1
|
Gómez I, Loaiza J, Palacios M, Osman D, Huovinen P. Functionality of photobiological traits of the giant kelp (Macrocystis pyrifera) as key determinant to thrive in contrasting habitats in a sub-Antarctic region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 971:179055. [PMID: 40068419 DOI: 10.1016/j.scitotenv.2025.179055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Because of its large size and foundational role, the form and function of the giant kelp Macrocystis pyrifera define key responses to the environmental shifts and ecosystem services. The present study compared several morphological, bio-optical and fluorescence-based photobiological traits as well biomass allocation patterns of the kelp in three sites with different environmental settings along the west coast of the sub-Antarctic strait of Magellan. The morpho-functional and bio-optical characteristics of the algae varied between the sites, following differences in underwater light and tidal range between Atlantic (Buque Quemado and San Gregorio) and Pacific (Bahía Buzos) sectors. Traits measured in blades and individual thalli contributed differently to the total variability within the giant kelp populations. The individuals from the intertidal muddy flats from Buque Quemado differed in many traits, especially biomass allocation along the thallus and bio-optics, with respect to the subtidal rocky assemblages from San Gregorio and especially Bahía Buzos. Photosynthetic characteristics revealed shade adaptation with Ek values normally ≤400 μmol m-2 s-1. In San Gregorio, a site with lower water transparency, light requirements coincide with irradiances at depths between 11 and 4 m, while Ek values estimated for Bahía Buzos indicated photosynthesize at depths >20 m.
Collapse
Affiliation(s)
- Iván Gómez
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile.
| | - Jaime Loaiza
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Mauricio Palacios
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Programa Marino, Fundación Rewilding Chile, Puerto Varas, Chile
| | - D Osman
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Pirjo Huovinen
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| |
Collapse
|
2
|
Luqman T, Hussain M, Ahmed SR, Ijaz I, Maryum Z, Nadeem S, Khan Z, Khan SMUD, Aslam M, Liu Y, Khan MKR. Cotton under heat stress: a comprehensive review of molecular breeding, genomics, and multi-omics strategies. Front Genet 2025; 16:1553406. [PMID: 40171219 PMCID: PMC11959566 DOI: 10.3389/fgene.2025.1553406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
Cotton is a vital fiber crop for the global textile industry, but rising temperatures due to climate change threaten its growth, fiber quality and yields. Heat stress disrupts key physiological and biochemical processes, affecting carbohydrate metabolism, hormone signaling, calcium and gene regulation and expression. This review article explores cotton's defense mechanism against heat stress, including epigenetic regulations and transgenic approaches, with a focus on genome editing tools. Given the limitations of traditional breeding, advanced omics technologies such as GWAS, transcriptomics, proteomics, ionomics, metabolomics, phenomics and CRISPR-Cas9 offer promising solutions for developing heat-resistant cotton varieties. This review highlights the need for innovative strategies to ensure sustainable cotton production under climate change.
Collapse
Affiliation(s)
- Tahira Luqman
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Manzoor Hussain
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
- Plant Breeding and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
- Horticulture Research Institute, Pakistan Agriculture Research Council (PARC), Khuzdar, Pakistan
| | - Iram Ijaz
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zahra Maryum
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Sahar Nadeem
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Zafran Khan
- Department Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sana Muhy Ud Din Khan
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Mohammad Aslam
- Horticulture Research Institute, Pakistan Agriculture Research Council (PARC), Khuzdar, Pakistan
| | - Yongming Liu
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
- Plant Breeding and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| |
Collapse
|
3
|
Chen G, Ran QX, Wang C, Pang J, Ren MJ, Wang ZY, He J, Lambers H. Enhancing photosynthetic phosphorus use efficiency through coordination of leaf phosphorus fractions, allocation, and anatomy during soybean domestication. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1446-1457. [PMID: 39396105 DOI: 10.1093/jxb/erae427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/11/2024] [Indexed: 10/14/2024]
Abstract
Soybean domestication has significantly changed key agronomic traits, yet its impact on leaf photosynthetic phosphorus use efficiency (PPUE) and its underlying traits remains poorly known. Further information on this would be important to increase soybean P use efficiency. To address this gap, 48 soybean accessions (16 wild relatives, 16 landraces, and 16 cultivars) were used to compare leaf anatomical traits, foliar chemical P fractions, P allocation, and PPUE under two P levels. The results showed that the cultivars had higher area-based and mass-based photosynthesis rates, PPUE, metabolite P concentration, and its percentage of leaf total P, as well as a greater percentage of lipid P, nucleic acid P, and residual P. Conversely, wild relatives tended to have higher leaf P concentration, palisade:spongy thickness ratio, and concentrations of inorganic P, nucleic acid P, lipid P, and residual P. PPUE was negatively correlated with leaf inorganic P concentration and its percentage relative to leaf total P, while it was positively correlated with the concentration and percentage of metabolite P. We concluded that soybean domestication increased PPUE, as a result of both increased photosynthesis rate and decreased leaf P concentration; domestication reduced the palisade:spongy thickness ratio coupled with increased allocation of P to P-containing metabolites, thereby contributing to faster photosynthesis and higher PPUE. This study sheds light on the significance of leaf P allocation and anatomical traits affecting PPUE during soybean domestication, offering a mechanistic understanding to further enhance soybean P use efficiency.
Collapse
Affiliation(s)
- Geng Chen
- College of Agriculture, the Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Qiu-Xia Ran
- College of Agriculture, the Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Cai Wang
- College of Agriculture, the Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Jiayin Pang
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Ming-Jian Ren
- College of Agriculture, the Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Zheng-Yu Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangdong, 8 510316, China
| | - Jin He
- College of Agriculture, the Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Hans Lambers
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
4
|
Silva LOE, de Almeida RN, Feitoza RBB, Da Cunha M, Partelli FL. Modifications in Leaf Anatomical Traits of Coffea spp. Genotypes Induced by Management × Season Interactions. PLANTS (BASEL, SWITZERLAND) 2025; 14:828. [PMID: 40094836 PMCID: PMC11902565 DOI: 10.3390/plants14050828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Leaf anatomical traits are influenced by environmental and genetic factors; however, studies that investigate the genotype × environment interaction on these traits are scarce. This study hypothesized that (1) the leaf anatomy of Coffea spp. genotypes is varied, and (2) interactions between managements and seasons significantly influence leaf anatomical traits, inducing a clear adaptation to specific environments. Possible modifications of leaf anatomy in Coffea spp. genotypes were investigated under different managements: full-sun monoculture at low-altitude (MLA), full-sun monoculture at high altitude (MHA), and low-altitude agroforestry (AFS), in winter and summer. The genotype influenced all leaf anatomical traits investigated, contributing to 2.3-20.6% of variance. Genotype × environment interactions contributed to 2.3-95.8% of variance to key traits. The effects of genotype × management interactions were more intense than those of genotype × season interactions on traits such as leaf thickness, palisade parenchyma thickness, abaxial epidermis, and polar and equatorial diameter of the stomata. The management AFS was more effective in altering leaf anatomical traits than the altitude differences between MLA and MHA, regardless of the season. These findings provide valuable insights for future research and for the development of strategies to improve the adaptation of coffee plants to changing environmental conditions.
Collapse
Affiliation(s)
- Larícia Olária Emerick Silva
- Centro Universitário do Norte do Espírito Santo, Federal University of Espírito Santo, São Mateus 29932-900, ES, Brazil
| | - Rafael Nunes de Almeida
- Centro de Ciências e Tecnologias Agropecuárias, State University of North Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Rodrigo Barbosa Braga Feitoza
- Centro Biociências e Biotecnologia, State University of North Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Maura Da Cunha
- Centro Biociências e Biotecnologia, State University of North Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Fábio Luiz Partelli
- Centro Universitário do Norte do Espírito Santo, Federal University of Espírito Santo, São Mateus 29932-900, ES, Brazil
| |
Collapse
|
5
|
Ueno O. Cell wall thickness spectrum of photosynthetic cells in herbaceous C 3, C 4, and crassulacean acid metabolism plants. JOURNAL OF PLANT RESEARCH 2025; 138:197-213. [PMID: 39658745 DOI: 10.1007/s10265-024-01603-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
Higher plants are divided into three major photosynthetic groups known as C3, C4, and crassulacean acid metabolism (CAM) plants. It is considered that cell wall thickness (TCW) affects diffusion and leakiness of CO2 within leaves, but it is unclear whether TCW of photosynthetic cells differs among these groups. This study investigated TCW of photosynthetic cells in herbaceous C3, C4, and CAM species under an electron microscope. Among 75 species of monocots and eudicots grown in a growth chamber in the same environment, the TCW of mesophyll cells (MCs) was much higher in CAM species than in C3 and C4 species. However, when TCW was compared between C3 and C4 species of grasses and eudicots, TCW of MCs tended to be lower in C4 species than in C3 species; the opposite trend was observed for TCW of bundle sheath cells (BSCs). TCW of MCs and BSCs almost did not differ among the C4 decarboxylation types (NADP-ME, NAD-ME, and PCK). In plants grown outdoors (51 species), similar trends of TCW were also found among photosynthetic groups, but their TCW was generally higher than that of growth-chamber plants. This study provides the TCW spectrum of photosynthetic cells in herbaceous C3, C4, and CAM species. The results obtained would be valuable for our understanding of the diffusion and leakage of CO2 in the leaves of different photosynthetic groups.
Collapse
Affiliation(s)
- Osamu Ueno
- Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
6
|
Trozzi N, Robil JM. Bright ideas: How leaf cells shape the way plants capture light. PLANT PHYSIOLOGY 2025; 197:kiaf064. [PMID: 40037583 PMCID: PMC11887540 DOI: 10.1093/plphys/kiaf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 03/06/2025]
Affiliation(s)
- Nicola Trozzi
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Department of Plant Molecular Biology, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Janlo M Robil
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Department of Biology, School of Science and Engineering, Ateneo de Manila University, Quezon City 1108, Philippines
| |
Collapse
|
7
|
Gitelson AA, Viña A, Solovchenko A. Spectral response of gross primary production to in situ canopy light absorption coefficient of chlorophyll. PHOTOSYNTHESIS RESEARCH 2025; 163:20. [PMID: 39976850 DOI: 10.1007/s11120-025-01142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/05/2025] [Indexed: 04/24/2025]
Abstract
The amount of absorbed light is one of the main factors governing plant photosynthesis, and ultimately, the gross primary production (GPP) of vegetation. Since canopy chlorophyll (Chl) content defines the amount of light that can be absorbed (thus the amount of energy available for photosynthesis), it is representative of the status of the photosynthetic apparatus and directly relates with vegetation productivity. The non-invasive assessment of these traits is the foundation of proximal and remote sensing and of high-throughput phenotyping of plants. The goal of this study is to explore: (i) the response of GPP to the absorption coefficient of Chl derived from canopy reflectance (i.e., assessed in situ) across the PAR and red-edge spectral regions in two plant species with contrasting biochemistry, structural properties, and photosynthetic pathway; (ii) the efficiency of contrasting plants in absorbing radiation and converting it into photosynthetic carbon uptake. The spectral composition of light absorbed by vegetation and the contribution of each spectral range to GPP were quantified. The highest responses of GPP to the Chl absorption coefficient occurred in the red-edge and green spectral regions. More notably, in contrasting plant species the GPP responses in the visible and red-edge spectral regions were almost identical and close to the quantum yield of CO2 fixation. This potentially opens a novel avenue for the remote assessment of the quantum yield of photosynthesis. The uncertainty of the relationship between GPP and Chl absorption coefficient and its impact on the estimation of photosynthetic rates was also quantified.
Collapse
Affiliation(s)
- Anatoly A Gitelson
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| | - Andrés Viña
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48823, USA
- Department of Geography and Environment, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
8
|
Li L, Zhou K, Yang X, Su X, Ding P, Zhu Y, Cao F, Han J. Leaf nitrogen allocation to non-photosynthetic apparatus reduces mesophyll conductance under combined drought-salt stress in Ginkgo biloba. FRONTIERS IN PLANT SCIENCE 2025; 16:1557412. [PMID: 40012733 PMCID: PMC11863189 DOI: 10.3389/fpls.2025.1557412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/22/2025] [Indexed: 02/28/2025]
Abstract
Leaf nitrogen allocation plays a crucial role in determining both photosynthetic function and structural development of plants. However, the effects of drought, salt stress, and their combination on leaf nitrogen allocation, and how these affect mesophyll conductance (g m) and photosynthesis, remain poorly understood. In this study, we first investigated variations in photosynthetic characteristics and leaf nitrogen allocation, and analyzed the relationship between g m and leaf nitrogen allocation ratios in Ginkgo biloba under drought, salt and combined drought-salt stress. The results showed that all stress treatments significantly reduced the photosynthesis in G. biloba, with the combined drought-salt stress having the most significant inhibitory effect on the plant's physiological characteristics. Under combined drought-salt stress, the limitation of photosynthesis due to g m (MC L) was significantly greater than under individual drought or salt stress. In contrast, the limitation due to stomatal conductance (S L) was similar to that observed under drought but higher than under salt stress. No significant differences in biochemical limitations (B L) were found across all stress treatments. Further research suggests that the increase in MC L under combined drought-stress treatment may be linked to a greater allocation of leaf nitrogen to non-photosynthetic apparatus (e.g., cell structure) and a smaller allocation to photosynthetic enzymes (i.e., ribulose-1,5-bisphosphate carboxylase/oxygenase, Rubisco). This is supported by the positive correlation between g m and the proportion of nitrogen allocated to the carboxylation system (P r), as well as the negative correlation with the non-photosynthetic nitrogen ratio (P np). These findings help to advance our understanding of the mechanisms of photosynthesis and plant adaptability under combined drought-salt stress.
