1
|
Mia MS, Nayan SB, Islam MN, Talukder MEK, Hasan MS, Riazuddin M, Shadhin MST, Hossain MN, Wani TA, Zargar S, Rabby MG. Genome-wide exploration: Evolution, structural characterization, molecular docking, molecular dynamics simulation and expression analysis of sugar transporter (ST) gene family in potato (Solanum tuberosum). Comput Biol Chem 2025; 117:108402. [PMID: 40054022 DOI: 10.1016/j.compbiolchem.2025.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/09/2025]
Abstract
Sugars are the basic structural components of carbohydrates. Sugar transport is crucial for plants to ensure their optimal growth and development. Long-distance sugar transport occurs through either diffusion-based passive or active transport mediated by transporter proteins. In potatoes, STs play a vital role in sugar transport and total sugar accumulation. To better understand the roles of these transporters, in-depth structural, protein characterization, and tissue-specific expression analysis were performed. A total of 61 StSTs were identified and classified into eight sub-families (STP, PLT, ERD6L, INT, TMT, pGlcT, SUC, and VGT). The majority of StSTs were found in the plasma membrane, and all of them were dispersed throughout the 12 chromosomes. Exon and motif counts ranged from 1-18 and 1-10, respectively. In synteny analysis with four plant genomes, the highest (38) orthologous gene pair was found with S. lycopersicum (tomato). In 3D protein modeling, the alpha helix and transmembrane helices range varied from 32 % to 78 % and 53 %-57 %, respectively. During molecular docking analysis, the lowest binding energy was observed for Glu-StINT1 (ΔG: - 6.6 kcal/mol), Fru-StVGT1 (ΔG: - 6.1 kcal/mol), Gal-StSTP10 (ΔG: - 6.5 kcal/mol), and Suc-StINT2 (ΔG: - 7.5 kcal/mol), among 244 docking results. These complexes showed significant hydrogen and hydrophobic interactions, due to having significant amino acid residues. The molecular dynamics (MD) simulation of four complexes (Glu-StINT1, Fru-StVGT1, Gal-StSTP10, and Suc-StINT2) validated the ligand's stable attachment to the intended target proteins and it can be predicted that these complexes are the best sugar transporters of potato. In RNA-seq mediated expression analysis, StSTP12, StERD6L-6, 12, StpGlcT3, StVGT1, and StVGT2, were significantly upregulated in vegetative tissues/organs, revealing their significant role in vegetative organ development. In addition, stu-miRNA395 was the largest family interacting with StERD6L-1 and StTMT2 genes, demonstrating their significant role in sulfate metabolism. The detection and visualization of potential transcription factors (TFs) like ERF, Dof, MYB, BBR-BPC, LBD, and NAC in conjunction with the StSTs gene indicate their significant contribution to stress tolerance and DNA conversion and transcription into RNA. A significant interaction of StSTs in the PPI network might be due to their cumulative role in the same signaling pathways. The integration of these findings will guide the development of programming-based sugar transporter-mediated genetic circuits to improve the sugar accumulation in potatoes using synthetic biology approaches.
Collapse
Affiliation(s)
- Md Sohel Mia
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Sourav Biswas Nayan
- Dept. of Food Engineering, North Pacific International University of Bangladesh, Bangladesh
| | - Md Numan Islam
- Department of Food Science and Technology, University of Nebraska Lincoln, USA
| | - Md Enamul Kabir Talukder
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Sakib Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Riazuddin
- Dept. of Food Engineering, North Pacific International University of Bangladesh, Bangladesh
| | - Md Saklain Tanver Shadhin
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Nayim Hossain
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Md Golam Rabby
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
| |
Collapse
|
2
|
Liu W, Jiang H, Zeng F. The sugar transporter proteins in plants: An elaborate and widespread regulation network-A review. Int J Biol Macromol 2025; 294:139252. [PMID: 39755309 DOI: 10.1016/j.ijbiomac.2024.139252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
In higher plants, sugars are the primary products of photosynthesis, where CO2 is converted into organic carbon within the mesophyll cells of leaves. These sugars serve as a critical source of carbon skeletons for the biosynthesis of essential cellular compounds, energy production, and as osmotic and signaling molecules. Plant sugar transporter proteins play a key role in facilitating the long-distance translocation of sugars from source to sink organs, thereby controlling their distribution and accumulation across the plant. Over the past decade, substantial progress has been achieved in identifying the functions of individual genes linked to sugar transporters; however, the diverse regulatory mechanisms influencing these transporters remain insufficiently explored. This review consolidates current and previous research on the functions of sugar transporter proteins, focusing on their involvement in phloem transport pathways their impact on crop yield, cross-talk with other signals, and plant-microbe interactions. Furthermore, we propose future directions for studying the mechanisms of sugar transporter proteins and their potential applications in agriculture, with the goal of improving sugar utilization efficiency in crops and ultimately increasing crop yield.
Collapse
Affiliation(s)
- Weigang Liu
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Hong Jiang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Fankui Zeng
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 262306, China; Qingdao Center of Resource Chemistry & New Materials, Qingdao 266100, China.
| |
Collapse
|
3
|
Perveen A, Sheheryar S, Ahmad F, Mustafa G, Moura AA, Campos FAP, Domont GB, Nishan U, Ullah R, Ibrahim MA, Nogueira FCS, Shah M. Integrative physiological, biochemical, and proteomic analysis of the leaves of two cotton genotypes under heat stress. PLoS One 2025; 20:e0316630. [PMID: 39787180 PMCID: PMC11717266 DOI: 10.1371/journal.pone.0316630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Cotton (Gossypium hirsutum L.), a crucial global fibre and oil seed crop faces diverse biotic and abiotic stresses. Among these, temperature stress strongly influences its growth, prompting adaptive physiological, biochemical, and molecular changes. In this study, we explored the proteomic changes underscoring the heat stress tolerance in the leaves of two locally developed cotton genotypes, i.e., heat tolerant (GH-Hamaliya Htol) and heat susceptible (CIM-789 Hsus), guided by morpho-physiological and biochemical analysis. These genotypes were sown at two different temperatures, control (35°C) and stress (45°C), in a glasshouse, in a randomized complete block design (RCBD) in three replications. At the flowering stage, a label-free quantitative shotgun proteomics of cotton leaves revealed the differential expression of 701 and 1270 proteins in the tolerant and susceptible genotypes compared to the control, respectively. Physiological and biochemical analysis showed that the heat-tolerant genotype responded uniquely to stress by maintaining the net photosynthetic rate (Pn) (25.2-17.5 μmolCO2m-2S-1), chlorophyll (8.5-7.8mg/g FW), and proline contents (4.9-7.4 μmole/g) compared to control, supported by the upregulation of many proteins involved in several pathways, including photosynthesis, oxidoreductase activity, response to stresses, translation, transporter activities, as well as protein and carbohydrate metabolic processes. In contrast, the distinctive pattern of protein downregulation involved in stress response, oxidoreductase activity, and carbohydrate metabolism was observed in susceptible plants. To the best of our knowledge, this is the first proteomic study on cotton leaves that has identified more than 8000 proteins with an array of differentially expressed proteins responsive to the heat treatment that could serve as potential markers in the breeding programs after further experimentation.
Collapse
Affiliation(s)
- Asia Perveen
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Sheheryar Sheheryar
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | - Fiaz Ahmad
- Physiology/Chemistry Section, Central Cotton Research Institute, Multan, Pakistan
| | - Ghazala Mustafa
- Faculty of Biological Sciences, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Francisco A. P. Campos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | - Gilberto B. Domont
- Department of Biochemistry, Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Umar Nishan
- Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, PR China
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A. Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fábio C. S. Nogueira
- Department of Biochemistry, Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
4
|
Cheng J, Arystanbek Kyzy M, Heide A, Khan A, Lehmann M, Schröder L, Nägele T, Pommerrenig B, Keller I, Neuhaus HE. Senescence-Associated Sugar Transporter1 affects developmental master regulators and controls senescence in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:2749-2767. [PMID: 39158083 DOI: 10.1093/plphys/kiae430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
Sugar transport across membranes is critical for plant development and yield. However, an analysis of the role of intracellular sugar transporters in senescence is lacking. Here, we characterized the role of Senescence-Associated Sugar Transporter1 (SAST1) during senescence in Arabidopsis (Arabidopsis thaliana). SAST1 expression was induced in leaves during senescence and after the application of abscisic acid (ABA). SAST1 is a vacuolar protein that pumps glucose out of the cytosol. sast1 mutants exhibited a stay-green phenotype during developmental senescence, after the darkening of single leaves, and after ABA feeding. To explain the stay-green phenotype of sast1 mutants, we analyzed the activity of the glucose-induced master regulator TOR (target of rapamycin), which is responsible for maintaining a high anabolic state. TOR activity was higher in sast1 mutants during senescence compared to wild types, whereas the activity of its antagonist, SNF1-related protein kinase 1 (SnRK1), was reduced in sast1 mutants under senescent conditions. This deregulation of TOR and SnRK1 activities correlated with high cytosolic glucose levels under senescent conditions in sast1 mutants. Although sast1 mutants displayed a functional stay-green phenotype, their seed yield was reduced. These analyses place the activity of SAST1 in the last phase of a leaf's existence in the molecular program required to complete its life cycle.
Collapse
Affiliation(s)
- Jintao Cheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Meerim Arystanbek Kyzy
- Plant Physiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern D-67653, Germany
| | - Adrian Heide
- Plant Physiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern D-67653, Germany
| | - Azkia Khan
- Plant Physiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern D-67653, Germany
| | - Martin Lehmann
- Plant Biochemistry, Faculty of Biology, Ludwig Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Laura Schröder
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Benjamin Pommerrenig
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Quedlinburg D-06484, Germany
| | - Isabel Keller
- Plant Physiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern D-67653, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern D-67653, Germany
| |
Collapse
|
5
|
Zhu L, Zhang C, Yang N, Cao W, Li Y, Peng Y, Wei X, Ma B, Ma F, Ruan YL, Li M. Apple vacuolar sugar transporters regulated by MdDREB2A enhance drought resistance by promoting accumulation of soluble sugars and activating ABA signaling. HORTICULTURE RESEARCH 2024; 11:uhae251. [PMID: 39664684 PMCID: PMC11630069 DOI: 10.1093/hr/uhae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 12/13/2024]
Abstract
Soluble sugars are not only an important contributor to fruit quality, but also serve as the osmotic regulators in response to abiotic stresses. Early drought stress promotes sugar accumulation, while specific sugar transporters govern the cellular distribution of the sugars. Here, we show that apple plantlets accumulate soluble sugars in leaf tissues under drought stress. Transcriptional profiling of stressed and control plantlets revealed differential expression of several plasma membrane-or vacuolar membrane-localized sugar transporter genes. Among these, four previously identified vacuolar sugar transporter (VST) genes (MdERDL6-1, MdERDL6-2, MdTST1, and MdTST2) showed higher expression under drought, suggesting their roles in response to drought stress. Promoter cis-elements analyses, yeast one-hybrid, and dual-luciferase tests confirmed that the drought-induced transcription factor MdDREB2A could promote the expression of MdERDL6-1/-2 and MdTST1/2 by binding to their promoter regions. Moreover, overexpressing of each of these four MdVSTs alone in transgenic apple or Arabidopsis plants accumulated more soluble sugars and abscisic acid (ABA), and enhanced drought resistance. Furthermore, apple plants overexpressing MdERDL6-1 also showed reduced water potential, facilitated stomatal closure, and reactive oxygen species scavenging under drought conditions compared to control plants. Overall, our results suggest a potential strategy to enhance drought resistance and sugar accumulation in fruits through manipulating the genes involved in vacuolar sugar transport.
Collapse
Affiliation(s)
- Lingcheng Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunxia Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Nanxiang Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenjing Cao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanzhen Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yunjing Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoyu Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Baiquan Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yong-Ling Ruan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Mingjun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
6
|
Guo H, Guan Z, Liu Y, Chao K, Zhu Q, Zhou Y, Wu H, Pi E, Chen H, Zeng H. Comprehensive identification and expression analyses of sugar transporter genes reveal the role of GmSTP22 in salt stress resistance in soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109095. [PMID: 39255613 DOI: 10.1016/j.plaphy.2024.109095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/02/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
The transport, compartmentation and allocation of sugar are critical for plant growth and development, as well as for stress resistance, but sugar transporter genes have not been comprehensively characterized in soybean. Here, we performed a genome-wide identification and expression analyses of sugar transporter genes in soybean in order to reveal their putative functions. A total of 122 genes encoding sucrose transporters (SUTs) and monosaccharide transporters (MSTs) were identified in soybean. They were classified into 8 subfamilies according to their phylogenetic relationships and their conserved motifs. Comparative genomics analysis indicated that whole genome duplication/segmental duplication and tandem duplication contributed to the expansion of sugar transporter genes in soybean. Expression analysis by retrieving transcriptome datasets suggested that most of these sugar transporter genes were expressed in various tissues, and a number of genes exhibited tissue-specific expression patterns. Several genes including GmSTP21, GmSFP8, and GmPLT5/6/7/8/9 were predominantly expressed in nodules, and GmPLT8 was significantly induced by rhizobia inoculation in root hairs. Transcript profiling and qRT-PCR analyses suggested that half of these sugar transporter genes were significantly induced or repressed under stresses like salt, drought, and cold. In addition, GmSTP22 was found to be localized in the plasma membrane, and its overexpression promoted plant growth and salt tolerance in transgenic Arabidopsis under the supplement with glucose or sucrose. This study provides insights into the evolutionary expansion, expression pattern and functional divergence of sugar transporter gene family, and will enable further understanding of their biological functions in the regulation of growth, yield formation and stress resistance of soybean.
