1
|
Xie T, Xu J, Hu W, Shan S, Gao H, Shen J, Chen X, Jia Y, Gao X, Huang J, Zhang H, Cheng J. OsAAH confers salt tolerance in rice seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1954-1968. [PMID: 39436860 DOI: 10.1111/tpj.17091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Soil salinization is becoming a great threat that reduces crop productivity worldwide. In this study, we found that rice allantoate amidohydrolase (OsAAH) expression was significantly upregulated by salt stress, and its overexpression conferred salt tolerance at the seedling stage. Compared to wild type (WT), the contents of ureides (allantoin and allantoate) were significantly increased in Osaah mutants and reduced in OsAAH overexpression lines both before and after salt treatments. Exogenous allantoin significantly promoted salt tolerance in OsAAH overexpression, but not in Osaah mutants. Subcellular localization showed that OsAAH was also localized to the peroxisomes in addition to the previously reported endoplasmic reticulum (ER). The differential expression of peroxisome-related genes was identified between Osaah mutants and WT. Furthermore, the contents of H2O2 and malondialdehyde (MDA) were significantly accumulated in Osaah mutants and reduced in OsAAH overexpression lines. The activities of antioxidant enzymes were significantly reduced in Osaah mutants and enhanced in OsAAH overexpression under NaCl treatment. The transcription factor OsABI5 could directly bind to OsAAH promoter and activate OsAAH expression. Our findings reveal that OsAAH could be induced by salt stress through the activation of OsABI5 and then confer salt tolerance by enhancing the scavenging capacity of reactive oxygen species (ROS), which contributes to rice breeding in salt tolerance.
Collapse
Affiliation(s)
- Ting Xie
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiangyu Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenling Hu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Silvtu Shan
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haoming Gao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaxin Shen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyi Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanxiao Jia
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiuying Gao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ji Huang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongsheng Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinping Cheng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
2
|
Soltabayeva A, Kurmanbayeva A, Bekturova A, Oshanova D, Nurbekova Z, Srivastava S, Standing D, Zdunek-Zastocka E, Sagi M. Endogenous ureides are employed as a carbon source in Arabidopsis plants exposed to carbon starvation conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112108. [PMID: 38705480 DOI: 10.1016/j.plantsci.2024.112108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Ureides, the degraded products of purine catabolism in Arabidopsis, have been shown to act as antioxidant and nitrogen sources. Herein we elucidate purine degraded metabolites as a carbon source using the Arabidopsis Atxdh1, Ataln, and Ataah knockout (KO) mutants vis-à-vis wild-type (WT) plants. Plants were grown under short-day conditions on agar plates containing half-strength MS medium with or without 1% sucrose. Notably, the absence of sucrose led to diminished biomass accumulation in both shoot and root tissues of the Atxdh1, Ataln, and Ataah mutants, while no such effect was observed in WT plants. Moreover, the application of sucrose resulted in a reduction of purine degradation metabolite levels, specifically xanthine and allantoin, predominantly within the roots of WT plants. Remarkably, an increase in proteins associated with the purine degradation pathway was observed in WT plants in the presence of sucrose. Lower glyoxylate levels in the roots but not in the shoot of the Atxdh1 mutant in comparison to WT, were observed under sucrose limitation, and improved by sucrose application in root, indicating that purine degradation provided glyoxylate in the root. Furthermore, the deficit of purine-degraded metabolites in the roots of mutants subjected to carbon starvation was partially mitigated through allantoin application. Collectively, these findings signify that under conditions of sucrose limitation and short-day growth, purines are primarily remobilized within the root system to augment the availability of ureides, serving as an additional carbon (as well as nitrogen) source to support plant growth.
Collapse
Affiliation(s)
- Aigerim Soltabayeva
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana Z05H0P9, Kazakhstan
| | - Assylay Kurmanbayeva
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| | - Aizat Bekturova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Dinara Oshanova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Zhadyrassyn Nurbekova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Sudhakar Srivastava
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Dominic Standing
- The Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Edyta Zdunek-Zastocka
- Warsaw Univ Life Sci, Inst Biol, Dept Biochem & Microbiol, SGGW, Nowoursynowska 159, Warsaw PL-02776, Poland
| | - Moshe Sagi
- The Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel; Katif Research Center for Development of Coastal Deserts, Netivot 87710, Israel.
| |
Collapse
|
3
|
Xie T, Hu W, Shen J, Xu J, Yang Z, Chen X, Zhu P, Chen M, Chen S, Zhang H, Cheng J. Allantoate Amidohydrolase OsAAH is Essential for Preharvest Sprouting Resistance in Rice. RICE (NEW YORK, N.Y.) 2024; 17:28. [PMID: 38622442 PMCID: PMC11018578 DOI: 10.1186/s12284-024-00706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/30/2024] [Indexed: 04/17/2024]
Abstract
Preharvest sprouting (PHS) is an undesirable trait that decreases yield and quality in rice production. Understanding the genes and regulatory mechanisms underlying PHS is of great significance for breeding PHS-resistant rice. In this study, we identified a mutant, preharvest sprouting 39 (phs39), that exhibited an obvious PHS phenotype in the field. MutMap+ analysis and transgenic experiments demonstrated that OsAAH, which encodes allantoate amidohydrolase, is the causal gene of phs39 and is essential for PHS resistance. OsAAH was highly expressed in roots and leaves at the heading stage and gradually increased and then weakly declined in the seed developmental stage. OsAAH protein was localized to the endoplasmic reticulum, with a function of hydrolyzing allantoate in vitro. Disruption of OsAAH increased the levels of ureides (allantoate and allantoin) and activated the tricarboxylic acid (TCA) cycle, and thus increased energy levels in developing seeds. Additionally, the disruption of OsAAH significantly increased asparagine, arginine, and lysine levels, decreased tryptophan levels, and decreased levels of indole-3-acetic acid (IAA) and abscisic acid (ABA). Our findings revealed that the OsAAH of ureide catabolism is involved in the regulation of rice PHS via energy and hormone metabolisms, which will help to facilitate the breeding of rice PHS-resistant varieties.
Collapse
Affiliation(s)
- Ting Xie
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Wenling Hu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiaxin Shen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiangyu Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zeyuan Yang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xinyi Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Peiwen Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Mingming Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
- College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Sunlu Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Hongsheng Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Jinping Cheng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
4
|
Lu S, Jia Z, Meng X, Chen Y, Wang S, Fu C, Yang L, Zhou R, Wang B, Cao Y. Combined Metabolomic and Transcriptomic Analysis Reveals Allantoin Enhances Drought Tolerance in Rice. Int J Mol Sci 2022; 23:ijms232214172. [PMID: 36430648 PMCID: PMC9699107 DOI: 10.3390/ijms232214172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Drought is a misfortune for agriculture and human beings. The annual crop yield reduction caused by drought exceeds the sum of all pathogens. As one of the gatekeepers of China's "granary", rice is the most important to reveal the key drought tolerance factors in rice. Rice seedlings of Nipponbare (Oryza sativa L. ssp. Japonica) were subjected to simulated drought stress, and their root systems were analyzed for the non-targeted metabolome and strand-specific transcriptome. We found that both DEGs and metabolites were enriched in purine metabolism, and allantoin accumulated significantly in roots under drought stress. However, few studies on drought tolerance of exogenous allantoin in rice have been reported. We aimed to further determine whether allantoin can improve the drought tolerance of rice. Under the treatment of exogenous allantoin at different concentrations, the drought resistant metabolites of plants accumulated significantly, including proline and soluble sugar, and reactive oxygen species (ROS) decreased and reached a significant level in 100 μmol L-1. To this end, a follow-up study was identified in 100 μmol L-1 exogenous allantoin and found that exogenous allantoin improved the drought resistance of rice. At the gene level, under allantoin drought treatment, we found that genes of scavenge reactive oxygen species were significantly expressed, including peroxidase (POD), catalase (CATA), ascorbate peroxidase 8 (APX8) and respiratory burst oxidase homolog protein F (RbohF). This indicates that plants treated by allantoin have better ability to scavenge reactive oxygen species to resist drought. Alternative splicing analysis revealed a total of 427 differentially expressed alternative splicing events across 320 genes. The analysis of splicing factors showed that gene alternative splicing could be divided into many different subgroups and play a regulatory role in many aspects. Through further analysis, we restated the key genes and enzymes in the allantoin synthesis and catabolism pathway, and found that the expression of synthetase and hydrolase showed a downward trend. The pathway of uric acid to allantoin is completed by uric acid oxidase (UOX). To find out the key transcription factors that regulate the expression of this gene, we identified two highly related transcription factors OsERF059 and ONAC007 through correlation analysis. They may be the key for allantoin to enhance the drought resistance of rice.
