1
|
Li L, van de Kaa Y, van der Krabben L, Pierik R, Kajala K. Effect of Low Red-to-Far-Red Light on Stem Elongation and Pith Cell Development in Dicots. PLANT DIRECT 2025; 9:e70072. [PMID: 40242792 PMCID: PMC11999800 DOI: 10.1002/pld3.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/06/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
In dense canopies, light becomes a limiting factor for plant growth. Many plants respond to neighbor cues by growing taller to improve light capture, a phenomenon known as the shade avoidance syndrome (SAS). The major neighbor detection is via enrichment of far-red (FR) light that leads to a low red:far-red light ratio (R:FR), suppressing phytochrome activity. In tomato, low R:FR induces elongation of the internodes, but study into the role of different cell types in this response has remained limited. We characterized changes in cellular anatomy of the tomato internode in response to low R:FR and its accompanying changes in gene expression. We observed changes to the pith traits, including increases in pith layer number, pith cell diameter, and longitudinal cell length. We profiled the transcriptome in the entire internodes and in the hand-dissected pith in the central cylinder of the internode in response to low R:FR treatment and identified transcription factors (TFs) of interest that were upregulated in the central cylinder, mostly GATA, TCP, and bZIPs. We then characterized FR responses in eight dicotyledonous species. Significant pith elongation was observed in species that exhibited a strong internode elongation response. The FR-responsive expression of homologs of target GATA, TCP, and bZIP TFs in the central cylinder was conserved within the Solanaceae family. Overall, we discovered central cylinder gene expression patterns in SAS that are distinct from those of the entire internode, suggesting that some responses are unique and likely specific to vascular cell types such as pith. These patterns were conserved with close relatives of tomato but not in other dicot families we sampled, indicating that different molecular mechanisms drive FR responses in different dicots.
Collapse
Affiliation(s)
- Linge Li
- Experimental & Computational Plant DevelopmentInstitute of Environmental Biology, Utrecht UniversityUtrechtThe Netherlands
- Current Affiliation: Dalian Yuanyi Technology Co., LtdDalianLiaoningChina
| | - Yorrit van de Kaa
- Experimental & Computational Plant DevelopmentInstitute of Environmental Biology, Utrecht UniversityUtrechtThe Netherlands
| | - Lotte van der Krabben
- Experimental & Computational Plant DevelopmentInstitute of Environmental Biology, Utrecht UniversityUtrechtThe Netherlands
| | - Ronald Pierik
- Experimental & Computational Plant DevelopmentInstitute of Environmental Biology, Utrecht UniversityUtrechtThe Netherlands
- Current Affiliation: Laboratory of Molecular BiologyWageningen University & ResearchWageningenThe Netherlands
| | - Kaisa Kajala
- Experimental & Computational Plant DevelopmentInstitute of Environmental Biology, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
2
|
Li T, Yang Z, Ang Y, Zhao Y, Zhang Y, Liu Z, Sun H, Chang Y, Du M, Cheng X, Sun J, Liu E. Genome-wide association study identifies elite alleles of FLA2 and FLA9 controlling flag leaf angle in rice. BMC Genomics 2025; 26:280. [PMID: 40119348 PMCID: PMC11927237 DOI: 10.1186/s12864-025-11487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/13/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND In hybrid rice seed production, rice varieties with a small flag leaf angle (FLA) experience obstacles to cross-pollination at the early heading stage, and farmers usually need to remove flag leaves to achieve artificial pollination. Therefore, the cultivation of rice varieties with large FLAs can not only save a substantial amount of labour in the leaf-cutting process during artificial pollination but also accelerate the mechanization of hybrid rice seed production. RESULTS In this study, 431 rice accessions were included in a genome-wide association study (GWAS) to identify quantitative trait loci (QTLs) and the superior haplotypes for rice FLA in 2022 and 2023. The aim of the study was to identify new QTLs and provide germplasm resources for the genetic improvement of rice FLA. The population exhibited rich phenotypic variation in FLA in both years. The FLA GWAS was performed with more than 3 million single-nucleotide polymorphisms (SNPs), and eight QTLs associated with FLA were detected; of these, six QTLs located on rice chromosomes 1, 2, 8 and 9 were novel and detected in both years. In addition, these QTLs were analysed by haplotype analysis and functional annotation, and FLA2 and FLA9, which encode xyloglucan fucosyltransferase and cytokinin-O-glucosyltransferase 2, respectively, were identified as candidate genes for FLA regulation in rice. Quantitative real-time polymerase chain reaction (qRT‒PCR) results validated FLA2 and FLA9 as candidate genes. The results of this study showed that the elite alleles of FLA2 and FLA9 can increase FLA in rice. Excellent parents for FLA improvement were predicted through pyramiding breeding. CONCLUSIONS A total of six new QTLs and two candidate genes (FLA2 and FLA9) were identified by a GWAS of 431 rice accessions over two years. The elite alleles and excellent parents predicted in our study can provide important information for the functional analysis of rice FLA-related genes and improvement through pyramiding breeding.
Collapse
Affiliation(s)
- Tianhu Li
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China
| | - Zhen Yang
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China
| | - Yang Ang
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China
| | - Yingying Zhao
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China
| | - Yanan Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China
| | - Zhengbo Liu
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China
| | - Hao Sun
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China
| | - Yinping Chang
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China
| | - Mingyu Du
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China
| | - Xianping Cheng
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China
| | - Jinghan Sun
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China
| | - Erbao Liu
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China.
| |
Collapse
|
3
|
Gautrat P, Matton SEA, Oskam L, Shetty SS, van der Velde KJ, Pierik R. Lights, location, action: shade avoidance signalling over spatial scales. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:695-711. [PMID: 38767295 PMCID: PMC11805592 DOI: 10.1093/jxb/erae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Plants growing in dense vegetation need to flexibly position their photosynthetic organs to ensure optimal light capture in a competitive environment. They do so through a suite of developmental responses referred to as the shade avoidance syndrome. Below ground, root development is also adjusted in response to above-ground neighbour proximity. Canopies are dynamic and complex environments with heterogeneous light cues in the far-red, red, blue, and UV spectrum, which can be perceived by photoreceptors in spatially separated plant tissues. Molecular regulation of plant architecture adjustment via PHYTOCHROME-INTERACTING FACTOR transcription factors and growth-related hormones such as auxin, gibberellic acid, brassinosteroids, and abscisic acid were historically studied without much attention to spatial or tissue-specific context. Recent developments and technologies have, however, sparked strong interest in spatially explicit understanding of shade avoidance regulation. Other environmental factors such as temperature and nutrient availability interact with the molecular shade avoidance regulation network, often depending on the spatial location of the signals, and the responding organs. Here, we review recent advances in how plants respond to heterogeneous light cues and integrate these with other environmental signals.
Collapse
Affiliation(s)
- Pierre Gautrat
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Sanne E A Matton
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Lisa Oskam
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Experimental and Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Siddhant S Shetty
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Kyra J van der Velde
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Experimental and Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
Viswam AKS, Johnson S, Koyyappurath S, Mujeeb A. Non-invasive laser bio-speckle technique for the study of optical irradiation on plant leaf lamina: Application to monitor salicylic acid modulated response in Zamioculcas zamiifolia. Biochem Biophys Res Commun 2024; 739:150955. [PMID: 39531909 DOI: 10.1016/j.bbrc.2024.150955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The intensity of light is one of the major factors influencing the rate of plant physiological activity. For optimization of the agricultural lighting necessary for plant growth, it is vital to understand the plant behavioral response under different light intensities. In the present study, the dynamic activity due to the physiological phenomena in the leaf of a plant when exposed to optical radiation from artificial LED sources is quantified non-destructively. The laser bio-speckle algorithm of obtaining Inertia Moment (IM) values from the Time History of Speckle Patterns (THSP) is utilized as a quantitative measure of the plant leaf dynamic activity. The plant leaf laminas were probed using the laser and the IM values were generated. The dynamic activity variations with the increase in optical intensity were studied on the leaves of Philodendron erubescens, Syngonium podophyllum, Piper nigrum, Plectranthus amboinicus and Epipremnum aureum. The obtained results reveal a unique pattern for each plant leaf and displayed consistent repeatability under fixed experimental conditions. The method was extended to monitor dynamic activity variation with optical irradiation intensity in Zamioculas zamiifolia leaves before and after treatment with salicylic acid, a measure to induce hormonal cross-talks. The obtained results were validated using biochemical estimation techniques and can be useful insights for the development of a non-invasive sensor for analyzing the plant's physiological activity under various light intensity conditions. The present study is the first of its kind to elucidate the viability of conducting a non-invasive analysis of abiotic stress effects on a sample and control plant using laser speckle technique.
Collapse
Affiliation(s)
- A K Sooraj Viswam
- International School of Photonics, Cochin University of Science and Technology, Kochi, Kerala, India.
| | - Sinoy Johnson
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Sayuj Koyyappurath
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - A Mujeeb
- International School of Photonics, Cochin University of Science and Technology, Kochi, Kerala, India; Digital University Kerala, India
| |
Collapse
|
5
|
Wang JJ, Gao J, Li W, Liu JX. CCaP1/CCaP2/CCaP3 interact with plasma membrane H +-ATPases and promote thermo-responsive growth by regulating cell wall modification in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100880. [PMID: 38486455 PMCID: PMC11287188 DOI: 10.1016/j.xplc.2024.100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024]
Abstract
Arabidopsis plants adapt to warm temperatures by promoting hypocotyl growth primarily through the basic helix-loop-helix transcription factor PIF4 and its downstream genes involved in auxin responses, which enhance cell division. In the current study, we discovered that cell wall-related calcium-binding protein 2 (CCaP2) and its paralogs CCaP1 and CCaP3 function as positive regulators of thermo-responsive hypocotyl growth by promoting cell elongation in Arabidopsis. Interestingly, mutations in CCaP1/CCaP2/CCaP3 do not affect the expression of PIF4-regulated classic downstream genes. However, they do noticeably reduce the expression of xyloglucan endotransglucosylase/hydrolase genes, which are involved in cell wall modification. We also found that CCaP1/CCaP2/CCaP3 are predominantly localized to the plasma membrane, where they interact with the plasma membrane H+-ATPases AHA1/AHA2. Furthermore, we observed that vanadate-sensitive H+-ATPase activity and cell wall pectin and hemicellulose contents are significantly increased in wild-type plants grown at warm temperatures compared with those grown at normal growth temperatures, but these changes are not evident in the ccap1-1 ccap2-1 ccap3-1 triple mutant. Overall, our findings demonstrate that CCaP1/CCaP2/CCaP3 play an important role in controlling thermo-responsive hypocotyl growth and provide new insights into the alternative pathway regulating hypocotyl growth at warm temperatures through cell wall modification mediated by CCaP1/CCaP2/CCaP3.
Collapse
Affiliation(s)
- Jing-Jing Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Juan Gao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Wei Li
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
6
|
Zuo Z, Roux ME, Dagdas YF, Rodriguez E, Petersen M. PAT mRNA decapping factors are required for proper development in Arabidopsis. FEBS Lett 2024; 598:1008-1021. [PMID: 38605280 DOI: 10.1002/1873-3468.14872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/10/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Evolutionarily conserved protein associated with topoisomerase II (PAT1) proteins activate mRNA decay through binding mRNA and recruiting decapping factors to optimize posttranscriptional reprogramming. Here, we generated multiple mutants of pat1, pat1 homolog 1 (path1), and pat1 homolog 2 (path2) and discovered that pat triple mutants exhibit extremely stunted growth and all mutants with pat1 exhibit leaf serration while mutants with pat1 and path1 display short petioles. All three PATs can be found localized to processing bodies and all PATs can target ASYMMETRIC LEAVES 2-LIKE 9 transcripts for decay to finely regulate apical hook and lateral root development. In conclusion, PATs exhibit both specific and redundant functions during different plant growth stages and our observations underpin the selective regulation of the mRNA decay machinery for proper development.
