1
|
Xu Y, Xu L, Zhang M, Wang H, Wang Y, Zhang X, Zhang K, Sui Y, Qian J, Jia S, Qian M, Cui G. PbrBGAL6 promotes pollen tube growth by influencing apical pectin level in Pyrus bretschneideri. BMC Genomics 2025; 26:321. [PMID: 40165058 PMCID: PMC11956225 DOI: 10.1186/s12864-025-11429-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND β-galactosidase (BGAL), which is an important cell wall-degrading enzyme, participates in various biological processes, but its effects on pollen tube growth (PTG) remain unclear. RESULTS We identified 12 PbrBGAL genes (named PbrBGAL1-12) in the pear (Pyrus bretschneideri) genome. PbrBGAL members, containing three conserved domains and two enzyme active sites, were grouped into six subclasses. They were distributed in seven chromosomes, with dispersed duplication revealed as the main replication event. PbrBGAL genes contained 1 to 24 exons and 0 to 23 introns, with exon/intron structure mostly conserved within each subclass except for subclass E. Analyses of tissue-specific expression indicated that only PbrBGAL6 was highly expressed specifically in anther and pollen, with decreasing expression levels during PTG. The effective inhibition of PbrBGAL6 expression using antisense oligodeoxynucleotide technology dramatically decreased BGAL enzymatic activity, promoted PTG and increased cytoplasmic leakage and tip widths. Furthermore, suppressing PbrBGAL6 transcription decreased the apical total and methylated pectin contents in pollen tubes by significantly increasing transcription of PbrPME11, PbrPG14, PbrPG20, PbrPG21 and PbrPG24. CONCLUSIONS We identified 12 PbrBGAL genes in the pear genome, of which PbrBGAL6 precisely modulates the apical pectin content to mediate pear PTG through its effects on PbrPME11 and PbrPGs expression. This study provides direct evidence of the involvement of BGAL in the regulation of polar PTG.
Collapse
Affiliation(s)
- Yusheng Xu
- Department of Horticulture, College of Agriculture, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Lan Xu
- Department of Horticulture, College of Agriculture, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Mingliang Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210032, China
| | - Hao Wang
- Department of Horticulture, College of Agriculture, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Yuqian Wang
- Department of Horticulture, College of Agriculture, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Xueping Zhang
- Department of Horticulture, College of Agriculture, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Kaijing Zhang
- Department of Horticulture, College of Agriculture, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Yihu Sui
- Department of Horticulture, College of Agriculture, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Jingjing Qian
- Department of Horticulture, College of Agriculture, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Shuangshuang Jia
- Department of Horticulture, College of Agriculture, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Ming Qian
- Department of Horticulture, College of Agriculture, Anhui Science and Technology University, Chuzhou, 233100, China.
| | - Guangrong Cui
- Department of Horticulture, College of Agriculture, Anhui Science and Technology University, Chuzhou, 233100, China.
| |
Collapse
|
2
|
Parzych W, Godel-Jędrychowska K, Świdziński M, Niedojadło J, Kurczyńska E, Niedojadło K. Bioimaging insights into structural pathways of cell-to-cell communication within the male (MGU) and female (FGU) germ units of Arabidopsis thaliana. PLANT CELL REPORTS 2025; 44:56. [PMID: 39953194 PMCID: PMC11828830 DOI: 10.1007/s00299-025-03441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
KEY MESSAGE Cytoplasmic connections are present between cells within male and female germ units (MGU, FGU), suggesting potential structural pathways for communication. Cell-to-cell communication within the male germ unit (MGU), which consists of two sperm cells and the vegetative cell nucleus, and the female germ unit (FGU), comprising the synergids, the egg cell, and the central cell, is crucial for gamete maturation, fertilization, and early embryogenesis in angiosperms. The MGU facilitates the transport and delivery of immotile sperm cells via the elongating pollen tube to the FGU/embryo sac, which is deeply embedded within the ovule and the ovary. Through applying various bioimaging techniques at both electron and light microscopy levels, we examine the structure and the function of these units in the model plant Arabidopsis thaliana, with a particular focus on potential structural pathways for communication. In the MGU, this communication is facilitated by a cytoplasmic projection that connects the sperm cells to the lobed vegetative nucleus. In the FGU, the extracellular matrix adjacent to the egg cell, central cell, and synergids plays a similar role. We discuss our findings in the context of previous studies on Hyacinthus orientalis, where, in contrast to Arabidopsis-which possesses a tricellular pollen structure-sperm cells are formed within the growing pollen tube.
Collapse
Affiliation(s)
- Wiktoria Parzych
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland
| | - Kamila Godel-Jędrychowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Michał Świdziński
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland
| | - Janusz Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland
| | - Ewa Kurczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland.
| |
Collapse
|
3
|
Foubert-Mendes S, Silva J, Ferreira MJ, Pereira LG, Coimbra S. A review on the function of arabinogalactan-proteins during pollen grain development. PLANT REPRODUCTION 2025; 38:8. [PMID: 39912945 PMCID: PMC11802600 DOI: 10.1007/s00497-024-00515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/20/2024] [Indexed: 02/07/2025]
Abstract
KEY MESSAGE Overview of the current understanding of PG development, PT growth and the role of AGPs in these processes. The pollen grain (PG) is a complex structure composed of three cells: the vegetative cell which develops into a pollen tube (PT) and two sperm cells that will fuse with the egg cell and central cell, giving rise to the embryo and endosperm, respectively. This resilient gametophyte is constantly subjected to selective pressures, leading to a diverse range of characteristics, with one of its defining features being the pollen cell wall. In this review, we closely examine the developmental stages of PG formation and PT growth, with a specific focus on the dynamic roles of arabinogalactan-proteins (AGPs) throughout these processes. AGPs are initially present in pollen mother cells and persist throughout PT growth. In the early stages, AGPs play a crucial role in primexine anchoring, followed by nexine and intine formation as well as cellulose deposition, thereby providing essential structural support to the PG. As PGs mature, AGPs continue to be essential, as their absence often leads to the collapse of PGs before they reach full maturity. Moreover, the absence of AGPs during PT growth leads to abnormal growth patterns, likely due to disruptions of cellulose, callose, and F-actin deposition, as well as perturbations in calcium ion (Ca2+) signalling. Understanding the intricate interplay between AGPs and PG development sheds light on the underlying mechanisms that drive reproductive success and highlights the indispensable role of AGPs in ensuring the integrity and functionality of PGs.
Collapse
Affiliation(s)
- Sara Foubert-Mendes
- LAQV/REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Jessy Silva
- LAQV/REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal.
- School of Sciences, University of Minho, Campus de Gualtar, Braga, Portugal.
| | - Maria João Ferreira
- LAQV/REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal.
| | - Luís Gustavo Pereira
- GreenUPorto-Sustainable Agrifood Production Research Centre/INOV4AGRO, Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Sílvia Coimbra
- LAQV/REQUIMTE, Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Rafińska K, Niedojadło K, Świdziński M, Bednarska-Kozakiewicz E. Distribution of exchangeable Ca 2+ during the process of Larix decidua Mill. pollination and germination. Sci Rep 2024; 14:5639. [PMID: 38454044 PMCID: PMC10920793 DOI: 10.1038/s41598-024-54903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
The involvement of Ca2+ ions in angiosperms sexual processes is well established, while in gymnosperms, such knowledge remains limited and is still a topic of discussion. In this study, we focused on Larix decidua, using Alizarin-red S staining and the pyroantimonate method to examine the tissue and subcellular distribution of free and loosely bound Ca2+ ions at different stages of the male gametophyte's development and its interaction with the ovule. Our findings show that in larch, both the germination of pollen grains and the growth of pollen tubes occur in an environment rich in Ca2+. These ions play a crucial role in the adhesion of the pollen grain to the stigmatic tip and its subsequent movement to the micropylar canal. There is a significant presence of free and loosely bound Ca2+ ions in both the fluid of the micropylar canal and the extracellular matrix of the nucellus. As the pollen tube extends through the nucellus, we observed a notable accumulation of Ca2+ ions just above the entry to the mature archegonium, a region likely crucial for the male gametophyte's directional growth. Meanwhile, the localized presence of free and loosely bound Ca2+ ions within the egg cell cytoplasm may inhibit the pollen tubes growth and rupture, playing an important role in fertilization.
Collapse
Affiliation(s)
- Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
| | - Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
| | - Michał Świdziński
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
5
|
Kamel H, Geitmann A. Strength in numbers: An isoform variety of homogalacturonan modifying enzymes may contribute to pollen tube fitness. PLANT PHYSIOLOGY 2023; 194:67-80. [PMID: 37819032 DOI: 10.1093/plphys/kiad544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Pectin is a major component of the cell wall in land plants. It plays crucial roles in cell wall assembly, cell growth, shaping, and signaling. The relative abundance of pectin in the cell wall is particularly high in rapidly growing organ regions and cell types. Homogalacturonan (HG), a polymer of 1,4-linked α-D-galacturonic acid, is a major pectin constituent in growing and dividing plant cells. In pollen tubes, an extremely rapidly growing cell type, HG is secreted at and inserted into the apical cell wall and is subject to further modification in muro by HG modifying enzymes (HGMEs). These enzymes, including pectin esterases and depolymerases, have multiple isoforms, some of which are specifically expressed in pollen. Given the importance of pectin chemistry for the fitness of pollen tubes, it is of interest to interrogate the potentially crucial roles these isoforms play in pollen germination and elongation. It is hypothesized that different HGME isoforms, through their action on apoplastic HG, may generate differential methylation and acetylation patterns endowing HG polysaccharides with specific, spatially and temporally varying properties that lead to a fine-tuned pattern of cell wall modification. In addition, these isoforms may be differentially activated and/or inhibited depending on the local conditions that may vary at subcellular resolution. In this Update we review the different HGME isoforms identified in recent years in Arabidopsis thaliana and postulate that the multiplicity of these isoforms may allow for specialized substrate recognition and conditional activation, leading to a sophisticated regulation scheme exemplified in the process that governs the dynamic properties of the cell wall in pollen tube growth.
Collapse
Affiliation(s)
- Hiba Kamel
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Anja Geitmann
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
6
|
Jobert F, Yadav S, Robert S. Auxin as an architect of the pectin matrix. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6933-6949. [PMID: 37166384 PMCID: PMC10690733 DOI: 10.1093/jxb/erad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Auxin is a versatile plant growth regulator that triggers multiple signalling pathways at different spatial and temporal resolutions. A plant cell is surrounded by the cell wall, a complex and dynamic network of polysaccharides. The cell wall needs to be rigid to provide mechanical support and protection and highly flexible to allow cell growth and shape acquisition. The modification of the pectin components, among other processes, is a mechanism by which auxin activity alters the mechanical properties of the cell wall. Auxin signalling precisely controls the transcriptional output of several genes encoding pectin remodelling enzymes, their local activity, pectin deposition, and modulation in different developmental contexts. This review examines the mechanism of auxin activity in regulating pectin chemistry at organ, cellular, and subcellular levels across diverse plant species. Moreover, we ask questions that remain to be addressed to fully understand the interplay between auxin and pectin in plant growth and development.
Collapse
Affiliation(s)
- François Jobert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
- CRRBM, Université de Picardie Jules Verne, 80000, Amiens, France
| | - Sandeep Yadav
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| |
Collapse
|
7
|
Abstract
A protein-peptide complex generates and stabilizes a cell-wall carbohydrate lattice.
Collapse
|
8
|
Moussu S, Lee HK, Haas KT, Broyart C, Rathgeb U, De Bellis D, Levasseur T, Schoenaers S, Fernandez GS, Grossniklaus U, Bonnin E, Hosy E, Vissenberg K, Geldner N, Cathala B, Höfte H, Santiago J. Plant cell wall patterning and expansion mediated by protein-peptide-polysaccharide interaction. Science 2023; 382:719-725. [PMID: 37943924 DOI: 10.1126/science.adi4720] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Assembly of cell wall polysaccharides into specific patterns is required for plant growth. A complex of RAPID ALKALINIZATION FACTOR 4 (RALF4) and its cell wall-anchored LEUCINE-RICH REPEAT EXTENSIN 8 (LRX8)-interacting protein is crucial for cell wall integrity during pollen tube growth, but its molecular connection with the cell wall is unknown. Here, we show that LRX8-RALF4 complexes adopt a heterotetrametric configuration in vivo, displaying a dendritic distribution. The LRX8-RALF4 complex specifically interacts with demethylesterified pectins in a charge-dependent manner through RALF4's polycationic surface. The LRX8-RALF4-pectin interaction exerts a condensing effect, patterning the cell wall's polymers into a reticulated network essential for wall integrity and expansion. Our work uncovers a dual structural and signaling role for RALF4 in pollen tube growth and in the assembly of complex extracellular polymers.
