1
|
Zhao S, Wang X, Wang Z, Wang T, Pan Y, Fang K, Wang S, Xi J. High Nitrogen Enhances Maize Susceptibility to Holotrichia parallela via β-Caryophyllene-Mediated Olfactory Recognition and Jasmonate Suppression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8204-8213. [PMID: 40136059 DOI: 10.1021/acs.jafc.4c13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Excessive nitrogen application not only affects plant development but also significantly influences plant-pest interactions. This study investigates how nitrogen fertilization modifies the metabolism of maize (Zea mays) and its interaction with Holotrichia parallela, a key soil-dwelling pest. High-nitrogen (HN) conditions increased the emission of volatile organic compounds (VOCs), with β-caryophyllene and palmitic acid strongly attracting larvae behavior selection, and β-caryophyllene attracting female oviposition. RNA interference targeting HparOR19 and HparOR22 genes confirmed the role of β-caryophyllene in pest olfactory recognition. Conversely, low-nitrogen (LN) conditions stimulated jasmonic acid (JA)-related defenses, while HN promoted the production of primary metabolites such as glucose, fructose, and sucrose, which act as feeding stimulants. These findings highlight the intricate relationship among nitrogen fertilization, maize metabolism, and pest behavior, underscoring the necessity of integrating metabolic insights into effective pest management strategies.
Collapse
Affiliation(s)
- Shiwen Zhao
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Medicinal Plant Development, Beijing 100193, P. R. China
| | - Xiao Wang
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Jilin Province Technology Research Center of Biological Control Engineering, Institute of Biological Control, Jilin Agricultural University, Changchun 130018, P. R. China
| | - Zhun Wang
- Changchun Customs Technology Center, Changchun 130000, P. R. China
| | - Tao Wang
- Shulan Agro-Tech Extension Center, Shulan 132600, P. R. China
| | - Yu Pan
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Kui Fang
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
- Technical Center of Kunming Customs, Kunming 650228, P. R. China
| | - Shang Wang
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
2
|
Grubb LE, Scandola S, Mehta D, Khodabocus I, Uhrig RG. Quantitative Proteomic Analysis of Brassica Napus Reveals Intersections Between Nutrient Deficiency Responses. PLANT, CELL & ENVIRONMENT 2025; 48:1409-1428. [PMID: 39449274 PMCID: PMC11695800 DOI: 10.1111/pce.15216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/14/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Macronutrients such as nitrogen (N), phosphorus (P), potassium (K) and sulphur (S) are critical for plant growth and development. Field-grown canola (Brassica napus L.) is supplemented with fertilizers to maximize plant productivity, while deficiency in these nutrients can cause significant yield loss. A holistic understanding of the interplay between these nutrient deficiency responses in a single study and canola cultivar is thus far lacking, hindering efforts to increase the nutrient use efficiency of this important oil seed crop. To address this, we performed a comparative quantitative proteomic analysis of both shoot and root tissue harvested from soil-grown canola plants experiencing either nitrogen, phosphorus, potassium or sulphur deficiency. Our data provide critically needed insights into the shared and distinct molecular responses to macronutrient deficiencies in canola. Importantly, we find more conserved responses to the four different nutrient deficiencies in canola roots, with more distinct proteome changes in aboveground tissue. Our results establish a foundation for a more comprehensive understanding of the shared and distinct nutrient deficiency response mechanisms of canola plants and pave the way for future breeding efforts.
Collapse
Affiliation(s)
- L. E. Grubb
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - S. Scandola
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Lethbridge Research and Development CentreAgriculture and Agri‐Food CanadaLethbridgeAlbertaCanada
| | - D. Mehta
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Department of BiosystemsKU LeuvenLeuvenBelgium
- Leuven Plant InstituteKU LeuvenLeuvenBelgium
- Leuven Institute for Single Cell OmicsKU LeuvenLeuvenBelgium
| | - I. Khodabocus
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - R. G. Uhrig
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Department of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
3
|
Jost R, Berkowitz O, Pegg A, Hurgobin B, Tamiru-Oli M, Welling MT, Deseo MA, Noorda H, Brugliera F, Lewsey MG, Doblin MS, Bacic A, Whelan J. Sink strength, nutrient allocation, cannabinoid yield, and associated transcript profiles vary in two drug-type Cannabis chemovars. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:152-174. [PMID: 39225376 PMCID: PMC11659186 DOI: 10.1093/jxb/erae367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 09/05/2024] [Indexed: 09/04/2024]
Abstract
Cannabis sativa L. is one of the oldest domesticated crops. Hemp-type cultivars, which predominantly produce non-intoxicating cannabidiol (CBD), have been selected for their fast growth, seed, and fibre production, while drug-type chemovars were bred for high accumulation of tetrahydrocannabinol (THC). We investigated how the generation of CBD-dominant chemovars by introgression of hemp- into drug-type Cannabis impacted plant performance. The THC-dominant chemovar showed superior sink strength, higher flower biomass, and demand-driven control of nutrient uptake. By contrast, the CBD-dominant chemovar hyperaccumulated phosphate in sink organs leading to reduced carbon and nitrogen assimilation in leaves, which limited flower biomass and cannabinoid yield. RNA-seq analyses determined organ- and chemovar-specific differences in expression of genes associated with nitrate and phosphate homeostasis as well as growth-regulating transcription factors that were correlated with measured traits. Among these were genes positively selected for during Cannabis domestication encoding an inhibitor of the phosphate starvation response, SPX DOMAIN GENE3, nitrate reductase, and two nitrate transporters. Altered nutrient sensing, acquisition, or distribution are likely a consequence of adaption to growth on marginal, low-nutrient-input lands in hemp. Our data provide evidence that such ancestral traits may become detrimental for female flower development and consequently overall CBD yield in protected cropping environments.
Collapse
Affiliation(s)
- Ricarda Jost
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Oliver Berkowitz
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Amelia Pegg
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Bhavna Hurgobin
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Muluneh Tamiru-Oli
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Matthew T Welling
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Myrna A Deseo
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Hannah Noorda
- Cann Group Limited, Port Melbourne, VIC 3207, Australia
| | | | - Mathew G Lewsey
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Centre of Excellence in Plants for Space, La Trobe University, Bundoora, VIC, Australia
| | - Monika S Doblin
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Antony Bacic
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - James Whelan
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
4
|
Liu J, Huang S, Haider STA, Ehsan A, Danish S, Hussain N, Salmen SH, Alharbi SA, Datta R. Influence of indole acetic acid and trehalose, with and without zinc oxide nanoparticles coated urea on tomato growth in nitrogen deficient soils. Sci Rep 2024; 14:22824. [PMID: 39354093 PMCID: PMC11445501 DOI: 10.1038/s41598-024-73558-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
Nitrogen deficiency in low organic matter soils significantly reduces crop yield and plant health. The effects of foliar applications of indole acetic acid (IAA), trehalose (TA), and nanoparticles-coated urea (NPCU) on the growth and physiological attributes of tomatoes in nitrogen-deficient soil are not well documented in the literature. This study aims to explore the influence of IAA, TA, and NPCU on tomato plants in nitrogen-deficient soil. Treatments included control, 2mM IAA, 0.1% TA, and 2mM IAA + 0.1% TA, applied with and without NPCU. Results showed that 2mM IAA + 0.1% TA with NPCU significantly improved shoot length (~ 30%), root length (~ 63%), plant fresh (~ 48%) and dry weight (~ 48%), number of leaves (~ 38%), and leaf area (~ 58%) compared to control (NPCU only). Additionally, significant improvements in chlorophyll content, total protein, and total soluble sugar, along with a decrease in antioxidant activity (POD, SOD, CAT, and APX), validated the effectiveness of 2mM IAA + 0.1% TA with NPCU. The combined application of 2mM IAA + 0.1% TA with NPCU can be recommended as an effective strategy to enhance tomato growth and yield in nitrogen-deficient soils. This approach can be integrated into current agricultural practices to improve crop resilience and productivity, especially in regions with poor soil fertility. To confirm the efficacy of 2mM IAA + 0.1% TA with NPCU in various crops and climatic conditions, additional field studies are required.
Collapse
Affiliation(s)
- Jie Liu
- College of Mechanical and Automotive Engineering, ChuZhou Polytechnic, Chuzhou, 239000, China
| | - Shoucheng Huang
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Sakeena Tul Ain Haider
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Abdullah Ehsan
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Subhan Danish
- Pesticide Quality Control Laboratory, Agriculture Complex, Old Shujabad Road, Multan, Punjab, Pakistan.
- Pesticide Quality Control Laboratory, Agriculture Complex, Old Shujabad Road, Multan, Pakistan.
| | - Nazim Hussain
- Institute of Agronomy, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Saleh H Salmen
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box 2925, Riyadh, 11461, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box 2925, Riyadh, 11461, Saudi Arabia
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic.
| |
Collapse
|
5
|
Liu C, Gu W, Li B, Feng Y, Liu C, Shi X, Zhou Y. Screening key sorghum germplasms for low-nitrogen tolerance at the seedling stage and identifying from the carbon and nitrogen metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1340509. [PMID: 39328797 PMCID: PMC11424420 DOI: 10.3389/fpls.2024.1340509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 08/15/2024] [Indexed: 09/28/2024]
Abstract
Introduction Sorghum (Sorghum bicolor L.) can withstand drought and heat stress and efficiently utilize water and nutrients. However, the underlying mechanism of its tolerance to low-nitrogen (N) stress remains poorly understood. Materials and methods This study assessed low-N tolerance in 100 sorghum-inbred lines and identified those with exceptional resilience. Principal component analysis, Pearson's correlation, and Y value analysis were used to examine various seedling growth metrics, including plant and root dimensions, biomass, chlorophyll content, root N content, shoot N content, and root/shoot ratio. Results and discussion The genotypes were categorized into four distinct groups based on their respective Y values, revealing a spectrum from highly tolerant to sensitive. Low-N-tolerant sorghum lines maintained higher photosynthetic rates and exhibited increased enzymatic activities linked to carbon and N metabolism in the leaves and roots. Furthermore, low-N-tolerant genotypes had higher levels of key amino acids, including cystine, glycine, histidine, isoleucine, leucine, phenylalanine, threonine, and tyrosine, indicating a robust internal metabolic response to N deficiency. Conclusion This study provides a comprehensive and reliable approach for the evaluation of sorghum tolerance to low-N environments, sheds light on its morphological and physiological adaptations, and provides valuable insights for future breeding programs and agricultural practices.
Collapse
Affiliation(s)
- Chunjuan Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Wendong Gu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bang Li
- College of Agronomy and Horticulture, Liaoning Agricultural Vocational and Technical College, Yingkou, Liaoning, China
| | - Yihao Feng
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chang Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaolong Shi
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yufei Zhou
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Liu C, Gu W, Liu C, Shi X, Li B, Chen B, Zhou Y. Tryptophan regulates sorghum root growth and enhances low nitrogen tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108737. [PMID: 38763003 DOI: 10.1016/j.plaphy.2024.108737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Over evolutionary time, plants have developed sophisticated regulatory mechanisms to adapt to fluctuating nitrogen (N) environments, ensuring that their growth is balanced with their responses to N stress. This study explored the potential of L-tryptophan (Trp) in regulating sorghum root growth under conditions of N limitation. Here, two distinct sorghum genotypes (low-N tolerance 398B and low-N sensitive CS3541) were utilized for investigating effect of low-N stress on root morphology and conducting a comparative transcriptomics analysis. Our foundings indicated that 398B exhibited longer roots, greater root dry weights, and a higher Trp content compared to CS3541 under low-N conditions. Furthermore, transcriptome analysis revealed substantial differences in gene expression profiles related to Trp pathway and carbon (C) and N metabolism pathways between the two genotypes. Additional experiments were conducted to assess the effects of exogenous Trp treatment on the interplay between sorghum root growth and low-N tolerance. Our observations showed that Trp-treated plants developed longer root and had elevated levels of Trp and IAA under low-N conditons. Concurrently, these plants demonstrated stronger physiological activities in C and N metabolism when subjected to low-N stress. These results underscored the pivotal role of Trp on root growth and low-N stress responses by balancing IAA levels and C and N metabolism. This study not only deepens our understanding of how plants maintain growth plasticity during environmental stress but also provides valuable insights into the availability of amino acid in crops, which could be instrumental in developing strategies for promoting crop resilience to N deficiency.