Collapse
Affiliation(s)
- Zhangli Zuo
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Milena Edna Roux
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Yasin F Dagdas
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Eleazar Rodriguez
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Morten Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| |
Collapse
|
7
|
Sénéchal F, Robinson S, Van Schaik E, Trévisan M, Saxena P, Reinhardt D, Fankhauser C. Pectin methylesterification state and cell wall mechanical properties contribute to neighbor proximity-induced hypocotyl growth in Arabidopsis. PLANT DIRECT 2024; 8:e584. [PMID: 38646567 PMCID: PMC11033045 DOI: 10.1002/pld3.584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/25/2024] [Accepted: 03/24/2024] [Indexed: 04/23/2024]
Abstract
Plants growing with neighbors compete for light and consequently increase the growth of their vegetative organs to enhance access to sunlight. This response, called shade avoidance syndrome (SAS), involves photoreceptors such as phytochromes as well as phytochrome interacting factors (PIFs), which regulate the expression of growth-mediating genes. Numerous cell wall-related genes belong to the putative targets of PIFs, and the importance of cell wall modifications for enabling growth was extensively shown in developmental models such as dark-grown hypocotyl. However, the contribution of the cell wall in the growth of de-etiolated seedlings regulated by shade cues remains poorly established. Through analyses of mechanical and biochemical properties of the cell wall coupled with transcriptomic analysis of cell wall-related genes from previously published data, we provide evidence suggesting that cell wall modifications are important for neighbor proximity-induced elongation. Further analysis using loss-of-function mutants impaired in the synthesis and remodeling of the main cell wall polymers corroborated this. We focused on the cgr2cgr3 double mutant that is defective in methylesterification of homogalacturonan (HG)-type pectins. By following hypocotyl growth kinetically and spatially and analyzing the mechanical and biochemical properties of cell walls, we found that methylesterification of HG-type pectins was required to enable global cell wall modifications underlying neighbor proximity-induced hypocotyl growth. Collectively, our work suggests that plant competition for light induces changes in the expression of numerous cell wall genes to enable modifications in biochemical and mechanical properties of cell walls that contribute to neighbor proximity-induced growth.
Collapse
Affiliation(s)
- Fabien Sénéchal
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode BuildingUniversity of LausanneLausanneSwitzerland
- Present address:
UMR INRAE 1158 BioEcoAgro, Plant Biology and InnovationUniversity of Picardie Jules VerneAmiensFrance
| | - Sarah Robinson
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Present address:
The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | - Evert Van Schaik
- Department of BiologyUniversity of FribourgFribourgSwitzerland
- Present address:
University of Applied Sciences LeidenLeidenNetherlands
| | - Martine Trévisan
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode BuildingUniversity of LausanneLausanneSwitzerland
| | - Prashant Saxena
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode BuildingUniversity of LausanneLausanneSwitzerland
- Present address:
James Watt School of EngineeringUniversity of GlasgowGlasgowUK
| | | | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode BuildingUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
8
|
Yan Y, Luo H, Qin Y, Yan T, Jia J, Hou Y, Liu Z, Zhai J, Long Y, Deng X, Cao X. Light controls mesophyll-specific post-transcriptional splicing of photoregulatory genes by AtPRMT5. Proc Natl Acad Sci U S A 2024; 121:e2317408121. [PMID: 38285953 PMCID: PMC10861865 DOI: 10.1073/pnas.2317408121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Light plays a central role in plant growth and development, providing an energy source and governing various aspects of plant morphology. Previous study showed that many polyadenylated full-length RNA molecules within the nucleus contain unspliced introns (post-transcriptionally spliced introns, PTS introns), which may play a role in rapidly responding to changes in environmental signals. However, the mechanism underlying post-transcriptional regulation during initial light exposure of young, etiolated seedlings remains elusive. In this study, we used FLEP-seq2, a Nanopore-based sequencing technique, to analyze nuclear RNAs in Arabidopsis (Arabidopsis thaliana) seedlings under different light conditions and found numerous light-responsive PTS introns. We also used single-nucleus RNA sequencing (snRNA-seq) to profile transcripts in single nucleus and investigate the distribution of light-responsive PTS introns across distinct cell types. We established that light-induced PTS introns are predominant in mesophyll cells during seedling de-etiolation following exposure of etiolated seedlings to light. We further demonstrated the involvement of the splicing-related factor A. thaliana PROTEIN ARGININE METHYLTRANSFERASE 5 (AtPRMT5), working in concert with the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a critical repressor of light signaling pathways. We showed that these two proteins orchestrate light-induced PTS events in mesophyll cells and facilitate chloroplast development, photosynthesis, and morphogenesis in response to ever-changing light conditions. These findings provide crucial insights into the intricate mechanisms underlying plant acclimation to light at the cell-type level.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Haofei Luo
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Yuwei Qin
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Tingting Yan
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou571100, China
| | - Jinbu Jia
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Yifeng Hou
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Zhijian Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Yanping Long
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Xian Deng
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xiaofeng Cao
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
9
|
Jiang Z, Yao L, Zhu X, Hao G, Ding Y, Zhao H, Wang S, Wen CK, Xu X, Xin XF. Ethylene signaling modulates air humidity responses in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:653-668. [PMID: 37997486 DOI: 10.1111/tpj.16556] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Air humidity significantly impacts plant physiology. However, the upstream elements that mediate humidity sensing and adaptive responses in plants remain largely unexplored. In this study, we define high humidity-induced cellular features of Arabidopsis plants and take a quantitative phosphoproteomics approach to obtain a high humidity-responsive landscape of membrane proteins, which we reason are likely the early checkpoints of humidity signaling. We found that a brief high humidity exposure (i.e., 0.5 h) is sufficient to trigger extensive changes in membrane protein abundance and phosphorylation. Enrichment analysis of differentially regulated proteins reveals high humidity-sensitive processes such as 'transmembrane transport', 'response to abscisic acid', and 'stomatal movement'. We further performed a targeted screen of mutants, in which high humidity-responsive pathways/proteins are disabled, to uncover genes mediating high humidity sensitivity. Interestingly, ethylene pathway mutants (i.e., ein2 and ein3eil1) display a range of altered responses, including hyponasty, reactive oxygen species level, and responsive gene expression, to high humidity. Furthermore, we observed a rapid induction of ethylene biosynthesis genes and ethylene evolution after high humidity treatment. Our study sheds light on the potential early signaling events in humidity perception, a fundamental but understudied question in plant biology, and reveals ethylene as a key modulator of high humidity responses in plants.
Collapse
Affiliation(s)
- Zeyu Jiang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingya Yao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangmei Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guodong Hao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanxia Ding
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hangwei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences (CAS) and CAS John Innes Centre of Excellence for Plant and Microbial Sciences, Shanghai, China
| |
Collapse
|
10
|
Zhang H, Jin Z, Cui F, Zhao L, Zhang X, Chen J, Zhang J, Li Y, Li Y, Niu Y, Zhang W, Gao C, Fu X, Tong Y, Wang L, Ling HQ, Li J, Xiao J. Epigenetic modifications regulate cultivar-specific root development and metabolic adaptation to nitrogen availability in wheat. Nat Commun 2023; 14:8238. [PMID: 38086830 PMCID: PMC10716289 DOI: 10.1038/s41467-023-44003-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The breeding of crops with improved nitrogen use efficiency (NUE) is crucial for sustainable agriculture, but the involvement of epigenetic modifications remains unexplored. Here, we analyze the chromatin landscapes of two wheat cultivars (KN9204 and J411) that differ in NUE under varied nitrogen conditions. The expression of nitrogen metabolism genes is closely linked to variation in histone modification instead of differences in DNA sequence. Epigenetic modifications exhibit clear cultivar-specificity, which likely contributes to distinct agronomic traits. Additionally, low nitrogen (LN) induces H3K27ac and H3K27me3 to significantly enhance root growth in KN9204, while remarkably inducing NRT2 in J411. Evidence from histone deacetylase inhibitor treatment and transgenic plants with loss function of H3K27me3 methyltransferase shows that changes in epigenetic modifications could alter the strategy preference for root development or nitrogen uptake in response to LN. Here, we show the importance of epigenetic regulation in mediating cultivar-specific adaptation to LN in wheat.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyuan Jin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Fa Cui
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Long Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinchao Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, Hebei, China
| | - Yongpeng Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, Hebei, China
| | - Yanxiao Niu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CICMCP, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, Hebei, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China.
| | - Junming Li
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China.
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China.
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, Hebei, China.
| | - Jun Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing, China.
| |
Collapse
|
11
|
Yang L, Chen Y, Liu X, Zhang S, Han Q. Genome-wide identification and expression analysis of xyloglucan endotransglucosylase/hydrolase genes family in Salicaceae during grafting. BMC Genomics 2023; 24:676. [PMID: 37946112 PMCID: PMC10636897 DOI: 10.1186/s12864-023-09762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Poplar (Populus cathayana)and willow (Salix rehderiana) are important fast-growing trees in China. Grafting plays an important role in improving plant stress resistance and construction of ornamental plants. It is found that willow scions grafted onto poplar rootstocks can form ornamental plants. However, this grafted combination has a low survival rate. Many studies have reported that the xyloglucan endotransglucosylase/hydrolase (XTH) family plays an important role in the healing process of grafts. RESULTS A total of 38 PtrXTHs and 32 SpuXTHs were identified in poplar and willow respectively, and were classified into three subfamilies. Tandem duplication was the main reason for the expansion of the PtrXTHs. Grafting treatment and Quantitative real time PCR (RT-qPCR) analysis revealed that five XTH genes differentially expressed between self-grafted and reciprocal grafted combinations. Specifically, the high expression levels of SrXTH16, SrXTH17, SrXTH25, PcXTH22 and PcXTH17 may contribute to the high survival rate of the grafted combination with willow scion and poplar rootstock. Subcellular localization identified that the SrXTH16, SrXTH17, SrXTH25, PcXTH17 and PcXTH22 proteins were located on the cell walls. Transcription factors (NAC, MYB and DOF) may regulate the five XTH genes. CONCLUSIONS This study provides a new understanding of the roles of PcXTH and SrXTH genes and their roles in grafting. Our results will give some hints to explore the molecular mechanisms of PcXTH and SrXTH genes involved in grafting in the future.
Collapse
Affiliation(s)
- Le Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yao Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xuejiao Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qingquan Han
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
| |
Collapse
|
12
|
You J, Liu Z, Qi Z, Ma Y, Sun M, Su L, Niu H, Peng Y, Luo X, Zhu M, Huang Y, Chang X, Hu X, Zhang Y, Pi R, Liu Y, Meng Q, Li J, Zhang Q, Zhu L, Lin Z, Min L, Yuan D, Grover CE, Fang DD, Lindsey K, Wendel JF, Tu L, Zhang X, Wang M. Regulatory controls of duplicated gene expression during fiber development in allotetraploid cotton. Nat Genet 2023; 55:1987-1997. [PMID: 37845354 PMCID: PMC10632151 DOI: 10.1038/s41588-023-01530-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 09/14/2023] [Indexed: 10/18/2023]
Abstract
Polyploidy complicates transcriptional regulation and increases phenotypic diversity in organisms. The dynamics of genetic regulation of gene expression between coresident subgenomes in polyploids remains to be understood. Here we document the genetic regulation of fiber development in allotetraploid cotton Gossypium hirsutum by sequencing 376 genomes and 2,215 time-series transcriptomes. We characterize 1,258 genes comprising 36 genetic modules that control staged fiber development and uncover genetic components governing their partitioned expression relative to subgenomic duplicated genes (homoeologs). Only about 30% of fiber quality-related homoeologs show phenotypically favorable allele aggregation in cultivars, highlighting the potential for subgenome additivity in fiber improvement. We envision a genome-enabled breeding strategy, with particular attention to 48 favorable alleles related to fiber phenotypes that have been subjected to purifying selection during domestication. Our work delineates the dynamics of gene regulation during fiber development and highlights the potential of subgenomic coordination underpinning phenotypes in polyploid plants.
Collapse
Affiliation(s)
- Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhengyang Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Mengling Sun
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ling Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Hao Niu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yabing Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xuanxuan Luo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Mengmeng Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuefan Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xing Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiubao Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuqi Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruizhen Pi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuqi Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qingying Meng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA, USA
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, UK
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
13
|
Meyer RC, Weigelt-Fischer K, Tschiersch H, Topali G, Altschmied L, Heuermann MC, Knoch D, Kuhlmann M, Zhao Y, Altmann T. Dynamic growth QTL action in diverse light environments: characterization of light regime-specific and stable QTL in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5341-5362. [PMID: 37306093 DOI: 10.1093/jxb/erad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/10/2023] [Indexed: 06/13/2023]
Abstract
Plant growth is a complex process affected by a multitude of genetic and environmental factors and their interactions. To identify genetic factors influencing plant performance under different environmental conditions, vegetative growth was assessed in Arabidopsis thaliana cultivated under constant or fluctuating light intensities, using high-throughput phenotyping and genome-wide association studies. Daily automated non-invasive phenotyping of a collection of 382 Arabidopsis accessions provided growth data during developmental progression under different light regimes at high temporal resolution. Quantitative trait loci (QTL) for projected leaf area, relative growth rate, and PSII operating efficiency detected under the two light regimes were predominantly condition-specific and displayed distinct temporal activity patterns, with active phases ranging from 2 d to 9 d. Eighteen protein-coding genes and one miRNA gene were identified as potential candidate genes at 10 QTL regions consistently found under both light regimes. Expression patterns of three candidate genes affecting projected leaf area were analysed in time-series experiments in accessions with contrasting vegetative leaf growth. These observations highlight the importance of considering both environmental and temporal patterns of QTL/allele actions and emphasize the need for detailed time-resolved analyses under diverse well-defined environmental conditions to effectively unravel the complex and stage-specific contributions of genes affecting plant growth processes.