Collapse
Affiliation(s)
- Lehao Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Kai Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xin Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xina Su
- Statistics, School of Mathematics and Statistics, Shandong University of Technology, Zibo, China
| | - Peng Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Ying Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jimei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
9
|
Momayyezi M, Chu C, Stobbs JA, Soolanayakanahally RY, Guy RD, McElrone AJ, Knipfer T. Mapping of drought-induced changes in tissue characteristics across the leaf profile of Populus balsamifera. THE NEW PHYTOLOGIST 2025; 245:534-545. [PMID: 39506187 DOI: 10.1111/nph.20240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
Leaf architecture impacts gas diffusion, biochemical processes, and photosynthesis. For balsam poplar, a widespread North American species, the influence of water availability on leaf anatomy and subsequent photosynthetic performance remains unknown. To address this shortcoming, we characterized the anatomical changes across the leaf profile in three-dimensional space for saplings subjected to soil drying and rewatering using X-ray microcomputed tomography. Our hypothesis was that higher abundance of bundle sheath extensions (BSE) minimizes drought-induced changes in intercellular airspace volume relative to mesophyll volume (i.e. mesophyll porosity, θIAS) and aids recovery by supporting leaf structural integrity. Leaves of 'Carnduff-9' with less abundant BSEs exhibited greater θIAS, higher spongy mesophyll surface area, reduced palisade mesophyll surface area, and less veins compared with 'Gillam-5'. Under drought conditions, Carnduff-9 showed significant changes in θIAS across leaf profile while that was little for 'Gillam-5'. Under rewatered conditions, drought-induced changes in θIAS were fully reversible in 'Gillam-5' but not in 'Carnduff-9'. Our data suggest that a 'robust' leaf structure with higher abundance of BSEs, reduced θIAS, and relatively large mesophyll surface area provides for improved photosynthetic capacity under drought and supports recovery in leaf architecture after rewatering in balsam poplar.
Collapse
Affiliation(s)
- Mina Momayyezi
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - Cheyenne Chu
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | | | - Robert D Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Andrew J McElrone
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA, 95618, USA
| | - Thorsten Knipfer
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
10
|
Shi Q, He B, Knauer J, Peguero-Pina JJ, Zhang SB, Huang W. Leaf nutrient basis for the differentiation of photosynthetic traits between subtropical evergreen and deciduous trees. PLANT PHYSIOLOGY 2024; 197:kiae566. [PMID: 39454624 DOI: 10.1093/plphys/kiae566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Compared with evergreens, deciduous tree species usually have higher photosynthetic efficiency to complete vegetative and reproductive growth in a shorter growing season. However, the nutrient basis for the differentiation of photosynthesis functional traits between evergreen and deciduous tree species has not yet been clarified. Thirty evergreen and 20 deciduous angiosperm tree species from a subtropical common garden were compared in terms of photosynthetic traits and leaf nutrients. Generally, their differences in area-based photosynthetic capacity were uncorrelated with area-based leaf nutrient content but were caused by the fraction of nitrogen allocated to photosynthetic components. By comparison, the differences in mass-based photosynthetic capacity were more correlated with leaf nitrogen content than leaf phosphorus and potassium content. Convergence in phosphorus and potassium constraints to photosynthesis occurred in deciduous tree species but not in evergreen tree species. Furthermore, leaf C/N ratio played a more significant role than leaf mass per area in determining the differentiation of photosynthetic traits between evergreen and deciduous groups. Our findings provide insight into the nutrient basis for photosynthetic carbon gain and functional strategies across tree species.
Collapse
Affiliation(s)
- Qi Shi
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin He
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jürgen Knauer
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Jose Javier Peguero-Pina
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, Zaragoza 50059, Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
11
|
Retta MA, Van Doorselaer L, Driever SM, Yin X, de Ruijter NCA, Verboven P, Nicolaï BM, Struik PC. High photosynthesis rates in Brassiceae species are mediated by leaf anatomy enabling high biochemical capacity, rapid CO 2 diffusion and efficient light use. THE NEW PHYTOLOGIST 2024; 244:1824-1836. [PMID: 39294895 DOI: 10.1111/nph.20136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/31/2024] [Indexed: 09/21/2024]
Abstract
Certain species in the Brassicaceae family exhibit high photosynthesis rates, potentially providing a valuable route toward improving agricultural productivity. However, factors contributing to their high photosynthesis rates are still unknown. We compared Hirschfeldia incana, Brassica nigra, Brassica rapa and Arabidopsis thaliana, grown under two contrasting light intensities. Hirschfeldia incana matched B. nigra and B. rapa in achieving very high photosynthesis rates under high growth-light condition, outperforming A. thaliana. Photosynthesis was relatively more limited by maximum photosynthesis capacity in H. incana and B. rapa and by mesophyll conductance in A. thaliana and B. nigra. Leaf traits such as greater exposed mesophyll specific surface enabled by thicker leaf or high-density small palisade cells contributed to the variation in mesophyll conductance among the species. The species exhibited contrasting leaf construction strategies and acclimation responses to low light intensity. High-light plants distributed Chl deeper in leaf tissue, ensuring even distribution of photosynthesis capacity, unlike low-light plants. Leaf anatomy of H. incana, B. nigra and B. rapa facilitated effective CO2 diffusion, efficient light use and provided ample volume for their high maximum photosynthetic capacity, indicating that a combination of adaptations is required to increase CO2-assimilation rates in plants.
Collapse
Affiliation(s)
- Moges A Retta
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK, Wageningen, the Netherlands
| | - Leen Van Doorselaer
- Mechatronics, Biostatistics and Sensors (MeBioS), Biosystems Department, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK, Wageningen, the Netherlands
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK, Wageningen, the Netherlands
| | - Norbert C A de Ruijter
- Laboratory of Cell and Developmental Biology, Wageningen Light Microscopy Centre (WLMC), Wageningen University & Research, PO Box 633, 6700 AP, Wageningen, the Netherlands
| | - Pieter Verboven
- Mechatronics, Biostatistics and Sensors (MeBioS), Biosystems Department, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Bart M Nicolaï
- Mechatronics, Biostatistics and Sensors (MeBioS), Biosystems Department, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK, Wageningen, the Netherlands
| |
Collapse
|
12
|
Bhuiyan AUA, Chowdhury MZH, Mim MF, Siddique SS, Haque MA, Rahman MS, Islam SMN. Seed priming with Metarhizium anisopliae (MetA1) improves physiology, growth and yield of wheat. Heliyon 2024; 10:e36600. [PMID: 39263142 PMCID: PMC11388754 DOI: 10.1016/j.heliyon.2024.e36600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Microorganisms offer a sustainable way to increase crop production and promote eco-friendly farming. The endophytic fungus Metarhizium anisopliae is known for its multiple roles in plant ecosystems, including plant protection, symbiosis, and abiotic stress mitigation. In this study, we evaluated the potential of seed priming with M. anisopliae isolate MetA1 (MA) to enhance germination, photosynthetic efficiency, growth, and yield of two wheat varieties, BARI Gom 26 (BG26) and BARI Gom 33 (BG33) under field conditions. The study demonstrated that MA seed priming significantly improved wheat germination (by 13% and 26.04%) of BG26 and BG33, respectively. Overall, photosynthetic performance, indicated by increased leaf angle, leaf thickness, relative chlorophyll content, and linear electron flow (LEF), quantum yield of Photo System II (Phi2) was increased in MA primed wheat plants, while reducing non-photochemical quenching like NPQt, PhiNO, PhiNPQ of both varieties. These enhancements were attributed to increased shoot biomass (by 215.64% for BG26 and 280.38% for BG33), root biomass (by 141.79% for BG26 and 207.4% for BG33), effective tiller percentage (by 9.17% for BG26 and 5.7% for BG33), spike length (by 25.05% for BG26 and 25.42% for BG33), grain yield parameters such as filled grain percentage (by 23.8% for BG26 and 12.5% for BG33), and grain weight per plant (by 168.62% for BG26 and 119.62% for BG33). The findings of the research demonstrated the potential of M. anisopliae for field use in an agricultural setting, providing a sustainable means of increasing food production.
Collapse
Affiliation(s)
- Ashkar-Ul-Alam Bhuiyan
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Zahid Hasan Chowdhury
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mahjabin Ferdaous Mim
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Shaikh Sharmin Siddique
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Ashraful Haque
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Sazzadur Rahman
- Plant Physiology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, 1701, Bangladesh
| | - Shah Mohammad Naimul Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| |
Collapse
|
13
|
dos Santos BS, Ferreira TC, Olívio MLG, de Souza LA, de Camargos LS. Physiological Responses of Crotalaria spp. to the Presence of High Aluminum Availability in the Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:2292. [PMID: 39204729 PMCID: PMC11359568 DOI: 10.3390/plants13162292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/17/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Brazilian soils are predominantly rich in aluminum, which becomes mobile at pH < 5, affecting sensitive plants; however, some species have developed aluminum tolerance mechanisms. The purpose of this study was to compare the physiological responses of Crotalaria genus species, family Fabaceae, which have the ability to associate with nitrogen-fixing bacteria under the influence of Al3+ in the soil. The soil used was Oxisol; the experimental design was in randomized blocks in a factorial scheme (2 × 3): soil factor (available toxic aluminum content; correction of dolomitic limestone-MgCO3) and species factor (C. juncea; C. spectabilis; C. ochroleuca); cultivated within 43, 53, and 53 days, respectively, with five replications; 30 experimental samples. Mass and length, pigments, gas exchange, and changes in nitrogen metabolism were evaluated. C. juncea showed a higher concentration of amino acids in the leaves, internal carbon, and stomatal conductance in soil with Al3+, as well as higher production of ureides, allantoinic acid, allantoic acid, proteins, and amino acids in the nodules, with 78% of the Al3+ accumulation occurring in the roots. C. ochroleuca demonstrated greater shoot length and nodule number production in limed soil; in soil with Al3+, it showed a 91% increase in chlorophyll a content and 93% in carotenoids. C. spectabilis showed a 93% increase in ureide production in the leaves in soil with Al3+.
Collapse
Affiliation(s)
- Beatriz Silvério dos Santos
- Plant Metabolism Physiology Laboratory, Department of Biology and Zootechny, School of Engineering, São Paulo State University (Unesp), Rua Monção, 226, Zona Norte, Ilha Solteira 15385-000, SP, Brazil; (B.S.d.S.); (T.C.F.); (M.L.G.O.)
| | - Tassia Caroline Ferreira
- Plant Metabolism Physiology Laboratory, Department of Biology and Zootechny, School of Engineering, São Paulo State University (Unesp), Rua Monção, 226, Zona Norte, Ilha Solteira 15385-000, SP, Brazil; (B.S.d.S.); (T.C.F.); (M.L.G.O.)
| | - Maiara Luzia Grigoli Olívio
- Plant Metabolism Physiology Laboratory, Department of Biology and Zootechny, School of Engineering, São Paulo State University (Unesp), Rua Monção, 226, Zona Norte, Ilha Solteira 15385-000, SP, Brazil; (B.S.d.S.); (T.C.F.); (M.L.G.O.)
| | | | - Liliane Santos de Camargos
- Plant Metabolism Physiology Laboratory, Department of Biology and Zootechny, School of Engineering, São Paulo State University (Unesp), Rua Monção, 226, Zona Norte, Ilha Solteira 15385-000, SP, Brazil; (B.S.d.S.); (T.C.F.); (M.L.G.O.)
| |
Collapse
|
14
|
Xing H, Chen J, Gong S, Liu S, Xu G, Chen M, Li F, Shi Z. Variation in photosynthetic capacity of Salvia przewalskii along elevational gradients on the eastern Qinghai-Tibetan Plateau, China. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108801. [PMID: 38850729 DOI: 10.1016/j.plaphy.2024.108801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Elevational variation in plant growing environment drives diversification of photosynthetic capacity, however, the mechanism behind this reaction is poorly understood. We measured leaf gas exchange, chlorophyll fluorescence, anatomical characteristics, and biochemical traits of Salvia przewalskii at elevations ranging from 2400 m to 3400 m above sea level (a.s.l) on the eastern Qinghai-Tibetan Plateau, China. We found that photosynthetic capacity showed an initial increase and then a decrease with rising elevation, and the best state observed at 2800 m a.s.l. Environmental factors indirectly regulated photosynthetic capacity by affecting stomatal conductance (gs), mesophyll conductance (gm), maximum velocity of carboxylation (Vc max), and maximum capacity for photosynthetic electron transport (Jmax). The average temperature (T) and total precipitation (P) during the growing season had the highest contribution to the variation of photosynthetic capacity of S. przewalskii in subalpine areas, which were 25% and 24%, respectively. Photosynthetic capacity was mainly affected by diffusional limitations (71%-89%), and mesophyll limitation (lm) played a leading role. The variation of gm was attributed to the effects of environmental factors on the volume fraction of intercellular air space (fias), the thickness of cell wall (Tcw), the surface of mesophyll cells and chloroplasts exposed to intercellular airspace (Sm, Sc), and plasma membrane intrinsic protein (PIPs, PIP1, PIP2), independent of carbonic anhydrase (CA). Optimization of leaf tissue structure and adaptive physiological responses enabled plants to efficiently cope with variable climate conditions of high-elevation areas, and the while maintaining high levels of carbon assimilation.
