1
|
Hu W, Deng C, Qin L, Liu P, Wang L, Wang X, Shi W, Aziz A, Li F, Cheng X, Wang A, Dai Z, Xiang X, Cui H. A conserved lysine/arginine-rich motif is essential for the autophagic degradation of potyviral 6K1 protein and virus infection. J Virol 2025; 99:e0218324. [PMID: 39927775 PMCID: PMC11915830 DOI: 10.1128/jvi.02183-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025] Open
Abstract
Potyviruses possess one positive-sense single-stranded RNA genome, mainly dependent on polyprotein processing as the expression strategy. The resulting polyproteins are proteolytically processed by three virus-encoded proteases into 11 or 12 mature proteins. One such factor, 6 kDa peptide 1 (6K1), is an understudied viral factor. Its function in viral infection remains largely mysterious. This study is to reveal part of its roles by using pepper veinal mottle virus (PVMV) as the model. Alanine substitution screening analysis revealed that 15 of 17 conserved residues across potyviral 6K1 sequences are essential for PVMV infection. However, 6K1 protein is less accumulated in virus-infected cells, although P3-6K1 and 6K1-CI junctions are efficiently processed by NIa-Pro for its release, indicating that 6K1 undergoes a self-degradation event. Mutating the cleavage site to prevent NIa-Pro processing abolishes viral infection, suggesting that the generation of 6K1 along with its degradation might be important for viral multiplication. We corroborated that cellular autophagy is engaged in 6K1's degradation. Individual engineering of the 15 6K1 variants into PVMV allows their expression along with viral infection. Five of such variants, D30A, V32A, K34A, L36A, and L39A, significantly interfere with viral infection. The five residues are enclosed in a conserved lysine/arginine-rich motif; four of them appear crucial in engaging autophagy-mediated self-degradation. Based on these data, we envisaged a scenario which potyviral 6K1s interact with an unknown anti-viral component to be co-degraded by autophagy to promote viral infection.IMPORTANCEPotyvirus is the largest genus of plant-infecting RNA viruses, which encompasses socio-economically important virus species, such as Potato virus Y, Plum pox virus, and Soybean mosaic virus. Like all picorna-like viruses, potyviruses express their factors mainly via polyprotein processing. Theoretically, viral factors P3 through CP, including 6K1, should share an equivalent number of molecules. The 6K1 is small in size (~6 kDa) and conserved across potyviruses but less accumulated in virus-infected cells. This study demonstrates that cellular autophagy is engaged in the degradation of 6K1 to promote viral infection. In particular, we found a conserved lysine/arginine-rich motif in 6K1s across potyviruses that is engaged in this degradation event. This finding reveals one facet of a small protein that helps understand the pro-viral role of cellular autophagy in viral infection.
Collapse
Affiliation(s)
- Weiyao Hu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Changhui Deng
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Li Qin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Peilan Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Linxi Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xaioqing Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Wei Shi
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Asma Aziz
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Cheng
- College of Plant Protection/Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Zhaoji Dai
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xiaohua Xiang
- Haikou Cigar Research Institute, Hainan Provincial Branch of China National Tobacco Corporation, Haikou, China
| | - Hongguang Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
2
|
Herazo MM, Dantas DRS, Silva BB, Costa HPS, Santos ENFN, Moura LFWG, Neto JX, Van Tilburg M, Florean EOPT, Moura AA, Guedes MIF. Transient Expression of Zika NS2B Protein Antigen in Nicotiana benthamiana and Use for Arboviruses Diagnosis. ACS OMEGA 2025; 10:2184-2196. [PMID: 39866622 PMCID: PMC11755152 DOI: 10.1021/acsomega.4c08998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025]
Abstract
Zika (ZIKV) and Dengue (DENV) viruses are clinically significant due to their severe neurological and hemorrhagic complications. Rapid diagnostics often rely on nonstructural proteins to generate specific antibodies. This study aimed to produce IgG antibodies from the recombinant ZIKV protein and plant-expressed NS2B protein for arbovirus detection in serum and urine samples. The NS2B protein was expressed in Nicotiana benthamiana and purified chromatographically. Validation of recombinant NS2B as an antigen in indirect immunoassays demonstrated 95% sensitivity and 100% specificity in IgM/IgG ELISA tests, enabling effective detection of ZIKV and DENV. Notably, r-ZIKV-NS2B IgG identified positive ZIKV and DENV cases in urine but failed to detect negatives, suggesting limitations in specificity for urine diagnostics. Using urine as a diagnostic medium offers a less invasive and more practical approach, broadening the test applicability. This study utilized patient-derived positive urine samples and healthy samples spiked with an exogenous virus. Findings highlight the potential of the ZIKV-NS2B protein as a robust antigen for arbovirus diagnosis and demonstrate the viability of plant-based systems for antigen production, advancing diagnostics for neglected tropical diseases.
Collapse
Affiliation(s)
- Mario
A. M. Herazo
- Laboratory
of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceara, Fortaleza 60714-903, Brazil
- Federal
University of Ceara, Fortaleza 60355-636, Brazil
| | - Daylana R. S. Dantas
- Laboratory
of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceara, Fortaleza 60714-903, Brazil
| | - Bruno B. Silva
- Laboratory
of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceara, Fortaleza 60714-903, Brazil
| | - Helen P. S. Costa
- Laboratory
of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceara, Fortaleza 60714-903, Brazil
| | - Eduarda N. F. N. Santos
- Laboratory
of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceara, Fortaleza 60714-903, Brazil
| | - Luiz F. W. G. Moura
- Laboratory
of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceara, Fortaleza 60714-903, Brazil
| | - João X.
S. Neto
- Laboratory
of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceara, Fortaleza 60714-903, Brazil
- Federal
University of Ceara, Fortaleza 60355-636, Brazil
| | - Maurício
F. Van Tilburg
- Laboratory
of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceara, Fortaleza 60714-903, Brazil
- Federal
Rural University of the Semi-Arid, Mossoro 59625-900, Brazil
| | - Eridan O. P. T. Florean
- Laboratory
of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceara, Fortaleza 60714-903, Brazil
- Federal
University of Ceara, Fortaleza 60355-636, Brazil
| | | | - Maria I. F. Guedes
- Laboratory
of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceara, Fortaleza 60714-903, Brazil
| |
Collapse
|
3
|
Adedibu PA, Noskova YA, Yugay YA, Ovsiannikova DM, Vasyutkina EA, Kudinova OD, Grigorchuk VP, Shkryl YN, Tekutyeva LA, Balabanova LA. Expression and Characterization of Alkaline Phosphatase from Cobetia amphilecti KMM 296 in Transiently Transformed Tobacco Leaves and Transgenic Calli. PLANTS (BASEL, SWITZERLAND) 2024; 13:3570. [PMID: 39771268 PMCID: PMC11679904 DOI: 10.3390/plants13243570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Alkaline phosphatase (ALP) of the PhoA family is an important enzyme in mammals, microalgae, and certain marine bacteria. It plays a crucial role in the dephosphorylation of lipopolysaccharides (LPS) and nucleotides, which overstimulate cell signaling pathways and cause tissue inflammation in animals and humans. Insufficient ALP activity and expression levels have been linked to various disorders. This study aims to produce recombinant ALP from the marine bacterium Cobetia amphilecti KMM 296 (CmAP) in transformed leaves and calli of Nicotiana tabacum and to elucidate the influence of the plant host on its physical and chemical properties. N. tabacum has proven to be versatile and is extensively used as a heterologous host in molecular farming. The alp gene encoding for CmAP was cloned into the binary vectors pEff and pHREAC and transformed into N. tabacum leaves through agroinfiltration and the leaf disc method for callus induction using Agrobacterium tumefaciens strain EHA105. Transformed plants were screened for recombinant CmAP (rCmAP) production by its enzymatic activity and protein electrophoresis, corresponding to 55 kDa of mature CmAP. A higher rCmAP activity (14.6 U/mg) was detected in a homogenate of leaves bearing the pEFF-CmAP construct, which was further purified 150-fold using metal affinity, followed by anion exchange chromatography. Enzymatic activity and stability were assessed at different temperatures (15-75 °C) and exposure times (≤1 h), with different buffers, pHs, divalent metal ions, and salt concentrations. The results show that rCmAP is relatively thermostable, retaining its activity at 15-45 °C for up to 1 h. Its activity is highest in Tris HCl (pH 9.0-11.0) at 35 °C for 40 min. rCmAP shows higher salt-tolerance and divalent metal-dependence than obtained in Escherichia coli. This can be further explored for cost-effective and massively scalable production of LPS-free CmAP for possible biomedical and agricultural applications.
Collapse
Affiliation(s)
- Peter Adeolu Adedibu
- School of Advanced Engineering Studies, Institute of Biotechnology, Bioengineering and Food Systems, FEFU, 10 Ajax Bay, 690922 Vladivostok, Russia (L.A.B.)
| | - Yulia Aleksandrovna Noskova
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-letya Vladivostoka 152, 690022 Vladivostok, Russia
| | - Yulia Anatolievna Yugay
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia (Y.N.S.)
| | - Daria Mikhailovna Ovsiannikova
- School of Advanced Engineering Studies, Institute of Biotechnology, Bioengineering and Food Systems, FEFU, 10 Ajax Bay, 690922 Vladivostok, Russia (L.A.B.)
| | - Elena Anatolievna Vasyutkina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia (Y.N.S.)
| | - Olesya Dmitrievna Kudinova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia (Y.N.S.)
| | - Valeria Petrovna Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia (Y.N.S.)
| | - Yury Nikolaevich Shkryl
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia (Y.N.S.)
| | - Liudmila Aleksandrovna Tekutyeva
- School of Advanced Engineering Studies, Institute of Biotechnology, Bioengineering and Food Systems, FEFU, 10 Ajax Bay, 690922 Vladivostok, Russia (L.A.B.)
| | - Larissa Anatolievna Balabanova
- School of Advanced Engineering Studies, Institute of Biotechnology, Bioengineering and Food Systems, FEFU, 10 Ajax Bay, 690922 Vladivostok, Russia (L.A.B.)
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-letya Vladivostoka 152, 690022 Vladivostok, Russia
| |
Collapse
|
4
|
Liu J, Zhang Q, Liang X, Zhang R, Huang X, Zhang S, Xie Z, Gao W, Liu H. Improving glucose oxidase catalysis in Aspergillus niger via Vitreoscilla hemoglobin fusion protein. Appl Microbiol Biotechnol 2024; 108:48. [PMID: 38183481 DOI: 10.1007/s00253-023-12931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 01/08/2024]
Abstract
Oxygen is crucial for converting glucose to gluconic acid catalyzed by glucose oxidase (Gox). However, industrial gluconic acid production faces oxygen supply limitations. To enhance Gox efficiency, Vitreoscilla hemoglobin (VHb) has been considered as an efficient oxygen transfer carrier. This study identified GoxA, a specific isoform of Gox in the industrial gluconic acid-producing strain of Aspergillus niger. Various forms of VHb expression in A. niger were tested to improve GoxA's catalytic efficiency. Surprisingly, the expression of free VHb, both intracellularly and extracellularly, did not promote gluconic acid production during shake flask fermentation. Then, five fusion proteins were constructed by linking Gox and VHb using various methods. Among these, VHb-GS1-GoxA, where VHb's C-terminus connected to GoxA's N-terminus via the flexible linker GS1, demonstrated a significantly higher Kcat/Km value (96% higher) than GoxA. Unfortunately, the expression of VHb-GS1-GoxA in A. niger was limited, resulting in a low gluconic acid production of 3.0 g/L. To overcome the low expression problem, single- and dual-strain systems were designed with tools of SpyCatcher/SpyTag and SnoopCatcher/SnoopTag. In these systems, Gox and VHb were separately expressed and then self-assembled into complex proteins. Impressively, the single-strain system outperformed the GoxA overexpression strain S1971, resulting in 23% and 9% higher gluconic acid production under 0.6 vvm and 1.2 vvm aeration conditions in the bioreactor fermentation, respectively. The successful construction of Gox and VHb fusion or complex proteins, as proposed in this study, presents promising approaches to enhance Gox catalytic efficiency and lower aerodynamic costs in gluconic acid production. KEY POINTS: • Overexpressing free VHb in A. niger did not improve the catalytic efficiency of Gox • The VHb-GS1-GoxA showed an increased Kcat/Km value by 96% than GoxA • The single-strain system worked better in the gluconic acid bioreactor fermentation.
