1
|
Yuan L, Wu M, Tan D, Zhang S, Zhang H, Li J, Xia G, Wang F. Mannose-binding lectin 1.1A interacts with hypersensitive-induced response 4 to promote hypersensitive cell death and defense responses in cotton upon Verticillium dahliae infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70018. [PMID: 39982835 DOI: 10.1111/tpj.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/04/2024] [Accepted: 01/15/2025] [Indexed: 02/23/2025]
Abstract
Increasing evidence indicates that mannose-binding lectins (MBLs) act as a lectin-receptor-like protein in plant immune responses, yet the functional basis remains elusive. In this study, we dissected the functional mechanism of GbMBL1.1A in defense against Verticillium dahliae infection in sea island cotton (Gossypium barbadense). GbMBL1.1A expressed preferentially in cotton roots and significantly upregulated upon V. dahliae infection. Transgenic expression of GbMBL1.1A in upland cotton (Gossypium hirsutum) and Arabidopsis remarkably improved the disease resistance of the plants, while silencing of GbMBL1.1A resulted in an increased susceptibility of cotton plants in response to V. dahliae attack. Protein interaction assays revealed that GbMBL1.1A interacted with the cotton hypersensitive-induced response protein 4 (GbHIR4, a scaffold protein for immune signaling in the plasma membrane microdomain) through PAN domain. GbHIR4 expression was upregulated in response to V. dahliae invasion, and silencing of GbHIR4 seriously attenuated the disease tolerance of cotton plants. GbMBL1.1A enhanced the cell death phenotype induced by the transient expression of GbHIR4, and meanwhile promoted HR-PCD and GbHIR4-dependent resistance upon V. dahliae infection. The results suggested that GbMBL1.1A employed GbHIR4 as a downstream component to trigger the hypersensitive responses and therefore contributed to cotton resistance against V. dahliae. In addition, we observed that GbMBL1.1A overexpression could alter the phytohormone-mediated defense and growth signaling under both normal and V. dahliae infection conditions. Collectively, these results demonstrated that the lectin receptor-like protein GbMBL1.1A interacts with GbHIR4 in cotton immunity to induce the hypersensitive response, which is associated with phytohormone-mediated defense and growth signaling.
Collapse
Affiliation(s)
- Leitian Yuan
- College of Life Sciences, Hebei University, Baoding, 071002, P. R. China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, P. R. China
- Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, China
| | - Min Wu
- College of Life Sciences, Hebei University, Baoding, 071002, P. R. China
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Deming Tan
- College of Life Sciences, Hebei University, Baoding, 071002, P. R. China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, P. R. China
- Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, China
| | - Shuling Zhang
- College of Life Sciences, Hebei University, Baoding, 071002, P. R. China
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001, P. R. China
| | - Huanyang Zhang
- Institute of Cotton Research, Shanxi Academy of Agricultural Sciences, Yuncheng, Shanxi, 044000, P. R. China
| | - Jing Li
- Institute of Cotton Research, Shanxi Academy of Agricultural Sciences, Yuncheng, Shanxi, 044000, P. R. China
| | - Guixian Xia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Fuxin Wang
- College of Life Sciences, Hebei University, Baoding, 071002, P. R. China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, P. R. China
- Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, China
| |
Collapse
|
2
|
Ma S, Xu S, Tao H, Huang Y, Feng C, Huang G, Lin S, Sun Y, Chen X, Fabrice Kabore MA, Tareke Woldegiorgis S, Ai Y, Zhang L, Liu W, He H. OsBRW1, a novel blast-resistant gene, coded a NBS-LRR protein to interact with OsSRFP1 to balance rice growth and resistance. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:250-267. [PMID: 39492591 DOI: 10.1111/pbi.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/28/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
It is urgent to mine novel blast-resistant genes in rice and develop new rice varieties with pyramiding blast-resistant genes. In this study, a new blast-resistant gene, OsBRW1, was screened from a set of rice near-isogenic lines (NILs) with different blast-resistant ability. Under the infection of Magnaporthe oryzae (M. oryzae), OsBRW1 in the resistant NIL Pi-4b was highly induced than that in the susceptible NIL Pi-1 and their parent line CO39, and the blast-resistant ability of OsBRW1 was further confirmed by using CRISPR/Cas9 knockout and over-expression methods. The protein encoded by OsBRW1 was a typical NBS-LRR with NB-ARC domain and localized in both cytoplasm and nucleus, and the transient expression of OsBRW1 was capable of triggering hypersensitive response in tobacco leaves. Protein interaction experiments showed that OsBRW1 protein directly interacted with OsSRFP1. At the early infection stage of M. oryzae, OsBRW1 gene induced OsSRFP1 to highly expression level and accumulated H2O2, up-regulated the defence responsive signalling transduction genes and the pathogenesis-related genes and increased JA and SA content in the resistant NIL Pi-4b. By contrary, lower content of endogenous JA and SA in osbrw1 mutants was found at the same stage. After that, OsSRFP1 was down-regulated to constitution abundance to balance the growth of the resistant NIL Pi-4b. In summary, OsBRW1 solicited OsSRFP1 to resist the infection of blast fungus in rice by inducing the synergism of induced systemic resistance (ISR) and system acquired resistance (SAR) and to balance the growth of rice plants.
Collapse
Affiliation(s)
- Shiwei Ma
- College of Environmental and Biological Engineering, Putian University, Putian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shichang Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huan Tao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunxia Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Changqing Feng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guanpeng Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shoukai Lin
- College of Environmental and Biological Engineering, Putian University, Putian, China
| | - Yiqiong Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuan Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | | | - Yufang Ai
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lina Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huaqin He
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Meresa BK, Ayimut KM, Weldemichael MY, Geberemedhin KH, Kassegn HH, Geberemikael BA, Egigu EM. Carbohydrate elicitor-induced plant immunity: Advances and prospects. Heliyon 2024; 10:e34871. [PMID: 39157329 PMCID: PMC11327524 DOI: 10.1016/j.heliyon.2024.e34871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
The perceived negative impacts of synthetic agrochemicals gave way to alternative, biological plant protection strategies. The deployment of induced resistance, comprising boosting the natural defense responses of plants, is one of those. Plants developed multi-component defense mechanisms to defend themselves against biotic and abiotic stresses. These are activated upon recognition of stress signatures via membrane-localized receptors. The induced immune responses enable plants to tolerate and limit the impact of stresses. A systemic cascade of signals enables plants to prime un-damaged tissues, which is crucial during secondary encounters with stress. Comparable stress tolerance mechanisms can be induced in plants by the application of carbohydrate elicitors such as chitin/chitosan, β-1,3-glucans, oligogalacturonides, cellodextrins, xyloglucans, alginates, ulvans, and carrageenans. Treating plants with carbohydrate-derived elicitors enable the plants to develop resistance appliances against diverse stresses. Some carbohydrates are also known to have been involved in promoting symbiotic signaling. Here, we review recent progresses on plant resistance elicitation effect of various carbohydrate elicitors and the molecular mechanisms of plant cell perception, cascade signals, and responses to cascaded cues. Besides, the molecular mechanisms used by plants to distinguish carbohydrate-induced immunity signals from symbiotic signals are discussed. The structure-activity relationships of the carbohydrate elicitors are also described. Furthermore, we forwarded future research outlooks that might increase the utilization of carbohydrate elicitors in agriculture in order to improve the efficacy of plant protection strategies.
Collapse
Affiliation(s)
- Birhanu Kahsay Meresa
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kiros-Meles Ayimut
- Department of Crop and Horticultural Sciences, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Micheale Yifter Weldemichael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kalayou Hiluf Geberemedhin
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Hagos Hailu Kassegn
- Department of Food Science and Postharvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Bruh Asmelash Geberemikael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Etsay Mesele Egigu
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| |
Collapse
|
4
|
Noman A, Alwutayd KM, Aqeel M, Hussain A, Qasim M, Al-Qthanin RN, Alshaharni MO, Alzuaibr FM, Alomran MM. Pepper defense against Ralstonia solanacearum and High-temperature stress is positively regulated by CaMYB59. Microb Pathog 2024; 189:106599. [PMID: 38428471 DOI: 10.1016/j.micpath.2024.106599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
We have functionally evaluated a transcription factor CaMYB59 for its role in pepper immune responses to Ralstonia solanacearum attack and high temperature-high humidity (HTHH). Exposure to R. solanacearum inoculation (RSI) and HTHH resulted in up-regulation of this nucleus-localized TF. Function of this TF was confirmed by performing loss of function assay of CaMYB59 by VIGS (virus-induced gene silencing). Plants with silenced CaMYB59 displayed not only compromised pepper immunity against RSI but also impaired tolerance to HTHH along with decreased hypersensitive response (HR). This impairment in defense function was fully linked with low induction of stress-linked genes like CaPO2, CaPR1, CaAcc and thermo-tolerance linked CaHSP24 as well as CaHsfB2a. Conversely, transient overexpression of CaMYB59 enhanced pepper immunity. This reveals that CaMYB59 positively regulated host defense against RSI and HTHH by means of HR like mimic cell death, H2O2 production and up-regulation of defense as well as thermo-tolerance associated genes. These changes in attributes collectively confirm the role of CaMYB59 as a positive regulator of pepper immunity against R. solanacearum. We recommend that such positive regulation of pepper defense is dynamically supported by phyto-hormone signaling and transcriptional web of defense genes. These integrated and interlinked events stabilize plant growth and survival under abiotic and biotic stresses.
Collapse
Affiliation(s)
- Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Ansar Hussain
- Department of Plant breeding and Genetics, Ghazi University, DG Khan, Pakistan
| | - Muhammad Qasim
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, PR China
| | - Rahmah N Al-Qthanin
- Department of Biology, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohammed O Alshaharni
- Department of Biology, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | | | - Maryam M Alomran
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| |
Collapse
|
5
|
Koirala M, Cristine Goncalves Dos Santos K, Gélinas SE, Ricard S, Karimzadegan V, Lamichhane B, Sameera Liyanage N, Merindol N, Desgagné-Penix I. Auxin and light-mediated regulation of growth, morphogenesis, and alkaloid biosynthesis in Crinum x powellii 'Album' callus. PHYTOCHEMISTRY 2023; 216:113883. [PMID: 37820888 DOI: 10.1016/j.phytochem.2023.113883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
Crinum x powellii 'Album' belongs to the Amaryllidaceae medicinal plant family that produces a range of structurally diverse alkaloids with potential therapeutic properties. The optimal conditions for in vitro tissue growth, morphogenesis, and alkaloid biosynthesis remain unclear. Auxin and light play critical roles in regulating plant growth, development, and alkaloid biosynthesis in several Amaryllidaceae plants. Here, we have succeeded in showing, for the first time, that the combination of auxin and light significantly influence C. x powellii "Album" in vitro tissue growth, survival, and morphogenesis compared to individual treatments. Furthermore, this combination also upregulates the expression of alkaloid biosynthetic genes and led to an increase in the content of certain alkaloids, suggesting a positive impact on the defense and therapeutic potential of the calli. Our findings provide insights into the regulation of genes involved in alkaloid biosynthesis in C. x powellii "Album" callus and underline the potential of auxin and light as tools for enhancing their production in plants. This study provides a foundation for further exploration of C. x powellii "Album" calli as a sustainable source of bioactive alkaloids for pharmaceutical and agricultural applications. Furthermore, this study paves the way to the discovery of the biosynthetic pathway of specialized metabolites from C. x powellii "Album", such as cherylline and lycorine.
Collapse
Affiliation(s)
- Manoj Koirala
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | | | - Sarah-Eve Gélinas
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Simon Ricard
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Vahid Karimzadegan
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Basanta Lamichhane
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Nuwan Sameera Liyanage
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Natacha Merindol
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada; Plant Biology Research Group, Trois-Rivières, Québec, Canada.
| |
Collapse
|
6
|
Chen Q, Dong H, Li Q, Sun X, Qiao X, Yin H, Xie Z, Qi K, Huang X, Zhang S. PbrChiA: a key chitinase of pear in response to Botryosphaeria dothidea infection by interacting with PbrLYK1b2 and down-regulating ROS accumulation. HORTICULTURE RESEARCH 2023; 10:uhad188. [PMID: 37899950 PMCID: PMC10611555 DOI: 10.1093/hr/uhad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023]
Abstract
Pear ring rot, caused by the pathogenic fungi Botryosphaeria dothidea, seriously affects pear production. While the infection-induced reactive oxygen species (ROS) burst of infected plants limits the proliferation of B. dothidea during the early infection stage, high ROS levels can also contribute to their growth during the later necrotrophic infection stage. Therefore, it is important to understand how plants balance ROS levels and resistance to pathogenic B. dothidea during the later stage. In this study, we identified PbrChiA, a glycosyl hydrolases 18 (GH18) chitinase-encoding gene with high infection-induced expression, through a comparative transcriptome analysis. Artificial substitution, stable overexpression, and virus induced gene silencing (VIGS) experiments demonstrated that PbrChiA can positively regulate pear resistance as a secreted chitinase to break down B. dothidea mycelium in vitro and that overexpression of PbrChiA suppressed infection-induced ROS accumulation. Further analysis revealed that PbrChiA can bind to the ectodomain of PbrLYK1b2, and this interaction suppressed PbrLYK1b2-mediated chitin-induced ROS accumulation. Collectively, we propose that the combination of higher antifungal activity from abundant PbrChiA and lower ROS levels during later necrotrophic infection stage confer resistance of pear against B. dothidea.