Collapse
Affiliation(s)
- Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Kathleen Weigelt-Fischer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Henning Tschiersch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Georgia Topali
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Lothar Altschmied
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Marc C Heuermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Dominic Knoch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Markus Kuhlmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Breeding Research, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| |
Collapse
|
14
|
Sharma A, Pridgeon AJ, Liu W, Segers F, Sharma B, Jenkins GI, Franklin KA. ELONGATED HYPOCOTYL5 (HY5) and HY5 HOMOLOGUE (HYH) maintain shade avoidance suppression in UV-B. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1394-1407. [PMID: 37243898 PMCID: PMC10953383 DOI: 10.1111/tpj.16328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Reductions in red to far-red ratio (R:FR) provide plants with an unambiguous signal of vegetational shade and are monitored by phytochrome photoreceptors. Plants integrate this information with other environmental cues to determine the proximity and density of encroaching vegetation. Shade-sensitive species respond to reductions in R:FR by initiating a suite of developmental adaptations termed shade avoidance. These include the elongation of stems to facilitate light foraging. Hypocotyl elongation is driven by increased auxin biosynthesis promoted by PHYTOCHROME INTERACTING FACTORs (PIF) 4, 5 and 7. UV-B perceived by the UV RESISTANCE LOCUS 8 (UVR8) photoreceptor rapidly inhibits shade avoidance, in part by suppressing PIF4/5 transcript accumulation and destabilising PIF4/5 protein. Here, we show that longer-term inhibition of shade avoidance is sustained by ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOGUE (HYH), which regulate transcriptional reprogramming of genes involved in hormone signalling and cell wall modification. HY5 and HYH are elevated in UV-B and suppress the expression of XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE (XTH) genes involved in cell wall loosening. They additionally increase expression GA2-OXIDASE1 (GA2ox1) and GA2ox2, encoding gibberellin catabolism enzymes that act redundantly to stabilise the PIF-inhibiting DELLA proteins. UVR8 therefore regulates temporally distinct signalling pathways to first rapidly inhibit and subsequently maintain suppression of shade avoidance following UV-B exposure.
Collapse
Affiliation(s)
- Ashutosh Sharma
- School of Biological Sciences, Life Sciences BuildingUniversity of BristolBristolBS8 1TQUK
| | - Ashley J. Pridgeon
- School of Biological Sciences, Life Sciences BuildingUniversity of BristolBristolBS8 1TQUK
| | - Wei Liu
- School of Molecular Biosciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Francisca Segers
- School of Biological Sciences, Life Sciences BuildingUniversity of BristolBristolBS8 1TQUK
| | - Bhavana Sharma
- School of Biological Sciences, Life Sciences BuildingUniversity of BristolBristolBS8 1TQUK
| | - Gareth I. Jenkins
- School of Molecular Biosciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Keara A. Franklin
- School of Biological Sciences, Life Sciences BuildingUniversity of BristolBristolBS8 1TQUK
| |
Collapse
|
15
|
Han J, Liu Y, Shen Y, Li W. A Surprising Diversity of Xyloglucan Endotransglucosylase/Hydrolase in Wheat: New in Sight to the Roles in Drought Tolerance. Int J Mol Sci 2023; 24:9886. [PMID: 37373033 DOI: 10.3390/ijms24129886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Drought has become a major limiting factor for wheat productivity, and its negative impact on crop growth is anticipated to increase with climate deterioration in arid areas. Xyloglucan endoglycosylases/hydrolases (XTHs) are involved in constructing and remodeling cell wall structures and play an essential role in regulating cell wall extensibility and stress responses. However, there are no systematic studies on the wheat XTH gene family. In this study, 71 wheat XTH genes (TaXTHs) were characterized and classified into three subgroups through phylogenetic analysis. Genomic replication promoted the expansion of TaXTHs. We found a catalytically active motif and a potential N-linked glycosylation domain in all TaXTHs. Further expression analysis revealed that many TaXTHs in the roots and shoots were significantly associated with drought stress. The wheat TaXTH12.5a gene was transferred into Arabidopsis to verify a possible role of TaXTHs in stress response. The transgenic plants possessed higher seed germination rates and longer roots and exhibited improved tolerance to drought. In conclusion, bioinformatics and gene expression pattern analysis indicated that the TaXTH genes played a role in regulating drought response in wheat. The expression of TaXTH12.5a enhanced drought tolerance in Arabidopsis and supported the XTH genes' role in regulating drought stress response in plants.
Collapse
Affiliation(s)
- Junjie Han
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Yichen Liu
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Yiting Shen
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Weihua Li
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| |
Collapse
|
16
|
Falcioni R, Antunes WC, Demattê JAM, Nanni MR. Biophysical, Biochemical, and Photochemical Analyses Using Reflectance Hyperspectroscopy and Chlorophyll a Fluorescence Kinetics in Variegated Leaves. BIOLOGY 2023; 12:704. [PMID: 37237516 PMCID: PMC10215320 DOI: 10.3390/biology12050704] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
The adjustments that occur during photosynthesis are correlated with morphological, biochemical, and photochemical changes during leaf development. Therefore, monitoring leaves, especially when pigment accumulation occurs, is crucial for monitoring organelles, cells, tissue, and whole-plant levels. However, accurately measuring these changes can be challenging. Thus, this study tests three hypotheses, whereby reflectance hyperspectroscopy and chlorophyll a fluorescence kinetics analyses can improve our understanding of the photosynthetic process in Codiaeum variegatum (L.) A. Juss, a plant with variegated leaves and different pigments. The analyses include morphological and pigment profiling, hyperspectral data, chlorophyll a fluorescence curves, and multivariate analyses using 23 JIP test parameters and 34 different vegetation indexes. The results show that photochemical reflectance index (PRI) is a useful vegetation index (VI) for monitoring biochemical and photochemical changes in leaves, as it strongly correlates with chlorophyll and nonphotochemical dissipation (Kn) parameters in chloroplasts. In addition, some vegetation indexes, such as the pigment-specific simple ratio (PSSRc), anthocyanin reflectance index (ARI1), ratio analysis of reflectance spectra (RARS), and structurally insensitive pigment index (SIPI), are highly correlated with morphological parameters and pigment levels, while PRI, moisture stress index (MSI), normalized difference photosynthetic (PVR), fluorescence ratio (FR), and normalized difference vegetation index (NDVI) are associated with photochemical components of photosynthesis. Combined with the JIP test analysis, our results showed that decreased damage to energy transfer in the electron transport chain is correlated with the accumulation of carotenoids, anthocyanins, flavonoids, and phenolic compounds in the leaves. Phenomenological energy flux modelling shows the highest changes in the photosynthetic apparatus based on PRI and SIPI when analyzed with Pearson's correlation, the hyperspectral vegetation index (HVI) algorithm, and the partial least squares (PLS) to select the most responsive wavelengths. These findings are significant for monitoring nonuniform leaves, particularly when leaves display high variation in pigment profiling in variegated and colorful leaves. This is the first study on the rapid and precise detection of morphological, biochemical, and photochemical changes combined with vegetation indexes for different optical spectroscopy techniques.
Collapse
Affiliation(s)
- Renan Falcioni
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (M.R.N.)
| | - Werner Camargos Antunes
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (M.R.N.)
| | - José A. M. Demattê
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-260, São Paulo, Brazil;
| | - Marcos Rafael Nanni
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (M.R.N.)
| |
Collapse
|
17
|
Li Y, Jiang H, Gao M, He R, Liu X, Su W, Liu H. Far-Red-Light-Induced Morphology Changes, Phytohormone, and Transcriptome Reprogramming of Chinese Kale (Brassica alboglabra Bailey). Int J Mol Sci 2023; 24:ijms24065563. [PMID: 36982639 PMCID: PMC10053878 DOI: 10.3390/ijms24065563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
With far-red-light supplementation (3 W·m−2, and 6 W·m−2), the flower budding rate, plant height, internode length, plant display, and stem diameter of Chinese kale were largely elevated, as well as the leaf morphology such as leaf length, leaf width, petiole length, and leaf area. Consequently, the fresh weight and dry weight of the edible parts of Chinese kale were markedly increased. The photosynthetic traits were enhanced, and the mineral elements were accumulated. To further explore the mechanism that far-red light simultaneously promoted the vegetative growth and reproductive growth of Chinese kale, this study used RNA sequencing to gain a global perspective on the transcriptional regulation, combining it with an analysis of composition and content of phytohormones. A total of 1409 differentially expressed genes were identified, involved mainly in pathways related to photosynthesis, plant circadian rhythm, plant hormone biosynthesis, and signal transduction. The gibberellins GA9, GA19, and GA20 and the auxin ME-IAA were strongly accumulated under far-red light. However, the contents of the gibberellins GA4 and GA24, the cytokinins IP and cZ, and the jasmonate JA were significantly reduced by far-red light. The results indicated that the supplementary far-red light can be a useful tool to regulate the vegetative architecture, elevate the density of cultivation, enhance the photosynthesis, increase the mineral accumulation, accelerate the growth, and obtain a significantly higher yield of Chinese kale.
Collapse
|
18
|
Wang C, Chen Y, Cui C, Shan F, Zhang R, Lyu X, Lyu L, Chang H, Yan C, Ma C. Blue Light Regulates Cell Wall Structure and Carbohydrate Metabolism of Soybean Hypocotyl. Int J Mol Sci 2023; 24:1017. [PMID: 36674538 PMCID: PMC9864885 DOI: 10.3390/ijms24021017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Soybean stem elongation and thickening are related to cell wall composition. Plant morphogenesis can be influenced by blue light, which can regulate cell wall structure and composition, and affect stem growth and development. Here, using proteomics and metabolomics, differentially expressed proteins and metabolites of hypocotyls grown in the dark and under blue light were studied to clarify the effects of blue light on the cell wall structure and carbohydrate metabolism pathway of soybean hypocotyls. Results showed that 1120 differential proteins were upregulated and 797 differential proteins were downregulated under blue light treatment, while 63 differential metabolites were upregulated and 36 differential metabolites were downregulated. Blue light promoted the establishment of cell wall structure and composition by regulating the expression of both the enzymes and metabolites related to cell wall structural composition and nonstructural carbohydrates. Thus, under blue light, the cross-sectional area of the hypocotyl and xylem were larger, the longitudinal length of pith cells was smaller, elongation of the soybean hypocotyl was inhibited, and diameter was increased.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chao Yan
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Chunmei Ma
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
19
|
Luo F, Zhang Q, Xin H, Liu H, Yang H, Doblin MS, Bacic A, Li L. A Phytochrome B-PIF4-MYC2/MYC4 module inhibits secondary cell wall thickening in response to shaded light. PLANT COMMUNICATIONS 2022; 3:100416. [PMID: 35927944 PMCID: PMC9700123 DOI: 10.1016/j.xplc.2022.100416] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/21/2022] [Accepted: 07/25/2022] [Indexed: 06/01/2023]
Abstract
Secondary cell walls (SCWs) in stem cells provide mechanical strength and structural support for growth. SCW thickening varies under different light conditions. Our previous study revealed that blue light enhances SCW thickening through the redundant function of MYC2 and MYC4 directed by CRYPTOCHROME1 (CRY1) signaling in fiber cells of the Arabidopsis inflorescence stem. In this study, we find that the Arabidopsis PHYTOCHROME B mutant phyB displays thinner SCWs in stem fibers, but thicker SCWs are deposited in the PHYTOCHROME INTERACTING FACTOR (PIF) quadruple mutant pif1pif3pif4pif5 (pifq). The shaded light condition with a low ratio of red to far-red light inhibits stem SCW thickening. PIF4 interacts with MYC2 and MYC4 to affect their localization in nuclei, and this interaction results in inhibition of the MYCs' transactivation activity on the NST1 promoter. Genetic evidence shows that regulation of SCW thickening by PIFs is dependent on MYC2/MYC4 function. Together, the results of this study reveal a PHYB-PIF4-MYC2/MYC4 module that inhibits SCW thickening in fiber cells of the Arabidopsis stem.