Collapse
Affiliation(s)
- Hang Guo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhengxing Guan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuanyuan Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Kexin Chao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qiuqing Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yi Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Haicheng Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
7
|
Zhang H, Liu Q, Lu J, Wu L, Cheng Z, Qiao G, Huang X. Genomic and transcriptomic analyses of a social hemipteran provide new insights into insect sociality. Mol Ecol Resour 2024; 24:e14019. [PMID: 39262229 DOI: 10.1111/1755-0998.14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/17/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
The origin of sociality represents one of the most important evolutionary transitions. Insect sociality evolved in some hemipteran aphids, which can produce soldiers and normal nymphs with distinct morphology and behaviour through parthenogenesis. The lack of genomic data resources has hindered the investigations into molecular mechanisms underlying their social evolution. Herein, we generated the first chromosomal-level genome of a social hemipteran (Pseudoregma bambucicola) with highly specialized soldiers and performed comparative genomic and transcriptomic analyses to elucidate the molecular signatures and regulatory mechanisms of caste differentiation. P. bambucicola has a larger known aphid genome of 582.2 Mb with an N50 length of 11.24 Mb, and about 99.6% of the assembly was anchored to six chromosomes with a scaffold N50 of 98.27 Mb. A total of 14,027 protein-coding genes were predicted and 37.33% of the assembly were identified as repeat sequences. The social evolution is accompanied by a variety of changes in genome organization, including expansion of gene families related to transcription factors, transposable elements, as well as species-specific expansions of certain sugar transporters and UGPases involved in carbohydrate metabolism. We also characterized large candidate gene sets linked to caste differentiation and found evidence of expression regulation and positive selection acting on energy metabolism and muscle structure, explaining the soldier-specific traits including morphological and behavioural specialization, developmental arrest and infertility. Overall, this study offers new insights into the molecular basis of social aphids and the evolution of insect sociality and also provides valuable data resources for further comparative and functional studies.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qian Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianjun Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liying Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhentao Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Aubry E, Clément G, Gilbault E, Dinant S, Le Hir R. Changes in SWEET-mediated sugar partitioning affect photosynthesis performance and plant response to drought. PHYSIOLOGIA PLANTARUM 2024; 176:e14623. [PMID: 39535317 DOI: 10.1111/ppl.14623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Sugars, produced through photosynthesis, are at the core of all organic compounds synthesized and used for plant growth and their response to environmental changes. Their production, transport, and utilization are highly regulated and integrated throughout the plant life cycle. The maintenance of sugar partitioning between the different subcellular compartments and between cells is important in adjusting the photosynthesis performance and response to abiotic constraints. We investigated the consequences of the disruption of four genes coding for SWEET sugar transporters in Arabidopsis (SWEET11, SWEET12, SWEET16, and SWEET17) on plant photosynthesis and the response to drought. Our results show that mutations in both SWEET11 and SWEET12 genes lead to an increase of cytosolic sugars in mesophyll cells and phloem parenchyma cells, which impacts several photosynthesis-related parameters. Further, our results suggest that in the swt11swt12 double mutant, the sucrose-induced feedback mechanism on stomatal closure is poorly efficient. On the other hand, changes in fructose partitioning in mesophyll and vascular cells, measured in the swt16swt17 double mutant, positively impact gas exchanges, probably through an increased starch synthesis together with higher vacuolar sugar storage. Finally, we propose that the impaired sugar partitioning, rather than the total amount of sugars observed in the quadruple mutant, is responsible for the enhanced sensitivity upon drought. This work highlights the importance of considering SWEET-mediated sugar partitioning rather than global sugar content in photosynthesis performance and plant response to drought. Such knowledge will pave the way to design new strategies to maintain plant productivity in a challenging environment.
Collapse
Affiliation(s)
- Emilie Aubry
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, Versailles, France
| | - Gilles Clément
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, Versailles, France
| | - Elodie Gilbault
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, Versailles, France
| | - Sylvie Dinant
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, Versailles, France
| | - Rozenn Le Hir
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, Versailles, France
| |
Collapse
|
9
|
Yu M, Wang S, Gu G, Shi TL, Zhang J, Jia Y, Ma Q, Porth I, Mao JF, Wang R. Integration of Mitoflash and Time-Series Transcriptomics Facilitates Energy Dynamics Tracking and Substrate Supply Analysis of Floral Thermogenesis in Lotus. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39360569 DOI: 10.1111/pce.15185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
The high biosynthetic and energetic demands of floral thermogenesis render thermogenic plants the ideal systems to characterize energy metabolism in plants, but real-time tracking of energy metabolism in plant cells remains challenging. In this study, a new method was developed for tracking the mitochondrial energy metabolism at the single mitochondria level by real-time imaging of mitochondrial superoxide production (i.e., mitoflash). Using this method, we observed the increased mitoflash frequencies in the receptacles of Nelumbo nucifera Gaertn. at the thermogenic stages. This increase, combined with the higher expression of antioxidant response-related genes identified through time-series transcriptomics at the same stages, shows us a new regulatory mechanism for plant redox balance. Furthermore, we found that the upregulation of respiratory metabolism-related genes during the thermogenic stages not only correlates with changes in mitoflash frequency but also underscores the critical roles of these pathways in ensuring adequate substrate supply for thermogenesis. Metabolite analysis revealed that sugars are likely one of the substrates for thermogenesis and may be transported over long distances by sugar transporters. Taken together, our findings demonstrate that mitoflash is a reliable tool for tracking energy metabolism in thermogenic plants and contributes to our understanding of the regulatory mechanisms underlying floral thermogenesis.
Collapse
Affiliation(s)
- Miao Yu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Siqin Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Ge Gu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Tian-Le Shi
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Jin Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Yaping Jia
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Qi Ma
- College of Future Technology, Peking University, Beijing, People's Republic of China
| | - Ilga Porth
- Départment des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et Géomatique, Université Laval, Quebec City, Quebec, Canada
| | - Jian-Feng Mao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umea, Sweden
| | - Ruohan Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
10
|
Rüscher D, Vasina VV, Knoblauch J, Bellin L, Pommerrenig B, Alseekh S, Fernie AR, Neuhaus HE, Knoblauch M, Sonnewald U, Zierer W. Symplasmic phloem loading and subcellular transport in storage roots are key factors for carbon allocation in cassava. PLANT PHYSIOLOGY 2024; 196:1322-1339. [PMID: 38775728 PMCID: PMC11483629 DOI: 10.1093/plphys/kiae298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/05/2024] [Indexed: 10/03/2024]
Abstract
Cassava (Manihot esculenta) is a deciduous woody perennial shrub that stores large amounts of carbon and water in its storage roots. Previous studies have shown that assimilating unloading into storage roots happens symplasmically once secondary anatomy is established. However, mechanisms controlling phloem loading and overall carbon partitioning to different cassava tissues remain unclear. Here, we used a combination of histological, transcriptional, and biochemical analyses on different cassava tissues and at different timepoints to better understand source-sink carbon allocation. We found that cassava likely utilizes a predominantly passive symplasmic phloem loading strategy, indicated by the lack of expression of genes coding for key players of sucrose transport, the existence of branched plasmodesmata in the companion cell/bundle sheath interface of minor leaf veins, and very high leaf sucrose concentrations. Furthermore, we showed that tissue-specific changes in anatomy and non-structural carbohydrate contents are associated with tissue-specific modification in gene expression for sucrose cleavage/synthesis, as well as subcellular compartmentalization of sugars. Overall, our data suggest that carbon allocation during storage root filling is mostly facilitated symplasmically and is likely mostly regulated by local tissue demand and subcellular compartmentalization.
Collapse
Affiliation(s)
- David Rüscher
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Viktoriya V Vasina
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Jan Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Leo Bellin
- Division of Plant Physiology, Department of Biology, University of Kaiserslautern-Landau (RPTU), Erwin-Schrödinger-Str. 22, 67663 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Division of Plant Physiology, Department of Biology, University of Kaiserslautern-Landau (RPTU), Erwin-Schrödinger-Str. 22, 67663 Kaiserslautern, Germany
| | - Saleh Alseekh
- Division of Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Alisdair R Fernie
- Division of Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - H Ekkehard Neuhaus
- Division of Plant Physiology, Department of Biology, University of Kaiserslautern-Landau (RPTU), Erwin-Schrödinger-Str. 22, 67663 Kaiserslautern, Germany
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Wolfgang Zierer
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| |
Collapse
|
11
|
Khan M, Dahro B, Wang Y, Wang M, Xiao W, Qu J, Zeng Y, Fang T, Xiao P, Xu X, Li C, Liu JH. The transcription factor ERF110 promotes cold tolerance by directly regulating sugar and sterol biosynthesis in citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2385-2401. [PMID: 38985498 DOI: 10.1111/tpj.16925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
ERFs (ethylene-responsive factors) are known to play a key role in orchestrating cold stress signal transduction. However, the regulatory mechanisms and target genes of most ERFs are far from being well deciphered. In this study, we identified a cold-induced ERF, designated as PtrERF110, from trifoliate orange (Poncirus trifoliata L. Raf., also known as Citrus trifoliata L.), an elite cold-hardy plant. PtrERF110 is a nuclear protein with transcriptional activation activity. Overexpression of PtrERF110 remarkably enhanced cold tolerance in lemon (Citrus limon) and tobacco (Nicotiana tabacum), whereas VIGS (virus-induced gene silencing)-mediated knockdown of PtrERF110 drastically impaired the cold tolerance. RNA sequence analysis revealed that PtrERF110 overexpression resulted in global transcriptional reprogramming of a range of stress-responsive genes. Three of the genes, including PtrERD6L16 (early responsive dehydration 6-like transporters), PtrSPS4 (sucrose phosphate synthase 4), and PtrUGT80B1 (UDP-glucose: sterol glycosyltransferases 80B1), were confirmed as direct targets of PtrERF110. Consistently, PtrERF110-overexpressing plants exhibited higher levels of sugars and sterols compared to their wild type counterparts, whereas the VIGS plants had an opposite trend. Exogenous supply of sucrose restored the cold tolerance of PtrERF110-silencing plants. In addition, knockdown of PtrSPS4, PtrERD6L16, and PtrUGT80B1 substantially impaired the cold tolerance of P. trifoliata. Taken together, our findings indicate that PtrERF110 positively modulates cold tolerance by directly regulating sugar and sterol synthesis through transcriptionally activating PtrERD6L16, PtrSPS4, and PtrUGT80B1. The regulatory modules (ERF110-ERD6L16/SPS4/UGT80B1) unraveled in this study advance our understanding of the molecular mechanisms underlying sugar and sterol accumulation in plants subjected to cold stress.
Collapse
Affiliation(s)
- Madiha Khan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bachar Dahro
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Wei Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yike Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tian Fang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyong Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Chunlong Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
12
|
Valifard M, Khan A, Berg J, Le Hir R, Pommerrenig B, Neuhaus HE, Keller I. Carbohydrate distribution via SWEET17 is critical for Arabidopsis inflorescence branching under drought. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3903-3919. [PMID: 38530289 DOI: 10.1093/jxb/erae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Sugars Will Eventually be Exported Transporters (SWEETs) are the most recently discovered family of plant sugar transporters. By acting as uniporters, SWEETs facilitate the diffusion of sugars across cell membranes and play an important role in various physiological processes such as abiotic stress adaptation. AtSWEET17, a vacuolar fructose facilitator, was shown to be involved in the modulation of the root system during drought. In addition, previous studies have shown that overexpression of an apple homolog leads to increased drought tolerance in tomato plants. Therefore, SWEET17 might be a molecular element involved in plant responses to drought. However, the role and function of SWEET17 in above-ground tissues of Arabidopsis under drought stress remain elusive. By combining gene expression analysis and stem architecture with the sugar profiles of different above-ground tissues, we uncovered a putative role for SWEET17 in carbohydrate supply and thus cauline branch elongation, especially during periods of carbon limitation, as occurs under drought stress. Thus, SWEET17 seems to be involved in maintaining efficient plant reproduction under drought stress conditions.
Collapse
Affiliation(s)
- Marzieh Valifard
- Department Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Azkia Khan
- Department Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Johannes Berg
- Department Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Rozenn Le Hir
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Benjamin Pommerrenig
- Department Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Department Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Isabel Keller
- Department Plant Physiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| |
Collapse
|
13
|
Reyer A, Bazihizina N, Jaślan J, Scherzer S, Schäfer N, Jaślan D, Becker D, Müller TD, Pommerrenig B, Neuhaus HE, Marten I, Hedrich R. Sugar beet PMT5a and STP13 carriers suitable for proton-driven plasma membrane sucrose and glucose import in taproots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2219-2232. [PMID: 38602250 DOI: 10.1111/tpj.16740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Sugar beet (Beta vulgaris) is the major sugar-producing crop in Europe and Northern America, as the taproot stores sucrose at a concentration of around 20%. Genome sequence analysis together with biochemical and electrophysiological approaches led to the identification and characterization of the TST sucrose transporter driving vacuolar sugar accumulation in the taproot. However, the sugar transporters mediating sucrose uptake across the plasma membrane of taproot parenchyma cells remained unknown. As with glucose, sucrose stimulation of taproot parenchyma cells caused inward proton fluxes and plasma membrane depolarization, indicating a sugar/proton symport mechanism. To decipher the nature of the corresponding proton-driven sugar transporters, we performed taproot transcriptomic profiling and identified the cold-induced PMT5a and STP13 transporters. When expressed in Xenopus laevis oocytes, BvPMT5a was characterized as a voltage- and H+-driven low-affinity glucose transporter, which does not transport sucrose. In contrast, BvSTP13 operated as a high-affinity H+/sugar symporter, transporting glucose better than sucrose, and being more cold-tolerant than BvPMT5a. Modeling of the BvSTP13 structure with bound mono- and disaccharides suggests plasticity of the binding cleft to accommodate the different saccharides. The identification of BvPMT5a and BvSTP13 as taproot sugar transporters could improve breeding of sugar beet to provide a sustainable energy crop.