Collapse
Affiliation(s)
- Qiming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Huizhen Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Qionghou Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Xun Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaosan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Ahn E, Prom LK, Magill C. Multi-Trait Genome-Wide Association Studies of Sorghum bicolor Regarding Resistance to Anthracnose, Downy Mildew, Grain Mold and Head Smut. Pathogens 2023; 12:779. [PMID: 37375469 DOI: 10.3390/pathogens12060779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Multivariate linear mixed models (mvLMMs) are widely applied for genome-wide association studies (GWAS) to detect genetic variants affecting multiple traits with correlations and/or different plant growth stages. Subsets of multiple sorghum populations, including the Sorghum Association Panel (SAP), the Sorghum Mini Core Collection and the Senegalese sorghum population, have been screened against various sorghum diseases such as anthracnose, downy mildew, grain mold and head smut. Still, these studies were generally performed in a univariate framework. In this study, we performed GWAS based on the principal components of defense-related multi-traits against the fungal diseases, identifying new potential SNPs (S04_51771351, S02_66200847, S09_47938177, S08_7370058, S03_72625166, S07_17951013, S04_66666642 and S08_51886715) associated with sorghum's defense against these diseases.
Collapse
Affiliation(s)
- Ezekiel Ahn
- USDA-ARS Plant Science Research Unit, St. Paul, MN 55108, USA
| | - Louis K Prom
- USDA-ARS Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Clint Magill
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Ma L, Haile ZM, Sabbadini S, Mezzetti B, Negrini F, Baraldi E. Functional characterization of MANNOSE-BINDING LECTIN 1, a G-type lectin gene family member, in response to fungal pathogens of strawberry. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:149-161. [PMID: 36219205 PMCID: PMC9786840 DOI: 10.1093/jxb/erac396] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The mannose-binding lectin gene MANNOSE-BINDING LECTIN 1 (MBL1) is a member of the G-type lectin family and is involved in defense in strawberry (Fragaria × ananassa). Genome-wide identification of the G-type lectin family was carried out in woodland strawberry, F. vesca, and 133 G-lectin genes were found. Their expression profiles were retrieved from available databases and indicated that many are actively expressed during plant development or interaction with pathogens. We selected MBL1 for further investigation and generated stable transgenic FaMBL1-overexpressing plants of F. ×ananassa to examine the role of this gene in defense. Plants were selected and evaluated for their contents of disease-related phytohormones and their reaction to biotic stresses, and this revealed that jasmonic acid decreased in the overexpressing lines compared with the wild-type (WT). Petioles of the overexpressing lines inoculated with Colletotrichum fioriniae had lower disease incidence than the WT, and leaves of these lines challenged by Botrytis cinerea showed significantly smaller lesion diameters than the WT and higher expression of CLASS II CHITINASE 2-1. Our results indicate that FaMBL1 plays important roles in strawberry response to fungal diseases caused by C. fioriniae and B. cinerea.
Collapse
Affiliation(s)
- Lijing Ma
- Department of Agricultural and Food Science, DISTAL, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Zeraye Mehari Haile
- Department of Agricultural and Food Science, DISTAL, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Plant Protection Research Division of Melkasa Agricultural Research Center, Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, Ethiopia
| | - Silvia Sabbadini
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | | |
Collapse
|
9
|
Wei J, Wang X, Hu Z, Wang X, Wang J, Wang J, Huang X, Kang Z, Tang C. The Puccinia striiformis effector Hasp98 facilitates pathogenicity by blocking the kinase activity of wheat TaMAPK4. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:249-264. [PMID: 36181397 DOI: 10.1111/jipb.13374] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The obligate biotrophic fungus Puccinia striiformis f. sp. tritici (Pst) employs virulence effectors to disturb host immunity and causes devastating stripe rust disease. However, our understanding of how Pst effectors regulate host defense responses remains limited. In this study, we determined that the Pst effector Hasp98, which is highly expressed in Pst haustoria, inhibits plant immune responses triggered by flg22 or nonpathogenic bacteria. Overexpression of Hasp98 in wheat (Triticum aestivum) suppressed avirulent Pst-triggered immunity, leading to decreased H2 O2 accumulation and promoting P. striiformis infection, whereas stable silencing of Hasp98 impaired P. striiformis pathogenicity. Hasp98 interacts with the wheat mitogen-activated protein kinase TaMAPK4, a positive regulator of plant resistance to stripe rust. The conserved TEY motif of TaMAPK4 is important for its kinase activity, which is required for the resistance function. We demonstrate that Hasp98 inhibits the kinase activity of TaMAPK4 and that the stable silencing of TaMAPK4 compromises wheat resistance against P. striiformis. These results suggest that Hasp98 acts as a virulence effector to interfere with the MAPK signaling pathway in wheat, thereby promoting P. striiformis infection.
Collapse
Affiliation(s)
- Jinping Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Xiaodong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Zeyu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Jialiu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Xueling Huang
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
10
|
De Coninck T, Van Damme EJ. Plant lectins: Handymen at the cell surface. Cell Surf 2022; 8:100091. [PMID: 36465479 PMCID: PMC9713479 DOI: 10.1016/j.tcsw.2022.100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022] Open
Abstract
Lectins are carbohydrate-binding proteins and are involved in a multitude of biological functions. Lectins at the surface of plant cells often occur as lectin receptor-like kinases (LecRLK) anchored to the plasma membrane. These LecRLKs are part of the plant's pattern-recognition receptor (PRR) system enabling the plant to perceive threats and respond adequately. Furthermore, plant lectins also occur as secreted proteins, which are associated with stress signalling and defence. The aim of this short review is to provide a general perspective on plant lectins and their role at the cell surface.
Collapse
Affiliation(s)
- Tibo De Coninck
- Laboratory for Glycobiology & Biochemistry, Department of Biotechnology, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Els J.M. Van Damme
- Laboratory for Glycobiology & Biochemistry, Department of Biotechnology, Proeftuinstraat 86, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Fan S, Jia Y, Wang R, Chen X, Liu W, Yu H. Multi-omics analysis the differences of VOCs terpenoid synthesis pathway in maintaining obligate mutualism between Ficus hirta Vahl and its pollinators. FRONTIERS IN PLANT SCIENCE 2022; 13:1006291. [PMID: 36457527 PMCID: PMC9707799 DOI: 10.3389/fpls.2022.1006291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
INRODUCTION Volatile organic compounds (VOCs) emitted by the receptive syconia of Ficus species is a key trait to attract their obligate pollinating fig wasps. Ficus hirta Vahl is a dioecious shrub, which is pollinated by a highly specialized symbiotic pollinator in southern China. Terpenoids are the main components of VOCs in F. hirta and play ecological roles in pollinator attraction, allelopathy, and plant defense. However, it remains unclear that what molecular mechanism difference in terpenoid synthesis pathways between pre-receptive stage (A-phase) and receptive stage (B-phase) of F. hirta syconia. METHODS Transcriptome, proteome and Gas Chromatography-Mass Spectrometer (GC-MS) were applied here to analyze these difference. RESULTS AND DISCUSSION Compared to A-phase syconia, the genes (ACAT2, HMGR3, GGPS2, HDR, GPS2, TPS2, TPS4, TPS10-4, TPS14) related to the terpenoid synthesis pathway had higher expression level in receptive syconia (B-phase) according to transcriptome sequencing. Seven differentially expressed transcription factors were screened, namely bHLH7, MYB1R1, PRE6, AIL1, RF2b, ANT, VRN1. Specifically, bHLH7 was only specifically expressed in B-phase. 235 differentially expressed proteins (DEPs) were mainly located in the cytoplasm and chloroplasts. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEPs were mainly enriched in the metabolic process. A total of 9 terpenoid synthesis proteins were identified in the proteome. Among them, 4 proteins in methylerythritol phosphate (MEP) pathway were all down-regulated. Results suggested the synthesis of terpenoids precursors in B-phase bracts were mainly accomplished through the mevalonic acid (MVA) pathway in cytoplasm. Correlation analysis between the transcriptome and proteome, we detected a total of 1082 transcripts/proteins, three of which are related to stress. From the VOCs analysis, the average percent of monoterpenoids emitted by A-phase and B-phase syconia were 8.29% and 37.08%, while those of sesquiterpenes were 88.43% and 55.02% respectively. Monoterpenes (camphene, myrcene, camphor, menthol) were only detected in VOCs of B-phase syconia. To attract pollinators, B-phase syconia of F. hirta need more monoterpenoids and less sesquiterpenes. We speculate that transcription factor bHLH7 may regulate the terpenoid synthesis pathway between A- and B-phase syconia. Our research provided the first global analysis of mechanism differences of terpenoid synthesis pathways between A and B phases in F. hirta syconia.
Collapse
Affiliation(s)
- Songle Fan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongxia Jia
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Rong Wang
- School of Ecological and Environmental Sciences, Tiantong National Station for Forest Ecosystem Research, East China Normal University, Shanghai, China
| | - Xiaoyong Chen
- School of Ecological and Environmental Sciences, Tiantong National Station for Forest Ecosystem Research, East China Normal University, Shanghai, China
| | - Wanzhen Liu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hui Yu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
12
|
Grover S, Cardona JB, Zogli P, Alvarez S, Naldrett MJ, Sattler SE, Louis J. Reprogramming of sorghum proteome in response to sugarcane aphid infestation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111289. [PMID: 35643611 DOI: 10.1016/j.plantsci.2022.111289] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Sugarcane aphid (SCA; Melanaphis sacchari Zehntner) is a key piercing-sucking pest of sorghum (Sorghum bicolor) that cause significant yield losses. While feeding on host plants, complex signaling networks are invoked from recognition of insect attack to induction of plant defenses. Consequently, these signaling networks lead to the production of insecticidal compounds or limited access of nutrients to insects. Previously, several studies were published on the transcriptomics analysis of sorghum in response to SCA infestation, but no information is available on the physiological changes of sorghum at the proteome level. We used the SCA resistant sorghum genotype SC265 for the global proteomics analysis after 1 and 7 days of SCA infestation using the TMT-plex technique. Peptides matching a total of 4211 proteins were identified and 158 proteins were differentially expressed at day 1 and 7. Overall, proteome profiling of SC265 after SCA infestation at days 1 and 7 revealed the suppression of plant defense-related proteins and upregulation of plant defense and signaling-related proteins, respectively. The plant defense responses based on proteome data were validated using electrical penetration graph (EPG) technique to observe changes in aphid feeding. Feeding behavior analyses revealed that SCA spent significantly longer time in phloem phase on SCA infested plants for day 1 and lesser time in day 7 SCA infested sorghum plants, compared to their respective control plants. Overall, our study provides insights into underlying mechanisms that contribute to sorghum resistance to SCA.
Collapse
Affiliation(s)
- Sajjan Grover
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | | | - Prince Zogli
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Michael J Naldrett
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Scott E Sattler
- Wheat, Sorghum, and Forage Research Unit, US Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE 68583, USA.
| |
Collapse
|
13
|
N-Methyltransferase CaASHH3 Acts as a Positive Regulator of Immunity against Bacterial Pathogens in Pepper. Int J Mol Sci 2022; 23:ijms23126492. [PMID: 35742935 PMCID: PMC9224371 DOI: 10.3390/ijms23126492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Proteins with conserved SET domain play a critical role in plant immunity. However, the means of organization and functions of these proteins are unclear, particularly in non-model plants such as pepper (Capsicum annum L.). Herein, we functionally characterized CaASHH3, a member of class II (the ASH1 homologs H3K36) proteins in pepper immunity against Ralstonia solanacearum and Pseudomonas syringae pv tomato DC3000 (Pst DC3000). The CaASHH3 was localized in the nucleus, and its transcript levels were significantly enhanced by R. solanacearum inoculation (RSI) and exogenous application of salicylic acid (SA), methyl jasmonate (MeJA), ethephon (ETH), and abscisic acid (ABA). Knockdown of CaASHH3 by virus-induced gene silencing (VIGS) compromised peppers’ resistance to RSI. Furthermore, silencing of CaASHH3 impaired hypersensitive-response (HR)-like cell death response due to RSI and downregulated defense-associated marker genes, including CaPR1, CaNPR1, and CaABR1. The CaASHH3 protein was revealed to affect the promoters of CaNPR1, CaPR1, and CaHSP24. Transiently over-expression of CaASHH3 in pepper leaves elicited HR-like cell death and upregulated immunity-related marker genes. To further study the role of CaASHH3 in plant defense in vivo, CaASHH3 transgenic plants were generated in Arabidopsis. Overexpression of CaASHH3 in transgenic Arabidopsis thaliana enhanced innate immunity against Pst DC3000. Furthermore, CaASHH3 over-expressing transgenic A. thaliana plants exhibited upregulated transcriptional levels of immunity-associated marker genes, such as AtNPR1, AtPR1, and AtPR2. These results collectively confirm the role of CaASHH3 as a positive regulator of plant cell death and pepper immunity against bacterial pathogens, which is regulated by signaling synergistically mediated by SA, JA, ET, and ABA.