Collapse
Affiliation(s)
- Jiao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Qian Zhang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xingying Liang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Rong Zhang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xiaojie Huang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shanshan Zhang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Weixia Gao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, 300457, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, People's Republic of China.
| |
Collapse
|
5
|
Gutierrez-Valdes N, Cunyat F, Balieu J, Walet-Balieu ML, Paul MJ, de Groot J, Blanco-Perera A, Carrillo J, Lerouge P, Seters MJV, Joensuu JJ, Bardor M, Ma J, Blanco J, Ritala A. Production and characterization of novel Anti-HIV Fc-fusion proteins in plant-based systems: Nicotiana benthamiana & tobacco BY-2 cell suspension. N Biotechnol 2024; 83:142-154. [PMID: 39142626 DOI: 10.1016/j.nbt.2024.08.499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Multifunctional anti-HIV Fc-fusion proteins aim to tackle HIV efficiently through multiple modes of action. Although results have been promising, these recombinant proteins are hard to produce. This study explored the production and characterization of anti-HIV Fc-fusion proteins in plant-based systems, specifically Nicotiana benthamiana plants and tobacco BY-2 cell suspension. Fc-fusion protein expression in plants was optimized by incorporating codon optimization, ER retention signals, and hydrophobin fusion elements. Successful transient protein expression was achieved in N. benthamiana, with notable improvements in expression levels achieved through N-terminal hydrophobin fusion and ER retention signals. Stable expression in tobacco BY-2 resulted in varying accumulation levels being at highest 2.2.mg/g DW. The inclusion of hydrophobin significantly enhanced accumulation, providing potential benefits for downstream processing. Mass spectrometry analysis confirmed the presence of the ER retention signal and of N-glycans. Functional characterization revealed strong binding to CD64 and CD16a receptors, the latter being important for antibody-dependent cellular cytotoxicity (ADCC). Interaction with HIV antigens indicated potential neutralization capabilities. In conclusion, this research highlights the potential of plant-based systems for producing functional anti-HIV Fc-fusion proteins, offering a promising avenue for the development of these novel HIV therapies.
Collapse
Affiliation(s)
- Noemi Gutierrez-Valdes
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland
| | - Francesc Cunyat
- AlbaJuna Therapeutics SL, Carretera Canyet, Badalona 08916, Spain
| | - Juliette Balieu
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | - Marie-Laure Walet-Balieu
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | - Matthew J Paul
- St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Jonas de Groot
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland
| | | | - Jorge Carrillo
- AlbaJuna Therapeutics SL, Carretera Canyet, Badalona 08916, Spain
| | - Patrice Lerouge
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | | | - Jussi J Joensuu
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland; University of Helsinki, Faculty of Biological and Environmental Sciences, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Muriel Bardor
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | - Julian Ma
- St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Julià Blanco
- AlbaJuna Therapeutics SL, Carretera Canyet, Badalona 08916, Spain
| | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland.
| |
Collapse
|
6
|
Tue NH, Phuc NH, Hoa PTB, Tien NQD, Loc NH. Partitioning recombinant chitinase from Nicotiana benthamiana by an aqueous two-phase system based on polyethylene glycol and phosphate salts. Int J Biol Macromol 2024; 269:131924. [PMID: 38688335 DOI: 10.1016/j.ijbiomac.2024.131924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
The objectives of this study were to purify 42 kDa chitinase derived from Trichoderma asperellum SH16 produced in Nicotiana benthamiana by a polyethylene glycol (PEG)/salt aqueous two-phase system (ATPS). The specific activities of the crude chitinase and the partially purified chitinase from N. benthamiana were about 251 unit/mg and 386 unit/mg, respectively. The study found the 300 g/L PEG 6000 + 200 g/L potassium phosphate (PP) and 300 g/L PEG 6000 + 150 g/L sodium phosphate (SP) systems had the highest partitioning efficiency for each salt in primary extraction. However, among the two types of salt, PP displayed higher efficiency than SP, with a partitioning coefficient K of 4.85 vs. 3.89, a volume ratio V of 2.94 vs. 2.68, and a partitioning yield Y of approximately 95 % vs. 83 %. After back extraction, the enzymatic activity of purified chitinase was up to 834 unit/mg (PP) and 492 unit/mg (SP). The purification factors reached 3.32 (PP) and 1.96 (SP), with recovery yields of about 59 % and 61 %, respectively. SDS-PAGE and zymogram analysis showed that the recombinant chitinase was significantly purified by using ATPS. The purified enzyme exhibited high chitinolytic activity, with the hydrolysis zone's diameter being around 2.5 cm-3 cm. It also dramatically reduced the growth of Sclerotium rolfsii; the colony diameter after treatment with 60 unit of enzyme for 104 spores was only about 1 cm, compared to 3.5 cm in the control. The antifungal effect of chitinase suggests that this enzyme has great potential for applications in agricultural production as well as postharvest fruit and vegetable preservation.
Collapse
Affiliation(s)
- Nguyen Hoang Tue
- Institute of Bioactive Compounds and Department of Biotechnology, University of Sciences, Hue University, 77 Nguyen Hue St., Hue 49000, Viet Nam
| | - Nguyen Hoang Phuc
- Institute of Bioactive Compounds and Department of Biotechnology, University of Sciences, Hue University, 77 Nguyen Hue St., Hue 49000, Viet Nam
| | - Phung Thi Bich Hoa
- Department of Biology, University of Education, Hue University, 34 Le Loi St., Hue 49000, Viet Nam
| | - Nguyen Quang Duc Tien
- Institute of Bioactive Compounds and Department of Biotechnology, University of Sciences, Hue University, 77 Nguyen Hue St., Hue 49000, Viet Nam
| | - Nguyen Hoang Loc
- Institute of Bioactive Compounds and Department of Biotechnology, University of Sciences, Hue University, 77 Nguyen Hue St., Hue 49000, Viet Nam.
| |
Collapse
|
7
|
Qin L, Liu H, Liu P, Jiang L, Cheng X, Li F, Shen W, Qiu W, Dai Z, Cui H. Rubisco small subunit (RbCS) is co-opted by potyvirids as the scaffold protein in assembling a complex for viral intercellular movement. PLoS Pathog 2024; 20:e1012064. [PMID: 38437247 PMCID: PMC10939294 DOI: 10.1371/journal.ppat.1012064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/14/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Plant viruses must move through plasmodesmata (PD) to complete their life cycles. For viruses in the Potyviridae family (potyvirids), three viral factors (P3N-PIPO, CI, and CP) and few host proteins are known to participate in this event. Nevertheless, not all the proteins engaging in the cell-to-cell movement of potyvirids have been discovered. Here, we found that HCPro2 encoded by areca palm necrotic ring spot virus (ANRSV) assists viral intercellular movement, which could be functionally complemented by its counterpart HCPro from a potyvirus. Affinity purification and mass spectrometry identified several viral factors (including CI and CP) and host proteins that are physically associated with HCPro2. We demonstrated that HCPro2 interacts with both CI and CP in planta in forming PD-localized complexes during viral infection. Further, we screened HCPro2-associating host proteins, and identified a common host protein in Nicotiana benthamiana-Rubisco small subunit (NbRbCS) that mediates the interactions of HCPro2 with CI or CP, and CI with CP. Knockdown of NbRbCS impairs these interactions, and significantly attenuates the intercellular and systemic movement of ANRSV and three other potyvirids (turnip mosaic virus, pepper veinal mottle virus, and telosma mosaic virus). This study indicates that a nucleus-encoded chloroplast-targeted protein is hijacked by potyvirids as the scaffold protein to assemble a complex to facilitate viral movement across cells.
Collapse
Affiliation(s)
- Li Qin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongjun Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Peilan Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Lu Jiang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Cheng
- College of Plant Protection/Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentao Shen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenping Qiu
- Center for Grapevine Biotechnology, William H. Darr College of Agriculture, Missouri State University, Mountain Grove, United States of America
| | - Zhaoji Dai
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongguang Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
8
|
Jiang MC, Hsu WL, Tseng CY, Lin NS, Hsu YH, Hu CC. Development of a tag-free plant-made interferon gamma production system with improved therapeutic efficacy against viruses. Front Bioeng Biotechnol 2024; 11:1341340. [PMID: 38274005 PMCID: PMC10808299 DOI: 10.3389/fbioe.2023.1341340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Plants offer a promising platform for cost-effective production of biologically active therapeutic glycoproteins. In previous studies, we have developed a plant expression system based on Bamboo mosaic virus (BaMV) by incorporating secretory signals and an affinity tag, which resulted in notably enhanced yields of soluble and secreted fusion glycoproteins (FGs) in Nicotiana benthamiana. However, the presence of fusion tags on recombinant glycoproteins is undesirable for biomedical applications. This study aimed to develop a refined expression system that can efficiently produce tag-free glycoproteins in plants, with enhanced efficacy of mature interferon gamma (mIFNγ) against viruses. To accommodate the specific requirement of different target proteins, three enzymatically or chemically cleavable linkers were provided in this renovated BaMV-based expression system. We demonstrated that Tobacco etch virus (TEV) protease could process the specific cleavage site (LTEV) of the fusion protein, designated as SSExtHis(SP)10LTEV-mIFNγ, with optimal efficiency under biocompatible conditions to generate tag-free mIFNγ glycoproteins. The TEV protease and secretory-affinity tag could be effectively removed from the target mIFNγ glycoproteins through Ni2+-NTA chromatography. In addition, the result of an antiviral assay showed that the tag-free mIFNγ glycoproteins exhibited enhanced biological properties against Sindbis virus, with comparable antiviral activity of the commercialized HEK293-expressed hIFNγ. Thus, the improved BaMV-based expression system developed in this study may provide an alternative strategy for producing tag-free therapeutic glycoproteins intended for biomedical applications.
Collapse
Affiliation(s)
- Min-Chao Jiang
- PhD Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Yu Tseng
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
9
|
Santoni M, Gutierrez-Valdes N, Pivotto D, Zanichelli E, Rosa A, Sobrino-Mengual G, Balieu J, Lerouge P, Bardor M, Cecchetto R, Compri M, Mazzariol A, Ritala A, Avesani L. Performance of plant-produced RBDs as SARS-CoV-2 diagnostic reagents: a tale of two plant platforms. FRONTIERS IN PLANT SCIENCE 2024; 14:1325162. [PMID: 38239207 PMCID: PMC10794598 DOI: 10.3389/fpls.2023.1325162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024]
Abstract
The COVID-19 pandemic has underscored the need for rapid and cost-effective diagnostic tools. Serological tests, particularly those measuring antibodies targeting the receptor-binding domain (RBD) of the virus, play a pivotal role in tracking infection dynamics and vaccine effectiveness. In this study, we aimed to develop a simple enzyme-linked immunosorbent assay (ELISA) for measuring RBD-specific antibodies, comparing two plant-based platforms for diagnostic reagent production. We chose to retain RBD in the endoplasmic reticulum (ER) to prevent potential immunoreactivity issues associated with plant-specific glycans. We produced ER-retained RBD in two plant systems: a stable transformation of BY-2 plant cell culture (BY2-RBD) and a transient transformation in Nicotiana benthamiana using the MagnICON system (NB-RBD). Both systems demonstrated their suitability, with varying yields and production timelines. The plant-made proteins revealed unexpected differences in N-glycan profiles, with BY2-RBD displaying oligo-mannosidic N-glycans and NB-RBD exhibiting a more complex glycan profile. This difference may be attributed to higher recombinant protein synthesis in the N. benthamiana system, potentially overloading the ER retention signal, causing some proteins to traffic to the Golgi apparatus. When used as diagnostic reagents in ELISA, BY2-RBD outperformed NB-RBD in terms of sensitivity, specificity, and correlation with a commercial kit. This discrepancy may be due to the distinct glycan profiles, as complex glycans on NB-RBD may impact immunoreactivity. In conclusion, our study highlights the potential of plant-based systems for rapid diagnostic reagent production during emergencies. However, transient expression systems, while offering shorter timelines, introduce higher heterogeneity in recombinant protein forms, necessitating careful consideration in serological test development.