Collapse
Affiliation(s)
- Chunjuan Liu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Wendong Gu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Chang Liu
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Xiaolong Shi
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Bang Li
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Bingru Chen
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, PR China
| | - Yufei Zhou
- College of Agronomy/Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China.
| |
Collapse
|
7
|
Zhang Y, Wang N, He C, Gao Z, Chen G. Comparative transcriptome analysis reveals major genes, transcription factors and biosynthetic pathways associated with leaf senescence in rice under different nitrogen application. BMC PLANT BIOLOGY 2024; 24:419. [PMID: 38760728 PMCID: PMC11102181 DOI: 10.1186/s12870-024-05129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the most important food crops in the world and the application of nitrogen fertilizer is an effective means of ensuring stable and high rice yields. However, excessive application of nitrogen fertilizer not only causes a decline in the quality of rice, but also leads to a series of environmental costs. Nitrogen reutilization is closely related to leaf senescence, and nitrogen deficiency will lead to early functional leaf senescence, whereas moderate nitrogen application will help to delay leaf senescence and promote the production of photosynthetic assimilation products in leaves to achieve yield increase. Therefore, it is important to explore the mechanism by which nitrogen affects rice senescence, to search for genes that are tolerant to low nitrogen, and to delay the premature senescence of rice functional leaves. RESULTS The present study was investigated the transcriptional changes in flag leaves between full heading and mature grain stages of rice (O. sativa) sp. japonica 'NanGeng 5718' under varying nitrogen (N) application: 0 kg/ha (no nitrogen; 0N), 240 kg/ha (moderate nitrogen; MN), and 300 kg/ha (high nitrogen; HN). Compared to MN condition, a total of 10427 and 8177 differentially expressed genes (DEGs) were detected in 0N and HN, respectively. We selected DEGs with opposite expression trends under 0N and HN conditions for GO and KEGG analyses to reveal the molecular mechanisms of nitrogen response involving DEGs. We confirmed that different N applications caused reprogramming of plant hormone signal transduction, glycolysis/gluconeogenesis, ascorbate and aldarate metabolism and photosynthesis pathways in regulating leaf senescence. Most DEGs of the jasmonic acid, ethylene, abscisic acid and salicylic acid metabolic pathways were up-regulated under 0N condition, whereas DEGs related to cytokinin and ascorbate metabolic pathways were induced in HN. Major transcription factors include ERF, WRKY, NAC and bZIP TF families have similar expression patterns which were induced under N starvation condition. CONCLUSION Our results revealed that different nitrogen levels regulate rice leaf senescence mainly by affecting hormone levels and ascorbic acid biosynthesis. Jasmonic acid, ethylene, abscisic acid and salicylic acid promote early leaf senescence under low nitrogen condition, ethylene and ascorbate delay senescence under high nitrogen condition. In addition, ERF, WRKY, NAC and bZIP TF families promote early leaf senescence. The relevant genes can be used as candidate genes for the regulation of senescence. The results will provide gene reference for further genomic studies and new insights into the gene functions, pathways and transcription factors of N level regulates leaf senescence in rice, thereby improving NUE and reducing the adverse effects of over-application of N.
Collapse
Affiliation(s)
- Yafang Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ning Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Chenggong He
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhiping Gao
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Guoxiang Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
8
|
Corrêa A, Ferrol N, Cruz C. Testing the trade-balance model: resource stoichiometry does not sufficiently explain AM effects. THE NEW PHYTOLOGIST 2024; 242:1561-1575. [PMID: 38009528 DOI: 10.1111/nph.19432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/25/2023] [Indexed: 11/29/2023]
Abstract
Variations in arbuscular mycorrhizae (AM) effects on plant growth (MGR) are commonly assumed to result from cost : benefit balances, with C as the cost and, most frequently, P as the benefit. The trade-balance model (TBM) adopts these assumptions and hypothesizes that mycorrhizal benefit depends on C : N : P stoichiometry. Although widely accepted, the TBM has not been experimentally tested. We isolated the parameters included in the TBM and tested these assumptions using it as framework. Oryza sativa plants were supplied with different N : P ratios at low light level, establishing different C : P and C : N exchange rates, and C, N or P limitation. MGR and effects on nutrient uptake, %M, ERM, photosynthesis and shoot starch were measured. C distribution to AM fungi played no role in MGR, and N was essential for all AM effects, including on P nutrition. C distribution to AM and MGR varied with the limiting nutrient (N or P), and evidence of extensive interplay between N and P was observed. The TBM was not confirmed. The results agreed with the exchange of surplus resources and source-sink regulation of resource distribution among plants and AMF. Rather than depending on exchange rates, resource exchange may simply obey both symbiont needs, not requiring further regulation.
Collapse
Affiliation(s)
- Ana Corrêa
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Nuria Ferrol
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008, Granada, Spain
| | - Cristina Cruz
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
9
|
Carvalho P, Gomes C, Saibo NJ. C4 Phosphoenolpyruvate Carboxylase: Evolution and transcriptional regulation. Genet Mol Biol 2024; 46:e20230190. [PMID: 38517370 PMCID: PMC10958771 DOI: 10.1590/1678-4685-gmb-2023-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024] Open
Abstract
Photosynthetic phosphoenolpyruvate carboxylase (PEPC) catalyses the irreversible carboxylation of phosphoenolpyruvate (PEP), producing oxaloacetate (OAA). This enzyme catalyses the first step of carbon fixation in C4 photosynthesis, contributing to the high photosynthetic efficiency of C4 plants. PEPC is also involved in replenishing tricarboxylic acid cycle intermediates, such as OAA, being involved in the C/N balance. In plants, PEPCs are classified in two types: bacterial type (BTPC) and plant-type (PTPC), which includes photosynthetic and non-photosynthetic PEPCs. During C4 evolution, photosynthetic PEPCs evolved independently. C4 PEPCs evolved to be highly expressed and active in a spatial-specific manner. Their gene expression pattern is also regulated by developmental cues, light, circadian clock as well as adverse environmental conditions. However, the gene regulatory networks controlling C4 PEPC gene expression, namely its cell-specificity, are largely unknown. Therefore, after an introduction to the evolution of PEPCs, this review aims to discuss the current knowledge regarding the transcriptional regulation of C4 PEPCs, focusing on cell-specific and developmental expression dynamics, light and circadian regulation, as well as response to abiotic stress. In conclusion, this review aims to highlight the evolution, transcriptional regulation by different signals and importance of PEPC in C4 photosynthesis and its potential as tool for crop improvement.
Collapse
Affiliation(s)
- Pedro Carvalho
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Célia Gomes
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Nelson J.M. Saibo
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
10
|
DeLoose M, Clúa J, Cho H, Zheng L, Masmoudi K, Desnos T, Krouk G, Nussaume L, Poirier Y, Rouached H. Recent advances in unraveling the mystery of combined nutrient stress in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1764-1780. [PMID: 37921230 DOI: 10.1111/tpj.16511] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
Efficiently regulating growth to adapt to varying resource availability is crucial for organisms, including plants. In particular, the acquisition of essential nutrients is vital for plant development, as a shortage of just one nutrient can significantly decrease crop yield. However, plants constantly experience fluctuations in the presence of multiple essential mineral nutrients, leading to combined nutrient stress conditions. Unfortunately, our understanding of how plants perceive and respond to these multiple stresses remains limited. Unlocking this mystery could provide valuable insights and help enhance plant nutrition strategies. This review focuses specifically on the regulation of phosphorous homeostasis in plants, with a primary emphasis on recent studies that have shed light on the intricate interactions between phosphorous and other essential elements, such as nitrogen, iron, and zinc, as well as non-essential elements like aluminum and sodium. By summarizing and consolidating these findings, this review aims to contribute to a better understanding of how plants respond to and cope with combined nutrient stress.
Collapse
Affiliation(s)
- Megan DeLoose
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Joaquin Clúa
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Huikyong Cho
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu Dhabi, United Arab Emirates
| | - Thierry Desnos
- Aix Marseille Univ, CEA, CNRS, BIAM, EBMP, UMR7265, Cité des énergies, 13115, Saint-Paul-lez-Durance, France
| | - Gabriel Krouk
- IPSiM, Univ. Montpellier, CNRS, INRAE, Montpellier, France
| | - Laurent Nussaume
- Aix Marseille Univ, CEA, CNRS, BIAM, EBMP, UMR7265, Cité des énergies, 13115, Saint-Paul-lez-Durance, France
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Hatem Rouached
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
11
|
Xing J, Zhang J, Wang Y, Wei X, Yin Z, Zhang Y, Pu A, Dong Z, Long Y, Wan X. Mining genic resources regulating nitrogen-use efficiency based on integrative biological analyses and their breeding applications in maize and other crops. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1148-1164. [PMID: 37967146 DOI: 10.1111/tpj.16550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/08/2023] [Accepted: 11/05/2023] [Indexed: 11/17/2023]
Abstract
Nitrogen (N) is an essential factor for limiting crop yields, and cultivation of crops with low nitrogen-use efficiency (NUE) exhibits increasing environmental and ecological risks. Hence, it is crucial to mine valuable NUE improvement genes, which is very important to develop and breed new crop varieties with high NUE in sustainable agriculture system. Quantitative trait locus (QTL) and genome-wide association study (GWAS) analysis are the most common methods for dissecting genetic variations underlying complex traits. In addition, with the advancement of biotechnology, multi-omics technologies can be used to accelerate the process of exploring genetic variations. In this study, we integrate the substantial data of QTLs, quantitative trait nucleotides (QTNs) from GWAS, and multi-omics data including transcriptome, proteome, and metabolome and further analyze their interactions to predict some NUE-related candidate genes. We also provide the genic resources for NUE improvement among maize, rice, wheat, and sorghum by homologous alignment and collinearity analysis. Furthermore, we propose to utilize the knowledge gained from classical cases to provide the frameworks for improving NUE and breeding N-efficient varieties through integrated genomics, systems biology, and modern breeding technologies.
Collapse
Affiliation(s)
- Jiapeng Xing
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Juan Zhang
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Yanbo Wang
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Zechao Yin
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuqian Zhang
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Aqing Pu
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Long
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| |
Collapse
|
12
|
Gao T, Liu X, Xu S, Yu X, Zhang D, Tan K, Zhou Y, Jia X, Zhang Z, Ma F, Li C. Melatonin confers tolerance to nitrogen deficiency through regulating MdHY5 in apple plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1115-1129. [PMID: 37966861 DOI: 10.1111/tpj.16542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/29/2023] [Indexed: 11/16/2023]
Abstract
Nitrogen (N) is an essential nutrient for crop growth and development, significantly influencing both yield and quality. Melatonin (MT), a known enhancer of abiotic stress tolerance, has been extensively studied. However, its relationship with nutrient stress, particularly N deficiency, and the underlying regulatory mechanisms of MT on N absorption remain unclear. In this study, exogenous MT treatment was found to improve the tolerance of apple plants to N deficiency. Apple plants overexpressing the MT biosynthetic gene N-acetylserotonin methyltransferase 9 (MdASMT9) were used to further investigate the effects of endogenous MT on low-N stress. Overexpression of MdASMT9 improved the light harvesting and heat transfer capability of apple plants, thereby mitigating the detrimental effects of N deficiency on the photosynthetic system. Proteomic and physiological data analyses indicated that MdASMT9 overexpression enhanced the trichloroacetic acid cycle and positively modulated amino acid metabolism to counteract N-deficiency stress. Additionally, both exogenous and endogenous MT promoted the transcription of MdHY5, which in turn bound to the MdNRT2.1 and MdNRT2.4 promoters and activated their expression. Notably, MT-mediated promotion of MdNRT2.1 and MdNRT2.4 expression through regulating MdHY5, ultimately enhancing N absorption. Taken together, these findings shed light on the association between MdASMT9-mediated MT biosynthesis and N absorption in apple plants under N-deficiency conditions.
Collapse
Affiliation(s)
- Tengteng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaomin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuo Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xi Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Danni Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kexin Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yi Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xumei Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhijun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
13
|
Wang Y, Li P, Zhu Y, Shang Y, Wu Z, Tao Y, Wang H, Li D, Zhang C. Transcriptome Profiling Reveals the Gene Network Responding to Low Nitrogen Stress in Wheat. PLANTS (BASEL, SWITZERLAND) 2024; 13:371. [PMID: 38337903 PMCID: PMC10856819 DOI: 10.3390/plants13030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
As one of the essential nutrients for plants, nitrogen (N) has a major impact on the yield and quality of wheat worldwide. Due to chemical fertilizer pollution, it has become increasingly important to improve crop yield by increasing N use efficiency (NUE). Therefore, understanding the response mechanisms to low N (LN) stress is essential for the regulation of NUE in wheat. In this study, LN stress significantly accelerated wheat root growth, but inhibited shoot growth. Further transcriptome analysis showed that 8468 differentially expressed genes (DEGs) responded to LN stress. The roots and shoots displayed opposite response patterns, of which the majority of DEGs in roots were up-regulated (66.15%; 2955/4467), but the majority of DEGs in shoots were down-regulated (71.62%; 3274/4565). GO and KEGG analyses showed that nitrate reductase activity, nitrate assimilation, and N metabolism were significantly enriched in both the roots and shoots. Transcription factor (TF) and protein kinase analysis showed that genes such as MYB-related (38/38 genes) may function in a tissue-specific manner to respond to LN stress. Moreover, 20 out of 107 N signaling homologous genes were differentially expressed in wheat. A total of 47 transcriptome datasets were used for weighted gene co-expression network analysis (17,840 genes), and five TFs were identified as the potential hub regulatory genes involved in the response to LN stress in wheat. Our findings provide insight into the functional mechanisms in response to LN stress and five candidate regulatory genes in wheat. These results will provide a basis for further research on promoting NUE in wheat.