Collapse
|
14
|
Huang X, Huang X, Guo L, He L, Xiao D, Zhan J, Wang A, Liang R. Comparative Transcriptome Analysis Provides Insights into the Resistance in Pueraria [ Pueraria lobata (Willd.) Ohwi] in Response to Pseudo-Rust Disease. Int J Mol Sci 2022; 23:5223. [PMID: 35563613 PMCID: PMC9101505 DOI: 10.3390/ijms23095223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Pueraria lobata is an important medicinal and edible homologous plant that is widely cultivated in Asian countries. However, its production and quality are seriously threatened by its susceptibility to pseudo-rust disease. The underlying molecular mechanisms are poorly known, particularly from a transcriptional perspective. Pseudo-rust disease is a major disease in pueraria, primarily caused by Synchytrium puerariae Miy (SpM). In this study, transcriptomic profiles were analyzed and compared between two pueraria varieties: the disease-resistant variety (GUIGE18) and the susceptible variety (GUIGE8). The results suggest that the number of DEGs in GUIGE18 is always more than in GUIGE8 at each of the three time points after SpM infection, indicating that their responses to SpM infection may be different, and that the active response of GUIGE18 to SpM infection may occur earlier than that of GUIGE8. A total of 7044 differentially expressed genes (DEGs) were identified, and 406 co-expressed DEGs were screened out. Transcription factor analysis among the DEGs revealed that the bHLH, WRKY, ERF, and MYB families may play an important role in the interaction between pueraria and pathogens. A GO and KEGG enrichment analysis of these DEGs showed that they were mainly involved in the following pathways: metabolic, defense response, plant hormone signal transduction, MAPK signaling pathway-plant, plant pathogen interaction, flavonoid biosynthesis, phenylpropanoid biosynthesis, and secondary metabolite biosynthesis. The CPK, CESA, PME, and CYP gene families may play important roles in the early stages after SpM infection. The DEGs that encode antioxidase (CAT, XDH, and SOD) were much more up-regulated. Defense enzyme activity, endogenous hormones, and flavonoid content changed significantly in the two varieties at the three infection stages. Finally, we speculated on the regulatory pathways of pueraria pseudo-rust and found that an oxidation-reduction process, flavonoid biosynthesis, and ABA signaling genes may be associated with the response to SpM infection in pueraria. These results expand the understanding of pueraria resistance and physiological regulations by multiple pathways.
Collapse
Affiliation(s)
- Xinlu Huang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
| | - Xiaoxi Huang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
| | - Lijun Guo
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
| | - Longfei He
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Dong Xiao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Jie Zhan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Aiqin Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Renfan Liang
- Academy of Agricultural Science, Guangxi University, Nanning 530004, China
| |
Collapse
|
15
|
Song H, Chen F, Wu X, Hu M, Geng Q, Ye M, Zhang C, Jiang L, Cao S. MNB1 gene is involved in regulating the iron-deficiency stress response in Arabidopsis thaliana. BMC PLANT BIOLOGY 2022; 22:151. [PMID: 35346040 PMCID: PMC8961904 DOI: 10.1186/s12870-022-03553-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/23/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Iron (Fe) is an essential mineral element that involves in many biological processes important for most plants growth and development. Fe-deficiency induces a complex series of responses in plants, involving physiological and developmental changes, to increase Fe uptake from soil. However, the molecular mechanism involved in plant Fe-deficiency is not well understood. RESULTS Here, we found that the MNB1 (mannose-binding-lectin 1) gene is involved in the regulation of Fe-deficiency stress response in Arabidopsis thaliana. The expression abundance of MNB1 was inhibited by Fe-deficiency stress. Knockout of MNB1 led to enhanced Fe accumulation and tolerance, whereas the MNB1-overexpressing plants were sensitive to Fe-deficiency stress. Under conditions of normal and Fe-deficiency, lower H2O2 concentrations were detected in mnb1 mutant plants compared to wild type. On the contrary, higher H2O2 concentrations were found in MNB1-overexpressing plants, which was negatively correlated with malondialdehyde (MDA) levels. Furthermore, in mnb1 mutants, the transcription level of the Fe uptake- and translocation-related genes, FIT, IRT1, FRO2, ZIF, FRD3, NAS4, PYE and MYB72, were considerably elevated during Fe-deficiency stress, resulting in enhanced Fe uptake and translocation, thereby increasing Fe accumulation. CONCLUSIONS Together, our findings show that the MNB1 gene negatively controls the Fe-deficiency response in Arabidopsis via modulating reactive oxygen species (ROS) levels and the ROS-mediated signaling pathway, thereby affecting the expression of Fe uptake- and translocation-related genes.
Collapse
Affiliation(s)
- Hui Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Feng Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xi Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Min Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qingliu Geng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Min Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Cheng Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Li Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
16
|
Baruah IK, Ali SS, Shao J, Lary D, Bailey BA. Changes in Gene Expression in Leaves of Cacao Genotypes Resistant and Susceptible to Phytophthora palmivora Infection. FRONTIERS IN PLANT SCIENCE 2022; 12:780805. [PMID: 35211126 PMCID: PMC8861199 DOI: 10.3389/fpls.2021.780805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Black pod rot, caused by Phytophthora palmivora, is a devastating disease of Theobroma cacao L. (cacao) leading to huge losses for farmers and limiting chocolate industry supplies. To understand resistance responses of cacao leaves to P. palmivora, Stage 2 leaves of genotypes Imperial College Selection 1 (ICS1), Colección Castro Naranjal 51 (CCN51), and Pound7 were inoculated with zoospores and monitored for symptoms up to 48 h. Pound7 consistently showed less necrosis than ICS1 and CCN51 48 h after inoculation. RNA-Seq was carried out on samples 24 h post inoculation. A total of 24,672 expressed cacao genes were identified, and 2,521 transcripts showed induction in at least one P. palmivora-treated genotype compared to controls. There were 115 genes induced in the P. palmivora-treated samples in all three genotypes. Many of the differentially expressed genes were components of KEGG pathways important in plant defense signal perception (the plant MAPK signaling pathway, plant hormone signal transduction, and plant pathogen interactions), and plant defense metabolite biosynthesis (phenylpropanoid biosynthesis, α-linolenic acid metabolism, ethylene biosynthesis, and terpenoid backbone biosynthesis). A search of putative cacao resistance genes within the cacao transcriptome identified 89 genes with prominent leucine-rich repeat (LRR) domains, 170 protein kinases encoding genes, 210 genes with prominent NB-ARC domains, 305 lectin-related genes, and 97 cysteine-rich RK genes. We further analyzed the cacao leaf transcriptome in detail focusing on gene families-encoding proteins important in signal transduction (MAP kinases and transcription factors) and direct plant defense (Germin-like, ubiquitin-associated, lectin-related, pathogenesis-related, glutathione-S-transferases, and proteases). There was a massive reprogramming of defense gene processes in susceptible cacao leaf tissue after infection, which was restricted in the resistant genotype Pound7. Most genes induced in Pound7 were induced in ICS1/CCN51. The level of induction was not always proportional to the infection level, raising the possibility that genes are responding to infection more strongly in Pound7. There were also defense-associated genes constitutively differentially expressed at higher levels in specific genotypes, possibly providing a prepositioned defense. Many of the defense genes occur in blocks where members are constitutively expressed at different levels, and some members are induced by Ppal infection. With further study, the identified candidate genes and gene blocks may be useful as markers for breeding disease-resistant cacao genotypes against P. palmivora.
Collapse
Affiliation(s)
- Indrani K. Baruah
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Beltsville, MD, United States
| | - Shahin S. Ali
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Beltsville, MD, United States
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Jonathan Shao
- United States Department of Agriculture/Agricultural Research Service, Northeast Area, Beltsville, MD, United States
| | - David Lary
- Department of Physics, University of Texas, Dallas, TX, United States
| | - Bryan A. Bailey
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Beltsville, MD, United States
| |
Collapse
|
17
|
Peng J, Wu L, Zhang W, Zhang Q, Xing Q, Wang X, Li X, Yan J. Systemic Identification and Functional Characterization of Common in Fungal Extracellular Membrane Proteins in Lasiodiplodia theobromae. FRONTIERS IN PLANT SCIENCE 2021; 12:804696. [PMID: 34987541 PMCID: PMC8721227 DOI: 10.3389/fpls.2021.804696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Plant pathogenic fungi deploy secreted proteins into apoplastic space or intracellular lumen to promote successful infections during plant-pathogen interactions. In the present study, fourteen CFEM domain-containing proteins were systemically identified in Lasiodiplodia theobromae and eight of them were functionally characterized. All eight proteins were confirmed to be secreted into extracellular space by a yeast signal peptide trapping system. The transcriptional levels of most CFEM genes, except for LtCFEM2 and LtCFEM6, were significantly elevated during infection. In addition, almost all LtCFEM genes, apart from LtCFEM2, LtCFEM3, and LtCFEM6, were transcriptionally up-regulated at 35°C in contrast to that at 25°C and 30°C. As two elicitors, LtCFEM1 induced local yellowish phenotype and LtCFEM4 triggered cell death in Nicotiana benthamiana leaves. Furthermore, these proteins displayed distinct subcellular localizations when expressed transiently in N. benthamiana. Moreover, two genes, LtCFEM7 and LtCFEM8, were found to be spliced alternatively by RT-PCR and sequencing. Therefore, our data suggest that LtCFEM proteins play important roles in multiple aspects, including pathogenicity and plant immune response, which will enhance our understanding of the sophisticated pathogenic mechanisms of plant opportunistic pathogen L. theobromae.
Collapse
|
18
|
De Coninck T, Van Damme EJM. Review: The multiple roles of plant lectins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111096. [PMID: 34763880 DOI: 10.1016/j.plantsci.2021.111096] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
For decades, the biological roles of plant lectins remained obscure and subject to speculation. With the advent of technological and scientific progress, researchers have compiled a vast amount of information regarding the structure, biological activities and functionality of hundreds of plant lectins. Data mining of genomes and transcriptome sequencing and high-throughput analyses have resulted in new insights. This review aims to provide an overview of what is presently known about plant lectins, highlighting their versatility and the importance of plant lectins for a multitude of biological processes, such as plant development, immunity, stress signaling and regulation of gene expression. Though lectins primarily act as readers of the glycocode, the multiple roles of plant lectins suggest that their functionality goes beyond carbohydrate-recognition.
Collapse
Affiliation(s)
- Tibo De Coninck
- Laboratory of Glycobiology & Biochemistry, Dept. of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Els J M Van Damme
- Laboratory of Glycobiology & Biochemistry, Dept. of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
19
|
Hussain A, Khan MI, Albaqami M, Mahpara S, Noorka IR, Ahmed MAA, Aljuaid BS, El-Shehawi AM, Liu Z, Farooq S, Zuan ATK. CaWRKY30 Positively Regulates Pepper Immunity by Targeting CaWRKY40 against Ralstonia solanacearum Inoculation through Modulating Defense-Related Genes. Int J Mol Sci 2021; 22:ijms222112091. [PMID: 34769521 PMCID: PMC8584995 DOI: 10.3390/ijms222112091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
The WRKY transcription factors (TFs) network is composed of WRKY TFs’ subset, which performs a critical role in immunity regulation of plants. However, functions of WRKY TFs’ network remain unclear, particularly in non-model plants such as pepper (Capsicum annuum L.). This study functionally characterized CaWRKY30—a member of group III Pepper WRKY protein—for immunity of pepper against Ralstonia solanacearum infection. The CaWRKY30 was detected in nucleus, and its transcriptional expression levels were significantly upregulated by R. solanacearum inoculation (RSI), and foliar application ethylene (ET), abscisic acid (ABA), and salicylic acid (SA). Virus induced gene silencing (VIGS) of CaWRKY30 amplified pepper’s vulnerability to RSI. Additionally, the silencing of CaWRKY30 by VIGS compromised HR-like cell death triggered by RSI and downregulated defense-associated marker genes, like CaPR1, CaNPR1, CaDEF1, CaABR1, CaHIR1, and CaWRKY40. Conversely, transient over-expression of CaWRKY30 in pepper leaves instigated HR-like cell death and upregulated defense-related maker genes. Furthermore, transient over-expression of CaWRKY30 upregulated transcriptional levels of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. On the other hand, transient over-expression of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40 upregulated transcriptional expression levels of CaWRKY30. The results recommend that newly characterized CaWRKY30 positively regulates pepper’s immunity against Ralstonia attack, which is governed by synergistically mediated signaling by phytohormones like ET, ABA, and SA, and transcriptionally assimilating into WRKY TFs networks, consisting of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. Collectively, our data will facilitate to explicate the underlying mechanism of crosstalk between pepper’s immunity and response to RSI.
Collapse
Affiliation(s)
- Ansar Hussain
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (A.H.); (M.I.K.); (S.M.); (I.R.N.)
| | - Muhammad Ifnan Khan
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (A.H.); (M.I.K.); (S.M.); (I.R.N.)