Collapse
Affiliation(s)
- Shuai Lu
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Zichang Jia
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Xiangfeng Meng
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Yaoyu Chen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Surong Wang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Chaozhen Fu
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Lei Yang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Rong Zhou
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong 226019, China
- Correspondence: (B.W.); (Y.C.)
| | - Yunying Cao
- School of Life Sciences, Nantong University, Nantong 226019, China
- Correspondence: (B.W.); (Y.C.)
| |
Collapse
|
5
|
Enzymes and cellular interplay required for flux of fixed nitrogen to ureides in bean nodules. Nat Commun 2022; 13:5331. [PMID: 36088455 PMCID: PMC9464200 DOI: 10.1038/s41467-022-33005-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022] Open
Abstract
Tropical legumes transport fixed nitrogen in form of ureides (allantoin and allantoate) over long distances from the nodules to the shoot. Ureides are formed in nodules from purine mononucleotides by a partially unknown reaction network that involves bacteroid-infected and uninfected cells. Here, we demonstrate by metabolic analysis of CRISPR mutant nodules of Phaseolus vulgaris defective in either xanthosine monophosphate phosphatase (XMPP), guanosine deaminase (GSDA), the nucleoside hydrolases 1 and 2 (NSH1, NSH2) or xanthine dehydrogenase (XDH) that nodule ureide biosynthesis involves these enzymes and requires xanthosine and guanosine but not inosine monophosphate catabolism. Interestingly, promoter reporter analyses revealed that XMPP, GSDA and XDH are expressed in infected cells, whereas NSH1, NSH2 and the promoters of the downstream enzymes urate oxidase (UOX) and allantoinase (ALN) are active in uninfected cells. The data suggest a complex cellular organization of ureide biosynthesis with three transitions between infected and uninfected cells. Tropical legumes export fixed nitrogen from nodules as ureides. Here, the authors describe how ureides are produced by several biosynthetic enzymes in different nodule cell types and provide explanations for metabolic compartmentation.
Collapse
|
6
|
Wittern LM, Barrero JM, Bovill WD, Verbyla KL, Hughes T, Swain SM, Steed G, Webb AAR, Gardner K, Greenland A, Jacobs J, Frohberg C, Schmidt RC, Cavanagh C, Rohde A, Davey MW, Hannah MA. Overexpression of the WAPO-A1 gene increases the number of spikelets per spike in bread wheat. Sci Rep 2022; 12:14229. [PMID: 35987959 PMCID: PMC9392761 DOI: 10.1038/s41598-022-18614-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
Two homoeologous QTLs for number of spikelets per spike (SPS) were mapped on chromosomes 7AL and 7BL using two wheat MAGIC populations. Sets of lines contrasting for the QTL on 7AL were developed which allowed for the validation and fine mapping of the 7AL QTL and for the identification of a previously described candidate gene, WHEAT ORTHOLOG OF APO1 (WAPO1). Using transgenic overexpression in both a low and a high SPS line, we provide a functional validation for the role of this gene in determining SPS also in hexaploid wheat. We show that the expression levels of this gene positively correlate with SPS in multiple MAGIC founder lines under field conditions as well as in transgenic lines grown in the greenhouse. This work highlights the potential use of WAPO1 in hexaploid wheat for further yield increases. The impact of WAPO1 and SPS on yield depends on other genetic and environmental factors, hence, will require a finely balanced expression level to avoid the development of detrimental pleiotropic phenotypes.
Collapse
Affiliation(s)
- Lukas M Wittern
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Jose M Barrero
- Agriculture and Food, Black Mountain Science and Innovation Park, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
| | - William D Bovill
- Agriculture and Food, Black Mountain Science and Innovation Park, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
| | - Klara L Verbyla
- Agriculture and Food, Black Mountain Science and Innovation Park, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
| | - Trijntje Hughes
- Agriculture and Food, Black Mountain Science and Innovation Park, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
| | - Steve M Swain
- Agriculture and Food, Black Mountain Science and Innovation Park, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
| | - Gareth Steed
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Keith Gardner
- National Institute of Agricultural Botany (NIAB), Huntingdon Road, Cambridge, CB3 0LE, UK
| | - Andy Greenland
- National Institute of Agricultural Botany (NIAB), Huntingdon Road, Cambridge, CB3 0LE, UK
| | - John Jacobs
- BASF, BBCC - Innovation Center Gent, Technologiepark 101, 9052, Ghent, Belgium
| | - Claus Frohberg
- BASF, BBCC - Innovation Center Gent, Technologiepark 101, 9052, Ghent, Belgium
| | | | - Colin Cavanagh
- BASF Australia Ltd., 28 Freshwater Place, Melbourne, 3006, Australia
| | - Antje Rohde
- BASF, BBCC - Innovation Center Gent, Technologiepark 101, 9052, Ghent, Belgium
| | - Mark W Davey
- BASF, BBCC - Innovation Center Gent, Technologiepark 101, 9052, Ghent, Belgium
| | - Matthew A Hannah
- BASF, BBCC - Innovation Center Gent, Technologiepark 101, 9052, Ghent, Belgium.
| |
Collapse
|
7
|
Exogenous Caffeine (1,3,7-Trimethylxanthine) Application Diminishes Cadmium Toxicity by Modulating Physio-Biochemical Attributes and Improving the Growth of Spinach (Spinacia oleracea L.). SUSTAINABILITY 2022. [DOI: 10.3390/su14052806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Leafy vegetables usually absorb and retain heavy metals more readily than most of the other crop plants, and thus contribute ≥70% of the total cadmium (Cd) intake of humans. Caffeine mediates plant growth and has proved to be beneficial against pathogens and insects. Therefore, it was hypothesized that foliar applications of caffeine could alter metabolism and reduce Cd toxicity in spinach (Spinacia oleracea L.). Seven-day old spinach seedlings were provided with Cd (0, 50, and 100 µM) stress. Caffeine (0, 5, or 10 mM) foliar spray was given twice at after 20 days of seeds germination with an interval of one week. In results, Cd stress reduced photosynthetic pigments biosynthesis, increased oxidative stress, imbalanced nutrient retention, and inhibited plant growth. On the other hand, the caffeine-treated spinach plants showed better growth owing to the enhanced biosynthesis of chlorophylls, better oxidative defense systems, and lower accumulation and transport of Cd within the plant tissues. Furthermore, caffeine application enhanced the accumulation of the proline and ascorbic acid, but reduced MDA and H2O2 contents and Cd in plant leaves, and ultimately improved mineral nutrition of spinach plants exposed to different Cd regimes. In conclusion, exogenous application of caffeine significantly diminishes Cd stress by modulating physiological, biochemical, and growth attributes of spinach (Spinacia oleracea L.)
Collapse
|
8
|
Bosse MA, Silva MBD, Oliveira NGRMD, Araujo MAD, Rodrigues C, Azevedo JPD, Reis ARD. Physiological impact of flavonoids on nodulation and ureide metabolism in legume plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:512-521. [PMID: 34171572 DOI: 10.1016/j.plaphy.2021.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/06/2021] [Indexed: 05/20/2023]
Abstract
Legume plants from Fabaceae family (phylogenetic group composed by three subfamilies: Caesalpinioideae, Mimosoideae, and Papilionoideae) can fix atmospheric nitrogen (N2) into ammonia (NH3) by the symbiotic relationship with rhizobia bacteria. These bacteria respond chemotactically to certain compounds released by plants such as sugars, amino acids and organic acids. Root secretion of isoflavonoids acts as inducers for nod genes in rhizobia and ABC transporters and ICHG (isoflavone conjugates hydrolyzing beta-glucosidase) at apoplast are related to the exudation of genistein and daidzein in soybean roots. Biological nitrogen fixation (BNF) occurs inside the nodule by the action of nitrogenase enzyme, which fixes N2 into NH3, which is converted into ureides (allantoin and allantoic acid). In this review, we bring together the latest findings on flavonoids biosynthesis and ureide metabolism in several legume plant species. We emphasize how flavonoids induce nod genes in rhizobia, affecting chemotaxis, nodulation, ureide production, growth and yield of legume plants. Mainly, isoflavonoids daidzein and genistein are responsible for nod genes activation in the rhizobia bacteria. Flavonoids also play an important role during nodule organogenesis by acting as auxin transporter inhibitors in root cells, especially in indeterminate nodules. The ureides are the main N transport form in tropical legumes and they are catabolized in leaves and other sink tissues to produce amino acids and proteins needed for plant growth and yield.