Collapse
Affiliation(s)
- Steven Moussu
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Hyun Kyung Lee
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Kalina T Haas
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Caroline Broyart
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ursina Rathgeb
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Damien De Bellis
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
- Electron Microscopy Facility, University of Lausanne, 1015 Lausanne, Switzerland
| | | | - Sébastjen Schoenaers
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Gorka S Fernandez
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | | | - Eric Hosy
- IINS, CNRS UMR5297, University of Bordeaux, 33000 Bordeaux, France
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
- Plant Biochemistry & Biotechnology Lab, Department of Agriculture, Hellenic Mediterranean University, Stavromenos PC 71410, Heraklion, Crete, Greece
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | | | - Herman Höfte
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Robinson R, Sprott D, Couroux P, Routly E, Labbé N, Xing T, Robert LS. The triticale mature pollen and stigma proteomes - assembling the proteins for a productive encounter. J Proteomics 2023; 278:104867. [PMID: 36870675 DOI: 10.1016/j.jprot.2023.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Triticeae crops are major contributors to global food production and ensuring their capacity to reproduce and generate seeds is critical. However, despite their importance our knowledge of the proteins underlying Triticeae reproduction is severely lacking and this is not only true of pollen and stigma development, but also of their pivotal interaction. When the pollen grain and stigma are brought together they have each accumulated the proteins required for their intended meeting and accordingly studying their mature proteomes is bound to reveal proteins involved in their diverse and complex interactions. Using triticale as a Triticeae representative, gel-free shotgun proteomics was used to identify 11,533 and 2977 mature stigma and pollen proteins respectively. These datasets, by far the largest to date, provide unprecedented insights into the proteins participating in Triticeae pollen and stigma development and interactions. The study of the Triticeae stigma has been particularly neglected. To begin filling this knowledge gap, a developmental iTRAQ analysis was performed revealing 647 proteins displaying differential abundance as the stigma matures in preparation for pollination. An in-depth comparison to an equivalent Brassicaceae analysis divulged both conservation and diversification in the makeup and function of proteins involved in the pollen and stigma encounter. SIGNIFICANCE: Successful pollination brings together the mature pollen and stigma thus initiating an intricate series of molecular processes vital to crop reproduction. In the Triticeae crops (e.g. wheat, barley, rye, triticale) there persists a vast deficit in our knowledge of the proteins involved which needs to be addressed if we are to face the many upcoming challenges to crop production such as those associated with climate change. At maturity, both the pollen and stigma have acquired the protein complement necessary for their forthcoming encounter and investigating their proteomes will inevitably provide unprecedented insights into the proteins enabling their interactions. By combining the analysis of the most comprehensive Triticeae pollen and stigma global proteome datasets to date with developmental iTRAQ investigations, proteins implicated in the different phases of pollen-stigma interaction enabling pollen adhesion, recognition, hydration, germination and tube growth, as well as those underlying stigma development were revealed. Extensive comparisons between equivalent Triticeae and Brassiceae datasets highlighted both the conservation of biological processes in line with the shared goal of activating the pollen grain and promoting pollen tube invasion of the pistil to effect fertilization, as well as the significant distinctions in their proteomes consistent with the considerable differences in their biochemistry, physiology and morphology.
Collapse
Affiliation(s)
- Reneé Robinson
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - David Sprott
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Philippe Couroux
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Elizabeth Routly
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Natalie Labbé
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada.
| |
Collapse
|
10
|
He J, Yang B, Hause G, Rössner N, Peiter-Volk T, Schattat MH, Voiniciuc C, Peiter E. The trans-Golgi-localized protein BICAT3 regulates manganese allocation and matrix polysaccharide biosynthesis. PLANT PHYSIOLOGY 2022; 190:2579-2600. [PMID: 35993897 PMCID: PMC9706472 DOI: 10.1093/plphys/kiac387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/18/2022] [Indexed: 05/11/2023]
Abstract
Manganese (Mn2+) is essential for a diversity of processes, including photosynthetic water splitting and the transfer of glycosyl moieties. Various Golgi-localized glycosyltransferases that mediate cell wall matrix polysaccharide biosynthesis are Mn2+ dependent, but the supply of these enzymes with Mn2+ is not well understood. Here, we show that the BIVALENT CATION TRANSPORTER 3 (BICAT3) localizes specifically to trans-cisternae of the Golgi. In agreement with a role in Mn2+ and Ca2+ homeostasis, BICAT3 rescued yeast (Saccharomyces cerevisiae) mutants defective in their translocation. Arabidopsis (Arabidopsis thaliana) knockout mutants of BICAT3 were sensitive to low Mn2+ and high Ca2+ availability and showed altered accumulation of these cations. Despite reduced cell expansion and leaf size in Mn2+-deficient bicat3 mutants, their photosynthesis was improved, accompanied by an increased Mn content of chloroplasts. Growth defects of bicat3 corresponded with an impaired glycosidic composition of matrix polysaccharides synthesized in the trans-Golgi. In addition to the vegetative growth defects, pollen tube growth of bicat3 was heterogeneously aberrant. This was associated with a severely reduced and similarly heterogeneous pectin deposition and caused diminished seed set and silique length. Double mutant analyses demonstrated that the physiological relevance of BICAT3 is distinct from that of ER-TYPE CA2+-ATPASE 3, a Golgi-localized Mn2+/Ca2+-ATPase. Collectively, BICAT3 is a principal Mn2+ transporter in the trans-Golgi whose activity is critical for specific glycosylation reactions in this organelle and for the allocation of Mn2+ between Golgi apparatus and chloroplasts.
Collapse
Affiliation(s)
- Jie He
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Bo Yang
- Independent Junior Research Group—Designer Glycans, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Gerd Hause
- Biocentre, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Nico Rössner
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Tina Peiter-Volk
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Martin H Schattat
- Plant Physiology, Institute of Biology, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Cătălin Voiniciuc
- Independent Junior Research Group—Designer Glycans, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| | | |
Collapse
|
11
|
bHLH010/089 Transcription Factors Control Pollen Wall Development via Specific Transcriptional and Metabolic Networks in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms231911683. [PMID: 36232985 PMCID: PMC9570398 DOI: 10.3390/ijms231911683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
The pollen wall is a specialized extracellular cell wall that protects male gametophytes from various environmental stresses and facilitates pollination. Here, we reported that bHLH010 and bHLH089 together are required for the development of the pollen wall by regulating their specific downstream transcriptional and metabolic networks. Both the exine and intine structures of bhlh010 bhlh089 pollen grains were severely defective. Further untargeted metabolomic and transcriptomic analyses revealed that the accumulation of pollen wall morphogenesis-related metabolites, including polysaccharides, glyceryl derivatives, and flavonols, were significantly changed, and the expression of such metabolic enzyme-encoding genes and transporter-encoding genes related to pollen wall morphogenesis was downregulated in bhlh010 bhlh089 mutants. Among these downstream target genes, CSLB03 is a novel target with no biological function being reported yet. We found that bHLH010 interacted with the two E-box sequences at the promoter of CSLB03 and directly activated the expression of CSLB03. The cslb03 mutant alleles showed bhlh010 bhlh089–like pollen developmental defects, with most of the pollen grains exhibiting defective pollen wall structures.
Collapse
|
12
|
Dauphin BG, Ranocha P, Dunand C, Burlat V. Cell-wall microdomain remodeling controls crucial developmental processes. TRENDS IN PLANT SCIENCE 2022; 27:1033-1048. [PMID: 35710764 DOI: 10.1016/j.tplants.2022.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/27/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Plant cell walls display cellular and subcellular specificities. At the subcellular level, wall regional territories with specific compositions are necessary for macroscopic developmental processes. These regional specificities were named differently throughout the years, and are unified here under the term 'cell-wall microdomains' that define the local composition and organization of wall polymers underlying territories of wall loosening and/or softening or stiffening. We review the occurrence and developmental role of wall microdomains in different cell types. We primarily focus on the contribution of two categories of wall-remodeling molecular actors: fine-tuning of homogalacturonan (HG; pectin) demethylesterification patterns and two classes of oxidoreductases [class III peroxidases (CIII PRXs) and laccases (LACs)], but we also highlight two different molecular scaffolds recently identified for positioning specific CIII PRXs.
Collapse
Affiliation(s)
- Bastien G Dauphin
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse 3, Institut National Polytechnique de Toulouse, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Philippe Ranocha
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse 3, Institut National Polytechnique de Toulouse, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse 3, Institut National Polytechnique de Toulouse, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse 3, Institut National Polytechnique de Toulouse, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France.
| |
Collapse
|
13
|
Cai G. The legacy of kinesins in the pollen tube thirty years later. Cytoskeleton (Hoboken) 2022; 79:8-19. [PMID: 35766009 PMCID: PMC9542081 DOI: 10.1002/cm.21713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022]
Abstract
The pollen tube is fundamental in the reproduction of seed plants. Particularly in angiosperms, we now have much information about how it grows, how it senses extracellular signals, and how it converts them into a directional growth mechanism. The expansion of the pollen tube is also related to dynamic cytoplasmic processes based on the cytoskeleton (such as polymerization/depolymerization of microtubules and actin filaments) or motor activity along with the two cytoskeletal systems and is dependent on motor proteins. While a considerable amount of information is available for the actomyosin system in the pollen tube, the role of microtubules in the transport of organelles or macromolecular structures is still quite uncertain despite that 30 years ago the first work on the presence of kinesins in the pollen tube was published. Since then, progress has been made in elucidating the role of kinesins in plant cells. However, their role within the pollen tube is still enigmatic. In this review, I will postulate some roles of kinesins in the pollen tube 30 years after their initial discovery based on information obtained in other plant cells in the meantime. The most concrete hypotheses predict that kinesins in the pollen tube enable the short movement of specific organelles or contribute to generative cell or sperm cell transport, as well as mediate specific steps in the process of endocytosis.
Collapse
Affiliation(s)
- Giampiero Cai
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, Siena, Italy
| |
Collapse
|
14
|
Béchade B, Hu Y, Sanders JG, Cabuslay CS, Łukasik P, Williams BR, Fiers VJ, Lu R, Wertz JT, Russell JA. Turtle ants harbor metabolically versatile microbiomes with conserved functions across development and phylogeny. FEMS Microbiol Ecol 2022; 98:6602351. [PMID: 35660864 DOI: 10.1093/femsec/fiac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/14/2022] Open
Abstract
Gut bacterial symbionts can support animal nutrition by facilitating digestion and providing valuable metabolites. However, changes in symbiotic roles between immature and adult stages are not well documented, especially in ants. Here, we explored the metabolic capabilities of microbiomes sampled from herbivorous turtle ant (Cephalotes sp.) larvae and adult workers through (meta)genomic screening and in vitro metabolic assays. We reveal that larval guts harbor bacterial symbionts with impressive metabolic capabilities, including catabolism of plant and fungal recalcitrant dietary fibers and energy-generating fermentation. Additionally, several members of the specialized adult gut microbiome, sampled downstream of an anatomical barrier that dams large food particles, show a conserved potential to depolymerize many dietary fibers. Symbionts from both life stages have the genomic capacity to recycle nitrogen and synthesize amino acids and B-vitamins. With help of their gut symbionts, including several bacteria likely acquired from the environment, turtle ant larvae may aid colony digestion and contribute to colony-wide nitrogen, B-vitamin and energy budgets. In addition, the conserved nature of the digestive capacities among adult-associated symbionts suggests that nutritional ecology of turtle ant colonies has long been shaped by specialized, behaviorally-transferred gut bacteria with over 45 million years of residency.