Collapse
Affiliation(s)
- Hongshuang Xing
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Jian Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Shanshan Gong
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Shun Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China; Sichuan Miyaluo Forest Ecosystem National Observation and Research Station, Lixian, 623100, China
| | - Gexi Xu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China; Sichuan Miyaluo Forest Ecosystem National Observation and Research Station, Lixian, 623100, China
| | - Miao Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Feifan Li
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Zuomin Shi
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China; Sichuan Miyaluo Forest Ecosystem National Observation and Research Station, Lixian, 623100, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 210037, Nanjing, China.
| |
Collapse
|
15
|
Fang T, Jin G, Liu Z. Isotope-Based Techniques to Investigate Factors Influencing Water Use Efficiency in Pinus koraiensis Leaves during Plant Growth. PLANTS (BASEL, SWITZERLAND) 2024; 13:1771. [PMID: 38999611 PMCID: PMC11243977 DOI: 10.3390/plants13131771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
Plant water use efficiency (WUE) is a comprehensive physiological indicator of plant growth and ability to adapt to drought. However, research on the mechanisms controlling WUE during plant growth and development remains weak. Here, we studied Pinus koraiensis as a typical evergreen conifer species in Northeast China. After collecting 80 tree samples with varying diameters at breast height (DBH), we measured δ13C and δ18O as an indicator of WUE, leaf morphology (volume, dry weight, and total epidermal area), ecological stoichiometry (carbon, nitrogen, and phosphorus content), and abiotic factors (light environment, soil pH, soil water content, and soil nutrient content). Correlational analysis of these variables revealed distinct differences between smaller/younger and larger/older plants: (1) In plants with DBH less than 52 cm, δ13C was positively related to DBH, and δ18O was negatively related to DBH. Plants with DBH greater than 52 cm showed no relationship between δ13C and DBH, and δ18O was positively related to DBH. (2) In plants with DBH less than 52 cm, there was a negative correlation between δ13C and δ18O and between δ13C and leaf phosphorus content (LP), but a positive correlation between δ13C and DBH, leaf mass per area (LMA), and leaf density (LD). The slopes of DBH-δ13C, δ18O-δ13C, leaf nitrogen content (LN)-δ13C, and LMA-δ13C correlations were greater in smaller plants than large plants. (3) Structural equation modelling showed that in smaller plants, DBH had a direct positive effect on δ13C content and a direct negative effect on δ18O, and there was a direct positive effect of light environment on δ18O. In larger plants, there was a direct negative effect of light environment on δ13C and a direct positive effect of DBH on light environment, as well as a negative effect of soil nitrogen content on leaf nitrogen. In smaller plants, DBH was the most important factor influencing δ13C, followed by δ18O and soil moisture, with light and soil pH showing minimal influence. In larger plants, light environment influenced δ13C the most, followed by soil nitrogen content and soil moisture content, with leaf nitrogen and DBH contributing little. The results suggest that water use efficiency strategies of P. koraiensis vary according to growth stage, and the effects of abiotic factors and functional traits vary at different growth stages.
Collapse
Affiliation(s)
- Tiantian Fang
- Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Guangze Jin
- Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| | - Zhili Liu
- Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
16
|
Zhang Y, Liu W, Lu X, Li S, Li Y, Shan Y, Wang S, Zhou Y, Chen L. Effects of different light conditions on morphological, anatomical, photosynthetic and biochemical parameters of Cypripedium macranthos Sw. PHOTOSYNTHESIS RESEARCH 2024; 160:97-109. [PMID: 38702531 DOI: 10.1007/s11120-024-01100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
In this study, the morphological (plant height, leaf length and width, stem diameter and leaf number), anatomical (epidermal cell density and thickness, Stomatal length and width), photosynthetic (net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration, relative humidity, leaf temperature and chlorophyll fluorescence parameters) and biochemical parameters (the content of soluble sugar, soluble protein, proline, malondialdehyde and electrical conductivity) of Cypripedium macranthos Sw. in Changbai Mountain were determined under different light conditions (L10, L30, L50, L100). The results showed that morphological values including plant height, leaf area, stem diameter and leaf number of C. macranthos were smaller under the condition of full light at L100. The epidermal cell density and epidermal thickness of C. macranthos were the highest under L30 and L50 treatments, respectively. It had the highest net photosynthetic rate (Pn) and chlorophyll content under L50 treatment. Meanwhile, correlation analysis indicated that photosynthetically active radiation (PAR) and water use efficiency (WUE) were the main factors influencing Pn. C. macranthos accumulated more soluble sugars and soluble proteins under L100 treatment, while the degree of membrane peroxidation was the highest and the plant was severely damaged. In summary, the adaptability of C. macranthos to light conditions is ranked as follows L50 > L30 > L10 > L100. Appropriate light conditions for C. macranthos are 30%-50% of full light, which should be taken into account in protection and cultivation.
Collapse
Affiliation(s)
- Yuqing Zhang
- College of Forestry and Grassland, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Wei Liu
- College of Forestry and Grassland, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Xi Lu
- College of Horticulture, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Shuang Li
- College of Forestry and Grassland, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Ying Li
- College of Forestry and Grassland, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yuze Shan
- College of Forestry and Grassland, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Shizhuo Wang
- College of Forestry and Grassland, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yunwei Zhou
- College of Horticulture, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Lifei Chen
- College of Horticulture, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| |
Collapse
|
17
|
Koley S, Jyoti P, Lingwan M, Allen DK. Isotopically nonstationary metabolic flux analysis of plants: recent progress and future opportunities. THE NEW PHYTOLOGIST 2024; 242:1911-1918. [PMID: 38628036 DOI: 10.1111/nph.19734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/06/2024] [Indexed: 01/02/2025]
Abstract
Metabolic flux analysis (MFA) is a valuable tool for quantifying cellular phenotypes and to guide plant metabolic engineering. By introducing stable isotopic tracers and employing mathematical models, MFA can quantify the rates of metabolic reactions through biochemical pathways. Recent applications of isotopically nonstationary MFA (INST-MFA) to plants have elucidated nonintuitive metabolism in leaves under optimal and stress conditions, described coupled fluxes for fast-growing algae, and produced a synergistic multi-organ flux map that is a first in MFA for any biological system. These insights could not be elucidated through other approaches and show the potential of INST-MFA to correct an oversimplified understanding of plant metabolism.
Collapse
Affiliation(s)
- Somnath Koley
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Poonam Jyoti
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Maneesh Lingwan
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
- United States Department of Agriculture, Agriculture Research Service, 975 North Warson Road, St Louis, MO, 63132, USA
| |
Collapse
|
18
|
Haider MW, Nafees M, Iqbal R, Asad HU, Azeem F, Raza MS, Gaafar ARZ, Elshikh MS, Arslan M, Rahman MHU, Elshamly AMS. Exploring the mechanism of transformation in Acacia nilotica (Linn.) triggered by colchicine seed treatment. BMC PLANT BIOLOGY 2024; 24:428. [PMID: 38773358 PMCID: PMC11106899 DOI: 10.1186/s12870-024-05139-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Acacia nilotica Linn. is a widely distributed tree known for its applications in post-harvest and medicinal horticulture. However, its seed-based growth is relatively slow. Seed is a vital component for the propagation of A. nilotica due to its cost-effectiveness, genetic diversity, and ease of handling. Colchicine, commonly used for polyploidy induction in plants, may act as a pollutant at elevated levels. Its optimal concentration for Acacia nilotica's improved growth and development has not yet been determined, and the precise mechanism underlying this phenomenon has not been established. Therefore, this study investigated the impact of optimized colchicine (0.07%) seed treatment on A. nilotica's morphological, anatomical, physiological, fluorescent, and biochemical attributes under controlled conditions, comparing it with a control. RESULTS Colchicine seed treatment significantly improved various plant attributes compared to control. This included increased shoot length (84.6%), root length (53.5%), shoot fresh weight (59.1%), root fresh weight (42.8%), shoot dry weight (51.5%), root dry weight (40%), fresh biomass (23.6%), stomatal size (35.9%), stomatal density (41.7%), stomatal index (51.2%), leaf thickness (11 times), leaf angle (2.4 times), photosynthetic rate (40%), water use efficiency (2.2 times), substomatal CO2 (36.6%), quantum yield of photosystem II (13.1%), proton flux (3.1 times), proton conductivity (2.3 times), linear electron flow (46.7%), enzymatic activities of catalase (25%), superoxide dismutase (33%), peroxidase (13.5%), and ascorbate peroxidase (28%), 2,2-diphenyl-1-picrylhydrazyl-radical scavenging activities(23%), total antioxidant capacity (59%), total phenolic (23%), and flavonoid content (37%) with less number of days to 80% germination (57.1%), transpiration rate (53.9%), stomatal conductance (67.1%), non-photochemical quenching (82.8%), non-regulatory energy dissipation (24.3%), and H2O2 (25%) and O-2 levels (30%). CONCLUSION These findings elucidate the intricate mechanism behind the morphological, anatomical, physiological, fluorescent, and biochemical transformative effects of colchicine seed treatment on Acacia nilotica Linn. and offer valuable insights for quick production of A. nilotica's plants with modification and enhancement from seeds through an eco-friendly approach.
Collapse
Affiliation(s)
- Muhammad Wasim Haider
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur Pakistan, Bahawalpur, 63100, Pakistan
| | - Habat Ullah Asad
- Centre for Agriculture and Bioscience International, Rawalpindi, 46300, Pakistan
| | - Farrukh Azeem
- Agri Development, Fauji Fresh N Freeze Ltd, Gulberg II, Lahore, 48000, Pakistan
| | - Muhammad Samsam Raza
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Abdel-Rhman Z Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Arslan
- Department of Agroecology and Organic Farming, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53115, Germany.
| | - Muhammad Habib Ur Rahman
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115, Bonn, Germany
| | - Ayman M S Elshamly
- Water Studies and Research Complex, National Water Research Center, Cairo, Egypt
| |
Collapse
|
19
|
Zhou A, Ge B, Chen S, Kang D, Wu J, Zheng Y, Ma H. Leaf ecological stoichiometry and anatomical structural adaptation mechanisms of Quercus sect. Heterobalanus in southeastern Qinghai-Tibet Plateau. BMC PLANT BIOLOGY 2024; 24:325. [PMID: 38658813 PMCID: PMC11040857 DOI: 10.1186/s12870-024-05010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND With the dramatic uplift of the Qinghai-Tibet Plateau (QTP) and the increase in altitude in the Pliocene, the environment became dry and cold, thermophilous plants that originally inhabited ancient subtropical forest essentially disappeared. However, Quercus sect. Heterobalanus (QSH) have gradually become dominant or constructive species distributed on harsh sites in the Hengduan Mountains range in southeastern QTP, Southwest China. Ecological stoichiometry reveals the survival strategies plants adopt to adapt to changing environment by quantifying the proportions and relationships of elements in plants. Simultaneously, as the most sensitive organs of plants to their environment, the structure of leaves reflects of the long-term adaptability of plants to their surrounding environments. Therefore, ecological adaptation mechanisms related to ecological stoichiometry and leaf anatomical structure of QSH were explored. In this study, stoichiometric characteristics were determined by measuring leaf carbon (C), nitrogen (N), and phosphorus (P) contents, and morphological adaptations were determined by examining leaf anatomical traits with microscopy. RESULTS Different QSH life forms and species had different nutrient allocation strategies. Leaves of QSH plants had higher C and P and lower N contents and higher N and lower P utilization efficiencies. According to an N: P ratio threshold, the growth of QSH species was limited by N, except that of Q. aquifolioides and Q. longispica, which was limited by both N and P. Although stoichiometric homeostasis of C, N, and P and C: N, C: P, and N: P ratios differed slightly across life forms and species, the overall degree of homeostasis was strong, with strictly homeostatic, homeostatic, and weakly homeostatic regulation. In addition, QSH leaves had compound epidermis, thick cuticle, developed palisade tissue and spongy tissue. However, leaves were relatively thin overall, possibly due to leaf leathering and lignification, which is strategy to resist stress from UV radiation, drought, and frost. Furthermore, contents of C, N, and P and stoichiometric ratios were significantly correlated with leaf anatomical traits. CONCLUSIONS QSH adapt to the plateau environment by adjusting the content and utilization efficiencies of C, N, and P elements. Strong stoichiometric homeostasis of QSH was likely a strategy to mitigate nutrient limitation. The unique leaf structure of the compound epidermis, thick cuticle, well-developed palisade tissue and spongy tissue is another adaptive mechanism for QSH to survive in the plateau environment. The anatomical adaptations and nutrient utilization strategies of QSH may have coevolved during long-term succession over millions of years.