Collapse
Affiliation(s)
| | | | - Denise Pivotto
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elena Zanichelli
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Guillermo Sobrino-Mengual
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, Rouen, France
- Applied Plant Biotechnology Group, Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Juliette Balieu
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, Rouen, France
| | - Patrice Lerouge
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, Rouen, France
| | - Muriel Bardor
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, Rouen, France
| | - Riccardo Cecchetto
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, Verona, Italy
| | - Monica Compri
- Azienda Ospedaliera Universitaria, UOC Microbiologia e Virologia, Verona, Italy
| | - Annarita Mazzariol
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, Verona, Italy
| | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
10
|
Chattopadhyay A, Jailani AAK, Mandal B. Exigency of Plant-Based Vaccine against COVID-19 Emergence as Pandemic Preparedness. Vaccines (Basel) 2023; 11:1347. [PMID: 37631915 PMCID: PMC10458178 DOI: 10.3390/vaccines11081347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
After two years since the declaration of COVID-19 as a pandemic by the World Health Organization (WHO), more than six million deaths have occurred due to SARS-CoV-2, leading to an unprecedented disruption of the global economy. Fortunately, within a year, a wide range of vaccines, including pathogen-based inactivated and live-attenuated vaccines, replicating and non-replicating vector-based vaccines, nucleic acid (DNA and mRNA)-based vaccines, and protein-based subunit and virus-like particle (VLP)-based vaccines, have been developed to mitigate the severe impacts of the COVID-19 pandemic. These vaccines have proven highly effective in reducing the severity of illness and preventing deaths. However, the availability and supply of COVID-19 vaccines have become an issue due to the prioritization of vaccine distribution in most countries. Additionally, as the virus continues to mutate and spread, questions have arisen regarding the effectiveness of vaccines against new strains of SARS-CoV-2 that can evade host immunity. The urgent need for booster doses to enhance immunity has been recognized. The scarcity of "safe and effective" vaccines has exacerbated global inequalities in terms of vaccine coverage. The development of COVID-19 vaccines has fallen short of the expectations set forth in 2020 and 2021. Furthermore, the equitable distribution of vaccines at the global and national levels remains a challenge, particularly in developing countries. In such circumstances, the exigency of plant virus-based vaccines has become apparent as a means to overcome supply shortages through fast manufacturing processes and to enable quick and convenient distribution to millions of people without the reliance on a cold chain system. Moreover, plant virus-based vaccines have demonstrated both safety and efficacy in eliciting robust cellular immunogenicity against COVID-19 pathogens. This review aims to shed light on the advantages and disadvantages of different types of vaccines developed against SARS-CoV-2 and provide an update on the current status of plant-based vaccines in the fight against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anirudha Chattopadhyay
- Pulses Research Station, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar 385506, India;
| | - A. Abdul Kader Jailani
- Department of Plant Pathology, North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
11
|
Hu W, Dai Z, Liu P, Deng C, Shen W, Li Z, Cui H. The Single Distinct Leader Protease Encoded by Alpinia oxyphylla Mosaic Virus (Genus Macluravirus) Suppresses RNA Silencing Through Interfering with Double-Stranded RNA Synthesis. PHYTOPATHOLOGY 2023; 113:1103-1114. [PMID: 36576401 DOI: 10.1094/phyto-10-22-0371-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The genomic 5'-terminal regions of viruses in the family Potyviridae (potyvirids) encode two types of leader proteases: serine-protease (P1) and cysteine-protease (HCPro), which differ greatly in the arrangement and sequence composition among inter-genus viruses. Most potyvirids have the same tandemly arranged P1 and HCPro, whereas viruses in the genus Macluravirus encode a single distinct leader protease, a truncated version of HCPro with yet-unknown functions. We investigated the RNA silencing suppression (RSS) activity and its underpinning mechanism of the distinct HCPro from alpinia oxyphylla mosaic macluravirus (aHCPro). Sequence analysis revealed that macluraviral HCPros have obvious truncations in the N-terminal and middle regions when aligned to their counterparts in potyviruses (well-characterized viral suppressors of RNA silencing). Nearly all defined elements essential for the RSS activity of potyviral counterparts are not distinguished in macluraviral HCPros. Here, we demonstrated that aHCPro exhibits a similar anti-silencing activity with the potyviral counterpart. However, aHCPro fails to block both the local and systemic spreading of RNA silencing. In line, aHCPro interferes with the dsRNA synthesis, an upstream step in the RNA silencing pathway. Affinity-purification and NanoLC-MS/MS analysis revealed that aHCPro has no association with core components or their potential interactors involving in dsRNA synthesis from the protein layer. Instead, the ectopic expression of aHCPro significantly reduces the transcript abundance of RDR2, RDR6, SGS3, and SDE5. This study represents the first report on the anti-silencing function of Macluravirus-encoded HCPro and the underlying molecular mechanism.
Collapse
Affiliation(s)
- Weiyao Hu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Zhaoji Dai
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Peilan Liu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Changhui Deng
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Wentao Shen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Zengping Li
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Hongguang Cui
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
12
|
A Zinc Finger Motif in the P1 N Terminus, Highly Conserved in a Subset of Potyviruses, Is Associated with the Host Range and Fitness of Telosma Mosaic Virus. J Virol 2023; 97:e0144422. [PMID: 36688651 PMCID: PMC9972955 DOI: 10.1128/jvi.01444-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
P1 is the first protein translated from the genomes of most viruses in the family Potyviridae, and it contains a C-terminal serine-protease domain that cis-cleaves the junction between P1 and HCPro in most cases. Intriguingly, P1 is the most divergent among all mature viral factors, and its roles during viral infection are still far from understood. In this study, we found that telosma mosaic virus (TelMV, genus Potyvirus) in passion fruit, unlike TelMV isolates present in other hosts, has two stretches at the P1 N terminus, named N1 and N2, with N1 harboring a Zn finger motif. Further analysis revealed that at least 14 different potyviruses, mostly belonging to the bean common mosaic virus subgroup, encode a domain equivalent to N1. Using the newly developed TelMV infectious cDNA clones from passion fruit, we demonstrated that N1, but not N2, is crucial for viral infection in both Nicotiana benthamiana and passion fruit. The regulatory effects of N1 domain on P1 cis cleavage, as well as the accumulation and RNA silencing suppression (RSS) activity of its cognate HCPro, were comprehensively investigated. We found that N1 deletion decreases HCPro abundance at the posttranslational level, likely by impairing P1 cis cleavage, thus reducing HCPro-mediated RSS activity. Remarkably, disruption of the Zn finger motif in N1 did not impair P1 cis cleavage and HCPro accumulation but severely debilitated TelMV fitness. Therefore, our results suggest that the Zn finger motif in P1s plays a critical role in viral infection that is independent of P1 protease activity and self-release, as well as HCPro accumulation and silencing suppression. IMPORTANCE Viruses belonging to the family Potyviridae represent the largest group of plant-infecting RNA viruses, including a variety of agriculturally and economically important viral pathogens. Like all picorna-like viruses, potyvirids employ polyprotein processing as the gene expression strategy. P1, the first protein translated from most potyvirid genomes, is the most variable viral factor and has attracted great scientific interest. Here, we defined a Zn finger motif-encompassing domain (N1) at the N terminus of P1 among diverse potyviruses phylogenetically related to bean common mosaic virus. Using TelMV as a model virus, we demonstrated that the N1 domain is key for viral infection, as it is involved both in regulating the abundance of its cognate HCPro and in an as-yet-undefined key function unrelated to protease processing and RNA silencing suppression. These results advance our knowledge of the hypervariable potyvirid P1s and highlight the importance for infection of a previously unstudied Zn finger domain at the P1 N terminus.
Collapse
|
13
|
Coates RJ, Young MT, Scofield S. Optimising expression and extraction of recombinant proteins in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1074531. [PMID: 36570881 PMCID: PMC9773421 DOI: 10.3389/fpls.2022.1074531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Recombinant proteins are of paramount importance for research, industrial and medical use. Numerous expression chassis are available for recombinant protein production, and while bacterial and mammalian cell cultures are the most widely used, recent developments have positioned transgenic plant chassis as viable and often preferential options. Plant chassis are easily maintained at low cost, are hugely scalable, and capable of producing large quantities of protein bearing complex post-translational modification. Several protein targets, including antibodies and vaccines against human disease, have been successfully produced in plants, highlighting the significant potential of plant chassis. The aim of this review is to act as a guide to producing recombinant protein in plants, discussing recent progress in the field and summarising the factors that must be considered when utilising plants as recombinant protein expression systems, with a focus on optimising recombinant protein expression at the genetic level, and the subsequent extraction and purification of target proteins, which can lead to substantial improvements in protein stability, yield and purity.
Collapse
Affiliation(s)
| | | | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
14
|
Rozov SM, Deineko EV. Increasing the Efficiency of the Accumulation of Recombinant Proteins in Plant Cells: The Role of Transport Signal Peptides. PLANTS (BASEL, SWITZERLAND) 2022; 11:2561. [PMID: 36235427 PMCID: PMC9572730 DOI: 10.3390/plants11192561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The problem with increasing the yield of recombinant proteins is resolvable using different approaches, including the transport of a target protein to cell compartments with a low protease activity. In the cell, protein targeting involves short-signal peptide sequences recognized by intracellular protein transport systems. The main systems of the protein transport across membranes of the endoplasmic reticulum and endosymbiotic organelles are reviewed here, as are the major types and structure of the signal sequences targeting proteins to the endoplasmic reticulum and its derivatives, to plastids, and to mitochondria. The role of protein targeting to certain cell organelles depending on specific features of recombinant proteins and the effect of this targeting on the protein yield are discussed, in addition to the main directions of the search for signal sequences based on their primary structure. This knowledge makes it possible not only to predict a protein localization in the cell but also to reveal the most efficient sequences with potential biotechnological utility.
Collapse
|
15
|
Marín Viegas VS, Ocampo CG, Restucci FE, Vignolles F, Mazzini FN, Candreva ÁM, Petruccelli S. Synthesis of single-chain antibody fragment fused to the elastin-like polypeptide in Nicotiana benthamiana and its application in affinity precipitation of difficult to produce proteins. Biotechnol Bioeng 2022; 119:2505-2517. [PMID: 35689353 DOI: 10.1002/bit.28158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 11/06/2022]
Abstract
Plants are economical and sustainable factories for the production of recombinant proteins. Currently, numerous proteins produced using different plant-based systems with applications as cosmetic and tissue culture ingredients, research and diagnostic reagents, and industrial enzymes are marketed worldwide. In this study, we aimed to demonstrate the usefulness of a plant-based system to synthesize a single-chain antibody (scFv)-elastin-like polypeptide (ELP) fusion to be applied as an affinity precipitation reagent of the difficult to produce recombinant proteins. We used the human tissue transglutaminase (TG2), the main celiac disease autoantigen, as a proof of concept. We cloned a TG2-specific scFv and fused it to a short hydrophobic ELP tag. The anti-TG2-scFv-ELP was produced in Nicotiana benthamiana and was efficiently recovered by an inverse transition cycling procedure improved by coaggregation with bacteria-made free ELP. Finally, the scFv-ELP was used to purify both plant-synthesized human TG2 and also Caco-2-TG2. In conclusion, this study showed for the first time the usefulness of a plant-based expression system to produce an antibody-ELP fusion designed for the purification of low-yield proteins.