Collapse
Affiliation(s)
- Benoît Béchade
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Yi Hu
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America.,State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jon G Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
| | - Christian S Cabuslay
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Piotr Łukasik
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Bethany R Williams
- Department of Biology, Calvin College, Grand Rapids, Michigan, United States of America
| | - Valerie J Fiers
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Richard Lu
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - John T Wertz
- Department of Biology, Calvin College, Grand Rapids, Michigan, United States of America
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
15
|
Ropitaux M, Hays Q, Baron A, Fourmois L, Boulogne I, Vauzeilles B, Lerouge P, Mollet JC, Lehner A. Dynamic imaging of cell wall polysaccharides by metabolic click-mediated labeling of pectins in living elongating cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:916-924. [PMID: 35165972 DOI: 10.1111/tpj.15706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Protein tracking in living plant cells has become routine with the emergence of reporter genes encoding fluorescent tags. Unfortunately, this imaging strategy is not applicable to glycans because they are not directly encoded by the genome. Indeed, complex glycans result from sequential additions and/or removals of monosaccharides by the glycosyltransferases and glycosidases of the cell's biosynthetic machinery. Currently, the imaging of cell wall polymers mainly relies on the use of antibodies or dyes that exhibit variable specificities. However, as immunolocalization typically requires sample fixation, it does not provide access to the dynamics of living cells. The development of click chemistry in plant cell wall biology offers an alternative for live-cell labeling. It consists of the incorporation of a carbohydrate containing a bio-orthogonal chemical reporter into the target polysaccharide using the endogenous biosynthetic machinery of the cell. Once synthesized and deposited in the cell wall, the polysaccharide containing the analog monosaccharide is covalently coupled to an exogenous fluorescent probe. Here, we developed a metabolic click labeling approach which allows the imaging of cell wall polysaccharides in living and elongating cells without affecting cell viability. The protocol was established using the pollen tube, a useful model to follow cell wall dynamics due to its fast and tip-polarized growth, but was also successfully tested on Arabidopsis root cells and root hairs. This method offers the possibility of imaging metabolically incorporated sugars of viable and elongating cells, allowing the study of the long-term dynamics of labeled extracellular polysaccharides.
Collapse
Affiliation(s)
- Marc Ropitaux
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, UR 4358, Structure Fédérative de Recherche Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000, Rouen, France
| | - Quentin Hays
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, UR 4358, Structure Fédérative de Recherche Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000, Rouen, France
| | - Aurélie Baron
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Laura Fourmois
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Isabelle Boulogne
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, UR 4358, Structure Fédérative de Recherche Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000, Rouen, France
| | - Boris Vauzeilles
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Patrice Lerouge
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, UR 4358, Structure Fédérative de Recherche Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000, Rouen, France
| | - Jean-Claude Mollet
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, UR 4358, Structure Fédérative de Recherche Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000, Rouen, France
| | - Arnaud Lehner
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, UR 4358, Structure Fédérative de Recherche Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000, Rouen, France
| |
Collapse
|
16
|
Duan Y, Wang L, Li X, Wang W, Wang J, Liu X, Zhong Y, Cao N, Tong M, Ge W, Guo Y, Li R. Arabidopsis SKU5 Similar 11 and 12 play crucial roles in pollen tube integrity, growth and guidance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:598-614. [PMID: 34775642 DOI: 10.1111/tpj.15580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/06/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Pollen tube integrity, growth and guidance are crucial factors in plant sexual reproduction. Members of the plant Skewed5 (SKU5) Similar (SKS) family show strong similarity to multicopper oxidases (MCOs), but they lack conserved histidines in MCO active sites. The functions of most SKS family members are unknown. Here, we show that Arabidopsis pollen-expressed SKS11 and SKS12 play important roles in pollen tube integrity, growth and guidance. The sks11sks12 mutant exhibited significantly reduced male fertility. Most of the pollen from sks11sks12 plants burst when germinated, and the pollen tubes grew slowly and exhibited defective growth along the funiculus and micropyle. SKS11-GFP and SKS12-mCherry were detected at the cell wall in pollen tubes. The contents of several cell wall polysaccharides and arabinogalactans were decreased in the pollen tube cell walls of sks11sks12 plants. Staining with a reactive oxygen species (ROS)-sensitive dye and use of the H2 O2 sensor HyPer revealed that the ROS content in the pollen tubes of sks11sks12 plants was remarkably reduced. SKS11444His-Ala , in which the last conserved histidine was mutated, could restore the mutant phenotypes of sks11sks12. Thus, SKS11/12 are required for pollen tube integrity, growth and guidance possibly by regulating the ROS level and cell wall polysaccharide deposition or remodeling in pollen tubes.
Collapse
Affiliation(s)
- Yazhou Duan
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Limin Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Xueling Li
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Wanlei Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Jing Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Xiaoyu Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Yangyang Zhong
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Nana Cao
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Mengjuan Tong
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Weina Ge
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Yi Guo
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Rui Li
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| |
Collapse
|
17
|
Ajayi OO, Held MA, Showalter AM. Glucuronidation of type II arabinogalactan polysaccharides function in sexual reproduction of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:164-181. [PMID: 34726315 DOI: 10.1111/tpj.15562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Arabinogalactan proteins (AGPs) are complex, hyperglycosylated plant cell wall proteins with little known about the biological roles of their glycan moieties in sexual reproduction. Here, we report that GLCAT14A, GLCAT14B, and GLCAT14C, three enzymes responsible for the addition of glucuronic acid residues to AGPs, function in pollen development, polytubey block, and normal embryo development in Arabidopsis. Using biochemical and immunolabeling techniques, we demonstrated that the loss of function of the GLCAT14A, GLCAT14B, and GLCAT14C genes resulted in disorganization of the reticulate structure of the exine wall, abnormal development of the intine layer, and collapse of pollen grains in glcat14a/b and glcat14a/b/c mutants. Synchronous development between locules within the same anther was also lost in some glcat14a/b/c stamens. In addition, we observed excessive attraction of pollen tubes targeting glcat14a/b/c ovules, indicating that the polytubey block mechanism was compromised. Monosaccharide composition analysis revealed significant reductions in all sugars in glcat14a/b and glcat14a/b/c mutants except for arabinose and galactose, while immunolabeling showed decreased amounts of AGP sugar epitopes recognized by glcat14a/b and glcat14a/b/c mutants compared with the wild type. This work demonstrates the important roles that AG glucuronidation plays in Arabidopsis sexual reproduction and reproductive development.
Collapse
Affiliation(s)
- Oyeyemi O Ajayi
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| | - Michael A Held
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Allan M Showalter
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
18
|
Mariette A, Kang HS, Heazlewood JL, Persson S, Ebert B, Lampugnani ER. Not Just a Simple Sugar: Arabinose Metabolism and Function in Plants. PLANT & CELL PHYSIOLOGY 2021; 62:1791-1812. [PMID: 34129041 DOI: 10.1093/pcp/pcab087] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 06/12/2023]
Abstract
Growth, development, structure as well as dynamic adaptations and remodeling processes in plants are largely controlled by properties of their cell walls. These intricate wall structures are mostly made up of different sugars connected through specific glycosidic linkages but also contain many glycosylated proteins. A key plant sugar that is present throughout the plantae, even before the divergence of the land plant lineage, but is not found in animals, is l-arabinose (l-Ara). Here, we summarize and discuss the processes and proteins involved in l-Ara de novo synthesis, l-Ara interconversion, and the assembly and recycling of l-Ara-containing cell wall polymers and proteins. We also discuss the biological function of l-Ara in a context-focused manner, mainly addressing cell wall-related functions that are conferred by the basic physical properties of arabinose-containing polymers/compounds. In this article we explore these processes with the goal of directing future research efforts to the many exciting yet unanswered questions in this research area.
Collapse
Affiliation(s)
- Alban Mariette
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Hee Sung Kang
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Joshua L Heazlewood
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Staffan Persson
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center (CPSC), University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Berit Ebert
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Edwin R Lampugnani
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| |
Collapse
|
19
|
Wei Q, Yang Y, Li H, Liu Z, Fu R, Feng H, Li C. The xyloglucan galactosylation modulates the cell wall stability of pollen tube. PLANTA 2021; 254:133. [PMID: 34821984 DOI: 10.1007/s00425-021-03779-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
A pollen specific homolog to a xyloglucan galactosyltransferase regulates cell wall stability and therefore pollen tube growth in Arabidopsis. In angiosperms, pollen tubes grow through the transmitting tract to deliver the sperm cells to the ovule for fertilization. Fast growing pollen tubes coordinate the synthesis, secretion and assembly of cell wall components to maintain the mechanical properties of the cell wall. Xyloglucan, the major hemicellulosic polysaccharide in the primary cell wall, tethers cellulose to form the complexed cell wall network through its side chain modifications. How the side chain modifications of the xyloglucan regulate the pollen tube cell wall strength and growth remains elusive. Here we found that AtGT11, a MUR3 xyloglucan galactosyltransferase homolog highly expressed in pollen regulated the cell wall stability of pollen tubes. Genetic analysis of the gt11 and the xylosyltransferase 1/2 mutant indicated that the xylosylation of XyG side chains played dominant role while galactosylation of the XyG side chains finely modified the cell wall mechanics.
Collapse
Affiliation(s)
- Qiqi Wei
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ying Yang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hui Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhiwen Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Rong Fu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hanqian Feng
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
20
|
Signaling at Physical Barriers during Pollen-Pistil Interactions. Int J Mol Sci 2021; 22:ijms222212230. [PMID: 34830110 PMCID: PMC8622735 DOI: 10.3390/ijms222212230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023] Open
Abstract
In angiosperms, double fertilization requires pollen tubes to transport non-motile sperm to distant egg cells housed in a specialized female structure known as the pistil, mediating the ultimate fusion between male and female gametes. During this journey, the pollen tube encounters numerous physical barriers that must be mechanically circumvented, including the penetration of the stigmatic papillae, style, transmitting tract, and synergid cells as well as the ultimate fusion of sperm cells to the egg or central cell. Additionally, the pollen tube must maintain structural integrity in these compact environments, while responding to positional guidance cues that lead the pollen tube to its destination. Here, we discuss the nature of these physical barriers as well as efforts to genetically and cellularly identify the factors that allow pollen tubes to successfully, specifically, and quickly circumnavigate them.
Collapse
|
21
|
Laggoun F, Ali N, Tourneur S, Prudent G, Gügi B, Kiefer-Meyer MC, Mareck A, Cruz F, Yvin JC, Nguema-Ona E, Mollet JC, Jamois F, Lehner A. Two Carbohydrate-Based Natural Extracts Stimulate in vitro Pollen Germination and Pollen Tube Growth of Tomato Under Cold Temperatures. FRONTIERS IN PLANT SCIENCE 2021; 12:552515. [PMID: 34691089 PMCID: PMC8529017 DOI: 10.3389/fpls.2021.552515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
To date, it is widely accepted by the scientific community that many agricultural regions will experience more extreme temperature fluctuations. These stresses will undoubtedly impact crop production, particularly fruit and seed yields. In fact, pollination is considered as one of the most temperature-sensitive phases of plant development and until now, except for the time-consuming and costly processes of genetic breeding, there is no immediate alternative to address this issue. In this work, we used a multidisciplinary approach using physiological, biochemical, and molecular techniques for studying the effects of two carbohydrate-based natural activators on in vitro tomato pollen germination and pollen tube growth cultured in vitro under cold conditions. Under mild and strong cold temperatures, these two carbohydrate-based compounds significantly enhanced pollen germination and pollen tube growth. The two biostimulants did not induce significant changes in the classical molecular markers implicated in pollen tube growth. Neither the number of callose plugs nor the CALLOSE SYNTHASE genes expression were significantly different between the control and the biostimulated pollen tubes when pollens were cultivated under cold conditions. PECTIN METHYLESTERASE (PME) activities were also similar but a basic PME isoform was not produced or inactive in pollen grown at 8°C. Nevertheless, NADPH oxidase (RBOH) gene expression was correlated with a higher number of viable pollen tubes in biostimulated pollen tubes compared to the control. Our results showed that the two carbohydrate-based products were able to reduce in vitro the effect of cold temperatures on tomato pollen tube growth and at least for one of them to modulate reactive oxygen species production.