Collapse
Affiliation(s)
- Marco Antônio Bosse
- São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, Postal Code 14884-900, Brazil
| | | | | | | | - Cleverson Rodrigues
- São Paulo State University (UNESP), Postal Code 15385-000, Ilha Solteira, SP, Brazil
| | | | - André Rodrigues Dos Reis
- São Paulo State University (UNESP), Rua Domingos da Costa Lopes 780, Postal Code 17602-496, Tupã, SP, Brazil.
| |
Collapse
|
9
|
Open Issues for Protein Function Assignment in Haloferax volcanii and Other Halophilic Archaea. Genes (Basel) 2021; 12:genes12070963. [PMID: 34202810 PMCID: PMC8305020 DOI: 10.3390/genes12070963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Annotation ambiguities and annotation errors are a general challenge in genomics. While a reliable protein function assignment can be obtained by experimental characterization, this is expensive and time-consuming, and the number of such Gold Standard Proteins (GSP) with experimental support remains very low compared to proteins annotated by sequence homology, usually through automated pipelines. Even a GSP may give a misleading assignment when used as a reference: the homolog may be close enough to support isofunctionality, but the substrate of the GSP is absent from the species being annotated. In such cases, the enzymes cannot be isofunctional. Here, we examined a variety of such issues in halophilic archaea (class Halobacteria), with a strong focus on the model haloarchaeon Haloferax volcanii. Results: Annotated proteins of Hfx. volcanii were identified for which public databases tend to assign a function that is probably incorrect. In some cases, an alternative, probably correct, function can be predicted or inferred from the available evidence, but this has not been adopted by public databases because experimental validation is lacking. In other cases, a probably invalid specific function is predicted by homology, and while there is evidence that this assigned function is unlikely, the true function remains elusive. We listed 50 of those cases, each with detailed background information, so that a conclusion about the most likely biological function can be drawn. For reasons of brevity and comprehension, only the key aspects are listed in the main text, with detailed information being provided in a corresponding section of the Supplementary Materials. Conclusions: Compiling, describing and summarizing these open annotation issues and functional predictions will benefit the scientific community in the general effort to improve the evaluation of protein function assignments and more thoroughly detail them. By highlighting the gaps and likely annotation errors currently in the databases, we hope this study will provide a framework for experimentalists to systematically confirm (or disprove) our function predictions or to uncover yet more unexpected functions.
Collapse
|
10
|
Ono Y, Fukasawa M, Sueyoshi K, Ohtake N, Sato T, Tanabata S, Toyota R, Higuchi K, Saito A, Ohyama T. Application of Nitrate, Ammonium, or Urea Changes the Concentrations of Ureides, Urea, Amino Acids and Other Metabolites in Xylem Sap and in the Organs of Soybean Plants ( Glycine max (L.) Merr.). Int J Mol Sci 2021; 22:4573. [PMID: 33925462 PMCID: PMC8123890 DOI: 10.3390/ijms22094573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 11/20/2022] Open
Abstract
Soybean (Glycine max (L.) Merr.) plants form root nodules and fix atmospheric dinitrogen, while also utilizing the combined nitrogen absorbed from roots. In this study, nodulated soybean plants were supplied with 5 mM N nitrate, ammonium, or urea for 3 days, and the changes in metabolite concentrations in the xylem sap and each organ were analyzed. The ureide concentration in the xylem sap was the highest in the control plants that were supplied with an N-free nutrient solution, but nitrate and asparagine were the principal compounds in the xylem sap with nitrate treatment. The metabolite concentrations in both the xylem sap and each organ were similar between the ammonium and urea treatments. Considerable amounts of urea were present in the xylem sap and all the organs among all the treatments. Positive correlations were observed between the ureides and urea concentrations in the xylem sap as well as in the roots and leaves, although no correlations were observed between the urea and arginine concentrations, suggesting that urea may have originated from ureide degradation in soybean plants, possibly in the roots. This is the first finding of the possibility of ureide degradation to urea in the underground organs of soybean plants.
Collapse
Affiliation(s)
- Yuki Ono
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan; (Y.O.); (M.F.); (K.S.); (N.O.)
| | - Masashige Fukasawa
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan; (Y.O.); (M.F.); (K.S.); (N.O.)
| | - Kuni Sueyoshi
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan; (Y.O.); (M.F.); (K.S.); (N.O.)
| | - Norikuni Ohtake
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan; (Y.O.); (M.F.); (K.S.); (N.O.)
| | - Takashi Sato
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan;
| | - Sayuri Tanabata
- College of Agriculture, Ibaraki University, Mito 310-0393, Japan;
| | - Ryo Toyota
- Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan; (R.T.); (K.H.); (A.S.)
| | - Kyoko Higuchi
- Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan; (R.T.); (K.H.); (A.S.)
| | - Akihiro Saito
- Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan; (R.T.); (K.H.); (A.S.)
| | - Takuji Ohyama
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan; (Y.O.); (M.F.); (K.S.); (N.O.)
- Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan; (R.T.); (K.H.); (A.S.)
| |
Collapse
|
11
|
Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100584] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Lescano I, Devegili AM, Martini C, Tessi TM, González CA, Desimone M. Ureide metabolism in Arabidopsis thaliana is modulated by C:N balance. JOURNAL OF PLANT RESEARCH 2020; 133:739-749. [PMID: 32740857 DOI: 10.1007/s10265-020-01215-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Plants can respond and adapt to changes in the internal content of carbon and nitrogen by using organic compounds that widely differ in their carbon/nitrogen ratio. Among them, the amides asparagine and glutamine are believed to be preferred by most plants, including Arabidopsis. However, increases in the ureides allantoin and/or allantoate concentrations have been observed in different plant species under several environmental conditions. In this work, changes in the ratio between carbon skeletons and reduced nitrogen were investigated by varying the concentrations of nitrogen and sucrose in the growth media. Allantoin accumulation was observed when plants were grown in media with high ammonia concentrations. This increase was reverted by adding sucrose as additional carbon source. Moreover, mutant plants with a decreased capability to degrade allantoin showed a compromised growth compared to WT in ammonia supplemented media. Together, our results indicate that allantoin accumulation is induced by low carbon/nitrogen ratio and suggest that its degradation is critical for proper plant growth and development.
Collapse
Affiliation(s)
- Ignacio Lescano
- Multidisciplinary Institute of Plant Biology, National University of Córdoba, CONICET, Vélez Sarsfield Av. 299, X5000HUA, Córdoba, Argentina.
| | - Andrés Matías Devegili
- Multidisciplinary Institute of Plant Biology, National University of Córdoba, CONICET, Vélez Sarsfield Av. 299, X5000HUA, Córdoba, Argentina
| | - Carolina Martini
- Multidisciplinary Institute of Plant Biology, National University of Córdoba, CONICET, Vélez Sarsfield Av. 299, X5000HUA, Córdoba, Argentina
- Plant Physiology Chair, Department of Physiology. Faculty of Exact, Physical and Natural Sciences, National University of Córdoba, Vélez Sarsfield Av. 299, X5000HUA, Córdoba, Argentina
| | - Tomás María Tessi
- Multidisciplinary Institute of Plant Biology, National University of Córdoba, CONICET, Vélez Sarsfield Av. 299, X5000HUA, Córdoba, Argentina
| | - Claudio Alejandro González
- Multidisciplinary Institute of Plant Biology, National University of Córdoba, CONICET, Vélez Sarsfield Av. 299, X5000HUA, Córdoba, Argentina
- Plant Physiology Chair, Department of Physiology. Faculty of Exact, Physical and Natural Sciences, National University of Córdoba, Vélez Sarsfield Av. 299, X5000HUA, Córdoba, Argentina
| | - Marcelo Desimone
- Multidisciplinary Institute of Plant Biology, National University of Córdoba, CONICET, Vélez Sarsfield Av. 299, X5000HUA, Córdoba, Argentina
- Plant Physiology Chair, Department of Physiology. Faculty of Exact, Physical and Natural Sciences, National University of Córdoba, Vélez Sarsfield Av. 299, X5000HUA, Córdoba, Argentina
| |
Collapse
|
13
|
Thu SW, Lu MZ, Carter AM, Collier R, Gandin A, Sitton CC, Tegeder M. Role of ureides in source-to-sink transport of photoassimilates in non-fixing soybean. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4495-4511. [PMID: 32188989 PMCID: PMC7475099 DOI: 10.1093/jxb/eraa146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/16/2020] [Indexed: 05/03/2023]
Abstract
Nitrogen (N)-fixing soybean plants use the ureides allantoin and allantoic acid as major long-distance transport forms of N, but in non-fixing, non-nodulated plants amino acids mainly serve in source-to-sink N allocation. However, some ureides are still synthesized in roots of non-fixing soybean, and our study addresses the role of ureide transport processes in those plants. In previous work, legume ureide permeases (UPSs) were identified that are involved in cellular import of allantoin and allantoic acid. Here, UPS1 from common bean was expressed in the soybean phloem, which resulted in enhanced source-to-sink transport of ureides in the transgenic plants. This was accompanied by increased ureide synthesis and elevated allantoin and allantoic acid root-to-sink transport. Interestingly, amino acid assimilation, xylem transport, and phloem partitioning to sinks were also strongly up-regulated. In addition, photosynthesis and sucrose phloem transport were improved in the transgenic plants. These combined changes in source physiology and assimilate partitioning resulted in increased vegetative growth and improved seed numbers. Overall, the results support that ureide transport processes in non-fixing plants affect source N and carbon acquisition and assimilation as well as source-to-sink translocation of N and carbon assimilates with consequences for plant growth and seed development.