Collapse
Affiliation(s)
- Antonella Reyer
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Nadia Bazihizina
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
- Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Florence, 50019, Sesto Fiorentino, Italy
| | - Justyna Jaślan
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Sönke Scherzer
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Nadine Schäfer
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Dawid Jaślan
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilians-Universität, 80336, Munich, Germany
| | - Dirk Becker
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Thomas D Müller
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Benjamin Pommerrenig
- Plant Physiology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, 06484, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Irene Marten
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| |
Collapse
|
14
|
Wang J, Lu Y, Zhang X, Hu W, Lin L, Deng Q, Xia H, Liang D, Lv X. Effects of Potassium-Containing Fertilizers on Sugar and Organic Acid Metabolism in Grape Fruits. Int J Mol Sci 2024; 25:2828. [PMID: 38474075 DOI: 10.3390/ijms25052828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
To identify suitable potassium fertilizers for grape (Vitis vinifera L.) production and study their mechanism of action, the effects of four potassium-containing fertilizers (complex fertilizer, potassium nitrate, potassium sulfate, and potassium dihydrogen phosphate) on sugar and organic acid metabolism in grape fruits were investigated. Potassium-containing fertilizers increased the activity of sugar and organic acid metabolism-related enzymes at all stages of grape fruit development. During the later stages of fruit development, potassium-containing fertilizers increased the total soluble solid content and the sugar content of the different sugar fractions and decreased the titratable acid content and organic acid content of the different organic acid fractions. At the ripening stage of grape fruit, compared with the control, complex fertilizer, potassium nitrate, potassium sulfate, and potassium dihydrogen phosphate increased the total soluble solid content by 1.5, 1.2, 3.5, and 3.4 percentage points, decreased the titratable acid content by 0.09, 0.06, 0.18, and 0.17 percentage points, respectively, and also increased the total potassium content in grape fruits to a certain degree. Transcriptome analysis of the differentially expressed genes (DEGs) in the berries showed that applying potassium-containing fertilizers enriched the genes in pathways involved in fruit quality, namely, carbon metabolism, carbon fixation in photosynthetic organisms, glycolysis and gluconeogenesis, and fructose and mannose metabolism. Potassium-containing fertilizers affected the expression levels of genes regulating sugar metabolism and potassium ion uptake and transport. Overall, potassium-containing fertilizers can promote sugar accumulation and reduce acid accumulation in grape fruits, and potassium sulfate and potassium dihydrogen phosphate had the best effects among the fertilizers tested.
Collapse
Affiliation(s)
- Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhang Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenjie Hu
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
15
|
Sun N, Liu Y, Xu T, Zhou X, Xu H, Zhang H, Zhan R, Wang L. Genome-wide analysis of sugar transporter genes in maize ( Zea mays L.): identification, characterization and their expression profiles during kernel development. PeerJ 2023; 11:e16423. [PMID: 38025667 PMCID: PMC10658905 DOI: 10.7717/peerj.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Sugar transporters (STs) play a crucial role in the development of maize kernels. However, very limited information about STs in maize is known. In this study, sixty-eight ZmST genes were identified from the maize genome and classified into eight major groups based on phylogenetic relationship. Gene structure analysis revealed that members within the same group shared similar exon numbers. Synteny analysis indicated that ZmSTs underwent 15 segmental duplication events under purifying selection. Three-dimensional structure of ZmSTs demonstrated the formation of a compact helix bundle composed of 8-13 trans-membrane domains. Various development-related cis-acting elements, enriched in promoter regions, were correlated with the transcriptional response of ZmSTs during kernel development. Transcriptional expression profiles exhibited expression diversity of various ZmST genes in roots, stems, leaves, tassels, cobs, embryos, endosperms and seeds tissues. During kernel development, the expression of 24 ZmST genes was significantly upregulated in the early stage of grain filling. This upregulation coincided with the sharply increased grain-filling rate observed in the early stage. Overall, our findings shed light on the characteristics of ZmST genes in maize and provide a foundation for further functional studies.
Collapse
Affiliation(s)
- Nan Sun
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd., Zhaoyuan, Shandong, China
| | - Yanfeng Liu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd., Zhaoyuan, Shandong, China
| | - Tao Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| | - Xiaoyan Zhou
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| | - Heyang Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd., Zhaoyuan, Shandong, China
| | - Renhui Zhan
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd., Zhaoyuan, Shandong, China
| |
Collapse
|
16
|
Cao Y, Hu J, Hou J, Fu C, Zou X, Han X, Jia P, Sun C, Xu Y, Xue Y, Zou Y, Liu X, Chen X, Li G, Guo J, Xu M, Fu A. Vacuolar Sugar Transporter TMT2 Plays Crucial Roles in Germination and Seedling Development in Arabidopsis. Int J Mol Sci 2023; 24:15852. [PMID: 37958835 PMCID: PMC10647555 DOI: 10.3390/ijms242115852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Vacuolar sugar transporters transport sugar across the tonoplast, are major players in maintaining sugar homeostasis, and therefore play vital roles in plant growth, development, and biomass yield. In this study, we analyzed the physiological roles of the tonoplast monosaccharide transporter 2 (TMT2) in Arabidopsis. In contrast to the wild type (WT) that produced uniform seedlings, the tmt2 mutant produced three types of offspring: un-germinated seeds (UnG), seedlings that cannot form true leaves (tmt2-S), and seedlings that develop normally (tmt2-L). Sucrose, glucose, and fructose can substantially, but not completely, rescue the abnormal phenotypes of the tmt2 mutant. Abnormal cotyledon development, arrested true leaf development, and abnormal development of shoot apical meristem (SAM) were observed in tmt2-S seedlings. Cotyledons from the WT and tmt2-L seedlings restored the growth of tmt2-S seedlings through micrografting. Moreover, exogenous sugar sustained normal growth of tmt2-S seedlings with cotyledon removed. Finally, we found that the TMT2 deficiency resulted in growth defects, most likely via changing auxin signaling, target of rapamycin (TOR) pathways, and cellular nutrients. This study unveiled the essential functions of TMT2 for seed germination and initial seedling development, ensuring cotyledon function and mobilizing sugars from cotyledons to seedlings. It also expanded the current knowledge on sugar metabolism and signaling. These findings have fundamental implications for enhancing plant biomass production or seed yield in future agriculture.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Min Xu
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, Shaanxi Key Laboratory for Carbon Neutral Technology, Shaanxi Academy of Basic Sciences, College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.C.); (J.H.); (J.H.); (C.F.); (X.Z.); (X.H.); (P.J.); (C.S.); (Y.X.); (Y.X.); (Y.Z.); (X.L.); (X.C.); (G.L.); (J.G.)
| | - Aigen Fu
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, Shaanxi Key Laboratory for Carbon Neutral Technology, Shaanxi Academy of Basic Sciences, College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.C.); (J.H.); (J.H.); (C.F.); (X.Z.); (X.H.); (P.J.); (C.S.); (Y.X.); (Y.X.); (Y.Z.); (X.L.); (X.C.); (G.L.); (J.G.)
| |
Collapse
|
17
|
Khan A, Cheng J, Kitashova A, Fürtauer L, Nägele T, Picco C, Scholz-Starke J, Keller I, Neuhaus HE, Pommerrenig B. Vacuolar sugar transporter EARLY RESPONSE TO DEHYDRATION6-LIKE4 affects fructose signaling and plant growth. PLANT PHYSIOLOGY 2023; 193:2141-2163. [PMID: 37427783 DOI: 10.1093/plphys/kiad403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023]
Abstract
Regulation of intracellular sugar homeostasis is maintained by regulation of activities of sugar import and export proteins residing at the tonoplast. We show here that the EARLY RESPONSE TO DEHYDRATION6-LIKE4 (ERDL4) protein, a member of the monosaccharide transporter family, resides in the vacuolar membrane in Arabidopsis (Arabidopsis thaliana). Gene expression and subcellular fractionation studies indicated that ERDL4 participates in fructose allocation across the tonoplast. Overexpression of ERDL4 increased total sugar levels in leaves due to a concomitantly induced stimulation of TONOPLAST SUGAR TRANSPORTER 2 (TST2) expression, coding for the major vacuolar sugar loader. This conclusion is supported by the finding that tst1-2 knockout lines overexpressing ERDL4 lack increased cellular sugar levels. ERDL4 activity contributing to the coordination of cellular sugar homeostasis is also indicated by 2 further observations. First, ERDL4 and TST genes exhibit an opposite regulation during a diurnal rhythm, and second, the ERDL4 gene is markedly expressed during cold acclimation, representing a situation in which TST activity needs to be upregulated. Moreover, ERDL4-overexpressing plants show larger rosettes and roots, a delayed flowering time, and increased total seed yield. Consistently, erdl4 knockout plants show impaired cold acclimation and freezing tolerance along with reduced plant biomass. In summary, we show that modification of cytosolic fructose levels influences plant organ development and stress tolerance.
Collapse
Affiliation(s)
- Azkia Khan
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| | - Jintao Cheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China
| | - Anastasia Kitashova
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians- Universität München, D-82152 Planegg-Martinsried, Germany
| | - Lisa Fürtauer
- Institute for Biology III, Unit of Plant Molecular Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians- Universität München, D-82152 Planegg-Martinsried, Germany
| | - Cristiana Picco
- Institute of Biophysics, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, I-16149 Genova, Italy
| | - Joachim Scholz-Starke
- Institute of Biophysics, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, I-16149 Genova, Italy
| | - Isabel Keller
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| |
Collapse
|
18
|
Fox H, Ben-Dor S, Doron-Faigenboim A, Goldsmith M, Klein T, David-Schwartz R. Carbohydrate dynamics in Populus trees under drought: An expression atlas of genes related to sensing, translocation, and metabolism across organs. PHYSIOLOGIA PLANTARUM 2023; 175:e14001. [PMID: 37882295 DOI: 10.1111/ppl.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 10/27/2023]
Abstract
In trees, nonstructural carbohydrates (NSCs) serve as long-term carbon storage and long-distance carbon transport from source to sink. NSC management in response to drought stress is key to our understanding of drought acclimation. However, the molecular mechanisms underlying these processes remain unclear. By combining a transcriptomic approach with NSC quantification in the leaves, stems, and roots of Populus alba under drought stress, we analyzed genes from 29 gene families related to NSC signaling, translocation, and metabolism. We found starch depletion across organs and accumulation of soluble sugars (SS) in the leaves. Activation of the trehalose-6-phosphate/SNF1-related protein kinase (SnRK1) signaling pathway across organs via the suppression of class I TREHALOSE-PHOSPHATE SYNTHASE (TPS) and the expression of class II TPS genes suggested an active response to drought. The expression of SnRK1α and β subunits, and SUCROSE SYNTHASE6 supported SS accumulation in leaves. The upregulation of active transporters and the downregulation of most passive transporters implied a shift toward active sugar transport and enhanced regulation over partitioning. SS accumulation in vacuoles supports osmoregulation in leaves. The increased expression of sucrose synthesis genes and reduced expression of sucrose degradation genes in the roots did not coincide with sucrose levels, implying local sucrose production for energy. Moreover, the downregulation of invertases in the roots suggests limited sucrose allocation from the aboveground organs. This study provides an expression atlas of NSC-related genes that respond to drought in poplar trees, and can be tested in tree improvement programs for adaptation to drought conditions.
Collapse
Affiliation(s)
- Hagar Fox
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Shifra Ben-Dor
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Doron-Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Moshe Goldsmith
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
19
|
Zhu L, Li Y, Wang C, Wang Z, Cao W, Su J, Peng Y, Li B, Ma B, Ma F, Ruan YL, Li M. The SnRK2.3-AREB1-TST1/2 cascade activated by cytosolic glucose regulates sugar accumulation across tonoplasts in apple and tomato. NATURE PLANTS 2023; 9:951-964. [PMID: 37291399 DOI: 10.1038/s41477-023-01443-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/12/2023] [Indexed: 06/10/2023]
Abstract
Soluble sugars are the core components of fruit quality, and the degree of sugar accumulation is largely determined by tonoplast-localized sugar transporters. We previously showed that two classes of tonoplast sugar transporters, MdERDL6 and MdTST1/2, coordinately regulate sugar accumulation in vacuoles. However, the mechanism underlying this coordination remains unknown. Here we discovered that two transcription factors, MdAREB1.1/1.2, regulate MdTST1/2 expression by binding their promoters in apple. The enhanced MdAREB1.1/1.2 expression in MdERDL6-1-overexpression plants resulted in an increase in MdTST1/2 expression and sugar concentration. Further studies established that MdSnRK2.3, whose expression could be regulated by expressing MdERDL6-1, could interact with and phosphorylate MdAREB1.1/1.2, thereby promoting the MdAREB1.1/1.2-mediated transcriptional activation of MdTST1/2. Finally, the orthologous SlAREB1.2 and SlSnRK2.3 exhibited similar functions in tomato fruit as in their apple counterparts. Together, our findings provide insights into the regulatory mechanism of tonoplast sugar transport exerted by SnRK2.3-AREB1-TST1/2 for fruit sugar accumulation.