Collapse
Affiliation(s)
- Yiwei Wang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Pengfeng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yiwang Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Yuping Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Yongfu Tao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Dongxi Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Cuijun Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| |
Collapse
|
14
|
Olmos-Ruiz R, Garcia-Gomez P, Carvajal M, Yepes-Molina L. Exploring membrane vesicles in citrus fruits: a comparative analysis of conventional and organic farming approaches. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:235-248. [PMID: 37596244 DOI: 10.1002/jsfa.12903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/03/2023] [Accepted: 08/19/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Recently, vesicles derived from plant cell membranes have received attention for their potential use as active biomolecules and nanocarriers, and obtaining them from organic crops may be an interesting option because different farming systems can affect production, plant secondary metabolism and biochemistry of cell membranes. The present study aimed to determine how organic and conventional farming affects the mineral nutrition, gas exchange, CO2 fixation and biochemical composition of lemon fruits, which could have an impact on the different fractions of cell membranes in pulp and juice. RESULTS Organic trees had higher intrinsic water use efficiency (WUEi) but conventional trees had higher stomatal conductance (gs) and nitrogen use efficiency (NUtE). Also, organic lemons had significantly higher levels of some micronutrients (Ca, Cu, Fe and Zn). Second, the main differences in the membrane vesicles showed that organic pulp vesicles had a higher antioxidant activity and more oleic acid, whereas both types of vesicles from conventional lemons had more linoleic acid. CONCLUSION In conclusion, organic farming did not alter carbon fixation parameters but impacted nitrogen fixation and water uptake, and resulted in higher micronutrient levels in lemons. These mineral nutritional changes could be related to the higher production of membranes that showed suitable morphological traits and a high antioxidant activity, positively correlated with a high amount of oleic acid, which could have stronger cell protection characteristics. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Rafael Olmos-Ruiz
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - Pablo Garcia-Gomez
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - Micaela Carvajal
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - Lucia Yepes-Molina
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| |
Collapse
|
15
|
Zhao SW, Pan Y, Wang Z, Wang X, Wang S, Xi JH. 1-nonene plays an important role in the response of maize-aphid-ladybird tritrophic interactions to nitrogen. FRONTIERS IN PLANT SCIENCE 2024; 14:1296915. [PMID: 38259937 PMCID: PMC10800950 DOI: 10.3389/fpls.2023.1296915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024]
Abstract
Plant volatile organic compounds (VOCs) are the key distress signals involved in tritrophic interactions, by which plants recruit predators to protect themselves from herbivores. However, the effect of nitrogen fertilization on VOCs that mediate tritrophic interactions remains largely unidentified. In this study, a maize (Zea mays)-aphid (Rhopalosiphum padi)-ladybird (Harmonia axyridis) tritrophic interaction model was constructed under high-nitrogen (HN) and low-nitrogen (LN) regimens. H. axyridis had a stronger tendency to be attracted by aphid-infested maize under HN conditions. Then, volatiles were collected and identified from maize leaves on which aphids had fed. All of the HN-induced volatiles (HNIVs) elicited an electroantennogram (EAG) response from H. axyridis. Of these HNIVs, 1-nonene was attractive to H. axyridis under simulated natural volatilization. Furthermore, our regression showed that the release of 1-nonene was positively correlated with H. axyridis visitation rates. Supplying 1-nonene to maize on which aphids had fed under LN enhanced attractiveness to H. axyridis. These results supported the conclusion that 1-nonene was the active compound that mediated the response to nitrogen in the tritrophic interaction. In addition, the 1-nonene synthesis pathway was hypothesized, and we found that the release of 1-nonene might be related to the presence of salicylic acid (SA) and abscisic acid (ABA). This research contributes to the development of novel environmentally friendly strategies to optimize nitrogen fertilizer application and to improve pest control in maize crops.
Collapse
Affiliation(s)
- Shi-Wen Zhao
- College of Plant Science, Jilin University, Changchun, China
| | - Yu Pan
- College of Plant Science, Jilin University, Changchun, China
| | - Zhun Wang
- Plant Quarantine Laboratory, Changchun Customs Technology Center, Changchun, China
| | - Xiao Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Shang Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Jing-Hui Xi
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
16
|
Li H, Zhang Y, Li H, V. P. Reddy G, Li Z, Chen F, Sun Y, Zhao Z. The nitrogen-dependent GABA pathway of tomato provides resistance to a globally invasive fruit fly. FRONTIERS IN PLANT SCIENCE 2023; 14:1252455. [PMID: 38148864 PMCID: PMC10751092 DOI: 10.3389/fpls.2023.1252455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/14/2023] [Indexed: 12/28/2023]
Abstract
Introduction The primary metabolism of plants, which is mediated by nitrogen, is closely related to the defense response to insect herbivores. Methods An experimental system was established to examine how nitrogen mediated tomato resistance to an insect herbivore, the oriental fruit fly (Bactrocera dorsalis). All tomatoes were randomly assigned to the suitable nitrogen (control, CK) treatment, nitrogen excess (NE) treatment and nitrogen deficiency (ND) treatment. Results We found that nitrogen excess significantly increased the aboveground biomass of tomato and increased the pupal biomass of B. dorsalis. Metabolome analysis showed that nitrogen excess promoted the biosynthesis of amino acids in healthy fruits, including γ-aminobutyric acid (GABA), arginine and asparagine. GABA was not a differential metabolite induced by injury by B. dorsalis under nitrogen excess, but it was significantly induced in infested fruits at appropriate nitrogen levels. GABA supplementation not only increased the aboveground biomass of plants but also improved the defensive response of tomato. Discussion The biosynthesis of GABA in tomato is a resistance response to feeding by B. dorsalis in appropriate nitrogen, whereas nitrogen excess facilitates the pupal weight of B. dorsalis by inhibiting synthesis of the GABA pathway. This study concluded that excess nitrogen inhibits tomato defenses in plant-insect interactions by inhibiting GABA synthesis, answering some unresolved questions about the nitrogen-dependent GABA resistance pathway to herbivores.
Collapse
Affiliation(s)
- Hao Li
- Department of Plant Biosecurity & Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Yuan Zhang
- Department of Plant Biosecurity & Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Hu Li
- Department of Plant Biosecurity & Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Gadi V. P. Reddy
- Department of Entomology, Louisiana State University, Baton Rouge, LA, United States
| | - Zhihong Li
- Department of Plant Biosecurity & Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yucheng Sun
- National Key Lab Integrated Management Pest Insects, Institute of Zoology, Chinese Academy Science, Beijing, China
| | - Zihua Zhao
- Department of Plant Biosecurity & Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| |
Collapse
|
17
|
Zhu Y, Wang Y, He X, Li B, Du S. Plant growth-promoting rhizobacteria: A good companion for heavy metal phytoremediation. CHEMOSPHERE 2023; 338:139475. [PMID: 37442391 DOI: 10.1016/j.chemosphere.2023.139475] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Phytoremediation is an environment-friendly approach regarded as a potential candidate for remediating heavy metal (HM)-contaminated soils. However, the low efficacy of phytoremediation is a major limitation that hampers its large-scale application. Therefore, developing strategies to enhance phytoremediation efficacy for contaminated soils is crucial. Plant growth-promoting rhizobacteria (PGPR) considerably contribute to phytoremediation intensification. To improve the efficiency of plant-microbe symbiosis for remediation, the mechanisms underlying PGPR-stimulated HM accumulation and tolerance in plants should be comprehensively understood. This review focuses on hyperaccumulators, PGPR, and the mechanisms by which PGPR enhance phytoremediation from four aspects: providing nutrients to plants, secreting plant hormones and specific enzymes, inducing systemic resistance, and altering the bioavailability of HMs in soils. It also provides a theoretical and technical basis for future research on PGPR synergism in promoting the phytoextraction efficiency in HM-contaminated soils.
Collapse
Affiliation(s)
- Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yu Wang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xiaolin He
- Jiangxi Province Agricultural Technology Extension Center, Nanchang, 330045, China
| | - Beier Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
18
|
Lai YH, Peng MY, Rao RY, Chen WS, Huang WT, Ye X, Yang LT, Chen LS. An Integrated Analysis of Metabolome, Transcriptome, and Physiology Revealed the Molecular and Physiological Response of Citrus sinensis Roots to Prolonged Nitrogen Deficiency. PLANTS (BASEL, SWITZERLAND) 2023; 12:2680. [PMID: 37514294 PMCID: PMC10383776 DOI: 10.3390/plants12142680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Citrus sinensis seedlings were supplied with a nutrient solution containing 15 (control) or 0 (nitrogen (N) deficiency) mM N for 10 weeks. Extensive metabolic and gene reprogramming occurred in 0 mM N-treated roots (RN0) to cope with N deficiency, including: (a) enhancing the ability to keep phosphate homeostasis by elevating the abundances of metabolites containing phosphorus and the compartmentation of phosphate in plastids, and/or downregulating low-phosphate-inducible genes; (b) improving the ability to keep N homeostasis by lowering the levels of metabolites containing N but not phosphorus, upregulating N compound degradation, the root/shoot ratio, and the expression of genes involved in N uptake, and resulting in transitions from N-rich alkaloids to carbon (C)-rich phenylpropanoids and phenolic compounds (excluding indole alkaloids) and from N-rich amino acids to C-rich carbohydrates and organic acids; (c) upregulating the ability to maintain energy homeostasis by increasing energy production (tricarboxylic acid cycle, glycolysis/gluconeogenesis, oxidative phosphorylation, and ATP biosynthetic process) and decreasing energy utilization for amino acid and protein biosynthesis and new root building; (d) elevating the transmembrane transport of metabolites, thus enhancing the remobilization and recycling of useful compounds; and (e) activating protein processing in the endoplasmic reticulum. RN0 had a higher ability to detoxify reactive oxygen species and aldehydes, thus protecting RN0 against oxidative injury and delaying root senescence.
Collapse
Affiliation(s)
- Yin-Hua Lai
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming-Yi Peng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rong-Yu Rao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wen-Shu Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei-Tao Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Ye
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
19
|
Li P, Du R, Li Z, Chen Z, Li J, Du H. An integrated nitrogen utilization gene network and transcriptome analysis reveal candidate genes in response to nitrogen deficiency in Brassica napus. FRONTIERS IN PLANT SCIENCE 2023; 14:1187552. [PMID: 37229128 PMCID: PMC10203523 DOI: 10.3389/fpls.2023.1187552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
Nitrogen (N) is an essential factor for crop yield. Here, we characterized 605 genes from 25 gene families that form the complex gene networks of N utilization pathway in Brassica napus. We found unequal gene distribution between the An- and Cn-sub-genomes, and that genes derived from Brassica rapa were more retained. Transcriptome analysis indicated that N utilization pathway gene activity shifted in a spatio-temporal manner in B. napus. A low N (LN) stress RNA-seq of B. napus seedling leaves and roots was generated, which proved that most N utilization related genes were sensitive to LN stress, thereby forming co-expression network modules. Nine candidate genes in N utilization pathway were confirmed to be significantly induced under N deficiency conditions in B. napus roots, indicating their potential roles in LN stress response process. Analyses of 22 representative species confirmed that the N utilization gene networks were widely present in plants ranging from Chlorophyta to angiosperms with a rapid expansion trend. Consistent with B. napus, the genes in this pathway commonly showed a wide and conserved expression profile in response to N stress in other plants. The network, genes, and gene-regulatory modules identified here represent resources that may enhance the N utilization efficiency or the LN tolerance of B. napus.
Collapse
Affiliation(s)
- Pengfeng Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Runjie Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhaopeng Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhuo Chen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Martins-Noguerol R, Matías L, Pérez-Ramos IM, Moreira X, Francisco M, Pedroche J, DeAndrés-Gil C, Gutiérrez E, Salas JJ, Moreno-Pérez AJ, Davy AJ, Muñoz-Vallés S, Figueroa ME, Cambrollé J. Soil physicochemical properties associated with the yield and phytochemical composition of the edible halophyte Crithmum maritimum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161806. [PMID: 36707001 DOI: 10.1016/j.scitotenv.2023.161806] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
There is growing interest in the consumption of halophytes due to their excellent nutritional profile and antioxidant properties, and their cultivation offers viable alternatives in the face of irreversible global salinization of soils. Nevertheless, abiotic factors strongly influence their phytochemical composition, and little is known about how growing conditions can produce plants with the best nutritional and functional properties. Crithmum maritimum is an edible halophyte with antioxidant properties and considerable potential for sustainable agriculture in marginal environments. However, it is found naturally in contrasting habitats with variable soil physicochemical properties and the extent to which edaphic factors can influence plant performance, accumulation of phytochemicals and their quality remains unknown. We investigated the influence of soil physicochemical properties (texture, pH, electrical conductivity, organic matter content and mineral element concentrations) on growth and reproductive performance, nutritional traits, and the accumulation of specific metabolites in C. maritimum. Soil, leaf and seed samples were taken from eight C. maritimum populations located on the southern coasts of Spain and Portugal. We found greater vegetative growth and seed production in coarser, sandier soils with lower microelement concentrations. The nutritional traits of leaves varied, with soil organic matter and macronutrient content associated with reduced leaf Na, protein and phenolic (mainly flavonoid) concentrations, whereas soils with lower pH and Fe concentrations, and higher clay content yielded plants with lower leaf Zn concentration and greater accumulation of hydroxycinnamic acids. The nutritional value of the seed oil composition appeared to be enhanced in soils with coarser texture and lower microelement concentrations. The accumulation of specific phenolic compounds in the seed was influenced by a wide range of soil properties including texture, pH and some microelements. These findings will inform the commercial cultivation of C. maritimum, particularly in the economic exploitation of poorly utilized, saline soils.