Collapse
Affiliation(s)
- Sandi Win Thu
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Ming-Zhu Lu
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Amanda M Carter
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Ray Collier
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Anthony Gandin
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Ciera Chenoa Sitton
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
14
|
Lescano I, Bogino MF, Martini C, Tessi TM, González CA, Schumacher K, Desimone M. Ureide Permease 5 (AtUPS5) Connects Cell Compartments Involved in Ureide Metabolism. PLANT PHYSIOLOGY 2020; 182:1310-1325. [PMID: 31862838 PMCID: PMC7054880 DOI: 10.1104/pp.19.01136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/12/2019] [Indexed: 05/28/2023]
Abstract
Allantoin is a purine oxidative product involved in long distance transport of organic nitrogen in nodulating legumes and was recently shown to play a role in stress tolerance in other plants. The subcellular localization of enzymes that catalyze allantoin synthesis and degradation indicates that allantoin is produced in peroxisomes and degraded in the endoplasmic reticulum (ER). Although it has been determined that allantoin is mostly synthesized in roots and transported to shoots either for organic nitrogen translocation in legumes or for plant protection during stress in Arabidopsis (Arabidopsis thaliana), the mechanism and molecular components of allantoin export from root cells are still unknown. AtUPS5 (Arabidopsis UREIDE PERMEASE 5) is a transmembrane protein that transports allantoin with high affinity when expressed in yeast. The subcellular fate of splicing variants AtUPS5L (long) and AtUPS5S (short) was studied by tagging them with fluorescent proteins in their cytosolic loops. The capability of these fusion proteins to complement the function of the native proteins was demonstrated by nutritional and salt stress experiments. Both variants localized to the ER, but the AtUPS5L variant was also detected in the trans-Golgi network/early endosome and at the plasma membrane. AtUPS5L and AtUPS5S localization indicates that they could have different roles in allantoin distribution between subcellular compartments. Our data suggest that under nonstress conditions UPS5L and UPS5S may function in allantoin degradation for nutrient recycling, whereas under stress, both genes may be involved in vesicular export allowing allantoin translocation from roots to shoots.
Collapse
Affiliation(s)
- Ignacio Lescano
- Multidisciplinary Institute of Plant Biology, National University of Córdoba, CONICET, Vélez Sarsfield Av. 299, X5000HUA Córdoba, Argentina
| | - María Florencia Bogino
- Plant Physiology Chair, Department of Physiology, Faculty of Exact, Physical and Natural Sciences, National University of Córdoba, Vélez Sarsfield Av. 299, X5000HUA Córdoba, Argentina
| | - Carolina Martini
- Multidisciplinary Institute of Plant Biology, National University of Córdoba, CONICET, Vélez Sarsfield Av. 299, X5000HUA Córdoba, Argentina
- Plant Physiology Chair, Department of Physiology, Faculty of Exact, Physical and Natural Sciences, National University of Córdoba, Vélez Sarsfield Av. 299, X5000HUA Córdoba, Argentina
| | - Tomás María Tessi
- Multidisciplinary Institute of Plant Biology, National University of Córdoba, CONICET, Vélez Sarsfield Av. 299, X5000HUA Córdoba, Argentina
| | - Claudio Alejandro González
- Multidisciplinary Institute of Plant Biology, National University of Córdoba, CONICET, Vélez Sarsfield Av. 299, X5000HUA Córdoba, Argentina
- Plant Physiology Chair, Department of Physiology, Faculty of Exact, Physical and Natural Sciences, National University of Córdoba, Vélez Sarsfield Av. 299, X5000HUA Córdoba, Argentina
| | - Karin Schumacher
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Marcelo Desimone
- Multidisciplinary Institute of Plant Biology, National University of Córdoba, CONICET, Vélez Sarsfield Av. 299, X5000HUA Córdoba, Argentina
- Plant Physiology Chair, Department of Physiology, Faculty of Exact, Physical and Natural Sciences, National University of Córdoba, Vélez Sarsfield Av. 299, X5000HUA Córdoba, Argentina
| |
Collapse
|
15
|
Metabolic Analyses of Nitrogen Fixation in the Soybean Microsymbiont Sinorhizobium fredii Using Constraint-Based Modeling. mSystems 2020; 5:5/1/e00516-19. [PMID: 32071157 PMCID: PMC7029217 DOI: 10.1128/msystems.00516-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitrogen is the most limiting macronutrient for plant growth, and rhizobia are important bacteria for agriculture because they can fix atmospheric nitrogen and make it available to legumes through the establishment of a symbiotic relationship with their host plants. In this work, we studied the nitrogen fixation process in the microsymbiont Sinorhizobium fredii at the genome level. A metabolic model was built using genome annotation and literature to reconstruct the symbiotic form of S. fredii. Genes controlling the nitrogen fixation process were identified by simulating gene knockouts. Additionally, the nitrogen-fixing capacities of S. fredii CCBAU45436 in symbiosis with cultivated and wild soybeans were evaluated. The predictions suggested an outperformance of S. fredii with cultivated soybean, consistent with published experimental evidence. The reconstruction presented here will help to understand and improve nitrogen fixation capabilities of S. fredii and will be beneficial for agriculture by reducing the reliance on fertilizer applications. Rhizobia are soil bacteria able to establish symbiosis with diverse host plants. Specifically, Sinorhizobium fredii is a soil bacterium that forms nitrogen-fixing root nodules in diverse legumes, including soybean. The strain S. fredii CCBAU45436 is a dominant sublineage of S. fredii that nodulates soybeans in alkaline-saline soils in the Huang-Huai-Hai Plain region of China. Here, we present a manually curated metabolic model of the symbiotic form of Sinorhizobium fredii CCBAU45436. A symbiosis reaction was defined to describe the specific soybean-microsymbiont association. The performance and quality of the reconstruction had a 70% score when assessed using a standardized genome-scale metabolic model test suite. The model was used to evaluate in silico single-gene knockouts to determine the genes controlling the nitrogen fixation process. One hundred forty-one of 541 genes (26%) were found to influence the symbiotic process, wherein 121 genes were predicted as essential and 20 others as having a partial effect. Transcriptomic profiles of CCBAU45436 were used to evaluate the nitrogen fixation capacity in cultivated versus in wild soybean inoculated with the microsymbiont. The model quantified the nitrogen fixation activities of the strain in these two hosts and predicted a higher nitrogen fixation capacity in cultivated soybean. Our results are consistent with published data demonstrating larger amounts of ureides and total nitrogen in cultivated soybean than in wild soybean. This work presents the first metabolic network reconstruction of S. fredii as an example of a useful tool for exploring the potential benefits of microsymbionts to sustainable agriculture and the ecosystem. IMPORTANCE Nitrogen is the most limiting macronutrient for plant growth, and rhizobia are important bacteria for agriculture because they can fix atmospheric nitrogen and make it available to legumes through the establishment of a symbiotic relationship with their host plants. In this work, we studied the nitrogen fixation process in the microsymbiont Sinorhizobium fredii at the genome level. A metabolic model was built using genome annotation and literature to reconstruct the symbiotic form of S. fredii. Genes controlling the nitrogen fixation process were identified by simulating gene knockouts. Additionally, the nitrogen-fixing capacities of S. fredii CCBAU45436 in symbiosis with cultivated and wild soybeans were evaluated. The predictions suggested an outperformance of S. fredii with cultivated soybean, consistent with published experimental evidence. The reconstruction presented here will help to understand and improve nitrogen fixation capabilities of S. fredii and will be beneficial for agriculture by reducing the reliance on fertilizer applications.
Collapse
|
16
|
Witte CP, Herde M. Nucleotide Metabolism in Plants. PLANT PHYSIOLOGY 2020; 182:63-78. [PMID: 31641078 PMCID: PMC6945853 DOI: 10.1104/pp.19.00955] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 05/14/2023]
Abstract
Nucleotide metabolism is an essential function in plants.
Collapse
Affiliation(s)
- Claus-Peter Witte
- Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Marco Herde
- Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| |
Collapse
|
17
|
Redillas MCFR, Bang SW, Lee D, Kim YS, Jung H, Chung PJ, Suh J, Kim J. Allantoin accumulation through overexpression of ureide permease1 improves rice growth under limited nitrogen conditions. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1289-1301. [PMID: 30565833 PMCID: PMC6577366 DOI: 10.1111/pbi.13054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 12/12/2018] [Accepted: 12/15/2018] [Indexed: 05/07/2023]
Abstract
In legumes, nitrogen (N) can be stored as ureide allantoin and transported by ureide permease (UPS) from nodules to leaves where it is catabolized to release ammonium and assimilation to amino acids. In non-leguminous plants especially rice, information on its roles in N metabolism is scarce. Here, we show that OsUPS1 is localized in plasma membranes and are highly expressed in vascular tissues of rice. We further evaluated an activation tagging rice overexpressing OsUPS1 (OsUPS1OX ) under several N regimes. Under normal field conditions, panicles from OsUPS1OX plants (14 days after flowering (DAF)) showed significant allantoin accumulation. Under hydroponic system at the vegetative stage, plants were exposed to N-starvation and measured the ammonium in roots after resupplying with ammonium sulphate. OsUPS1OX plants displayed higher ammonium uptake in roots compared to wild type (WT). When grown under low-N soil supplemented with different N-concentrations, OsUPS1OX exhibited better growth at 50% N showing higher chlorophyll, tiller number and at least 20% increase in shoot and root biomass relative to WT. To further confirm the effects of regulating the expression of OsUPS1, we evaluated whole-body-overexpressing plants driven by the GOS2 promoter (OsUPS1GOS2 ) as well as silencing plants (OsUPS1RNAi ). We found significant accumulation of allantoin in leaves, stems and roots of OsUPS1GOS2 while in OsUPS1RNAi allantoin was significantly accumulated in roots. We propose that OsUPS1 is responsible for allantoin partitioning in rice and its overexpression can support plant growth through accumulation of allantoin in sink tissues which can be utilized when N is limiting.