Collapse
Affiliation(s)
- Lingcheng Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
- College of Life Science, Northwest A&F University, Xianyang, China
| | - Yanzhen Li
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Chengcheng Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Zhiqi Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Wenjing Cao
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Jing Su
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Yunjing Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Baiyun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China.
| | - Yong-Ling Ruan
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China.
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China.
| |
Collapse
|
20
|
Valifard M, Fernie AR, Kitashova A, Nägele T, Schröder R, Meinert M, Pommerrenig B, Mehner-Breitfeld D, Witte CP, Brüser T, Keller I, Neuhaus HE. The novel chloroplast glucose transporter pGlcT2 affects adaptation to extended light periods. J Biol Chem 2023; 299:104741. [PMID: 37088133 DOI: 10.1016/j.jbc.2023.104741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/03/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023] Open
Abstract
Intracellular sugar compartmentation is critical in plant development and acclimation to challenging environmental conditions. Sugar transport proteins are present in plasma membranes and in membranes of organelles such as vacuoles, the Golgi apparatus, and plastids. However, there may exist other transport proteins with uncharacterized roles in sugar compartmentation. Here we report one such, a novel transporter of the Monosaccharide Transporter Family (MSF), the closest phylogenetic homolog of which is the chloroplast-localized glucose transporter pGlcT and that we therefore term plastidic glucose transporter 2 (pGlcT2). We show, using gene-complemented glucose uptake deficiency of an Escherichia coli ptsG/manXYZ mutant strain and biochemical characterization, that this protein specifically facilitates glucose transport, whereas other sugars do not serve as substrates. In addition, we demonstrate pGlcT2-GFP localized to the chloroplast envelope, and that pGlcT2 is mainly produced in seedlings and in the rosette center of mature Arabidopsis plants. Therefore, in conjunction with molecular and metabolic data, we propose pGlcT2 acts as a glucose importer that can limit cytosolic glucose availability in developing pGlcT2-overexpressing seedlings. Finally, we show both overexpression and deletion of pGlcT2 resulted in impaired growth efficiency under long day and continuous light conditions, suggesting pGlcT2 contributes to a release of glucose derived from starch mobilization late in the light phase. Together, these data indicate the facilitator pGlcT2 changes the direction in which it transports glucose during plant development and suggest the activity of pGlcT2 must be controlled spatially and temporarily in order to prevent developmental defects during adaptation to periods of extended light.
Collapse
Affiliation(s)
- Marzieh Valifard
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., 67653 Kaiserslautern, Germany
| | - Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Anastasia Kitashova
- Ludwig Maximilians University Munich, Faculty of Biology, Plant Evolutionary Cell Biology, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Thomas Nägele
- Ludwig Maximilians University Munich, Faculty of Biology, Plant Evolutionary Cell Biology, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Rebekka Schröder
- Leibniz University Hannover, Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Melissa Meinert
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., 67653 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., 67653 Kaiserslautern, Germany
| | - Denise Mehner-Breitfeld
- Leibniz University Hanover, Institute of Microbiology, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Claus-Peter Witte
- Leibniz University Hannover, Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Thomas Brüser
- Leibniz University Hanover, Institute of Microbiology, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Isabel Keller
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., 67653 Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., 67653 Kaiserslautern, Germany.
| |
Collapse
|
21
|
Cobo-Simón I, Maloof JN, Li R, Amini H, Méndez-Cea B, García-García I, Gómez-Garrido J, Esteve-Codina A, Dabad M, Alioto T, Wegrzyn JL, Seco JI, Linares JC, Gallego FJ. Contrasting transcriptomic patterns reveal a genomic basis for drought resilience in the relict fir Abies pinsapo Boiss. TREE PHYSIOLOGY 2023; 43:315-334. [PMID: 36210755 DOI: 10.1093/treephys/tpac115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Climate change challenges the adaptive capacity of several forest tree species in the face of increasing drought and rising temperatures. Therefore, understanding the mechanistic connections between genetic diversity and drought resilience is highly valuable for conserving drought-sensitive forests. Nonetheless, the post-drought recovery in trees from a transcriptomic perspective has not yet been studied by comparing contrasting phenotypes. Here, experimental drought treatments, gas-exchange dynamics and transcriptomic analysis (RNA-seq) were performed in the relict and drought-sensitive fir Abies pinsapo Boiss. to identify gene expression differences over immediate (24 h) and extended drought (20 days). Post-drought responses were investigated to define resilient and sensitive phenotypes. Single nucleotide polymorphisms (SNPs) were also studied to characterize the genomic basis of A. pinsapo drought resilience. Weighted gene co-expression network analysis showed an activation of stomatal closing and an inhibition of plant growth-related genes during the immediate drought, consistent with an isohydric dynamic. During the extended drought, transcription factors, as well as cellular damage and homeostasis protection-related genes prevailed. Resilient individuals activate photosynthesis-related genes and inhibit aerial growth-related genes, suggesting a shifting shoot/root biomass allocation to improve water uptake and whole-plant carbon balance. About, 152 fixed SNPs were found between resilient and sensitive seedlings, which were mostly located in RNA-activity-related genes, including epigenetic regulation. Contrasting gene expression and SNPs were found between different post-drought resilience phenotypes for the first time in a forest tree, suggesting a transcriptomic and genomic basis for drought resilience. The obtained drought-related transcriptomic profile and drought-resilience candidate genes may guide conservation programs for this threatened tree species.
Collapse
Affiliation(s)
- Irene Cobo-Simón
- Dpto Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla, Spain
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| | - Julin N Maloof
- University of California at Davis, Department of Plant Biology, Davis, CA 95616, USA
| | - Ruijuan Li
- University of California at Davis, Department of Plant Biology, Davis, CA 95616, USA
| | - Hajar Amini
- University of California at Davis, Department of Plant Biology, Davis, CA 95616, USA
| | - Belén Méndez-Cea
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| | - Isabel García-García
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - José Ignacio Seco
- Dpto Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla, Spain
| | - Juan Carlos Linares
- Dpto Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla, Spain
| | - Francisco Javier Gallego
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| |
Collapse
|
22
|
Liu T, Kawochar MA, Liu S, Cheng Y, Begum S, Wang E, Zhou T, Liu T, Cai X, Song B. Suppression of the tonoplast sugar transporter, StTST3.1, affects transitory starch turnover and plant growth in potato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:342-356. [PMID: 36444716 DOI: 10.1111/tpj.16050] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/25/2022] [Accepted: 11/27/2022] [Indexed: 06/16/2023]
Abstract
Transitory starch and vacuolar sugars function as highly dynamic pools of instantly accessible metabolites in plant leaf cells. Their metabolic regulation is critical for plant survival. The tonoplast sugar transporters (TSTs), responsible for sugar uptake into vacuoles, regulate cellular sugar partitioning and vacuolar sugar accumulation. However, whether TSTs are involved in leaf transient starch turnover and plant growth is unclear. Here, we found that suppressing StTST3.1 resulted in growth retardation and pale green leaves in potato plants. StTST3.1-silenced plants displayed abnormal chloroplasts and impaired photosynthetic performance. The subcellular localization assay and the oscillation expression patterns revealed that StTST3.1 encoded a tonoplast-localized protein and responded to photoperiod. Moreover, RNA-seq analyses identified that starch synthase (SS2 and SS6) and glucan water, dikinase (GWD), were downregulated in StTST3.1-silenced lines. Correspondingly, the capacity for starch synthesis and degradation was decreased in StTST3.1-silenced lines. Surprisingly, StTST3.1-silenced leaves accumulated exceptionally high levels of maltose but low levels of sucrose and hexose. Additionally, chlorophyll content was reduced in StTST3.1-silenced leaves. Analysis of chlorophyll metabolic pathways found that Non-Yellow Coloring 1 (NYC1)-like (NOL), encoding a chloroplast-localized key enzyme that catalyzes the initial step of chlorophyll b degradation, was upregulated in StTST3.1-silenced leaves. Transient overexpression of StNOL accelerated chlorophyll b degradation in tobacco leaves. Our results indicated that StTST3.1 is involved in transitory starch turnover and chlorophyll metabolism, thereby playing a critical role in normal potato plant growth.
Collapse
Affiliation(s)
- Tengfei Liu
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Md Abu Kawochar
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, 1701, Bangladesh
| | - Shengxuan Liu
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yunxia Cheng
- College of Plant Science, Tarim University, Alar, Xinjiang, 843300, People's Republic of China
| | - Shahnewaz Begum
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, 1701, Bangladesh
| | - Enshuang Wang
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tingting Zhou
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tiantian Liu
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xingkui Cai
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Education, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
23
|
Xu X, Zeng W, Li Z, Wang Z, Luo Z, Li J, Li X, Yang J. Genome-wide identification and expression profiling of sugar transporter genes in tobacco. Gene 2022; 835:146652. [PMID: 35714802 DOI: 10.1016/j.gene.2022.146652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
Abstract
Sugars are both nutrients and important signal molecules in higher plants. Sugar transporters (STs) are involved in sugar loading and unloading and facilitate sugar transport across membranes. Tobacco (Nicotiana tabacum) is a model plant and one of the most significant plants economically. In our research, 92 N. tabacum ST (NtST) genes were identified and classified into eight distinct subfamilies in the tobacco genome based on phylogenetic analysis. Exon-intron analysis revealed that each subfamily manifested closely associated gene architectural features based on a comparable number or length of exons. Tandem repetition and purifying selection were the main factors of NtST gene evolution. A search for cis-regulatory elements in the promoter sequences of the NtST gene families suggested that they are probably regulated by light, plant hormones, and abiotic stress factors. We performed a comprehensive expression study in different tissues, viarious abiotic and phytohormone stresses. The results revealed different expression patterns and the functional diversification of NtST genes. The resulting data showed that NtSFP1 was highly expressed all measured five tobacco tissues, and also regulated by the MeJA, and temperature stress. In addition, the virus-induced NibenSFP1 silencing in tobacco and detected dramatically enhanced glucose content, indicating the NtSFP1 might regulate the glucose content and involved in MeJA signaling way to response the temperature stress. In general, our findings provide useful information on understanding the roles of STs in phytohormone signaling way and abiotic stresses in N. tabacum.
Collapse
Affiliation(s)
- Xin Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Wanli Zeng
- Technology Center of Yunnan China Tobacco Industry Company, Kunming 650000, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Jing Li
- Technology Center of Yunnan China Tobacco Industry Company, Kunming 650000, China
| | - Xuemei Li
- Technology Center of Yunnan China Tobacco Industry Company, Kunming 650000, China.
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| |
Collapse
|
24
|
Kuang L, Chen S, Guo Y, Scheuring D, Flaishman MA, Ma H. Proteome Analysis of Vacuoles Isolated from Fig (Ficus carica L.) Flesh during Fruit Development. PLANT & CELL PHYSIOLOGY 2022; 63:785-801. [PMID: 35348748 DOI: 10.1093/pcp/pcac039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Fruit flesh cell vacuoles play a pivotal role in fruit growth and quality formation. In the present study, intact vacuoles were carefully released and collected from protoplasts isolated from flesh cells at five sampling times along fig fruit development. Label-free quantification and vacuole proteomic analysis identified 1,251 proteins, 1,137 of which were recruited as differentially abundant proteins (DAPs) by fold change ≥ 1.5, P < 0.05. DAPs were assigned to 10 functional categories; among them, 238, 186, 109, 93 and 90 were annotated as metabolism, transport proteins, membrane fusion or vesicle trafficking, protein fate and stress response proteins, respectively. Decreased numbers of DAPs were uncovered along fruit development. The overall changing pattern of DAPs revealed two major proteome landscape conversions in fig flesh cell vacuoles: the first occurred when fruit developed from late-stage I to mid-stage II, and the second occurred when the fruit started ripening. Metabolic proteins related to glycosidase, lipid and extracellular proteins contributing to carbohydrate storage and vacuole expansion, and protein-degrading proteins determining vacuolar lytic function were revealed. Key tonoplast proteins contributing to vacuole expansion, cell growth and fruit quality formation were also identified. The revealed comprehensive changes in the vacuole proteome during flesh development were compared with our previously published vacuole proteome of grape berry. The information expands our knowledge of the vacuolar proteome and the protein basis of vacuole functional evolution during fruit development and quality formation.