Collapse
Affiliation(s)
- Vanesa S Marín Viegas
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Carolina G Ocampo
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Fernando E Restucci
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Florencia Vignolles
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Flavia N Mazzini
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Ángela M Candreva
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Silvana Petruccelli
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
16
|
Zhu M, Bin J, Ding H, Pan D, Tian Q, Yang X, Wang L, Yue Y. Insights into the trihelix transcription factor responses to salt and other stresses in Osmanthus fragrans. BMC Genomics 2022; 23:334. [PMID: 35488201 PMCID: PMC9055724 DOI: 10.1186/s12864-022-08569-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osmanthus fragrans is an evergreen plant with high ornamental and economic values. However, they are easily injured by salt stress, which severely limits their use in high salinity areas. The trihelix transcription factor (TF) family, as one of the earliest discovered TF families in plants, plays an essential part in responses to different abiotic stresses, and it has potential functions in improving the salt-tolerance capability of O. fragrans. RESULTS In this study, 56 trihelix genes (OfGTs) were first identified in O. fragrans and then divided into five subfamilies in accordance with a phylogenetic tree analysis. The OfGTs were found to be located randomly on the 20 O. fragrans chromosomes, and an analysis of gene replication events indicated that the OfGT gene family underwent strong purification selection during the evolutionary process. The analysis of conserved motifs and gene structures implied that the OfGT members in the same subfamily have similar conserved motifs and gene structures. A promoter cis-elements analysis showed that all the OfGT genes contained multiple abiotic and hormonal stress-related cis-elements. The RNA-seq data suggested that the OfGTs have specific expression patterns in different tissues, and some were induced by salt stress. The qRT-PCR analysis of 12 selected OfGTs confirmed that OfGT1/3/21/33/42/45/46/52 were induced, with OfGT3/42/46 being the most highly expressed. In addition, OfGT42/OfGT46 had a co-expression pattern under salt-stress conditions. OfGT3/42/46 were mainly localized in the nuclei and exhibited no transcriptional activities based on the analysis of the subcellular localization and transcriptional activity assay. Furthermore, the expression levels of most of the selected OfGTs were induced by multiple abiotic and hormonal stresses, and the expression patterns of some OfGTs were also highly correlated with gibberellic acid and methyl jasmonate levels. Remarkably, the transient transformation results showed lower MDA content and increased expression of ROS-related genes NbAPX in transgenic plants, which implying OfGT3/42/46 may improve the salt tolerance of tobacco. CONCLUSIONS The results implied that the OfGT genes were related to abiotic and hormonal stress responses in O. fragrans, and that the OfGT3/42/46 genes in particular might play crucial roles in responses to salt stress. This study made a comprehensive summary of the OfGT gene family, including functions and co-expression patterns in response to salt and other stresses, as well as an evolutionary perspective. Consequently, it lays a foundation for further functional characterizations of these genes.
Collapse
Affiliation(s)
- Meilin Zhu
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jing Bin
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Huifen Ding
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Duo Pan
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Qingyin Tian
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Xiulian Yang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Lianggui Wang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Yuanzheng Yue
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
17
|
Li X, Li X, Fan B, Zhu C, Chen Z. Specialized endoplasmic reticulum-derived vesicles in plants: Functional diversity, evolution, and biotechnological exploitation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:821-835. [PMID: 35142108 PMCID: PMC9314129 DOI: 10.1111/jipb.13233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
A central role of the endoplasmic reticulum (ER) is the synthesis, folding and quality control of secretory proteins. Secretory proteins usually exit the ER to enter the Golgi apparatus in coat protein complex II (COPII)-coated vesicles before transport to different subcellular destinations. However, in plants there are specialized ER-derived vesicles (ERDVs) that carry specific proteins but, unlike COPII vesicles, can exist as independent organelles or travel to the vacuole in a Golgi-independent manner. These specialized ERDVs include protein bodies and precursor-accumulating vesicles that accumulate storage proteins in the endosperm during seed development. Specialized ERDVs also include precursor protease vesicles that accumulate amino acid sequence KDEL-tailed cysteine proteases and ER bodies in Brassicales plants that accumulate myrosinases that hydrolyzes glucosinolates. These functionally specialized ERDVs act not only as storage organelles but also as platforms for signal-triggered processing, activation and deployment of specific proteins with important roles in plant growth, development and adaptive responses. Some specialized ERDVs have also been exploited to increase production of recombinant proteins and metabolites. Here we discuss our current understanding of the functional diversity, evolutionary mechanisms and biotechnological application of specialized ERDVs, which are associated with some of the highly remarkable characteristics important to plants.
Collapse
Affiliation(s)
- Xie Li
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
| | - Xifeng Li
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
| | - Baofang Fan
- Department of Botany and Plant Pathology, Center for Plant BiologyPurdue UniversityWest Lafayette47907‐2054INUSA
| | - Cheng Zhu
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
| | - Zhixiang Chen
- College of Life Science, Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
- Department of Botany and Plant Pathology, Center for Plant BiologyPurdue UniversityWest Lafayette47907‐2054INUSA
| |
Collapse
|
18
|
Improving Protein Quantity and Quality—The Next Level of Plant Molecular Farming. Int J Mol Sci 2022; 23:ijms23031326. [PMID: 35163249 PMCID: PMC8836236 DOI: 10.3390/ijms23031326] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/15/2022] Open
Abstract
Plants offer several unique advantages in the production of recombinant pharmaceuticals for humans and animals. Although numerous recombinant proteins have been expressed in plants, only a small fraction have been successfully put into use. The hugely distinct expression systems between plant and animal cells frequently cause insufficient yield of the recombinant proteins with poor or undesired activity. To overcome the issues that greatly constrain the development of plant-produced pharmaceuticals, great efforts have been made to improve expression systems and develop alternative strategies to increase both the quantity and quality of the recombinant proteins. Recent technological revolutions, such as targeted genome editing, deconstructed vectors, virus-like particles, and humanized glycosylation, have led to great advances in plant molecular farming to meet the industrial manufacturing and clinical application standards. In this review, we discuss the technological advances made in various plant expression platforms, with special focus on the upstream designs and milestone achievements in improving the yield and glycosylation of the plant-produced pharmaceutical proteins.
Collapse
|
19
|
Cai F, Zhao Z, Gao R, Chen P, Ding M, Jiang S, Fu Z, Xu P, Chenthamara K, Shen Q, Bayram Akcapinar G, Druzhinina IS. The pleiotropic functions of intracellular hydrophobins in aerial hyphae and fungal spores. PLoS Genet 2021; 17:e1009924. [PMID: 34788288 PMCID: PMC8635391 DOI: 10.1371/journal.pgen.1009924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/01/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022] Open
Abstract
Higher fungi can rapidly produce large numbers of spores suitable for aerial dispersal. The efficiency of the dispersal and spore resilience to abiotic stresses correlate with their hydrophobicity provided by the unique amphiphilic and superior surface-active proteins-hydrophobins (HFBs)-that self-assemble at hydrophobic/hydrophilic interfaces and thus modulate surface properties. Using the HFB-enriched mold Trichoderma (Hypocreales, Ascomycota) and the HFB-free yeast Pichia pastoris (Saccharomycetales, Ascomycota), we revealed that the rapid release of HFBs by aerial hyphae shortly prior to conidiation is associated with their intracellular accumulation in vacuoles and/or lipid-enriched organelles. The occasional internalization of the latter organelles in vacuoles can provide the hydrophobic/hydrophilic interface for the assembly of HFB layers and thus result in the formation of HFB-enriched vesicles and vacuolar multicisternal structures (VMSs) putatively lined up by HFBs. These HFB-enriched vesicles and VMSs can become fused in large tonoplast-like organelles or move to the periplasm for secretion. The tonoplast-like structures can contribute to the maintenance of turgor pressure in aerial hyphae supporting the erection of sporogenic structures (e.g., conidiophores) and provide intracellular force to squeeze out HFB-enriched vesicles and VMSs from the periplasm through the cell wall. We also show that the secretion of HFBs occurs prior to the conidiation and reveal that the even spore coating of HFBs deposited in the extracellular matrix requires microscopic water droplets that can be either guttated by the hyphae or obtained from the environment. Furthermore, we demonstrate that at least one HFB, HFB4 in T. guizhouense, is produced and secreted by wetted spores. We show that this protein possibly controls spore dormancy and contributes to the water sensing mechanism required for the detection of germination conditions. Thus, intracellular HFBs have a range of pleiotropic functions in aerial hyphae and spores and are essential for fungal development and fitness.
Collapse
Affiliation(s)
- Feng Cai
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Zheng Zhao
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Renwei Gao
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Peijie Chen
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Mingyue Ding
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Siqi Jiang
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Zhifei Fu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Pingyong Xu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Komal Chenthamara
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Qirong Shen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- * E-mail: (QS); (ISD)
| | - Günseli Bayram Akcapinar
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irina S. Druzhinina
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- * E-mail: (QS); (ISD)
| |
Collapse
|
20
|
Yang J, Xun H, Niu L, He H, Cheng Y, Zhong X, Zhao Q, Xing G, Liu J, Yang X. Elastin-like polypeptide and γ-zein fusions significantly increase recombinant protein accumulation in soybean seeds. Transgenic Res 2021; 30:675-686. [PMID: 33963986 DOI: 10.1007/s11248-021-00258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Soybean seeds are an ideal host for the production of recombinant proteins because of their high content of proteins, long-term stability of seed proteins under ambient conditions, and easy establishment of efficient purification protocols. In this study, a polypeptide fusion strategy was applied to explore the capacity of elastin-like polypeptide (ELP) and γ-zein fusions in increasing the accumulation of the recombinant protein in soybean seeds. Transgenic soybean plants were generated to express the γ-zein- or ELP-fused green fluorescent protein (GFP) under the control of the soybean seed-specific promoter of β-conglycinin alpha subunit (BCSP). Significant differences were observed in the accumulation of zein-GFP and GFP-ELP from that of the unfused GFP in transgenic soybean seeds based on the total soluble protein (TSP), despite the low-copy of T-DNA insertions and similar expression at the mRNA levels in selected transgenic lines. The average levels of zein-GFP and GFP-ELP accumulated in immature seeds of these transgenic lines were 0.99% and 0.29% TSP, respectively, compared with 0.07% TSP of the unfused GFP. In mature soybean seeds, the accumulation of zein-GFP and GFP-ELP proteins was 1.8% and 0.84% TSP, an increase of 3.91- and 1.82-fold, respectively, in comparison with that of the unfused GFP (0.46% TSP). Confocal laser scanning analysis showed that both zein-GFP and GFP-ELP were abundantly deposited in many small spherical particles of transgenic seeds, while there were fewer such florescence signals in the same cellular compartments of the unfused GFP-expressing seeds. Despite increased recombinant protein accumulation, there were no significant changes in the total protein and oil content in seeds between the transgenic and non-transformed plants, suggesting the possible presence of threshold limits of total protein accumulation in transgenic soybean seeds. Overall, our results indicate that γ-zein and ELP fusions significantly increased the accumulation of the recombinant protein, but exhibited no significant influence on the total protein and oil content in soybean seeds.