Collapse
Affiliation(s)
- Mark Christian Felipe R. Redillas
- Graduate School of International Agricultural Technology and Crop BiotechnologyInstitute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
- Present address:
Department of BiologyDe La Salle UniversityManilaPhilippines
| | - Seung Woon Bang
- Graduate School of International Agricultural Technology and Crop BiotechnologyInstitute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| | - Dong‐Keun Lee
- Graduate School of International Agricultural Technology and Crop BiotechnologyInstitute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| | - Youn Shic Kim
- Graduate School of International Agricultural Technology and Crop BiotechnologyInstitute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| | - Harin Jung
- Graduate School of International Agricultural Technology and Crop BiotechnologyInstitute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
- Present address:
NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Pil Joong Chung
- Graduate School of International Agricultural Technology and Crop BiotechnologyInstitute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
- Present address:
Temasek Life Science LaboratoryNational University of SingaporeSingaporeSingapore
| | - Joo‐Won Suh
- Center for Nutraceutical and Pharmaceutical MaterialsDivision of Bioscience and BioinformaticsMyongji UniversityYonginGyeonggiKorea
| | - Ju‐Kon Kim
- Graduate School of International Agricultural Technology and Crop BiotechnologyInstitute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| |
Collapse
|
18
|
Wang Y, Gao Y, Zhang H, Wang H, Liu X, Xu X, Zhang Z, Kohnen MV, Hu K, Wang H, Xi F, Zhao L, Lin C, Gu L. Genome-Wide Profiling of Circular RNAs in the Rapidly Growing Shoots of Moso Bamboo (Phyllostachys edulis). PLANT & CELL PHYSIOLOGY 2019; 60:1354-1373. [PMID: 30835314 DOI: 10.1093/pcp/pcz043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/24/2019] [Indexed: 05/19/2023]
Abstract
Circular RNAs, including circular exonic RNAs (circRNA), circular intronic RNAs (ciRNA) and exon-intron circRNAs (EIciRNAs), are a new type of noncoding RNAs. Growing shoots of moso bamboo (Phyllostachys edulis) represent an excellent model of fast growth and their circular RNAs have not been studied yet. To understand the potential regulation of circular RNAs, we systematically characterized circular RNAs from eight different developmental stages of rapidly growing shoots. Here, we identified 895 circular RNAs including a subset of mutually inclusive circRNA. These circular RNAs were generated from 759 corresponding parental coding genes involved in cellulose, hemicellulose and lignin biosynthetic process. Gene co-expression analysis revealed that hub genes, such as DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 (DRD1), MAINTENANCE OF METHYLATION (MOM), dicer-like 3 (DCL3) and ARGONAUTE 1 (AGO1), were significantly enriched giving rise to circular RNAs. The expression level of these circular RNAs presented correlation with its linear counterpart according to transcriptome sequencing. Further protoplast transformation experiments indicated that overexpressing circ-bHLH93 generating from transcription factor decreased its linear transcript. Finally, the expression profiles suggested that circular RNAs may have interplay with miRNAs to regulate their cognate linear mRNAs, which was further supported by overexpressing miRNA156 decreasing the transcript of circ-TRF-1 and linear transcripts of TRF-1. Taken together, the overall profile of circular RNAs provided new insight into an unexplored category of long noncoding RNA regulation in moso bamboo.
Collapse
Affiliation(s)
- Yongsheng Wang
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yubang Gao
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hangxiao Zhang
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huihui Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuqing Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xi Xu
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zeyu Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Markus V Kohnen
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kaiqiang Hu
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiyuan Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feihu Xi
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangzhen Zhao
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, USA
| | - Lianfeng Gu
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
19
|
Baccolini C, Witte CP. AMP and GMP Catabolism in Arabidopsis Converge on Xanthosine, Which Is Degraded by a Nucleoside Hydrolase Heterocomplex. THE PLANT CELL 2019; 31:734-751. [PMID: 30787180 PMCID: PMC6482636 DOI: 10.1105/tpc.18.00899] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/28/2019] [Accepted: 02/14/2019] [Indexed: 05/17/2023]
Abstract
Plants can fully catabolize purine nucleotides. A firmly established central intermediate is the purine base xanthine. In the current widely accepted model of plant purine nucleotide catabolism, xanthine can be generated in various ways involving either inosine and hypoxanthine or guanosine and xanthosine as intermediates. In a comprehensive mutant analysis involving single and multiple mutants of urate oxidase, xanthine dehydrogenase, nucleoside hydrolases, guanosine deaminase, and hypoxanthine guanine phosphoribosyltransferase, we demonstrate that purine nucleotide catabolism in Arabidopsis (Arabidopsis thaliana) mainly generates xanthosine, but not inosine and hypoxanthine, and that xanthosine is derived from guanosine deamination and a second source, likely xanthosine monophosphate dephosphorylation. Nucleoside hydrolase 1 (NSH1) is known to be essential for xanthosine hydrolysis, but the in vivo function of a second cytosolic nucleoside hydrolase, NSH2, is unclear. We demonstrate that NSH1 activates NSH2 in vitro and in vivo, forming a complex with almost two orders of magnitude higher catalytic efficiency for xanthosine hydrolysis than observed for NSH1 alone. Remarkably, an inactive NSH1 point mutant can activate NSH2 in vivo, fully preventing purine nucleoside accumulation in nsh1 background. Our data lead to an altered model of purine nucleotide catabolism that includes an NSH heterocomplex as a central component.
Collapse
Affiliation(s)
- Chiara Baccolini
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| |
Collapse
|
20
|
Takagi H, Watanabe S, Tanaka S, Matsuura T, Mori IC, Hirayama T, Shimada H, Sakamoto A. Disruption of ureide degradation affects plant growth and development during and after transition from vegetative to reproductive stages. BMC PLANT BIOLOGY 2018; 18:287. [PMID: 30458716 PMCID: PMC6245725 DOI: 10.1186/s12870-018-1491-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/19/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND The ureides allantoin and allantoate are major metabolic intermediates of purine catabolism with high nitrogen-to-carbon ratios. Ureides play a key role in nitrogen utilization in ureide-type legumes, but their effects on growth and development in non-legume plants are poorly understood. Here, we examined the effects of knocking out genes encoding ureide-degrading enzymes, allantoinase (ALN) and allantoate amidohydrolase (AAH), on the vegetative-to-reproductive transition and subsequent growth of Arabidopsis plants. RESULTS The ureide-degradation mutants (aln and aah) showed symptoms similar to those of nitrogen deficiency: early flowering, reduced size at maturity, and decreased fertility. Consistent with these phenotypes, carbon-to-nitrogen ratios and nitrogen-use efficiencies were significantly decreased in ureide-degradation mutants; however, adding nitrogen to irrigation water did not alleviate the reduced growth of these mutants. In addition to nitrogen status, levels of indole-3-acetic acid and gibberellin in five-week-old plants were also affected by the aln mutations. To test the possibility that ureides are remobilized from source to sink organs, we measured ureide levels in various organs. In wild-type plants, allantoate accumulated predominantly in inflorescence stems and siliques; this accumulation was augmented by disruption of its catabolism. Mutants lacking ureide transporters, ureide permeases 1 and 2 (UPS1 and UPS2), exhibited phenotypes similar to those of the ureide-degradation mutants, but had decreased allantoate levels in the reproductive organs. Transcript analysis in wild-type plants suggested that genes involved in allantoate synthesis and ureide transport were coordinately upregulated in senescing leaves. CONCLUSIONS This study demonstrates that ureide degradation plays an important role in supporting healthy growth and development in non-legume Arabidopsis during and after transition from vegetative to reproductive stages.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 Japan
- Present Address: Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108 USA
| | - Shunsuke Watanabe
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 Japan
- Present Address: Center for Sustainable Resource Science, RIKEN, Yokohama, 230-0045 Japan
| | - Shoma Tanaka
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046 Japan
| | - Izumi C. Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046 Japan
| | - Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046 Japan
| | - Hiroshi Shimada
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 Japan
| | - Atsushi Sakamoto
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 Japan
| |
Collapse
|
21
|
Soltabayeva A, Srivastava S, Kurmanbayeva A, Bekturova A, Fluhr R, Sagi M. Early Senescence in Older Leaves of Low Nitrate-Grown Atxdh1 Uncovers a Role for Purine Catabolism in N Supply. PLANT PHYSIOLOGY 2018; 178:1027-1044. [PMID: 30190419 PMCID: PMC6236613 DOI: 10.1104/pp.18.00795] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/25/2018] [Indexed: 05/19/2023]
Abstract
The nitrogen (N)-rich ureides allantoin and allantoate, which are products of purine catabolism, play a role in N delivery in Leguminosae. Here, we examined their role as an N source in nonlegume plants using Arabidopsis (Arabidopsis thaliana) plants mutated in XANTHINE DEHYDROGENASE1 (AtXDH1), a catalytic bottleneck in purine catabolism. Older leaves of the Atxdh1 mutant exhibited early senescence, lower soluble protein, and lower organic N levels as compared with wild-type older leaves when grown with 1 mm nitrate but were comparable to the wild type under 5 mm nitrate. Similar nitrate-dependent senescence phenotypes were evident in the older leaves of allantoinase (Ataln) and allantoate amidohydrolase (Ataah) mutants, which also are impaired in purine catabolism. Under low-nitrate conditions, xanthine accumulated in older leaves of Atxdh1, whereas allantoin accumulated in both older and younger leaves of Ataln but not in wild-type leaves, indicating the remobilization of xanthine-degraded products from older to younger leaves. Supporting this notion, ureide transporter expression was enhanced in older leaves of the wild type in low-nitrate as compared with high-nitrate conditions. Elevated transcripts and proteins of AtXDH and AtAAH were detected in low-nitrate-grown wild-type plants, indicating regulation at protein and transcript levels. The higher nitrate reductase activity in Atxdh1 leaves compared with wild-type leaves indicated a need for nitrate assimilation products. Together, these results indicate that the absence of remobilized purine-degraded N from older leaves of Atxdh1 caused senescence symptoms, a result of higher chloroplastic protein degradation in older leaves of low-nitrate-grown plants.