Collapse
Affiliation(s)
- Liuqing Kuang
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing 100193, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Shangwu Chen
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- College of Biology Sciences, China Agricultural University, Beijing 100193, China
| | - David Scheuring
- Department of Plant Pathology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Moshe A Flaishman
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Huiqin Ma
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
25
|
Yang B, Chen M, Zhan C, Liu K, Cheng Y, Xie T, Zhu P, He Y, Zeng P, Tang H, Tsugama D, Chen S, Zhang H, Cheng J. Identification of OsPK5 involved in rice glycolytic metabolism and GA/ABA balance for improving seed germination via genome-wide association study. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3446-3461. [PMID: 35191960 PMCID: PMC9162179 DOI: 10.1093/jxb/erac071] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/19/2022] [Indexed: 06/12/2023]
Abstract
Seed germination plays a pivotal role in the plant life cycle, and its precise regulatory mechanisms are not clear. In this study, 19 quantitative trait loci (QTLs) associated with rice seed germination were identified through genome-wide association studies (GWAS) of the following traits in 2016 and 2017: germination rate (GR) at 3, 5, and 7 days after imbibition (DAI) and germination index (GI). Two major stable QTLs, qSG4 and qSG11.1, were found to be associated with GR and GI over 2 continuous years. Furthermore, OsPK5, encoding a pyruvate kinase, was shown to be a crucial regulator of seed germination in rice, and might be a causal gene of the key QTL qSG11.1, on chromosome 11. Natural variation in OsPK5 function altered the activity of pyruvate kinase. The disruption of OsPK5 function resulted in slow germination and seedling growth during seed germination, blocked glycolytic metabolism, caused glucose accumulation, decreased energy levels, and affected the GA/ABA balance. Taken together, our results provide novel insights into the roles of OsPK5 in seed germination, and facilitate its application in rice breeding to improve seed vigour.
Collapse
Affiliation(s)
| | | | | | - Kexin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanhao Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiwen Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Zeng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Haijuan Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Daisuke Tsugama
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo 188-0002, Japan
| | - Sunlu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | | | | |
Collapse
|
26
|
Cho A, Jang H, Baek S, Kim MJ, Yim B, Huh S, Kwon SH, Yu HJ, Mun JH. An improved Raphanus sativus cv. WK10039 genome localizes centromeres, uncovers variation of DNA methylation and resolves arrangement of the ancestral Brassica genome blocks in radish chromosomes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1731-1750. [PMID: 35249126 DOI: 10.1007/s00122-022-04066-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
This study presents an improved genome of Raphanus sativus cv. WK10039 uncovering centromeres and differentially methylated regions of radish chromosomes. Comprehensive genome comparison of radish and diploid Brassica species of U's triangle reveals that R. sativus arose from the Brassica B genome lineage and is a sibling species of B. nigra. Radish (Raphanus sativus L.) is a key root vegetable crop closely related to the Brassica crop species of the family Brassicaceae. We reported a draft genome of R. sativus cv. WK10039 (Rs1.0), which had 54.6 Mb gaps. To study the radish genome and explore previously unknown regions, we generated an improved genome assembly (Rs2.0) by long-read sequencing and high-resolution genome-wide mapping of chromatin interactions. Rs2.0 was 434.9 Mb in size with 0.27 Mb gaps, and the N50 scaffold length was 37.3 Mb (40-fold larger assembly compared to Rs1.0). Approximately 38% of Rs2.0 was comprised of repetitive sequences, and 52,768 protein-coding genes and 4845 non-protein-coding genes were predicted and annotated. The improved contiguity and coverage of Rs2.0, along with the detection of highly methylated regions, enabled localization of centromeres where R. sativus-specific centromere-associated repeats, full-length OTA and CRM LTR-Gypsy retrotransposons, hAT-Ac, CMC-EnSpm and Helitron DNA transposons, and sequences highly homologous to B. nigra centromere-specific CENH3-associated CL sequences were enriched. Whole-genome bisulfite sequencing combined with mRNA sequencing identified differential epigenetic marks in the radish genome related to tissue development. Synteny comparison and genomic distance analysis of radish and three diploid Brassica species of U's triangle suggested that the radish genome arose from the Brassica B genome lineage through unique rearrangement of the triplicated ancestral Brassica genome after splitting of the Brassica A/C and B genomes.
Collapse
Affiliation(s)
- Ara Cho
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 17058, Korea
| | - Hoyeol Jang
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 17058, Korea
| | - Seunghoon Baek
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 17058, Korea
| | - Moon-Jin Kim
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 17058, Korea
| | - Bomi Yim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, Korea
| | - Sunmi Huh
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, Korea
| | - Song-Hwa Kwon
- Department of Mathematics, The Catholic University of Korea, Bucheon, 14662, Korea
| | - Hee-Ju Yu
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, Korea.
| | - Jeong-Hwan Mun
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 17058, Korea.
| |
Collapse
|
27
|
Benkeblia N. Insights on Fructans and Resistance of Plants to Drought Stress. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.827758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Drought, one of the major abiotic stresses affecting plants, is characterized by a decrease of water availability, resulting in a decrease of the water potential (Ψ) of the cells. One of the strategies of plants in resisting to this low Ψ and related stresses is regulating their water-plant relation and the interplay between Ψsolutes and the turgor pressure (Ψp). This regulation avoids the dehydration induced by low Ψ and is resulting from the accumulation of specific molecules which induce higher tolerance to water deficit and also other mechanisms that prevent or repair cell damages. In plants, fructans, the non-structural carbohydrates (NSC), have other physiological functions than carbon reserve. Among these roles, fructans have been implicated in protecting plants against water deficit caused by drought. As an efficient strategy to survive to this abiotic stress, plants synthesize fructans in response to osmotic pressure in order to osmoregulate the cellular flux, therefore, protecting the membrane damage and maintaining Ψp. Although different studies have been conducted to elucidate the mechanisms behind this strategy, still the concept itself is not well-understood and many points remain unclear and need to be elucidated in order to understand the causal relation between water deficit and fructans accumulation during water scarcity. This understanding will be a key tool in developing strategies to enhance crop tolerance to stressful dry conditions, particularly under the changing climate prediction. This review aims to give new insights on the roles of fructans in the response and resistance of plants to water deficit and their fate under this severe environmental condition.
Collapse
|
28
|
Okooboh GO, Haferkamp I, Valifard M, Pommerrenig B, Kelly A, Feussner I, Neuhaus HE. Overexpression of the vacuolar sugar importer BvTST1 from sugar beet in Camelina improves seed properties and leads to altered root characteristics. PHYSIOLOGIA PLANTARUM 2022; 174:e13653. [PMID: 35187664 DOI: 10.1111/ppl.13653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Overexpression of the vacuolar sugar transporter TST1 in Arabidopsis leads to higher seed lipid levels and higher total seed yield per plant. However, effects on fruit biomass have not been observed in crop plants like melon, strawberry, cotton, apple, or tomato with increased tonoplast sugar transporter (TST) activity. Thus, it was unclear whether overexpression of TST in selected crops might lead to increased fruit yield, as observed in Arabidopsis. Here, we report that constitutive overexpression of TST1 from sugar beet in the important crop species Camelina sativa (false flax) resembles the seed characteristics observed for Arabidopsis upon increased TST activity. These effects go along with a stimulation of sugar export from source leaves and not only provoke optimised seed properties like higher lipid levels and increased overall seed yield per plant, but also modify the root architecture of BvTST1 overexpressing Camelina lines. Such mutants grew longer primary roots and showed an increased number of lateral roots, especially when developed under conditions of limited water supply. These changes in root properties result in a stabilisation of total seed yield under drought conditions. In summary, we demonstrate that increased vacuolar TST activity may lead to optimised yield of an oil-seed crop species with high levels of healthy ω3 fatty acids in storage lipids. Moreover, since BvTST1 overexpressing Camelina mutants, in addition, exhibit optimised yield under limited water availability, we might devise a strategy to create crops with improved tolerance against drought, representing one of the most challenging environmental cues today and in future.
Collapse
Affiliation(s)
- Gloria O Okooboh
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern
| | - Ilka Haferkamp
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern
| | - Marzieh Valifard
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern
| | - Benjamin Pommerrenig
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern
| | - Amélie Kelly
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Ivo Feussner
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
29
|
Aubry E, Hoffmann B, Vilaine F, Gilard F, Klemens PAW, Guérard F, Gakière B, Neuhaus HE, Bellini C, Dinant S, Le Hir R. A vacuolar hexose transport is required for xylem development in the inflorescence stem. PLANT PHYSIOLOGY 2022; 188:1229-1247. [PMID: 34865141 PMCID: PMC8825465 DOI: 10.1093/plphys/kiab551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/02/2021] [Indexed: 05/29/2023]
Abstract
In Angiosperms, the development of the vascular system is controlled by a complex network of transcription factors. However, how nutrient availability in the vascular cells affects their development remains to be addressed. At the cellular level, cytosolic sugar availability is regulated mainly by sugar exchanges at the tonoplast through active and/or facilitated transport. In Arabidopsis (Arabidopsis thaliana), among the genes encoding tonoplastic transporters, SUGAR WILL EVENTUALLY BE EXPORTED TRANSPORTER 16 (SWEET16) and SWEET17 expression has been previously detected in the vascular system. Here, using a reverse genetics approach, we propose that sugar exchanges at the tonoplast, regulated by SWEET16, are important for xylem cell division as revealed in particular by the decreased number of xylem cells in the swt16 mutant and the accumulation of SWEET16 at the procambium-xylem boundary. In addition, we demonstrate that transport of hexoses mediated by SWEET16 and/or SWEET17 is required to sustain the formation of the xylem secondary cell wall. This result is in line with a defect in the xylem cell wall composition as measured by Fourier-transformed infrared spectroscopy in the swt16swt17 double mutant and by upregulation of several genes involved in secondary cell wall synthesis. Our work therefore supports a model in which xylem development partially depends on the exchange of hexoses at the tonoplast of xylem-forming cells.
Collapse
Affiliation(s)
- Emilie Aubry
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
- Ecole Doctorale 567 Sciences du Végétal, Univ Paris-Sud, Univ Paris-Saclay, bat 360, 91405 Orsay Cedex, France
| | - Beate Hoffmann
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Françoise Vilaine
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Françoise Gilard
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRAE, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 360, Rue de Noetzlin, 91192 Gif sur Yvette, France
| | - Patrick A W Klemens
- Universität Kaiserslautern, Pflanzenphysiologie, Postfach 3049, D-67653 Kaiserslautern, Germany
| | - Florence Guérard
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRAE, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 360, Rue de Noetzlin, 91192 Gif sur Yvette, France
| | - Bertrand Gakière
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRAE, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 360, Rue de Noetzlin, 91192 Gif sur Yvette, France
| | - H Ekkehard Neuhaus
- Universität Kaiserslautern, Pflanzenphysiologie, Postfach 3049, D-67653 Kaiserslautern, Germany
| | - Catherine Bellini
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden
| | - Sylvie Dinant
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Rozenn Le Hir
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
30
|
Yolcu S, Alavilli H, Ganesh P, Asif M, Kumar M, Song K. An Insight into the Abiotic Stress Responses of Cultivated Beets ( Beta vulgaris L.). PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010012. [PMID: 35009016 PMCID: PMC8747243 DOI: 10.3390/plants11010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 05/03/2023]
Abstract
Cultivated beets (sugar beets, fodder beets, leaf beets, and garden beets) belonging to the species Beta vulgaris L. are important sources for many products such as sugar, bioethanol, animal feed, human nutrition, pulp residue, pectin extract, and molasses. Beta maritima L. (sea beet or wild beet) is a halophytic wild ancestor of all cultivated beets. With a requirement of less water and having shorter growth period than sugarcane, cultivated beets are preferentially spreading from temperate regions to subtropical countries. The beet cultivars display tolerance to several abiotic stresses such as salt, drought, cold, heat, and heavy metals. However, many environmental factors adversely influence growth, yield, and quality of beets. Hence, selection of stress-tolerant beet varieties and knowledge on the response mechanisms of beet cultivars to different abiotic stress factors are most required. The present review discusses morpho-physiological, biochemical, and molecular responses of cultivated beets (B. vulgaris L.) to different abiotic stresses including alkaline, cold, heat, heavy metals, and UV radiation. Additionally, we describe the beet genes reported for their involvement in response to these stress conditions.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
- Correspondence: (S.Y.); (H.A.); (K.S.)
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
- Correspondence: (S.Y.); (H.A.); (K.S.)
| | - Pushpalatha Ganesh
- Department of Plant Biotechnology, M. S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Odisha 761211, India;
| | - Muhammad Asif
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea;
| | - Kihwan Song
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
- Correspondence: (S.Y.); (H.A.); (K.S.)
| |
Collapse
|
31
|
Khan FS, Gan ZM, Li EQ, Ren MK, Hu CG, Zhang JZ. Transcriptomic and physiological analysis reveals interplay between salicylic acid and drought stress in citrus tree floral initiation. PLANTA 2021; 255:24. [PMID: 34928452 DOI: 10.1007/s00425-021-03801-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Salicylic acid (SA) and drought stress promote more flowering in sweet orange. The physiological response and molecular mechanism underlying stress-induced floral initiation were discovered by transcriptome profiling. Numerous flowering-regulated genes were identified, and ectopically expressed CsLIP2A promotes early flowering in Arabidopsis. Floral initiation is a critical developmental mechanism associated with external factors, and citrus flowering is mainly regulated by drought stress. However, little is known about the intricate regulatory network involved in stress-induced flowering in citrus. To understand the molecular mechanism of floral initiation in citrus, flower induction was performed on potted Citrus sinensis trees under the combined treatment of salicylic acid (SA) and drought (DR). Physiological analysis revealed that SA treatment significantly normalized the drastic effect of drought stress by increasing antioxidant enzyme activities (SOD, POD, and CAT), relative leaf water content, total chlorophyll, and proline contents and promoting more flowering than drought treatment. Analysis of transcriptome changes in leaves from different treatments showed that 1135, 2728 and 957 differentially expressed genes (DEGs) were revealed in response to DR, SD (SA + DR), and SA (SA + well water) treatments in comparison with the well watered plants, respectively. A total of 2415, 2318 and 1933 DEGs were expressed in DR, SD, and SA in comparison with water recovery, respectively. Some key flowering genes were more highly expressed in SA-treated drought plants than in DR-treated plants. GO enrichment revealed that SA treatment enhances the regulation and growth of meristem activity under drought conditions, but no such a pathway was found to be highly enriched in the control. Furthermore, we focused on various hormones, sugars, starch metabolism, and biosynthesis-related genes. The KEGG analysis demonstrated that DEGs enriched in starch sucrose metabolism and hormonal signal transduction pathways probably account for stress-induced floral initiation in citrus. In addition, a citrus LIPOYLTRANSFERSAE 2A homologous (LIP2A) gene was upregulated by SD treatment. Ectopic expression of CsLIP2A exhibited early flowering in transgenic Arabidopsis. Taken together, this study provides new insight that contributes to citrus tree floral initiation under the SA-drought scenario as well as an excellent reference for stress-induced floral initiation in woody trees.