Collapse
Affiliation(s)
- Raquel Martins-Noguerol
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, E-41012 Sevilla, Spain; Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), P.O. Box 1052, 41080 Sevilla, Andalucía, Spain.
| | - Luis Matías
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, E-41012 Sevilla, Spain
| | - Ignacio M Pérez-Ramos
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), P.O. Box 1052, 41080 Sevilla, Andalucía, Spain
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, 36080 Pontevedra, Galicia, Spain
| | - Marta Francisco
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, 36080 Pontevedra, Galicia, Spain
| | - Justo Pedroche
- Instituto de la Grasa (IG-CSIC), Building 46, UPO Campus, Ctra. de Utrera km 1, 41013 Sevilla, Spain
| | - Cristina DeAndrés-Gil
- Instituto de la Grasa (IG-CSIC), Building 46, UPO Campus, Ctra. de Utrera km 1, 41013 Sevilla, Spain
| | - Eduardo Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), P.O. Box 1052, 41080 Sevilla, Andalucía, Spain
| | - Joaquín J Salas
- Instituto de la Grasa (IG-CSIC), Building 46, UPO Campus, Ctra. de Utrera km 1, 41013 Sevilla, Spain
| | - Antonio J Moreno-Pérez
- Instituto de la Grasa (IG-CSIC), Building 46, UPO Campus, Ctra. de Utrera km 1, 41013 Sevilla, Spain
| | - Anthony J Davy
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Sara Muñoz-Vallés
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Seville 41013, Spain
| | - Manuel Enrique Figueroa
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, E-41012 Sevilla, Spain
| | - Jesús Cambrollé
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, E-41012 Sevilla, Spain
| |
Collapse
|
21
|
Transcriptome and Co-Expression Network Analysis Reveals the Molecular Mechanism of Rice Root Systems in Response to Low-Nitrogen Conditions. Int J Mol Sci 2023; 24:ijms24065290. [PMID: 36982364 PMCID: PMC10048922 DOI: 10.3390/ijms24065290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Nitrogen is an important nutrient for plant growth and essential metabolic processes. Roots integrally obtain nutrients from soil and are closely related to the growth and development of plants. In this study, the morphological analysis of rice root tissues collected at different time points under low-nitrogen and normal nitrogen conditions demonstrated that, compared with normal nitrogen treatment, the root growth and nitrogen use efficiency (NUE) of rice under low-nitrogen treatment were significantly improved. To better understand the molecular mechanisms of the rice root system’s response to low-nitrogen conditions, a comprehensive transcriptome analysis of rice seedling roots under low-nitrogen and control conditions was conducted in this study. As a result, 3171 differentially expressed genes (DEGs) were identified. Rice seedling roots enhance NUE and promote root development by regulating the genes related to nitrogen absorption and utilization, carbon metabolism, root growth and development, and phytohormones, thereby adapting to low-nitrogen conditions. A total of 25,377 genes were divided into 14 modules using weighted gene co-expression network analysis (WGCNA). Two modules were significantly associated with nitrogen absorption and utilization. A total of 8 core genes and 43 co-expression candidates related to nitrogen absorption and utilization were obtained in these two modules. Further studies on these genes will contribute to the understanding of low-nitrogen adaptation and nitrogen utilization mechanisms in rice.
Collapse
|
22
|
Transcriptome and Metabolome Reveal the Molecular Mechanism of Barley Genotypes Underlying the Response to Low Nitrogen and Resupply. Int J Mol Sci 2023; 24:ijms24054706. [PMID: 36902137 PMCID: PMC10003240 DOI: 10.3390/ijms24054706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Nitrogen is one of the most important mineral elements for plant growth and development. Excessive nitrogen application not only pollutes the environment, but also reduces the quality of crops. However, are few studies on the mechanism of barley tolerance to low nitrogen at both the transcriptome and metabolomics levels. In this study, the nitrogen-efficient genotype (W26) and the nitrogen-sensitive genotype (W20) of barley were treated with low nitrogen (LN) for 3 days and 18 days, then treated with resupplied nitrogen (RN) from 18 to 21 days. Later, the biomass and the nitrogen content were measured, and RNA-seq and metabolites were analyzed. The nitrogen use efficiency (NUE) of W26 and W20 treated with LN for 21 days was estimated by nitrogen content and dry weight, and the values were 87.54% and 61.74%, respectively. It turned out to have a significant difference in the two genotypes under the LN condition. According to the transcriptome analysis, 7926 differentially expressed genes (DEGs) and 7537 DEGs were identified in the leaves of W26 and W20, respectively, and 6579 DEGs and 7128 DEGs were found in the roots of W26 and W20, respectively. After analysis of the metabolites, 458 differentially expressed metabolites (DAMs) and 425 DAMs were found in the leaves of W26 and W20, respectively, and 486 DAMs and 368 DAMs were found in the roots of W26 and W20, respectively. According to the KEGG joint analysis of DEGs and DAMs, it was discovered that glutathione (GSH) metabolism was the pathway of significant enrichment in the leaves of both W26 and W20. In this study, the metabolic pathways of nitrogen metabolism and GSH metabolism of barley under nitrogen were constructed based on the related DAMs and DEGs. In leaves, GSH, amino acids, and amides were the main identified DAMs, while in roots, GSH, amino acids, and phenylpropanes were mainly found DAMs. Finally, some nitrogen-efficient candidate genes and metabolites were selected based on the results of this study. The responses of W26 and W20 to low nitrogen stress were significantly different at the transcriptional and metabolic levels. The candidate genes that have been screened will be verified in future. These data not only provide new insights into how barley responds to LN, but also provide new directions for studying the molecular mechanisms of barley under abiotic stress.
Collapse
|
23
|
Zhang X, Ding Y, Ma Q, Li F, Tao R, Li T, Zhu M, Ding J, Li C, Guo W, Zhu X. Comparative transcriptomic and metabolomic analysis revealed molecular mechanism of two wheat near-isogenic lines response to nitrogen application. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:47-57. [PMID: 36599275 DOI: 10.1016/j.plaphy.2022.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/13/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) is an essential nutrient element required for plant growth, and the development of wheat varieties with high nitrogen use efficiency (NUE) is an urgent need for sustainable crop production. However, the molecular mechanism of NUE between diverse wheat varieties in response to N application remains unclear. To reveal the possible molecular mechanisms underlying this complex phenomenon, we investigated the transcriptional and metabolic changes of flag leaves of two wheat near-isogenic lines (NILs) differing in NUE under two N fertilizer treatments. Comparative transcriptome analysis indicated that the expression levels of the genes responsible for carbon and nitrogen metabolism were significantly higher in high-NUE wheat. The metabolome comparison revealed that the activity of the tricarboxylic acid (TCA) cycle was enhanced in high-NUE wheat, while reduced in low-NUE wheat after the N fertilizer application. Additionally, amino acid metabolism increased in both wheat NILs but more increased in high-NUE wheat. In summary, more upregulated transcripts and metabolites were identified in high-NUE wheat, and this study provides valuable new insights for improving NUE in wheat.
Collapse
Affiliation(s)
- Xinbo Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Xuzhou Vocational College of Bioengineering, Xuzhou, 221006, China.
| | - Yonggang Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Quan Ma
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Fujian Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Rongrong Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Tao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
| | - Min Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Jinfeng Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Chunyan Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Wenshan Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Xinkai Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
24
|
Song G, Lu Y, Wang Y, Nie C, Xu M, Wang L, Bai Y. Analysis of metabolic differences in maize in different growth stages under nitrogen stress based on UPLC-QTOF-MS. FRONTIERS IN PLANT SCIENCE 2023; 14:1141232. [PMID: 37077647 PMCID: PMC10106645 DOI: 10.3389/fpls.2023.1141232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Introduction Maize has a high demand for nitrogen during the growth period. The study of metabolic changes in maize can provide a theoretical basis for rational nitrogen nutrition regulation. Methods In order to investigate the changes of different metabolites and their metabolic pathways in maize leaves under nitrogen stress, we used ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) for metabolomic analysis of maize leaves under different nitrogen treatments at three critical growth stages (V4, V12 and R1) in a pot experiment under natural conditions. Results and discussion The results showed that nitrogen stress significantly affected sugar metabolism and nitrogen metabolism, and affected carbon and nitrogen balance, and the effects of stress on maize leaves metabolism increased with the growth process. Metabolic pathways such as the TCA cycle and starch and sucrose metabolism were mainly affected at the seeding stage (V4). The stress response to nitrogen deficiency also showed significant upregulation of flavonoids such as luteolin and astragalin during the booting stage (V12) and anthesis-silking stage (R1). During R1 stage, the synthesis of tryptophan and phenylalanine and the degradation of lysine were significantly affected. Compared with nitrogen stress, the metabolic synthesis of key amino acids and jasmonic acid were intensified and the TCA cycle was promoted under nitrogen sufficiency conditions. This study initially revealed that the response mechanism of maize to nitrogen stress at the metabolic level.
Collapse
|
25
|
Cristofano F, El-Nakhel C, Colla G, Cardarelli M, Pii Y, Lucini L, Rouphael Y. Tracking the Biostimulatory Effect of Fractions from a Commercial Plant Protein Hydrolysate in Greenhouse-Grown Lettuce. Antioxidants (Basel) 2022; 12:107. [PMID: 36670969 PMCID: PMC9854572 DOI: 10.3390/antiox12010107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Protein hydrolysate biostimulants are environmentally friendly options for the reduction of nitrogen input, but their plant growth-promoting mechanisms are still not completely unveiled. Here, to put the “signaling peptide theory” to the test, a greenhouse experiment was undertaken using low (1 mM) and optimal (8 mM) NO3-treated butterhead lettuce and three molecular fractions (PH1 (>10 kDa), PH2 (1−10 kDa) and PH3 (<10 kDa) fractions), in addition to the whole product Vegamin®: PH, in a randomized block design. PH1 and PH3 significantly increased fresh yield (+8%) under optimal (lighter leaves), but not under low (darker leaves) NO3 conditions. Total ascorbic acid, lutein and β-carotene increased with PH3, and disinapoylgentobiose and kaempferol-3-hydroxyferuloyl-sophorosie-7-glucoside content increased with PH (whole/fractions) treatments, particularly under low NO3 conditions. The complete hydrolysate and analyzed peptide fractions have differential biostimulatory effects, enhancing the growth and nutritional quality of lettuce.
Collapse
Affiliation(s)
- Francesco Cristofano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Mariateresa Cardarelli
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen/Bolzano, 39100 Bolzano, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Catholic University of the Sacred Heart, 29122 Piacenza, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| |
Collapse
|
26
|
Huang T, Zhang X, Wang Q, Guo Y, Xie H, Li L, Zhang P, Liu J, Qin P. Metabolome and transcriptome profiles in quinoa seedlings in response to potassium supply. BMC PLANT BIOLOGY 2022; 22:604. [PMID: 36539684 PMCID: PMC9768898 DOI: 10.1186/s12870-022-03928-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/06/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Quinoa (Chenopodium quinoa Willd.) is a herb within the Quinoa subfamily of Amaranthaceae, with remarkable environmental adaptability. Its edible young leaves and grains are rich in protein, amino acids, microorganisms, and minerals. Although assessing the effects of fertilization on quinoa yield and quality has become an intensive area of research focus, the associated underlying mechanisms remain unclear. As one of the three macro nutrients in plants, potassium has an important impact on plant growth and development. In this study, extensive metabolome and transcriptome analyses were conducted in quinoa seedlings 30 days after fertilizer application to characterize the growth response mechanism to potassium. RESULTS: The differential metabolites and genes present in the seedlings of white and red quinoa cultivars were significantly enriched in the photosynthetic pathway. Moreover, the PsbQ enzyme on photosystem II and delta enzyme on ATP synthase were significantly down regulated in quinoa seedlings under potassium deficiency. Additionally, the differential metabolites and genes of red quinoa seedlings were significantly enriched in the arginine biosynthetic pathway. CONCLUSIONS These findings provide a more thorough understanding of the molecular changes in quinoa seedlings that occur under deficient, relative to normal, potassium levels. Furthermore, this study provides a theoretical basis regarding the importance of potassium fertilizers, as well as their efficient utilization by growing quinoa seedlings.
Collapse
Affiliation(s)
- Tingzhi Huang
- Yunnan Agricultural University, Panlong District, Yunnan Province, Kunming City, China
| | - Xuesong Zhang
- Yunnan Agricultural University, Panlong District, Yunnan Province, Kunming City, China
| | - Qianchao Wang
- Yunnan Agricultural University, Panlong District, Yunnan Province, Kunming City, China
| | - Yirui Guo
- Yunnan Agricultural University, Panlong District, Yunnan Province, Kunming City, China
| | - Heng Xie
- Yunnan Agricultural University, Panlong District, Yunnan Province, Kunming City, China
| | - Li Li
- Yunnan Agricultural University, Panlong District, Yunnan Province, Kunming City, China
| | - Ping Zhang
- Yunnan Agricultural University, Panlong District, Yunnan Province, Kunming City, China
| | - Junna Liu
- Yunnan Agricultural University, Panlong District, Yunnan Province, Kunming City, China
| | - Peng Qin
- Yunnan Agricultural University, Panlong District, Yunnan Province, Kunming City, China.
| |
Collapse
|
27
|
Wan W, Li Y, Li H. Yield and quality of alfalfa ( Medicago sativa L.) in response to fertilizer application in China: A meta-analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:1051725. [PMID: 36507461 PMCID: PMC9728100 DOI: 10.3389/fpls.2022.1051725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION In China, alfalfa (Medicago sativa L.) often grows in marginal land with poor soil fertility and suboptimal climate conditions. Alfalfa production cannot meet demands both in yield and quality. It is necessary to apply fertilizers to achieve high yields and produce high-quality alfalfa in China. However, there is no understanding on the impact of fertilizer application on alfalfa production and the possible optimal application rates across China. METHODS We conducted a meta-analysis to explore the contribution of fertilizer application to the yield and quality of alfalfa based on a dataset from 86 studies published between 2004 and 2022. RESULTS AND DISCUSSION The results showed that fertilizer application not only increased alfalfa yield by 19.2% but also improved alfalfa quality by increasing crude protein (CP) by 7.7% and decreasing acid detergent fibre by 2.9% and neutral detergent fibre by 1.8% overall compared to the non-fertilizer control levels. The combined nitrogen (N), phosphorus (P) and potassium (K) and combined NP fertilizer applications achieved the greatest yield and CP concentration increases of 27.0% and 13.5%, respectively. Considering both yield and quality, the optimal rate of fertilizer application ranged from 30 to 60 kg ha-1 for N, 120 to 150 kg ha-1 for P and less than 120 kg ha-1 for K. Meta-analysis further showed that the effect of fertilizer application on yield was greater in low soil organic matter (SOM) soils than in high SOM soils. In conclusion, fertilizer application is an effective strategy to improve the yield and quality of alfalfa in China, especially that grown in low SOM soils. This study is helpful for optimizing fertilization schedules of alfalfa in China.