Collapse
Affiliation(s)
- Aigerim Soltabayeva
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Sudhakar Srivastava
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Assylay Kurmanbayeva
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Aizat Bekturova
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Robert Fluhr
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshe Sagi
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| |
Collapse
|
22
|
Zhang Y, Li W, Lin Y, Zhang L, Wang C, Xu R. Construction of a high-density genetic map and mapping of QTLs for soybean (Glycine max) agronomic and seed quality traits by specific length amplified fragment sequencing. BMC Genomics 2018; 19:641. [PMID: 30157757 PMCID: PMC6116504 DOI: 10.1186/s12864-018-5035-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 08/23/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Soybean is not only an important oil crop, but also an important source of edible protein and industrial raw material. Yield-traits and quality-traits are increasingly attracting the attention of breeders. Therefore, fine mapping the QTLs associated with yield-traits and quality-traits of soybean would be helpful for soybean breeders. In the present study, a high-density linkage map was constructed to identify the QTLs for the yield-traits and quality-traits, using specific length amplified fragment sequencing (SLAF-seq). RESULTS SLAF-seq was performed to screen SLAF markers with 149 F8:11 individuals from a cross between a semi wild soybean, 'Huapidou', and a cultivated soybean, 'Qihuang26', which generated 400.91 M paired-end reads. In total, 53,132 polymorphic SLAF markers were obtained. The genetic linkage map was constructed by 5111 SLAF markers with segregation type of aa×bb. The final map, containing 20 linkage groups (LGs), was 2909.46 cM in length with an average distance of 0.57 cM between adjacent markers. The average coverage for each SLAF marker on the map was 81.26-fold in the male parent, 45.79-fold in the female parent, and 19.84-fold average in each F8:11 individual. According to the high-density map, 35 QTLs for plant height (PH), 100-seeds weight (SW), oil content in seeds (Oil) and protein content in seeds (Protein) were found to be distributed on 17 chromosomes, and 14 novel QTLs were identified for the first time. The physical distance of 11 QTLs was shorter than 100 Kb, suggesting a direct opportunity to find candidate genes. Furthermore, three pairs of epistatic QTLs associated with Protein involving 6 loci on 5 chromosomes were identified. Moreover, 13, 14, 7 and 9 genes, which showed tissue-specific expression patterns, might be associated with PH, SW, Oil and Protein, respectively. CONCLUSIONS With SLAF-sequencing, some novel QTLs and important QTLs for both yield-related and quality traits were identified based on a new, high-density linkage map. Moreover, 43 genes with tissue-specific expression patterns were regarded as potential genes in further study. Our findings might be beneficial to molecular marker-assisted breeding, and could provide detailed information for accurate QTL localization.
Collapse
Affiliation(s)
- Yanwei Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| | - Wei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| | - Yanhui Lin
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| | - Lifeng Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| | - Caijie Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| | - Ran Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250131 China
| |
Collapse
|
23
|
Jemo M, Sulieman S, Bekkaoui F, Olomide OAK, Hashem A, Abd_Allah EF, Alqarawi AA, Tran LSP. Comparative Analysis of the Combined Effects of Different Water and Phosphate Levels on Growth and Biological Nitrogen Fixation of Nine Cowpea Varieties. FRONTIERS IN PLANT SCIENCE 2017; 8:2111. [PMID: 29312379 PMCID: PMC5742256 DOI: 10.3389/fpls.2017.02111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/27/2017] [Indexed: 05/23/2023]
Abstract
Water deficit and phosphate (Pi) deficiency adversely affect growth and biological nitrogen fixation (BNF) of legume crops. In this study, we examined the impact of interaction between soil water conditions and available soil-Pi levels on growth, nodule development and BNF potential of nine cowpea varieties grown on dry savanna soils. In our experimental design, soils with different available soil-Pi levels, i.e., low, moderate, and high soil-Pi levels, collected from various farming fields were used to grow nine cowpea varieties under well-watered and water-deficit conditions. Significant and severe water deficit-damaging effects on BNF, nodulation, growth, levels of plant-nitrogen (N) and -phosphorus (P), as well as shoot relative water content and chlorophyll content of cowpea plants were observed. Under well-watered and high available soil-Pi conditions, cowpea varieties IT07K-304-9 and Dan'Ila exhibited significantly higher BNF potential and dry biomass, as well as plant-N and -P contents compared with other tested ones. Significant genotypic variations among the cowpeas were recorded under low available soil-Pi and water-deficit conditions in terms of the BNF potential. Principal component (PC) analysis revealed that varieties IT04K-339-1, IT07K-188-49, IT07K-304-9, and IT04K-405-5 were associated with PC1, which was better explained by performance for nodulation, plant biomass, plant-N, plant-P, and BNF potential under the combined stress of water deficit and Pi deficiency, thereby offering prospects for development of varieties with high growth and BNF traits that are adaptive to such stress conditions in the region. On another hand, variety Dan'Ila was significantly related to PC2 that was highly explained by the plant shoot/root ratio and chlorophyll content, suggesting the existence of physiological and morphological adjustments to cope with water deficit and Pi deficiency for this particular variety. Additionally, increases in soil-Pi availability led to significant reductions of water-deficit damage on dry biomass, plant-N and -P contents, and BNF potential of cowpea varieties. This finding suggests that integrated nutrient management strategies that allow farmers to access to Pi-based fertilizers may help reduce the damage of adverse water deficit and Pi deficiency caused to cowpea crop in the regions, where soils are predominantly Pi-deficient and drought-prone.
Collapse
Affiliation(s)
- Martin Jemo
- AgroBiosciences Division, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
- Office Chérifien des Phosphates (OCP)-Africa, Casablanca, Morocco
| | - Saad Sulieman
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, Shambat, Sudan
| | - Faouzi Bekkaoui
- AgroBiosciences Division, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz A. Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Signalling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
24
|
Uric acid in plants and microorganisms: Biological applications and genetics - A review. J Adv Res 2017; 8:475-486. [PMID: 28748114 PMCID: PMC5512154 DOI: 10.1016/j.jare.2017.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 11/23/2022] Open
Abstract
Uric acid increased accumulation and/or reduced excretion in human bodies is closely related to pathogenesis of gout and hyperuricemia. It is highly affected by the high intake of food rich in purine. Uric acid is present in both higher plants and microorganisms with species dependent concentration. Urate-degrading enzymes are found both in plants and microorganisms but the mechanisms by which plant degrade uric acid was found to be different among them. Higher plants produce various metabolites which could inhibit xanthine oxidase and xanthine oxidoreductase, so prohibit the oxidation of hypoxanthine to xanthine then to uric acid in the purine metabolism. However, microorganisms produce group of degrading enzymes uricase, allantoinase, allantoicase and urease, which catalyze the degradation of uric acid to the ammonia. In humans, researchers found that several mutations caused a pseudogenization (silencing) of the uricase gene in ancestral apes which exist as an insoluble crystalloid in peroxisomes. This is in contrast to microorganisms in which uricases are soluble and exist either in cytoplasm or peroxisomes. Moreover, many recombinant uricases with higher activity than the wild type uricases could be induced successfully in many microorganisms. The present review deals with the occurrence of uric acid in plants and other organisms specially microorganisms in addition to the mechanisms by which plant extracts, metabolites and enzymes could reduce uric acid in blood. The genetic and genes encoding for uric acid in plants and microorganisms are also presented.