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Shahzadi Mahpara
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (A.H.); (M.I.K.); (S.M.); (I.R.N.)
| | - Ijaz Rasool Noorka
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (A.H.); (M.I.K.); (S.M.); (I.R.N.)
| | - Mohamed A. A. Ahmed
- Plant Production Department (Horticulture—Medicinal and Aromatic Plants), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Bandar S. Aljuaid
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (B.S.A.); (A.M.E.-S.)
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (B.S.A.); (A.M.E.-S.)
| | - Zhiqin Liu
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou 350001, China
- Correspondence: (Z.L.); (A.T.K.Z.)
| | - Shahid Farooq
- Department of Plant Protection, Faculty of Agriculture, Harran University, Şanlıurfa 63050, Turkey;
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (Z.L.); (A.T.K.Z.)
| |
Collapse
|
20
|
Mora-Ocampo IY, Pirovani CP, Luz EDMN, Rêgo APB, Silva EMA, Rhodes-Valbuena M, Corrêa RX. Ceratocystis cacaofunesta differentially modulates the proteome in xylem-enriched tissue of cocoa genotypes with contrasting resistance to Ceratocystis wilt. PLANTA 2021; 254:94. [PMID: 34642817 DOI: 10.1007/s00425-021-03747-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Decreased accumulation of polyphenol oxidase, H2O2 accumulation, effective regulation of programmed cell death, and a protein predicted as allergenic can play key roles in cacao defense against Ceratocystis cacaofunesta. Ceratocystis wilt, caused by the fungus Ceratocystis cacaofunesta, has destroyed millions of Theobroma cacao trees in several countries of the Americas. Through proteomics, systems biology, and enzymatic analyses of infected stems, it was possible to infer mechanisms used by resistant (TSH1188) and susceptible (CCN51) cacao genotypes during infection. Protein extraction from xylem-enriched tissue of stems inoculated with the fungus and their controls 1 day after inoculation was carried out, followed by separation through two-dimensional gel electrophoresis and identification by mass spectrometry. Enzyme activity was determined at 1, 3, 7 and 15 days after inoculation. A total of 50 differentially accumulated distinct proteins were identified in the treatments of both genotypes and were classified into 10 different categories. An interaction network between homologous proteins from Arabidospsis thaliana was generated for each genotype, using the STRING database and Cytoscape software. Primary metabolism processes were apparently repressed in both genotypes. The resistance factors suggested for genotype TSH1188 were: H2O2 accumulation, effective regulation of programmed cell death, production of phytoalexins derived from tryptophan and furanocoumarins, and participation of a predicted allergenic protein with probable ribonuclease function inhibiting the germination and propagation of the fungus. In the susceptible genotype, it is possible that its recognition and signaling mechanism through proteins from the SEC14 family is easily overcome by the pathogen. Our results will help to better understand the interaction between cacao and one of its most aggressive pathogens, to create disease control strategies.
Collapse
Affiliation(s)
- Irma Y Mora-Ocampo
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, 45662-900, Brazil
| | - Carlos P Pirovani
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, 45662-900, Brazil
| | - Edna D M N Luz
- Comissão Executiva de Planejamento da Lavoura Cacaueira (CEPLAC), Centro de Pesquisas do Cacau (CEPEC), Itabuna, BA, 45600-919, Brazil
| | - Angra P B Rêgo
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, 45662-900, Brazil
| | - Edson M A Silva
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, 45662-900, Brazil
| | - Mateo Rhodes-Valbuena
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, 45662-900, Brazil
| | - Ronan X Corrêa
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, 45662-900, Brazil.
| |
Collapse
|
21
|
Zuhar LM, Madihah AZ, Ahmad SA, Zainal Z, Idris AS, Shaharuddin NA. Identification of Oil Palm's Consistently Upregulated Genes during Early Infections of Ganoderma boninense via RNA-Seq Technology and Real-Time Quantitative PCR. PLANTS 2021; 10:plants10102026. [PMID: 34685835 PMCID: PMC8537556 DOI: 10.3390/plants10102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
Basal stem rot (BSR) disease caused by pathogenic fungus Ganoderma boninense is a significant concern in the oil palm industry. G. boninense infection in oil palm induces defense-related genes. To understand oil palm defense mechanisms in response to fungal invasion, we analyzed differentially expressed genes (DEGs) derived from RNA-sequencing (RNA-seq) transcriptomic libraries of oil palm roots infected with G. boninense. A total of 126 DEGs were detected from the transcriptomic libraries of G. boninense-infected root tissues at different infection stages. Functional annotation via pathway enrichment analyses revealed that the DEGs were involved in the defense response against the pathogen. The expression of the selected DEGs was further confirmed using real-time quantitative PCR (qPCR) on independent oil palm seedlings and mature palm samples. Seven putative defense-related DEGs consistently showed upregulation in seedlings and mature plants during G. boninense infection. These seven genes might potentially be developed as biomarkers for the early detection of BSR in oil palm.
Collapse
Affiliation(s)
- Liyana Mohd Zuhar
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia; (L.M.Z.); (S.A.A.)
| | - Ahmad Zairun Madihah
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia; (A.Z.M.); (A.S.I.)
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia; (L.M.Z.); (S.A.A.)
| | - Zamri Zainal
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia UKM, Bangi 43600, Selangor, Malaysia;
| | - Abu Seman Idris
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia; (A.Z.M.); (A.S.I.)
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia; (L.M.Z.); (S.A.A.)
- Institute of Plantation Studies, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
22
|
Yang S, Zhang Y, Cai W, Liu C, Hu J, Shen L, Huang X, Guan D, He S. CaWRKY28 Cys249 is Required for Interaction with CaWRKY40 in the Regulation of Pepper Immunity to Ralstonia solanacearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:733-745. [PMID: 33555219 DOI: 10.1094/mpmi-12-20-0361-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
WRKY transcription factors have been implicated in plant response to pathogens but how WRKY-mediated networks are organized and operate to produce appropriate transcriptional outputs remains largely unclear. Here, we identify a member of the WRKY family from pepper (Capsicum annuum), CaWRKY28, that physically interacts with CaWRKY40, a positive regulator of pepper immunity and thermotolerance. We confirmed CaWRKY28-CaWRKY40 interaction by coimmunoprecipitation, bimolecular fluorescence complementation, and microscale thermophoresis. Our findings supported the idea that CaWRKY28 is a nuclear protein that acts as positive regulator in pepper responses to infection by the pathogenic bacterium Ralstonia solanacearum. It performs its function not by directly modulating the W-box containing immunity-related genes but by promoting CaWRKY40 via physical interaction to bind and activate its immunity-related target genes, including CaPR1, CaNPR1, CaDEF1, and CaABR1, but not its thermotolerance-related target gene, CaHSP24. All of these data indicate that CaWRKY28 interacts with and potentiates CaWRKY40 in regulating immunity against R. solanacearum infection but not thermotolerance. Importantly, we discovered that CaWRKY28 Cys249, shared by CaWRKY28 and its orthologs probably only in the family Solanaceae, is crucial for the CaWRKY28-CaWRKY40 interaction. These results highlight how CaWRKY28 associates with CaWRKY40 during the establishment of WRKY networks, and how CaWRKY40 achieves its functional specificity during pepper responses to R. solanacearum infection.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Sheng Yang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yangwen Zhang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Weiwei Cai
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Cailing Liu
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiong Hu
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lei Shen
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Xueying Huang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Deyi Guan
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shuilin He
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
23
|
A MYB4-MAN3-Mannose-MNB1 signaling cascade regulates cadmium tolerance in Arabidopsis. PLoS Genet 2021; 17:e1009636. [PMID: 34181654 PMCID: PMC8270467 DOI: 10.1371/journal.pgen.1009636] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/09/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022] Open
Abstract
Our previous studies showed that MAN3-mediated mannose plays an important role in plant responses to cadmium (Cd) stress. However, the underlying mechanisms and signaling pathways involved are poorly understood. In this study, we showed that an Arabidopsis MYB4-MAN3-Mannose-MNB1 signaling cascade is involved in the regulation of plant Cd tolerance. Loss-of-function of MNB1 (mannose-binding-lectin 1) led to decreased Cd accumulation and tolerance, whereas overexpression of MNB1 significantly enhanced Cd accumulation and tolerance. Consistently, expression of the genes involved in the GSH-dependent phytochelatin (PC) synthesis pathway (such as GSH1, GSH2, PCS1, and PCS2) was significantly reduced in the mnb1 mutants but markedly increased in the MNB1-OE lines in the absence or presence of Cd stress, which was positively correlated with Cd-activated PC synthesis. Moreover, we found that mannose is able to bind to the GNA-related domain of MNB1, and that mannose binding to the GNA-related domain of MNB1 is required for MAN3-mediated Cd tolerance in Arabidopsis. Further analysis showed that MYB4 directly binds to the promoter of MAN3 to positively regulate the transcript of MAN3 and thus Cd tolerance via the GSH-dependent PC synthesis pathway. Consistent with these findings, overexpression of MAN3 rescued the Cd-sensitive phenotype of the myb4 mutant but not the mnb1 mutant, whereas overexpression of MNB1 rescued the Cd-sensitive phenotype of the myb4 mutant. Taken together, our results provide compelling evidence that a MYB4-MAN3-Mannose-MNB1 signaling cascade regulates cadmium tolerance in Arabidopsis through the GSH-dependent PC synthesis pathway. Cadmium (Cd) pollution in soils is recognized as an environmental problem worldwide, and phytoremediation is one of the important approaches for cleaning Cd-contaminated soils. However, the molecular mechanisms involved in Cd tolerance remains unclear. Here we demonstrated that overexpression of MNB1, which encodes a mannose-binding lectin, manifestly increased Cd tolerance, whereas loss-of-function of MNB1 led to enhanced Cd sensitivity. Further analysis showed that mannose binding to the GNA-related domain of MNB1 is required for MAN3-mediated Cd tolerance. Moreover, under Cd stress, MYB4 directly binds the promoter of MAN3 to positively regulate the expression of MAN3, and thus Cd tolerance via the glutathione (GSH)-dependent phytochelatin (PC) synthesis pathway. Our results demonstrated that a MYB4-MAN3-Mannose-MNB1 signaling cascade regulates Cd tolerance through the GSH-dependent PC synthesis pathway in Arabidopsis.
Collapse
|
24
|
Hussain A, Noman A, Arif M, Farooq S, Khan MI, Cheng P, Qari SH, Anwar M, Hashem M, Ashraf MF, Alamri S, Adnan M, Khalofah A, Al-Zoubi OM, Ansari MJ, Khan KA, Sun Y. A basic helix-loop-helix transcription factor CabHLH113 positively regulate pepper immunity against Ralstonia solanacearum. Microb Pathog 2021; 156:104909. [PMID: 33964418 DOI: 10.1016/j.micpath.2021.104909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/26/2021] [Accepted: 04/15/2021] [Indexed: 11/26/2022]
Abstract
Pepper's (Capsicum annum) response to bacterial pathogen Ralstonia solanacearm inoculation (RSI) and abiotic stresses is known to be synchronized by transcriptional network; however, related molecular mechanisms need extensive experimentation. We identified and characterized functions of CabHLH113 -a basic helix-loop-helix transcription factor-in pepper immunity to R. solanacearum infection. The RSI and foliar spray of phytohormones, including salicylic acid (SA), methyl jasmonate (MeJA), ethylene (ETH), and absicic acid (ABA) induced transcription of CabHLH113 in pepper. Loss of function of CabHLH113 by virus-induced-gene-silencing (VIGS) compromised defense of pepper plants against RSI and suppressed relative expression levels of immunity-associated marker genes, i.e., CaPR1, CaNPR1, CaDEF1, CaHIR1 and CaABR1. Pathogen growth was significantly increased after loss of function of CabHLH113 compared with un-silenced plants with remarkable increase in pepper susceptibility. Besides, transiently over-expression of CabHLH113 induced HR-like cell death, H2O2 accumulation and up-regulation of defense-associated marker genes, e.g. CaPR1, CaNPR1, CaDEF1, CaHIR1 and CaABR1. Additionally, transient over-expression of CabHLH113 enhanced the transcriptional levels of CaWRKY6, CaWRKY27 and CaWRKY40. Conversely, transient over-expression of CaWRKY6, CaWRKY27 and CaWRKY40 enhanced the transcriptional levels of CabHLH113. Collectively, our results indicate that newly characterized CabHLH113 has novel defense functions in pepper immunity against RSI via triggering HR-like cell death and cellular levels of defense linked genes.
Collapse
Affiliation(s)
- Ansar Hussain
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China; Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, Pakistan.