Collapse
Affiliation(s)
- Ferdousse Laggoun
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
- Sanofi Pasteur, Val-de-Reuil, France
| | - Nusrat Ali
- Centre Mondial de l’Innovation, Laboratoire Nutrition Végétale, Groupe Roullier, Saint-Malo, France
| | - Sabine Tourneur
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
- Laboratoire de Biologie et Pathologie Végétales, Université de Nantes, Université Bretagne Loire, Nantes, France
| | - Grégoire Prudent
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
| | - Bruno Gügi
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
| | - Marie-Christine Kiefer-Meyer
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
| | - Alain Mareck
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
| | - Florence Cruz
- Centre Mondial de l’Innovation, Laboratoire Nutrition Végétale, Groupe Roullier, Saint-Malo, France
| | - Jean-Claude Yvin
- Centre Mondial de l’Innovation, Laboratoire Nutrition Végétale, Groupe Roullier, Saint-Malo, France
| | - Eric Nguema-Ona
- Centre Mondial de l’Innovation, Laboratoire Nutrition Végétale, Groupe Roullier, Saint-Malo, France
| | - Jean-Claude Mollet
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
| | - Frank Jamois
- Centre Mondial de l’Innovation, Laboratoire Nutrition Végétale, Groupe Roullier, Saint-Malo, France
| | - Arnaud Lehner
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
| |
Collapse
|
22
|
Borassi C, Sede AR, Mecchia MA, Mangano S, Marzol E, Denita-Juarez SP, Salgado Salter JD, Velasquez SM, Muschietti JP, Estevez JM. Proline-rich extensin-like receptor kinases PERK5 and PERK12 are involved in pollen tube growth. FEBS Lett 2021; 595:2593-2607. [PMID: 34427925 DOI: 10.1002/1873-3468.14185] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/17/2021] [Accepted: 08/18/2021] [Indexed: 11/06/2022]
Abstract
Proline-rich extensin-like receptor kinases (PERKs) belong to the hydroxyproline-rich glycoprotein (HRGP) superfamily known to be involved in many plant developmental processes. Here, we characterized two pollen-expressed PERKs from Arabidopsis thaliana, PERK5 and PERK12. Pollen tube growth was impaired in single and double perk5-1 perk12-1 loss of function mutants, with an impact on seed production. When the segregation was analysed, a male gametophytic defect was found, indicating that perk5-1 and perk12-1 mutants carry deficient pollen transmission. Furthermore, perk5-1 perk12-1 displayed an excessive accumulation of pectins and cellulose at the cell wall of the pollen tubes. Our results indicate that PERK5 and PERK12 are necessary for proper pollen tube growth, highlighting their role in cell wall assembly and reactive oxygen species homeostasis.
Collapse
Affiliation(s)
- Cecilia Borassi
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-UBA CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Ana R Sede
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Martín A Mecchia
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Silvina Mangano
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-UBA CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Eliana Marzol
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Silvina P Denita-Juarez
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-UBA CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Juan D Salgado Salter
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-UBA CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | | | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina.,Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-UBA CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.,Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello and ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
23
|
Althiab-Almasaud R, Chen Y, Maza E, Djari A, Frasse P, Mollet JC, Mazars C, Jamet E, Chervin C. Ethylene signaling modulates tomato pollen tube growth through modifications of cell wall remodeling and calcium gradient. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:893-908. [PMID: 34036648 DOI: 10.1111/tpj.15353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Ethylene modulates plant developmental processes including flower development. Previous studies have suggested ethylene participates in pollen tube (PT) elongation, and both ethylene production and perception seem critical at the time of fertilization. The full gene set regulated by ethylene during PT growth is unknown. To study this, we used various EThylene Receptor (ETR) tomato (Solanum lycopersicum) mutants: etr3-ko, a loss-of-function (LOF) mutant; and NR (NEVER RIPE), a gain-of-function (GOF) mutant. The etr3-ko PTs grew faster than wild-type (WT) PTs. Oppositely, NR PT elongation was slower than in WT, and PTs displayed larger diameters. ETR mutations result in feedback control of ethylene production. Furthermore, ethylene treatment of germinating pollen grains increased PT length in etr-ko mutants and WT, but not in NR. Treatment with the ethylene perception inhibitor 1-methylcyclopropene decreased PT length in etr-ko mutants and WT, but had no effect on NR. This confirmed that ethylene regulates PT growth. The comparison of PT transcriptomes in LOF and GOF mutants, etr3-ko and NR, both harboring mutations of the ETR3 gene, revealed that ethylene perception has major impacts on cell wall- and calcium-related genes as confirmed by microscopic observations showing a modified distribution of the methylesterified homogalacturonan pectic motif and of calcium load. Our results establish links between PT growth, ethylene, calcium, and cell wall metabolism, and also constitute a transcriptomic resource.
Collapse
Affiliation(s)
- Rasha Althiab-Almasaud
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
| | - Yi Chen
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Elie Maza
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
| | - Anis Djari
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
| | - Pierre Frasse
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
| | - Jean-Claude Mollet
- Laboratoire Glyco-MEV, SFR NORVEGE, Innovation Chimie Carnot, Normandie Univ, UniRouen, Rouen, France
| | - Christian Mazars
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Christian Chervin
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
| |
Collapse
|
24
|
Ma X, Wu Y, Ming H, Liu H, Liu Z, Li H, Zhang G. AtENO2 functions in the development of male gametophytes in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2021; 263:153417. [PMID: 34102568 DOI: 10.1016/j.jplph.2021.153417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Pollen fertility is an important factor affecting the seed setting rate and seed yield of plants. The Arabidopsis thaliana enolase gene ENO2 (AtENO2) can affect the pollen morphology, germination, and pollen tube growth. AtENO2 encodes two proteins AtENO2 and AtMBP-1. To examine the effect of AtENO2 protein on pollen development, the 2nd ATG of the AtENO2 coding sequence for AtMBP-1 was mutated by site-directed mutagenesis, and transgenic plants expressing only AtENO2 but not AtMBP-1 were obtained. Phenotypic analysis indicated that AtENO2 was essential in the pollen development. The mechanisms of AtENO2 on pollen development were analyzed. AtENO2 can affect development of the pollen intine, and the mechanism may be that AtENO2 regulated the methyl esterification of pectin in pollen intine through ARF3 and AtPMEI-pi. The -734 ∼ -573 sequence of AtENO2 promoter is the main transcriptional regulatory region of AtENO2 affecting pollen development. The functional cis-acting element may be GTGANTG10(GTGA), and the trans-acting factors may be KAN, AS2 and ARF3/ETT. Moreover, the deletion of AtENO2 can cause significant difference in the expression of multiple genes related to pollen exine development. These results are useful for further studying the function of AtENO2 and exploring the mechanism of plant pollen development.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Beijing Key Laboratory of Gene Resource and Molecular Development/College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yu Wu
- Beijing Key Laboratory of Gene Resource and Molecular Development/College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hainan Ming
- Beijing Key Laboratory of Gene Resource and Molecular Development/College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Huimin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development/College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zijin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development/College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hongjie Li
- The National Engineering Laboratory of Crop Molecular Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Genfa Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development/College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
25
|
Yonamine R, Ichihara K, Tsuyuzaki S, Hervé C, Motomura T, Nagasato C. Changes in Cell Wall Structure During Rhizoid Formation of Silvetia babingtonii (Fucales, Phaeophyceae) Zygotes. JOURNAL OF PHYCOLOGY 2021; 57:1356-1367. [PMID: 33932028 DOI: 10.1111/jpy.13178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
We examined the ultrastructure of the cell wall and immunolocalization of alginates using specific antibodies against M-rich alginates and MG blocks during rhizoid formation in fucoid zygotes, Silvetia babingtonii. The thallus region of 24-h-old zygotes had a cell wall made of three layers with different fiber distribution. In the 12-h-old zygotes, three layers in the thallus were observed before rhizoid formation, namely the inner, middle, and outer layers. During rhizoid elongation, only the inner layer was apparent close to the rhizoid tip area. Immunoelectron microscopy detected M-rich blocks of alginate on the inner half of the cell wall, irrespective of the number of layers in the thallus and rhizoid regions. The MG blocks were seen to cover a slightly wider area than M-rich alginate blocks. It was suggested that parts of M in mannuronan would be rapidly converted to G, and MG-blocks are generated. Transcriptome analysis was performed using 3 -, 10 -, and 24-h-old zygotes after fertilization to examine the relationship between gene expression and alginate synthesis over time. The expression of two mannuronan C5-epimerase homologs that convert mannuronic acid into guluronic acid in alginates was upregulated or downregulated over the course of the examination.
Collapse
Affiliation(s)
- Rina Yonamine
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kensuke Ichihara
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| | - Shiro Tsuyuzaki
- Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Cécile Hervé
- Sorbonne Universités, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680, Roscoff, France
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| |
Collapse
|
26
|
Zhang B, Zhang C, Liu C, Fu A, Luan S. A Golgi-localized manganese transporter functions in pollen tube tip growth to control male fertility in Arabidopsis. PLANT COMMUNICATIONS 2021; 2:100178. [PMID: 34027392 PMCID: PMC8132125 DOI: 10.1016/j.xplc.2021.100178] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 05/12/2023]
Abstract
Manganese (Mn) serves as an essential cofactor for many enzymes in various compartments of a plant cell. Allocation of Mn among various organelles thus plays a central role in Mn homeostasis to support metabolic processes. We report the identification of a Golgi-localized Mn transporter (named PML3) that is essential for rapid cell elongation in young tissues such as emerging leaves and the pollen tube. In particular, the pollen tube defect in the pml3 loss-of-function mutant caused severe reduction in seed yield, a critical agronomic trait. Further analysis suggested that a loss of pectin deposition in the pollen tube might cause the pollen tube to burst and slow its elongation, leading to decreased male fertility. As the Golgi apparatus serves as the major hub for biosynthesis and modification of cell-wall components, PML3 may function in Mn homeostasis of this organelle, thereby controlling metabolic and/or trafficking processes required for pectin deposition in rapidly elongating cells.
Collapse
Affiliation(s)
- Bin Zhang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Chi Zhang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Congge Liu
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Aigen Fu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
- Corresponding author
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Corresponding author
| |
Collapse
|
27
|
Rafińska K, Niedojadło K, Świdziński M, Niedojadło J, Bednarska-Kozakiewicz E. Spatial and Temporal Distribution of Arabinogalactan Proteins during Larix decidua Mill. Male Gametophyte and Ovule Interaction. Int J Mol Sci 2021; 22:ijms22094298. [PMID: 33919026 PMCID: PMC8122408 DOI: 10.3390/ijms22094298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
The role of ArabinoGalactan Proteins (AGPs) in the sexual reproduction of gymnosperms is not as well documented as that of angiosperms. In earlier studies, we demonstrated that AGPs play important roles during ovule differentiation in Larix decidua Mill. The presented results encouraged us to carry out further studies focused on the functions of these unique glycoproteins during pollen/pollen tube and ovule interactions in Larix. We identified and analyzed the localization of AGPs epitopes by JIM4, JIM8, JIM13 and LM2 antibodies (Abs) in male gametophytes and ovule tissue during pollination, the progamic phase, and after fertilization and in vitro growing pollen tubes. Our results indicated that (1) AGPs recognized by JIM4 Abs play an essential role in the interaction of male gametophytes and ovules because their appearance in ovule cells is induced by physical contact between reproductive partners; (2) after pollination, AGPs are secreted from the pollen cytoplasm into the pollen wall and contact the extracellular matrix of stigmatic tip cells followed by micropylar canal cells; (3) AGPs synthesized in nucellus cells before pollen grain germination are secreted during pollen tube growth into the extracellular matrix, where they can directly interact with male gametophytes; (4) in vitro cultured pollen tube AGPs labeled with LM2 Abs participate in the germination of pollen grain, while AGPs recognized by JIM8 Abs are essential for pollen tube tip growth.
Collapse
Affiliation(s)
- Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland;
| | - Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.Ś.); (J.N.); (E.B.-K.)
- Correspondence:
| | - Michał Świdziński
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.Ś.); (J.N.); (E.B.-K.)
| | - Janusz Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.Ś.); (J.N.); (E.B.-K.)