Collapse
Affiliation(s)
- Aiting Zhou
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650224, PR China
| | - Bairuixue Ge
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650224, PR China
| | - Shi Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650224, PR China
| | - Dingxu Kang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650224, PR China
| | - Jianrong Wu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650224, PR China
- Key Laboratory of Forest Disaster Warning and Control in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, Kunming, 650224, PR China
| | - Yanling Zheng
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650224, PR China.
| | - Huancheng Ma
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650224, PR China.
| |
Collapse
|
20
|
Zhou H, Peng J, Zhao W, Zeng Y, Xie K, Huang G. Leaf diffusional capacity largely contributes to the reduced photosynthesis in rice plants under magnesium deficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108565. [PMID: 38537380 DOI: 10.1016/j.plaphy.2024.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Numerous studies have clarified the impacts of magnesium (Mg) on leaf photosynthesis from the perspectives of protein synthesis, enzymes activation and carbohydrate partitioning. However, it still remains largely unknown how stomatal and mesophyll conductances (gs and gm, respectively) are regulated by Mg. In the present study, leaf gas exchanges, leaf hydraulic parameters, leaf structural traits and cell wall composition were examined in rice plants grown under high and low Mg treatments to elucidate the impacts of Mg on gs and gm. Our results showed that reduction of leaf photosynthesis under Mg deficiency was mainly caused by the decreased gm, followed by reduced leaf biochemical capacity and gs, and leaf outside-xylem hydraulic conductance (Kox) was the major factor restricting gs under Mg deficiency. Moreover, increased leaf hemicellulose, lignin and pectin contents and decreased cell wall effective porosity were observed in low Mg plants relative to high Mg plants. These results suggest that Kox and cell wall composition play important roles in regulating gs and gm, respectively, in rice plants under Mg shortages.
Collapse
Affiliation(s)
- Haimei Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jiang Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Wanling Zhao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yongjun Zeng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Kailiu Xie
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| | - Guanjun Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
21
|
Sáez PL, Vallejos V, Sancho-Knapik D, Cavieres LA, Ramírez CF, Bravo LA, Javier Peguero-Pina J, Gil-Pelegrín E, Galmés J. Leaf hydraulic properties of Antarctic plants: effects of growth temperature and its coordination with photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2013-2026. [PMID: 38173309 DOI: 10.1093/jxb/erad474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
One of the well-documented effects of regional warming in Antarctica is the impact on flora. Warmer conditions modify several leaf anatomical traits of Antarctic vascular plants, increasing photosynthesis and growth. Given that CO2 and water vapor partially share their diffusion pathways through the leaf, changes in leaf anatomy could also affect the hydraulic traits of Antarctic plants. We evaluated the effects of growth temperature on several anatomical and hydraulic parameters of Antarctic plants and assessed the trait co-variation between these parameters and photosynthetic performance. Warmer conditions promoted an increase in leaf and whole plant hydraulic conductivity, correlating with adjustments in carbon assimilation. These adjustments were consistent with changes in leaf vasculature, where Antarctic species displayed different strategies. At higher temperature, Colobanthus quitensis decreased the number of leaf xylem vessels, but increased their diameter. In contrast, in Deschampsia antarctica the diameter did not change, but the number of vessels increased. Despite this contrasting behavior, some traits such as a small leaf diameter of vessels and a high cell wall rigidity were maintained in both species, suggesting a water-conservation response associated with the ability of Antarctic plants to cope with harsh environments.
Collapse
Affiliation(s)
- Patricia L Sáez
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
- Instituto de Ecología y Biodiversidad-IEB, Concepción, Chile
| | - Valentina Vallejos
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, y Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - Domingo Sancho-Knapik
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, Zaragoza, España
| | - Lohengrin A Cavieres
- Instituto de Ecología y Biodiversidad-IEB, Concepción, Chile
- ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| | - Constanza F Ramírez
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, y Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - León A Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
| | - José Javier Peguero-Pina
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, Zaragoza, España
| | - Eustaquio Gil-Pelegrín
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, Zaragoza, España
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, INAGEA-Universitat de les Illes Balears, Palma de Mallorca, Balearic Islands, Spain
| |
Collapse
|
22
|
Ren W, Tian L, Querejeta JI. Tight coupling between leaf δ 13 C and N content along leaf ageing in the N 2 -fixing legume tree black locust (Robinia pseudoacacia L.). PHYSIOLOGIA PLANTARUM 2024; 176:e14235. [PMID: 38472162 DOI: 10.1111/ppl.14235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/14/2024]
Abstract
N2 -fixing legumes can strongly affect ecosystem functions by supplying nitrogen (N) and improving the carbon-fixing capacity of vegetation. Still, the question of how their leaf-level N status and carbon metabolism are coordinated along leaf ageing remains unexplored. Leaf tissue carbon isotopic composition (δ13 C) provides a useful indicator of time-integrated intrinsic water use efficiency (WUEi). Here, we quantified the seasonal changes of leaf δ13 C, N content on a mass and area basis (Nmass , Narea , respectively), Δ18 O (leaf 18 O enrichment above source water, a proxy of time-integrated stomatal conductance) and morphological traits in an emblematic N2 -fixing legume tree, the black locust (Robinia pseudoacacia L.), at a subtropical site in Southwest China. We also measured xylem, soil and rainwater isotopes (δ18 O, δ2 H) to characterize tree water uptake patterns. Xylem water isotopic data reveal that black locust primarily used shallow soil water in this humid habitat. Black locust exhibited a decreasing δ13 C along leaf ageing, which was largely driven by decreasing leaf Nmass , despite roughly constant Narea . In contrast, the decreasing δ13 C along leaf ageing was largely uncoupled from parallel increases in Δ18 O and leaf thickness. Leaf N content is used as a proxy of leaf photosynthetic capacity; thus, it plays a key role in determining the seasonality in δ13 C, whereas the roles of stomatal conductance and leaf morphology are minor. Black locust leaves can effectively adjust to changing environmental conditions along leaf ageing through LMA increases and moderate stomatal conductance reduction while maintaining constant Narea to optimize photosynthesis and carbon assimilation, despite declining leaf Nmass and δ13 C.
Collapse
Affiliation(s)
- Wei Ren
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing, China
| | - Lide Tian
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Kunming, China
| | - José Ignacio Querejeta
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS, CSIC), Murcia, Spain
| |
Collapse
|
23
|
Zeng ZL, Wang XQ, Zhang SB, Huang W. Mesophyll conductance limits photosynthesis in fluctuating light under combined drought and heat stresses. PLANT PHYSIOLOGY 2024; 194:1498-1511. [PMID: 37956105 DOI: 10.1093/plphys/kiad605] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Drought and heat stresses usually occur concomitantly in nature, with increasing frequency and intensity of both stresses expected due to climate change. The synergistic agricultural impacts of these compound climate extremes are much greater than those of the individual stresses. However, the mechanisms by which drought and heat stresses separately and concomitantly affect dynamic photosynthesis have not been thoroughly assessed. To elucidate this, we used tomato (Solanum lycopersicum) seedlings to measure dynamic photosynthesis under individual and compound stresses of drought and heat. Individual drought and heat stresses limited dynamic photosynthesis at the stages of diffusional conductance to CO2 and biochemistry, respectively. However, the primary limiting factor for photosynthesis shifted to mesophyll conductance under the compound stresses. Compared with the control, photosynthetic carbon gain in fluctuating light decreased by 38%, 73%, and 114% under the individual drought, heat, and compound stresses, respectively. Therefore, compound stresses caused a greater reduction in photosynthetic carbon gain in fluctuating light conditions than individual stress. These findings highlight the importance of mitigating the effects of compound climate extremes on crop productivity by targeting mesophyll conductance and improving dynamic photosynthesis.
Collapse
Affiliation(s)
- Zhi-Lan Zeng
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Qian Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Shi-Bao Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei Huang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
24
|
Medeiros JS, Burns JH, Dowrey C, Duong F, Speroff S. Leaf habit and plant architecture integrate whole-plant economics and contextualize trait-climate associations within ecologically diverse genus Rhododendron. AOB PLANTS 2024; 16:plae005. [PMID: 38406260 PMCID: PMC10888519 DOI: 10.1093/aobpla/plae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024]
Abstract
Plant resource strategies negotiate a trade-off between fast growth and stress resistance, characterized by specific leaf area (SLA). How SLA relates to leaf structure and function or plant climate associations remains open for debate, and leaf habit and plant architecture may alter the costs versus benefits of individual traits. We used phylogenetic canonical correspondence analysis and phylogenetic least squares to understand the relationship of anatomy and gas exchange to published data on root, wood, architectural and leaf economics traits and climate. Leaf anatomy was structured by leaf habit and carbon to nitrogen ratio was a better predictor of gas exchange than SLA. We found significant correspondence of leaf anatomy with branch architecture and wood traits, gas exchange corresponded with climate, while leaf economics corresponded with climate, architecture, wood and root traits. Species from the most seasonal climates had the highest trait-climate correspondence, and different aspects of economics and anatomy reflected leaf carbon uptake versus water use. Our study using phylogenetic comparative methods including plant architecture and leaf habit provides insight into the mechanism of whole-plant functional coordination and contextualizes individual traits in relation to climate, demonstrating the evolutionary and ecological relevance of trait-trait correlations within a genus with high biodiversity.
Collapse
Affiliation(s)
| | - Jean H Burns
- Department of Biology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106USA
| | - Callie Dowrey
- Holden Arboretum, 9500 Sperry Rd, Kirtland, OH 44094, USA
| | - Fiona Duong
- Holden Arboretum, 9500 Sperry Rd, Kirtland, OH 44094, USA
| | - Sarah Speroff
- New England Aquarium, 1 Central Wharf, Boston, MA 02110USA
| |
Collapse
|
25
|
Ndah FA, Maljanen M, Kasurinen A, Rinnan R, Michelsen A, Kotilainen T, Kivimäenpää M. Acclimation of subarctic vegetation to warming and increased cloudiness. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10130. [PMID: 38323130 PMCID: PMC10840376 DOI: 10.1002/pei3.10130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 02/08/2024]
Abstract
Subarctic ecosystems are exposed to elevated temperatures and increased cloudiness in a changing climate with potentially important effects on vegetation structure, composition, and ecosystem functioning. We investigated the individual and combined effects of warming and increased cloudiness on vegetation greenness and cover in mesocosms from two tundra and one palsa mire ecosystems kept under strict environmental control in climate chambers. We also investigated leaf anatomical and biochemical traits of four dominant vascular plant species (Empetrum hermaphroditum, Vaccinium myrtillus, Vaccinium vitis-idaea, and Rubus chamaemorus). Vegetation greenness increased in response to warming in all sites and in response to increased cloudiness in the tundra sites but without associated increases in vegetation cover or biomass, except that E. hermaphroditum biomass increased under warming. The combined warming and increased cloudiness treatment had an additive effect on vegetation greenness in all sites. It also increased the cover of graminoids and forbs in one of the tundra sites. Warming increased leaf dry mass per area of V. myrtillus and R. chamaemorus, and glandular trichome density of V. myrtillus and decreased spongy intercellular space of E. hermaphroditum and V. vitis-idaea. Increased cloudiness decreased leaf dry mass per area of V. myrtillus, palisade thickness of E. hermaphroditum, and stomata density of E. hermaphroditum and V. vitis-idaea, and increased leaf area and epidermis thickness of V. myrtillus, leaf shape index and nitrogen of E. hermaphroditum, and palisade intercellular space of V. vitis-idaea. The combined treatment caused thinner leaves and decreased leaf carbon for V. myrtillus, and increased leaf chlorophyll of E. hermaphroditum. We show that under future warmer increased cloudiness conditions in the Subarctic (as simulated in our experiment), vegetation composition and distribution will change, mostly dominated by graminoids and forbs. These changes will depend on the responses of leaf anatomical and biochemical traits and will likely impact carbon gain and primary productivity and abiotic and biotic stress tolerance.