Collapse
Affiliation(s)
- Faiza Shafique Khan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi-Meng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - En-Qing Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng-Ke Ren
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
32
|
Kim JY, Loo EPI, Pang TY, Lercher M, Frommer WB, Wudick MM. Cellular export of sugars and amino acids: role in feeding other cells and organisms. PLANT PHYSIOLOGY 2021; 187:1893-1914. [PMID: 34015139 PMCID: PMC8644676 DOI: 10.1093/plphys/kiab228] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/29/2021] [Indexed: 05/20/2023]
Abstract
Sucrose, hexoses, and raffinose play key roles in the plant metabolism. Sucrose and raffinose, produced by photosynthesis, are translocated from leaves to flowers, developing seeds and roots. Translocation occurs in the sieve elements or sieve tubes of angiosperms. But how is sucrose loaded into and unloaded from the sieve elements? There seem to be two principal routes: one through plasmodesmata and one via the apoplasm. The best-studied transporters are the H+/SUCROSE TRANSPORTERs (SUTs) in the sieve element-companion cell complex. Sucrose is delivered to SUTs by SWEET sugar uniporters that release these key metabolites into the apoplasmic space. The H+/amino acid permeases and the UmamiT amino acid transporters are hypothesized to play analogous roles as the SUT-SWEET pair to transport amino acids. SWEETs and UmamiTs also act in many other important processes-for example, seed filling, nectar secretion, and pollen nutrition. We present information on cell type-specific enrichment of SWEET and UmamiT family members and propose several members to play redundant roles in the efflux of sucrose and amino acids across different cell types in the leaf. Pathogens hijack SWEETs and thus represent a major susceptibility of the plant. Here, we provide an update on the status of research on intercellular and long-distance translocation of key metabolites such as sucrose and amino acids, communication of the plants with the root microbiota via root exudates, discuss the existence of transporters for other important metabolites and provide potential perspectives that may direct future research activities.
Collapse
Affiliation(s)
- Ji-Yun Kim
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Eliza P -I Loo
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Tin Yau Pang
- Institute for Computer Science and Department of Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Martin Lercher
- Institute for Computer Science and Department of Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Wolf B Frommer
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Michael M Wudick
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Author for communication:
| |
Collapse
|
33
|
Díaz P, Sarmiento F, Mathew B, Ballvora A, Mosquera Vásquez T. Genomic regions associated with physiological, biochemical and yield-related responses under water deficit in diploid potato at the tuber initiation stage revealed by GWAS. PLoS One 2021; 16:e0259690. [PMID: 34748612 PMCID: PMC8575265 DOI: 10.1371/journal.pone.0259690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/24/2021] [Indexed: 11/19/2022] Open
Abstract
Water deficit, which is increasing with climate change, is a serious threat to agricultural sustainability worldwide. Dissection of the genetic architecture of water deficit responses is highly desirable for developing water-deficit tolerant potato cultivars and enhancing the resilience of existing cultivars. This study examined genetic variation in response to water deficit in a panel of diploid potato and identified the QTL governing this trait via a genome-wide association study (GWAS). A panel of 104 diploid potato accessions were evaluated under both well-watered and water deficit treatments at tuber initiation stage. Drought stress index (DTI) was calculated to assess tolerance of the diploid potato genotypes to water deficit. The GWAS was conducted using a matrix of 47K single nucleotide polymorphisms (SNP), recently available for this population. We are reporting 38 QTL, seven for well-watered conditions, twenty-two for water deficit conditions and nine for DTI which explain between 12.6% and 44.1% of the phenotypic variance. A set of 6 QTL were found to be associated with more than one variable. Marker WDP-9.21 was found associated with tuber fresh weigh under WD and gene annotation analysis revealed co-localization with the Glucan/water dikinase (GWD) gene. Of the nine QTL detected from DTI on chromosomes 2,3,5,8,10 and 12, three candidate genes with a feasible role in water deficit response were identified. The findings of this study can be used in marker-assisted selection (MAS) for water- deficit tolerance breeding in potato.
Collapse
Affiliation(s)
- Paula Díaz
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia-Sede Bogotá, Bogotá, Colombia
| | - Felipe Sarmiento
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Bogotá, Colombia
| | - Boby Mathew
- Bayer CropScience, Monheim am Rhein, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation Plant Breeding, University of Bonn, Bonn, Germany
| | - Teresa Mosquera Vásquez
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia-Sede Bogotá, Bogotá, Colombia
| |
Collapse
|
34
|
Combined Profiling of Transcriptome and DNA Methylome Reveal Genes Involved in Accumulation of Soluble Sugars and Organic Acid in Apple Fruits. Foods 2021; 10:foods10092198. [PMID: 34574306 PMCID: PMC8467953 DOI: 10.3390/foods10092198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Organic acids and soluble sugars are the major determinants of fruit organoleptic quality. Additionally, DNA methylation has crucial regulatory effects on various processes. However, the epigenetic modifications in the regulation of organic acid and soluble sugar accumulation in apple fruits remain uncharacterized. In this study, DNA methylation and the transcriptome were compared between ‘Honeycrisp’ and ‘Qinguan’ mature fruits, which differ significantly regarding soluble sugar and organic acid contents. In both ‘Honeycrisp’ and ‘Qinguan’ mature fruits, the CG context had the highest level of DNA methylation, and then CHG and CHH contexts. The number and distribution of differentially methylated regions (DMRs) varied among genic regions and transposable elements. The DNA methylation levels in all three contexts in the DMRs were significantly higher in ‘Honeycrisp’ mature fruits than in ‘Qinguan’ mature fruits. A combined methylation and transcriptome analysis revealed a negative correlation between methylation levels and gene expression in DMRs in promoters and gene bodies in the CG and CHG contexts and in gene bodies in the CHH context. Two candidate genes (MdTSTa and MdMa11), which encode tonoplast-localized proteins, potentially associated with fruit soluble sugar contents and acidity were identified based on expression and DNA methylation levels. Overexpression of MdTSTa in tomato increased the fruit soluble sugar content. Moreover, transient expression of MdMa11 in tobacco leaves significantly decreased the pH value. Our results reflect the diversity in epigenetic modifications influencing gene expression and will facilitate further elucidating the complex mechanism underlying fruit soluble sugar and organic acid accumulation.
Collapse
|
35
|
Slawinski L, Israel A, Artault C, Thibault F, Atanassova R, Laloi M, Dédaldéchamp F. Responsiveness of Early Response to Dehydration Six-Like Transporter Genes to Water Deficit in Arabidopsis thaliana Leaves. FRONTIERS IN PLANT SCIENCE 2021; 12:708876. [PMID: 34484269 PMCID: PMC8415272 DOI: 10.3389/fpls.2021.708876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/15/2021] [Indexed: 05/06/2023]
Abstract
Drought is one of the main abiotic stresses, which affects plant growth, development, and crop yield. Plant response to drought implies carbon allocation to sink organs and sugar partitioning between different cell compartments, and thereby requires the involvement of sugar transporters (SUTs). Among them, the early response to dehydration six-like (ESL), with 19 members in Arabidopsis thaliana, form the largest subfamily of monosaccharide transporters (MSTs) still poorly characterized. A common feature of these genes is their involvement in plant response to abiotic stresses, including water deficit. In this context, we carried out morphological and physiological phenotyping of A. thaliana plants grown under well-watered (WW) and water-deprived (WD) conditions, together with the expression profiling of 17 AtESL genes in rosette leaves. The drought responsiveness of 12 ESL genes, 4 upregulated and 8 downregulated, was correlated to different water statuses of rosette leaves. The differential expression of each of the tandem duplicated AtESL genes in response to water stress is in favor of their plausible functional diversity. Furthermore, transfer DNA (T-DNA) insertional mutants for each of the four upregulated ESLs in response to water deprivation were identified and characterized under WW and WD conditions. To gain insights into global sugar exchanges between vacuole and cytosol under water deficit, the gene expression of other vacuolar SUTs and invertases (AtTMT, AtSUC, AtSWEET, and AtβFRUCT) was analyzed and discussed.
Collapse
|
36
|
Nishio S, Hayashi T, Shirasawa K, Saito T, Terakami S, Takada N, Takeuchi Y, Moriya S, Itai A. Genome-wide association study of individual sugar content in fruit of Japanese pear (Pyrus spp.). BMC PLANT BIOLOGY 2021; 21:378. [PMID: 34399685 PMCID: PMC8369641 DOI: 10.1186/s12870-021-03130-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Understanding mechanisms of sugar accumulation and composition is essential to determining fruit quality and maintaining a desirable balance of sugars in plant storage organs. The major sugars in mature Rosaceae fruits are sucrose, fructose, glucose, and sorbitol. Among these, sucrose and fructose have high sweetness, whereas glucose and sorbitol have low sweetness. Japanese pear has extensive variation in individual sugar contents in mature fruit. Increasing total sugar content and that of individual high-sweetness sugars is a major target of breeding programs. The objective of this study was to identify quantitative trait loci (QTLs) associated with fruit traits including individual sugar accumulation, to infer the candidate genes underlying the QTLs, and to assess the potential of genomic selection for breeding pear fruit traits. RESULTS We evaluated 10 fruit traits and conducted genome-wide association studies (GWAS) for 106 cultivars and 17 breeding populations (1112 F1 individuals) using 3484 tag single-nucleotide polymorphisms (SNPs). By implementing a mixed linear model and a Bayesian multiple-QTL model in GWAS, 56 SNPs associated with fruit traits were identified. In particular, a SNP located close to acid invertase gene PPAIV3 on chromosome 7 and a newly identified SNP on chromosome 11 had quite large effects on accumulation of sucrose and glucose, respectively. We used 'Golden Delicious' doubled haploid 13 (GDDH13), an apple reference genome, to infer the candidate genes for the identified SNPs. In the region flanking the SNP on chromosome 11, there is a tandem repeat of early responsive to dehydration (ERD6)-like sugar transporter genes that might play a role in the phenotypes observed. CONCLUSIONS SNPs associated with individual sugar accumulation were newly identified at several loci, and candidate genes underlying QTLs were inferred using advanced apple genome information. The candidate genes for the QTLs are conserved across Pyrinae genomes, which will be useful for further fruit quality studies in Rosaceae. The accuracies of genomic selection for sucrose, fructose, and glucose with genomic best linear unbiased prediction (GBLUP) were relatively high (0.67-0.75), suggesting that it would be possible to select individuals having high-sweetness fruit with high sucrose and fructose contents and low glucose content.