Collapse
Affiliation(s)
| | - Yuejin Li
- *Correspondence: Haigang Li, ; Yuejin Li,
| | - Haigang Li
- *Correspondence: Haigang Li, ; Yuejin Li,
| |
Collapse
|
28
|
Wu BS, Lai YH, Peng MY, Ren QQ, Lai NW, Wu J, Huang ZR, Yang LT, Chen LS. Elevated pH-mediated mitigation of aluminum-toxicity in sweet orange (Citrus sinensis) roots involved the regulation of energy-rich compounds and phytohormones. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119982. [PMID: 35988675 DOI: 10.1016/j.envpol.2022.119982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/28/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
For the first time, we used targeted metabolome to investigate the effects of pH-aluminum (Al) interactions on energy-rich compounds and their metabolites (ECMs) and phytohormones in sweet orange (Citrus sinensis) roots. The concentration of total ECMs (TECMs) was reduced by Al-toxicity in 4.0-treated roots, but unaffected significantly in pH 3.0-treated roots. However, the concentrations of most ECMs and TECMs were not lower in pH 4.0 + 1.0 mM Al-treated roots (P4AR) than in pH 3.0 + 1.0 mM Al-treated roots (P3AR). Increased pH improved the adaptability of ECMs to Al-toxicity in roots. For example, increased pH improved the utilization efficiency of ECMs and the conversion of organic phosphorus (P) from P-containing ECMs into available phosphate in Al-treated roots. We identified upregulated cytokinins (CKs), downregulated jasmonic acid (JA), methyl jasmonate (MEJA) and jasmonates (JAs), and unaltered indole-3-acetic acid (IAA) and salicylic acid (SA) in P3AR vs pH 3.0 + 0 mM Al-treated roots (P3R); upregulated JA, JAs and IAA, downregulated total CKs, and unaltered MEJA and SA in P4AR vs pH 4.0 + 0 mM Al-treated roots (P4R); and upregulated CKs, downregulated JA, MEJA, JAs and SA, and unaltered IAA in P3AR vs P4AR. Generally viewed, raised pH-mediated increments of JA, MEJA, total JAs, SA and IAA concentrations and reduction of CKs concentration in Al-treated roots might help to maintain nutrient homeostasis, increase Al-toxicity-induced exudation of organic acid anions and the compartmentation of Al in vacuole, and reduce oxidative stress and Al uptake, thereby conferring root Al-tolerance. In short, elevated pH-mediated mitigation of root Al-stress involved the regulation of ECMs and phytohormones.
Collapse
Affiliation(s)
- Bi-Sha Wu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University, College of Environmental and Biological Engineering, Putian University, Putian, 351100, China; Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian, 351100, China
| | - Yin-Hua Lai
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ming-Yi Peng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qian-Qian Ren
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ning-Wei Lai
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jincheng Wu
- Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University, College of Environmental and Biological Engineering, Putian University, Putian, 351100, China; Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian, 351100, China
| | - Zeng-Rong Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
29
|
Nasr Esfahani M, Kusano M, Abdelrahman M, Nguyen KH, Watanabe Y, Mochida K, Burritt DJ, Tran LSP. Differential metabolic rearrangements in the roots and leaves of Cicer arietinum caused by single or double nitrate and/or phosphate deficiencies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1643-1659. [PMID: 35862290 DOI: 10.1111/tpj.15913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Nitrate (NO3 - ) and phosphate (Pi) deficiencies are the major constraints for chickpea productivity, significantly impacting global food security. However, excessive fertilization is expensive and can also lead to environmental pollution. Therefore, there is an urgent need to develop chickpea cultivars that are able to grow on soils deficient in both NO3 - and Pi. This study focused on the identification of key NO3 - and/or Pi starvation-responsive metabolic pathways in the leaves and roots of chickpea grown under single and double nutrient deficiencies of NO3 - and Pi, in comparison with nutrient-sufficient conditions. A global metabolite analysis revealed organ-specific differences in the metabolic adaptation to nutrient deficiencies. Moreover, we found stronger adaptive responses in the roots and leaves to any single than combined nutrient-deficient stresses. For example, chickpea enhanced the allocation of carbon among nitrogen-rich amino acids (AAs) and increased the production of organic acids in roots under NO3 - deficiency, whereas this adaptive response was not found under double nutrient deficiency. Nitrogen remobilization through the transport of AAs from leaves to roots was greater under NO3 - deficiency than double nutrient deficiency conditions. Glucose-6-phosphate and fructose-6-phosphate accumulated in the roots under single nutrient deficiencies, but not under double nutrient deficiency, and higher glycolytic pathway activities were observed in both roots and leaves under single nutrient deficiency than double nutrient deficiency. Hence, the simultaneous deficiency generated a unique profile of metabolic changes that could not be simply described as the result of the combined deficiencies of the two nutrients.
Collapse
Affiliation(s)
| | - Miyako Kusano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, 230-0045, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Mostafa Abdelrahman
- Molecular Biotechnology Program, Faculty of Science, Galala University, Suze, new Galala, 43511, Egypt
- Botany Department, Faculty of Science, Aswan, 81528, Egypt
| | - Kien Huu Nguyen
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| | - Yasuko Watanabe
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- School of Information and Data Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
- RIKEN Baton Zone Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - David J Burritt
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Lam-Son Phan Tran
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, 79409, USA
| |
Collapse
|
30
|
Dissection of Crop Metabolome Responses to Nitrogen, Phosphorus, Potassium, and Other Nutrient Deficiencies. Int J Mol Sci 2022; 23:ijms23169079. [PMID: 36012343 PMCID: PMC9409218 DOI: 10.3390/ijms23169079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Crop growth and yield often face sophisticated environmental stresses, especially the low availability of mineral nutrients in soils, such as deficiencies of nitrogen, phosphorus, potassium, and others. Thus, it is of great importance to understand the mechanisms of crop response to mineral nutrient deficiencies, as a basis to contribute to genetic improvement and breeding of crop varieties with high nutrient efficiency for sustainable agriculture. With the advent of large-scale omics approaches, the metabolome based on mass spectrometry has been employed as a powerful and useful technique to dissect the biochemical, molecular, and genetic bases of metabolisms in many crops. Numerous metabolites have been demonstrated to play essential roles in plant growth and cellular stress response to nutrient limitations. Therefore, the purpose of this review was to summarize the recent advances in the dissection of crop metabolism responses to deficiencies of mineral nutrients, as well as the underlying adaptive mechanisms. This review is intended to provide insights into and perspectives on developing crop varieties with high nutrient efficiency through metabolite-based crop improvement.
Collapse
|
31
|
Huang WT, Zheng ZC, Hua D, Chen XF, Zhang J, Chen HH, Ye X, Guo JX, Yang LT, Chen LS. Adaptive responses of carbon and nitrogen metabolisms to nitrogen-deficiency in Citrus sinensis seedlings. BMC PLANT BIOLOGY 2022; 22:370. [PMID: 35879653 PMCID: PMC9316421 DOI: 10.1186/s12870-022-03759-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In China, nitrogen (N)-deficiency often occurs in Citrus orchards, which is one of the main causes of yield loss and fruit quality decline. Little information is known about the adaptive responses of Citrus carbon (C) and N metabolisms to N-deficiency. Seedlings of 'Xuegan' (Citrus sinensis (L.) Osbeck) were supplied with nutrient solution at an N concentration of 0 (N-deficiency), 5, 10, 15 or 20 mM for 10 weeks. Thereafter, we examined the effects of N supply on the levels of C and N in roots, stems and leaves, and the levels of organic acids, nonstructural carbohydrates, NH4+-N, NO3--N, total soluble proteins, free amino acids (FAAs) and derivatives (FAADs), and the activities of key enzymes related to N assimilation and organic acid metabolism in roots and leaves. RESULTS N-deficiency elevated sucrose export from leaves to roots, C and N distributions in roots and C/N ratio in roots, stems and leaves, thus enhancing root dry weight/shoot dry weight ratio and N use efficiency. N-deficient leaves displayed decreased accumulation of starch and total nonstructural carbohydrates (TNC) and increased sucrose/starch ratio as well as a partitioning trend of assimilated C toward to sucrose, but N-deficient roots displayed elevated accumulation of starch and TNC and reduced sucrose/starch ratio as well as a partitioning trend of assimilated C toward to starch. N-deficiency reduced the concentrations of most FAADs and the ratios of total FAADs (TFAADs)/N in leaves and roots. N-deficiency reduced the demand for C skeleton precursors for amino acid biosynthesis, thus lowering TFAADs/C ratio in leaves and roots. N-deficiency increased (decreased) the relative amounts of C-rich (N-rich) FAADs, thus increasing the molar ratio of C/N in TFAADs in leaves and roots. CONCLUSIONS Our findings corroborated our hypothesis that C and N metabolisms displayed adaptive responses to N-deficiency in C. sinensis seedlings, and that some differences existed between roots and leaves in N-deficiency-induced alterations of and C and N metabolisms.
Collapse
Affiliation(s)
- Wei-Tao Huang
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Zhi-Chao Zheng
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Dan Hua
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Xu-Feng Chen
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Jiang Zhang
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Huan-Huan Chen
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Xin Ye
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Jiu-Xin Guo
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Lin-Tong Yang
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| | - Li-Song Chen
- Department of Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 China
| |
Collapse
|
32
|
Molecular and Physiological Responses of Citrus sinensis Leaves to Long-Term Low pH Revealed by RNA-Seq Integrated with Targeted Metabolomics. Int J Mol Sci 2022; 23:ijms23105844. [PMID: 35628662 PMCID: PMC9142915 DOI: 10.3390/ijms23105844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 12/30/2022] Open
Abstract
Low pH-induced alterations in gene expression profiles and organic acids (OA) and free amino acid (FAA) abundances were investigated in sweet orange [Citrus sinensis (L.) Osbeck cv. Xuegan] leaves. We identified 503 downregulated and 349 upregulated genes in low pH-treated leaves. Further analysis indicated that low pH impaired light reaction and carbon fixation in photosynthetic organisms, thereby lowering photosynthesis in leaves. Low pH reduced carbon and carbohydrate metabolisms, OA biosynthesis and ATP production in leaves. Low pH downregulated the biosynthesis of nitrogen compounds, proteins, and FAAs in leaves, which might be conducive to maintaining energy homeostasis during ATP deprivation. Low pH-treated leaves displayed some adaptive responses to phosphate starvation, including phosphate recycling, lipid remodeling, and phosphate transport, thus enhancing leaf acid-tolerance. Low pH upregulated the expression of some reactive oxygen species (ROS) and aldehyde detoxifying enzyme (peroxidase and superoxidase) genes and the concentrations of some antioxidants (L-tryptophan, L-proline, nicotinic acid, pantothenic acid, and pyroglutamic acid), but it impaired the pentose phosphate pathway and VE and secondary metabolite biosynthesis and downregulated the expression of some ROS and aldehyde detoxifying enzyme (ascorbate peroxidase, aldo-keto reductase, and 2-alkenal reductase) genes and the concentrations of some antioxidants (pyridoxine and γ-aminobutyric acid), thus disturbing the balance between production and detoxification of ROS and aldehydes and causing oxidative damage to leaves.
Collapse
|
33
|
Metabolic Profiles Reveal Changes in the Leaves and Roots of Rapeseed (Brassica napus L.) Seedlings under Nitrogen Deficiency. Int J Mol Sci 2022; 23:ijms23105784. [PMID: 35628591 PMCID: PMC9142919 DOI: 10.3390/ijms23105784] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
Rapeseed (Brassica napus L.) is an important oil crop species and plays a crucial role in supplying edible oil worldwide. However, rapeseed production in the field is often severely inhibited due to nitrogen (N) deficiency. Metabolites play key roles in plant growth and resistance to environmental stress, but little is known about the differential synthesis and accumulation of metabolites underlying rapeseed adaptation to N deficiency. Here, we studied the phenotypic response and used LC–electrospray ionization (ESI), ESI–MS/MS, and widely untargeted metabolomic approaches to detect differences in rapeseed under normal N (HN) and N-deficient (LN) conditions. The results showed that N deficiency severely inhibited rapeseed shoot growth and promoted rapeseed root architectural changes under LN conditions. In total, 574 metabolites were detected, and there were 175 and 166 differentially accumulated metabolites in the leaves and roots between the HN and LN conditions, respectively. The significantly differentially accumulated metabolites were involved in four primary metabolic pathways, namely, sucrose, phenylalanine, amino acid, and tricarboxylic acid cycle metabolism. Notably, we found that plant hormones have distinct accumulation patterns in rapeseed and coordinate to play crucial roles in both maintaining growth and protecting against damage from plant disease under HN and LN conditions. Moreover, our results indicated that flavonoid compounds, especially anthocyanins and rutin, may play important roles in increasing root cell resistance to oxidative damage and soil pathogen infections. Overall, this work provides valuable information for understanding the overall metabolite changes in rapeseed under N deficiency conditions, which may be beneficial for improving and producing new varieties of rapeseed capable of high yields under low N conditions.