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.Ś.); (J.N.); (E.B.-K.)
| |
Collapse
|
28
|
Petersen BL, MacAlister CA, Ulvskov P. Plant Protein O-Arabinosylation. FRONTIERS IN PLANT SCIENCE 2021; 12:645219. [PMID: 33815452 PMCID: PMC8012813 DOI: 10.3389/fpls.2021.645219] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 05/26/2023]
Abstract
A wide range of proteins with diverse functions in development, defense, and stress responses are O-arabinosylated at hydroxyprolines (Hyps) within distinct amino acid motifs of continuous stretches of Hyps, as found in the structural cell wall extensins, or at non-continuous Hyps as, for example, found in small peptide hormones and a variety of plasma membrane proteins involved in signaling. Plant O-glycosylation relies on hydroxylation of Prolines to Hyps in the protein backbone, mediated by prolyl-4-hydroxylase (P4H) which is followed by O-glycosylation of the Hyp C4-OH group by either galactosyltransferases (GalTs) or arabinofuranosyltranferases (ArafTs) yielding either Hyp-galactosylation or Hyp-arabinosylation. A subset of the P4H enzymes with putative preference to hydroxylation of continuous prolines and presumably all ArafT enzymes needed for synthesis of the substituted arabinose chains of one to four arabinose units, have been identified and functionally characterized. Truncated root-hair phenotype is one common denominator of mutants of Hyp formation and Hyp-arabinosylation glycogenes, which act on diverse groups of O-glycosylated proteins, e.g., the small peptide hormones and cell wall extensins. Dissection of different substrate derived effects may not be regularly feasible and thus complicate translation from genotype to phenotype. Recently, lack of proper arabinosylation on arabinosylated proteins has been shown to influence their transport/fate in the secretory pathway, hinting to an additional layer of functionality of O-arabinosylation. Here, we provide an update on the prevalence and types of O-arabinosylated proteins and the enzymatic machinery responsible for their modifications.
Collapse
Affiliation(s)
- Bent Larsen Petersen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Cora A. MacAlister
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Wollenweber TE, van Deenen N, Roelfs KU, Prüfer D, Gronover CS. Microscopic and Transcriptomic Analysis of Pollination Processes in Self-Incompatible Taraxacum koksaghyz. PLANTS 2021; 10:plants10030555. [PMID: 33809548 PMCID: PMC7998978 DOI: 10.3390/plants10030555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/23/2022]
Abstract
The transition of the Russian dandelion Taraxacum koksaghyz (Asteraceae) to a profitable, alternative crop producing natural rubber and inulin requires the optimization of several agronomic traits, cultivation conditions and harvesting procedures to improve the yield. However, efficient breeding is hindered by the obligatory sexual outcrossing of this species. Several other asters have been investigated to determine the mechanism of self-incompatibility, but the underlying molecular basis remains unclear. We therefore investigated the self-pollination and cross-pollination of two compatible T. koksaghyz varieties (TkMS2 and TkMS3) by microscopy and transcriptomic analysis to shed light on the pollination process. Self-pollination showed typical sporophytic self-incompatibility characteristics, with the rare pollen swelling at the pollen tube apex. In contrast, cross-pollination was characterized by pollen germination and penetration of the stigma by the growing pollen tubes. RNA-Seq was used to profile gene expression in the floret tissue during self-pollination and cross-pollination, and the differentially expressed genes were identified. This revealed three candidates for the early regulation of pollination in T. koksaghyz, which can be used to examine self-incompatibility mechanisms in more detail and to facilitate breeding programs.
Collapse
Affiliation(s)
- Tassilo Erik Wollenweber
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (T.E.W.); (N.v.D.); (D.P.)
| | - Nicole van Deenen
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (T.E.W.); (N.v.D.); (D.P.)
| | - Kai-Uwe Roelfs
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143 Muenster, Germany;
| | - Dirk Prüfer
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (T.E.W.); (N.v.D.); (D.P.)
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143 Muenster, Germany;
| | - Christian Schulze Gronover
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143 Muenster, Germany;
- Correspondence: ; Tel.: +49(0)251-83-24998
| |
Collapse
|
30
|
Zhang Y, Held MA, Kaur D, Showalter AM. CRISPR-Cas9 multiplex genome editing of the hydroxyproline-O-galactosyltransferase gene family alters arabinogalactan-protein glycosylation and function in Arabidopsis. BMC PLANT BIOLOGY 2021; 21:16. [PMID: 33407116 PMCID: PMC7789275 DOI: 10.1186/s12870-020-02791-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/08/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Arabinogalactan-proteins (AGPs) are a class of hydroxyproline-rich proteins (HRGPs) that are heavily glycosylated (> 90%) with type II arabinogalactans (AGs). AGPs are implicated in various plant growth and development processes including cell expansion, somatic embryogenesis, root and stem growth, salt tolerance, hormone signaling, male and female gametophyte development, and defense. To date, eight Hyp-O-galactosyltransferases (GALT2-6, HPGT1-3) have been identified; these enzymes are responsible for adding the first sugar, galactose, onto AGPs. Due to gene redundancy among the GALTs, single or double galt genetic knockout mutants are often not sufficient to fully reveal their biological functions. RESULTS Here, we report the successful application of CRISPR-Cas9 gene editing/multiplexing technology to generate higher-order knockout mutants of five members of the GALT gene family (GALT2-6). AGPs analysis of higher-order galt mutants (galt2 galt5, galt3 galt4 galt6, and galt2 galt3 galt4 galt5 gal6) demonstrated significantly less glycosylated AGPs in rosette leaves, stems, and siliques compared to the corresponding wild-type organs. Monosaccharide composition analysis of AGPs isolated from rosette leaves revealed significant decreases in arabinose and galactose in all the higher-order galt mutants. Phenotypic analyses revealed that mutation of two or more GALT genes was able to overcome the growth inhibitory effect of β-D-Gal-Yariv reagent, which specifically binds to β-1,3-galactan backbones on AGPs. In addition, the galt2 galt3 galt4 galt5 gal6 mutant exhibited reduced overall growth, impaired root growth, abnormal pollen, shorter siliques, and reduced seed set. Reciprocal crossing experiments demonstrated that galt2 galt3 galt4 galt5 gal6 mutants had defects in the female gametophyte which were responsible for reduced seed set. CONCLUSIONS Our CRISPR/Cas9 gene editing/multiplexing approach provides a simpler and faster way to generate higher-order mutants for functional characterization compared to conventional genetic crossing of T-DNA mutant lines. Higher-order galt mutants produced and characterized in this study provide insight into the relationship between sugar decorations and the various biological functions attributed to AGPs in plants.
Collapse
Affiliation(s)
- Yuan Zhang
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701–2979 USA
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701–2979 USA
| | - Michael A. Held
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701–2979 USA
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH 45701–2979 USA
| | - Dasmeet Kaur
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701–2979 USA
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701–2979 USA
| | - Allan M. Showalter
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701–2979 USA
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701–2979 USA
| |
Collapse
|
31
|
Two Self-Incompatibility Sites Occur Simultaneously in the Same Acianthera Species (Orchidaceae, Pleurothallidinae). PLANTS 2020; 9:plants9121758. [PMID: 33322562 PMCID: PMC7763335 DOI: 10.3390/plants9121758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022]
Abstract
In most species of Pleurothallidinae, the self-incompatibility site occurs in the stylar canal inside the column, which is typical of gametophytic self-incompatibility (GSI). However, in some species of Acianthera, incompatible pollen tubes with anomalous morphology reach the ovary, as those are obstructed in the column. We investigated if a distinct self-incompatibility (SI) system is acting on the ovary of A. johannensis, which is a species with partial self-incompatibility, contrasting with a full SI species, A. fabiobarrosii. We analyzed the morphology and development of pollen tubes in the column, ovary, and fruit using light, epifluorescence, and transmission electron microscopy. Our results show that the main reaction site in A. johannensis is in the stylar canal inside the column, which was also recorded in A. fabiobarrosii. Morphological and cytological characteristics of the pollen tubes with obstructed growth in the column indicated a process of programmed cell death in these tubes, showing a possible GSI reaction. In addition, partially self-incompatible individuals of A. johannensis exhibit a second SI site in the ovary. We suggest that this self-incompatibility site in the ovary is only an extension of GSI that acts in the column, differing from the typical late-acting self-incompatibility system recorded in other plant groups.
Collapse
|
32
|
Liao J, Chen Z, Wei X, Tao K, Zhang J, Qin X, Pan Z, Ma W, Pan L, Yang S, Wang M, Ou X, Chen S. Identification of pollen and pistil polygalacturonases in Nicotiana tabacum and their function in interspecific stigma compatibility. PLANT REPRODUCTION 2020; 33:173-190. [PMID: 32880726 DOI: 10.1007/s00497-020-00393-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE The pollen and pistil polygalacturonases in Nicotiana tabacum were identified and found to regulate pollen tube growth and interspecific compatibility. Polygalacturonase (PG) is one of the enzymes catalyzing the hydrolysis of pectin. This process plays important roles in the pollen and pistil. In this research, the pollen and pistil PGs in Nicotiana tabacum (NtPGs) were identified, and their expression, localization and the potential function in the pollen and interspecific stigma incompatibility were explored. The results showed that 118 NtPGs were retrieved from the genome of N. tabacum. The phylogenetic tree and RT-qPCR analysis led to the identification of 10 pollen PGs; among them, two, seven and one showed specifically higher expression levels in the early development of anthers, during pollen maturation and in mature anthers, respectively, indicating their function difference. Immunofluorescence analysis showed that PGs were located in the cytoplasm of (1) mature pollen and (2) in vitro grown pollen tubes, as well as in the wall of in vivo grown pollen tubes. Four NtPGs in clade A were identified as the pistil PGs, and the pistil PGs were not found in clade E. Significantly higher PGs expression was recorded after incompatible pollination in comparison with the compatible stigma, indicating a potential function of PGs in regulating stigma incompatibility. The influence of PGs on pollen tube growth was explored in vitro and partly in vivo, showing that high PGs activity inhibited pollen tube growth. The application of PGs on the otherwise compatible stigma resulted in pollen tube growth inhibition or failure of germination. These results further supported that increased PGs expression in incompatible stigma might be partially responsible for the interspecific stigma incompatibility in Nicotiana.
Collapse
Affiliation(s)
- Jugou Liao
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Plant Diseases and Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China
| | - Zhiyun Chen
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Plant Diseases and Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China
| | - Xuemei Wei
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Plant Diseases and Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China
| | - Keliang Tao
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Plant Diseases and Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China
| | - Jingwen Zhang
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Plant Diseases and Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China
| | - Xiaojun Qin
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Plant Diseases and Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China
| | - Zihui Pan
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Plant Diseases and Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China
| | - Wenguang Ma
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, 653100, China
| | - Lei Pan
- Yuxi China Tobacco Seed Co., Ltd., Yuxi, 653100, China
| | - Shuai Yang
- Yuxi China Tobacco Seed Co., Ltd., Yuxi, 653100, China
| | | | - Xiaokun Ou
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Plant Diseases and Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China.
| | - Suiyun Chen
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Plant Diseases and Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China.
| |
Collapse
|
33
|
Cascallares M, Setzes N, Marchetti F, López GA, Distéfano AM, Cainzos M, Zabaleta E, Pagnussat GC. A Complex Journey: Cell Wall Remodeling, Interactions, and Integrity During Pollen Tube Growth. FRONTIERS IN PLANT SCIENCE 2020; 11:599247. [PMID: 33329663 PMCID: PMC7733995 DOI: 10.3389/fpls.2020.599247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/02/2020] [Indexed: 05/05/2023]
Abstract
In flowering plants, pollen tubes undergo a journey that starts in the stigma and ends in the ovule with the delivery of the sperm cells to achieve double fertilization. The pollen cell wall plays an essential role to accomplish all the steps required for the successful delivery of the male gametes. This extended path involves female tissue recognition, rapid hydration and germination, polar growth, and a tight regulation of cell wall synthesis and modification, as its properties change not only along the pollen tube but also in response to guidance cues inside the pistil. In this review, we focus on the most recent advances in elucidating the molecular mechanisms involved in the regulation of cell wall synthesis and modification during pollen germination, pollen tube growth, and rupture.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
34
|
Scholz P, Anstatt J, Krawczyk HE, Ischebeck T. Signalling Pinpointed to the Tip: The Complex Regulatory Network That Allows Pollen Tube Growth. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1098. [PMID: 32859043 PMCID: PMC7569787 DOI: 10.3390/plants9091098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Plants display a complex life cycle, alternating between haploid and diploid generations. During fertilisation, the haploid sperm cells are delivered to the female gametophyte by pollen tubes, specialised structures elongating by tip growth, which is based on an equilibrium between cell wall-reinforcing processes and turgor-driven expansion. One important factor of this equilibrium is the rate of pectin secretion mediated and regulated by factors including the exocyst complex and small G proteins. Critically important are also non-proteinaceous molecules comprising protons, calcium ions, reactive oxygen species (ROS), and signalling lipids. Among the latter, phosphatidylinositol 4,5-bisphosphate and the kinases involved in its formation have been assigned important functions. The negatively charged headgroup of this lipid serves as an interaction point at the apical plasma membrane for partners such as the exocyst complex, thereby polarising the cell and its secretion processes. Another important signalling lipid is phosphatidic acid (PA), that can either be formed by the combination of phospholipases C and diacylglycerol kinases or by phospholipases D. It further fine-tunes pollen tube growth, for example by regulating ROS formation. How the individual signalling cues are intertwined or how external guidance cues are integrated to facilitate directional growth remain open questions.
