytoplasmic streaming, organelle positioning, and vesicle trafficking during pollen tube elongation. Thus, we suggest that CRT functions in Petunia pollen tube growth by stabilizing Ca2+ homeostasis and acting as a chaperone to assure quality control of glycoproteins passing through the ER.
Collapse
Affiliation(s)
- Anna Suwińska
- Laboratory of Developmental Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Piotr Wasąg
- Laboratory of Isotope and Instrumental Analysis, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Przemysław Zakrzewski
- Laboratory of Developmental Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marta Lenartowska
- Laboratory of Developmental Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Robert Lenartowski
- Laboratory of Isotope and Instrumental Analysis, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| |
Collapse
|
45
|
Konopka-Postupolska D, Clark G. Annexins as Overlooked Regulators of Membrane Trafficking in Plant Cells. Int J Mol Sci 2017; 18:E863. [PMID: 28422051 PMCID: PMC5412444 DOI: 10.3390/ijms18040863] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022] Open
Abstract
Annexins are an evolutionary conserved superfamily of proteins able to bind membrane phospholipids in a calcium-dependent manner. Their physiological roles are still being intensively examined and it seems that, despite their general structural similarity, individual proteins are specialized toward specific functions. However, due to their general ability to coordinate membranes in a calcium-sensitive fashion they are thought to participate in membrane flow. In this review, we present a summary of the current understanding of cellular transport in plant cells and consider the possible roles of annexins in different stages of vesicular transport.
Collapse
Affiliation(s)
- Dorota Konopka-Postupolska
- Plant Biochemistry Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Greg Clark
- Molecular, Cell, and Developmental Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
46
|
Hu C, Vogler H, Aellen M, Shamsudhin N, Jang B, Burri JT, Läubli N, Grossniklaus U, Pané S, Nelson BJ. High precision, localized proton gradients and fluxes generated by a microelectrode device induce differential growth behaviors of pollen tubes. LAB ON A CHIP 2017; 17:671-680. [PMID: 28098283 DOI: 10.1039/c6lc01307d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pollen tubes are tip-growing plant cells that deliver the sperm cells to the ovules for double fertilization of the egg cell and the endosperm. Various directional cues can trigger the reorientation of pollen tube growth direction on their passage through the female tissues. Among the external stimuli, protons serve an important, regulatory role in the control of pollen tube growth. The generation of local guidance cues has been challenging when investigating the mechanisms of perception and processing of such directional triggers in pollen tubes. Here, we developed and characterized a microelectrode device to generate a local proton gradient and proton flux through water electrolysis. We confirmed that the cytoplasmic pH of pollen tubes varied with environmental pH change. Depending on the position of the pollen tube tip relative to the proton gradient, we observed alterations in the growth behavior, such as bursting at the tip, change in growth direction, or complete growth arrest. Bursting and growth arrest support the hypothesis that changes in the extracellular H+ concentration may interfere with cell wall integrity and actin polymerization at the growing tip. A change in growth direction for some pollen tubes implies that they can perceive the local proton gradient and respond to it. We also showed that the growth rate is directly correlated with the extracellular pH in the tip region. Our microelectrode approach provides a simple method to generate protons and investigate their effect on plant cell growth.
Collapse
Affiliation(s)
- Chengzhi Hu
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - Hannes Vogler
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| | - Marianne Aellen
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - Naveen Shamsudhin
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - Bumjin Jang
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - Jan T Burri
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - Nino Läubli
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| | - Salvador Pané
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| |
Collapse
|
47
|
Michard E, Simon AA, Tavares B, Wudick MM, Feijó JA. Signaling with Ions: The Keystone for Apical Cell Growth and Morphogenesis in Pollen Tubes. PLANT PHYSIOLOGY 2017; 173:91-111. [PMID: 27895207 PMCID: PMC5210754 DOI: 10.1104/pp.16.01561] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/19/2016] [Indexed: 05/18/2023]
Abstract
Ion homeostasis and signaling are crucial to regulate pollen tube growth and morphogenesis and affect upstream membrane transporters and downstream targets.
Collapse
Affiliation(s)
- Erwan Michard
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| | - Alexander A Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| | - Bárbara Tavares
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| | - Michael M Wudick
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| |
Collapse
|
48
|
Winship LJ, Rounds C, Hepler PK. Perturbation Analysis of Calcium, Alkalinity and Secretion during Growth of Lily Pollen Tubes. PLANTS 2016; 6:plants6010003. [PMID: 28042810 PMCID: PMC5371762 DOI: 10.3390/plants6010003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/24/2016] [Accepted: 12/26/2016] [Indexed: 01/07/2023]
Abstract
Pollen tubes grow by spatially and temporally regulated expansion of new material secreted into the cell wall at the tip of the tube. A complex web of interactions among cellular components, ions and small molecule provides dynamic control of localized expansion and secretion. Cross-correlation studies on oscillating lily (Lilium formosanum Wallace) pollen tubes showed that an increase in intracellular calcium follows an increase in growth, whereas the increase in the alkaline band and in secretion both anticipate the increase in growth rate. Calcium, as a follower, is unlikely to be a stimulator of growth, whereas the alkaline band, as a leader, may be an activator. To gain further insight herein we reversibly inhibited growth with potassium cyanide (KCN) and followed the re-establishment of calcium, pH and secretion patterns as growth resumed. While KCN markedly slows growth and causes the associated gradients of calcium and pH to sharply decline, its removal allows growth and vital processes to fully recover. The calcium gradient reappears before growth restarts; however, it is preceded by both the alkaline band and secretion, in which the alkaline band is slightly advanced over secretion. Thus the pH gradient, rather than the tip-focused calcium gradient, may regulate pollen tube growth.