Collapse
|
34
|
Caracciolo M, Rigaut-Jalabert F, Romac S, Mahé F, Forsans S, Gac JP, Arsenieff L, Manno M, Chaffron S, Cariou T, Hoebeke M, Bozec Y, Goberville E, Le Gall F, Guilloux L, Baudoux AC, de Vargas C, Not F, Thiébaut E, Henry N, Simon N. Seasonal dynamics of marine protist communities in tidally mixed coastal waters. Mol Ecol 2022; 31:3761-3783. [PMID: 35593305 PMCID: PMC9543310 DOI: 10.1111/mec.16539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/29/2021] [Accepted: 04/19/2022] [Indexed: 12/01/2022]
Abstract
Major seasonal community reorganizations and associated biomass variations are landmarks of plankton ecology. However, the processes of plankton community turnover rates have not been fully elucidated so far. Here, we analyse patterns of planktonic protist community succession in temperate latitudes, based on quantitative taxonomic data from both microscopy counts (cells >10 μm) and ribosomal DNA metabarcoding (size fraction >3 μm, 18S rRNA gene) from plankton samples collected bimonthly over 8 years (2009–2016) at the SOMLIT‐Astan station (Roscoff, Western English Channel). Based on morphology, diatoms were clearly the dominating group all year round and over the study period. Metabarcoding uncovered a wider diversity spectrum and revealed the prevalence of Dinophyceae and diatoms but also of Cryptophyta, Chlorophyta, Cercozoa, Syndiniales and Ciliophora in terms of read counts and or richness. The use of morphological and molecular analyses in combination allowed improving the taxonomic resolution and to identify the sequence of the dominant species and OTUs (18S V4 rDNA‐derived taxa) that drive annual plankton successions. We detected that some of these dominant OTUs were benthic as a result of the intense tidal mixing typical of the French coasts in the English Channel. Our analysis of the temporal structure of community changes point to a strong seasonality and resilience. The temporal structure of environmental variables (especially Photosynthetic Active Radiation, temperature and macronutrients) and temporal structures generated by species life cycles and or species interactions, are key drivers of the observed cyclic annual plankton turnover.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Laure Arsenieff
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | | | - Samuel Chaffron
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,Laboratoire des Sciences du Numérique de Nantes (LS2N), CNRS, UMR6004, Université de Nantes, Ecole Centrale de Nantes, 44322, Nantes, France
| | - Thierry Cariou
- Institut de recherche pour le développement (IRD), Délégation Régionale Ouest, IMAGO, Plouzané, France
| | - Mark Hoebeke
- CNRS, Sorbonne Université, FR 2424, ABiMS Platform, Station Biologique de Roscoff, 29680, Roscoff, France
| | | | - Eric Goberville
- Unité biologie des organismes et écosystèmes aquatiques (BOREA), Muséum National D'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, Université des Antilles, CNRS, IRD, CP53, 61 rue Buffon 75005, Paris, France
| | | | - Loïc Guilloux
- Sorbonne Université, Roscoff, France.,Mediterranean Institute of Oceanography (MIO), Campus de Luminy case 901, 163 Av. de Luminy, 13288 Marseille cedex 9, France
| | | | - Colomban de Vargas
- Sorbonne Université, Roscoff, France.,Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | | | - Eric Thiébaut
- Sorbonne Université, Roscoff, France.,Sorbonne Université, CNRS, OSU STAMAR, UMS2017, 4 Place Jussieu, 75252 Paris cedex 05, France
| | - Nicolas Henry
- Sorbonne Université, Roscoff, France.,Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,CNRS, Sorbonne Université, FR 2424, ABiMS Platform, Station Biologique de Roscoff, 29680, Roscoff, France
| | | |
Collapse
|
35
|
Mauceri A, Aci MM, Toppino L, Panda S, Meir S, Mercati F, Araniti F, Lupini A, Panuccio MR, Rotino GL, Aharoni A, Abenavoli MR, Sunseri F. Uncovering Pathways Highly Correlated to NUE through a Combined Metabolomics and Transcriptomics Approach in Eggplant. PLANTS 2022; 11:plants11050700. [PMID: 35270170 PMCID: PMC8912549 DOI: 10.3390/plants11050700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 12/01/2022]
Abstract
Nitrogen (N) fertilization is one of the main inputs to increase crop yield and food production. However, crops utilize only 30–40% of N applied; the remainder is leached into the soil, causing environmental and health damage. In this scenario, the improvement of nitrogen-use efficiency (NUE) will be an essential strategy for sustainable agriculture. Here, we compared two pairs of NUE-contrasting eggplant (Solanum melongena L.) genotypes, employing GC-MS and UPLC-qTOF-MS-based technologies to determine the differential profiles of primary and secondary metabolites in root and shoot tissues, under N starvation as well as at short- and long-term N-limiting resupply. Firstly, differences in the primary metabolism pathways of shoots related to alanine, aspartate and glutamate; starch, sucrose and glycine; serine and threonine; and in secondary metabolites biosynthesis were detected. An integrated analysis between differentially accumulated metabolites and expressed transcripts highlighted a key role of glycine accumulation and the related glyA transcript in the N-use-efficient genotypes to cope with N-limiting stress. Interestingly, a correlation between both sucrose synthase (SUS)- and fructokinase (scrK)-transcript abundances, as well as D-glucose and D-fructose accumulation, appeared useful to distinguish the N-use-efficient genotypes. Furthermore, increased levels of L-aspartate and L-asparagine in the N-use-efficient genotypes at short-term low-N exposure were detected. Granule-bound starch synthase (WAXY) and endoglucanase (E3.2.1.4) downregulation at long-term N stress was observed. Therefore, genes and metabolites related to these pathways could be exploited to improve NUE in eggplant.
Collapse
Affiliation(s)
- Antonio Mauceri
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
- Correspondence: (A.M.); (M.R.A.)
| | - Meriem Miyassa Aci
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
| | - Laura Toppino
- CREA—Research Centre for Genomics and Bioinformatics, 26836 Montanaso Lombardo, Italy; (L.T.); (G.L.R.)
| | - Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (S.P.); (S.M.); (A.A.)
| | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (S.P.); (S.M.); (A.A.)
| | - Francesco Mercati
- Institute Bioscience and Bioresources—National Research Council CNR, 90129 Palermo, Italy;
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Territory, Agroenergy, University of Milano, 20133 Milan, Italy;
| | - Antonio Lupini
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
| | - Maria Rosaria Panuccio
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
| | - Giuseppe Leonardo Rotino
- CREA—Research Centre for Genomics and Bioinformatics, 26836 Montanaso Lombardo, Italy; (L.T.); (G.L.R.)
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (S.P.); (S.M.); (A.A.)
| | - Maria Rosa Abenavoli
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
- Correspondence: (A.M.); (M.R.A.)
| | - Francesco Sunseri
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
- Institute Bioscience and Bioresources—National Research Council CNR, 90129 Palermo, Italy;
| |
Collapse
|
36
|
Chowdhury NB, Schroeder WL, Sarkar D, Amiour N, Quilleré I, Hirel B, Maranas CD, Saha R. Dissecting the metabolic reprogramming of maize root under nitrogen-deficient stress conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:275-291. [PMID: 34554248 DOI: 10.1093/jxb/erab435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The growth and development of maize (Zea mays L.) largely depends on its nutrient uptake through the root. Hence, studying its growth, response, and associated metabolic reprogramming to stress conditions is becoming an important research direction. A genome-scale metabolic model (GSM) for the maize root was developed to study its metabolic reprogramming under nitrogen stress conditions. The model was reconstructed based on the available information from KEGG, UniProt, and MaizeCyc. Transcriptomics data derived from the roots of hydroponically grown maize plants were used to incorporate regulatory constraints in the model and simulate nitrogen-non-limiting (N+) and nitrogen-deficient (N-) condition. Model-predicted flux-sum variability analysis achieved 70% accuracy compared with the experimental change of metabolite levels. In addition to predicting important metabolic reprogramming in central carbon, fatty acid, amino acid, and other secondary metabolism, maize root GSM predicted several metabolites (l-methionine, l-asparagine, l-lysine, cholesterol, and l-pipecolate) playing a regulatory role in the root biomass growth. Furthermore, this study revealed eight phosphatidylcholine and phosphatidylglycerol metabolites which, even though not coupled with biomass production, played a key role in the increased biomass production under N-deficient conditions. Overall, the omics-integrated GSM provides a promising tool to facilitate stress condition analysis for maize root and engineer better stress-tolerant maize genotypes.
Collapse
Affiliation(s)
- Niaz Bahar Chowdhury
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Wheaton L Schroeder
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Debolina Sarkar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Nardjis Amiour
- Institut National de Recherche pour l'Agriculure, l'Alimentation et l'Envionnement (INRAE), Centre de Versailles-Grignon, Versailles cedex, France
| | - Isabelle Quilleré
- Institut National de Recherche pour l'Agriculure, l'Alimentation et l'Envionnement (INRAE), Centre de Versailles-Grignon, Versailles cedex, France
| | - Bertrand Hirel
- Institut National de Recherche pour l'Agriculure, l'Alimentation et l'Envionnement (INRAE), Centre de Versailles-Grignon, Versailles cedex, France
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Root and Rhizobiome Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
37
|
Pengfei S, Yafei S, Lijun W, Tian C, Meng Z, Wenfa X, Ruimei C. Photosynthetic product allocations of Pinus massoniana seedlings inoculated with ectomycorrhizal fungi along a nitrogen addition gradient. FRONTIERS IN PLANT SCIENCE 2022; 13:948676. [PMID: 36035728 PMCID: PMC9412729 DOI: 10.3389/fpls.2022.948676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/22/2022] [Indexed: 05/13/2023]
Abstract
Quantifying the allocation of photosynthetic products among different carbon (C) pools is critical for understanding and predicting plant C turnover response to climate change. A field experiment with ectomycorrhizal fungi (EMF) and nitrogen (N) was established to investigate the effects on allocation of photosynthetic products in Pinus massoniana (Lamb.) seedlings given increased N deposition. Seedlings were subjected to N addition and symbiosis with EMF, and the short-term allocation of a 13C photosynthetic pulse into leaves, branches, stems, roots, and soil was traced. Photosynthetic rate and root respiration were measured. It was found that N addition changed the allocation pattern of photosynthetic products in various organs of P. massoniana. Furthermore, N addition, mycorrhizal symbiosis, and interaction of N and EMF, all increased the amount of C produced by photosynthesis. N application less than 60 kg N hm-1 a-1 could promote the transfer and allocation of photosynthetic products in P. massoniana organs, which peaks at 60 kg N hm-1 a-1, and the highest N treatment began to decrease at 90 kg N hm-1 a-1. EMF inoculation could expand the absorption area of plant roots to obtain more nutrients and synthesize more C and N compounds for promoting the growth of itself and the host plant, improving the net photosynthetic rate and the distribution of C produced by photosynthesis in various organs. This forms a benign C and N cycle, thereby reducing the effect of high N addition on plants. The optimal N addition concentration was 60 kg N hm-1 a-1, and the optimal EMF was Pt, which provides a theoretical basis for inoculating EMF during increasing N deposition in the future climate change scenario. This enables plants to distribute more photosynthetic products to their roots, thus affecting their own C distribution for promoting growth.
Collapse
Affiliation(s)
- Sun Pengfei
- Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Beijing, China
| | - Shen Yafei
- Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Beijing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wang Lijun
- Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Beijing, China
| | - Chen Tian
- Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Beijing, China
| | - Zhang Meng
- Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Beijing, China
| | - Xiao Wenfa
- Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Beijing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Cheng Ruimei
- Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Beijing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- *Correspondence: Cheng Ruimei,
| |
Collapse
|
38
|
Chen M, Yin Y, Zhang L, Yang X, Fu T, Huo X, Wang Y. Metabolomics and Transcriptomics Integration of Early Response of Populus tomentosa to Reduced Nitrogen Availability. FRONTIERS IN PLANT SCIENCE 2021; 12:769748. [PMID: 34956269 PMCID: PMC8692568 DOI: 10.3389/fpls.2021.769748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is one of the most crucial elements for plant growth and development. However, little is known about the metabolic regulation of trees under conditions of N deficiency. In this investigation, gas chromatography-mass spectrometry (GC-MS) was used to determine global changes in metabolites and regulatory pathways in Populus tomentosa. Thirty metabolites were found to be changed significantly under conditions of low-N stress. N deficiency resulted in increased levels of carbohydrates and decreases in amino acids and some alcohols, as well as some secondary metabolites. Furthermore, an RNA-sequencing (RNA-Seq) analysis was performed to characterize the transcriptomic profiles, and 1,662 differentially expressed genes were identified in P. tomentosa. Intriguingly, four pathways related to carbohydrate metabolism were enriched. Genes involved in the gibberellic acid and indole-3-acetic acid pathways were found to be responsive to low-N stress, and the contents of hormones were then validated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Coordinated metabolomics and transcriptomics analysis revealed a pattern of co-expression of five pairs of metabolites and unigenes. Overall, our investigation showed that metabolism directly related to N deficiency was depressed, while some components of energy metabolism were increased. These observations provided insights into the metabolic and molecular mechanisms underlying the interactions of N and carbon in poplar.