Collapse
Affiliation(s)
- Fang Luo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Xin
- Key Laboratory of Biodiversity Conservation in Southwest, State Forestry Administration, Southwest Forestry University, Kunming 650224, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongquan Yang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Monika S Doblin
- La Trobe Institute for Agriculture and Food, School of Agriculture, Biomedicine and Environment, Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC 3086, Australia; Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Antony Bacic
- La Trobe Institute for Agriculture and Food, School of Agriculture, Biomedicine and Environment, Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC 3086, Australia; Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
20
|
Gao Z, Liang Y, Wang Y, Xiao Y, Chen J, Yang X, Shi T. Genome-wide association study of traits in sacred lotus uncovers MITE-associated variants underlying stamen petaloid and petal number variations. FRONTIERS IN PLANT SCIENCE 2022; 13:973347. [PMID: 36212363 PMCID: PMC9539442 DOI: 10.3389/fpls.2022.973347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Understanding the genetic variants responsible for floral trait diversity is important for the molecular breeding of ornamental flowers. Widely used in water gardening for thousands of years, the sacred lotus exhibits a wide range of diversity in floral organs. Nevertheless, the genetic variations underlying various morphological characteristics in lotus remain largely unclear. Here, we performed a genome-wide association study of sacred lotus for 12 well-recorded ornamental traits. Given a moderate linkage disequilibrium level of 32.9 kb, we successfully identified 149 candidate genes responsible for seven flower traits and plant size variations, including many pleiotropic genes affecting multiple floral-organ-related traits, such as NnKUP2. Notably, we found a 2.75-kb presence-and-absence genomic fragment significantly associated with stamen petaloid and petal number variations, which was further confirmed by re-examining another independent population dataset with petal number records. Intriguingly, this fragment carries MITE transposons bound by siRNAs and is related to the expression differentiation of a nearby candidate gene between few-petalled and double-petalled lotuses. Overall, these genetic variations and candidate genes responsible for diverse lotus traits revealed by our GWAS highlight the role of transposon variations, particularly MITEs, in shaping floral trait diversity.
Collapse
Affiliation(s)
- Zhiyan Gao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuting Liang
- Wuhan Institute of Landscape Architecture, Wuhan, China
| | - Yuhan Wang
- Wuhan Institute of Design and Sciences, Wuhan, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jinming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan, China
| | - Tao Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
21
|
Jacques CN, Favero DS, Kawamura A, Suzuki T, Sugimoto K, Neff MM. SUPPRESSOR OF PHYTOCHROME B-4 #3 reduces the expression of PIF-activated genes and increases expression of growth repressors to regulate hypocotyl elongation in short days. BMC PLANT BIOLOGY 2022; 22:399. [PMID: 35965321 PMCID: PMC9377115 DOI: 10.1186/s12870-022-03737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
SUPPRESSOR OF PHYTOCHROME B-4 #3 (SOB3) is a member of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) family of transcription factors that are involved in light-mediated growth in Arabidopsis thaliana, affecting processes such as hypocotyl elongation. The majority of the research on the AHLs has been conducted in continuous light. However, there are unique molecular events that promote growth in short days (SD) compared to constant light conditions. Therefore, we investigated how AHLs affect hypocotyl elongation in SD. Firstly, we observed that AHLs inhibit hypocotyl growth in SD, similar to their effect in constant light. Next, we identified AHL-regulated genes in SD-grown seedlings by performing RNA-seq in two sob3 mutants at different time points. Our transcriptomic data indicate that PHYTOCHROME INTERACTING FACTORS (PIFs) 4, 5, 7, and 8 along with PIF-target genes are repressed by SOB3 and/or other AHLs. We also identified PIF target genes that are repressed and have not been previously described as AHL-regulated, including PRE1, PIL1, HFR1, CDF5, and XTR7. Interestingly, our RNA-seq data also suggest that AHLs activate the expression of growth repressors to control hypocotyl elongation, such as HY5 and IAA17. Notably, many growth-regulating and other genes identified from the RNA-seq experiment were differentially regulated between these two sob3 mutants at the time points tested. Surprisingly, our ChIP-seq data suggest that SOB3 mostly binds to similar genes throughout the day. Collectively, these data suggest that AHLs affect gene expression in a time point-specific manner irrespective of changes in binding to DNA throughout SD.
Collapse
Affiliation(s)
- Caitlin N Jacques
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, 99164, USA
| | - David S Favero
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan.
| | - Ayako Kawamura
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Biosciences and Biotechnology, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, The University of Tokyo, Tokyo, 119-0033, Japan
| | - Michael M Neff
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
22
|
Transcriptome Analysis of Air Space-Type Variegation Formation in Trifolium pratense. Int J Mol Sci 2022; 23:ijms23147794. [PMID: 35887138 PMCID: PMC9322087 DOI: 10.3390/ijms23147794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Air space-type variegation is the most diverse among the species of known variegated leaf plants and is caused by conspicuous intercellular spaces between the epidermal and palisade cells and among the palisade cells at non-green areas. Trifolium pratense, a species in Fabaceae with V-shaped air space-type variegation, was selected to explore the application potential of variegated leaf plants and accumulate basic data on the molecular regulatory mechanism and evolutionary history of leaf variegation. We performed comparative transcriptome analysis on young and adult leaflets of variegated and green plants and identified 43 candidate genes related to air space-type variegation formation. Most of the genes were related to cell-wall structure modification (CESA, CSL, EXP, FLA, PG, PGIP, PLL, PME, RGP, SKS, and XTH family genes), followed by photosynthesis (LHCB subfamily, RBCS, GOX, and AGT family genes), redox (2OG and GSH family genes), and nitrogen metabolism (NodGS family genes). Other genes were related to photooxidation, protein interaction, and protease degradation systems. The downregulated expression of light-responsive LHCB subfamily genes and the upregulated expression of the genes involved in cell-wall structure modification were important conditions for air space-type variegation formation in T. pratense. The upregulated expression of the ubiquitin-protein ligase enzyme (E3)-related genes in the protease degradation systems were conducive to air space-type variegation formation. Because these family genes are necessary for plant growth and development, the mechanism of the leaf variegation formation in T. pratense might be a widely existing regulation in air space-type variegation in nature.
Collapse
|
23
|
Yuan HY, Caron CT, Vandenberg A, Bett KE. RNA-Seq and Gene Ontology Analysis Reveal Differences Associated With Low R/FR-Induced Shade Responses in Cultivated Lentil and a Wild Relative. Front Genet 2022; 13:891702. [PMID: 35795209 PMCID: PMC9251359 DOI: 10.3389/fgene.2022.891702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/06/2022] [Indexed: 12/01/2022] Open
Abstract
Lentil is an important pulse crop not only because of its high nutrient value but also because of its ecological advantage in a sustainable agricultural system. Our previous work showed that the cultivated lentil and wild lentil germplasm respond differently to light environments, especially to low R/FR-induced shade conditions. Little is known about how cultivated and wild lentils respond to shade at the level of gene expression and function. In this study, transcriptomic profiling of a cultivated lentil (Lupa, L. culinaris) and a wild lentil (BGE 016880, L. orientalis) at several growth stages is presented. De novo transcriptomes were assembled for both genotypes, and differential gene expression analysis and gene ontology enrichment analysis were performed. The transcriptomic resources generated in this study provide fundamental information regarding biological processes and genes associated with shade responses in lentils. BGE 016880 and Lupa shared a high similarity in their transcriptomes; however, differential gene expression profiles were not consistent between these two genotypes. The wild lentil BGE 016880 had more differentially expressed genes than the cultivated lentil Lupa. Upregulation of genes involved in gibberellin, brassinosteroid, and auxin synthesis and signaling pathways, as well as cell wall modification, in both genotypes explains their similarity in stem elongation response under the shade. Genes involved in jasmonic acid and flavonoid biosynthesis pathways were downregulated in BGE 016880 only, and biological processes involved in defense responses were significantly enriched in the wild lentil BGE 016880 only. Downregulation of WRKY and MYB transcription factors could contribute to the reduced defense response in BGE 016880 but not in Lupa under shade conditions. A better understanding of shade responses of pulse crop species and their wild relatives will play an important role in developing genetic strategies for crop improvement in response to changes in light environments.
Collapse
Affiliation(s)
- Hai Ying Yuan
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Aquatic and Crop Resource Development Research Center, National Research Council of Canada, Saskatoon, SK, Canada
| | - Carolyn T. Caron
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Albert Vandenberg
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kirstin E. Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Kirstin E. Bett,
| |
Collapse
|
24
|
Wang Q, Gong X, Xie Z, Qi K, Yuan K, Jiao Y, Pan Q, Zhang S, Shiratake K, Tao S. Cryptochrome-mediated blue-light signal contributes to lignin biosynthesis in stone cells in pear fruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111211. [PMID: 35351300 DOI: 10.1016/j.plantsci.2022.111211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Light environment is an indispensable factor that regulates multitudinous developmental processes during the whole life cycle of plants, including fruit development. Stone cells which negatively influence pear fruit quality because of their strongly lignified cell wall are also affected by light, however, how light qualities influence lignin biosynthesis in pear remains unclear. Here, the calli of European pear (Pyrus communis L.) treated with different lights were used to explore the changes in phenotype, lignin content, and H2O2 content, coupled with RNA-Seq and quantitative real-time PCR (qRT-PCR) to investigate the possible regulation pathway of light on lignin biosynthesis in stone cells. Results showed that blue light increased the expression of lignin structure genes and promoted lignin accumulation. Besides, four blue light receptors cryptochromes (CRYs) were identified in white pear, named PbCRY1a (Pbr024556.1), PbCRY1b (Pbr001636.3), PbCRY2a (Pbr023037.1), and PbCRY2b (Pbr002655.4). qRT-PCR analysis showed that PbCRY1a is highly expressed in cultivars with a high content of stone cells. Furthermore, the molecular function of PbCRY1a on stone cell formation in pear fruit was demonstrated by genetic transformation of pear calli and Agrobacterium-mediated transient overexpression in pear fruitlets. Co-expression network analyses with RNA-seq data showed that 8 MYB and 5 NAC genes were classified into different co-expression clusters with lignin biosynthesis genes under blue light conditions. These results indicate that CRY-mediated blue-light signal plays an important role in cell wall lignification and promotes the formation of stone cells in pear by regulating downstream genes.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Gong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaili Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuru Jiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Pan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Shutian Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
25
|
Ishida K, Yokoyama R. Reconsidering the function of the xyloglucan endotransglucosylase/hydrolase family. JOURNAL OF PLANT RESEARCH 2022; 135:145-156. [PMID: 35000024 DOI: 10.1007/s10265-021-01361-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/21/2021] [Indexed: 05/21/2023]
Abstract
Plants possess an outer cell layer called the cell wall. This matrix comprises various molecules, such as polysaccharides and proteins, and serves a wide array of physiologically important functions. This structure is not static but rather flexible in response to the environment. One of the factors responsible for this plasticity is the xyloglucan endotransglucosylase/hydrolase (XTH) family, which cleaves and reconnects xyloglucan molecules. Since xyloglucan molecules have been hypothesised to tether cellulose microfibrils forming the main load-bearing network in the primary cell wall, XTHs have been thought to play a central role in cell wall loosening for plant cell expansion. However, multiple lines of recent evidence have questioned this classic model. Nevertheless, reverse genetic analyses have proven the biological importance of XTHs; therefore, a major challenge at present is to reconsider the role of XTHs in planta. Recent advances in analytical techniques have allowed for gathering rich information on the structure of the primary cell wall. Thus, the integration of accumulated knowledge in current XTH studies may offer a turning point for unveiling the precise functions of XTHs. In the present review, we redefine the biological function of the XTH family based on the recent architectural model of the cell wall. We highlight three key findings regarding this enzyme family: (1) XTHs are not strictly required for cell wall loosening during plant cell expansion but play vital roles in response to specific biotic or abiotic stresses; (2) in addition to their transglycosylase activity, the hydrolase activity of XTHs is involved in physiological benefits; and (3) XTHs can recognise a wide range of polysaccharides other than xyloglucans.