Collapse
Affiliation(s)
- Jing Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - HongWei Xun
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lu Niu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Hongli He
- Jilin Normal University, Siping, 136000, China
| | | | - Xiaofang Zhong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qianqian Zhao
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Guojie Xing
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | | | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
21
|
Rahimifard Hamedani P, Solouki M, Ehsani P, Emamjomeh A, Ofoghi H. Expression of BMP2-Hydrophobin fusion protein in the tobacco plant and molecular dynamic evaluation of its simulated model. PLANT BIOTECHNOLOGY REPORTS 2021; 15:309-316. [PMID: 34131449 PMCID: PMC8193172 DOI: 10.1007/s11816-021-00684-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/14/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Plants are one of the ideal models for therapeutic protein production, however the recombinant protein purification problems in them must be overcome. Bone Morphogenetic Protein2 (BMP2) is employed for the restoration and construction of bone tissues. Hydrophobin is a fungal based protein with high hydrophobic characteristics. Due to this specificity, it is suitable for the purification of chimer protein from complex solutions when is fused to a protein utilizing an aqueous two-phase (A2P) technique. The plant optimized mature human BMP2 gene was designed and evaluated by in silico method. This process involves simulating molecular dynamics using the RMSD, RMSF and Gyration radius indexes. The synthesized Hyd-BMP2 gene was cloned into a pTRAkc-ERH plasmid and Transferred into Agrobacterium (Gv3101). The Nicotiana benthamiana plant leaves were co-agroinfiltrated with HA-Hyd-BMP2 and P19-pCambia1304 containing silencing suppressor. After purification of plant extract utilizing the A2P method, the sample was subjected to SDS-PAGE and Western-blot. By in silico study, the simulated fusion protein profitably shows reasonable protein compactness and the effect of amino acid substitution on protein-protein interaction is not remarkable. Western-blotting using anti HA tag has shown that the A2P technique partially purified the two 22 kDa and 44 kDa forms of Hydrophobin-BMP2. These results confirmed the presence of monomer and dimer forms of Hydrophobin-BMP2 proteins. Moreover, the expression level of the protein using P19 silencing suppressor increased six times and to 0.018% as shown by ELISA. This study presents a fast and easy technique for the purification of transient expressed pharmaceutical proteins from plants.
Collapse
Affiliation(s)
| | - Mahmood Solouki
- Department of Plant Breeding and Biotechnology (PBB), University of Zabol, Zabol, Iran
| | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology (PBB), University of Zabol, Zabol, Iran
| | - Hamideh Ofoghi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
22
|
Silva BB, Santos ENFN, Araújo LS, Bezerra AS, Marques LÉC, Tramontina Florean EOP, van Tilburg MF, Guedes MIF. Plant Expression of Hydrophobin Fused K39 Antigen for Visceral Leishmaniasis Immunodiagnosis. FRONTIERS IN PLANT SCIENCE 2021; 12:674015. [PMID: 34135929 PMCID: PMC8201991 DOI: 10.3389/fpls.2021.674015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Visceral leishmaniasis is a Neglected Tropical Disease of high mortality caused by the protozoan Leishmania infantum. Its transmission cycle is complex, and it has in the domestic dog its main reservoir. The diagnostic tests currently used rely on prokaryotic systems' proteins, but their low sensitivity increases the disease's burden. The plant transient expression of recombinant proteins allows the production of complex antigens. However, this system has limited competitiveness against the bacterial production of purified antigens. Thus, we have shown that the L. infantum K39 antigen's fusion to a hydrophobin allows its production for diagnostic tests without the need for intensive purification. The sera of naturally infected dogs specifically detect the semi-purified rK39-HFBI protein. The test validation against a panel of 158 clinical samples demonstrates the platform's viability, resulting in sensitivity and specificity of 90.7 and 97.5%, respectively. Thus, the use of semi-purified antigens fused to hydrophobins can become the standard platform for large-scale antigens production to expand diagnostic tests for other human and veterinary diseases worldwide.
Collapse
Affiliation(s)
- Bruno B. Silva
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceará, Fortaleza, Brazil
- Northeast Biotechnology Network (RENORBIO), State University of Ceará, Fortaleza, Brazil
| | - Eduarda N. F. N. Santos
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceará, Fortaleza, Brazil
- Northeast Biotechnology Network (RENORBIO), State University of Ceará, Fortaleza, Brazil
| | - Lucelina S. Araújo
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceará, Fortaleza, Brazil
| | - Arnaldo S. Bezerra
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceará, Fortaleza, Brazil
- Northeast Biotechnology Network (RENORBIO), State University of Ceará, Fortaleza, Brazil
| | - Lívia É. C. Marques
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceará, Fortaleza, Brazil
| | | | - Maurício F. van Tilburg
- Northeast Biotechnology Network (RENORBIO), State University of Ceará, Fortaleza, Brazil
- Department of Animal Sciences, Federal Rural University of the Semiarid, Mossoró, Brazil
| | - Maria Izabel F. Guedes
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceará, Fortaleza, Brazil
- Northeast Biotechnology Network (RENORBIO), State University of Ceará, Fortaleza, Brazil
| |
Collapse
|
23
|
Sethi L, Kumari K, Dey N. Engineering of Plants for Efficient Production of Therapeutics. Mol Biotechnol 2021; 63:1125-1137. [PMID: 34398446 PMCID: PMC8365136 DOI: 10.1007/s12033-021-00381-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
Plants are becoming useful platforms for recombinant protein production at present time. With the advancement of efficient molecular tools of genomics, proteomics, plants are now being used as a biofactory for production of different life saving therapeutics. Plant-based biofactory is an established production system with the benefits of cost-effectiveness, high scalability, rapid production, enabling post-translational modification, and being devoid of harmful pathogens contamination. This review introduces the main challenges faced by plant expression system: post-translational modifications, protein stability, biosafety concern and regulation. It also summarizes essential factors to be considered in engineering plants, including plant expression system, promoter, post-translational modification, codon optimization, and fusion tags, protein stabilization and purification, subcellular targeting, and making vaccines in an edible way. This review will be beneficial and informative to scholars and readers in the field of plant biotechnology.
Collapse
Affiliation(s)
- Lini Sethi
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha 751023 India ,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi) 121001 India
| | - Khushbu Kumari
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha 751023 India ,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi) 121001 India
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha 751023 India
| |
Collapse
|
24
|
Bellande K, Lalo A, Ligat L, Roujol D, Jamet E, Canut H. Recombinant N-glycosylation isoforms of Legume lectins: Production and purification from Nicotiana benthamiana leaves following RuBisCO depletion. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:441-452. [PMID: 33212361 DOI: 10.1016/j.plaphy.2020.10.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
An efficient purification of recombinant proteins often requires a high ratio of recombinant to host proteins. In plants, Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the most abundant leaf protein, thus strongly impacting purification yield. Here, we describe a simple and robust purification procedure for recombinant proteins based on a differential precipitation of RuBisCO. In this context, four Legume lectin domains of Arabidopsis thaliana which belong to receptor-like kinases and cell wall proteins were produced from Nicotiana benthamiana leaves. The recombinant proteins exhibit a unique lectin domain consisting of around 250 amino acid residues with several predicted N-glycosylation sites and a six His-tag at the N-terminus. After ammonium sulphate precipitation of total soluble proteins, depletion of RuBisCO was obtained using citrate and succinate buffers during the salting-in step: this depletion was pH-dependent and the presence of di- or tri-carboxylic acids was required. The depleted protein extracts were then subjected to two chromatographic steps which were used in the negative mode to submit a protein fraction enriched as much as possible in recombinant lectin domains to a third chromatographic step (immobilized metal-ion chromatography). Three of the Legume lectin domains were purified near to homogeneity and revealed multiple N-glycosylation isoforms, particularly those from receptor-like kinases, which were characterised using specific lectins and deglycosylation enzymes. The production and purification of recombinant lectin domains will facilitate their biochemical characterisation in the context of cell-to-cell signalling and cell wall organisation.
Collapse
Affiliation(s)
- Kevin Bellande
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Alexandre Lalo
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Lætitia Ligat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - David Roujol
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Hervé Canut
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France.
| |
Collapse
|
25
|
Chang HJ, Choi H, Na S. Predicting the self-assembly film structure of class II hydrophobin NC2 and estimating its structural characteristics. Colloids Surf B Biointerfaces 2020; 195:111269. [DOI: 10.1016/j.colsurfb.2020.111269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 11/24/2022]
|
26
|
Xisto MF, Dias RS, Feitosa-Araujo E, Prates JWO, da Silva CC, de Paula SO. Efficient Plant Production of Recombinant NS1 Protein for Diagnosis of Dengue. FRONTIERS IN PLANT SCIENCE 2020; 11:581100. [PMID: 33193526 PMCID: PMC7649140 DOI: 10.3389/fpls.2020.581100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/02/2020] [Indexed: 05/28/2023]
Abstract
Dengue fever is endemic in more than 120 countries, which account for 3.9 billion people at risk of infection worldwide. The absence of a vaccine with effective protection against the four serotypes of this virus makes differential molecular diagnosis the key step for the correct treatment of the disease. Rapid and efficient diagnosis prevents progression to a more severe stage of this disease. Currently, the limiting factor in the manufacture of dengue (DENV) diagnostic kits is the lack of large-scale production of the non-structural 1 (NS1) protein (antigen) to be used in the capture of antibodies from the blood serum of infected patients. In this work, we use plant biotechnology and genetic engineering as tools for the study of protein production for research and commercial purposes. Gene transfer, integration and expression in plants is a valid strategy for obtaining large-scale and low-cost heterologous protein production. The authors produced NS1 protein of the dengue virus serotype 2 (NS1DENV2) in the Arabidopsis thaliana plant. Transgenic plants obtained by genetic transformation expressed the recombinant protein that was purified and characterized for diagnostic use. The yield was 203 μg of the recombinant protein per gram of fresh leaf. By in situ immunolocalization, transgenic protein was observed within the plant tissue, located in aggregates bodies. These antigens showed high sensitivity and specificity to both IgM (84.29% and 91.43%, respectively) and IgG (83.08% and 87.69%, respectively). The study goes a step further to validate the use of plants as a strategy for obtaining large-scale and efficient protein production to be used in dengue virus diagnostic tests.
Collapse
Affiliation(s)
| | - Roberto Sousa Dias
- Department of General Biology, Federal University of Viçosa, Viçosa, Brazil
| | | | | | | | | |
Collapse
|
27
|
Heidari-Japelaghi R, Valizadeh M, Haddad R, Dorani-Uliaie E, Jalali-Javaran M. Production of bioactive human IFN-γ protein by agroinfiltration in tobacco. Protein Expr Purif 2020; 173:105616. [PMID: 32179088 DOI: 10.1016/j.pep.2020.105616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 11/25/2022]
Abstract
In animals, interferon-γ (IFN-γ) is known as a cytokine involved in antiviral and anticancer activities with a higher biochemical activity in contrast to other IFNs. To produce recombinant human IFN-γ (hIFN-γ) protein in tobacco, factors influencing gene delivery were first evaluated for higher efficiency of transient expression by fluorometric measurement of GUS activity. Higher levels of transient expression were observed in leaves of Nicotiana tabacum cv. Samsun infiltrated with GV3101 strain (optical density equal to 1.0 at 600 nm) under treatment of 200 μM AS at 4 days post agroinfiltration (dpa). The Samsun cv. proved to be amenable with 1.4- and 1.5-fold higher levels of transient expression than Xanthi and N. benthamiana, respectively. In addition, the GV3101 remained the best strain for use in transient assays without any necrotic response in tobacco. The levels of transient hIFN-γ expression were also estimated in the Samsun cv. infiltrated with different Agrobacterium tumefaciens strains carrying various expression constructs. Higher levels of accumulation were obtained with targeting the hIFN-γ protein to endoplasmic reticulum (ER) or apoplastic space than those expressed into cytoplasm. Moreover, antiviral bioassay revealed that recombinant hIFN-γ protein produced in tobacco is biologically active and protects the Vero cells from infection generated by vesicular stomatitis virus (VSV).