Collapse
Affiliation(s)
- Min Chen
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yiyi Yin
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Lichun Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Xiaoqian Yang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Tiantian Fu
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Xiaowei Huo
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Yanwei Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
39
|
Rivai RR, Miyamoto T, Awano T, Takada R, Tobimatsu Y, Umezawa T, Kobayashi M. Nitrogen deficiency results in changes to cell wall composition of sorghum seedlings. Sci Rep 2021; 11:23309. [PMID: 34857783 PMCID: PMC8640004 DOI: 10.1038/s41598-021-02570-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/18/2021] [Indexed: 11/15/2022] Open
Abstract
Sorghum [Sorghum bicolor (L.) Moench] has been gaining attention as a feedstock for biomass energy production. While it is obvious that nitrogen (N) supply significantly affects sorghum growth and biomass accumulation, our knowledge is still limited regarding the effect of N on the biomass quality of sorghum, such as the contents and structures of lignin and other cell wall components. Therefore, in this study, we investigated the effects of N supply on the structure and composition of sorghum cell walls. The cell walls of hydroponically cultured sorghum seedlings grown under sufficient or deficient N conditions were analyzed using chemical, two-dimensional nuclear magnetic resonance, gene expression, and immunohistochemical methods. We found that the level of N supply considerably affected the cell wall structure and composition of sorghum seedlings. Limitation of N led to a decrease in the syringyl/guaiacyl lignin unit ratio and an increase in the amount and alteration of tissue distribution of several hemicelluloses, including mixed linkage (1 → 3), (1 → 4)-β-d-glucan, and arabinoxylan. At least some of these cell wall alterations could be associated with changes in gene expression. Nitrogen status is thus one of the factors affecting the cell wall properties of sorghum seedlings.
Collapse
Affiliation(s)
- Reza Ramdan Rivai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.,Indonesian Institute of Sciences, Bogor, 16003, Indonesia
| | - Takuji Miyamoto
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan.,Sakeology Center, Niigata University, Ikarashi, Niigata, 950-2181, Japan
| | - Tatsuya Awano
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Rie Takada
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Masaru Kobayashi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
40
|
Wani SH, Vijayan R, Choudhary M, Kumar A, Zaid A, Singh V, Kumar P, Yasin JK. Nitrogen use efficiency (NUE): elucidated mechanisms, mapped genes and gene networks in maize ( Zea mays L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2875-2891. [PMID: 35035142 PMCID: PMC8720126 DOI: 10.1007/s12298-021-01113-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 05/22/2023]
Abstract
UNLABELLED Nitrogen, the vital primary plant growth nutrient at deficit soil conditions, drastically affects the growth and yield of a crop. Over the years, excess use of inorganic nitrogenous fertilizers resulted in pollution, eutrophication and thereby demanding the reduction in the use of chemical fertilizers. Being a C4 plant with fibrous root system and high NUE, maize can be deployed to be the best candidate for better N uptake and utilization in nitrogen deficient soils. The maize germplasm sources has enormous genetic variation for better nitrogen uptake contributing traits. Adoption of single cross maize hybrids as well as inherent property of high NUE has helped maize cultivars to achieve the highest growth rate among the cereals during last decade. Further, considering the high cost of nitrogenous fertilizers, adverse effects on soil health and environmental impact, maize improvement demands better utilization of existing genetic variation for NUE via introgression of novel allelic combinations in existing cultivars. Marker assisted breeding efforts need to be supplemented with introgression of genes/QTLs related to NUE in ruling varieties and thereby enhancing the overall productivity of maize in a sustainable manner. To achieve this, we need mapped genes and network of interacting genes and proteins to be elucidated. Identified genes may be used in screening ideal maize genotypes in terms of better physiological functionality exhibiting high NUE. Future genome editing may help in developing lines with increased productivity under low N conditions in an environment of optimum agronomic practices. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01113-z.
Collapse
Affiliation(s)
- Shabir H. Wani
- Genetics and Plant Breeding, Mountain Research Centre For Field Crops, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani Anantnag, J&K 192101 India
| | - Roshni Vijayan
- Regional Agricultural Research Station-Central Zone, Kerala Agricultural University, MelePattambi, Palakkad, Kerala 679306 India
| | | | - Anuj Kumar
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Vishal Singh
- Department of Plants, Soils and Climate, Utah State University, 4820 Old Main Hill, Logan, UT 84322 USA
| | - Pardeep Kumar
- ICAR-Indian Institute of Maize Research, Ludhiana, 141001 India
| | - Jeshima Khan Yasin
- Division of Genomic Resources, ICAR-National Bureau Plant Genetic Resources, PUSA Campus, New Delhi, 110012 India
| |
Collapse
|
41
|
Adaptive Agricultural Strategies for Facing Water Deficit in Sweet Maize Production: A Case Study of a Semi-Arid Mediterranean Region. WATER 2021. [DOI: 10.3390/w13223285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Maize is a crucial global commodity, which is used not only for food, but also as an alternative crop in biogas production and as a major energy-supply ingredient in animal diets. However, climate change is jeopardizing current maize production due to its direct impact on weather instability and water availability or its indirect effects on regional climate suitability loss. Hence, new areas for sweet maize cultivation should be considered in the future. Therefore, this study focuses on the possibility of producing maize in a challenging environment in Southern Italy considering rainfed cultivation and two irrigation regimes (full and deficit). The experiment was conducted during two subsequent growing seasons under semi-arid Mediterranean climate conditions. The overall results indicated a significant difference in biomass and yield between irrigated and non-irrigated treatments, and between full and deficit irrigation. Sweet maize cultivated under deficit irrigation gained less biomass than under full irrigation and its development and fruit maturation were delayed. Under deficit irrigation, the plants gave lower yields and a higher percentage of the panicle weight consisted of kernels. Irrigation water productivity was higher for deficit than for full irrigated treatment. These findings indicate the feasibility of sweet maize production in semi-arid areas of Southern Italy using adaptive agricultural strategies including deficit irrigation and controlled water stress. Given the importance of maize production, understanding of maize growth and productivity in a challenging environment may support future agricultural programming and thereby contribute e to mitigation of the direct and indirect effects of climate change.
Collapse
|
42
|
miRNAomic Approach to Plant Nitrogen Starvation. Int J Genomics 2021; 2021:8560323. [PMID: 34796230 PMCID: PMC8595019 DOI: 10.1155/2021/8560323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
Nitrogen (N) is one of the indispensable nutrients required by plants for their growth, development, and survival. Being a limited nutrient, it is mostly supplied exogenously to the plants, to maintain quality and productivity. The increased use of N fertilizers is associated with high-cost inputs and negative environmental consequences, which necessitates the development of nitrogen-use-efficient plants for sustainable agriculture. Understanding the regulatory mechanisms underlying N metabolism in plants under low N is one of the prerequisites for the development of nitrogen-use-efficient plants. One of the important and recently discovered groups of regulatory molecules acting at the posttranscriptional and translational levels are microRNAs (miRNAs). miRNAs are known to play critical roles in the regulation of gene expression in plants under different stress conditions including N stress. Several classes of miRNAs associated with N metabolism have been identified so far. These nitrogen-responsive miRNAs may provide a platform for a better understanding of the regulation of N metabolism and pave a way for the development of genotypes for better N utilization. The current review presents a brief outline of miRNAs and their regulatory role in N metabolism.
Collapse
|
43
|
Liu J, Liu M, Fang H, Zhang Q, Ruan J. Accumulation of Amino Acids and Flavonoids in Young Tea Shoots Is Highly Correlated With Carbon and Nitrogen Metabolism in Roots and Mature Leaves. FRONTIERS IN PLANT SCIENCE 2021; 12:756433. [PMID: 34868150 PMCID: PMC8636729 DOI: 10.3389/fpls.2021.756433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
The quality of tea product and the metabolism of quality-related compounds in young shoots are significantly affected by the nitrogen(N) supply. However, little is known of the metabolic changes that take place in tea roots and mature leaves under different supplies, which has a large effect on the accumulation of quality-related compounds in young shoots. In this study, young shoots, mature leaves, and roots under different N conditions were subjected to metabolite profiling using gas chromatography and ultraperformance liquid chromatography, coupled with quadrupole time-of-flight mass spectrometry. The contents of free amino acids (e.g., theanine and glutamate) involved in N metabolism were significantly greater under high N than under low N, while a high N supply reduced soluble sugars (e.g., glucose) in all three tissues. Organic acids (e.g., malate, fumarate, α-ketoglutatare, and succinate) involved in tricarboxylic acid cycle remarkably increased as the nitrogen supply increased, which confirms that carbon (C) allocation was restricted by increasing the nitrogen supply, especially in mature leaves. RT-PCR results indicated that gene expression related to nitrogen assimilation significantly increased in roots with increasing nitrogen supply, which had a significant positive relationship with the level of free amino acids in young shoots. In addition, the expression of most genes involved in flavonoid synthesis was significantly upregulated under conditions of low nitrogen supply relative to high nitrogen supply in young shoot and roots. These data suggest that enhanced assimilation of N in tea roots and the coordinated regulation of C (sugars, organic acids, and flavonoids) and N(amino acids) in mature leaves can lead to a high accumulation of amino acids in young shoots. Furthermore, as the N supply increased, more C was partitioned into compounds containing N in mature leaves and roots, resulting in a decrease in flavonoids in young shoots. In conclusion, the accumulation of amino acids and flavonoids in young tea shoots is highly correlated with carbon and nitrogen metabolism in roots and mature leaves.
Collapse
Affiliation(s)
- Jianwei Liu
- Key Laboratory for Plant Biology and Resource Application of Tea, The Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Agricultural Technology Extension Center of Fuyang, Hangzhou, China
| | - Meiya Liu
- Key Laboratory for Plant Biology and Resource Application of Tea, The Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | | | - Qunfeng Zhang
- Key Laboratory for Plant Biology and Resource Application of Tea, The Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianyun Ruan
- Key Laboratory for Plant Biology and Resource Application of Tea, The Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
44
|
Rácz D, Szőke L, Tóth B, Kovács B, Horváth É, Zagyi P, Duzs L, Széles A. Examination of the Productivity and Physiological Responses of Maize ( Zea mays L.) to Nitrapyrin and Foliar Fertilizer Treatments. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112426. [PMID: 34834792 PMCID: PMC8620664 DOI: 10.3390/plants10112426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Nutrient stress has been known as the main limiting factor for maize growth and yield. Nitrapyrin, as a nitrification inhibitor-which reduces nitrogen loss-and foliar fertilizer treatments have been successfully used to enhance the efficiency of nutrient utilization, however, the impacts of these two technologies on physiological development, enzymatic responses, and productivity of maize are poorly studied. In this paper, the concentration of each stress indicator, such as contents of proline, malondialdehyde (MDA), relative chlorophyll, photosynthetic pigments, and the activity of superoxide dismutase (SOD) were measured in maize leaf tissues. In addition, biomass growth, as well as quantitative and qualitative parameters of yield production were examined. Results confirm the enhancing impact of nitrapyrin on the nitrogen use of maize. Furthermore, lower activity of proline, MDA, SOD, as well as higher photosynthetic activity were shown in maize with a more favorable nutrient supply due to nitrapyrin and foliar fertilizer treatments. The obtained findings draw attention to the future practical relevance of these technologies that can be implemented to enhance the physiological development and productivity of maize. However, this paper also highlights the importance of irrigation, as nutrient uptake from soil by the crops decreases during periods of drought.