Collapse
Affiliation(s)
- Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| | | | | | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| |
Collapse
|
35
|
Ye J, Yang X, Yang Z, Niu F, Chen Y, Zhang L, Song X. Comprehensive analysis of polygalacturonase gene family highlights candidate genes related to pollen development and male fertility in wheat (Triticum aestivum L.). PLANTA 2020; 252:31. [PMID: 32740680 DOI: 10.1007/s00425-020-03435-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Four polygalacturonase gene family members were highlighted that contribute to elucidate the roles of polygalacturonase during the fertility conversion process in male-sterile wheat. Polygalacturonase (PG) belongs to a large family of hydrolases with important functions in cell separation during plant growth and development via the degradation of pectin. Specific expressed PGs in anthers may be significant for male sterility research and hybrid wheat breeding, but they have not been characterized in wheat (Triticum aestivum L.). In this study, we systematically studied the PG gene family using the latest published wheat reference genomic information. In total, 113 wheat PG genes were identified, which could be classified into six categories A-F according to their structure characteristics and phylogenetic comparisons with Arabidopsis and rice. Polyploidy and segmental duplications in wheat were proved to be mainly responsible for the expansion of the wheat PG gene family. RNA-seq showed that TaPGs have specific temporal and spatial expression characteristics, in which 12 TaPGs with spike-specific expression patterns were detected by qRT-PCR in different fertility anthers of KTM3315A, a thermo-sensitive cytoplasmic male-sterile wheat. Four of them specific upregulated (TaPG09, TaPG95, and TaPG93) or downregulated (TaPG87) at trinucleate stage of fertile anthers, and further aligning with the homologous in Arabidopsis revealed that they may undertake functions such as anther dehiscence, separation of pollen, pollen development, and pollen tube elongation, thereby inducing male fertility conversion in KTM3315A. These findings facilitate function investigations of the wheat PG gene family and provide new insights into the fertility conversion mechanism in male-sterile wheat.
Collapse
Affiliation(s)
- Jiali Ye
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuetong Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhiquan Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fuqiang Niu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanru Chen
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lingli Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
36
|
Beuder S, Dorchak A, Bhide A, Moeller SR, Petersen BL, MacAlister CA. Exocyst mutants suppress pollen tube growth and cell wall structural defects of hydroxyproline O-arabinosyltransferase mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1399-1419. [PMID: 32391581 PMCID: PMC7496944 DOI: 10.1111/tpj.14808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 05/07/2023]
Abstract
HYDROXYPROLINE O-ARABINOSYLTRANSFERASEs (HPATs) initiate a post-translational protein modification (Hyp-Ara) found abundantly on cell wall structural proteins. In Arabidopsis thaliana, HPAT1 and HPAT3 are redundantly required for full pollen fertility. In addition to the lack of Hyp-Ara in hpat1/3 pollen tubes (PTs), we also found broadly disrupted cell wall polymer distributions, particularly the conversion of the tip cell wall to a more shaft-like state. Mutant PTs were slow growing and prone to rupture and morphological irregularities. In a forward mutagenesis screen for suppressors of the hpat1/3 low seed-set phenotype, we identified a missense mutation in exo70a2, a predicted member of the vesicle-tethering exocyst complex. The suppressed pollen had increased fertility, fewer morphological defects and partially rescued cell wall organization. A transcriptional null allele of exo70a2 also suppressed the hpat1/3 fertility phenotype, as did mutants of core exocyst complex member sec15a, indicating that reduced exocyst function bypassed the PT requirement for Hyp-Ara. In a wild-type background, exo70a2 reduced male transmission efficiency, lowered pollen germination frequency and slowed PT elongation. EXO70A2 also localized to the PT tip plasma membrane, consistent with a role in exocyst-mediated secretion. To monitor the trafficking of Hyp-Ara modified proteins, we generated an HPAT-targeted fluorescent secretion reporter. Reporter secretion was partially dependent on EXO70A2 and was significantly increased in hpat1/3 PTs compared with the wild type, but was reduced in the suppressed exo70a2 hpat1/3 tubes.
Collapse
Affiliation(s)
- Steven Beuder
- Department of Molecular, Cellular and Developmental BiologyUniversity of Michigan1105 N. University AveAnn ArborMI48109USA
| | - Alexandria Dorchak
- Department of Molecular, Cellular and Developmental BiologyUniversity of Michigan1105 N. University AveAnn ArborMI48109USA
| | - Ashwini Bhide
- Department of Molecular, Cellular and Developmental BiologyUniversity of Michigan1105 N. University AveAnn ArborMI48109USA
| | - Svenning Rune Moeller
- Department of Plant and Environmental SciencesFaculty of ScienceUniversity of CopenhagenThorvaldsensvej 40København1871 Frederiksberg CDenmark
| | - Bent L. Petersen
- Department of Plant and Environmental SciencesFaculty of ScienceUniversity of CopenhagenThorvaldsensvej 40København1871 Frederiksberg CDenmark
| | - Cora A. MacAlister
- Department of Molecular, Cellular and Developmental BiologyUniversity of Michigan1105 N. University AveAnn ArborMI48109USA
| |
Collapse
|
37
|
Hocq L, Guinand S, Habrylo O, Voxeur A, Tabi W, Safran J, Fournet F, Domon JM, Mollet JC, Pilard S, Pau-Roblot C, Lehner A, Pelloux J, Lefebvre V. The exogenous application of AtPGLR, an endo-polygalacturonase, triggers pollen tube burst and repair. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:617-633. [PMID: 32215973 DOI: 10.1111/tpj.14753] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/14/2020] [Accepted: 03/12/2020] [Indexed: 05/27/2023]
Abstract
Plant cell wall remodeling plays a key role in the control of cell elongation and differentiation. In particular, fine-tuning of the degree of methylesterification of pectins was previously reported to control developmental processes as diverse as pollen germination, pollen tube elongation, emergence of primordia or elongation of dark-grown hypocotyls. However, how pectin degradation can modulate plant development has remained elusive. Here we report the characterization of a polygalacturonase (PG), AtPGLR, the gene for which is highly expressed at the onset of lateral root emergence in Arabidopsis. Due to gene compensation mechanisms, mutant approaches failed to determine the involvement of AtPGLR in plant growth. To overcome this issue, AtPGLR has been expressed heterologously in the yeast Pichia pastoris and biochemically characterized. We showed that AtPGLR is an endo-PG that preferentially releases non-methylesterified oligogalacturonides with a short degree of polymerization (< 8) at acidic pH. The application of the purified recombinant protein on Amaryllis pollen tubes, an excellent model for studying cell wall remodeling at acidic pH, induced abnormal pollen tubes or cytoplasmic leakage in the subapical dome of the pollen tube tip, where non-methylesterified pectin epitopes are detected. Those leaks could either be repaired by new β-glucan deposits (mostly callose) in the cell wall or promoted dramatic burst of the pollen tube. Our work presents the full biochemical characterization of an Arabidopsis PG and highlights the importance of pectin integrity in pollen tube elongation.
Collapse
Affiliation(s)
- Ludivine Hocq
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039, Amiens, France
| | - Sophie Guinand
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Normandie Université, UNIROUEN, EA 4358, SFR 4377 NORVEGE, IRIB, Tremplin I2C Carnot, 76000, Rouen, France
| | - Olivier Habrylo
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039, Amiens, France
| | - Aline Voxeur
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039, Amiens, France
| | - Wafae Tabi
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039, Amiens, France
| | - Josip Safran
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039, Amiens, France
| | - Françoise Fournet
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039, Amiens, France
| | - Jean-Marc Domon
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039, Amiens, France
| | - Jean-Claude Mollet
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Normandie Université, UNIROUEN, EA 4358, SFR 4377 NORVEGE, IRIB, Tremplin I2C Carnot, 76000, Rouen, France
| | - Serge Pilard
- Plateforme Analytique, Université de Picardie, 33 Rue St Leu, 80039, Amiens, France
| | - Corinne Pau-Roblot
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039, Amiens, France
| | - Arnaud Lehner
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Normandie Université, UNIROUEN, EA 4358, SFR 4377 NORVEGE, IRIB, Tremplin I2C Carnot, 76000, Rouen, France
| | - Jérôme Pelloux
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039, Amiens, France
| | - Valérie Lefebvre
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039, Amiens, France
| |
Collapse
|
38
|
Herger A, Gupta S, Kadler G, Franck CM, Boisson-Dernier A, Ringli C. Overlapping functions and protein-protein interactions of LRR-extensins in Arabidopsis. PLoS Genet 2020; 16:e1008847. [PMID: 32559234 PMCID: PMC7357788 DOI: 10.1371/journal.pgen.1008847] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 07/13/2020] [Accepted: 05/11/2020] [Indexed: 02/01/2023] Open
Abstract
Plant cell growth requires the coordinated expansion of the protoplast and the cell wall, which is controlled by an elaborate system of cell wall integrity (CWI) sensors linking the different cellular compartments. LRR-eXtensins (LRXs) are cell wall-attached extracellular regulators of cell wall formation and high-affinity binding sites for RALF (Rapid ALkalinization Factor) peptide hormones that trigger diverse physiological processes related to cell growth. LRXs function in CWI sensing and in the case of LRX4 of Arabidopsis thaliana, this activity was shown to involve interaction with the transmembrane CatharanthusroseusReceptor-Like Kinase1-Like (CrRLK1L) protein FERONIA (FER). Here, we demonstrate that binding of RALF1 and FER is common to most tested LRXs of vegetative tissue, including LRX1, the main LRX protein of root hairs. Consequently, an lrx1-lrx5 quintuple mutant line develops shoot and root phenotypes reminiscent of the fer-4 knock-out mutant. The previously observed membrane-association of LRXs, however, is FER-independent, suggesting that LRXs bind not only FER but also other membrane-localized proteins to establish a physical link between intra- and extracellular compartments. Despite evolutionary diversification of various LRX proteins, overexpression of several chimeric LRX constructs causes cross-complementation of lrx mutants, indicative of comparable functions among members of this protein family. Suppressors of the pollen-growth defects induced by mutations in the CrRLK1Ls ANXUR1/2 also alleviate lrx1 lrx2-induced mutant root hair phenotypes. This suggests functional similarity of LRX-CrRLK1L signaling processes in very different cell types and indicates that LRX proteins are components of conserved processes regulating cell growth. Cell growth in plants requires the coordinated enlargement of the cell and the surrounding cell wall, which is regulated by an elaborate system of cell wall integrity sensors, proteins involved in the exchange of information between the cell and the cell wall. In Arabidopsis thaliana, LRR-extensins (LRXs) are localized in the cell wall and bind RALF peptides, hormones that regulate cell growth-related processes. LRX4 also binds the plasma membrane-localized protein FERONIA (FER), thereby establishing a link between the cell and the cell wall. Here, we show that membrane association of LRX4 is not dependent on FER, suggesting that LRX4 binds other, so far unknown proteins. The LRR domain of several LRXs can bind to FER, consistent with the observation that mutations in multiple LRX genes are required to recapitulate a fer knock-out phenotype. Our results support the notion that LRX-FER interactions are key to proper cell growth.