Collapse
Affiliation(s)
- Konan Ishida
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QE, UK
| | - Ryusuke Yokoyama
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
26
|
Zhang Y, Zhang HZ, Fu JY, Du YY, Qu J, Song Y, Wang PW. The GmXTH1 gene improves drought stress resistance of soybean seedlings. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:3. [PMID: 37309483 PMCID: PMC10248595 DOI: 10.1007/s11032-021-01258-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/30/2021] [Indexed: 06/14/2023]
Abstract
In order to study the role of GmXTH1 gene in alleviating drought stress, soybean seeds with GmXTH1 gene were transferred by T4 treated with PEG6000 concentration of 0%, 5%, 10%, and 15% respectively. The germination potential, germination rate, germination index, and other indicators were measured. The results showed that the germination potential, germination rate, and germination index of OEA1 and OEA2 strains overexpressed in T4 generation were significantly higher than those of the control material M18. After 0-day, 7-day, and 15-day drought stress, the analysis of seedling phenotypes and root-shoot of different T4 generation transgenic soybean lines showed that under stress conditions, the growth of GmXTH1 overexpression material was generally better than that of the control material M18. The growth of GmXTH1 interference expression material was generally worse than that of the control material M18, with significant differences in plant phenotypes. The root system of GmXTH1 overexpressed material was significantly developed compared with that of the control material M18. The analysis of physiological and biochemical indexes showed that the relative water content and the activity of antioxidant enzymes (superoxide dismutase and peroxidase) of GmXTH1 transgenic soybean material were significantly higher than those of the control material M18, and the accumulation of malondialdehyde was lower under the same stress conditions at seedling stage. Fluorescence quantitative PCR assay showed that the relative expression of GmXTH1 gene in transgenic soybean was significantly increased after drought stress. The results showed that the overexpression of GmXTH1 could increase the total root length, surface area, total projection area, root volume, average diameter, total cross number, and total root tip number, thereby increasing the water intake and reducing the transpiration of water content in leaves, thus reducing the accumulation of MDA and producing more protective enzymes in a more effective and prompt way, reducing cell membrane damage to improve drought resistance of soybean.
Collapse
Affiliation(s)
- Ye Zhang
- Center for Plant Biotechnology, College of Agronomy, Jilin Agricultural University, 2888 Xincheng Street, Nanguan District, Changchun City, Jilin Province China
| | - Han-zhu Zhang
- Center for Plant Biotechnology, College of Agronomy, Jilin Agricultural University, 2888 Xincheng Street, Nanguan District, Changchun City, Jilin Province China
| | - Jia-yu Fu
- Center for Plant Biotechnology, College of Agronomy, Jilin Agricultural University, 2888 Xincheng Street, Nanguan District, Changchun City, Jilin Province China
| | - Ye-yao Du
- Center for Plant Biotechnology, College of Agronomy, Jilin Agricultural University, 2888 Xincheng Street, Nanguan District, Changchun City, Jilin Province China
| | - Jing Qu
- Center for Plant Biotechnology, College of Agronomy, Jilin Agricultural University, 2888 Xincheng Street, Nanguan District, Changchun City, Jilin Province China
| | - Yang Song
- Center for Plant Biotechnology, College of Agronomy, Jilin Agricultural University, 2888 Xincheng Street, Nanguan District, Changchun City, Jilin Province China
| | - Pi-wu Wang
- Center for Plant Biotechnology, College of Agronomy, Jilin Agricultural University, 2888 Xincheng Street, Nanguan District, Changchun City, Jilin Province China
| |
Collapse
|
27
|
Wang X, Meng C, Zhang H, Xing W, Cao K, Zhu B, Zhang C, Sun F, Gao Z. Transcriptomic and Proteomic Characterizations of the Molecular Response to Blue Light and Salicylic Acid in Haematococcus pluvialis. Mar Drugs 2021; 20:md20010001. [PMID: 35049856 PMCID: PMC8780009 DOI: 10.3390/md20010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
Haematococcus pluvialis accumulates a large amount of astaxanthin under various stresses, e.g., blue light and salicylic acid (SA). However, the metabolic response of H. pluvialis to blue light and SA is still unclear. We investigate the effects of blue light and SA on the metabolic response in H. pluvialis using both transcriptomic and proteomic sequencing analyses. The largest numbers of differentially expressed proteins (DEPs; 324) and differentially expressed genes (DEGs; 13,555) were identified on day 2 and day 7 of the treatment with blue light irradiation (150 μmol photons m−2s−1), respectively. With the addition of SA (2.5 mg/L), a total of 63 DEPs and 11,638 DEGs were revealed on day 2 and day 7, respectively. We further analyzed the molecular response in five metabolic pathways related to astaxanthin synthesis, including the astaxanthin synthesis pathway, the fatty acid synthesis pathway, the heme synthesis pathway, the reactive oxygen species (ROS) clearance pathway, and the cell wall biosynthesis pathway. Results show that blue light causes a significant down-regulation of the expression of key genes involved in astaxanthin synthesis and significantly increases the expression of heme oxygenase, which shows decreased expression by the treatment with SA. Our study provides novel insights into the production of astaxanthin by H. pluvialis treated with blue light and SA.
Collapse
Affiliation(s)
- Xiaodong Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (X.W.); (C.M.); (W.X.); (K.C.); (B.Z.); (C.Z.)
| | - Chunxiao Meng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (X.W.); (C.M.); (W.X.); (K.C.); (B.Z.); (C.Z.)
| | - Hao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China;
| | - Wei Xing
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (X.W.); (C.M.); (W.X.); (K.C.); (B.Z.); (C.Z.)
| | - Kai Cao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (X.W.); (C.M.); (W.X.); (K.C.); (B.Z.); (C.Z.)
| | - Bingkui Zhu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (X.W.); (C.M.); (W.X.); (K.C.); (B.Z.); (C.Z.)
| | - Chengsong Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (X.W.); (C.M.); (W.X.); (K.C.); (B.Z.); (C.Z.)
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, GA 30043, USA
- Correspondence: (F.S.); (Z.G.)
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China;
- Correspondence: (F.S.); (Z.G.)
| |
Collapse
|
28
|
Henschel JM, Brito FAL, Pimenta TM, Picoli EAT, Zsögön A, Ribeiro DM. Irradiance-regulated biomass allocation in Raphanus sativus plants depends on gibberellin biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:43-52. [PMID: 34619597 DOI: 10.1016/j.plaphy.2021.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Gibberellin has been proposed to increase leaf elongation in radish (Raphanus sativus L.) plants, which is associated with decreased tuber growth. Since light intensity can control growth through interaction with gibberellin, investigation of the effect of gibberellin levels on the growth of radish plants would be a step forward towards unraveling factors that underlie biomass accumulation and allocation in response to irradiance levels. Here, we report that the gibberellin biosynthesis inhibitor paclobutrazol (PAC) decreased petiole elongation, but not lamina growth of radish plants grown under full sunlight. However, shading promoted an increase in shoot elongation, while in plants treated with PAC the petiole and leaf lamina fail to elongate. Plants treated with PAC allocated proportionally more biomass to their tubers and less to shoot compared to control under shade. Moreover, PAC decreased the abundance of transcripts encoding cell wall expansion proteins in leaf lamina and petiole of plants grown under shade, which was positively correlated with sugar consumption by the tuber, thereby increasing the mass fraction and concentrations of minerals for tuber. Thus, allocation of biomass during the growth of radish plants and nutritional quality of tubers depend on gibberellin and light intensity.
Collapse
Affiliation(s)
- Juliane M Henschel
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Fred A L Brito
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Thaline M Pimenta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Edgard A T Picoli
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Dimas M Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
29
|
Tiika RJ, Wei J, Cui G, Ma Y, Yang H, Duan H. Transcriptome-wide characterization and functional analysis of Xyloglucan endo-transglycosylase/hydrolase (XTH) gene family of Salicornia europaea L. under salinity and drought stress. BMC PLANT BIOLOGY 2021; 21:491. [PMID: 34696719 PMCID: PMC8547092 DOI: 10.1186/s12870-021-03269-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 10/11/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Salicornia europaea is a halophyte that has a very pronounced salt tolerance. As a cell wall manipulating enzyme, xyloglucan endotransglycosylase/hydrolase (XTH) plays an important role in plant resistance to abiotic stress. However, no systematic study of the XTH gene family in S. europaea is well known. PacBio Iso-Seq transcriptome sequence data were used for bioinformatics and gene expression analysis using real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS Transcriptome sequencing (PacBio Iso-Seq system) generated 16,465,671 sub-reads and after quality control of Iso-Seq, 29,520 isoforms were obtained with an average length of 2112 bp. A total of 24,869 unigenes, with 98% of which were obtained using coding sequences (CDSs), and 6398 possible transcription factors (TFs) were identified. Thirty-five (35) non-redundant potential SeXTH proteins were identified in S. europaea and categorized into group I/II and group III based on their genetic relatedness. Prediction of the conserved motif revealed that the DE(I/L/F/V)DF(I)EFLG domain was conserved in the S. europaea proteins and a potential N-linked glycosylation domain N(T)V(R/L/T/I)T(S/K/R/F/P)G was also located near the catalytic residues. All SeXTH genes exhibited discrete expression patterns in different tissues, at different times, and under different stresses. For example, 27 and 15 SeXTH genes were positively expressed under salt stress in shoots and roots at 200 mM NaCl in 24 h, and 34 SeXTH genes were also positively regulated under 48 h of drought stress in shoots and roots. This indicates their function in adaptation to salt and drought stress. CONCLUSION The present study discovered SeXTH gene family traits that are potential stress resistance regulators in S. europaea, and this provides a basis for future functional diversity research.
Collapse
Affiliation(s)
- Richard John Tiika
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Jia Wei
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Guangxin Cui
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yanjun Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Hongshan Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Huirong Duan
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
30
|
Jiang X, Fan L, Li P, Zou X, Zhang Z, Fan S, Gong J, Yuan Y, Shang H. Co-expression network and comparative transcriptome analysis for fiber initiation and elongation reveal genetic differences in two lines from upland cotton CCRI70 RIL population. PeerJ 2021; 9:e11812. [PMID: 34327061 PMCID: PMC8308610 DOI: 10.7717/peerj.11812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/28/2021] [Indexed: 01/23/2023] Open
Abstract
Upland cotton is the most widely planted for natural fiber around the world, and either lint percentage (LP) or fiber length (FL) is the crucial component tremendously affecting cotton yield and fiber quality, respectively. In this study, two lines MBZ70-053 and MBZ70-236 derived from G. hirsutum CCRI70 recombinant inbred line (RIL) population presenting different phenotypes in LP and FL traits were chosen to conduct RNA sequencing on ovule and fiber samples, aiming at exploring the differences of molecular and genetic mechanisms during cotton fiber initiation and elongation stages. As a result, 249/128, 369/206, 4296/1198 and 3547/2129 up-/down- regulated differentially expressed genes (DGEs) in L2 were obtained at -3, 0, 5 and 10 days post-anthesis (DPA), respectively. Seven gene expression profiles were discriminated using Short Time-series Expression Miner (STEM) analysis; seven modules and hub genes were identified using weighted gene co-expression network analysis. The DEGs were mainly enriched into energetic metabolism and accumulating as well as auxin signaling pathway in initiation and elongation stages, respectively. Meanwhile, 29 hub genes were identified as 14-3-3ω , TBL35, GhACS, PME3, GAMMA-TIP, PUM-7, etc., where the DEGs and hub genes revealed the genetic and molecular mechanisms and differences during cotton fiber development.
Collapse
Affiliation(s)
- Xiao Jiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Liqiang Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Xianyan Zou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Senmiao Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
31
|
Romanowski A, Furniss JJ, Hussain E, Halliday KJ. Phytochrome regulates cellular response plasticity and the basic molecular machinery of leaf development. PLANT PHYSIOLOGY 2021; 186:1220-1239. [PMID: 33693822 PMCID: PMC8195529 DOI: 10.1093/plphys/kiab112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/18/2021] [Indexed: 05/04/2023]
Abstract
Plants are plastic organisms that optimize growth in response to a changing environment. This adaptive capability is regulated by external cues, including light, which provides vital information about the habitat. Phytochrome photoreceptors detect far-red light, indicative of nearby vegetation, and elicit the adaptive shade-avoidance syndrome (SAS), which is critical for plant survival. Plants exhibiting SAS are typically more elongated, with distinctive, small, narrow leaf blades. By applying SAS-inducing end-of-day far-red (EoD FR) treatments at different times during Arabidopsis (Arabidopsis thaliana) leaf 3 development, we have shown that SAS restricts leaf blade size through two distinct cellular strategies. Early SAS induction limits cell division, while later exposure limits cell expansion. This flexible strategy enables phytochromes to maintain control of leaf size through the proliferative and expansion phases of leaf growth. mRNAseq time course data, accessible through a community resource, coupled to a bioinformatics pipeline, identified pathways that underlie these dramatic changes in leaf growth. Phytochrome regulates a suite of major development pathways that control cell division, expansion, and cell fate. Further, phytochromes control cell proliferation through synchronous regulation of the cell cycle, DNA replication, DNA repair, and cytokinesis, and play an important role in sustaining ribosome biogenesis and translation throughout leaf development.