Collapse
Affiliation(s)
- Sogo Nishio
- Institute of Fruit Tree and Tea Science, NARO (NIFTS), 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605 Japan
| | - Takeshi Hayashi
- Research Center for Agricultural Information Technology, NARO, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8666 Japan
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818 Japan
| | - Toshihiro Saito
- Institute of Fruit Tree and Tea Science, NARO (NIFTS), 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605 Japan
| | - Shingo Terakami
- Institute of Fruit Tree and Tea Science, NARO (NIFTS), 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605 Japan
| | - Norio Takada
- Institute of Fruit Tree and Tea Science, NARO (NIFTS), 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605 Japan
| | - Yukie Takeuchi
- Institute of Fruit Tree and Tea Science, NARO (NIFTS), 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605 Japan
| | - Shigeki Moriya
- Institute of Fruit Tree and Tea Science, NARO, Morioka, Iwate 020-0123 Japan
| | - Akihiko Itai
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 74 Kitainayazuma, Seika, Kyoto 619-0244 Japan
| |
Collapse
|
37
|
Wei QJ, Ma QL, Zhou GF, Liu X, Ma ZZ, Gu QQ. Identification of genes associated with soluble sugar and organic acid accumulation in 'Huapi' kumquat (Fortunella crassifolia Swingle) via transcriptome analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4321-4331. [PMID: 33417244 DOI: 10.1002/jsfa.11072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The levels and ratios of sugar and acid are important contributors to fruit taste. Kumquat is one of the most economically important citrus crops, but information on the soluble sugar and organic acid metabolism in kumquat is limited. Here, two kumquat varieties - 'Rongan' (RA) and its mutant 'Huapi' (HP) - were used to assess soluble sugar and organic acid accumulation and the related genes. RESULTS Soluble sugars include sucrose, glucose and fructose, while malate, quinic acid and citrate are the dominant organic acids in the fruits of both kumquat varieties. HP accumulated more sugars but fewer organic acids than did RA. Transcriptome analysis revealed 63 and 40 differentially expressed genes involved in soluble sugar and organic acid accumulation, respectively. The genes associated with sugar synthesis and transport, including SUS, SPS, TST, STP and ERD6L, were up-regulated, whereas INVs, FRK and HXK genes related to sugar degradation were down-regulated in HP kumquat. For organic acids, the up-regulation of PEPC and NAD-MDH could accelerate malate accumulation. In contrast, high expression of NAD-IDH and GS resulted in citric acid degradation during HP fruit development. Additionally, the PK, PDH, PEPCK and FBPase genes responsible for the interconversion of soluble sugars and organic acids were also significantly altered in the early development stages in HP. CONCLUSION The high sugar accumulation in HP fruit was associated with up-regulation of SUS, SPS, TST, STP and ERD6L genes. The PEPCK, PEPC, NAD-MDH, NADP-IDH, GS and FBPase genes played important roles in acid synthesis and degradation in HP kumquat. These findings provide further insight into understanding the mechanisms underlying metabolism of sugars and organic acids in citrus. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qing-Jiang Wei
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Qiao-Li Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Gao-Feng Zhou
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Xiao Liu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhang-Zheng Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Qing-Qing Gu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
38
|
Singh S, Kumar V, Parihar P, Dhanjal DS, Singh R, Ramamurthy PC, Prasad R, Singh J. Differential regulation of drought stress by biological membrane transporters and channels. PLANT CELL REPORTS 2021; 40:1565-1583. [PMID: 34132878 DOI: 10.1007/s00299-021-02730-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Stress arising due to abiotic factors affects the plant's growth and productivity. Among several existing abiotic stressors like cold, drought, heat, salinity, heavy metal, etc., drought condition tends to affect the plant's growth by inducing two-point effect, i.e., it disturbs the water balance as well as induces toxicity by disturbing the ion homeostasis, thus hindering the growth and productivity of plants, and to survive under this condition, plants have evolved several transportation systems that are involved in regulating the drought stress. The role of membrane transporters has gained interest since genetic engineering came into existence, and they were found to be the important modulators for tolerance, avoidance, ion movements, stomatal movements, etc. Here in this comprehensive review, we have discussed the role of transporters (ABA, protein, carbohydrates, etc.) and channels that aids in withstanding the drought stress as well as the regulatory role of transporters involved in osmotic adjustments arising due to drought stress. This review also provides a gist of hydraulic conductivity by roots that are involved in regulating the drought stress.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 56001, India
| | - Vijay Kumar
- Department of Chemistry, Regional Ayurveda Research Institute for Drug Development, Gwalior, Madhya Pradesh, 474009, India
| | - Parul Parihar
- Department of Botany, Lovely Professional University, Jalandhar, Punjab, 144111, India
- Department of Botany, University of Allahabad, Prayagraj, 211008, India
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Rachana Singh
- Department of Botany, University of Allahabad, Prayagraj, 211008, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 56001, India.
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| |
Collapse
|
39
|
Population-scale peach genome analyses unravel selection patterns and biochemical basis underlying fruit flavor. Nat Commun 2021; 12:3604. [PMID: 34127667 PMCID: PMC8203738 DOI: 10.1038/s41467-021-23879-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023] Open
Abstract
A narrow genetic basis in modern cultivars and strong linkage disequilibrium in peach (Prunus persica) has restricted resolution power for association studies in this model fruit species, thereby limiting our understanding of economically important quality traits including fruit flavor. Here, we present a high-quality genome assembly for a Chinese landrace, Longhua Shui Mi (LHSM), a representative of the Chinese Cling peaches that have been central in global peach genetic improvement. We also map the resequencing data for 564 peach accessions to this LHSM assembly at an average depth of 26.34× per accession. Population genomic analyses reveal a fascinating history of convergent selection for sweetness yet divergent selection for acidity in eastern vs. western modern cultivars. Molecular-genetics and biochemical analyses establish that PpALMT1 (aluminum-activated malate transporter 1) contributes to their difference of malate content and that increases fructose content accounts for the increased sweetness of modern peach fruits, as regulated by PpERDL16 (early response to dehydration 6-like 16). Our study illustrates the strong utility of the genomics resources for both basic and applied efforts to understand and exploit the genetic basis of fruit quality in peach.
Collapse
|
40
|
Barmukh R, Soren KR, Madugula P, Gangwar P, Shanmugavadivel PS, Bharadwaj C, Konda AK, Chaturvedi SK, Bhandari A, Rajain K, Singh NP, Roorkiwal M, Varshney RK. Construction of a high-density genetic map and QTL analysis for yield, yield components and agronomic traits in chickpea (Cicer arietinum L.). PLoS One 2021; 16:e0251669. [PMID: 33989359 PMCID: PMC8121343 DOI: 10.1371/journal.pone.0251669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/30/2021] [Indexed: 12/04/2022] Open
Abstract
Unravelling the genetic architecture underlying yield components and agronomic traits is important for enhancing crop productivity. Here, a recombinant inbred line (RIL) population, developed from ICC 4958 and DCP 92–3 cross, was used for constructing linkage map and QTL mapping analysis. The RIL population was genotyped using a high-throughput Axiom®CicerSNP array, which enabled the development of a high-density genetic map consisting of 3,818 SNP markers and spanning a distance of 1064.14 cM. Analysis of phenotyping data for yield, yield components and agronomic traits measured across three years together with genetic mapping data led to the identification of 10 major-effect QTLs and six minor-effect QTLs explaining up to 59.70% phenotypic variance. The major-effect QTLs identified for 100-seed weight, and plant height possessed key genes, such as C3HC4 RING finger protein, pentatricopeptide repeat (PPR) protein, sugar transporter, leucine zipper protein and NADH dehydrogenase, amongst others. The gene ontology studies highlighted the role of these genes in regulating seed weight and plant height in crop plants. The identified genomic regions for yield, yield components, and agronomic traits, and the closely linked markers will help advance genetics research and breeding programs in chickpea.
Collapse
Affiliation(s)
- Rutwik Barmukh
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | | | - Praveen Madugula
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | | | | | | | - Sushil K. Chaturvedi
- ICAR-Indian Institute of Pulses Research, Kanpur, UP, India
- Rani Lakshmi Bai Central Agricultural University, Jhansi, India
| | - Aditi Bhandari
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Kritika Rajain
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Narendra Pratap Singh
- ICAR-Indian Institute of Pulses Research, Kanpur, UP, India
- * E-mail: (RKV); (MR); (NPS)
| | - Manish Roorkiwal
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- * E-mail: (RKV); (MR); (NPS)
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- * E-mail: (RKV); (MR); (NPS)
| |
Collapse
|
41
|
Wang R, Zhong Y, Liu X, Zhao C, Zhao J, Li M, Ul Hassan M, Yang B, Li D, Liu R, Li X. Cis-regulation of the amino acid transporter genes ZmAAP2 and ZmLHT1 by ZmPHR1 transcription factors in maize ear under phosphate limitation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3846-3863. [PMID: 33765129 DOI: 10.1093/jxb/erab103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus and nitrogen nutrition have profound and complicated innate connections; however, underlying molecular mechanisms are mostly elusive. PHR1 is a master phosphate signaling component, and whether it directly functions in phosphorus-nitrogen crosstalk remains a particularly interesting question. In maize, nitrogen limitation caused tip kernel abortion and ear shortening. By contrast, moderately low phosphate in the field reduced kernels across the ear, maintained ear elongation and significantly lowered concentrations of total free amino acids and soluble proteins 2 weeks after silking. Transcriptome profiling revealed significant enrichment and overall down-regulation of transport genes in ears under low phosphate. Importantly, 313 out of 847 differentially expressed genes harbored PHR1 binding sequences (P1BS) including those controlling amino acid/polyamine transport and metabolism. Specifically, both ZmAAP2 and ZmLHT1 are plasma membrane-localized broad-spectrum amino acid transporters, and ZmPHR1.1 and ZmPHR1.2 were able to bind to P1BS-containing ZmAAP2 and ZmLHT1 and down-regulate their expression in planta. Taken together, the results suggest that prevalence of P1BS elements enables ZmPHR1s to regulate a large number of low phosphate responsive genes. Further, consistent with reduced accumulation of free amino acids, ZmPHR1s down-regulate ZmAAP2 and ZmLHT1 expression as direct linkers of phosphorus and nitrogen nutrition independent of NIGT1 in maize ear under low phosphate.
Collapse
Affiliation(s)
- Ruifeng Wang
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Yanting Zhong
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Xiaoting Liu
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Cheng Zhao
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, ShanghaiChina
| | - Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, BeijingChina
| | - Mengfei Li
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Mahmood Ul Hassan
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Bo Yang
- State Key Laboratory of Plant physiology and Biochemistry and National Centre of Maize Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, BeijingChina
| | - Dongdong Li
- Department of Crop Genomics and Bioinformatics, National Centre of Maize Genetic Improvement, China Agricultural University, BeijingChina
| | - Renyi Liu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agricultural and Forestry University, FuzhouChina
| | - Xuexian Li
- The Key Laboratory of Plant-Soil Interactions, MOE, Department of Plant Nutrition, China Agricultural University, Beijing, China
| |
Collapse
|
42
|
Krahmer J, Abbas A, Mengin V, Ishihara H, Romanowski A, Furniss JJ, Moraes TA, Krohn N, Annunziata MG, Feil R, Alseekh S, Obata T, Fernie AR, Stitt M, Halliday KJ. Phytochromes control metabolic flux, and their action at the seedling stage determines adult plant biomass. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3263-3278. [PMID: 33544130 DOI: 10.1093/jxb/erab038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Phytochrome photoreceptors are known to regulate plastic growth responses to vegetation shade. However, recent reports also suggest an important role for phytochromes in carbon resource management, metabolism, and growth. Here, we use 13CO2 labelling patterns in multiallele phy mutants to investigate the role of phytochrome in the control of metabolic fluxes. We also combine quantitative data of 13C incorporation into protein and cell wall polymers, gas exchange measurements, and system modelling to investigate why biomass is decreased in adult multiallele phy mutants. Phytochrome influences the synthesis of stress metabolites such as raffinose and proline, and the accumulation of sugars, possibly through regulating vacuolar sugar transport. Remarkably, despite their modified metabolism and vastly altered architecture, growth rates in adult phy mutants resemble those of wild-type plants. Our results point to delayed seedling growth and smaller cotyledon size as the cause of the adult-stage phy mutant biomass defect. Our data signify a role for phytochrome in metabolic stress physiology and carbon partitioning, and illustrate that phytochrome action at the seedling stage sets the trajectory for adult biomass production.
Collapse
Affiliation(s)
- Johanna Krahmer
- Institute of Molecular Plant Sciences, School of Biological Sciences, Daniel Rutherford Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, UK
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ammad Abbas
- Institute of Molecular Plant Sciences, School of Biological Sciences, Daniel Rutherford Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, UK
| | - Virginie Mengin
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam Golm, Germany
| | - Hirofumi Ishihara
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam Golm, Germany
| | - Andrés Romanowski
- Institute of Molecular Plant Sciences, School of Biological Sciences, Daniel Rutherford Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, UK
| | - James J Furniss
- Institute of Molecular Plant Sciences, School of Biological Sciences, Daniel Rutherford Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, UK
- Division of Genetics and Genomics, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK
| | | | - Nicole Krohn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam Golm, Germany
| | | | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam Golm, Germany
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam Golm, Germany
| | - Toshihiro Obata
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam Golm, Germany
- Institute of Agriculture and Natural Resources, Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam Golm, Germany
| | - Karen J Halliday
- Institute of Molecular Plant Sciences, School of Biological Sciences, Daniel Rutherford Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
43
|
Pignocchi C, Ivakov A, Feil R, Trick M, Pike M, Wang TL, Lunn JE, Smith AM. Restriction of cytosolic sucrose hydrolysis profoundly alters development, metabolism, and gene expression in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1850-1863. [PMID: 33378456 PMCID: PMC7921298 DOI: 10.1093/jxb/eraa581] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 12/10/2020] [Indexed: 05/28/2023]
Abstract
Plant roots depend on sucrose imported from leaves as the substrate for metabolism and growth. Sucrose and hexoses derived from it are also signalling molecules that modulate growth and development, but the importance for signalling of endogenous changes in sugar levels is poorly understood. We report that reduced activity of cytosolic invertase, which converts sucrose to hexoses, leads to pronounced metabolic, growth, and developmental defects in roots of Arabidopsis (Arabidopsis thaliana) seedlings. In addition to altered sugar and downstream metabolite levels, roots of cinv1 cinv2 mutants have reduced elongation rates, cell and meristem size, abnormal meristematic cell division patterns, and altered expression of thousands of genes of diverse functions. Provision of exogenous glucose to mutant roots repairs relatively few of the defects. The extensive transcriptional differences between mutant and wild-type roots have hallmarks of both high sucrose and low hexose signalling. We conclude that the mutant phenotype reflects both low carbon availability for metabolism and growth and complex sugar signals derived from elevated sucrose and depressed hexose levels in the cytosol of mutant roots. Such reciprocal changes in endogenous sucrose and hexose levels potentially provide rich information about sugar status that translates into flexible adjustments of growth and development.