Collapse
Affiliation(s)
- Reza Heidari-Japelaghi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Mostafa Valizadeh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Raheem Haddad
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Ebrahim Dorani-Uliaie
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mokhtar Jalali-Javaran
- Department of Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
28
|
Cheng Y, Wang B, Wang Y, Zhang H, Liu C, Yang L, Chen Z, Wang Y, Yang H, Wang Z. Soluble hydrophobin mutants produced in Escherichia coli can self-assemble at various interfaces. J Colloid Interface Sci 2020; 573:384-395. [DOI: 10.1016/j.jcis.2020.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 11/30/2022]
|
29
|
Heidari-Japelaghi R, Valizadeh M, Haddad R, Dorani-Uliaie E, Jalali-Javaran M. Fusion to elastin-like polypeptide increases production of bioactive human IFN-γ in tobacco. Transgenic Res 2020; 29:381-394. [PMID: 32686067 DOI: 10.1007/s11248-020-00205-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/18/2020] [Indexed: 12/29/2022]
Abstract
The plant-based expression systems are now accredited as bioreactors for the high production of various biopharmaceuticals. However, low levels of agglomeration and the absence of effective procedures for purification of recombinant proteins have remained two essential obstacles in molecular farming. In this research, we have studied the production of human interferon gamma (hIFN-γ) in tobacco and analyzed the effects of elastin-like polypeptide (ELP) tag and subcellular localization on its accumulation. We report a remarkable enhancement of accumulation of the fusion proteins versus the corresponding unfused hIFN-γ proteins. Furthermore, the hIFN-γ (with and without ELP) accumulated to higher levels in the endoplasmic reticulum. The ELP fusion proteins were successfully recovered from total soluble protein with adding 2.75 M NaCl and three rounds of inverse transition cycling (ITC). The hIFN-γ was also separated from ELP with Enterokinase cleavage of the fusion protein and recovered by ITC. Inverse transition analysis indicated that the hIFN-γ-ELP variants aggregate above their inverse transition temperature and at high ionic strength. Investigation of glycosylation revealed that fused or unfused hIFN-γ proteins are N-glycosylated in different cellular locations. Moreover, N-glycosylation analysis and bioassay showed that fusion to ELP does not disturb glycosylation process and antiviral activity of hIFN-γ.
Collapse
Affiliation(s)
- Reza Heidari-Japelaghi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Mostafa Valizadeh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Raheem Haddad
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Ebrahim Dorani-Uliaie
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mokhtar Jalali-Javaran
- Department of Plant Breeding, Faculty of Agriculture, University of Tarbiat Modares, Tehran, Iran
| |
Collapse
|
30
|
Ghidey M, Islam SMA, Pruett G, Kearney CM. Making plants into cost-effective bioreactors for highly active antimicrobial peptides. N Biotechnol 2020; 56:63-70. [PMID: 31812667 DOI: 10.1016/j.nbt.2019.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022]
Abstract
As antibiotic-resistant bacterial pathogens become an ever-increasing concern, antimicrobial peptides (AMPs) have grown increasingly attractive as alternatives. Potentially, plants could be used as cost-effective AMP bioreactors; however, reported heterologous AMP expression is much lower in plants than in E. coli expression systems and often results in plant cytotoxicity, even for AMPs fused to carrier proteins. This suggests that there may be a physical characteristic of the previously described heterologous AMPs which impedes efficient expression in plants. Using a meta-analysis of protein databases, this study has determined that native plant AMPs were significantly less cationic than AMPs native to other taxa. To apply this finding to plant expression, the transient expression of 10 different heterologous AMPs, ranging in charge from +7 to -5, was tested in the tobacco, Nicotiana benthamiana. Elastin-like polypeptide (ELP) was used as the carrier protein for AMP expression. ELP fusion allowed for a simple, cost-effective temperature shift purification. Using this system, all five anionic AMPs expressed well, with two at unusually high levels (375 and 563 μg/gfw). Furthermore, antimicrobial activity against Staphylococcus epidermidis was an order of magnitude greater (average minimum inhibitory concentration MIC of 0.26μM) than that typically seen for AMPs expressed in E. coli systems and was associated with the uncleaved fusion peptide. In summary, this study describes a means of expressing AMP fusions in plants in high yield, purified by a simple temperature-shift protocol, resulting in a fusion peptide with high antimicrobial activity and without the need for a peptide cleavage step.
Collapse
Affiliation(s)
- Meron Ghidey
- Biomedical Studies Program, Baylor University, Waco, TX, 76798, USA
| | | | - Grace Pruett
- Department of Biology, Baylor University, One Bear Place #7388, Waco, TX, 76798, USA
| | - Christopher Michel Kearney
- Biomedical Studies Program, Baylor University, Waco, TX, 76798, USA; Department of Biology, Baylor University, One Bear Place #7388, Waco, TX, 76798, USA.
| |
Collapse
|
31
|
Jugler C, Joensuu J, Chen Q. Hydrophobin-Protein A Fusion Protein Produced in Plants Efficiently Purified an Anti-West Nile Virus Monoclonal Antibody from Plant Extracts via Aqueous Two-Phase Separation. Int J Mol Sci 2020; 21:E2140. [PMID: 32244994 PMCID: PMC7139538 DOI: 10.3390/ijms21062140] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 11/16/2022] Open
Abstract
The development of monoclonal antibodies (mAbs) has provided vast opportunities to treat a wide range of diseases from cancer to viral infections. While plant-based production of mAbs has effectively lowered the upstream cost of mAb production compared to mammalian cell cultures, further optimization of downstream processing, especially in extending the longevity of Protein A resin by an effective bulk separation step, will further reduce the overall prohibitive cost of mAb production. In this study, we explored the feasibility of using aqueous two-phase separation (ATPS) in capturing and separating plant-made mAbs from host proteins. Our results demonstrated that an anti-West Nile virus mAb (E16) was efficiently separated from most plant host proteins by a single ATPS step, comprising the mixing of plant extracts containing Hydrophobin-Protein A fusion protein (HPA) and E16 and the subsequent incubation with an inexpensive detergent. This simple ATPS step yielded a highly enriched E16 mAb preparation with a recovery rate comparable to that of Protein A chromatography. The ATPS-enriched E16 retained its structural integrity and was fully functional in binding its target antigen. Notably, HPA-based ATPS was also effective in enriching E16 from plant host proteins when both HPA and E16 were produced in the same leaves, supporting the potential of further streamlining the downstream purification process. Thus, ATPS based on plant-produced HPA in unpurified extract is a cost-effective yet efficient initial capture step for purifying plant-made mAbs, which may significantly impact the approach of mAb purification.
Collapse
Affiliation(s)
- Collin Jugler
- The Biodesign Institute and School of Life Sciences, Arizona State University, Mail Zone 5401, 1001 S. McAllister Avenue, Tempe, AZ 85287, USA
| | - Jussi Joensuu
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Qiang Chen
- The Biodesign Institute and School of Life Sciences, Arizona State University, Mail Zone 5401, 1001 S. McAllister Avenue, Tempe, AZ 85287, USA
| |
Collapse
|
32
|
Moon KB, Park JS, Park YI, Song IJ, Lee HJ, Cho HS, Jeon JH, Kim HS. Development of Systems for the Production of Plant-Derived Biopharmaceuticals. PLANTS 2019; 9:plants9010030. [PMID: 31878277 PMCID: PMC7020158 DOI: 10.3390/plants9010030] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022]
Abstract
Over the last several decades, plants have been developed as a platform for the production of useful recombinant proteins due to a number of advantages, including rapid production and scalability, the ability to produce unique glycoforms, and the intrinsic safety of food crops. The expression methods used to produce target proteins are divided into stable and transient systems depending on applications that use whole plants or minimally processed forms. In the early stages of research, stable expression systems were mostly used; however, in recent years, transient expression systems have been preferred. The production of the plant itself, which produces recombinant proteins, is currently divided into two major approaches, open-field cultivation and closed-indoor systems. The latter encompasses such regimes as greenhouses, vertical farming units, cell bioreactors, and hydroponic systems. Various aspects of each system will be discussed in this review, which focuses mainly on practical examples and commercially feasible approaches.
Collapse
Affiliation(s)
- Ki-Beom Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
- Department of Biological Sciences, Chungnam National University, 99 Deahank-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Ji-Sun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, 99 Deahank-ro, Yuseong-gu, Daejeon 34134, Korea
| | - In-Ja Song
- National Research Safety Headquarters, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Chungbuk-do 28116, Korea;
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Jae-Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
- Correspondence: ; Tel.: +82-42-860-4493
| |
Collapse
|
33
|
Simple production of hydrophobin-fused domain III of dengue envelope protein and induction of neutralizing antibodies against the homotypic serotype of dengue virus. Biotechnol Lett 2019; 42:419-428. [PMID: 31828570 DOI: 10.1007/s10529-019-02767-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
Hydrophobin-fused domain III of dengue envelope proteins serotypes 1 and 2 were expressed in Rachiplusia nu larvae and purified by aqueous two-phase system. This biotechnological approach of hydrophobin-fused proteins, which allowed obtaining 97.7 µg/larva of fusion protein DomIII serotype 1 and 61.4 µg/larva of fusion protein DomIII serotype 2, represents an integrated strategy for simple production of recombinant antigens. Purified fusion proteins induced serotype-specific neutralizing antibodies without cross-reaction against other serotypes and arboviruses after mouse immunization. hydrophobin-fused domain III of dengue envelope protein could be a promising strategy for easy and low-cost production of components of a tetravalent sub-unit vaccine against dengue.
Collapse
|
34
|
Mahmoodi S, Pourhassan-Moghaddam M, Wood DW, Majdi H, Zarghami N. Current affinity approaches for purification of recombinant proteins. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/23312025.2019.1665406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sahar Mahmoodi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Pourhassan-Moghaddam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - David W. Wood
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Hasan Majdi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Arjmand S, Tavasoli Z, Ranaei Siadat SO, Saeidi B, Tavana H. Enhancing chimeric hydrophobin II-vascular endothelial growth factor A 165 expression in Pichia pastoris and its efficient purification using hydrophobin counterpart. Int J Biol Macromol 2019; 139:1028-1034. [PMID: 31404600 DOI: 10.1016/j.ijbiomac.2019.08.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/03/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022]
Abstract
We report cloning and expressing of recombinant human VEGF-A165, fused at the N-terminal with Hydrophobin II (HFBII) from Trichoderma reseei, in yeast Pichia pastoris. We validated the construct using SDS-PAGE and ELISA against VEGF-A165 and efficiently performed protein purification and enrichment based on HFBII counterpart and using an aqueous two-phase system (ATPS) with nonionic surfactant X-114. We studied the effects of various culture medium additives and interaction effects of positive factors to increase the recombinant HFBII-VEGF-A165 production. Supplementing the Pichia pastoris cell culture medium with Mg2+, Polysorbate 20 (PS 20), and 4-phenylbutyrate (PBA) improved the expression of the chimeric protein. Orthogonal experiments showed that the optimal condition to achieve maximal HFBII-VEGF-A165 production was with the addition of PBA, PS 20, and MgSO4. Under this condition, the production of the target protein was 4.5 times more than that in the medium without the additives. Overall, our approach to produce chimeric HFBII-VEGF-A165 and selectively capture it in ATPS is promising for large-scale protein production without laborious downstream processing.
Collapse
Affiliation(s)
- Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, G. C., Tehran, Iran.
| | - Zahra Tavasoli
- Protein Research Center, Shahid Beheshti University, G. C., Tehran, Iran
| | | | - Behanm Saeidi
- Protein Research Center, Shahid Beheshti University, G. C., Tehran, Iran
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
36
|
Hähl H, Griffo A, Safaridehkohneh N, Heppe J, Backes S, Lienemann M, Linder MB, Santen L, Laaksonen P, Jacobs K. Dynamic Assembly of Class II Hydrophobins from T. reesei at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9202-9212. [PMID: 31268722 DOI: 10.1021/acs.langmuir.9b01078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Class II hydrophobins are amphiphilic proteins produced by filamentous fungi. One of their typical features is the tendency to accumulate at the interface between an aqueous phase and a hydrophobic phase, such as the air-water interface. The kinetics of the interfacial self-assembly of wild-type hydrophobins HFBI and HFBII and some of their engineered variants at the air-water interface were measured by monitoring the accumulated mass at the interface via nondestructive ellipsometry measurements. The resulting mass vs time curves revealed unusual kinetics for a monolayer formation that did not follow a typical Langmuir-type of behavior but had a rather coverage-independent rate instead. Typically, the full surface coverage was obtained at masses corresponding to a monolayer. The formation of multilayers was not observed. Atomic force microscopy revealed formation and growth of non-fusing protein clusters at the interface. The mechanism of the adsorption was studied by varying the structure or charges of the protein or the ionic strength of the subphase, revealing that the lateral interactions between the hydrophobins play a role in their interfacial assembly. Additionally, a theoretical model was introduced to identify the underlying mechanism of the unconventional adsorption kinetics.