Collapse
Affiliation(s)
- Andrés Romanowski
- Halliday Lab, Institute of Molecular Plant Sciences (IMPS), King’s Buildings, University of Edinburgh, Edinburgh, UK
- Comparative Genomics of Plant Development, Fundación Instituto Leloir (FIL), Instituto de Investigaciones Bioquímicas Buenos Aires (IIBBA) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - James J Furniss
- Halliday Lab, Institute of Molecular Plant Sciences (IMPS), King’s Buildings, University of Edinburgh, Edinburgh, UK
| | - Ejaz Hussain
- Halliday Lab, Institute of Molecular Plant Sciences (IMPS), King’s Buildings, University of Edinburgh, Edinburgh, UK
| | - Karen J Halliday
- Halliday Lab, Institute of Molecular Plant Sciences (IMPS), King’s Buildings, University of Edinburgh, Edinburgh, UK
- Author for communication:
| |
Collapse
|
32
|
Huber M, Nieuwendijk NM, Pantazopoulou CK, Pierik R. Light signalling shapes plant-plant interactions in dense canopies. PLANT, CELL & ENVIRONMENT 2021; 44:1014-1029. [PMID: 33047350 PMCID: PMC8049026 DOI: 10.1111/pce.13912] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 05/09/2023]
Abstract
Plants growing at high densities interact via a multitude of pathways. Here, we provide an overview of mechanisms and functional consequences of plant architectural responses initiated by light cues that occur in dense vegetation. We will review the current state of knowledge about shade avoidance, as well as its possible applications. On an individual level, plants perceive neighbour-associated changes in light quality and quantity mainly with phytochromes for red and far-red light and cryptochromes and phototropins for blue light. Downstream of these photoreceptors, elaborate signalling and integration takes place with the PHYTOCHROME INTERACTING FACTORS, several hormones and other regulators. This signalling leads to the shade avoidance responses, consisting of hyponasty, stem and petiole elongation, apical dominance and life cycle adjustments. Architectural changes of the individual plant have consequences for the plant community, affecting canopy structure, species composition and population fitness. In this context, we highlight the ecological, evolutionary and agricultural importance of shade avoidance.
Collapse
Affiliation(s)
- Martina Huber
- Plant Ecophysiology, Dept. BiologyUtrecht UniversityUtrechtThe Netherlands
| | | | | | - Ronald Pierik
- Plant Ecophysiology, Dept. BiologyUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
33
|
Meyer RC, Weigelt-Fischer K, Knoch D, Heuermann M, Zhao Y, Altmann T. Temporal dynamics of QTL effects on vegetative growth in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:476-490. [PMID: 33080013 DOI: 10.1093/jxb/eraa490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
We assessed early vegetative growth in a population of 382 accessions of Arabidopsis thaliana using automated non-invasive high-throughput phenotyping. All accessions were imaged daily from 7 d to 18 d after sowing in three independent experiments and genotyped using the Affymetrix 250k SNP array. Projected leaf area (PLA) was derived from image analysis and used to calculate relative growth rates (RGRs). In addition, initial seed size was determined. The generated datasets were used jointly for a genome-wide association study that identified 238 marker-trait associations (MTAs) individually explaining up to 8% of the total phenotypic variation. Co-localization of MTAs occurred at 33 genomic positions. At 21 of these positions, sequential co-localization of MTAs for 2-9 consecutive days was observed. The detected MTAs for PLA and RGR could be grouped according to their temporal expression patterns, emphasizing that temporal variation of MTA action can be observed even during the vegetative growth phase, a period of continuous formation and enlargement of seemingly similar rosette leaves. This indicates that causal genes may be differentially expressed in successive periods. Analyses of the temporal dynamics of biological processes are needed to gain important insight into the molecular mechanisms of growth-controlling processes in plants.
Collapse
Affiliation(s)
- Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Kathleen Weigelt-Fischer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Dominic Knoch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Marc Heuermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Breeding Research, Research Group Quantitative Genetics, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| |
Collapse
|
34
|
Pierik R, Ballaré CL. Control of Plant Growth and Defense by Photoreceptors: From Mechanisms to Opportunities in Agriculture. MOLECULAR PLANT 2021; 14:61-76. [PMID: 33276158 DOI: 10.1016/j.molp.2020.11.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Plants detect and respond to the proximity of competitors using light signals perceived by photoreceptor proteins. A low ratio of red to far-red radiation (R:FR ratio) is a key signal of competition that is sensed by the photoreceptor phytochrome B (phyB). Low R:FR ratios increase the synthesis of growth-related hormones, including auxin and gibberellins, promoting stem elongation and other shade-avoidance responses. Other photoreceptors that help plants to optimize their developmental configuration and resource allocation patterns in the canopy include blue light photoreceptors, such as cryptochromes and phototropins, and UV receptors, such as UVR8. All photoreceptors act by directly or indirectly controlling the activity of two major regulatory nodes for growth and development: the COP1/SPA ubiquitin E3 ligase complex and the PIF transcription factors. phyB is also an important modulator of hormonal pathways that regulate plant defense against herbivores and pathogens, including the jasmonic acid signaling pathway. In this Perspective, we discuss recent advances on the studies of the mechanisms that link photoreceptors with growth and defense. Understanding these mechanisms is important to provide a functional platform for breeding programs aimed at improving plant productivity, stress tolerance, and crop health in species of agronomic interest, and to manipulate the light environments in protected agriculture.
Collapse
Affiliation(s)
- Ronald Pierik
- Plant Ecophysiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands.
| | - Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ave. San Martín 4453, C1417DSE, Buenos Aires, Argentina; IIBIO-INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Zhang X, Liu L, Wang H, Gu Z, Liu Y, Wang M, Wang M, Xu Y, Shi Q, Li G, Tong J, Xiao L, Wang ZY, Mysore KS, Wen J, Zhou C. MtPIN1 and MtPIN3 Play Dual Roles in Regulation of Shade Avoidance Response under Different Environments in Medicago truncatula. Int J Mol Sci 2020; 21:ijms21228742. [PMID: 33228084 PMCID: PMC7699406 DOI: 10.3390/ijms21228742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 01/17/2023] Open
Abstract
Polar auxin transport mediated by PIN-FORMED (PIN) proteins is critical for plant growth and development. As an environmental cue, shade stimulates hypocotyls, petiole, and stem elongation by inducing auxin synthesis and asymmetric distributions, which is modulated by PIN3,4,7 in Arabidopsis. Here, we characterize the MtPIN1 and MtPIN3, which are the orthologs of PIN3,4,7, in model legume species Medicago truncatula. Under the low Red:Far-Red (R:FR) ratio light, the expression of MtPIN1 and MtPIN3 is induced, and shadeavoidance response is disrupted in mtpin1 mtpin3 double mutant, indicating that MtPIN1 and MtPIN3 have a conserved function in shade response. Surprisingly, under the normal growth condition, mtpin1 mtpin3 displayed the constitutive shade avoidance responses, such as the elongated petiole, smaller leaf, and increased auxin and chlorophyll content. Therefore, MtPIN1 and MtPIN3 play dual roles in regulation of shadeavoidance response under different environments. Furthermore, these data suggest that PIN3,4,7 and its orthologs have evolved conserved and specific functions among species.
Collapse
Affiliation(s)
- Xue Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (X.Z.); (L.L.); (Z.G.); (Y.L.); (M.W.); (M.W.); (Y.X.)
| | - Lu Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (X.Z.); (L.L.); (Z.G.); (Y.L.); (M.W.); (M.W.); (Y.X.)
| | - Hongfeng Wang
- School of Life Science, Guangzhou University, Guangzhou 510006, China;
| | - Zhiqun Gu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (X.Z.); (L.L.); (Z.G.); (Y.L.); (M.W.); (M.W.); (Y.X.)
| | - Yafei Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (X.Z.); (L.L.); (Z.G.); (Y.L.); (M.W.); (M.W.); (Y.X.)
| | - Minmin Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (X.Z.); (L.L.); (Z.G.); (Y.L.); (M.W.); (M.W.); (Y.X.)
| | - Min Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (X.Z.); (L.L.); (Z.G.); (Y.L.); (M.W.); (M.W.); (Y.X.)
| | - Yiteng Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (X.Z.); (L.L.); (Z.G.); (Y.L.); (M.W.); (M.W.); (Y.X.)
| | - Qingbiao Shi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (Q.S.); (G.L.)
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (Q.S.); (G.L.)
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones, Hunan Agricultural University, Changsha 410128, China; (J.T.); (L.X.)
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones, Hunan Agricultural University, Changsha 410128, China; (J.T.); (L.X.)
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao 266109, China;
| | | | - Jiangqi Wen
- Noble Research Institute, LLC, Ardmore, OK 73401, USA; (K.S.M.); (J.W.)
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (X.Z.); (L.L.); (Z.G.); (Y.L.); (M.W.); (M.W.); (Y.X.)
- Correspondence:
| |
Collapse
|
36
|
Yokoyama R. A Genomic Perspective on the Evolutionary Diversity of the Plant Cell Wall. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1195. [PMID: 32932717 PMCID: PMC7570368 DOI: 10.3390/plants9091195] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 01/02/2023]
Abstract
The plant cell wall is a complex and dynamic structure composed of numerous different molecules that play multiple roles in all aspects of plant life. Currently, a new frontier in biotechnology is opening up, which is providing new insights into the structural and functional diversity of cell walls, and is thus serving to re-emphasize the significance of cell wall divergence in the evolutionary history of plant species. The ever-increasing availability of plant genome datasets will thus provide an invaluable basis for enhancing our knowledge regarding the diversity of cell walls among different plant species. In this review, as an example of a comparative genomics approach, I examine the diverse patterns of cell wall gene families among 100 species of green plants, and illustrate the evident benefits of using genome databases for studying cell wall divergence. Given that the growth and development of all types of plant cells are intimately associated with cell wall dynamics, gaining a further understanding of the functional diversity of cell walls in relation to diverse biological events will make significant contributions to a broad range of plant sciences.
Collapse
Affiliation(s)
- Ryusuke Yokoyama
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
37
|
Canales J, Uribe F, Henríquez-Valencia C, Lovazzano C, Medina J, Vidal EA. Transcriptomic analysis at organ and time scale reveals gene regulatory networks controlling the sulfate starvation response of Solanum lycopersicum. BMC PLANT BIOLOGY 2020; 20:385. [PMID: 32831040 PMCID: PMC7444261 DOI: 10.1186/s12870-020-02590-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/10/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Sulfur is a major component of biological molecules and thus an essential element for plants. Deficiency of sulfate, the main source of sulfur in soils, negatively influences plant growth and crop yield. The effect of sulfate deficiency on plants has been well characterized at the physiological, transcriptomic and metabolomic levels in Arabidopsis thaliana and a limited number of crop plants. However, we still lack a thorough understanding of the molecular mechanisms and regulatory networks underlying sulfate deficiency in most plants. In this work we analyzed the impact of sulfate starvation on the transcriptome of tomato plants to identify regulatory networks and key transcriptional regulators at a temporal and organ scale. RESULTS Sulfate starvation reduces the growth of roots and leaves which is accompanied by major changes in the organ transcriptome, with the response being temporally earlier in roots than leaves. Comparative analysis showed that a major part of the Arabidopsis and tomato transcriptomic response to sulfate starvation is conserved between these plants and allowed for the identification of processes specifically regulated in tomato at the transcript level, including the control of internal phosphate levels. Integrative gene network analysis uncovered key transcription factors controlling the temporal expression of genes involved in sulfate assimilation, as well as cell cycle, cell division and photosynthesis during sulfate starvation in tomato roots and leaves. Interestingly, one of these transcription factors presents a high identity with SULFUR LIMITATION1, a central component of the sulfate starvation response in Arabidopsis. CONCLUSIONS Together, our results provide the first comprehensive catalog of sulfate-responsive genes in tomato, as well as novel regulatory targets for future functional analyses in tomato and other crops.