Collapse
|
25
|
Nourimand M, Todd CD. Allantoin Increases Cadmium Tolerance in Arabidopsis via Activation of Antioxidant Mechanisms. PLANT & CELL PHYSIOLOGY 2016; 57:2485-2496. [PMID: 27742885 DOI: 10.1093/pcp/pcw162] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/13/2016] [Indexed: 05/19/2023]
Abstract
Plants apply various molecular, physiological and morphological strategies in response to undesirable environmental conditions. One of the possible responses which may contribute to surviving stressful conditions is the accumulation of ureides. Ureides are recognized as important nitrogen-rich compounds involved in recycling nitrogen in plants to support growth and reproduction. Amongst them, allantoin not only serves as a transportable nitrogen-rich compound, but has also been suggested to protect plants from abiotic stresses via minimizing oxidative damage. This work focuses on the effect of cadmium (Cd) on ureide metabolism in Arabidopsis, in order to clarify the potential role of allantoin in plant tolerance to heavy metals. In response to Cd treatment, allantoin levels increase in Arabidopsis thaliana, ecotype Col-0, due to reduced allantoinase (ALN) gene expression and enzyme activity. This coincides with increases in uricase (UO) transcripts. UO and ALN encode the enzymes for the production and degradation of allantoin, respectively. ALN-negative aln-3 Arabidopsis mutants with elevated allantoin levels demonstrate resistance to soil-applied CdCl2, up to 1,500 μM. Although aln-3 mutants take up and store more Cd within their leaf tissue, they contain less damaging superoxide radicals. The protective mechanism of aln-3 mutants appears to involve enhancing the activity of antioxidant enzymes such as superoxide dismutase and ascorbate peroxidase.
Collapse
Affiliation(s)
- Maryam Nourimand
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Christopher D Todd
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|
26
|
Lescano CI, Martini C, González CA, Desimone M. Allantoin accumulation mediated by allantoinase downregulation and transport by Ureide Permease 5 confers salt stress tolerance to Arabidopsis plants. PLANT MOLECULAR BIOLOGY 2016; 91:581-95. [PMID: 27209043 DOI: 10.1007/s11103-016-0490-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/10/2016] [Indexed: 05/19/2023]
Abstract
Allantoin, a metabolite generated in the purine degradation pathway, was primarily considered an intermediate for recycling of the abundant nitrogen assimilated in plant purines. More specifically, tropical legumes utilize allantoin and allantoic acid as major nodule-to-shoot nitrogen transport compounds. In other species, an increase in allantoin content was observed under different stress conditions, but the underlying molecular mechanisms remain poorly understood. In this work, Arabidopsis thaliana was used as a model system to investigate the effects of salt stress on allantoin metabolism and to know whether its accumulation results in plant protection. Plant seedlings treated with NaCl at different concentrations showed higher allantoin and lower allantoic acid contents. Treatments with NaCl favored the expression of genes involved in allantoin synthesis, but strongly repressed the unique gene encoding allantoinase (AtALN). Due to the potential regulatory role of this gene for allantoin accumulation, AtALN promoter activity was studied using a reporter system. GUS mediated coloration was found in specific plant tissues and was diminished with increasing salt concentrations. Phenotypic analysis of knockout, knockdown and stress-inducible mutants for AtALN revealed that allantoin accumulation is essential for salt stress tolerance. In addition, the possible role of allantoin transport was investigated. The Ureide Permease 5 (UPS5) is expressed in the cortex and endodermis of roots and its transcription is enhanced by salt treatment. Ups5 knockout plants under salt stress presented a susceptible phenotype and altered allantoin root-to-shoot content ratios. Possible roles of allantoin as a protectant compound in oxidative events or signaling are discussed.
Collapse
Affiliation(s)
- Carlos Ignacio Lescano
- Multidisciplinary Institute of Plant Biology, National University of Córdoba, CONICET, FCEFyN, Vélez Sarsfield Av. 299, 5000, Córdoba, Argentina
| | - Carolina Martini
- Multidisciplinary Institute of Plant Biology, National University of Córdoba, CONICET, FCEFyN, Vélez Sarsfield Av. 299, 5000, Córdoba, Argentina
| | - Claudio Alejandro González
- Multidisciplinary Institute of Plant Biology, National University of Córdoba, CONICET, FCEFyN, Vélez Sarsfield Av. 299, 5000, Córdoba, Argentina
| | - Marcelo Desimone
- Multidisciplinary Institute of Plant Biology, National University of Córdoba, CONICET, FCEFyN, Vélez Sarsfield Av. 299, 5000, Córdoba, Argentina.
| |
Collapse
|
27
|
Chen M, Herde M, Witte CP. Of the Nine Cytidine Deaminase-Like Genes in Arabidopsis, Eight Are Pseudogenes and Only One Is Required to Maintain Pyrimidine Homeostasis in Vivo. PLANT PHYSIOLOGY 2016; 171:799-809. [PMID: 27208239 PMCID: PMC4902590 DOI: 10.1104/pp.15.02031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/31/2016] [Indexed: 05/17/2023]
Abstract
CYTIDINE DEAMINASE (CDA) catalyzes the deamination of cytidine to uridine and ammonia in the catabolic route of C nucleotides. The Arabidopsis (Arabidopsis thaliana) CDA gene family comprises nine members, one of which (AtCDA) was shown previously in vitro to encode an active CDA. A possible role in C-to-U RNA editing or in antiviral defense has been discussed for other members. A comprehensive bioinformatic analysis of plant CDA sequences, combined with biochemical functionality tests, strongly suggests that all Arabidopsis CDA family members except AtCDA are pseudogenes and that most plants only require a single CDA gene. Soybean (Glycine max) possesses three CDA genes, but only two encode functional enzymes and just one has very high catalytic efficiency. AtCDA and soybean CDAs are located in the cytosol. The functionality of AtCDA in vivo was demonstrated with loss-of-function mutants accumulating high amounts of cytidine but also CMP, cytosine, and some uridine in seeds. Cytidine hydrolysis in cda mutants is likely caused by NUCLEOSIDE HYDROLASE1 (NSH1) because cytosine accumulation is strongly reduced in a cda nsh1 double mutant. Altered responses of the cda mutants to fluorocytidine and fluorouridine indicate that a dual specific nucleoside kinase is involved in cytidine as well as uridine salvage. CDA mutants display a reduction in rosette size and have fewer leaves compared with the wild type, which is probably not caused by defective pyrimidine catabolism but by the accumulation of pyrimidine catabolism intermediates reaching toxic concentrations.
Collapse
Affiliation(s)
- Mingjia Chen
- Leibniz University Hannover, Institute of Plant Nutrition, Department of Molecular Nutrition and Biochemistry of Plants, 30419 Hannover, Germany
| | - Marco Herde
- Leibniz University Hannover, Institute of Plant Nutrition, Department of Molecular Nutrition and Biochemistry of Plants, 30419 Hannover, Germany
| | - Claus-Peter Witte
- Leibniz University Hannover, Institute of Plant Nutrition, Department of Molecular Nutrition and Biochemistry of Plants, 30419 Hannover, Germany
| |
Collapse
|
28
|
Baral B, Teixeira da Silva JA, Izaguirre-Mayoral ML. Early signaling, synthesis, transport and metabolism of ureides. JOURNAL OF PLANT PHYSIOLOGY 2016; 193:97-109. [PMID: 26967003 DOI: 10.1016/j.jplph.2016.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/04/2015] [Accepted: 01/11/2016] [Indexed: 05/26/2023]
Abstract
The symbiosis between α nitrogen (N2)-fixing Proteobacteria (family Rhizobiaceae) and legumes belonging to the Fabaceae (a single phylogenetic group comprising three subfamilies: Caesalpinioideae, Mimosoideae and Papilionoideae) results in the formation of a novel root structure called a nodule, where atmospheric N2 is fixed into NH3(+). In the determinate type of nodules harbored by Rhizobium-nodulated Fabaceae species, newly synthesized NH3(+) is finally converted into allantoin (C4H6N4O3) and allantoic acid (C4H8N4O4) (ureides) through complex pathways involving at least 20 different enzymes that act synchronously in two types of nodule cells with contrasting ultrastructure, including the tree nodule cell organelles. Newly synthesized ureides are loaded into the network of nodule-root xylem vessels and transported to aerial organs by the transpirational water current. Once inside the leaves, ureides undergo an enzymatically driven reverse process to yield NH4(+) that is used for growth. This supports the role of ureides as key nitrogen (N)-compounds for the growth and yield of legumes nodulated by Rhizobium that grow in soils with a low N content. Thus, a concrete understanding of the mechanisms underlying ureide biogenesis and catabolism in legumes may help agrobiologists to achieve greater agricultural discoveries. In this review we focus on the transmembranal and transorganellar symplastic and apoplastic movement of N-precursors within the nodules, as well as on the occurrence, localization and properties of enzymes and genes involved in the biogenesis and catabolism of ureides. The synthesis and transport of ureides are not unique events in Rhizobium-nodulated N2-fixing legumes. Thus, a brief description of the synthesis and catabolism of ureides in non-legumes was included for comparison. The establishment of the symbiosis, nodule organogenesis and the plant's control of nodule number, synthesis and translocation of ureides via feed-back inhibition mechanisms are also reviewed.