Collapse
Affiliation(s)
- Flobert A. Ndah
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Marja Maljanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Anne Kasurinen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Center for Volatile Interactions (VOLT), Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
| | - Anders Michelsen
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | | | - Minna Kivimäenpää
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
- Natural Resources Institute FinlandSuonenjokiFinland
| |
Collapse
|
26
|
Ouk R, Oi T, Sugiura D, Taniguchi M. Structural changes of mesophyll cells in the rice leaf tissue in response to salinity stress based on the three-dimensional analysis. AOB PLANTS 2024; 16:plae016. [PMID: 38690081 PMCID: PMC11059269 DOI: 10.1093/aobpla/plae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Rice leaf blades have intricate-shaped mesophyll cells (MCs) with a large volume of chloroplasts enhancing gas exchange between stroma and intercellular airspace (IAS). Since the rice MCs do not form palisade or spongy tissue cells and are considered monotypic cells, the structural analysis of MCs in the middle part of the leaf tissue has been done, neglecting the various shapes of MCs can be observed on the cross-section of rice leaves. Moreover, the middle MC layer is sandwiched between the upper and lower layers and is more restricted in its demand for light and CO2 entering from the outside. Therefore, the different layers of MCs may differ in their sensitivity to salt stress that causes structural changes in cells. This study aims to elucidate the intra- and extra-cellular structures of MC in different layers of leaf tissue and determine how salinity affects the MC structure in each layer. The mesophyll tissue was divided into adaxial, middle and abaxial layers, and eight MCs and chloroplast regions were selected from each layer and reconstructed into three-dimensional (3D) representations. The whole leaf anatomical and physiological parameters were measured to find the effects of salinity stress on the MC structures. As a result, the 3D analysis of rice leaf tissue revealed the different structures of MCs with greater diversity in the adaxial and abaxial layers than in the middle layer. Salinity stress reduced the size and height of the MCs and coverage of the chloroplast on the cytoplasm periphery of the adaxial and abaxial layers, as well as the chloroplast size of adaxial MCs. Overall, these results reveal the variation of rice MC in leaf tissue and suggest the higher sensitivity to salt stress in the adaxial mesophyll among the layers, which may partly account for the decrease in photosynthetic capacity.
Collapse
Affiliation(s)
- Rachana Ouk
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Takao Oi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Daisuke Sugiura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Mitsutaka Taniguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
27
|
Gu Z, Hu C, Gan Y, Zhou J, Tian G, Gao L. Role of Microbes in Alleviating Crop Drought Stress: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:384. [PMID: 38337917 PMCID: PMC10857462 DOI: 10.3390/plants13030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 02/12/2024]
Abstract
Drought stress is an annual global phenomenon that has devastating effects on crop production, so numerous studies have been conducted to improve crop drought resistance. Plant-associated microbiota play a crucial role in crop health and growth; however, we have a limited understanding of the key processes involved in microbiome-induced crop adaptation to drought stress. In this review, we summarize the adverse effects of drought stress on crop growth in terms of germination, photosynthesis, nutrient uptake, biomass, and yield, with a focus on the response of soil microbial communities to drought stress and plant-microbe interactions under drought stress. Moreover, we review the morpho-physiological, biochemical, and molecular mechanisms underlying the mitigation effect of microbes on crop drought stress. Finally, we highlight future research directions, including the characterization of specific rhizosphere microbiome species with corresponding root exudates and the efficiency of rhizobacteria inoculants under drought conditions. Such research will advance our understanding of the complex interactions between crops and microbes and improve crop resistance to drought stress through the application of beneficial drought-adaptive microbes.
Collapse
Affiliation(s)
- Zechen Gu
- Engineering and Technical Center for Modern Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China;
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Chengji Hu
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Yuxin Gan
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Jinyan Zhou
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Guangli Tian
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (C.H.); (Y.G.); (J.Z.); (G.T.)
| | - Limin Gao
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, Nanjing 210014, China
| |
Collapse
|
28
|
Boonprajan P, Leeratiwong C, Sirichamorn Y. From morphology to molecules: A comprehensive study of a novel Derris species (Fabaceae) with a rare flowering habit and reddish leaflet midribs, discovered in Peninsular Thailand. PHYTOKEYS 2024; 237:51-77. [PMID: 38269332 PMCID: PMC10806910 DOI: 10.3897/phytokeys.237.112860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
Derrisrubricosta Boonprajan & Sirich., sp. nov., a new species of the genus Derris Lour. (Fabaceae) was discovered in Peninsular Thailand. The overall morphology demonstrates that the species most resembles D.pubipetala. Nevertheless, the species has several autapomorphies differentiating it from other Derris species, e.g., the presence of reddish midribs of the mature leaflets, sparsely hairy stamen filaments, prominent hairs at the base of the anthers, and presence of glandular trichomes along the leaflet midrib. Additionally, HPLC fingerprints of this species showed a distinction from D.pubipetala by the absence of phytochemical compound peaks after 13 min. Retention Time (RT). Results from molecular phylogenetic analyses also strongly supported the taxonomic status as a new species.
Collapse
Affiliation(s)
- Punvarit Boonprajan
- Department of Biology, Faculty of Science, Silpakorn University, Sanam Chandra Palace Campus, Nakhon Pathom 73000, ThailandSilpakorn UniversityNakhon PathomThailand
| | - Charan Leeratiwong
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90112, ThailandPrince of Songkla UniversitySongkhlaThailand
| | - Yotsawate Sirichamorn
- Department of Biology, Faculty of Science, Silpakorn University, Sanam Chandra Palace Campus, Nakhon Pathom 73000, ThailandSilpakorn UniversityNakhon PathomThailand
| |
Collapse
|
29
|
Xu Z, Qin L, Zhou G, SiQing B, Du W, Meng S, Yu J, Sun Z, Liu Q. Exploring carbon sequestration in broad-leaved Korean pine forests: Insights into photosynthetic and respiratory processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167421. [PMID: 37774859 DOI: 10.1016/j.scitotenv.2023.167421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
A comprehensive understanding of carbon assimilation and sequestration in broad-leaved Korean pine forests is crucial for accurately estimating this significant aspect of temperate forests at a regional scale. In this study, we introduced a high-temporal resolution model designed for carbon assimilation insights at the plot scale, focusing on specific parameters such as leaf area dynamics, vertical leaf distribution, photosynthetically active radiation (PAR) fluctuations, and the photosynthetic traits of tree species. The findings reveal that most tree species in broad-leaved Korean pine forests exhibit an inverted U-shaped pattern in leaf area dynamics, with shorter leaf drop periods than leaf expansion events. Leaf distribution varies significantly among different canopy heights, with approximately 80 % of the leaves above 15 m. PAR decreases as canopy height decreases, with PAR at 25 m accounting for about 60 % of the PAR above the canopy. Our framework incorporates a leaf-scale light-response curve and empirical photosynthesis-temperature relationships to estimate forest carbon assimilation on daily and hourly scales accurately. Using the model, we assess the gross primary productivity (GPP), leaf net photosynthetic assimilation (LNPA), and carbon increment (ΔC) of broad-leaved Korean pine forests from 2017 to 2020. The results demonstrate GPP, LNPA, and ΔC values of 21.4 t·ha-1·a-1, 17.4 t·ha-1·a-1, and 4.0 t·ha-1·a-1, respectively. Regarding efficiency, GPP, LNPA, and ΔC per square meter of leaf per year are 179 g, 146 g, and 33 g, respectively. Notably, tree species in the canopy layer of the forest exhibit significantly higher efficiency than those in the understory layer. This research significantly contributes to our understanding of carbon cycling and the responses of forest ecosystems to climate change. Moreover, it provides a practical tool for forest management and the development of carbon sequestration strategies.
Collapse
Affiliation(s)
- Zhenzhao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Lihou Qin
- Academy of Inventory and Planning, National Forestry and Grassland Administration, Beijing 100714, China.
| | - Guang Zhou
- Jiangxi Academy of Forestry, Nanchang 330032, China; College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Bilige SiQing
- Ordos Forestry and Grassland Development Center, Ordos 017000, China.
| | - Wenxian Du
- Zunyi Nature Reserve Management Service Center, Zunyi 563000, China.
| | - Shengwang Meng
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jian Yu
- School of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China.
| | - Zhen Sun
- College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Qijing Liu
- College of Forestry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
30
|
Huang G, Zeng Y. Increased stomatal conductance and leaf biochemical capacity, not mesophyll conductance, contributing to the enhanced photosynthesis in Oryza plants during domestication. PLANTA 2023; 259:28. [PMID: 38127197 DOI: 10.1007/s00425-023-04305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
MAIN CONCLUSION Leaf biochemical capacity and the ratio of leaf biochemical capacity to stomatal conductance are promising to enhance leaf photosynthetic rate and water use efficiency in rice plants, respectively. Domestication may have great impact on crop photosynthetic rate, which has not been fully understood, especially from the perspective of stomatal conductance, mesophyll conductance, and leaf biochemical capacity simultaneously. In this study, we constructed a database consisting of 141 and 92 sets of data from wild and cultivated rice, respectively, including leaf gas exchange parameters, hydraulic conductance, structural traits, and nitrogen content. We found that, compared to wild rice, enhanced leaf photosynthetic rate in cultivated rice was mainly resulted by the increased stomatal conductance and leaf biochemical capacity, rather than mesophyll conductance. The unchanged mesophyll conductance observed during domestication suggested that it might have been optimized during plant evolution in wild rice. Additionally, the positive relationship between stomatal density and stomatal conductance disappeared in Oryza plants during domestication, suggesting that stomatal conductance in cultivated rice is less restricted by stomatal density, compared to wild rice. Moreover, in both wild and cultivated rice, leaf photosynthetic rate was mainly determined by leaf biochemical capacity, rather than stomatal conductance and mesophyll conductance. This study highlighted the important role of stomatal conductance and leaf biochemical capacity in improvement of leaf photosynthetic rate in rice during domestication. Leaf biochemical capacity and the ratio of leaf biochemical capacity to stomatal conductance should be further investigated to enhance leaf photosynthetic rate and water use efficiency in rice plants, respectively.
Collapse
Affiliation(s)
- Guanjun Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| | - Yongjun Zeng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| |
Collapse
|
31
|
Zhang C, Huang N, Zhang F, Wu T, He X, Wang J, Li Y. Intraspecific variations of leaf hydraulic, economic, and anatomical traits in Cinnamomum camphora along an urban-rural gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166741. [PMID: 37659523 DOI: 10.1016/j.scitotenv.2023.166741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Urbanization brings numerous benefits to residents, but it also introduces complex, variable, and heterogeneous habitat conditions to urban plants, resulting in an arid and hot urban environment that decreases tree growth and the ecological service capacity of trees. In this study, we evaluated leaf hydraulic, economic, and anatomical traits and their covariations of Cinnamomum camphora along an urban-rural gradient in Hefei, Eastern China. We found that Cinnamomum camphora in urban adopted a conservative hydraulic strategy with low leaf turgor loss point (Tlp), leaf hydraulic conductance (Kleaf), and leaf water potential resulting in 50 % loss of hydraulic conductance (P50), as well as a quick investment-return economic strategy with low unit leaf dry matter content (LMA) and high leaf nitrogen content (Leaf N). P50, Kleaf and LMA were significantly positively correlated with the urban-rural gradient (PC1urban-rural gradient), while Leaf N exhibited a negative correlation with it. The results showed a trade-off between intraspecific safety and efficiency in leaf hydraulic traits along the urban-rural gradient and an intraspecific coordinated variation in leaf hydraulic and economic traits. In addition, based on the analysis of a trait coordination network, it was revealed that leaf mesophyll and stomata were key structures for trait adjustment and coordination. Furthermore, our findings offer a significant theoretical underpinning for the effective management of landscape trees and the strategic planning of urban tree species.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Changjiang West Road 130, Shushan District, Hefei 230036, China
| | - Nuo Huang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Changjiang West Road 130, Shushan District, Hefei 230036, China
| | - Fengyu Zhang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Changjiang West Road 130, Shushan District, Hefei 230036, China
| | - Ting Wu
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia; Global Centre for Land-based Innovation, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - Xianjin He
- Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif sur Yvette 91191, France
| | - Jianan Wang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Changjiang West Road 130, Shushan District, Hefei 230036, China; Anhui Hefei Urban Ecosystem Research Station, National Forestry and Grassland Administration, Changjiang West Road 130, Shushan District, Hefei 230036, China
| | - Yiyong Li
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Changjiang West Road 130, Shushan District, Hefei 230036, China; Anhui Hefei Urban Ecosystem Research Station, National Forestry and Grassland Administration, Changjiang West Road 130, Shushan District, Hefei 230036, China.
| |
Collapse
|
32
|
Sloan J, Wang S, Ngai QY, Xiao Y, Armand J, Wilson MJ, Zhu X, Fleming AJ. Conserved cellular patterning in the mesophyll of rice leaves. PLANT DIRECT 2023; 7:e549. [PMID: 38054113 PMCID: PMC10695703 DOI: 10.1002/pld3.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023]
Abstract
The mesophyll cells of grass leaves, such as rice, are traditionally viewed as displaying a relatively uniform pattern, in contrast to the clear distinctions of palisade and spongy layers in typical eudicot leaves. This quantitative analysis of mesophyll cell size and shape in rice leaves reveals that there is an inherent pattern in which cells in the middle layer of the mesophyll are larger and less circular and have a distinct orientation of their long axis compared to mesophyll cells in other layers. Moreover, this pattern was observed in a range of rice cultivars and species. The significance of this pattern with relation to potential photosynthetic function and the implication of the widespread use of middle layer mesophyll cells as typical of the rice leaf have been investigated and discussed.