Collapse
Affiliation(s)
| | - Alessandra Griffo
- Department of Bioproducts and Biosystems , Aalto University , P.O. Box 16100, FI-00076 Aalto , Finland
| | | | | | - Sebastian Backes
- Federal Institute for Material Research and Testing (BAM) , Unter den Eichen 87 , 12205 Berlin , Germany
| | - Michael Lienemann
- VTT Technical Research Centre of Finland Ltd. , Espoo 02150 , Finland
| | - Markus B Linder
- Department of Bioproducts and Biosystems , Aalto University , P.O. Box 16100, FI-00076 Aalto , Finland
| | | | - Päivi Laaksonen
- Department of Bioproducts and Biosystems , Aalto University , P.O. Box 16100, FI-00076 Aalto , Finland
- HAMK Tech, Häme University of Applied Sciences , P.O. Box 230, Hämeenlinna 13101 , Finland
| | | |
Collapse
|
37
|
Liu Y, Nevanen TK, Paananen A, Kempe K, Wilson P, Johansson LS, Joensuu JJ, Linder MB, Haddleton DM, Milani R. Self-Assembling Protein-Polymer Bioconjugates for Surfaces with Antifouling Features and Low Nonspecific Binding. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3599-3608. [PMID: 30566323 DOI: 10.1021/acsami.8b19968] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A new method is demonstrated for preparing antifouling and low nonspecific adsorption surfaces on poorly reactive hydrophobic substrates, without the need for energy-intensive or environmentally aggressive pretreatments. The surface-active protein hydrophobin was covalently modified with a controlled radical polymerization initiator and allowed to self-assemble as a monolayer on hydrophobic surfaces, followed by the preparation of antifouling surfaces by Cu(0)-mediated living radical polymerization of poly(ethylene glycol) methyl ether acrylate (PEGA) performed in situ. By taking advantage of hydrophobins to achieve at the same time the immobilization of protein A, this approach allowed to prepare surfaces for IgG1 binding featuring greatly reduced nonspecific adsorption. The success of the surface modification strategy was investigated by contact angle, XPS, and AFM characterization, while the antifouling performance and the reduction of nonspecific binding were confirmed by QCM-D measurements.
Collapse
Affiliation(s)
- Yingying Liu
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo , Finland
| | - Tarja K Nevanen
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo , Finland
| | - Arja Paananen
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo , Finland
| | - Kristian Kempe
- Department of Chemistry , University of Warwick , CV4 7AL Coventry , United Kingdom
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Monash University , VIC 3052 , Parkville , Australia
| | - Paul Wilson
- Department of Chemistry , University of Warwick , CV4 7AL Coventry , United Kingdom
| | | | - Jussi J Joensuu
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo , Finland
| | | | - David M Haddleton
- Department of Chemistry , University of Warwick , CV4 7AL Coventry , United Kingdom
| | - Roberto Milani
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo , Finland
| |
Collapse
|
38
|
Berger BW, Sallada ND. Hydrophobins: multifunctional biosurfactants for interface engineering. J Biol Eng 2019; 13:10. [PMID: 30679947 PMCID: PMC6343262 DOI: 10.1186/s13036-018-0136-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/19/2018] [Indexed: 11/10/2022] Open
Abstract
Hydrophobins are highly surface-active proteins that have versatile potential as agents for interface engineering. Due to the large and growing number of unique hydrophobin sequences identified, there is growing potential to engineer variants for particular applications using protein engineering and other approaches. Recent applications and advancements in hydrophobin technologies and production strategies are reviewed. The application space of hydrophobins is large and growing, including hydrophobic drug solubilization and delivery, protein purification tags, tools for protein and cell immobilization, antimicrobial coatings, biosensors, biomineralization templates and emulsifying agents. While there is significant promise for their use in a wide range of applications, developing new production strategies is a key need to improve on low recombinant yields to enable their use in broader applications; further optimization of expression systems and yields remains a challenge in order to use designed hydrophobin in commercial applications.
Collapse
Affiliation(s)
- Bryan W. Berger
- Department of Biomedical Engineering, University of Virginia, Thornton Hall, P.O. Box 400259, Charlottesville, VA 22904 USA
- Department of Chemical Engineering, University of Virginia, 214 Chem. Eng., 102 Engineers’ Way, Charlottesville, VA 22904 USA
| | - Nathanael D. Sallada
- Department of Biomedical Engineering, University of Virginia, Thornton Hall, P.O. Box 400259, Charlottesville, VA 22904 USA
| |
Collapse
|
39
|
Marques LÉC, Silva BB, Dutra RF, Florean EOPT, Menassa R, Guedes MIF. Transient Expression of Dengue Virus NS1 Antigen in Nicotiana benthamiana for Use as a Diagnostic Antigen. FRONTIERS IN PLANT SCIENCE 2019; 10:1674. [PMID: 32010161 PMCID: PMC6976532 DOI: 10.3389/fpls.2019.01674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/28/2019] [Indexed: 05/08/2023]
Abstract
Dengue is a viral disease that represents a significant threat to global public health since billions of people are now at risk of infection by this mosquito-borne virus. The implementation of extensive screening tests is indispensable to control this disease, and the Dengue virus non-structural protein 1 (NS1) is a promising antigen for the serological diagnosis of dengue fever. Plant-based systems can be a safe and cost-effective alternative for the production of dengue virus antigens. In this work, two strategies to produce the dengue NS1 protein in Nicotiana benthamiana leaves were evaluated: Targeting NS1 to five different subcellular compartments to assess the best subcellular organelle for the expression and accumulation of NS1, and the addition of elastin-like polypeptide (ELP) or hydrophobin (HFBI) fusion tags to NS1. The transiently expressed proteins in N. benthamiana were quantified by Western blot analysis. The NS1 fused to ELP and targeted to the ER (NS1 ELP-ER) showed the highest yield (445 mg/kg), approximately a forty-fold increase in accumulation levels compared to the non-fused protein (NS1-ER), representing the first example of transient expression of DENV NS1 in plant. We also demonstrated that NS1 ELP-ER was successfully recognized by a monoclonal anti-dengue virus NS1 glycoprotein antibody, and by sera from dengue virus-infected patients. Interestingly, it was found that transient production of NS1-ER and NS1 ELP-ER using vacuum infiltration of whole plants, which is easier to scale up, rather than syringe infiltration of leaves, greatly improved the accumulation of NS1 proteins. The generated plant made NS1, even without extensive purification, showed potential to be used for the development of the NS1 diagnostic tests in resource-limited areas where dengue is endemic.
Collapse
Affiliation(s)
- Lívia É. C. Marques
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceara, Fortaleza, Brazil
- *Correspondence: Lívia É. C. Marques,
| | - Bruno B. Silva
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceara, Fortaleza, Brazil
| | - Rosa Fireman Dutra
- Department of Biomedical Engineering, Biomedical Engineering Laboratory, Federal University of Pernambuco, Recife, Brazil
| | | | - Rima Menassa
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
| | - Maria Izabel F. Guedes
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceara, Fortaleza, Brazil
| |
Collapse
|
40
|
Baier T, Kros D, Feiner RC, Lauersen KJ, Müller KM, Kruse O. Engineered Fusion Proteins for Efficient Protein Secretion and Purification of a Human Growth Factor from the Green Microalga Chlamydomonas reinhardtii. ACS Synth Biol 2018; 7:2547-2557. [PMID: 30296377 DOI: 10.1021/acssynbio.8b00226] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Light-driven recombinant protein (RP) production in eukaryotic microalgae offers a sustainable alternative to other established cell-culture systems. RP production via secretion into the culture medium enables simple product separation from the cells adding a layer of process value in addition to the algal biomass, which can be separately harvested. For the model microalga Chlamydomonas reinhardtii, a broad range of molecular tools have been established to enable heterologous gene expression; however, low RP production levels and unreliable purification from secretion concepts have been reported. Domesticated C. reinhardtii strains used for genetic engineering are often cell-wall deficient. These strains nevertheless secrete cell-wall components such as insoluble (hydroxy)proline-rich glycoproteins into the culture media, which hinder downstream purification processes. Here, we attempted to overcome limitations in secretion titers and improve protein purification by combining fusion partners that enhance RP secretion and enable alternative aqueous two-phase (ATPS) RP extraction from the culture medium. Protein fusions were strategically designed to contain a stably folded peptide, which enhanced secretion capacities and gave insights into (some) regulatory mechanisms responsible for this process in the algal host. The elevated protein titers mediated by this fusion were then successfully applied in combination with a fungal hydrophobin tag, which enabled protein purification from the complex microalgal extracellular environment by ATPS, to yield functional recombinant human epidermal growth factor (hEGF) from the algal host.
Collapse
Affiliation(s)
- Thomas Baier
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Dana Kros
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Rebecca C. Feiner
- Bielefeld University, Faculty of Technology, Cellular and Molecular Biotechnology, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Kyle J. Lauersen
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Kristian M. Müller
- Bielefeld University, Faculty of Technology, Cellular and Molecular Biotechnology, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| |
Collapse
|
41
|
In situ removal of consensus dengue virus envelope protein domain III fused to hydrophobin in Pichia pastoris cultures. Protein Expr Purif 2018; 153:131-137. [PMID: 30240632 DOI: 10.1016/j.pep.2018.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/14/2018] [Accepted: 09/17/2018] [Indexed: 12/24/2022]
Abstract
This work describes a novel strategy for the integrated expression and purification of recombinant proteins in Pichia pastoris cultures. Hydrophobins can be used as fusion tags, proteins fused to them alter their hydrophobicity and can be purified by aqueous two-phase systems (ATPS) based on non-ionic surfactants. Here, the consensus dengue virus envelope protein domain III fused to hydrophobin I of Trichoderma reesei was expressed in Pichia pastoris cultures and an in situ product removal by an ATPS using a non-ionic detergent, (Triton X-114) was performed. The protein was produced and purified directly from the yeast culture supernatant both efficiently and with no loss. The purified protein was properly immobilized by adsorption in solid phase and recognized by anti-dengue antibodies, showing its potential for the development of an indirect immunoassay for dengue virus.
Collapse
|
42
|
Kurppa K, Reuter LJ, Ritala A, Linder MB, Joensuu JJ. In-solution antibody harvesting with a plant-produced hydrophobin-Protein A fusion. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:404-414. [PMID: 28640955 PMCID: PMC5787837 DOI: 10.1111/pbi.12780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/01/2016] [Accepted: 06/16/2017] [Indexed: 05/02/2023]
Abstract
Purification is a bottleneck and a major cost factor in the production of antibodies. We set out to engineer a bifunctional fusion protein from two building blocks, Protein A and a hydrophobin, aiming at low-cost and scalable antibody capturing in solutions. Immunoglobulin-binding Protein A is widely used in affinity-based purification. The hydrophobin fusion tag, on the other hand, has been shown to enable purification by two-phase separation. Protein A was fused to two different hydrophobin tags, HFBI or II, and expressed transiently in Nicotiana benthamiana. The hydrophobins enhanced accumulation up to 35-fold, yielding up to 25% of total soluble protein. Both fused and nonfused Protein A accumulated in protein bodies. Hence, the increased yield could not be attributed to HFB-induced protein body formation. We also demonstrated production of HFBI-Protein A fusion protein in tobacco BY-2 suspension cells in 30 l scale, with a yield of 35 mg/l. Efficient partitioning to the surfactant phase confirmed that the fusion proteins retained the amphipathic properties of the hydrophobin block. The reversible antibody-binding capacity of the Protein A block was similar to the nonfused Protein A. The best-performing fusion protein was tested in capturing antibodies from hybridoma culture supernatant with two-phase separation. The fusion protein was able to carry target antibodies to the surfactant phase and subsequently release them back to the aqueous phase after a change in pH. This report demonstrates the potential of hydrophobin fusion proteins for novel applications, such as harvesting antibodies in solutions.