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan.
| | - Muhammad Arif
- Department of Plant Protection, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Shahid Farooq
- Department of Agronomy, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Ifnan Khan
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Ping Cheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Sameer H Qari
- Biology Department, Aljumum University College, Umm Al - Qura University, Makkah, Saudi Arabia
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut, 71516, Egypt
| | - Muhammad Furqan Ashraf
- College of Life Sciences, South China Agricultural University, No.483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Saad Alamri
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia
| | - Muhammad Adnan
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Ahlam Khalofah
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | | | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (MJP Rohilkhand University Bareilly), 244001, India
| | - Khalid Ali Khan
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Yunhao Sun
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China.
| |
Collapse
|
25
|
Petrova N, Nazipova A, Gorshkov O, Mokshina N, Patova O, Gorshkova T. Gene Expression Patterns for Proteins With Lectin Domains in Flax Stem Tissues Are Related to Deposition of Distinct Cell Wall Types. FRONTIERS IN PLANT SCIENCE 2021; 12:634594. [PMID: 33995436 PMCID: PMC8121149 DOI: 10.3389/fpls.2021.634594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/16/2021] [Indexed: 05/10/2023]
Abstract
The genomes of higher plants encode a variety of proteins with lectin domains that are able to specifically recognize certain carbohydrates. Plants are enriched in a variety of potentially complementary glycans, many of which are located in the cell wall. We performed a genome-wide search for flax proteins with lectin domains and compared the expression of the encoding genes in different stem tissues that have distinct cell wall types with different sets of major polysaccharides. Over 400 genes encoding proteins with lectin domains that belong to different families were revealed in the flax genome; three quarters of these genes were expressed in stem tissues. Hierarchical clustering of the data for all expressed lectins grouped the analyzed samples according to their characteristic cell wall type. Most lectins differentially expressed in tissues with primary, secondary, and tertiary cell walls were predicted to localize at the plasma membrane or cell wall. These lectins were from different families and had various architectural types. Three out of four flax genes for proteins with jacalin-like domains were highly upregulated in bast fibers at the stage of tertiary cell wall deposition. The dynamic changes in transcript level of many genes for lectins from various families were detected in stem tissue over the course of gravitropic response induced by plant gravistimulation. The data obtained in this study indicate a large number of lectin-mediated events in plants and provide insight into the proteins that take part in tissue specialization and reaction to abiotic stress.
Collapse
Affiliation(s)
- Natalia Petrova
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Alsu Nazipova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Oleg Gorshkov
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Natalia Mokshina
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Olga Patova
- Institute of Physiology, FRC Komi Science Centre of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Tatyana Gorshkova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
- *Correspondence: Tatyana Gorshkova,
| |
Collapse
|
26
|
Huang J, Shen L, Yang S, Guan D, He S. CaASR1 promotes salicylic acid- but represses jasmonic acid-dependent signaling to enhance the resistance of Capsicum annuum to bacterial wilt by modulating CabZIP63. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6538-6554. [PMID: 32720981 DOI: 10.1093/jxb/eraa350] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/22/2020] [Indexed: 05/22/2023]
Abstract
CabZIP63 acts positively in the resistance of pepper (Capsicum annuum) to bacterial wilt caused by Ralstonia solanacearum or tolerance to high-temperature/high-humidity stress, but it is unclear how CabZIP63 achieves its functional specificity against R. solanacearum. Here, CaASR1, an abscisic acid-, stress-, and ripening-inducible protein of C. annuum, was functionally characterized in modulating the functional specificity of CabZIP63 during the defense response of pepper to R. solanacearum. In pepper plants inoculated with R. solanacearum, CaASR1 was up-regulated before 24 h post-inoculation but down-regulated thereafter, and was down-regulated by high-temperature/high-humidity stress. Data from gene silencing and transient overexpression experiments indicated that CaASR1 acts as a positive regulator in the immunity of pepper against R. solanacearum and a negative regulator of thermotolerance. Pull-down combined with mass spectrometry revealed that CaASR1 interacted with CabZIP63 upon R. solanacearum infection; the interaction was confirmed by microscale thermophoresis and bimolecular fluorescence complementation assays.CaASR1 silencing upon R. solanacearum inoculation repressed CabZIP63-mediated transcription from the promoters of the salicylic acid (SA)-dependent CaPR1 and CaNPR1, but derepressed transcription of CaHSP24 and the jasmonic acid (JA)-dependent CaDEF1. Our findings suggest that CaASR1 acts as a positive regulator of the defense response of pepper to R. solanacearum by interacting with CabZIP63, enabling it to promote SA-dependent but repress JA-dependent immunity and thermotolerance during the early stages of infection.
Collapse
Affiliation(s)
- Jinfeng Huang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Lei Shen
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Deyi Guan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
27
|
Chitinase Gene Positively Regulates Hypersensitive and Defense Responses of Pepper to Colletotrichum acutatum Infection. Int J Mol Sci 2020; 21:ijms21186624. [PMID: 32927746 PMCID: PMC7555800 DOI: 10.3390/ijms21186624] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Anthracnose caused by Colletotrichum acutatum is one of the most devastating fungal diseases of pepper (Capsicum annuum L.). The utilization of chitin-binding proteins or chitinase genes is the best option to control this disease. A chitin-binding domain (CBD) has been shown to be crucial for the innate immunity of plants and activates the hypersensitive response (HR). The CaChiIII7 chitinase gene has been identified and isolated from pepper plants. CaChiIII7 has repeated CBDs that encode a chitinase enzyme that is transcriptionally stimulated by C. acutatum infection. The knockdown of CaChiIII7 in pepper plants confers increased hypersensitivity to C. acutatum, resulting in its proliferation in infected leaves and an attenuation of the defense response genes CaPR1, CaPR5, and SAR8.2 in the CaChiIII7-silenced pepper plants. Additionally, H2O2 accumulation, conductivity, proline biosynthesis, and root activity were distinctly reduced in CaChiIII7-silenced plants. Subcellular localization analyses indicated that the CaChiIII7 protein is located in the plasma membrane and cytoplasm of plant cells. The transient expression of CaChiIII7 increases the basal resistance to C. acutatum by significantly expressing several defense response genes and the HR in pepper leaves, accompanied by an induction of H2O2 biosynthesis. These findings demonstrate that CaChiIII7 plays a prominent role in plant defense in response to pathogen infection.
Collapse
|
28
|
Andersen EJ, Nepal MP, Purintun JM, Nelson D, Mermigka G, Sarris PF. Wheat Disease Resistance Genes and Their Diversification Through Integrated Domain Fusions. Front Genet 2020; 11:898. [PMID: 32849852 PMCID: PMC7422411 DOI: 10.3389/fgene.2020.00898] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 07/20/2020] [Indexed: 12/23/2022] Open
Abstract
Plants are in a constant evolutionary arms race with their pathogens. At the molecular level, the plant nucleotide-binding leucine-rich repeat receptors (NLRs) family has coevolved with rapidly evolving pathogen effectors. While many NLRs utilize variable leucine-rich repeats (LRRs) to detect effectors, some have gained integrated domains (IDs) that may be involved in receptor activation or downstream signaling. The major objectives of this project were to identify NLR genes in wheat (Triticum aestivum L.) and assess IDs associated with immune signaling (e.g., kinase and transcription factor domains). We identified 2,151 NLR-like genes in wheat, of which 1,298 formed 547 gene clusters. Among the non-toll/interleukin-1 receptor NLR (non-TNL)-like genes, 1,552 encode LRRs, 802 are coiled-coil (CC) domain-encoding (CC-NBS-LRR or CNL) genes, and three encode resistance to powdery mildew 8 (RPW8) domains (RPW8-NBS-LRR or RNL). The expansion of the NLR gene family in wheat is attributable to its origin by recent polyploidy events. Gene clusters were likely formed by tandem duplications, and wheat NLR phylogenetic relationships were similar to those in barley and Aegilops. We also identified wheat NLR-ID fusion proteins as candidates for NLR functional diversification, often as kinase and transcription factor domains. Comparative analyses of the IDs revealed evolutionary conservation of more than 80% amino acid sequence similarity. Homology assessment indicates that these domains originated as functional non-NLR-encoding genes that were incorporated into NLR-encoding genes through duplication events. We also found that many of the NLR-ID genes encode alternative transcripts that include or exclude IDs, a phenomenon that seems to be conserved among species. To verify this, we have analyzed the alternative transcripts that include or exclude an ID of an NLR-ID from another monocotyledon species, rice (Oryza sativa). This indicates that plants employ alternative splicing to regulate IDs, possibly using them as baits, decoys, and functional signaling components. Genomic and expression data support the hypothesis that wheat uses alternative splicing to include and exclude IDs from NLR proteins.
Collapse
Affiliation(s)
- Ethan J Andersen
- Department of Biology, Francis Marion University, Florence, SC, United States
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Jordan M Purintun
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Dillon Nelson
- Department of Math, Science and Technology, Oglala Lakota College, Kyle, SD, United States
| | | | - Panagiotis F Sarris
- Department of Biology, University of Crete, Crete, Greece.,Institute of Molecular Biology and Biotechnology, FORTH, Crete, Greece.,School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
29
|
Luo X, Tian T, Tan X, Zheng Y, Xie C, Xu Y, Yang X. VdNPS, a Nonribosomal Peptide Synthetase, Is Involved in Regulating Virulence in Verticillium dahliae. PHYTOPATHOLOGY 2020; 110:1398-1409. [PMID: 32228378 DOI: 10.1094/phyto-02-20-0031-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nonribosomal peptide synthetases (NPS) are known for the biosynthesis of antibiotics, toxins, and siderophore production. They are also a virulence determinant in different phytopathogens. However, until now, the functional characterization of NPS in Verticillium dahliae has not been reported. Deletion of the NPS gene in V. dahliae led to the decrease of conidia, microsclerotia, and pathogenicity. ΔVdNPS strains were tolerant to H2O2, and the genes involved in H2O2 detoxification, iron/copper transport, and cytoskeleton were differentially expressed in ΔVdNPS. Interestingly, ΔVdNPS strains exhibited hypersensitivity to salicylic acid (SA), and the genes involved in SA hydroxylation were up-regulated in ΔVdNPS compared with wild-type V. dahliae under SA stress. Additionally, during infection, ΔVdNPS induced more pathogenesis-related gene expression, higher reactive oxygen species production, and stronger SA-mediated signaling transduction in host to overcome pathogen. Uncovering the function of VdNPS in pathogenicity could provide a reliable theoretical basis for the development of cultivars with durable resistance against V. dahliae-associated diseases.
Collapse
Affiliation(s)
- Xiumei Luo
- The School of Life Science, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Tingting Tian
- The School of Life Science, Chongqing University, Chongqing 401331, China
| | - Xue Tan
- The School of Life Science, Chongqing University, Chongqing 401331, China
| | - Yixuan Zheng
- Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Chengjian Xie
- Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Ya Xu
- Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Xingyong Yang
- Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
30
|
CaCML13 Acts Positively in Pepper Immunity Against Ralstonia solanacearum Infection Forming Feedback Loop with CabZIP63. Int J Mol Sci 2020; 21:ijms21114186. [PMID: 32545368 PMCID: PMC7312559 DOI: 10.3390/ijms21114186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 01/04/2023] Open
Abstract
Ca2+-signaling—which requires the presence of calcium sensors such as calmodulin (CaM) and calmodulin-like (CML) proteins—is crucial for the regulation of plant immunity against pathogen attack. However, the underlying mechanisms remain elusive, especially the roles of CMLs involved in plant immunity remains largely uninvestigated. In the present study, CaCML13, a calmodulin-like protein of pepper that was originally found to be upregulated by Ralstonia solanacearum inoculation (RSI) in RNA-seq, was functionally characterized in immunity against RSI. CaCML13 was found to target the whole epidermal cell including plasma membrane, cytoplasm and nucleus. We also confirmed that CaCML13 was upregulated by RSI in pepper roots by quantitative real-time PCR (qRT-PCR). The silencing of CaCML13 significantly enhanced pepper plants’ susceptibility to RSI accompanied with downregulation of immunity-related CaPR1, CaNPR1, CaDEF1 and CabZIP63. In contrast, CaCML13 transient overexpression induced clear hypersensitivity-reaction (HR)-mimicked cell death and upregulation of the tested immunity-related genes. In addition, we also revealed that the G-box-containing CaCML13 promoter was bound by CabZIP63 and CaCML13 was positively regulated by CabZIP63 at transcriptional level. Our data collectively indicate that CaCML13 act as a positive regulator in pepper immunity against RSI forming a positive feedback loop with CabZIP63.
Collapse
|
31
|
Noman A, Aqeel M, Qari SH, Al Surhanee AA, Yasin G, Alamri S, Hashem M, M Al-Saadi A. Plant hypersensitive response vs pathogen ingression: Death of few gives life to others. Microb Pathog 2020; 145:104224. [PMID: 32360524 DOI: 10.1016/j.micpath.2020.104224] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
The hypersensitive response (HR) is a defense action against pathogen ingression. Typically, HR is predictable with the appearance of the dead, brown cells along with visible lesions. Although death during HR can be limited to the cells in direct contact with pathogens, yet cell death can also spread away from the infection site. The variety in morphologies of plant cell death proposes involvement of different pathways for triggering HR. It is considered that, despite the differences, HR in plants performs the resembling functions like that of animal programmed cell death (PCD) for confining pathogen progression. HR, in fact, crucially initiates systemic signals for activation of defense in distal plant parts that ultimately results in systemic acquired resistance (SAR). Therefore, HR can be separated from other local immune actions/responses at the infection site. HR comprises of serial events inclusive of transcriptional reprograming, Ca2+ influx, oxidative bursts and phyto-hormonal signaling. Although a lot of work has been done on HR in plants but many questions regarding mechanisms and consequences of HRs remain unaddressed.We have summarized the mechanistic roles and cellular events of plant cells during HR in defense regulation. Roles of different genes during HR have been discussed to clarify genetic control of HR in plants. Generally existing ambiguities about HR and programmed cell death at the reader level has been addressed.