Collapse
Affiliation(s)
- Jen Sloan
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Saranrat Wang
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Qi Yang Ngai
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Yi Xiao
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana ChampaignUrbanaILUSA
| | - Jodie Armand
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Matthew J. Wilson
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Xin‐Guang Zhu
- Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Andrew J. Fleming
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
33
|
Liu N, Liu F, Sun Z, Wang Z, Yang L. Nitrogen addition changes the canopy biological characteristics of dominant tree species in an evergreen broad-leaved forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165914. [PMID: 37524183 DOI: 10.1016/j.scitotenv.2023.165914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Many studies have focused on the impact of nitrogen deposition on plants, but due to technical limitations, research on the responses of forest canopy to manipulated nitrogen deposition is relatively scarce. Based on a canopy nitrogen addition (CN) platform, this study used laboratory analysis and unmanned aerial vehicle (UAV) observations to assess the impact of CN on the canopy traits of dominant tree species (Engelhardia roxburghiana, Schima superba, and Castanea henryi) in an evergreen broad-leaved forest in China. The results showed that nitrogen application at 25 kg N ha-1 y-1 (CN25) and 50 kg N ha-1 y-1 (CN50) significantly increased the actual net photosynthetic rate (An) of all the three tree species. CN25 significantly increased superoxide dismutase (SOD), catalase (CAT), and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activities in C. henryi. CN50 significantly increased the leaf area of all the three tree species and significantly reduced the leaf thickness of C. henryi, and significantly increased the POD and Rubisco activities in S. superba and C. henryi. CN significantly changed the number of forest gaps, but did not significantly change the area of forest gaps within the sample plots. CN25 significantly decreased the vertical projection area but increased the canopy flowering coverage of S. superba in dominant directions. CN25 and CN50 significantly increased the flowering coverage of C. henryi in favorable directions. It is found that under long-term (10-year) nitrogen addition, the balance between carbon fixation and antioxidant defense functions of E. roxburghiana may be broken down, but the carbon assimilation, antioxidant capacity and reproduction potential of S. superba and C. henryi may be well coordinated, which will have a potential impact on the species composition and ecological functions of the evergreen broad-leaved forest. This study may also provide scientific basis for forest management in the context of enhanced atmospheric nitrogen deposition.
Collapse
Affiliation(s)
- Nan Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, China; College of Life Sciences, Gannan Normal University, 341000 Ganzhou, China.
| | - Fangyan Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, China
| | - Zhongyu Sun
- Guangdong Provincial Key Laboratory of Remote Sensing and Geographical Information System, Guangzhou Institute of Geography, Guangdong Academy of Sciences, 510070 Guangzhou, China.
| | - Zhihui Wang
- Guangdong Provincial Key Laboratory of Remote Sensing and Geographical Information System, Guangzhou Institute of Geography, Guangdong Academy of Sciences, 510070 Guangzhou, China
| | - Long Yang
- Guangdong Provincial Key Laboratory of Remote Sensing and Geographical Information System, Guangzhou Institute of Geography, Guangdong Academy of Sciences, 510070 Guangzhou, China
| |
Collapse
|
34
|
Luo D, Huang G, Zhang Q, Zhou G, Peng S, Li Y. Plasticity of mesophyll cell density and cell wall thickness and composition play a pivotal role in regulating plant growth and photosynthesis under shading in rapeseed. ANNALS OF BOTANY 2023; 132:963-978. [PMID: 37739395 PMCID: PMC10808032 DOI: 10.1093/aob/mcad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND AND AIMS Plasticity of leaf growth and photosynthesis is an important strategy of plants to adapt to shading stress; however, their strategy of leaf development to achieve a simultaneous increase in leaf area and photosynthesis under shading remains unknown. METHODS In the present study, a pot experiment was conducted using three rapeseed genotypes of Huayouza 50 (HYZ50), Zhongshuang 11 (ZS11) and Huayouza 62 (HYZ62), and the responses of plant growth, leaf morphoanatomical traits, cell wall composition and photosynthesis to shading were investigated. KEY RESULTS Shading significantly increased leaf area per plant (LAplant) in all genotypes, but the increase in HYZ62 was greater than that in HYZ50 and ZS11. The greater increment of LAplant in HYZ62 was related to the larger decrease in leaf mass per area (LMA) and leaf density (LD), which were in turn related to less densely packed mesophyll cells and thinner cell walls (Tcw). Moreover, shading significantly increased photosynthesis in HYZ62 but significantly decreased it in HYZ50. The enhanced photosynthesis in HYZ62 was related to increased mesophyll conductance (gm) due primarily to thinner cell walls. CONCLUSIONS The data presented indicate that the different plasticity of mesophyll cell density, cell wall thickness and cell wall composition in response to shading can dramatically affect leaf growth and photosynthesis.
Collapse
Affiliation(s)
- Dongxu Luo
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guanjun Huang
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qiangqiang Zhang
- Rice Ecophysiology and Precise Management Laboratory, College of Agronomy, Anhui Agricultural University, Anhui 230036, China
| | - Guangsheng Zhou
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shaobing Peng
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yong Li
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
35
|
Shi H, Ernst E, Heinzel N, McCorkle S, Rolletschek H, Borisjuk L, Ortleb S, Martienssen R, Shanklin J, Schwender J. Mechanisms of metabolic adaptation in the duckweed Lemna gibba: an integrated metabolic, transcriptomic and flux analysis. BMC PLANT BIOLOGY 2023; 23:458. [PMID: 37789269 PMCID: PMC10546790 DOI: 10.1186/s12870-023-04480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Duckweeds are small, rapidly growing aquatic flowering plants. Due to their ability for biomass production at high rates they represent promising candidates for biofuel feedstocks. Duckweeds are also excellent model organisms because they can be maintained in well-defined liquid media, usually reproduce asexually, and because genomic resources are becoming increasingly available. To demonstrate the utility of duckweed for integrated metabolic studies, we examined the metabolic adaptation of growing Lemna gibba cultures to different nutritional conditions. RESULTS To establish a framework for quantitative metabolic research in duckweeds we derived a central carbon metabolism network model of Lemna gibba based on its draft genome. Lemna gibba fronds were grown with nitrate or glutamine as nitrogen source. The two conditions were compared by quantification of growth kinetics, metabolite levels, transcript abundance, as well as by 13C-metabolic flux analysis. While growing with glutamine, the fronds grew 1.4 times faster and accumulated more protein and less cell wall components compared to plants grown on nitrate. Characterization of photomixotrophic growth by 13C-metabolic flux analysis showed that, under both metabolic growth conditions, the Calvin-Benson-Bassham cycle and the oxidative pentose-phosphate pathway are highly active, creating a futile cycle with net ATP consumption. Depending on the nitrogen source, substantial reorganization of fluxes around the tricarboxylic acid cycle took place, leading to differential formation of the biosynthetic precursors of the Asp and Gln families of proteinogenic amino acids. Despite the substantial reorganization of fluxes around the tricarboxylic acid cycle, flux changes could largely not be associated with changes in transcripts. CONCLUSIONS Through integrated analysis of growth rate, biomass composition, metabolite levels, and metabolic flux, we show that Lemna gibba is an excellent system for quantitative metabolic studies in plants. Our study showed that Lemna gibba adjusts to different nitrogen sources by reorganizing central metabolism. The observed disconnect between gene expression regulation and metabolism underscores the importance of metabolic flux analysis as a tool in such studies.
Collapse
Affiliation(s)
- Hai Shi
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Evan Ernst
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Nicolas Heinzel
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, Seeland OT Gatersleben, Germany
| | - Sean McCorkle
- Brookhaven National Laboratory, Computational Science Initiative, Upton, NY, 11973, USA
| | - Hardy Rolletschek
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, Seeland OT Gatersleben, Germany
| | - Ljudmilla Borisjuk
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, Seeland OT Gatersleben, Germany
| | - Stefan Ortleb
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, Seeland OT Gatersleben, Germany
| | - Robert Martienssen
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jorg Schwender
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| |
Collapse
|
36
|
Zhang SY, Zhao BG, Shen Z, Mei YC, Li G, Dong FQ, Zhang J, Chao Q, Wang BC. Integrating ATAC-seq and RNA-seq to identify differentially expressed genes with chromatin-accessible changes during photosynthetic establishment in Populus leaves. PLANT MOLECULAR BIOLOGY 2023; 113:59-74. [PMID: 37634200 DOI: 10.1007/s11103-023-01375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023]
Abstract
Leaves are the primary photosynthetic organs, providing essential substances for tree growth. It is important to obtain an anatomical understanding and regulatory network analysis of leaf development. Here, we studied leaf development in Populus Nanlin895 along a development gradient from the newly emerged leaf from the shoot apex to the sixth leaf (L1 to L6) using anatomical observations and RNA-seq analysis. It indicated that mesophyll cells possess obvious vascular, palisade, and spongy tissue with distinct intercellular spaces after L3. Additionally, vacuoles fuse while epidermal cells expand to form pavement cells. RNA-seq analysis indicated that genes highly expressed in L1 and L2 were related to cell division and differentiation, while those highly expressed in L3 were enriched in photosynthesis. Therefore, we selected L1 and L3 to integrate ATAC-seq and RNA-seq and identified 735 differentially expressed genes (DEGs) with changes in chromatin accessibility regions within their promoters, of which 87 were transcription factors (TFs), such as ABI3VP1, AP-EREBP, MYB, NAC, and GRF. Motif enrichment analysis revealed potential regulatory functions for the DEGs through upstream TFs including TCP, bZIP, HD-ZIP, Dof, BBR-BPC, and MYB. Overall, our research provides a potential molecular foundation for regulatory network exploration in leaf development during photosynthesis establishment.
Collapse
Affiliation(s)
- Sheng-Ying Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Biligen-Gaowa Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuo Shen
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Ying-Chang Mei
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng-Qin Dong
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jiao Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
37
|
Krumova S, Petrova A, Koleva D, Petrova S, Stoichev S, Petrova N, Tsonev T, Petrov P, Velikova V. Priming of Pisum sativum seeds with stabilized Pluronic P85 nanomicelles: effects on seedling development and photosynthetic function. PHOTOSYNTHETICA 2023; 61:432-440. [PMID: 39649480 PMCID: PMC11586843 DOI: 10.32615/ps.2023.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/04/2023] [Indexed: 12/10/2024]
Abstract
Natural and synthetic polymers are widely explored for improving seed germination and plant resistance to environmental constraints. Here, for the first time, we explore stabilized nanomicelles composed of the biocompatible triblock co-polymer Pluronic P85 (SPM) as a priming agent for Pisum sativum (var. RAN-1) seeds. We tested a wide concentration range of 0.04-30 g(SPM) L-1. Applying several structural and functional methods we revealed that the utilized nanomicelles can positively affect root length, without any negative effects on leaf anatomy and photosynthetic efficiency at 0.2 g L-1, while strong negative effects were recorded for 10 and 30 g(SPM) L-1 concerning root length, leaf histology, and photoprotection capability. Our data strongly suggest that SPM can safely be utilized for seed priming at specific concentrations and are suitable objects for further loading with plant growth regulators.