Collapse
Affiliation(s)
| | - Caleb Rounds
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA.
| | - Peter K Hepler
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
49
|
Estrada-Navarrete G, Cruz-Mireles N, Lascano R, Alvarado-Affantranger X, Hernández-Barrera A, Barraza A, Olivares JE, Arthikala MK, Cárdenas L, Quinto C, Sanchez F. An Autophagy-Related Kinase Is Essential for the Symbiotic Relationship between Phaseolus vulgaris and Both Rhizobia and Arbuscular Mycorrhizal Fungi. THE PLANT CELL 2016; 28:2326-2341. [PMID: 27577790 PMCID: PMC5059792 DOI: 10.1105/tpc.15.01012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 07/18/2016] [Accepted: 08/29/2016] [Indexed: 05/02/2023]
Abstract
Eukaryotes contain three types of lipid kinases that belong to the phosphatidylinositol 3-kinase (PI3K) family. In plants and Saccharomyces cerevisiae, only PI3K class III family members have been identified. These enzymes regulate the innate immune response, intracellular trafficking, autophagy, and senescence. Here, we report that RNAi-mediated downregulation of common bean (Phaseolus vulgaris) PI3K severely impaired symbiosis in composite P. vulgaris plants with endosymbionts such as Rhizobium tropici and Rhizophagus irregularis Downregulation of Pv-PI3K was associated with a marked decrease in root hair growth and curling. Additionally, infection thread growth, root-nodule number, and symbiosome formation in root nodule cells were severely affected. Interestingly, root colonization by AM fungi and the formation of arbuscules were also abolished in PI3K loss-of-function plants. Furthermore, the transcript accumulation of genes encoding proteins known to interact with PI3K to form protein complexes involved in autophagy was drastically reduced in these transgenic roots. RNAi-mediated downregulation of one of these genes, Beclin1/Atg6, resulted in a similar phenotype as observed for transgenic roots in which Pv-PI3K had been downregulated. Our findings show that an autophagy-related process is crucial for the mutualistic interactions of P. vulgaris with beneficial microorganisms.
Collapse
Affiliation(s)
- Georgina Estrada-Navarrete
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Neftaly Cruz-Mireles
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Ramiro Lascano
- Centro de Investigaciones Agropecuarias, Instituto de Fisiología y Recursos Genéticos Vegetales, CP 5119 Córdoba, Argentina
| | - Xóchitl Alvarado-Affantranger
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Alejandra Hernández-Barrera
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Aarón Barraza
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Juan E Olivares
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Manoj-Kumar Arthikala
- Escuela Nacional de Estudios Superiores-Unidad León, Universidad Nacional Autónoma de México, León, Guanajuato 37684, Mexico
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Federico Sanchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
50
|
Wang W, Sheng X, Shu Z, Li D, Pan J, Ye X, Chang P, Li X, Wang Y. Combined Cytological and Transcriptomic Analysis Reveals a Nitric Oxide Signaling Pathway Involved in Cold-Inhibited Camellia sinensis Pollen Tube Growth. FRONTIERS IN PLANT SCIENCE 2016; 7:456. [PMID: 27148289 PMCID: PMC4830839 DOI: 10.3389/fpls.2016.00456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/24/2016] [Indexed: 05/05/2023]
Abstract
Nitric oxide (NO) as a signaling molecule plays crucial roles in many abiotic stresses in plant development processes, including pollen tube growth. Here, the signaling networks dominated by NO during cold stress that inhibited Camellia sinensis pollen tube growth are investigated in vitro. Cytological analysis show that cold-induced NO is involved in the inhibition of pollen tube growth along with disruption of the cytoplasmic Ca(2+) gradient, increase in ROS content, acidification of cytoplasmic pH and abnormalities in organelle ultrastructure and cell wall component distribution in the pollen tube tip. Furthermore, differentially expressed genes (DEGs)-related to signaling pathway, such as NO synthesis, cGMP, Ca(2+), ROS, pH, actin, cell wall, and MAPK cascade signal pathways, are identified and quantified using transcriptomic analyses and qRT-PCR, which indicate a potential molecular mechanism for the above cytological results. Taken together, these findings suggest that a complex signaling network dominated by NO, including Ca(2+), ROS, pH, RACs signaling and the crosstalk among them, is stimulated in the C. sinensis pollen tube in response to cold stress, which further causes secondary and tertiary alterations, such as ultrastructural abnormalities in organelles and cell wall construction, ultimately resulting in perturbed pollen tube extension.
Collapse
Affiliation(s)
- Weidong Wang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xianyong Sheng
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Zaifa Shu
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Dongqin Li
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Junting Pan
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xiaoli Ye
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Pinpin Chang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|