Collapse
Affiliation(s)
- Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan.
| | - Muhammad Aqeel
- School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Sameer Hasan Qari
- Biology Department, Al-jumum University College, Umm Al Qura University, Makkah, Saudi Arabia
| | - Ameena A Al Surhanee
- Biology Department, College of Science, Jouf University, Sakaka, 2014, Saudi Arabia
| | - Ghulam Yasin
- Institute of Pure and Applied Biology, Bahau ud din Zakria University, Multan, Pakistan
| | - Saad Alamri
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Research center for advance materials science (RCAMS), King Khalid University, PO Box 9004 Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Assuit University, Botany and Microbiology department, Assuit. 71516, Egypt
| | | |
Collapse
|
32
|
Chen Q, Dong C, Sun X, Zhang Y, Dai H, Bai S. Overexpression of an apple LysM-containing protein gene, MdCERK1-2, confers improved resistance to the pathogenic fungus, Alternaria alternata, in Nicotiana benthamiana. BMC PLANT BIOLOGY 2020; 20:146. [PMID: 32268888 PMCID: PMC7386173 DOI: 10.1186/s12870-020-02361-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/24/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Lysin motif (LysM)-containing proteins are involved in the recognition of fungal and bacterial pathogens. However, few studies have reported on their roles in the defense responses of woody plants against pathogens. A previous study reported that the apple MdCERK1 gene was induced by chitin and Rhizoctonia solani, and its protein can bind to chitin. However, its effect on defense responses has not been investigated. RESULTS In this study, a new apple CERK gene, designated as MdCERK1-2, was identified. It encodes a protein that shares high sequence identity with the previously reported MdCERK1 and AtCERK1. Its chitin binding ability and subcellular location are similar to MdCERK1 and AtCERK1, suggesting that MdCERK1-2 may play a role in apple immune defense responses as a pattern recognition receptor (PRR). MdCERK1-2 expression in apple was induced by 2 fungal pathogens, Botryosphaeria dothidea and Glomerella cingulate, but not by the bacterial pathogen, Erwinia amylovora, indicating that MdCERK1-2 is involved in apple anti-fungal defense responses. Further functional analysis by heterologous overexpression (OE) in Nicotiana benthamiana (Nb) demonstrated that MdCERK1-2 OE improved Nb resistance to the pathogenic fungus, Alternaria alternata. H2O2 accumulation and callose deposition increased after A. alternata infection in MdCERK1-2 OE plants compared to wild type (WT) and empty vector (EV)-transformed plants. The induced expression of NbPAL4 by A. alternata significantly (p < 0.01, n = 4) increased in MdCERK1-2 OE plants. Other tested genes, including NbNPR1, NbPR1a, NbERF1, and NbLOX1, did not exhibit significant changes after A. alternata infection in OE plants compared to EV or WT plants. OE plants also accumulated more polyphenols after A. alternata infection. CONCLUSIONS Heterologous MdCERK1-2 OE affects multiple defense responses in Nb plants and increased their resistance to fungal pathogens. This result also suggests that MdCERK1-2 is involved in apple defense responses against pathogenic fungi.
Collapse
Affiliation(s)
- Qiming Chen
- College of Life Sciences, Key Laboratory of Plant Biotechnology of Shandong Province, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao, 266109, China
| | - Chaohua Dong
- College of Life Sciences, Key Laboratory of Plant Biotechnology of Shandong Province, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, 266109, China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao, 266109, China
| | - Xiaohong Sun
- College of Life Sciences, Key Laboratory of Plant Biotechnology of Shandong Province, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yugang Zhang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, 266109, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hongyi Dai
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, 266109, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Suhua Bai
- College of Life Sciences, Key Laboratory of Plant Biotechnology of Shandong Province, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China.
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, 266109, China.
- Shandong Province Key Laboratory of Applied Mycology, Qingdao, 266109, China.
| |
Collapse
|
33
|
Singh R, Liyanage R, Gupta C, Lay JO, Pereira A, Rojas CM. The Arabidopsis Proteins AtNHR2A and AtNHR2B Are Multi-Functional Proteins Integrating Plant Immunity With Other Biological Processes. FRONTIERS IN PLANT SCIENCE 2020; 11:232. [PMID: 32194606 PMCID: PMC7064621 DOI: 10.3389/fpls.2020.00232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
AtNHR2A (Arabidopsis thaliana nonhost resistance 2A) and AtNHR2B (Arabidopsis thaliana nonhost resistance 2B) are two proteins that participate in nonhost resistance, a broad-spectrum mechanism of plant immunity that protects plants against the majority of potential pathogens. AtNHR2A and AtNHR2B are localized to the cytoplasm, chloroplasts, and other subcellular compartments of unknown identity. The multiple localizations of AtNHR2A and AtNHR2B suggest that these two proteins are highly dynamic and versatile, likely participating in multiple biological processes. In spite of their importance, the specific functions of AtNHR2A and AtNHR2B have not been elucidated. Thus, to aid in the functional characterization of these two proteins and identify the biological processes in which these proteins operate, we used immunoprecipitation coupled with mass spectrometry (IP-MS) to identify proteins interacting with AtNHR2A and AtNHR2B and to generate their interactome network. Further validation of three of the identified proteins provided new insights into specific pathways and processes related to plant immunity where AtNHR2A and AtNHR2B participate. Moreover, the comprehensive analysis of the AtNHR2A- and AtNHR2B-interacting proteins using published empirical information revealed that the functions of AtNHR2A and AtNHR2B are not limited to plant immunity but encompass other biological processes.
Collapse
Affiliation(s)
- Raksha Singh
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR, United States
- Crop Production and Pest Control Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Purdue University, West Lafayette, IN, United States
| | - Rohana Liyanage
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Chirag Gupta
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Jackson O. Lay
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Andy Pereira
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Clemencia M. Rojas
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
34
|
Jung IJ, Ahn JW, Jung S, Hwang JE, Hong MJ, Choi HI, Kim JB. Overexpression of rice jacalin-related mannose-binding lectin (OsJAC1) enhances resistance to ionizing radiation in Arabidopsis. BMC PLANT BIOLOGY 2019; 19:561. [PMID: 31852472 PMCID: PMC6921557 DOI: 10.1186/s12870-019-2056-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/26/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Jacalin-related lectins in plants are important in defense signaling and regulate growth, development, and response to abiotic stress. We characterized the function of a rice mannose-binding jacalin-related lectin (OsJAC1) in the response to DNA damage from gamma radiation. RESULTS Time- and dose-dependent changes of OsJAC1 expression in rice were detected in response to gamma radiation. To identify OsJAC1 function, OsJAC1-overexpressing transgenic Arabidopsis plants were generated. Interestingly, OsJAC1 overexpression conferred hyper-resistance to gamma radiation in these plants. Using comparative transcriptome analysis, genes related to pathogen defense were identified among 22 differentially expressed genes in OsJAC1-overexpressing Arabidopsis lines following gamma irradiation. Furthermore, expression profiles of genes associated with the plant response to DNA damage were determined in these transgenic lines, revealing expression changes of important DNA damage checkpoint and perception regulatory components, namely MCMs, RPA, ATM, and MRE11. CONCLUSIONS OsJAC1 overexpression may confer hyper-resistance to gamma radiation via activation of DNA damage perception and DNA damage checkpoints in Arabidopsis, implicating OsJAC1 as a key player in DNA damage response in plants. This study is the first report of a role for mannose-binding jacalin-related lectin in DNA damage.
Collapse
Affiliation(s)
- In Jung Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212 Republic of Korea
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212 Republic of Korea
| | - Sera Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212 Republic of Korea
| | - Jung Eun Hwang
- Division of Ecological Conservation, Bureau of Ecological Research, National Institute of Ecology, Seocheon, 33657 Republic of Korea
| | - Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212 Republic of Korea
| | - Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212 Republic of Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212 Republic of Korea
| |
Collapse
|
35
|
Noman A, Hussain A, Adnan M, Khan MI, Ashraf MF, Zainab M, Khan KA, Ghramh HA, He S. A novel MYB transcription factor CaPHL8 provide clues about evolution of pepper immunity againstsoil borne pathogen. Microb Pathog 2019; 137:103758. [DOI: 10.1016/j.micpath.2019.103758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/26/2022]
|
36
|
Zhang C, Chen H, Zhuang RR, Chen YT, Deng Y, Cai TC, Wang SY, Liu QZ, Tang RH, Shan SH, Pan RL, Chen LS, Zhuang WJ. Overexpression of the peanut CLAVATA1-like leucine-rich repeat receptor-like kinase AhRLK1 confers increased resistance to bacterial wilt in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5407-5421. [PMID: 31173088 PMCID: PMC6793444 DOI: 10.1093/jxb/erz274] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/31/2019] [Indexed: 06/04/2023]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a devastating disease affecting hundreds of plant species, yet the host factors remain poorly characterized. The leucine-rich repeat receptor-like kinase gene AhRLK1, characterized as CLAVATA1, was found to be up-regulated in peanut upon inoculation with R. solanacearum. The AhRLK1 protein was localized in the plasma membrane and cell wall. qPCR results showed AhRLK1 was induced in a susceptible variety but little changed in a resistant cultivar after inoculated with R. solanacearum. Hormones such as salicylic acid, abscisic acid, methyl jasmonate, and ethephon induced AhRLK1 expression. In contrast, AhRLK1 expression was down-regulated under cold and drought treatments. Transient overexpression of AhRLK1 led to a hypersensitive response (HR) in Nicotiana benthamiana. Furthermore, AhRLK1 overexpression in tobacco significantly increased the resistance to R. solanacearum. Besides, the transcripts of most representative defense responsive genes in HR and hormone signal pathways were significantly increased in the transgenic lines. EDS1 and PAD4 in the R gene signaling pathway were also up-regulated, but NDR1 was down-regulated. Accordingly, AhRLK1 may increase the defense response to R. solanacearum via HR and hormone defense signaling, in particular through the EDS1 pathway of R gene signaling. These results provide a new understanding of the CLAVATA1 function and will contribute to genetic enhancement of peanut.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hua Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rui-Rong Zhuang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu-Ting Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ye Deng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tie-Cheng Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuai-Yin Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qin-Zheng Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rong-Hua Tang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shi-Hua Shan
- Shandong Peanut Research Institute, Qingdao, China
| | - Rong-Long Pan
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, Taiwan
| | - Li-Song Chen
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei-Jian Zhuang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
37
|
Sharma N, Arrigoni G, Ebinezer LB, Trentin AR, Franchin C, Giaretta S, Carletti P, Thiele-Bruhn S, Ghisi R, Masi A. A proteomic and biochemical investigation on the effects of sulfadiazine in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:146-158. [PMID: 31002969 DOI: 10.1016/j.ecoenv.2019.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Animal manure or bio-solids used as fertilizers are the main routes of antibiotic exposure in the agricultural land, which can have immense detrimental effects on plants. Sulfadiazine (SDZ), belonging to the class of sulfonamides, is one of the most detected antibiotics in the agricultural soil. In this study, the effect of SDZ on the growth, changes in antioxidant metabolite content and enzyme activities related to oxidative stress were analysed. Moreover, the proteome alterations in Arabidopsis thaliana roots in response to SDZ was examined by means of a combined iTRAQ-LC-MS/MS quantitative proteomics approach. A dose-dependent decrease in leaf biomass and root length was evidenced in response to SDZ. Increased malondialdehyde content at higher concentration (2 μM) of SDZ indicated increased lipid peroxidation and suggest the induction of oxidative stress. Glutathione levels were significantly higher compared to control, whereas there was no increase in ascorbate content or the enzyme activities of glutathione metabolism, even at higher concentrations. In total, 48 differentially abundant proteins related to stress/stimuli response followed by transcription and translation, metabolism, transport and other functions were identified. Several proteins related to oxidative, dehydration, salinity and heavy metal stresses were represented. Upregulation of peroxidases was validated with total peroxidase activity. Pathway analysis provided an indication of increased phenylpropanoid biosynthesis. Probable molecular mechanisms altered in response to SDZ are highlighted.