Collapse
Affiliation(s)
- Katri Kurppa
- VTT Technical Research Centre of Finland Ltd.EspooFinland
| | | | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd.EspooFinland
| | - Markus B. Linder
- VTT Technical Research Centre of Finland Ltd.EspooFinland
- Aalto UniversityDepartment of Biotechnology and Chemical TechnologyEspooFinland
| | | |
Collapse
|
43
|
Häkkinen ST, Reuter L, Nuorti N, Joensuu JJ, Rischer H, Ritala A. Tobacco BY-2 Media Component Optimization for a Cost-Efficient Recombinant Protein Production. FRONTIERS IN PLANT SCIENCE 2018; 9:45. [PMID: 29434617 PMCID: PMC5791008 DOI: 10.3389/fpls.2018.00045] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/10/2018] [Indexed: 05/20/2023]
Abstract
Plant cells constitute an attractive platform for production of recombinant proteins as more and more animal-free products and processes are desired. One of the challenges in using plant cells as production hosts has been the costs deriving from expensive culture medium components. In this work, the aim was to optimize the levels of most expensive components in the nutrient medium without compromising the accumulation of biomass and recombinant protein yields. Wild-type BY-2 culture and transgenic tobacco BY-2 expressing green fluorescent protein-Hydrophobin I (GFP-HFBI) fusion protein were used to determine the most inexpensive medium composition. One particularly high-accumulating BY-2 clone, named 'Hulk,' produced 1.1 ± 0.2 g/l GFP-HFBI in suspension and kept its high performance during prolonged subculturing. In addition, both cultures were successfully cryopreserved enabling truly industrial application of this plant cell host. With the optimized culture medium, 43-55% cost reduction with regard to biomass and up to 69% reduction with regard to recombinant protein production was achieved.
Collapse
|
44
|
A mutant of hydrophobin HGFI tuning the self-assembly behaviour and biosurfactant activity. Appl Microbiol Biotechnol 2017; 101:8419-8430. [DOI: 10.1007/s00253-017-8577-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
|
45
|
Miletic S, Hünerberg M, Kaldis A, MacDonald J, Leuthreau A, McAllister T, Menassa R. A Plant-Produced Candidate Subunit Vaccine Reduces Shedding of Enterohemorrhagic Escherichia coli in Ruminants. Biotechnol J 2017; 12. [PMID: 28869356 DOI: 10.1002/biot.201700405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/30/2017] [Indexed: 12/18/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are commonly present in the gastrointestinal tract of cattle and cause serious infectious disease in humans. Immunizing cattle against EHEC is a promising strategy to decrease the risk of food contamination; however, veterinary vaccines against EHEC such as Econiche have not been widely adopted by the agricultural industry, and have been discontinued, prompting the need for more cost-effective EHEC vaccines. The objective of this project is to develop a platform to produce plant-made antigens for oral vaccination of ruminants against EHEC. Five recombinant proteins were designed as vaccine candidates and expressed transiently in Nicotiana benthamiana and transplastomically in Nicotiana tabacum. Three of these EHEC proteins, NleA, Stx2b, and a fusion of EspA accumulated when transiently expressed. Transient protein accumulation was the highest when EHEC proteins were fused to an elastin-like polypeptide (ELP) tag. In the transplastomic lines, EspA accumulated up to 479 mg kg-1 in lyophilized leaf material. Sheep that were administered leaf tissue containing recombinant EspA shed less E. coli O157:H7 when challenged, as compared to control animals. These results suggest that plant-made, transgenic EspA has the potential to reduce EHEC shedding in ruminants.
Collapse
Affiliation(s)
- Sean Miletic
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London N5V 4T3, Ontario, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London N6A 3K7, Ontario, Canada
| | - Martin Hünerberg
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1 Avenue South, Lethbridge T1J 4P4, Alberta, Canada
- Department of Animal Sciences, Ruminant Nutrition Unit, University of Göttingen, 37077 Göttingen, Germany
| | - Angelo Kaldis
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London N5V 4T3, Ontario, Canada
| | - Jacqueline MacDonald
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London N5V 4T3, Ontario, Canada
| | - Antoine Leuthreau
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London N5V 4T3, Ontario, Canada
- Université de Bordeaux and INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'ornon, France
| | - Tim McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1 Avenue South, Lethbridge T1J 4P4, Alberta, Canada
| | - Rima Menassa
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London N5V 4T3, Ontario, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London N6A 3K7, Ontario, Canada
| |
Collapse
|
46
|
Reuter LJ, Shahbazi MA, Mäkilä EM, Salonen JJ, Saberianfar R, Menassa R, Santos HA, Joensuu JJ, Ritala A. Coating Nanoparticles with Plant-Produced Transferrin-Hydrophobin Fusion Protein Enhances Their Uptake in Cancer Cells. Bioconjug Chem 2017; 28:1639-1648. [PMID: 28557453 DOI: 10.1021/acs.bioconjchem.7b00075] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The encapsulation of drugs to nanoparticles may offer a solution for targeted delivery. Here, we set out to engineer a self-assembling targeting ligand by combining the functional properties of human transferrin and fungal hydrophobins in a single fusion protein. We showed that human transferrin can be expressed in Nicotiana benthamiana plants as a fusion with Trichoderma reesei hydrophobins HFBI, HFBII, or HFBIV. Transferrin-HFBIV was further expressed in tobacco BY-2 suspension cells. Both partners of the fusion protein retained their functionality; the hydrophobin moiety enabled migration to a surfactant phase in an aqueous two-phase system, and the transferrin moiety was able to reversibly bind iron. Coating porous silicon nanoparticles with the fusion protein resulted in uptake of the nanoparticles in human cancer cells. This study provides a proof-of-concept for the functionalization of hydrophobin coatings with transferrin as a targeting ligand.
Collapse
Affiliation(s)
- Lauri J Reuter
- VTT Technical Research Centre of Finland Ltd. , FI-02044 Espoo, Finland
| | - Mohammad-Ali Shahbazi
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
- Department of Micro- and Nanotechnology, Technical University of Denmark , 2800 Copenhagen, Denmark
| | - Ermei M Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku , FI-20014 Turku, Finland
| | - Jarno J Salonen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku , FI-20014 Turku, Finland
| | - Reza Saberianfar
- London Research and Development Centre, Agriculture and Agri-Food Canada , N5V 4T3 London, Ontario Canada
| | - Rima Menassa
- London Research and Development Centre, Agriculture and Agri-Food Canada , N5V 4T3 London, Ontario Canada
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki , 00014 Helsinki, Finland
| | - Jussi J Joensuu
- VTT Technical Research Centre of Finland Ltd. , FI-02044 Espoo, Finland
| | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd. , FI-02044 Espoo, Finland
| |
Collapse
|
47
|
Saberianfar R, Menassa R. Protein bodies: how the ER deals with high accumulation of recombinant proteins. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:671-673. [PMID: 28332302 PMCID: PMC5425386 DOI: 10.1111/pbi.12730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/27/2017] [Accepted: 03/16/2017] [Indexed: 05/06/2023]
Affiliation(s)
- Reza Saberianfar
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonONCanada
- Biology DepartmentUniversity of Western OntarioLondonONCanada
| | - Rima Menassa
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonONCanada
- Biology DepartmentUniversity of Western OntarioLondonONCanada
| |
Collapse
|
48
|
Giritch A, Klimyuk V, Gleba Y. 125 years of virology and ascent of biotechnologies based on viral expressio. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717020037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Arthur LL, Chung JJ, Jankirama P, Keefer KM, Kolotilin I, Pavlovic-Djuranovic S, Chalker DL, Grbic V, Green R, Menassa R, True HL, Skeath JB, Djuranovic S. Rapid generation of hypomorphic mutations. Nat Commun 2017; 8:14112. [PMID: 28106166 PMCID: PMC5263891 DOI: 10.1038/ncomms14112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/30/2016] [Indexed: 01/05/2023] Open
Abstract
Hypomorphic mutations are a valuable tool for both genetic analysis of gene function and for synthetic biology applications. However, current methods to generate hypomorphic mutations are limited to a specific organism, change gene expression unpredictably, or depend on changes in spatial-temporal expression of the targeted gene. Here we present a simple and predictable method to generate hypomorphic mutations in model organisms by targeting translation elongation. Adding consecutive adenosine nucleotides, so-called polyA tracks, to the gene coding sequence of interest will decrease translation elongation efficiency, and in all tested cell cultures and model organisms, this decreases mRNA stability and protein expression. We show that protein expression is adjustable independent of promoter strength and can be further modulated by changing sequence features of the polyA tracks. These characteristics make this method highly predictable and tractable for generation of programmable allelic series with a range of expression levels.
Collapse
Affiliation(s)
- Laura L. Arthur
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Joyce J. Chung
- Department of Biology, Washington University, St Louis, Missouri 63105, USA
| | - Preetam Jankirama
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A5B7
- Science and Technology Branch, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, Canada N5V4T3
| | - Kathryn M. Keefer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Igor Kolotilin
- Scattered Gold Biotechnology Inc. 14 Denali Terrace, London, Ontario, Canada N5X 3W2
| | - Slavica Pavlovic-Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Douglas L. Chalker
- Department of Biology, Washington University, St Louis, Missouri 63105, USA
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A5B7
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | - Rima Menassa
- Science and Technology Branch, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, Canada N5V4T3
| | - Heather L. True
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
- The Hope Center for Neurological Diseases, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - James B. Skeath
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| |
Collapse
|
50
|
Hähl H, Vargas JN, Griffo A, Laaksonen P, Szilvay G, Lienemann M, Jacobs K, Seemann R, Fleury JB. Pure Protein Bilayers and Vesicles from Native Fungal Hydrophobins. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1602888. [PMID: 27740699 DOI: 10.1002/adma.201602888] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/16/2016] [Indexed: 05/21/2023]
Abstract
Pure protein bilayers and vesicles are formed using the native, fungal hydrophobin HFBI. Bilayers with hydrophobic (red) and hydrophilic (blue) core are produced and, depending on the type of core, vesicles in water, oily media, and even in air can be created using microfluidic jetting. Vesicles in water are even able to incorporate functional gramicidin A pores.
Collapse
Affiliation(s)
- Hendrik Hähl
- Department of Experimental Physics, Saarland University, 66123, Saarbrücken, Germany
| | - Jose Nabor Vargas
- Department of Experimental Physics, Saarland University, 66123, Saarbrücken, Germany
| | - Alessandra Griffo
- Department of Experimental Physics, Saarland University, 66123, Saarbrücken, Germany
- Department of Materials Science, Aalto University, P. O. Box 16100, 00076, Aalto, Finland
| | - Päivi Laaksonen
- Department of Materials Science, Aalto University, P. O. Box 16100, 00076, Aalto, Finland
| | - Géza Szilvay
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, 02150, Espoo, Finland
| | - Michael Lienemann
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, 02150, Espoo, Finland
| | - Karin Jacobs
- Department of Experimental Physics, Saarland University, 66123, Saarbrücken, Germany
| | - Ralf Seemann
- Department of Experimental Physics, Saarland University, 66123, Saarbrücken, Germany
| | - Jean-Baptiste Fleury
- Department of Experimental Physics, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|