Collapse
Affiliation(s)
- Javier Canales
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.
| | - Felipe Uribe
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Carlos Henríquez-Valencia
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Carlos Lovazzano
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Elena A Vidal
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
| |
Collapse
|
38
|
|
39
|
Küpers JJ, Oskam L, Pierik R. Photoreceptors Regulate Plant Developmental Plasticity through Auxin. PLANTS 2020; 9:plants9080940. [PMID: 32722230 PMCID: PMC7463442 DOI: 10.3390/plants9080940] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Light absorption by plants changes the composition of light inside vegetation. Blue (B) and red (R) light are used for photosynthesis whereas far-red (FR) and green light are reflected. A combination of UV-B, blue and R:FR-responsive photoreceptors collectively measures the light and temperature environment and adjusts plant development accordingly. This developmental plasticity to photoreceptor signals is largely regulated through the phytohormone auxin. The phytochrome, cryptochrome and UV Resistance Locus 8 (UVR8) photoreceptors are inactivated in shade and/or elevated temperature, which releases their repression of Phytochrome Interacting Factor (PIF) transcription factors. Active PIFs stimulate auxin synthesis and reinforce auxin signalling responses through direct interaction with Auxin Response Factors (ARFs). It was recently discovered that shade-induced hypocotyl elongation and petiole hyponasty depend on long-distance auxin transport towards target cells from the cotyledon and leaf tip, respectively. Other responses, such as phototropic bending, are regulated by auxin transport and signalling across only a few cell layers. In addition, photoreceptors can directly interact with components in the auxin signalling pathway, such as Auxin/Indole Acetic Acids (AUX/IAAs) and ARFs. Here we will discuss the complex interactions between photoreceptor and auxin signalling, addressing both mechanisms and consequences of these highly interconnected pathways.
Collapse
|
40
|
Li Y, Xin G, Liu C, Shi Q, Yang F, Wei M. Effects of red and blue light on leaf anatomy, CO 2 assimilation and the photosynthetic electron transport capacity of sweet pepper (Capsicum annuum L.) seedlings. BMC PLANT BIOLOGY 2020; 20:318. [PMID: 32631228 PMCID: PMC7336438 DOI: 10.1186/s12870-020-02523-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/25/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND The red (R) and blue (B) light wavelengths are known to influence many plant physiological processes during growth and development, particularly photosynthesis. To understand how R and B light influences plant photomorphogenesis and photosynthesis, we investigated changes in leaf anatomy, chlorophyll fluorescence and photosynthetic parameters, and ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) and Calvin cycle-related enzymes expression and their activities in sweet pepper (Capsicum annuum L.) seedlings exposed to four light qualities: monochromatic white (W, control), R, B and mixed R and B (RB) light with the same photosynthetic photon flux density (PPFD) of 300 μmol/m2·s. RESULTS The results revealed that seedlings grown under R light had lower biomass accumulation, CO2 assimilation and photosystem II (PSII) electron transportation compared to plants grown under other treatments. These changes are probably due to inactivation of the photosystem (PS). Biomass accumulation and CO2 assimilation were significantly enriched in B- and RB-grown plants, especially the latter treatment. Their leaves were also thicker, and photosynthetic electron transport capacity, as well as the photosynthetic rate were enhanced. The up-regulation of the expression and activities of Rubisco, fructose-1, 6-bisphosphatase (FBPase) and glyceraldehyde-phosphate dehydrogenase (GAPDH), which involved in the Calvin cycle and are probably the main enzymatic factors contributing to RuBP (ribulose-1, 5-bisphosphate) synthesis, were also increased. CONCLUSIONS Mixed R and B light altered plant photomorphogenesis and photosynthesis, mainly through its effects on leaf anatomy, photosynthetic electron transportation and the expression and activities of key Calvin cycle enzymes.
Collapse
Affiliation(s)
- Yan Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, Tai'an, China
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, China
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Guofeng Xin
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chang Liu
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Dr, Gainesville, FL, USA
| | - Qinghua Shi
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, Tai'an, China
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, China
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Fengjuan Yang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, China
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Min Wei
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China.
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, Tai'an, China.
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, China.
- State Key Laboratory of Crop Biology, Tai'an, 271018, China.
| |
Collapse
|
41
|
Kebrom TH, McKinley BA, Mullet JE. Shade signals alter the expression of circadian clock genes in newly-formed bioenergy sorghum internodes. PLANT DIRECT 2020; 4:e00235. [PMID: 32607464 PMCID: PMC7315773 DOI: 10.1002/pld3.235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Stem internodes of bioenergy sorghum inbred R.07020 are longer at high plant density (shade) than at low plant density (control). Initially, the youngest newly-formed subapical stem internodes of shade-treated and control plants are comparable in length. However, full-length internodes of shade-treated plants are three times longer than the internodes of the control plants. To identify the early molecular events associated with internode elongation in response to shade, we analyzed the transcriptome of the newly-formed internodes of shade-treated and control plants sampled between 4 and 6 hr after the start of the light period (14 hr light/10 hr dark). Sorghum genes homologous to the Arabidopsis shade marker genes ATHB2 and PIL1 were not differentially expressed. The results indicate that shade signals promote internode elongation indirectly because sorghum internodes are not illuminated and grow while enclosed with leaf sheaths. Sorghum genes homologous to the Arabidopsis morning-phased circadian clock genes LHY, RVE, and LNK were downregulated and evening-phased genes such as TOC1, PRR5, and GI were upregulated in young internodes in response to shade. We hypothesize that a change in the function or patterns of expression of the circadian clock genes is the earliest molecular event associated with internode elongation in response to shade in bioenergy sorghum. Increased expression of CycD1, which promotes cell division, and decreased expression of cell wall-loosening and MBF1-like genes, which promote cell expansion, suggest that shade signals promote internode elongation in bioenergy sorghum in part through increasing cell number by delaying transition from cell division to cell expansion.
Collapse
Affiliation(s)
- Tesfamichael H. Kebrom
- Cooperative Agricultural Research CenterCollege of Agriculture and Human SciencesPrairie View A&M UniversityPrairie ViewTXUSA
- Center for Computational Systems BiologyCollege of EngineeringPrairie View A&M UniversityPrairie ViewTXUSA
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
| | - Brian A. McKinley
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
| | - John E. Mullet
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
| |
Collapse
|
42
|
Kushwah S, Banasiak A, Nishikubo N, Derba-Maceluch M, Majda M, Endo S, Kumar V, Gomez L, Gorzsas A, McQueen-Mason S, Braam J, Sundberg B, Mellerowicz EJ. Arabidopsis XTH4 and XTH9 Contribute to Wood Cell Expansion and Secondary Wall Formation. PLANT PHYSIOLOGY 2020; 182:1946-1965. [PMID: 32005783 PMCID: PMC7140944 DOI: 10.1104/pp.19.01529] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/21/2020] [Indexed: 05/05/2023]
Abstract
Xyloglucan is the major hemicellulose of dicotyledon primary cell walls, affecting the load-bearing framework with the participation of xyloglucan endo-transglycosylase/hydrolases (XTHs). We used loss- and gain-of function approaches to study functions of XTH4 and XTH9 abundantly expressed in cambial regions during secondary growth of Arabidopsis (Arabidopsis thaliana). In secondarily thickened hypocotyls, these enzymes had positive effects on vessel element expansion and fiber intrusive growth. They also stimulated secondary wall thickening but reduced secondary xylem production. Cell wall analyses of inflorescence stems revealed changes in lignin, cellulose, and matrix sugar composition indicating an overall increase in secondary versus primary walls in mutants, indicative of higher xylem production compared with the wild type (since secondary walls were thinner). Intriguingly, the number of secondary cell wall layers compared with the wild type was increased in xth9 and reduced in xth4, whereas the double mutant xth4x9 displayed an intermediate number of layers. These changes correlated with specific Raman signals from the walls, indicating changes in lignin and cellulose. Secondary walls were affected also in the interfascicular fibers, where neither XTH4 nor XTH9 was expressed, indicating that these effects were indirect. Transcripts involved in secondary wall biosynthesis and cell wall integrity sensing, including THESEUS1 and WALL ASSOCIATED KINASE2, were highly induced in the mutants, indicating that deficiency in XTH4 and XTH9 triggers cell wall integrity signaling, which, we propose, stimulates xylem cell production and modulates secondary wall thickening. Prominent effects of XTH4 and XTH9 on secondary xylem support the hypothesis that altered xyloglucan affects wood properties both directly and via cell wall integrity sensing.
Collapse
Affiliation(s)
- Sunita Kushwah
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, S901-83 Umea, Sweden
| | - Alicja Banasiak
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, S901-83 Umea, Sweden
| | - Nobuyuki Nishikubo
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, S901-83 Umea, Sweden
| | - Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, S901-83 Umea, Sweden
| | - Mateusz Majda
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, S901-83 Umea, Sweden
| | - Satoshi Endo
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, S901-83 Umea, Sweden
| | - Vikash Kumar
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, S901-83 Umea, Sweden
| | - Leonardo Gomez
- Center for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Andras Gorzsas
- Department of Chemistry, Umeå University, SE-90187 Umea, Sweden
| | - Simon McQueen-Mason
- Center for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Janet Braam
- Department of Bioscience, Rice University, Houston, Texas 77005-1827
| | - Björn Sundberg
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, S901-83 Umea, Sweden
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, S901-83 Umea, Sweden
| |
Collapse
|
43
|
Ezquer I, Salameh I, Colombo L, Kalaitzis P. Plant Cell Walls Tackling Climate Change: Insights into Plant Cell Wall Remodeling, Its Regulation, and Biotechnological Strategies to Improve Crop Adaptations and Photosynthesis in Response to Global Warming. PLANTS (BASEL, SWITZERLAND) 2020; 9:E212. [PMID: 32041306 PMCID: PMC7076711 DOI: 10.3390/plants9020212] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 11/16/2022]
Abstract
Plant cell wall (CW) is a complex and intricate structure that performs several functions throughout the plant life cycle. The CW of plants is critical to the maintenance of cells' structural integrity by resisting internal hydrostatic pressures, providing flexibility to support cell division and expansion during tissue differentiation, and acting as an environmental barrier that protects the cells in response to abiotic stress. Plant CW, comprised primarily of polysaccharides, represents the largest sink for photosynthetically fixed carbon, both in plants and in the biosphere. The CW structure is highly varied, not only between plant species but also among different organs, tissues, and cell types in the same organism. During the developmental processes, the main CW components, i.e., cellulose, pectins, hemicelluloses, and different types of CW-glycoproteins, interact constantly with each other and with the environment to maintain cell homeostasis. Differentiation processes are altered by positional effect and are also tightly linked to environmental changes, affecting CW both at the molecular and biochemical levels. The negative effect of climate change on the environment is multifaceted, from high temperatures, altered concentrations of greenhouse gases such as increasing CO2 in the atmosphere, soil salinity, and drought, to increasing frequency of extreme weather events taking place concomitantly, therefore, climate change affects crop productivity in multiple ways. Rising CO2 concentration in the atmosphere is expected to increase photosynthetic rates, especially at high temperatures and under water-limited conditions. This review aims to synthesize current knowledge regarding the effects of climate change on CW biogenesis and modification. We discuss specific cases in crops of interest carrying cell wall modifications that enhance tolerance to climate change-related stresses; from cereals such as rice, wheat, barley, or maize to dicots of interest such as brassica oilseed, cotton, soybean, tomato, or potato. This information could be used for the rational design of genetic engineering traits that aim to increase the stress tolerance in key crops. Future growing conditions expose plants to variable and extreme climate change factors, which negatively impact global agriculture, and therefore further research in this area is critical.
Collapse
Affiliation(s)
- Ignacio Ezquer
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Ilige Salameh
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania (MAICh), P.O. Box 85, 73100 Chania, Greece; (I.S.); (P.K.)
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania (MAICh), P.O. Box 85, 73100 Chania, Greece; (I.S.); (P.K.)
| |
Collapse
|
44
|
Zavyalov AV, Rykov SV, Lunina NA, Sushkova VI, Yarotsky SV, Berezina OV. Plant Polysaccharide Xyloglucan and Enzymes That Hydrolyze It (Review). RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019070148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Ma L, Li Y, Li X, Xu D, Lin X, Liu M, Li G, Qin X. FAR-RED ELONGATED HYPOCOTYLS3 negatively regulates shade avoidance responses in Arabidopsis. PLANT, CELL & ENVIRONMENT 2019; 42:3280-3292. [PMID: 31351015 DOI: 10.1111/pce.13630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Light is a key limiting factor of plant growth and development under the canopy. Specific light signals, such as a low ratio of red : far-red (R:FR) light, trigger the shade avoidance response, which affects hypocotyl, stem, and leaf growth. Although multiple components mediating shade avoidance responses have been identified in the past few decades, the underlying regulatory mechanism remains unclear. In this study, we found that the far-red elongated hypocotyls 3 (fhy3) mutant exhibited longer hypocotyls and increased expression levels of core shade avoidance response genes under low R:FR shade conditions compared with the wild type No-0, suggesting that FHY3 negatively regulates shade avoidance responses. Yeast one-hybrid, chromatin immunoprecipitation, and RT-qPCR assays revealed that FHY3 directly binds to the promoters and gene body of PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and PAR2 and activates their expression to inhibit shade responses. Furthermore, the overexpression of PAR1 or PAR2 rescued the enhanced shade avoidance responses of fhy3, indicating that both genes are direct downstream targets of FHY3 that mediate shade avoidance responses. Our findings demonstrate that the light-signalling protein FHY3 positively regulates the transcription of PAR1 and PAR2, which encode two key negative regulators of shade avoidance responses, thus repressing plant responses to shade signals.