Collapse
Affiliation(s)
- Nisha Sharma
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy; Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Italy
| | | | - Anna Rita Trentin
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| | - Cinzia Franchin
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy; Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Italy
| | - Sabrina Giaretta
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| | - Paolo Carletti
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| | - Sören Thiele-Bruhn
- Soil Science, Trier University, Behringstraße 21, D-54286, Trier, Germany
| | - Rossella Ghisi
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| | - Antonio Masi
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| |
Collapse
|
38
|
Cambier S, Ginis O, Moreau SJM, Gayral P, Hearn J, Stone GN, Giron D, Huguet E, Drezen JM. Gall Wasp Transcriptomes Unravel Potential Effectors Involved in Molecular Dialogues With Oak and Rose. Front Physiol 2019; 10:926. [PMID: 31396099 PMCID: PMC6667641 DOI: 10.3389/fphys.2019.00926] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/09/2019] [Indexed: 01/29/2023] Open
Abstract
To gain insight into wasp factors that might be involved in the initial induction of galls on woody plants, we performed high throughput (454) transcriptome analysis of ovaries and venom glands of two cynipid gall wasps, Biorhiza pallida and Diplolepis rosae, inducing galls on oak and rose, respectively. De novo assembled and annotated contigs were compared to sequences from phylogenetically related parasitoid wasps. The relative expression levels of contigs were estimated to identify the most expressed gene sequences in each tissue. We identify for the first time a set of maternally expressed gall wasp proteins potentially involved in the interaction with the plant. Some genes highly expressed in venom glands and ovaries may act to suppress early plant defense signaling. We also identify gall wasp cellulases that could be involved in observed local lysis of plant tissue following oviposition, and which may have been acquired from bacteria by horizontal gene transfer. We find no evidence of virus-related gene expression, in contrast to many non-cynipid parasitoid wasps. By exploring gall wasp effectors, this study is a first step toward understanding the molecular mechanisms underlying cynipid gall induction in woody plants, and the recent sequencing of oak and rose genomes will enable study of plant responses to these factors.
Collapse
Affiliation(s)
- Sébastien Cambier
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, Tours, France
| | - Olivia Ginis
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, Tours, France
| | - Sébastien J. M. Moreau
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, Tours, France
| | - Philippe Gayral
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, Tours, France
| | - Jack Hearn
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Graham N. Stone
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - David Giron
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, Tours, France
| | - Elisabeth Huguet
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, Tours, France
| | - Jean-Michel Drezen
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, Tours, France
| |
Collapse
|
39
|
Ahn E, Hu Z, Perumal R, Prom LK, Odvody G, Upadhyaya HD, Magill C. Genome wide association analysis of sorghum mini core lines regarding anthracnose, downy mildew, and head smut. PLoS One 2019; 14:e0216671. [PMID: 31086384 PMCID: PMC6516728 DOI: 10.1371/journal.pone.0216671] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/26/2019] [Indexed: 02/04/2023] Open
Abstract
In previous studies, a sorghum mini core collection was scored over several years for response to Colletotrichum sublineola, Peronosclerospora sorghi, and Sporisorium reilianum, the causal agents of the disease anthracnose, downy mildew, and head smut, respectively. The screening results were combined with over 290,000 Single nucleotide polymorphic (SNP) loci from an updated version of a publicly available genotype by sequencing (GBS) dataset available for the mini core collection. GAPIT (Genome Association and Prediction Integrated Tool) R package was used to identify chromosomal locations that differ in disease response. When the top scoring SNPs were mapped to the most recent version of the published sorghum genome, in each case, a nearby and most often the closest annotated gene has precedence for a role in host defense.
Collapse
Affiliation(s)
- Ezekiel Ahn
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Zhenbin Hu
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
| | - Ramasamy Perumal
- Kansas State University, Agricultural Research Center, Hays, Kansas, United States of America
| | - Louis K. Prom
- USDA-ARS Southern Plains Agricultural Research Center, College Station, Texas, United States of America
| | - Gary Odvody
- Texas A&M AgriLife Research, Corpus Christi, Texas, United States of America
| | - Hari D. Upadhyaya
- ICRISAT, Patancheru, Telangana, India
- King Abdulaziz University, Jeddah, Saudi Arabia
| | - Clint Magill
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
40
|
Prom LK, Ahn E, Isakeit T, Magill C. GWAS analysis of sorghum association panel lines identifies SNPs associated with disease response to Texas isolates of Colletotrichum sublineola. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1389-1396. [PMID: 30688991 DOI: 10.1007/s00122-019-03285-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 01/16/2019] [Indexed: 05/27/2023]
Abstract
SNPs identify prospective genes related to response to Colletotrichum sublineola (anthracnose) in the sorghum association panel lines. Sorghum association panel (SAP) lines were scored over several years for response to Colletotrichum sublineola, the causal agent of the disease anthracnose. Known resistant and susceptible lines were included each year to verify successful inoculation. Over 79,000 single-nucleotide polymorphic (SNP) loci from a publicly available genotype by sequencing dataset available for the SAP lines were used with TASSEL association mapping software to identify chromosomal locations associated with differences in disease response. When the top-scoring SNPs were mapped to the published sorghum genome, in each case, the nearest annotated gene has precedence for a role in host defense.
Collapse
Affiliation(s)
- Louis K Prom
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, 77845, USA.
| | - Ezekiel Ahn
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Thomas Isakeit
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Clint Magill
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
41
|
Han Y, Song L, Peng C, Liu X, Liu L, Zhang Y, Wang W, Zhou J, Wang S, Ebbole D, Wang Z, Lu GD. A Magnaporthe Chitinase Interacts with a Rice Jacalin-Related Lectin to Promote Host Colonization. PLANT PHYSIOLOGY 2019; 179:1416-1430. [PMID: 30696749 PMCID: PMC6446787 DOI: 10.1104/pp.18.01594] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/18/2019] [Indexed: 05/21/2023]
Abstract
The genome of rice blast fungus (Magnaporthe oryzae) encodes 15 glycoside hydrolase 18 family chitinases. In this study, we characterized the function of an M. oryzae extracellular chitinase, MoChi1, and its interaction with a host protein, OsMBL1, a jacalin-related Mannose-Binding Lectin (MBL) in rice (Oryza sativa). Deletion of MoChi1 resulted in reduced aerial hyphal formation and reduced virulence in rice by activating the expression of defense-responsive genes. We confirmed MoChi1 interaction with rice OsMBL1 in vitro and in vivo. OsMBL1 was induced by pathogen-associated molecular patterns and M. oryzae infection. Overexpression of OsMBL1 led to activation of rice defense-responsive genes and a chitin-induced reactive oxygen species burst, thereby enhancing resistance to M. oryzae Knockdown of OsMBL1 enhances susceptibility of rice plants to M. oryzae Furthermore, MoChi1 suppressed chitin-induced reactive oxygen species in rice cells and competed with OsMBL1 for chitin binding. Taken together, our study reveals a mechanism in which MoChi1 targets a host lectin to suppress rice immunity.
Collapse
Affiliation(s)
- Yijuan Han
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Linlin Song
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Changlin Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xin Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lihua Liu
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yunhui Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenzong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jie Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Daniel Ebbole
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
42
|
Liu F, Xu Y, Zhou L, Ali A, Jiang H, Zhu S, Li X. DNA Repair Gene ZmRAD51A Improves Rice and Arabidopsis Resistance to Disease. Int J Mol Sci 2019; 20:E807. [PMID: 30781829 PMCID: PMC6412738 DOI: 10.3390/ijms20040807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 12/31/2022] Open
Abstract
RAD51 (DNA repair gene) family genes play ubiquitous roles in immune response among species from plants to mammals. In this study, we cloned the ZmRAD51A gene (a member of RAD51) in maize and generated ZmRAD51A overexpression (ZmRAD51A-OE) in rice, tobacco, and Arabidopsis. The expression level of ZmRAD51A was remarkably induced by salicylic acid (SA) application in maize, and the transient overexpression of ZmRAD51A in tobacco induced a hypersensitive response. The disease resistance was significantly enhanced in ZmRAD51A- OE (overexpressing) plants, triggering an increased expression of defense-related genes. High-performance liquid chromatography (HPLC) analysis showed that, compared to control lines, ZmRAD51A-OE in rice plants resulted in higher SA levels, and conferred rice plants resistance to Magnaporthe oryzae. Moreover, the ZmRAD51A-OE Arabidopsis plants displayed increased resistance to Pseudomonas syringae pv. tomato DC3000 when compared to wild types. Together, our results provide the evidence that, for the first time, the maize DNA repair gene ZmRAD51A plays an important role in in disease resistance.
Collapse
Affiliation(s)
- Fang Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Yunjian Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Lingyan Zhou
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Asif Ali
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Suwen Zhu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
43
|
Ashraf MF, Yang S, Wu R, Wang Y, Hussain A, Noman A, Khan MI, Liu Z, Qiu A, Guan D, He S. Capsicum annuum HsfB2a Positively Regulates the Response to Ralstonia solanacearum Infection or High Temperature and High Humidity Forming Transcriptional Cascade with CaWRKY6 and CaWRKY40. PLANT & CELL PHYSIOLOGY 2018; 59:2608-2623. [PMID: 30169791 DOI: 10.1093/pcp/pcy181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/29/2018] [Indexed: 05/21/2023]
Abstract
The responses of pepper (Capsicum annuum) plants to inoculation with the pathogenic bacterium Ralstonia solanacearum and to high-temperature-high-humidity (HTHH) conditions were previously found to be coordinated by the transcription factors CaWRKY6 and CaWRKY40; however, the underlying molecular mechanism was unclear. Herein, we identified and functionally characterized CaHsfB2a, a nuclear-localized heat shock factor involved in pepper immunity to R. solanacearum inoculation (RSI) and tolerance to HTHH. CaHsfB2a is transcriptionally induced in pepper plants by RSI or HTHH and by exogenous application of salicylic acid (SA), methyl jasmonate (MeJA), ethylene (ETH), or abscisic acid (ABA). Virus-induced gene silencing (VIGS) of CaHsfB2a significantly impaired pepper immunity to RSI, hampered HTHH tolerance, and curtailed expression of immunity- and thermotolerance-associated marker genes such as CaHIR1, CaNPR1, CaABR1, and CaHSP24. Likewise, transient overexpression of CaHsfB2a in pepper leaves induced hypersensitive response (HR)-like cell death and H2O2 accumulation and upregulated the above-mentioned marker genes as well as CaWRKY6 and CaWRKY40. Chromatin immunoprecipitation (ChIP) and microscale thermophoresis (MST) analysis revealed that CaHsfB2a bound the promoters of both CaWRKY6 and CaWRKY40. In a parallel experiment, we determined by ChIP-PCR and MST that CaHsfB2a was regulated directly by CaWRKY40 but indirectly by CaWRKY6. Cumulatively, our results suggest that CaHsfB2a positively regulates plant immunity against RSI and tolerance to HTHH, via transcriptional cascades and positive feedback loops involving CaWRKY6 and CaWRKY40.
Collapse
Affiliation(s)
- Muhammad Furqan Ashraf
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Yang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ruijie Wu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuzhu Wang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ansar Hussain
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ali Noman
- Department of Botany Government College University, Faisalabad, Pakistan
| | - Muhammad Ifnan Khan
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhiqin Liu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ailian Qiu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deyi Guan
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuilin He
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
44
|
Xu Y, Liu F, Zhu S, Li X. Expression of a maize NBS gene ZmNBS42 enhances disease resistance in Arabidopsis. PLANT CELL REPORTS 2018; 37:1523-1532. [PMID: 30039463 DOI: 10.1007/s00299-018-2324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Expression of the ZmNBS42 in Arabidopsis plants conferred resistance to bacterial pathogens, providing potential resistance enhancement of maize in further genetic breeding. Nucleotide-binding site (NBS) domain proteins play critical roles in disease resistance. In this study, we isolate a novel NBS gene ZmNBS42 from maize and systematically investigate its function on disease resistance. We find that the expression levels of ZmNBS42 in maize leaf were strikingly increased in response to Bipolaris maydis inoculation and SA treatment. The spatial expression pattern analysis reveals that, during development, ZmNBS42 is ubiquitously highly expressed in maize root, leaf, stem, internode and seed, but lowly expressed in pericarp and embryo. To better understand the roles of ZmNBS42, we overexpressed ZmNBS42 in heterologous systems. Transient overexpression of ZmNBS42 in the leaves of Nicotiana benthamiana induces a hypersensitive response. ZmNBS42 overexpression (ZmNBS42-OE) Arabidopsis plants produced more SA content than Col-0 plants, and increased the expression levels of some defense-responsive genes compared to Col-0 plants. Moreover, the ZmNBS42-OE Arabidopsis plants displayed enhanced resistance against Pseudomonas syringae pathovar tomato DC3000 (Pst DC3000). These results together suggest that ZmNBS42 can serve as an important regulator in disease resistance, thus better understanding of ZmNBS42 would benefit the resistance enhancement in maize breeding programs.