Collapse
Affiliation(s)
- Aline Herger
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Shibu Gupta
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabor Kadler
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christina Maria Franck
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Biocenter, Botanical Institute, University of Cologne, Cologne, Germany
| | | | - Christoph Ringli
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
39
|
Rui Q, Wang J, Li Y, Tan X, Bao Y. Arabidopsis COG6 is essential for pollen tube growth and Golgi structure maintenance. Biochem Biophys Res Commun 2020; 528:447-452. [PMID: 32499114 DOI: 10.1016/j.bbrc.2020.05.189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 11/15/2022]
Abstract
The conserved oligomeric Golgi (COG) complex, which consists of eight subunits named COG1-COG8, is highly conserved with homologous subunits present in most eukaryotic species. In yeast and mammalian, the COG complex has been implicated in the tethering of retrograde intra-Golgi vesicles. Although homologs of COG subunits have been identified in Arabidopsis, the functions of the complex and its subunits remain to be fully elucidated. In this study, we have utilized genetic and cytologic approaches to characterize the role of the COG6 subunit. We showed that a mutation in COG6 caused male transmission defect due to aberrant pollen tube growth. At the subcellular level, Golgi bodies exhibited altered morphology in cog6 pollen and cell wall components were incorrectly deposited in pollen tubes. COG6 fused to green fluorescent protein (GFP), which complemented the aberrant growth of cog6 pollen tubes, was localized to the Golgi apparatus. We propose that COG6, as a subunit of the COG complex, modulates Golgi morphology and vesicle trafficking homeostasis during pollen tube growth.
Collapse
Affiliation(s)
- Qingchen Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Junxia Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yanbin Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaoyun Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
40
|
BIDHENDI A, CHEBLI Y, GEITMANN A. Fluorescence visualization of cellulose and pectin in the primary plant cell wall. J Microsc 2020; 278:164-181. [DOI: 10.1111/jmi.12895] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/07/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
- A.J. BIDHENDI
- Department of Plant ScienceMcGill UniversityMacdonald Campus Ste‐Anne‐de‐Bellevue Québec Canada
| | - Y. CHEBLI
- Department of Plant ScienceMcGill UniversityMacdonald Campus Ste‐Anne‐de‐Bellevue Québec Canada
| | - A. GEITMANN
- Department of Plant ScienceMcGill UniversityMacdonald Campus Ste‐Anne‐de‐Bellevue Québec Canada
| |
Collapse
|
41
|
Guo J, Yang Z. Exocytosis and endocytosis: coordinating and fine-tuning the polar tip growth domain in pollen tubes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2428-2438. [PMID: 32173729 PMCID: PMC7178420 DOI: 10.1093/jxb/eraa134] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/11/2020] [Indexed: 05/06/2023]
Abstract
Pollen tubes rapidly elongate, penetrate, and navigate through multiple female tissues to reach ovules for sperm delivery by utilizing a specialized form of polar growth known as tip growth. This process requires a battery of cellular activities differentially occurring at the apical growing region of the plasma membrane (PM), such as the differential cellular signaling involving calcium (Ca2+), phospholipids, and ROP-type Rho GTPases, fluctuation of ions and pH, exocytosis and endocytosis, and cell wall construction and remodeling. There is an emerging understanding of how at least some of these activities are coordinated and/or interconnected. The apical active ROP modulates exocytosis to the cell apex for PM and cell wall expansion differentially occurring at the tip. The differentiation of the cell wall involves at least the preferential distribution of deformable pectin polymers to the apex and non-deformable pectin polymers to the shank of pollen tubes, facilitating the apical cell expansion driven by high internal turgor pressure. Recent studies have generated inroads into how the ROP GTPase-based intracellular signaling is coordinated spatiotemporally with the external wall mechanics to maintain the tubular cell shape and how the apical cell wall mechanics are regulated to allow rapid tip growth while maintaining the cell wall integrity under the turgor pressure. Evidence suggests that exocytosis and endocytosis play crucial but distinct roles in this spatiotemporal coordination. In this review, we summarize recent advances in the regulation and coordination of the differential pectin distribution and the apical domain of active ROP by exocytosis and endocytosis in pollen tubes.
Collapse
Affiliation(s)
- Jingzhe Guo
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Zhenbiao Yang
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
- Correspondence:
| |
Collapse
|
42
|
Lund CH, Stenbæk A, Atmodjo MA, Rasmussen RE, Moller IE, Erstad SM, Biswal AK, Mohnen D, Mravec J, Sakuragi Y. Pectin Synthesis and Pollen Tube Growth in Arabidopsis Involves Three GAUT1 Golgi-Anchoring Proteins: GAUT5, GAUT6, and GAUT7. FRONTIERS IN PLANT SCIENCE 2020; 11:585774. [PMID: 33072156 PMCID: PMC7533613 DOI: 10.3389/fpls.2020.585774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/31/2020] [Indexed: 05/14/2023]
Abstract
The major cell wall pectic glycan homogalacturonan (HG) is crucial for plant growth, development, and reproduction. HG synthesis occurs in the Golgi and is catalyzed by members of the galacturonosyltransferase (GAUT) family with GAUT1 being the archetypal and best studied family member. In Arabidopsis suspension culture cells and tobacco leaves, the Golgi localization of Arabidopsis GAUT1 has been shown to require protein-protein interactions with its homolog GAUT7. Here we show that in pollen tubes GAUT5 and GAUT6, homologs of GAUT7, also target GAUT1 to the Golgi apparatus. Pollen tube germination and elongation in double homozygous knock-out mutants (gaut5 gaut6, gaut5 gaut7, and gaut6 gaut7) are moderately impaired, whereas gaut5 -/- gaut6 -/- gaut7 +/- triple mutant is severely impaired and male infertile. Amounts and distributions of methylesterified HG in the pollen tube tip were severely distorted in the double and heterozygous triple mutants. A chimeric protein comprising GAUT1 and a non-cleavable membrane anchor domain was able to partially restore pollen tube germination and elongation and to reverse male sterility in the triple mutant. These results indicate that GAUT5, GAUT6, and GAUT7 are required for synthesis of native HG in growing pollen tubes and have critical roles in pollen tube growth and male fertility in Arabidopsis.
Collapse
Affiliation(s)
- Christian Have Lund
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Anne Stenbæk
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Melani A. Atmodjo
- Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Randi Engelberth Rasmussen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Isabel E. Moller
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Simon Matthé Erstad
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Ajaya Kumar Biswal
- Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Debra Mohnen
- Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- *Correspondence: Jozef Mravec,
| | - Yumiko Sakuragi
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
43
|
Abstract
Pollen tubes have been key models to study plant cell wall elongation. Arabidopsis thaliana, although small, is a nice model, easy to grow and with a large set of studies to simplify result integration and interpretation. Pollen tubes may be used for gene expression essays, but also for biochemical characterization of the cell wall composition. However, pollen tube culture methods though seemingly straightforward have often a multitude of small technical details crucial for success, quickly deterring the more inexperienced and setting back experiments for months at the time. Here we propose a detailed method to set up easily a pollen tube culture routine in any lab, with a minimal set of equipment, to isolate and process pollen tubes for gene expression and/or cell wall biochemistry studies.
Collapse
Affiliation(s)
- Mario Costa
- Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Jessy Silva
- Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Silvia Coimbra
- Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
44
|
Losada JM, Herrero M. Arabinogalactan proteins mediate intercellular crosstalk in the ovule of apple flowers. PLANT REPRODUCTION 2019; 32:291-305. [PMID: 31049682 DOI: 10.1007/s00497-019-00370-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/23/2019] [Indexed: 05/29/2023]
Abstract
AGP-rich glycoproteins mediate pollen-ovule interactions and cell patterning in the embryo sac of apple before and after fertilization. Glycoproteins are significant players in the dialog that takes place between growing pollen tubes and the stigma and style in the angiosperms. Yet, information is scarce on their possible involvement in the ovule, a sporophytic organ that hosts the female gametophyte. Apple flowers have a prolonged lapse of time between pollination and fertilization, offering a great system to study the developmental basis of glycoprotein secretion and their putative role during the last stages of the progamic phase and early seed initiation. For this purpose, the sequential pollen tube elongation within the ovary was examined in relation to changes in arabinogalactan proteins (AGPs) in the tissues of the ovule before and after fertilization. To evaluate what of these changes are developmentally regulated, unpollinated and pollinated flowers were compared. AGPs paved the pollen tube pathway in the ovules along the micropylar canal, and the nucellus entrance toward the synergids, which also developmentally accumulated AGPs at the filiform apparatus. Glycoproteins vanished from all these tissues following pollen tube passage, strongly suggesting a role in pollen-ovule interaction. In addition, AGPs marked the primary cell walls of the haploid cells of the female gametophyte, and they further built up in the cell walls of the embryo sac and developing embryo, layering the interactive walls of the three generations hosted in the ovule, the maternal sporophytic tissues, the female gametophyte, and the developing embryo.
Collapse
Affiliation(s)
- Juan M Losada
- Pomology Department, Aula Dei Experimental Station-CSIC, Avda Montañana 1005, 50059, Saragossa, Spain.
- Arnold Arboretum of Harvard University, 1300 Centre St., Boston, MA, 02131, USA.
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora-CSIC-UMA, Avda. Dr. Wienberg s/n. Algarrobo-Costa, 29750, Málaga, Spain.
| | - María Herrero
- Pomology Department, Aula Dei Experimental Station-CSIC, Avda Montañana 1005, 50059, Saragossa, Spain
| |
Collapse
|
45
|
Laggoun F, Dardelle F, Dehors J, Falconet D, Driouich A, Rochais C, Dallemagne P, Lehner A, Mollet JC. A chemical screen identifies two novel small compounds that alter Arabidopsis thaliana pollen tube growth. BMC PLANT BIOLOGY 2019; 19:152. [PMID: 31010418 PMCID: PMC6475968 DOI: 10.1186/s12870-019-1743-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/27/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND During sexual reproduction, pollen grains land on the stigma, rehydrate and produce pollen tubes that grow through the female transmitting-tract tissue allowing the delivery of the two sperm cells to the ovule and the production of healthy seeds. Because pollen tubes are single cells that expand by tip-polarized growth, they represent a good model to study the growth dynamics, cell wall deposition and intracellular machineries. Aiming to understand this complex machinery, we used a low throughput chemical screen approach in order to isolate new tip-growth disruptors. The effect of a chemical inhibitor of monogalactosyldiacylglycerol synthases, galvestine-1, was also investigated. The present work further characterizes their effects on the tip-growth and intracellular dynamics of pollen tubes. RESULTS Two small compounds among 258 were isolated based on their abilities to perturb pollen tube growth. They were found to disrupt in vitro pollen tube growth of tobacco, tomato and Arabidopsis thaliana. We show that these 3 compounds induced abnormal phenotypes (bulging and/or enlarged pollen tubes) and reduced pollen tube length in a dose dependent manner. Pollen germination was significantly reduced after treatment with the two compounds isolated from the screen. They also affected cell wall material deposition in pollen tubes. The compounds decreased anion superoxide accumulation, disorganized actin filaments and RIC4 dynamics suggesting that they may affect vesicular trafficking at the pollen tube tip. CONCLUSION These molecules may alter directly or indirectly ROP1 activity, a key regulator of pollen tube growth and vesicular trafficking and therefore represent good tools to further study cellular dynamics during polarized-cell growth.