Collapse
Affiliation(s)
- S. Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - A. Petrova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - D. Koleva
- Faculty of Biology, Sofia University ‘St. Kliment Ohridsky’, Sofia, Bulgaria
| | - S. Petrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - S. Stoichev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - N. Petrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - T. Tsonev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - P. Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - V. Velikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
38
|
Petrík P, Petek-Petrik A, Mukarram M, Schuldt B, Lamarque LJ. Leaf physiological and morphological constraints of water-use efficiency in C 3 plants. AOB PLANTS 2023; 15:plad047. [PMID: 37560762 PMCID: PMC10407996 DOI: 10.1093/aobpla/plad047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/05/2023] [Indexed: 08/11/2023]
Abstract
The increasing evaporative demand due to climate change will significantly affect the balance of carbon assimilation and water losses of plants worldwide. The development of crop varieties with improved water-use efficiency (WUE) will be critical for adapting agricultural strategies under predicted future climates. This review aims to summarize the most important leaf morpho-physiological constraints of WUE in C3 plants and identify gaps in knowledge. From the carbon gain side of the WUE, the discussed parameters are mesophyll conductance, carboxylation efficiency and respiratory losses. The traits and parameters affecting the waterside of WUE balance discussed in this review are stomatal size and density, stomatal control and residual water losses (cuticular and bark conductance), nocturnal conductance and leaf hydraulic conductance. In addition, we discussed the impact of leaf anatomy and crown architecture on both the carbon gain and water loss components of WUE. There are multiple possible targets for future development in understanding sources of WUE variability in plants. We identified residual water losses and respiratory carbon losses as the greatest knowledge gaps of whole-plant WUE assessments. Moreover, the impact of trichomes, leaf hydraulic conductance and canopy structure on plants' WUE is still not well understood. The development of a multi-trait approach is urgently needed for a better understanding of WUE dynamics and optimization.
Collapse
Affiliation(s)
- Peter Petrík
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| | - Anja Petek-Petrik
- Institute of Botany, Czech Academy of Sciences, Lidická 971, 602 00 Brno, Czech Republic
| | - Mohammad Mukarram
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, 960 01 Zvolen, Slovakia
| | - Bernhard Schuldt
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden (TUD), Pienner Str. 7, 01737 Tharandt, Germany
| | - Laurent J Lamarque
- Département des Sciences de l’environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| |
Collapse
|
39
|
Ravetta DA, Vilela AE, Gonzalez-Paleo L, Van Tassel DL. Unpredicted, rapid and unintended structural and functional changes occurred during early domestication of Silphium integrifolium, a perennial oilseed. PLANTA 2023; 258:18. [PMID: 37314591 DOI: 10.1007/s00425-023-04179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION Selection for increased yield changed structure, physiology and overall resource-use strategy from conservative towards acquisitive leaves. Alternative criteria can be considered, to increase yield with less potentially negative traits. We compared the morphology, anatomy and physiology of wild and semi-domesticated (SD) accessions of Silphium integrifolium (Asteraceae), in multi-year experiments. We hypothesized that several cycles of selection for seed-yield would result in acquisitive leaves, including changes predicted by the leaf economic spectrum. Early-selection indirectly resulted in leaf structural and functional changes. Leaf anatomy changed, increasing mesophyll conductance and the size of xylem vessels and mesophyll cells increased. Leaves of SD plants were larger, heavier, with lower stomatal conductance, lower internal CO2 concentration, and lower resin concentration than those of wild types. Despite increased water use efficiency, SD plants transpired 25% more because their increase in leaf area. Unintended and undesired changes in functional plant traits could quickly become fixed during domestication, shortening the lifespan and increasing resource consumption of the crop as well as having consequences in the provision and regulation of ecosystem services.
Collapse
Affiliation(s)
- D A Ravetta
- CONICET, Museo Egidio Feruglio, Fontana 144, 9100, Trelew, Chubut, Argentina.
| | - A E Vilela
- CONICET, Museo Egidio Feruglio, Fontana 144, 9100, Trelew, Chubut, Argentina
| | - L Gonzalez-Paleo
- CONICET, Museo Egidio Feruglio, Fontana 144, 9100, Trelew, Chubut, Argentina
| | - D L Van Tassel
- The Land Institute, 2440 E Water Well Rd, Salina, KS, 67401, USA
| |
Collapse
|
40
|
Yu ZC, Lin W, He W, Yan GZ, Zheng XT, Luo YN, Zhu H, Peng CL. Dynamic changes of the contents of photoprotective substances and photosynthetic maturation during leaf development of evergreen tree species in subtropical forests. TREE PHYSIOLOGY 2023; 43:965-978. [PMID: 36864631 PMCID: PMC10785039 DOI: 10.1093/treephys/tpad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/22/2023] [Indexed: 06/11/2023]
Abstract
Many studies have investigated the photoprotective and photosynthetic capacity of plant leaves, but few have simultaneously evaluated the dynamic changes of photoprotective capacity and photosynthetic maturation of leaves at different developmental stages. As a result, the process between the decline of photoprotective substances and the onset of photosynthetic maturation during plant leaf development are still poorly understood, and the relationship between them has not been quantitatively described. In this study, the contents of photoprotective substances, photosynthetic pigment content and photosynthetic capacity of leaves at different developmental stages from young leaves to mature leaves were determined by spatio-temporal replacement in eight dominant tree species in subtropical evergreen broadleaved forests. The correlation analysis found that the data sets of anthocyanins, flavonoids, total phenolics and total antioxidant capacity were mainly distributed on one side of the symmetry axis (y = x), while the data sets of flavonoids, total phenolics and total antioxidant capacity were mainly distributed on both sides of the symmetry axis (y = x). In addition, the content of photoprotective substances in plant leaves was significantly negatively correlated with photosynthetic pigment content and photosynthetic capacity but was significantly positively correlated with dark respiration rate (Rd). When chlorophyll accumulated to ~50% of the final value, the photoprotective substance content and Rd of plant leaves reached the lowest level, and anthocyanins disappeared completely; in contrast, the photosynthetic capacity reached the highest level. Our results suggest that anthocyanins mainly play a light-shielding role in the young leaves of most plants in subtropical forests. In addition, 50% chlorophyll accumulation in most plant leaves was the basis for judging leaf photosynthetic maturity. We also believe that 50% chlorophyll accumulation is a critical period in the transition of plant leaves from high photoprotective capacity (high metabolic capacity, low photosynthetic capacity) to low photoprotective capacity (low metabolic capacity, high photosynthetic capacity).
Collapse
Affiliation(s)
- Zheng-Chao Yu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Wei Lin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wei He
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Guan-Zhao Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiao-Ting Zheng
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Yan-Na Luo
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hui Zhu
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Chang-Lian Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
41
|
Liu J, Zhang K, Bi J, Yu X, Luo L, Hu L. Mesophyll conductance and N allocation co-explained the variation in photosynthesis in two canola genotypes under contrasting nitrogen supply. FRONTIERS IN PLANT SCIENCE 2023; 14:1171331. [PMID: 37223789 PMCID: PMC10202220 DOI: 10.3389/fpls.2023.1171331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/13/2023] [Indexed: 05/25/2023]
Abstract
The application of nitrogen fertilizer within a normal range has been found to increase the leaf nitrogen content and photosynthetic rate of canola plants (Brassica napus L.). Despite numerous studies on the separate effects of CO2 diffusion limitation and nitrogen allocation trade-off on photosynthetic rate, few have examined both these factors in relation to the photosynthetic rate of canola. In this study, two genotypes of canola with varying leaf nitrogen content were analyzed to determine the impact of nitrogen supply on leaf photosynthesis, mesophyll conductance, and nitrogen partitioning. The results showed that the CO2 assimilation rate (A), mesophyll conductance (g m), and photosynthetic nitrogen content (N psn) increased with an increase in nitrogen supply in both genotypes. The relationship between nitrogen content and A followed a linear-plateau regression, while A had linear relationships with both photosynthetic nitrogen content and g m, indicating that the key to enhancing A is increasing the distribution of leaf nitrogen into the photosynthetic apparatus and g m, rather than just increasing nitrogen content. Under high nitrogen treatment, the genotype (QZ) with high nitrogen content had 50.7% more nitrogen than the other genotype (ZY21), but had similar A, which was primarily due to ZY21's higher photosynthetic nitrogen distribution ratio and stomatal conductance (g sw). On the other hand, QZ showed a higher A than ZY21 under low nitrogen treatment as QZ had higher N psn and g m compared to ZY21. Our results indicate that, in selecting high PNUE rapeseed varieties, it is important to consider the higher photosynthetic nitrogen distribution ratio and CO2 diffusion conductance.
Collapse
Affiliation(s)
- Jiahuan Liu
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Crop Ecophysiology Farming System in the Middle Reaches of the Yangtze River, College of Plant Science Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Junguo Bi
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Xinqiao Yu
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Liyong Hu
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Crop Ecophysiology Farming System in the Middle Reaches of the Yangtze River, College of Plant Science Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
42
|
Fujii S, Nishida K, Akitsu T, Kume A, Hanba Y. Variation in leaf mesophyll anatomy of fern species imposes significant effects on leaf gas exchange, light capture, and leaf hydraulic conductance. PHOTOSYNTHETICA 2023; 61:225-235. [PMID: 39650679 PMCID: PMC11515861 DOI: 10.32615/ps.2023.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/13/2023] [Indexed: 12/11/2024]
Abstract
The mesophyll anatomical traits are essential factors for efficient light capture, CO2 diffusion, and hydraulics in leaves. At the same time, leaf hydraulics are governed by the xylem anatomical traits. Thus, simultaneous analyses of the mesophyll and xylem anatomy will clarify the links among light capture, CO2 capture, and water use. However, such simultaneous analyses have been scarcely performed, particularly on non-seed plants. Using seven fern species, we first showed that fern species with a large mesophyll thickness had a high photosynthetic rate related to high light capture, high drought tolerance, and low leaf hydraulic conductance. The chloroplast surface area (Sc) per mesophyll thickness significantly decreased with an increase in mesophyll thickness, which may increase light diffusion and absorption efficiency in each chloroplast. The photosynthetic rate per Sc was almost constant with mesophyll thickness, which suggests that ferns enhance their light capture ability via the regulation of chloroplast density.
Collapse
Affiliation(s)
- S. Fujii
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, 606-8585 Kyoto, Japan
| | - K. Nishida
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, 606-8585 Kyoto, Japan
| | - T.K. Akitsu
- Earth Observation Research Center, Japan Aerospace Exploration Agency, 2-1-1 Sengen, 305-8505 Tsukuba, Japan
| | - A. Kume
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, 819-0395 Fukuoka, Japan
| | - Y.T. Hanba
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, 606-8585 Kyoto, Japan
| |
Collapse
|
43
|
Xu Y, Feng Z, Peng J, Uddling J. Variations in leaf anatomical characteristics drive the decrease of mesophyll conductance in poplar under elevated ozone. GLOBAL CHANGE BIOLOGY 2023; 29:2804-2823. [PMID: 36718962 DOI: 10.1111/gcb.16621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/18/2023] [Indexed: 05/31/2023]
Abstract
Decline in mesophyll conductance (gm ) plays a key role in limiting photosynthesis in plants exposed to elevated ozone (O3 ). Leaf anatomical traits are known to influence gm , but the potential effects of O3 -induced changes in leaf anatomy on gm have not yet been clarified. Here, two poplar clones were exposed to elevated O3 . The effects of O3 on the photosynthetic capacity and anatomical characteristics were assessed to investigate the leaf anatomical properties that potentially affect gm . We also conducted global meta-analysis to explore the general response patterns of gm and leaf anatomy to O3 exposure. We found that the O3 -induced reduction in gm was critical in limiting leaf photosynthesis. Changes in liquid-phase conductance rather than gas-phase conductance drive the decline in gm under elevated O3, and this effect was associated with thicker cell walls and smaller chloroplast sizes. The effects of O3 on palisade and spongy mesophyll cell traits and their contributions to gm were highly genotype-dependent. Our results suggest that, while anatomical adjustments under elevated O3 may contribute to defense against O3 stress, they also cause declines in gm and photosynthesis. These results provide the first evidence of anatomical constraints on gm under elevated O3 .