Collapse
Affiliation(s)
- Dalma Rácz
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Land Use, Engineering and Precision Farming Technology, University of Debrecen, 138 Böszörményi St., 4032 Debrecen, Hungary; (D.R.); (É.H.); (P.Z.); (L.D.); (A.S.)
| | - Lóránt Szőke
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Science, University of Debrecen, 138 Böszörményi St., 4032 Debrecen, Hungary; (B.T.); (B.K.)
| | - Brigitta Tóth
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Science, University of Debrecen, 138 Böszörményi St., 4032 Debrecen, Hungary; (B.T.); (B.K.)
| | - Béla Kovács
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Science, University of Debrecen, 138 Böszörményi St., 4032 Debrecen, Hungary; (B.T.); (B.K.)
| | - Éva Horváth
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Land Use, Engineering and Precision Farming Technology, University of Debrecen, 138 Böszörményi St., 4032 Debrecen, Hungary; (D.R.); (É.H.); (P.Z.); (L.D.); (A.S.)
| | - Péter Zagyi
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Land Use, Engineering and Precision Farming Technology, University of Debrecen, 138 Böszörményi St., 4032 Debrecen, Hungary; (D.R.); (É.H.); (P.Z.); (L.D.); (A.S.)
| | - László Duzs
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Land Use, Engineering and Precision Farming Technology, University of Debrecen, 138 Böszörményi St., 4032 Debrecen, Hungary; (D.R.); (É.H.); (P.Z.); (L.D.); (A.S.)
| | - Adrienn Széles
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Land Use, Engineering and Precision Farming Technology, University of Debrecen, 138 Böszörményi St., 4032 Debrecen, Hungary; (D.R.); (É.H.); (P.Z.); (L.D.); (A.S.)
| |
Collapse
|
45
|
Zhang X, Ma Q, Li F, Ding Y, Yi Y, Zhu M, Ding J, Li C, Guo W, Zhu X. Transcriptome Analysis Reveals Different Responsive Patterns to Nitrogen Deficiency in Two Wheat Near-Isogenic Lines Contrasting for Nitrogen Use Efficiency. BIOLOGY 2021; 10:biology10111126. [PMID: 34827119 PMCID: PMC8614915 DOI: 10.3390/biology10111126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022]
Abstract
Simple Summary Nitrogen (N) limitation is the key factor for wheat production worldwide. Therefore, the development of genotypes with improved nitrogen use efficiency (NUE) is a prerequisite for sustainable and productive agriculture. Exploring the molecular mechanisms of low N stress tolerance is significant for breeding wheat cultivars with high NUE. To clarify the underlying molecular mechanisms of enhanced resilience to low N in high-NUE wheat, we performed an RNA sequencing (RNA-seq) analysis. In the current research, two wheat near-isogenic lines (NILs) differing dramatically in NUE were used to measure gene expression differences under different N treatments. There was a dramatic difference between two wheat NILs in response to N deficiency at the transcriptional level, and the classification of identified candidate genes may provide new valuable insights into the resilience mechanism of wheat. Abstract The development of crop cultivars with high nitrogen use efficiency (NUE) under low-N fertilizer inputs is imperative for sustainable agriculture. However, there has been little research on the molecular mechanisms underlying enhanced resilience to low N in high-NUE plants. The comparison of the transcriptional responses of genotypes contrasting for NUE will facilitate an understanding of the key molecular mechanism of wheat resilience to low-N stress. In the current study, the RNA sequencing (RNA-seq) technique was employed to investigate the genotypic difference in response to N deficiency between two wheat NILs (1Y, high-NUE, and 1W, low-NUE). In our research, high- and low-NUE wheat NILs showed different patterns of gene expression under N-deficient conditions, and these N-responsive genes were classified into two major classes, including “frontloaded genes” and “relatively upregulated genes”. In total, 103 and 45 genes were identified as frontloaded genes in high-NUE and low-NUE wheat, respectively. In summary, our study might provide potential directions for further understanding the molecular mechanism of high-NUE genotypes adapting to low-N stress.
Collapse
Affiliation(s)
- Xinbo Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (X.Z.); (Q.M.); (F.L.); (Y.D.); (M.Z.); (J.D.); (C.L.); (W.G.)
| | - Quan Ma
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (X.Z.); (Q.M.); (F.L.); (Y.D.); (M.Z.); (J.D.); (C.L.); (W.G.)
| | - Fujian Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (X.Z.); (Q.M.); (F.L.); (Y.D.); (M.Z.); (J.D.); (C.L.); (W.G.)
| | - Yonggang Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (X.Z.); (Q.M.); (F.L.); (Y.D.); (M.Z.); (J.D.); (C.L.); (W.G.)
| | - Yuan Yi
- Jiangsu Xuhuai Regional Institute of Agricultural Science, Xuzhou 221131, China;
| | - Min Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (X.Z.); (Q.M.); (F.L.); (Y.D.); (M.Z.); (J.D.); (C.L.); (W.G.)
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jinfeng Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (X.Z.); (Q.M.); (F.L.); (Y.D.); (M.Z.); (J.D.); (C.L.); (W.G.)
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Chunyan Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (X.Z.); (Q.M.); (F.L.); (Y.D.); (M.Z.); (J.D.); (C.L.); (W.G.)
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wenshan Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (X.Z.); (Q.M.); (F.L.); (Y.D.); (M.Z.); (J.D.); (C.L.); (W.G.)
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xinkai Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (X.Z.); (Q.M.); (F.L.); (Y.D.); (M.Z.); (J.D.); (C.L.); (W.G.)
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
46
|
Li D, Liu J, Zong J, Guo H, Li J, Wang J, Wang H, Li L, Chen J. Integration of the metabolome and transcriptome reveals the mechanism of resistance to low nitrogen supply in wild bermudagrass (Cynodon dactylon (L.) Pers.) roots. BMC PLANT BIOLOGY 2021; 21:480. [PMID: 34674655 PMCID: PMC8532362 DOI: 10.1186/s12870-021-03259-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/07/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Nitrogen (N) is an essential macronutrient that significantly affects turf quality. Commercial cultivars of bermudagrass (Cynodon dactylon (L.) Pers.) require large amounts of nitrogenous fertilizer. Wild bermudagrass germplasm from natural habitats with poor nutrition and diverse N distributions is an important source for low-N-tolerant cultivated bermudagrass breeding. However, the mechanisms underlying the differences in N utilization among wild germplasm resources of bermudagrass are not clear. RESULTS To clarify the low N tolerance mechanism in wild bermudagrass germplasm, the growth, physiology, metabolome and transcriptome of two wild accessions, C291 (low-N-tolerant) and C716 (low-N-sensitive), were investigated. The results showed that root growth was less inhibited in low-N-tolerant C291 than in low-N-sensitive C716 under low N conditions; the root dry weight, soluble protein content and free amino acid content of C291 did not differ from those of the control, while those of C716 were significantly decreased. Down-regulation of N acquisition, primary N assimilation and amino acid biosynthesis was less pronounced in C291 than in C716 under low N conditions; glycolysis and the tricarboxylic acid (TCA) cycle pathway were also down-regulated, accompanied by a decrease in the biosynthesis of amino acids; strikingly, processes such as translation, biosynthesis of the structural constituent of ribosome, and the expression of individual aminoacyl-tRNA synthetase genes, most of genes associated with ribosomes related to protein synthesis were all up-regulated in C291, but down-regulated in C716. CONCLUSIONS Overall, low-N-tolerant wild bermudagrass tolerated low N nutrition by reducing N primary assimilation and amino acid biosynthesis, while promoting the root protein synthesis process and thereby maintaining root N status and normal growth.
Collapse
Affiliation(s)
- Dandan Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Jianxiu Liu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Junqin Zong
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Hailin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Jianjian Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Jingjing Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Haoran Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Ling Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Jingbo Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China.
| |
Collapse
|
47
|
Liu XC, Lin XH, Liu SC, Zhu CQ, Grierson D, Li SJ, Chen KS. The effect of NH 4+ on phosphoenolpyruvate carboxykinase gene expression, metabolic flux and citrate content of citrus juice sacs. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:123-131. [PMID: 34352515 DOI: 10.1016/j.plaphy.2021.07.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Citrate is one of the most important metabolites determining the flavour of citrus fruit. It has been reported that nitrogen supply may have an impact on acid level of fruit. Here, the relationship between nitrogen metabolism and citrate catabolism was studied in pumelo juice sacs. Differences in metabolites, gene expression and flux distributions were analyzed in juice sacs incubated in medium with and without NH4+. Compared with those incubated with NH4+, juice sacs under nitrogen deficiency exhibited enhanced flux through phosphoenolpyruvate carboxykinase (PEPCK) and accelerated consumption of citrate, while the other two TCA cycle efflux points, through malic enzyme (ME) and glutamate dehydrogenase (GDH), were both repressed. Consistent with the estimated fluxes, the expression of PEPCK1 was upregulated under nitrogen deficiency, while that of GDH1, GDH2, NAD-ME1 and NADP-ME2 were all repressed. Thus, we propose that PEPCK1 contributes to citrate degradation under nitrogen limitation.
Collapse
Affiliation(s)
- Xin-Cheng Liu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xia-Hui Lin
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Sheng-Chao Liu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Chang-Qing Zhu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Donald Grierson
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom
| | - Shao-Jia Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China.
| | - Kun-Song Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
48
|
Urban A, Rogowski P, Wasilewska-Dębowska W, Romanowska E. Understanding Maize Response to Nitrogen Limitation in Different Light Conditions for the Improvement of Photosynthesis. PLANTS 2021; 10:plants10091932. [PMID: 34579465 PMCID: PMC8471034 DOI: 10.3390/plants10091932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022]
Abstract
The photosynthetic capacity of leaves is determined by their content of nitrogen (N). Nitrogen involved in photosynthesis is divided between soluble proteins and thylakoid membrane proteins. In C4 plants, the photosynthetic apparatus is partitioned between two cell types: mesophyll cells and bundle sheath. The enzymes involved in the C4 carbon cycle and assimilation of nitrogen are localized in a cell-specific manner. Although intracellular distribution of enzymes of N and carbon assimilation is variable, little is known about the physiological consequences of this distribution caused by light changes. Light intensity and nitrogen concentration influence content of nitrates in leaves and can induce activity of the main enzymes involved in N metabolism, and changes that reduce the photosynthesis rate also reduce photosynthetic N use efficiency. In this review, we wish to highlight and discuss how/whether light intensity can improve photosynthesis in maize during nitrogen limitation. We described the general regulation of changes in the main photosynthetic and nitrogen metabolism enzymes, their quantity and localization, thylakoid protein abundance, intracellular transport of organic acids as well as specific features connected with C4 photosynthesis, and addressed the major open questions related to N metabolism and effects of light on photosynthesis in C4 plants.
Collapse
|
49
|
Sun Y, Hu Z, Wang X, Shen X, Hu S, Yan Y, Kant S, Xu G, Xue Y, Sun S. Overexpression of OsPHR3 improves growth traits and facilitates nitrogen use efficiency under low phosphate condition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:712-722. [PMID: 34214781 DOI: 10.1016/j.plaphy.2021.06.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 05/20/2023]
Abstract
Phosphorus (P) and nitrogen (N) are both essential macronutrients for maintaining plant growth and development. In rice (Oryza sativa L.), OsPHR3 is one of the four paralogs of PHR1, which acts as a central regulator of phosphate (Pi) homeostasis, as well being involved in N homeostasis. However, the functions of OsPHR3 in N utilization under different Pi conditions have yet to be fully studied. In this study, we aimed to dissect the effect of OsPHR3-overexpression on N utilization under Pi deficient regimes. Biochemical, molecular and physiological assays were performed to determine the N-influx, translocation, and accumulation in OsPHR3-overexpressing rice lines, grown under Pi-sufficient and -deficient conditions, in both hydroponic and soil systems. Furthermore, important agronomic traits of these plants were also evaluated. The overexpression of OsPHR3 increased N uptake under Pi stress regimes. Increased N uptake also elevated total N concentrations in these plants by inducing N transporter genes expression. Furthermore, overexpression of OsPHR3 increased N use efficiency, 1000-grain weight and grain yield under different Pi conditions. We established new findings that OsPHR3-overexpression facilitates N utilization under Pi deficient conditions. This will help achieving higher yields by coordinating the utilization of N and P.
Collapse
Affiliation(s)
- Yafei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China; Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, 201403, China
| | - Zhi Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaowen Wang
- Landscape Architecture Department, College of Horticulture, Nanjing Agricultural University, 210095, China
| | - Xing Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Siwen Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Yan
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Surya Kant
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, 3400, Australia
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong Xue
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, 201403, China.
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
50
|
Sun Y, Xu X, Zhang T, Yang Y, Tong H, Yuan H. Comparative transcriptome analysis provides insights into steviol glycoside synthesis in stevia (Stevia rebaudiana Bertoni) leaves under nitrogen deficiency. PLANT CELL REPORTS 2021; 40:1709-1722. [PMID: 34129077 DOI: 10.1007/s00299-021-02733-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Transcriptome analysis revealed the potential mechanism of nitrogen regulating steviol glycosides synthesis via shifting of leaf carbon metabolic flux or inducing certain transcription factors. Nitrogen (N) plays key regulatory roles in both stevia (Stevia rebaudiana) growth and the synthesis of its functional metabolite steviol glycosides (SGs), but the mechanism by which this nutrient regulates SGs synthesis remains to be elucidated. To address this question, a pot experiment was performed in a greenhouse where stevia plants fertilized with N (the control as CK plants) and compared with plants without the supply of N. Physiological and biochemical analyses were conducted to test the growth and metabolic responses of plants to N regimes. Our results showed that N deficiency significantly inhibited plant growth and leaf photosynthesis, while increased leaf SGs contents in stevia (49.97, 46.64 and 84.80% respectively for rebaudioside A, stevioside, and rebaudioside C), which may be partly due to "concentration effect". Then, transcriptome analysis was conducted to understand the underlying mechanisms. A total of 535 differentially expressed genes were identified, and carbon metabolism-related events were highlighted by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Many of these genes were significantly upregulated by N-deficiency, including those involved in "phenylpropanoid biosynthesis", "flavonoid biosynthesis" and "starch and sucrose metabolism". Our study also analyzed the expression patterns of SGs synthesis-related genes under two N regimes and the potential transcription factors linking N nutrition and SG metabolism. N-deficiency may promote SGs synthesis by changing the carbon metabolism flux or inducing certain transcription factors. Our results provide deeper insight into the relationship between N nutrition and SGs synthesis in stevia plants.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhuhoucun Village, Zhongshan Gate, Nanjing, 210014, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Xiaoyang Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhuhoucun Village, Zhongshan Gate, Nanjing, 210014, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Ting Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhuhoucun Village, Zhongshan Gate, Nanjing, 210014, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Yongheng Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhuhoucun Village, Zhongshan Gate, Nanjing, 210014, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Haiying Tong
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhuhoucun Village, Zhongshan Gate, Nanjing, 210014, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Haiyan Yuan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhuhoucun Village, Zhongshan Gate, Nanjing, 210014, China.
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China.
| |
Collapse
|