Collapse
Affiliation(s)
- Ferdousse Laggoun
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Fédération de Recherche “NORVEGE”- FED 4277, 76000 Rouen, France
| | - Flavien Dardelle
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Fédération de Recherche “NORVEGE”- FED 4277, 76000 Rouen, France
- Present Address: LPS-BioSciences, Bâtiment 409, Université Paris-Sud, 91400 Orsay, France
| | - Jérémy Dehors
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Fédération de Recherche “NORVEGE”- FED 4277, 76000 Rouen, France
| | - Denis Falconet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRA, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, CEA Grenoble, 38000 Grenoble, cedex 9 France
| | - Azeddine Driouich
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Fédération de Recherche “NORVEGE”- FED 4277, 76000 Rouen, France
| | - Christophe Rochais
- Normandie Université, UNICAEN, Centre d’Etudes et de Recherche sur le Médicament de Normandie, CNRS 3038 INC3M, SFR ICORE, 14032, Caen, France
| | - Patrick Dallemagne
- Normandie Université, UNICAEN, Centre d’Etudes et de Recherche sur le Médicament de Normandie, CNRS 3038 INC3M, SFR ICORE, 14032, Caen, France
| | - Arnaud Lehner
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Fédération de Recherche “NORVEGE”- FED 4277, 76000 Rouen, France
| | - Jean-Claude Mollet
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Fédération de Recherche “NORVEGE”- FED 4277, 76000 Rouen, France
| |
Collapse
|
46
|
Dehors J, Mareck A, Kiefer-Meyer MC, Menu-Bouaouiche L, Lehner A, Mollet JC. Evolution of Cell Wall Polymers in Tip-Growing Land Plant Gametophytes: Composition, Distribution, Functional Aspects and Their Remodeling. FRONTIERS IN PLANT SCIENCE 2019; 10:441. [PMID: 31057570 PMCID: PMC6482432 DOI: 10.3389/fpls.2019.00441] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 05/22/2023]
Abstract
During evolution of land plants, the first colonizing species presented leafy-dominant gametophytes, found in non-vascular plants (bryophytes). Today, bryophytes include liverworts, mosses, and hornworts. In the first seedless vascular plants (lycophytes), the sporophytic stage of life started to be predominant. In the seed producing plants, gymnosperms and angiosperms , the gametophytic stage is restricted to reproduction. In mosses and ferns, the haploid spores germinate and form a protonema, which develops into a leafy gametophyte producing rhizoids for anchorage, water and nutrient uptakes. The basal gymnosperms (cycads and Ginkgo) reproduce by zooidogamy. Their pollen grains develop a multi-branched pollen tube that penetrates the nucellus and releases flagellated sperm cells that swim to the egg cell. The pollen grain of other gymnosperms (conifers and gnetophytes) as well as angiosperms germinates and produces a pollen tube that directly delivers the sperm cells to the ovule (siphonogamy). These different gametophytes, which are short or long-lived structures, share a common tip-growing mode of cell expansion. Tip-growth requires a massive cell wall deposition to promote cell elongation, but also a tight spatial and temporal control of the cell wall remodeling in order to modulate the mechanical properties of the cell wall. The growth rate of these cells is very variable depending on the structure and the species, ranging from very slow (protonemata, rhizoids, and some gymnosperm pollen tubes), to a slow to fast-growth in other gymnosperms and angiosperms. In addition, the structural diversity of the female counterparts in angiosperms (dry, semi-dry vs wet stigmas, short vs long, solid vs hollow styles) will impact the speed and efficiency of sperm delivery. As the evolution and diversity of the cell wall polysaccharides accompanied the diversification of cell wall structural proteins and remodeling enzymes, this review focuses on our current knowledge on the biochemistry, the distribution and remodeling of the main cell wall polymers (including cellulose, hemicelluloses, pectins, callose, arabinogalactan-proteins and extensins), during the tip-expansion of gametophytes from bryophytes, pteridophytes (lycophytes and monilophytes), gymnosperms and the monocot and eudicot angiosperms.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean-Claude Mollet
- Normandie Univ, UNIROUEN, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Rouen, France
| |
Collapse
|
47
|
Leszczuk A, Kozioł A, Szczuka E, Zdunek A. Analysis of AGP contribution to the dynamic assembly and mechanical properties of cell wall during pollen tube growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:9-18. [PMID: 30824065 DOI: 10.1016/j.plantsci.2019.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 05/22/2023]
Abstract
Arabinogalactan proteins as cell wall structural proteins are involved in fundamental processes during plant development and growth. The aim of this study was to evaluate AGP function in the distribution of pectin, cellulose and callose along Fragaria x ananassa pollen tube and to associate the cell wall structure with local mechanical properties. We used Yariv reagent which interacts with AGPs and allows the observation of the assembly of cell walls without AGPs performing their function. Cytochemical, immunofluorescence labelling and atomic force microscope have been used to characterize the changes in cell wall structure and stiffness. It was shown that disordering of the structure of AGP present in cell walls affects the localization of cellulose, pectins and the secretion of callose. Changes in cell wall assembly are relevant to pollen tube mechanical properties. The stiffness gradient lengthwise through the axis of the pollen tube has demonstrated a significantly higher Young's modulus of the shank region than the growth zone. It has been revealed that the apex of the pollen tube cultured in the presence of Yariv reagent is stiffer (1.68 MPa) than the corresponding region of the pollen tube grown under control conditions (0.13-0.27 MPa). AGP affects the structure of the cell wall by changing the distribution of other components and the modification of their localization, and hence it plays a significant role in the mechanical properties of the cell wall.
Collapse
Affiliation(s)
- Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Arkadiusz Kozioł
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Ewa Szczuka
- Department of Plant Anatomy and Cytology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| |
Collapse
|
48
|
Leszczuk A, Szczuka E, Zdunek A. Arabinogalactan proteins: Distribution during the development of male and female gametophytes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:9-18. [PMID: 30496891 DOI: 10.1016/j.plaphy.2018.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 05/07/2023]
Abstract
Arabinogalactan proteins (AGPs), i.e. a subfamily of hydroxyproline-rich proteins (HRGPs), are widely distributed in the plant kingdom. For many years, AGPs have been connected with the multiple phases of plant reproduction and developmental processes. Currently, extensive knowledge is available about their various functions, i.e. involvement in pollen grain formation, initiation of pollen grain germination, pollen tube guidance in the transmission tissue of pistil and ovule nucellus, and function as a signaling molecule during cell-cell communication. Although many studies have been performed, the mechanism of action, the heterogeneous molecule structure, and the connection with other extracellular matrix components have not been sufficiently explained. The aim of this work was to gather and describe the most important information on the distribution of AGPs in gametophyte development. The present review provides a summary of the first reports about AGPs and the most recent knowledge about their functions during male and female gametophyte formation.
Collapse
Affiliation(s)
- A Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| | - E Szczuka
- Department of Plant Anatomy and Cytology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - A Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| |
Collapse
|
49
|
Stranne M, Ren Y, Fimognari L, Birdseye D, Yan J, Bardor M, Mollet JC, Komatsu T, Kikuchi J, Scheller HV, Sakuragi Y. TBL10 is required for O-acetylation of pectic rhamnogalacturonan-I in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:772-785. [PMID: 30118566 DOI: 10.1111/tpj.14067] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/06/2018] [Indexed: 05/12/2023]
Abstract
O-Acetylated pectins are abundant in the primary cell wall of plants and growing evidence suggests they have important roles in plant cell growth and interaction with the environment. Despite their importance, genes required for O-acetylation of pectins are still largely unknown. In this study, we showed that TRICHOME BIREFRINGENCE LIKE 10 (AT3G06080) is involved in O-acetylation of pectins in Arabidopsis (Arabidopsis thaliana). The activity of the TBL10 promoter was strong in tissues where pectins are highly abundant (e.g. leaves). Two homozygous knock-out mutants of Arabidopsis, tbl10-1 and tbl10-2, were isolated and shown to exhibit reduced levels of wall-bound acetyl esters, equivalent of ~50% of the wild-type level in pectin-enriched fractions derived from leaves. Further fractionation revealed that the degree of acetylation of the pectin rhamnogalacturonan-I (RG-I) was reduced in the tbl10 mutant compared to the wild type, whereas the pectin homogalacturonan (HG) was unaffected. The degrees of acetylation in hemicelluloses (i.e. xyloglucan, xylan and mannan) were indistinguishable between the tbl10 mutants and the wild type. The mutant plants contained normal trichomes in leaves and exhibited a similar level of susceptibility to the phytopathogenic microorganisms Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea; while they displayed enhanced tolerance to drought. These results indicate that TBL10 is required for O-acetylation of RG-I, possibly as an acetyltransferase, and suggest that O-acetylated RG-I plays a role in abiotic stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Maria Stranne
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, DK-1871, Denmark
| | - Yanfang Ren
- Feedstocks Division, Joint Bioenergy Institute, Emeryville, CA, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lorenzo Fimognari
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, DK-1871, Denmark
| | - Devon Birdseye
- Feedstocks Division, Joint Bioenergy Institute, Emeryville, CA, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jingwei Yan
- Feedstocks Division, Joint Bioenergy Institute, Emeryville, CA, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Muriel Bardor
- Normandie Univ, UNIROUEN, Laboratoire Glyco-MEV, 76000, Rouen, France
| | | | - Takanori Komatsu
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Henrik V Scheller
- Feedstocks Division, Joint Bioenergy Institute, Emeryville, CA, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Yumiko Sakuragi
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, DK-1871, Denmark
| |
Collapse
|
50
|
Berumen-Varela G, Ochoa-Jiménez VA, Burgara-Estrella A, Trillo-Hernández EA, Ojeda-Contreras ÁJ, Orozco-Avitia A, Rivera-Domínguez M, Troncoso-Rojas R, Báez-Sañudo R, Datsenka T, Handa AK, Tiznado-Hernández ME. Functional analysis of a tomato (Solanum lycopersicum L.) rhamnogalacturonan lyase promoter. JOURNAL OF PLANT PHYSIOLOGY 2018; 229:175-184. [PMID: 30121402 DOI: 10.1016/j.jplph.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
The enzyme rhamnogalacturonan lyase (RGL) cleaves α-1,4 glycosidic bonds located between rhamnose and galacturonic acid residues in the main chain of rhamnogalacturonan-I (RG-I), a component of the plant cell wall polymer pectin. Although the mode of action of RGL is well known, its physiological functions associated with fruit biology are less understood. Here, we generated transgenic tomato plants expressing the β-glucuronidase (GUS) reporter gene under the control of a -504 bp or a -776 bp fragment of the promoter of a tomato RGL gene, Solyc11g011300. GUS enzymatic activity and the expression levels of GUS and Solyc11g011300 were measured in a range of organs and fruit developmental stages. GUS staining was undetectable in leaves and roots, but high GUS enzymatic activity was detected in flowers and red ripe (RR) fruits. Maximal expression levels of Solyc11g011300 were detected at the RR developmental stage. GUS activity was 5-fold higher in flowers expressing GUS driven by the -504 bp RGL promoter fragment (RGFL3::GUS) than in the isogenic line, and 1.7-fold higher when GUS gene was driven by the -776 bp RGL promoter fragment (RGLF2::GUS) or the constitutive CaMV35S promoter. Quantitative real-time polymerase chain reaction analysis showed that the highest expression of GUS was in fruits at 40 days after anthesis, for both promoter fragments. The promoter of Solyc11g011300 is predicted to contain cis-acting elements, and to be active in pollen grains, pollen tubes, flowers and during tomato fruit ripening, suggesting that the Solyc11g011300 promoter is transcriptionally active and organ-specific.
Collapse
Affiliation(s)
- Guillermo Berumen-Varela
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, México; Department of Horticulture and Landscape Architecture, Purdue University, 1165 Horticulture Building, West Lafayette, IN, 47907-1165, USA
| | - Verónica-Alhelí Ochoa-Jiménez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, México; Department of Horticulture and Landscape Architecture, Purdue University, 1165 Horticulture Building, West Lafayette, IN, 47907-1165, USA
| | - Alexel Burgara-Estrella
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Sonora 83000, Mexico
| | - Eduardo-Antonio Trillo-Hernández
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, México
| | - Ángel-Javier Ojeda-Contreras
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, México
| | - Antonio Orozco-Avitia
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, México
| | - Marisela Rivera-Domínguez
- Coordinación de Ciencia de los Alimentos, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, México
| | - Rosalba Troncoso-Rojas
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, México
| | - Reginaldo Báez-Sañudo
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, México
| | - Tatsiana Datsenka
- Department of Horticulture and Landscape Architecture, Purdue University, 1165 Horticulture Building, West Lafayette, IN, 47907-1165, USA
| | - Avtar K Handa
- Department of Horticulture and Landscape Architecture, Purdue University, 1165 Horticulture Building, West Lafayette, IN, 47907-1165, USA
| | - Martín-Ernesto Tiznado-Hernández
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, México.
| |
Collapse
|