Collapse
Affiliation(s)
- Yansen Xu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA),School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Zhaozhong Feng
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA),School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Jinlong Peng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
44
|
Shu Y, Huang G, Zhang Q, Peng S, Li Y. Reduction of photosynthesis under P deficiency is mainly caused by the decreased CO 2 diffusional capacities in wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107680. [PMID: 37031546 DOI: 10.1016/j.plaphy.2023.107680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
Phosphorus is one of the most important essential mineral elements for plant growth and development. It has been widely recognized that phosphorus deficiency can lead to the significant declines in leaf photosynthetic rate and leaf area. However, the internal mechanism associated with the leaf anatomical traits has not been well understood. In present study, a hydroponic experiment was conducted to study the effect of phosphorus deficiency on leaf growth and photosynthesis in Jimai 22 (JM22, Triticum aestivum L.) and Suk Landarace 26 (SL26, Triticum aestivum L.). With the decrease in phosphorus concentration, leaf photosynthetic rate and leaf area in SL26 and JM22 all decreased significantly, but the decrease in leaf area occurred earlier than that in leaf photosynthetic rate. The thresholds of phosphorus concentration to maintain a high photosynthesis were 145.5 and 138.7 mg m-2, respectively, in SL26 and JM22; and they were 197.5 and 212.0 mg m-2, respectively, for leaf growth. The decrease in leaf photosynthetic rate under low P conditions was mainly caused by the lowered stomatal conductance and mesophyll conductance, and to a less extent by the decrease in biochemical capacities. The decrease in stomatal conductance was attributed to the smaller vascular bundle area, xylem conduits area and the lower leaf hydraulic conductance. However, the reduction in mesophyll conductance was not related to either the cell wall thickness or the development of chloroplast.
Collapse
Affiliation(s)
- Yu Shu
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Guanjun Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| | - Qiangqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Yong Li
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
45
|
Wang XQ, Sun H, Zeng ZL, Huang W. Within-branch photosynthetic gradients are more related to the coordinated investments of nitrogen and water than leaf mass per area. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107681. [PMID: 37054614 DOI: 10.1016/j.plaphy.2023.107681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/18/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
Nitrogen (N) and water are key resources for leaf photosynthesis and the growth of whole plants. Within-branch leaves need different amounts of N and water to support their differing photosynthetic capacities according to light exposure. To test this scheme, we measured the within-branch investments of N and water and their effects on photosynthetic traits in two deciduous tree species Paulownia tomentosa and Broussonetia papyrifera. We found that leaf photosynthetic capacity gradually increased from branch bottom to top (i.e. from shade to sun leaves). Concomitantly, stomatal conductance (gs) and leaf N content gradually increased, owing to the symport of water and inorganic mineral from root to leaf. Variation of leaf N content led to large gradients of mesophyll conductance, maximum velocity of Rubisco for carboxylation, maximum electron transport rate and leaf mass per area (LMA). Correlation analysis indicated that the within-branch difference in photosynthetic capacity was mainly related to gs and leaf N content, with a relatively minor contribution of LMA. Furthermore, the simultaneous increases of gs and leaf N content enhanced photosynthetic N use efficiency (PNUE) but hardly affected water use efficiency. Therefore, within-branch adjustment of N and water investments is an important strategy used by plants to optimize the overall photosynthetic carbon gain and PNUE.
Collapse
Affiliation(s)
- Xiao-Qian Wang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Lan Zeng
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
46
|
Hanba YT, Nishida K, Tsutsui Y, Matsumoto M, Yasui Y, Sizhe Y, Matsuura T, Kawaguchi Akitsu T, Kume A. Leaf optical properties and photosynthesis of fern species with a wide range of divergence time in relation to mesophyll anatomy. ANNALS OF BOTANY 2023; 131:437-450. [PMID: 36749684 PMCID: PMC10072100 DOI: 10.1093/aob/mcad025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND AIMS For a comprehensive understanding of the mechanisms of changing plant photosynthetic capacity during plant evolutionary history, knowledge of leaf gas exchange and optical properties are essential, both of which relate strongly to mesophyll anatomy. Although ferns are suitable for investigating the evolutionary history of photosynthetic capacity, comprehensive research of fern species has yet to be undertaken in this regard. METHODS We investigated leaf optical properties, gas exchange and mesophyll anatomy of fern species with a wide range of divergence time, using 66 ferns from natural habitats and eight glasshouse-grown ferns. We used a spectroradiometer and an integrating sphere to measure light absorptance and reflectance by the leaves. KEY RESULTS The more newly divergent fern species had a thicker mesophyll, a larger surface area of chloroplasts facing the intercellular airspaces (Sc), thicker cell walls and large light absorptance. Although no trend with divergence time was obtained in leaf photosynthetic capacity on a leaf-area basis, when the traits were expressed on a mesophyll-thickness basis, trends in leaf photosynthetic capacity became apparent. On a mesophyll-thickness basis, the more newly divergent species had a low maximum photosynthesis rate, accompanied by a low Sc. CONCLUSIONS We found a strong link between light capture, mesophyll anatomy and photosynthesis rate in fern species for the first time. The thick mesophyll of the more newly divergent ferns does not necessarily relate to the high photosynthetic capacity on a leaf-area basis. Rather, the thick mesophyll accompanied by thick cell walls allowed the ferns to adapt to a wider range of environments through increasing leaf toughness, which would contribute to the diversification of fern species.
Collapse
Affiliation(s)
- Yuko T Hanba
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Keisuke Nishida
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yuuri Tsutsui
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mayu Matsumoto
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yutarou Yasui
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yang Sizhe
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Takumi Matsuura
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Tomoko Kawaguchi Akitsu
- Earth Observation Research Center, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba 305-8505, Japan
| | - Atsushi Kume
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
47
|
Kubásek J, Kalistová T, Janová J, Askanbayeva B, Bednář J, Šantrůček J. 13 CO 2 labelling as a tool for elucidating the mechanism of cuticle development: a case of Clusia rosea. THE NEW PHYTOLOGIST 2023; 238:202-215. [PMID: 36604855 DOI: 10.1111/nph.18716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The plant cuticle is an important plant-atmosphere boundary, the synthesis and maintenance of which represents a significant metabolic cost. Only limited information regarding cuticle dynamics is available. We determined the composition and dynamics of Clusia rosea cuticular waxes and matrix using 13 CO2 labelling, compound-specific and bulk isotope ratio mass spectrometry. Collodion was used for wax collection; gas exchange techniques to test for any collodion effects on living leaves. Cutin matrix (MX) area density did not vary between young and mature leaves and between leaf sides. Only young leaves incorporated new carbon into their MX. Collodion-based sampling discriminated between epicuticular (EW) and intracuticular wax (IW) effectively. Epicuticular differed in composition from IW. The newly synthetised wax was deposited in IW first and later in EW. Both young and mature leaves synthetised IW and EW. The faster dynamics in young leaves were due to lower wax coverage, not a faster synthesis rate. Longer-chain alkanes were deposited preferentially on the abaxial, stomatous leaf side, producing differences between leaf sides in wax composition. We introduce a new, sensitive isotope labelling method and demonstrate that cuticular wax is renewed during leaf ontogeny of C. rosea. We discuss the ecophysiological significance of the new insights.
Collapse
Affiliation(s)
- Jiří Kubásek
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská 1760/31, České Budějovice, Czech Republic
| | - Tereza Kalistová
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská 1760/31, České Budějovice, Czech Republic
| | - Jitka Janová
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská 1760/31, České Budějovice, Czech Republic
| | - Balzhan Askanbayeva
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská 1760/31, České Budějovice, Czech Republic
| | - Jan Bednář
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760/31, České Budějovice, Czech Republic
| | - Jiří Šantrůček
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská 1760/31, České Budějovice, Czech Republic
| |
Collapse
|
48
|
Guo W, Cherubini P, Zhang J, Li MH, Qi L. Leaf stomatal traits rather than anatomical traits regulate gross primary productivity of moso bamboo ( Phyllostachys edulis) stands. FRONTIERS IN PLANT SCIENCE 2023; 14:1117564. [PMID: 36998690 PMCID: PMC10043342 DOI: 10.3389/fpls.2023.1117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Leaf stomatal and anatomical traits strongly influence plant productivity. Understanding the environmental adaptation mechanisms of leaf stomatal and anatomical traits and their relationship with ecosystem productivity is essential to better understand and predict the long-term adaptation strategies to climate change of moso bamboo forests. Here, we selected 6 sites within the moso bamboo distribution area, measured 3 leaf stomatal traits and 10 leaf anatomical traits of unmanaged moso bamboo stands. We explored the spatial variation characteristics of these traits and their response to environmental changes, assessed the relationships among these traits at regional scales through network analysis, and tested the direct and indirect effects of environmental, leaf stomatal and anatomical traits on gross primary productivity (GPP) of bamboo stands using structural equation modeling (SEM). The results showed that both climate and soil factors significantly affected leaf stomatal and anatomical traits of moso bamboo. Solar radiation (SR) and mean annual precipitation (MAP) out of the climatic factors were the key drivers of variation in leaf stomatal and anatomical traits, respectively. Soil moisture and nutrients out of the soil properties significantly affected both leaf stomatal and anatomical traits of moso bamboo. Network analysis further indicated that there was a significant correlation between leaf stomata and anatomical traits. Stomatal size (SS) showed the highest centrality value at the regional scale, indicating that it plays a key role in adjusting the adaptation of plants to external environmental conditions. SEM analysis showed that environment did not directly but indirectly affect GPP via stomatal performance. The environment explained 53.3% and 39.2% of the variation in leaf stomatal and anatomical traits, respectively, and leaf stomatal traits explained 20.8% of the regional variation in GPP. Our results demonstrate a direct effect of leaf stomatal traits rather than leaf anatomical traits on bamboo ecosystem productivity, which provides new insights into model predictions of bamboo forests under global climate change.
Collapse
Affiliation(s)
- Wen Guo
- Key Laboratory of National Forestry and Grassland Administration/Beijing Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing, China
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Paolo Cherubini
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Jian Zhang
- Key Laboratory of National Forestry and Grassland Administration/Beijing Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing, China
| | - Mai-He Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- School of Life Science, Hebei University, Baoding, China
| | - Lianghua Qi
- Key Laboratory of National Forestry and Grassland Administration/Beijing Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing, China
| |
Collapse
|
49
|
Xiong D. Leaf anatomy does not explain the large variability of mesophyll conductance across C 3 crop species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1035-1048. [PMID: 36602006 DOI: 10.1111/tpj.16098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Increasing mesophyll conductance of CO2 (gm ) is a strategy to improve photosynthesis in C3 crops. However, the relative importance of different anatomical traits in determining gm in crops is unclear. Mesophyll conductance measurements were performed on 10 crops using the online carbon isotope discrimination method and the 'variable J' method in parallel. The influences of crucial leaf anatomical traits on gm were evaluated using a one-dimensional anatomical CO2 diffusion model. The gm values measured using two independent methods were compatible, although significant differences were observed in their absolute values. Quantitative analysis showed that cell wall thickness and chloroplast stroma thickness are the most important elements along the diffusion pathway. Unexpectedly, the large variability of gm across crops was not associated with any investigated leaf anatomical traits except chloroplast thickness. The gm values estimated using the anatomical model differed remarkably from the values measured in vivo in most species. However, when the species-specific effective porosity of the cell wall and the species-specific facilitation effect of CO2 diffusion across the membrane and chloroplast stoma were taken into account, the model could output gm values very similar to those measured in vivo. These results indicate that gm variation across crops is probably also driven by the effective porosity of the cell wall and effects of facilitation of CO2 transport across the membrane and chloroplast stroma in addition to the thicknesses of the elements.
Collapse
Affiliation(s)
- Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
50
|
Cerqueira JVA, Zhu F, Mendes K, Nunes-Nesi A, Martins SCV, Benedito V, Fernie AR, Zsögön A. Promoter replacement of ANT1 induces anthocyanin accumulation and triggers the shade avoidance response through developmental, physiological and metabolic reprogramming in tomato. HORTICULTURE RESEARCH 2023; 10:uhac254. [PMID: 36751272 PMCID: PMC9896602 DOI: 10.1093/hr/uhac254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 06/18/2023]
Abstract
The accumulation of anthocyanins is a well-known response to abiotic stresses in many plant species. However, the effects of anthocyanin accumulation on light absorbance and photosynthesis are unknown . Here, we addressed this question using a promoter replacement line of tomato constitutively expressing a MYB transcription factor (ANTHOCYANIN1, ANT1) that leads to anthocyanin accumulation. ANT1-overexpressing plants displayed traits associated with shade avoidance response: thinner leaves, lower seed germination rate, suppressed side branching, increased chlorophyll concentration, and lower photosynthesis rates than the wild type. Anthocyanin-rich leaves exhibited higher absorbance of light in the blue and red ends of the spectrum, while higher anthocyanin content in leaves provided photoprotection to high irradiance. Analyses of gene expression and primary metabolites content showed that anthocyanin accumulation produces a reconfiguration of transcriptional and metabolic networks that is consistent with, but not identical to those described for the shade avoidance response. Our results provide novel insights about how anthocyanins accumulation affects the trade-off between photoprotection and growth.
Collapse
Affiliation(s)
| | - Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070 Wuhan, China
- Max-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Karoline Mendes
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900 MG, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900 MG, Brazil
| | | | - Vagner Benedito
- Division of Plant & Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Alisdair R Fernie
- Max-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900 MG, Brazil
| |
Collapse
|