Collapse
Affiliation(s)
- Lin Ma
- School of Biological Science and Technology, University of Jinan, Jinan, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yang Li
- Photobiological Industry Institute, Fujian Sanan Sino-Science Photobiotech Co., Ltd., Quanzhou, China
| | - Xiuxiu Li
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Di Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Xueqiao Lin
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Mingmei Liu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
46
|
Molina-Contreras MJ, Paulišić S, Then C, Moreno-Romero J, Pastor-Andreu P, Morelli L, Roig-Villanova I, Jenkins H, Hallab A, Gan X, Gomez-Cadenas A, Tsiantis M, Rodríguez-Concepción M, Martínez-García JF. Photoreceptor Activity Contributes to Contrasting Responses to Shade in Cardamine and Arabidopsis Seedlings. THE PLANT CELL 2019; 31:2649-2663. [PMID: 31530733 PMCID: PMC6881134 DOI: 10.1105/tpc.19.00275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/22/2019] [Accepted: 09/13/2019] [Indexed: 05/08/2023]
Abstract
Plants have evolved two major ways to deal with nearby vegetation or shade: avoidance and tolerance. Moreover, some plants respond to shade in different ways; for example, Arabidopsis (Arabidopsis thaliana) undergoes an avoidance response to shade produced by vegetation, but its close relative Cardamine hirsuta tolerates shade. How plants adopt opposite strategies to respond to the same environmental challenge is unknown. Here, using a genetic strategy, we identified the C. hirsuta slender in shade1 mutants, which produce strongly elongated hypocotyls in response to shade. These mutants lack the phytochrome A (phyA) photoreceptor. Our findings suggest that C. hirsuta has evolved a highly efficient phyA-dependent pathway that suppresses hypocotyl elongation when challenged by shade from nearby vegetation. This suppression relies, at least in part, on stronger phyA activity in C. hirsuta; this is achieved by increased ChPHYA expression and protein accumulation combined with a stronger specific intrinsic repressor activity. We suggest that modulation of photoreceptor activity is a powerful mechanism in nature to achieve physiological variation (shade tolerance versus avoidance) for species to colonize different habitats.
Collapse
Affiliation(s)
- Maria Jose Molina-Contreras
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Sandi Paulišić
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Christiane Then
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Jordi Moreno-Romero
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Pedro Pastor-Andreu
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Luca Morelli
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Irma Roig-Villanova
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Huw Jenkins
- Department of Plant Sciences, University of Oxford, Oxford OX1 3BR, United Kingdom
| | - Asis Hallab
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Aurelio Gomez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, 12071 Castello de la Plana, Spain
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Manuel Rodríguez-Concepción
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
| | - Jaime F Martínez-García
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas -Institut de Recerca i Tecnologies Agroalimentaries - Universitat Autònoma de Barcelona - Universitat de Barcelona, 08193 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
47
|
Pham MD, Hwang H, Park SW, Cui M, Lee H, Chun C. Leaf chlorosis, epinasty, carbohydrate contents and growth of tomato show different responses to the red/blue wavelength ratio under continuous light. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:477-486. [PMID: 31252253 DOI: 10.1016/j.plaphy.2019.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
The induction of leaf injuries, including leaf chlorosis and epinasty, by continuous light in tomato plants is one of the most interesting and mysterious phenomena regarding plant interactions with light, the mechanism of which has not yet been revealed. To gain further insights into this particular response of tomato plants, we cultivated tomato seedlings (Solanum lycopersicum cv. Momotaro) for 14 days under continuous light with different ratios of red and blue light and compared their performance to those grown under continuous or 14/10-h photoperiodic white light using novel methods to quantitatively evaluate the level of leaf chlorosis and epinasty. Continuous monochromatic blue light induced severe chlorosis but almost completely alleviated epinasty in tomato leaf. In contrast, continuous monochromatic red light caused a lower level of leaf chlorosis but very severe epinasty. The combination of red and blue light at different ratios significantly reduced both leaf chlorosis and epinasty under continuous light condition. Carbohydrate contents showed no correlation with leaf chlorosis, while glucose and fructose contents showed correlations with the petiole and leaflet curvatures. Histochemical staining with 3,3'-diaminobenzidine and nitro blue tetrazodium chloride also did not reveal any significant buildup of hydrogen peroxide and superoxide anion in monochromatic blue light treatment. Taken together, these results suggest that chlorosis and epinasty are two distinctive leaf injuries caused by continuous light that may follow very different mechanisms, and an overaccumulation of carbohydrates in the leaf may not be the main cause of continuous light-induced leaf chlorosis in tomato.
Collapse
Affiliation(s)
- Minh Duy Pham
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - Hyunseung Hwang
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - Seon Woo Park
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - Meiyan Cui
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - Hyein Lee
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - Changhoo Chun
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
48
|
Tan M, Li G, Chen X, Xing L, Ma J, Zhang D, Ge H, Han M, Sha G, An N. Role of Cytokinin, Strigolactone, and Auxin Export on Outgrowth of Axillary Buds in Apple. FRONTIERS IN PLANT SCIENCE 2019; 10:616. [PMID: 31156679 PMCID: PMC6530649 DOI: 10.3389/fpls.2019.00616] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/25/2019] [Indexed: 05/04/2023]
Abstract
Shoot branching is regulated by phytohormones, including cytokinin (CK), strigolactone (SL), and auxin in axillary buds. The correlative importance of these phytohormones in the outgrowth of apple axillary buds remains unclear. In this study, the outgrowth dynamics of axillary buds of a more-branching mutant (MB) and its wild-type (WT) of Malus spectabilis were assessed using exogenous chemical treatments, transcriptome analysis, paraffin section, and reverse transcription-quantitative PCR analysis (RT-qPCR). High contents of CK and abscisic acid coincided in MB axillary buds. Exogenous CK promoted axillary bud outgrowth in the WT but not in MB, whereas exogenous gibberellic had no significant effect on bud outgrowth in the WT. Functional analysis of transcriptome data and RT-qPCR analysis of gene transcripts revealed that MB branching were associated with CK signaling, auxin transport, and SL signaling. Transcription of the SL-related genes MsMAX1, MsD14, and MsMAX2 in the axillary buds of MB was generally upregulated during bud outgrowth, whereas MsBRC1/2 were generally downregulated both in WT and MB. Exogenous SL inhibited outgrowth of axillary buds in the WT and the apple varieties T337, M26, and Nagafu 2, whereas axillary buds of the MB were insensitive to SL treatment. Treatment with N-1-naphthylphalamic acid (NPA; an auxin transport inhibitor) inhibited bud outgrowth in plants of the WT and MB. The transcript abundance of MsPIN1 was generally decreased in response to NPA and SL treatments, and increased in CK and decapitation treatments, whereas no consistent pattern was observed for MsD14 and MsMAX2. Collectively, the present results suggest that in apple auxin transport from the axillary bud to the stem may be essential for the outgrowth of axillary buds, and at least, is involved in the process of bud outgrowth.
Collapse
Affiliation(s)
- Ming Tan
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Guofang Li
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Xilong Chen
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Juanjuan Ma
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - HongJuan Ge
- Institute of Agricultural Science, Qingdao, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Guangli Sha
- Institute of Agricultural Science, Qingdao, China
| | - Na An
- College of Life Science, Northwest A&F University, Yangling, China
| |
Collapse
|
49
|
Kalaitzoglou P, van Ieperen W, Harbinson J, van der Meer M, Martinakos S, Weerheim K, Nicole CCS, Marcelis LFM. Effects of Continuous or End-of-Day Far-Red Light on Tomato Plant Growth, Morphology, Light Absorption, and Fruit Production. FRONTIERS IN PLANT SCIENCE 2019; 10:322. [PMID: 30984211 PMCID: PMC6448094 DOI: 10.3389/fpls.2019.00322] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 02/28/2019] [Indexed: 05/23/2023]
Abstract
Shading by sunlit leaves causes a low red (R) to far-red (FR) ratio that results in a low phytochrome stationary state (PSS). A low PSS induces an array of shade avoidance responses that influence plant architecture and development. It has often been suggested that this architectural response is advantageous for plant growth due to its positive effect on light interception. In contrast to sunlight, artificial light sources such as LEDs often lack FR, resulting in a PSS value higher than solar light (∼0.70). The aim of this study was to investigate how PSS values higher than solar radiation influence the growth and development of tomato plants. Additionally, we investigated whether a short period of FR at the end of the day (EOD-FR) could counteract any potentially negative effects caused by a lack of FR during the day. Tomato plants were grown at four PSS levels (0.70, 0.73, 0.80, and 0.88), or with a 15-min end-of-day far-red (EOD-FR) application (PSS 0.10). Photosynthetic Active Radiation (PAR; 150 μmol m-2 s-1) was supplied using red and blue (95/5%) LEDs. In an additional experiment, the same treatments were applied to plants receiving supplementary low-intensity solar light. Increasing PSS above solar PSS resulted in increased plant height. Leaf area and plant dry mass were lower in the treatments completely lacking FR than treatments with FR. EOD-FR-treated plants responded almost similarly to plants grown without FR, except for plant height, which was increased. Simulations with a 3D-model for light absorption revealed that the increase in dry mass was mainly related to an increase in light absorption due to a higher total leaf area. Increased petiole angle and internode length had a negative influence on total light absorption. Additionally, the treatments without FR and the EOD-FR showed strongly reduced fruit production due to reduced fruit growth associated with reduced source strength and delayed flowering. We conclude that growing tomato plants under artificial light without FR during the light period causes a range of inverse shade avoidance responses, which result in reduced plant source strength and reduced fruit production, which cannot be compensated by a simple EOD-FR treatment.
Collapse
Affiliation(s)
- Pavlos Kalaitzoglou
- Horticulture and Product Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Wim van Ieperen
- Horticulture and Product Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Jeremy Harbinson
- Horticulture and Product Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Maarten van der Meer
- Horticulture and Product Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Stavros Martinakos
- Horticulture and Product Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Kees Weerheim
- Horticulture and Product Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Leo F. M. Marcelis
- Horticulture and Product Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
50
|
Li Y, Jiang H, Sun X, Muhammad AA, Liu J, Liu W, Shu K, Shang J, Yang F, Wu X, Yong T, Wang X, Yu L, Liu C, Yang W, Du J. Quantitative proteomic analyses identified multiple sugar metabolic proteins in soybean under shade stress. J Biochem 2019; 165:277-288. [PMID: 30496541 DOI: 10.1093/jb/mvy103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
Soybean-based intercropping is important for sustainable agricultural practice on a regional and global scale. However, most soybean varieties use shade avoidance strategy to acquire more light absorption when suffered in canopy shade in intercropping systems, thus reduced the yield of the whole population on a farmland. The mechanisms underlying early response of soybean in shade avoidance is still largely unknown. Here we report our identification of differentially accumulated proteins in shade-sensitive soybean seedlings by global quantitative proteome analysis under white light (WL) and shade conditions. By using Tandem Mass Tag (TMT) labelling and HPLC fractionation followed by high-resolution LC-MS/MS analysis, 29 proteins were found up-regulated and 412 proteins were found down-regulated in soybean seedlings by 2-h shade stress than that by 2-h WL treatment. Multiple differentially expressed proteins are enriched in carbohydrate metabolic process especially in the biosynthetic pathways of cell wall polysaccharides in soybean seedlings by shade stress comparing to those in WL growth conditions. Physiological assays showed that saccharides were rapidly declined in shoot apex of soybean seedlings under a short-term shading. Our results would provide new insights into the mechanisms of shade avoidance responses in soybean seedlings.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Hengke Jiang
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Xin Sun
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Ahsan Asghar Muhammad
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Jiang Liu
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Weiguo Liu
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Kai Shu
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Jing Shang
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Feng Yang
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Xiaoling Wu
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Taiwen Yong
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Xiaochun Wang
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Liang Yu
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Chunyan Liu
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Wenyu Yang
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Junbo Du
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| |
Collapse
|