Collapse
Affiliation(s)
- Yunjian Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Fang Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Suwen Zhu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
45
|
Kim BM, Lotter‐Stark HCT, Rybicki EP, Chikwamba RK, Palmer KE. Characterization of the hypersensitive response-like cell death phenomenon induced by targeting antiviral lectin griffithsin to the secretory pathway. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1811-1821. [PMID: 29509998 PMCID: PMC6131415 DOI: 10.1111/pbi.12917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 02/24/2018] [Accepted: 02/28/2018] [Indexed: 05/23/2023]
Abstract
Griffithsin (GRFT) is an antiviral lectin, originally derived from a red alga, which is currently being investigated as a topical microbicide to prevent transmission of human immunodeficiency virus (HIV). Targeting GRFT to the apoplast for production in Nicotiana benthamiana resulted in necrotic symptoms associated with a hypersensitive response (HR)-like cell death, accompanied by H2 O2 generation and increased PR1 expression. Mannose-binding lectins surfactant protein D (SP-D), cyanovirin-N (CV-N) and human mannose-binding lectin (hMBL) also induce salicylic acid (SA)-dependent HR-like cell death in N. benthamiana, and this effect is mediated by the lectin's glycan binding activity. We found that secreted GRFT interacts with an endogenous glycoprotein, α-xylosidase (XYL1), which is involved in cell wall organization. The necrotic effect could be mitigated by overexpression of Arabidopsis XYL1, and by co-expression of SA-degrading enzyme NahG, providing strategies for enhancing expression of oligomannose-binding lectins in plants.
Collapse
Affiliation(s)
- Bo Min Kim
- Center for Predictive MedicineJames Graham Brown Cancer CenterDepartment of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| | | | - Edward P. Rybicki
- Department of Molecular & Cell BiologyInstitute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| | - Rachel K. Chikwamba
- BiosciencesCouncil for Scientific and Industrial Research (CSIR)PretoriaSouth Africa
| | - Kenneth E. Palmer
- Center for Predictive MedicineJames Graham Brown Cancer CenterDepartment of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| |
Collapse
|
46
|
The Role of Sugarcane Catalase Gene ScCAT2 in the Defense Response to Pathogen Challenge and Adversity Stress. Int J Mol Sci 2018; 19:ijms19092686. [PMID: 30201878 PMCID: PMC6163996 DOI: 10.3390/ijms19092686] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 11/17/2022] Open
Abstract
Catalases, which consist of multiple structural isoforms, catalyze the decomposition of hydrogen peroxide in cells to prevent membrane lipid peroxidation. In this study, a group II catalase gene ScCAT2 (GenBank Accession No. KF528830) was isolated from sugarcane genotype Yacheng05-179. ScCAT2 encoded a predicted protein of 493 amino acid residues, including a catalase active site signature (FARERIPERVVHARGAS) and a heme-ligand signature (RVFAYADTQ). Subcellular localization experiments showed that the ScCAT2 protein was distributed in the cytoplasm, plasma membrane, and nucleus of Nicotiana benthamiana epidermal cells. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the ScCAT2 gene was ubiquitously expressed in sugarcane tissues, with expression levels from high to low in stem skin, stem pith, roots, buds, and leaves. ScCAT2 mRNA expression was upregulated after treatment with abscisic acid (ABA), sodium chloride (NaCl), polyethylene glycol (PEG), and 4 °C low temperature, but downregulated by salicylic acid (SA), methyl jasmonate (MeJA), and copper chloride (CuCl₂). Moreover, tolerance of Escherichia coli Rosetta cells carrying pET-32a-ScCAT2 was enhanced by NaCl stress, but not by CuCl₂ stress. Sporisorium scitamineum infection of 10 different sugarcane genotypes showed that except for YZ03-258, FN40, and FN39, ScCAT2 transcript abundance in four smut-resistant cultivars (Yacheng05-179, YZ01-1413, YT96-86, and LC05-136) significantly increased at the early stage (1 day post-inoculation), and was decreased or did not change in the two smut-medium-susceptibility cultivars (ROC22 and GT02-467), and one smut-susceptible cultivar (YZ03-103) from 0 to 3 dpi. Meanwhile, the N. benthamiana leaves that transiently overexpressed ScCAT2 exhibited less severe disease symptoms, more intense 3,3'-diaminobenzidine (DAB) staining, and higher expression levels of tobacco immune-related marker genes than the control after inoculation with tobacco pathogen Ralstonia solanacearum or Fusarium solani var. coeruleum. These results indicate that ScCAT2 plays a positive role in immune responses during plant⁻pathogen interactions, as well as in salt, drought, and cold stresses.
Collapse
|
47
|
Characterization of an Insecticidal Protein from Withania somnifera Against Lepidopteran and Hemipteran Pest. Mol Biotechnol 2018; 60:290-301. [PMID: 29492788 DOI: 10.1007/s12033-018-0070-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lectins are carbohydrate-binding proteins with wide array of functions including plant defense against pathogens and insect pests. In the present study, a putative mannose-binding lectin (WsMBP1) of 1124 bp was isolated from leaves of Withania somnifera. The gene was expressed in E. coli, and the recombinant WsMBP1 with a predicted molecular weight of 31 kDa was tested for its insecticidal properties against Hyblaea puera (Lepidoptera: Hyblaeidae) and Probergrothius sanguinolens (Hemiptera: Pyrrhocoridae). Delay in growth and metamorphosis, decreased larval body mass and increased mortality was recorded in recombinant WsMBP1-fed larvae. Histological studies on the midgut of lectin-treated insects showed disrupted and diffused secretory cells surrounding the gut lumen in larvae of H. puera and P. sanguinolens, implicating its role in disruption of the digestive process and nutrient assimilation in the studied insect pests. The present study indicates that WsMBP1 can act as a potential gene resource in future transformation programs for incorporating insect pest tolerance in susceptible plant genotypes.
Collapse
|
48
|
Nakamura M, Yasukawa Y, Furusawa A, Fuchiwaki T, Honda T, Okamura Y, Fujita K, Iwai H. Functional characterization of unique enzymes in Xanthomonas euvesicatoria related to degradation of arabinofurano-oligosaccharides on hydroxyproline-rich glycoproteins. PLoS One 2018; 13:e0201982. [PMID: 30092047 PMCID: PMC6085000 DOI: 10.1371/journal.pone.0201982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/25/2018] [Indexed: 11/18/2022] Open
Abstract
In this study, we clarified the functions of three uncharacterized enzymes, XCV2724, XCV2728, and XCV2729, in Xanthomonas euvesicatoria, the causal agent of bacterial spot of tomato and pepper. The genes corresponding to the three enzymes are homologs of hypBA1, hypBA2, and hypAA from Bifidobacterium longum and are unique to Xanthomonas spp. among plant pathogenic bacteria. Functional characterization of the recombinant enzymes expressed using microbial systems revealed that they degrade the arabinofurano-oligosaccharides present on hydroxyproline (Hyp)-rich glycoproteins (HRGPs) such as extensin and solanaceous lectins in plant cell walls. These enzymes work coordinately to degrade the oligosaccharides. First, XeHypAA (XCV2728), belonging to the glycoside hydrolase (GH) 43 family, releases L-arabinose from L-arabinofuranose (Araf)-α1,3-Araf-ß1,2-Araf-ß1,2-Araf-ß-Hyp (Ara4-Hyp), cleaving its α1,3 bond; second, XeHypBA2 (XCV2729), belonging to the GH121 family, releases the disaccharide Araf-ß1,2-Araf from Araf-ß1,2-Araf-ß1,2-Araf-ß-Hyp (Ara3-Hyp); finally, XeHypBA1 (XCV2724), belonging to GH family 127, releases L-arabinose from Araf-ß-Hyp (Ara-Hyp). In summary, the main oligosaccharide structure of Ara4-Hyp on the HRGPs is degraded to Ara3-Hyp, then to Ara-Hyp, and finally to Ara monosaccharides by the action of these three enzymes. HRGPs containing oligosaccharide substrates have been reported to contribute to plant defense, and interestingly, the promoter region of the operon (xehypBA2 and xehypAA) contains the plant-inducible promoter box for binding the regulator protein HrpX involved in pathogenicity. We then analyzed the expression level of the operon gene in hrp-inducing medium and in plants and constructed gene-deletion mutants. However, although the operon was evidently upregulated by HrpX, three single-gene deletion mutants (ΔxehypBA1, ΔxehypBA2, ΔxehypAA) and even a triple-gene deletion mutant (ΔxehypBA1-BA2-AA) remained pathogenic, and had no effect on nonhost resistance, either, indicating that these three enzymes are not involved in either pathogenicity or nonhost resistance reactions. This is the first report of enzymes in plant pathogenic bacteria that catalyze the degradation of Hyp-linked-L-arabinofuranosides in plant cell walls.
Collapse
Affiliation(s)
- Masayuki Nakamura
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
- * E-mail:
| | - Yuino Yasukawa
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Akira Furusawa
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Tamao Fuchiwaki
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Takashi Honda
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Yuta Okamura
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Hisashi Iwai
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
49
|
Noman A, Liu Z, Yang S, Shen L, Hussain A, Ashraf MF, Khan MI, He S. Expression and functional evaluation of CaZNF830 during pepper response to Ralstonia solanacearum or high temperature and humidity. Microb Pathog 2018; 118:336-346. [PMID: 29614367 DOI: 10.1016/j.micpath.2018.03.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/18/2018] [Accepted: 03/23/2018] [Indexed: 11/24/2022]
Abstract
Extensive transcriptional reprogramming after pathogen attack determines immunity to these invaders and plant development. Zinc finger (ZNF) transcription factors regulate important processes in plants such as development, vegetative activities and plant immunity. Despite their immense significance, majority of ZNF transcription factors (TF) involved in pepper immunity and resistance to heat stress have not been focused much. Herein, we identified and functionally characterized CaZNF830 in pepper defense against Ralstonia solanacearum inoculation (RSI) and tolerance to high temperature and high humidity (HTHH). Transient expression analysis of CaZNF830-GFP fusion protein in tobacco leaves revealed its localization to the nucleus. Transcription of CaZNF830 is induced in pepper plants upon RSI or HTHH. Consistent with this, fluorometric GUS enzymatic assay driven by pCaZNF830 presented significantly enhanced activity under RSI and HTHH in comparison with the control plants. The silencing of CaZNF830 by virus induced gene silencing (VIGS) significantly compromised pepper immunity against RSI with enhanced growth of Ralstonia solanacearum in pepper plants. Silencing of CaZNF830 also impaired tolerance to HTHH coupled with decreased expression levels of immunity and thermo-tolerance associated marker genes including CaHIR1, CaNPR1, CaPR1, CaABR1 and CaHSP24. By contrast, the transient over-expression of CaZNF830 in pepper leaves by infiltration of GV3101 cells containing 35S::CaZNF830-HA induced HR mimic cell death, H2O2 accumulation and activated the transcriptions of the tested defense-relative or thermo-tolerance associated marker genes. RT-PCR and immune-blotting assay confirmed the stable expression of HA-tagged CaZNF830 mRNA and protein in pepper. All these results suggest that CaZNF830 acts as a positive regulator of plant immunity against RSI or tolerance to HTHH, it is induced by RSI or HTHH and consequently activate pepper immunity against RSI or tolerance to HTHH by directly or indirectly transcriptional modulation of many defense-linked genes.
Collapse
Affiliation(s)
- Ali Noman
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Zhiqin Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lei Shen
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Ansar Hussain
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Muhammad Furqan Ashraf
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Muhammad Ifnan Khan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
50
|
Zhang W, Dong C, Zhang Y, Zhu J, Dai H, Bai S. An apple cyclic nucleotide-gated ion channel gene highly responsive to Botryosphaeria dothidea infection enhances the susceptibility of Nicotiana benthamiana to bacterial and fungal pathogens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:94-105. [PMID: 29606221 DOI: 10.1016/j.plantsci.2018.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 01/20/2018] [Accepted: 01/20/2018] [Indexed: 05/26/2023]
Abstract
Apple ring rot caused by the fungus Botryosphaeria dothidea is one of the devastating diseases. Up to date, the responsive mechanism of apple plant to this disease remains unclear. In the present study, an apple CNGC gene (designated as MdCNGC1) was found among highly expressed genes responding to B. dothidea infection. The expression of MdCNGC1 was different among apple cultivars with different resistance to B. dothidea. Intriguingly, MdCNGC1 expression was not induced by other two apple pathogens, Marssonina coronaria and Valsa ceratosperma. Ectopic overexpression of MdCNGC1 in Nicotiana benthamiana conferred elevated susceptibility to bacterial and fungal pathogens. Notably, overexpression of MdCNGC1 reduced salicylic acid (SA) accumulation induced by Alternaria alternata or Pseudomonas syringae. Decreased induction of pathogenesis-related (PR) genes and ROS accumulation were also observed in MdCNGC1-overexpressing plants. Up-regulated scavenging systems as indicated by enhanced expressions of CAT, APX, SOD genes and activities of antioxidative enzymes may in part contribute to reduced ROS accumulation. MdCNGC1 expression in N. benthamiana also decreased flg22 and chitosan-induced callose deposition and lowered the expression of NbPMR4, an ortholog of Arabidopsis callose synthase gene PMR4. These combined results suggested that MdCNGC1 might be a negative factor to plant resistance to bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Weiwei Zhang
- College of Life Sciences, Key Laboratory of Plant Biotechnology of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China; College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Chaohua Dong
- College of Life Sciences, Key Laboratory of Plant Biotechnology of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China
| | - Yugang Zhang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China; College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Zhu
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China; College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongyi Dai
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China; College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Suhua Bai
- College of Life Sciences, Key Laboratory of Plant Biotechnology of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|