Collapse
Affiliation(s)
| | - Alexander Ivakov
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Am Mühlenberg, Potsdam-Golm, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Am Mühlenberg, Potsdam-Golm, Germany
| | - Martin Trick
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marilyn Pike
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Trevor L Wang
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Am Mühlenberg, Potsdam-Golm, Germany
| | | |
Collapse
|
44
|
Wu P, Zhang Y, Zhao S, Li L. Comprehensive Analysis of Evolutionary Characterization and Expression for Monosaccharide Transporter Family Genes in Nelumbo nucifera. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.537398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sugar transporters, an important class of transporters for sugar function, regulate many processes associated with growth, maturation, and senescence processes in plants. In this study, a total of 35 NuMSTs were identified in the Nelumbo nucifera genome and grouped by conserved domains and phylogenetic analysis. Additionally, we identified 316 MST genes in 10 other representative plants and performed a comparative analysis with Nelumbo nucifera genes, including evolutionary trajectory, gene duplication, and expression pattern. A large number of analyses across plants and algae indicated that the MST family could have originated from STP and Glct, expanding to form STP and SFP by dispersed duplication. Finally, a quantitative real-time polymerase chain reaction and cis-element analysis showed that some of them may be regulated by plant hormones (e.g., abscisic acid), biotic stress factors, and abiotic factors (e.g., drought, excessive cold, and light). We found that under the four abiotic stress conditions, only NuSTP5 expression was upregulated, generating a stress response, and ARBE and LTR were present in NuSTP5. In summary, our findings are significant for understanding and exploring the molecular evolution and mechanisms of NuMSTs in plants.
Collapse
|
45
|
Keller I, Rodrigues CM, Neuhaus HE, Pommerrenig B. Improved resource allocation and stabilization of yield under abiotic stress. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153336. [PMID: 33360492 DOI: 10.1016/j.jplph.2020.153336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Sugars are the main building blocks for carbohydrate storage, but also serve as signaling molecules and protective compounds during abiotic stress responses. Accordingly, sugar transport proteins fulfill multiple roles as they mediate long distance sugar allocation, but also shape the subcellular and tissue-specific carbohydrate profiles by balancing the levels of these molecules in various compartments. Accordingly, transporter activity represents a target by classical or directed breeding approaches, to either, directly increase phloem loading or to increase sink strength in crop species. The relative subcellular distribution of sugars is critical for molecular signaling affecting yield-relevant processes like photosynthesis, onset of flowering and stress responses, while controlled long-distance sugar transport directly impacts development and productivity of plants. However, long-distance transport is prone to become unbalanced upon adverse environmental conditions. Therefore, we highlight the influence of stress stimuli on sucrose transport in the phloem and include the role of stress induced cellular carbohydrate sinks, like raffinose or fructans, which possess important roles to build up tolerance against challenging environmental conditions. In addition, we report on recent breeding approaches that resulted in altered source and sink capacities, leading to increased phloem sucrose shuttling in crops. Finally, we present strategies integrating the need of cellular stress-protection into the general picture of long-distance transport under abiotic stress, and point to possible approaches improving plant performance and resource allocation under adverse environmental conditions, leading to stabilized or even increased crop yield.
Collapse
Affiliation(s)
- Isabel Keller
- Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany.
| | | |
Collapse
|
46
|
Zhang Q, Hua X, Liu H, Yuan Y, Shi Y, Wang Z, Zhang M, Ming R, Zhang J. Evolutionary expansion and functional divergence of sugar transporters in Saccharum (S. spontaneum and S. officinarum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:884-906. [PMID: 33179305 DOI: 10.1111/tpj.15076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 10/27/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
The sugar transporter (ST) family is considered to be the most important gene family for sugar accumulation, but limited information about the ST family in the important sugar-yielding crop Saccharum is available due to its complex genetic background. Here, 105 ST genes were identified and clustered into eight subfamilies in Saccharum spontaneum. Comparative genomics revealed that tandem duplication events contributed to ST gene expansions of two subfamilies, PLT and STP, in S. spontaneum, indicating an early evolutionary step towards high sugar content in Saccharum. The analyses of expression patterns were based on four large datasets with a total of 226 RNA sequencing samples from S. spontaneum and Saccharum officinarum. The results clearly demonstrated 50 ST genes had different spatiotemporal expression patterns in leaf tissues, 10 STs were specifically expressed in the stem, and 10 STs responded to the diurnal rhythm. Heterologous expression experiments in the defective yeast strain EBY.VW4000 indicated STP13, pGlcT2, VGT3, and TMT4 are the STs with most affinity for glucose/fructose and SUT1_T1 has the highest affinity to sucrose. Furthermore, metabolomics analysis suggested STP7 is a sugar starvation-induced gene and STP13 has a function in retrieving sugar in senescent tissues. PLT11, PLT11_T1, TMT3, and TMT4 contributed to breaking the limitations of the storage sink. SUT1, SUT1_T1, PLT11, TMT4, pGlcT2, and VGT3 responded for different functions in these two Saccharum species. This study demonstrated the evolutionary expansion and functional divergence of the ST gene family and will enable the further investigation of the molecular mechanism of sugar metabolism in Saccharum.
Collapse
Affiliation(s)
- Qing Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiuting Hua
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Liu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Yuan
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yan Shi
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhengchao Wang
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Muqing Zhang
- Guangxi key lab for sugarcane biology, Guangxi University, Nanning, Guangxi, 530005, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Guangxi key lab for sugarcane biology, Guangxi University, Nanning, Guangxi, 530005, China
| |
Collapse
|
47
|
Wipf D, Pfister C, Mounier A, Leborgne-Castel N, Frommer WB, Courty PE. Identification of Putative Interactors of Arabidopsis Sugar Transporters. TRENDS IN PLANT SCIENCE 2021; 26:13-22. [PMID: 33071187 DOI: 10.1016/j.tplants.2020.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/24/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Hexoses and disaccharides are the key carbon sources for essentially all physiological processes across kingdoms. In plants, sucrose, and in some cases raffinose and stachyose, are transported from the site of synthesis in leaves, the sources, to all other organs that depend on import, the sinks. Sugars also play key roles in interactions with beneficial and pathogenic microbes. Sugar transport is mediated by transport proteins that fall into super-families. Sugar transporter (ST) activity is tuned at different levels, including transcriptional and posttranslational levels. Understanding the ST interactome has a great potential to uncover important players in biologically and physiologically relevant processes, including, but not limited to Arabidopsis thaliana. Here, we combined ST interactions and coexpression studies to identify potentially relevant interaction networks.
Collapse
Affiliation(s)
- Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Carole Pfister
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Arnaud Mounier
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Nathalie Leborgne-Castel
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Wolf B Frommer
- Institute for Molecular Physiology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France.
| |
Collapse
|
48
|
Slawinski L, Israel A, Paillot C, Thibault F, Cordaux R, Atanassova R, Dédaldéchamp F, Laloi M. Early Response to Dehydration Six-Like Transporter Family: Early Origin in Streptophytes and Evolution in Land Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:681929. [PMID: 34552602 PMCID: PMC8450595 DOI: 10.3389/fpls.2021.681929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/09/2021] [Indexed: 05/23/2023]
Abstract
Carbon management by plants involves the activity of many sugar transporters, which play roles in sugar subcellular partitioning and reallocation at the whole organism scale. Among these transporters, the early response to dehydration six-like (ESL) monosaccharide transporters (MSTs) are still poorly characterized although they represent one of the largest sugar transporter subfamilies. In this study, we used an evolutionary genomic approach to infer the evolutionary history of this multigenic family. No ESL could be identified in the genomes of rhodophytes, chlorophytes, and the brown algae Ectocarpus siliculosus, whereas one ESL was identified in the genome of Klebsormidium nitens providing evidence for the early emergence of these transporters in Streptophytes. A phylogenetic analysis using the 519 putative ESL proteins identified in the genomes of 47 Embryophyta species and being representative of the plant kingdom has revealed that ESL protein sequences can be divided into three major groups. The first and second groups originated in the common ancestor of all spermaphytes [ζ: 340 million years ago (MYA)] and of angiosperms (ε: 170-235 MYA), respectively, and the third group originated before the divergence of rosids and asterids (γ/1R: 117 MYA). In some eudicots (Vitales, Malpighiales, Myrtales, Sapindales, Brassicales, Malvales, and Solanales), the ESL family presents remarkable expansions of gene copies associated with tandem duplications. The analysis of non-synonymous and synonymous substitutions for the dN/dS ratio of the ESL copies of the genus Arabidopsis has revealed that ESL genes are evolved under a purifying selection even though the progressive increase of dN/dS ratios in the three groups suggests subdiversification phenomena. To further explore the possible acquisition of novel functions by ESL MSTs, we identified the gene structure and promoter cis-acting elements for Arabidopsis thaliana ESL genes. The expression profiling of Arabidopsis ESL unraveled some gene copies that are almost constitutively expressed, whereas other gene copies display organ-preferential expression patterns. This study provides an evolving framework to better understand the roles of ESL transporters in plant development and response to environmental constraints.
Collapse
|
49
|
Gao ZF, Shen Z, Chao Q, Yan Z, Ge XL, Lu T, Zheng H, Qian CR, Wang BC. Large-scale Proteomic and Phosphoproteomic Analyses of Maize Seedling Leaves During De-etiolation. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:397-414. [PMID: 33385613 PMCID: PMC8242269 DOI: 10.1016/j.gpb.2020.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/16/2019] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
De-etiolation consists of a series of developmental and physiological changes that a plant undergoes in response to light. During this process light, an important environmental signal, triggers the inhibition of mesocotyl elongation and the production of photosynthetically active chloroplasts, and etiolated leaves transition from the "sink" stage to the "source" stage. De-etiolation has been extensively studied in maize (Zea mays L.). However, little is known about how this transition is regulated. In this study, we described a quantitative proteomic and phosphoproteomic atlas of the de-etiolation process in maize. We identified 16,420 proteins in proteome, among which 14,168 proteins were quantified. In addition, 8746 phosphorylation sites within 3110 proteins were identified. From the combined proteomic and phosphoproteomic data, we identified a total of 17,436 proteins. Only 7.0% (998/14,168) of proteins significantly changed in abundance during de-etiolation. In contrast, 26.6% of phosphorylated proteins exhibited significant changes in phosphorylation level; these included proteins involved in gene expression and homeostatic pathways and rate-limiting enzymes involved in photosynthetic light and carbon reactions. Based on phosphoproteomic analysis, 34.0% (1057/3110) of phosphorylated proteins identified in this study contained more than 2 phosphorylation sites, and 37 proteins contained more than 16 phosphorylation sites, indicating that multi-phosphorylation is ubiquitous during the de-etiolation process. Our results suggest that plants might preferentially regulate the level of posttranslational modifications (PTMs) rather than protein abundance for adapting to changing environments. The study of PTMs could thus better reveal the regulation of de-etiolation.
Collapse
Affiliation(s)
- Zhi-Fang Gao
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Shen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Qing Chao
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhen Yan
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan-Liang Ge
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Tiancong Lu
- Beijing ProteinWorld Biotech, Beijing 100012, China
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, NJ 08855, USA
| | - Chun-Rong Qian
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| | - Bai-Chen Wang
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
50
|
MdERDL6-mediated glucose efflux to the cytosol promotes sugar accumulation in the vacuole through up-regulating TSTs in apple and tomato. Proc Natl Acad Sci U S A 2020; 118:2022788118. [PMID: 33443220 PMCID: PMC7817134 DOI: 10.1073/pnas.2022788118] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sugar transport across membranes is essential for maintaining cellular sugar homeostasis and metabolic balance in plant cells. However, it remains unclear how this process is regulated among different classes of sugar transporters. Here, we identified an apple tonoplast H+/glucose symporter, MdERDL6-1, that exports glucose to cytosols to up-regulate the expression of H+/sugar antiporter genes TST1 and TST2 to import sugars from cytosol to vacuole for accumulation to high concentrations in apples and tomatoes. The findings provide insights into the regulatory mechanism underlying sugar exchange between cytosol and vacuole. Sugar transport across tonoplasts is essential for maintaining cellular sugar homeostasis and metabolic balance in plant cells. It remains unclear, however, how this process is regulated among different classes of sugar transporters. Here, we identified a tonoplast H+/glucose symporter, MdERDL6-1, from apples, which was highly expressed in fruits and exhibited expression patterns similar to those of the tonoplast H+/sugar antiporters MdTST1 and MdTST2. Overexpression of MdERDL6-1 unexpectedly increased not only glucose (Glc) concentration but also that of fructose (Fru) and sucrose (Suc) in transgenic apple and tomato leaves and fruits. RNA sequencing (RNA-seq) and expression analyses showed an up-regulation of TST1 and TST2 in the transgenic apple and tomato lines overexpressing MdERDL6-1. Further studies established that the increased sugar concentration in the transgenic lines correlated with up-regulation of TST1 and TST2 expression. Suppression or knockout of SlTST1 and SlTST2 in the MdERDL6-1–overexpressed tomato background reduced or abolished the positive effect of MdERDL6-1 on sugar accumulation, respectively. The findings demonstrate a regulation of TST1 and TST2 by MdERDL6-1, in which Glc exported by MdERDL6-1 from vacuole up-regulates TST1 and TST2 to import sugars from cytosol to vacuole for accumulation to high concentrations. The results provide insight into the regulatory mechanism of sugar accumulation in vacuoles mediated by the coordinated action of two classes of tonoplast sugar transporters.
Collapse
|