Collapse
Affiliation(s)
- Bikash Baral
- Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, Latokartanonkaari 7, FIN-00014 Helsinki, Finland.
| | | | - Maria Luisa Izaguirre-Mayoral
- Biological Nitrogen Fixation Laboratory, Chemistry Department, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| |
Collapse
|
29
|
Li J, Qin RY, Li H, Xu RF, Yang YC, Ni DH, Ma H, Li L, Wei PC, Yang JB. Low-Temperature-Induced Expression of Rice Ureidoglycolate Amidohydrolase is Mediated by a C-Repeat/Dehydration-Responsive Element that Specifically Interacts with Rice C-Repeat-Binding Factor 3. FRONTIERS IN PLANT SCIENCE 2015; 6:1011. [PMID: 26617632 PMCID: PMC4643140 DOI: 10.3389/fpls.2015.01011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/02/2015] [Indexed: 05/30/2023]
Abstract
Nitrogen recycling and redistribution are important for the environmental stress response of plants. In non-nitrogen-fixing plants, ureide metabolism is crucial to nitrogen recycling from organic sources. Various studies have suggested that the rate-limiting components of ureide metabolism respond to environmental stresses. However, the underlying regulation mechanism is not well understood. In this report, rice ureidoglycolate amidohydrolase (OsUAH), which is a recently identified enzyme catalyzing the final step of ureide degradation, was identified as low-temperature- (LT) but not abscisic acid- (ABA) regulated. To elucidate the LT regulatory mechanism at the transcriptional level, we isolated and characterized the promoter region of OsUAH (P OsUAH ). Series deletions revealed that a minimal region between -522 and -420 relative to the transcriptional start site was sufficient for the cold induction of P OsUAH . Detailed analyses of this 103-bp fragment indicated that a C-repeat/dehydration-responsive (CRT/DRE) element localized at position -434 was essential for LT-responsive expression. A rice C-repeat-binding factors/DRE-binding proteins 1 (CBFs/DREB1s) subfamily member, OsCBF3, was screened to specifically bind to the CRT/DRE element in the minimal region both in yeast one-hybrid assays and in in vitro gel-shift analysis. Moreover, the promoter could be exclusively trans-activated by the interaction between the CRT/DRE element and OsCBF3 in vivo. These findings may help to elucidate the regulation mechanism of stress-responsive ureide metabolism genes and provide an example of the member-specific manipulation of the CBF/DREB1 subfamily.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jian-Bo Yang
- *Correspondence: Peng-Cheng Wei, ; jian-Bo Yang,
| |
Collapse
|
30
|
Ray JD, Dhanapal AP, Singh SK, Hoyos-Villegas V, Smith JR, Purcell LC, King CA, Boykin D, Cregan PB, Song Q, Fritschi FB. Genome-Wide Association Study of Ureide Concentration in Diverse Maturity Group IV Soybean [Glycine max (L.) Merr.] Accessions. G3 (BETHESDA, MD.) 2015; 5:2391-403. [PMID: 26374596 PMCID: PMC4632059 DOI: 10.1534/g3.115.021774] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/08/2015] [Indexed: 01/13/2023]
Abstract
Ureides are the N-rich products of N-fixation that are transported from soybean nodules to the shoot. Ureides are known to accumulate in leaves in response to water-deficit stress, and this has been used to identify genotypes with reduced N-fixation sensitivity to drought. Our objectives in this research were to determine shoot ureide concentrations in 374 Maturity Group IV soybean accessions and to identify genomic regions associated with shoot ureide concentration. The accessions were grown at two locations (Columbia, MO, and Stuttgart, AR) in 2 yr (2009 and 2010) and characterized for ureide concentration at beginning flowering to full bloom. Average shoot ureide concentrations across all four environments (two locations and two years) and 374 accessions ranged from 12.4 to 33.1 µmol g(-1) and were comparable to previously reported values. SNP-ureide associations within and across the four environments were assessed using 33,957 SNPs with a MAF ≥0.03. In total, 53 putative loci on 18 chromosomes were identified as associated with ureide concentration. Two of the putative loci were located near previously reported QTL associated with ureide concentration and 30 loci were located near genes associated with ureide metabolism. The remaining putative loci were not near chromosomal regions previously associated with shoot ureide concentration and may mark new genes involved in ureide metabolism. Ultimately, confirmation of these putative loci will provide new sources of variation for use in soybean breeding programs.
Collapse
Affiliation(s)
- Jeffery D Ray
- Crop Genetics Research Unit, USDA-ARS, Stoneville, Mississippi 38776
| | | | - Shardendu K Singh
- Crop Systems and Global Change Lab, USDA-ARS, Beltsville, Maryland 20705
| | - Valerio Hoyos-Villegas
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824
| | - James R Smith
- Crop Genetics Research Unit, USDA-ARS, Stoneville, Mississippi 38776
| | - Larry C Purcell
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72704
| | - C Andy King
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72704
| | - Debbie Boykin
- Southeast Area Statistics, USDA-ARS, Stoneville, Mississippi 38776
| | - Perry B Cregan
- Soybean Genomics and Improvement Lab, USDA-ARS, Beltsville, Maryland 20705
| | - Qijian Song
- Soybean Genomics and Improvement Lab, USDA-ARS, Beltsville, Maryland 20705
| | - Felix B Fritschi
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
31
|
Díaz-Leal JL, Torralbo F, Antonio Quiles F, Pineda M, Alamillo JM. Molecular and functional characterization of allantoate amidohydrolase from Phaseolus vulgaris. PHYSIOLOGIA PLANTARUM 2014; 152:43-58. [PMID: 24460648 DOI: 10.1111/ppl.12157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Abstract
Allantoate degradation is an essential step for recycling purine-ring nitrogen in all plants, but especially in tropical legumes where the ureides allantoate and allantoin are the main compounds used to store and transport the nitrogen fixed in nodules. Two enzymes, allantoate amidohydrolase (AAH) and allantoate amidinohydrolase (allantoicase), could catalyze allantoate breakdown, although only AAH-coding sequences have been found in plant genomes, whereas allantoicase-related sequences are restricted to animals and some microorganisms. A cDNA for AAH was cloned from Phaseolus vulgaris leaves. PvAAH is a single-copy gene encoding a polypeptide of 483 amino acids that conserves all putative AAH active-site domains. Expression and purification of the cDNA in Nicotiana benthamiana showed that the cloned sequence is a true AAH protein that yields ureidoglycine and ammonia, with a Km of 0.46 mM for allantoate. Optimized in vitro assay, quantitative RT-PCR and antibodies raised to the PvAAH protein were used to study AAH under physiological conditions. PvAAH is ubiquitously expressed in common bean tissues, although the highest transcript levels were found in leaves. In accordance with the mRNA expression levels, the highest PvAAH activity and allantoate concentration also occurred in the leaves. Comparison of transcript levels, protein amounts and enzymatic activity in plants grown with different nitrogen sources and upon drought stress conditions showed that PvAAH is regulated at posttranscriptional level. Moreover, RNAi silencing of AAH expression increases allantoate levels in the transgenic hairy roots, indicating that AAH should be the main enzyme involved in allantoate degradation in common bean.
Collapse
Affiliation(s)
- Juan Luis Díaz-Leal
- Departamento de Botánica, Ecología y Fisiología Vegetal, Campus de Excelencia Internacional Agroalimentario (CEIA3), Campus de Rabanales, Edif. Severo Ochoa, 1a Planta, Universidad de Córdoba, 14071x0, Córdoba, Spain
| | | | | | | | | |
Collapse
|
32
|
Evans LM, Slavov GT, Rodgers-Melnick E, Martin J, Ranjan P, Muchero W, Brunner AM, Schackwitz W, Gunter L, Chen JG, Tuskan GA, DiFazio SP. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nat Genet 2014; 46:1089-96. [DOI: 10.1038/ng.3075] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/30/2014] [Indexed: 12/16/2022]
|
33
|
Hauck OK, Scharnberg J, Escobar NM, Wanner G, Giavalisco P, Witte CP. Uric acid accumulation in an Arabidopsis urate oxidase mutant impairs seedling establishment by blocking peroxisome maintenance. THE PLANT CELL 2014; 26:3090-100. [PMID: 25052714 PMCID: PMC4145134 DOI: 10.1105/tpc.114.124008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/30/2014] [Accepted: 07/04/2014] [Indexed: 05/21/2023]
Abstract
Purine nucleotides can be fully catabolized by plants to recycle nutrients. We have isolated a urate oxidase (uox) mutant of Arabidopsis thaliana that accumulates uric acid in all tissues, especially in the developing embryo. The mutant displays a reduced germination rate and is unable to establish autotrophic growth due to severe inhibition of cotyledon development and nutrient mobilization from the lipid reserves in the cotyledons. The uox mutant phenotype is suppressed in a xanthine dehydrogenase (xdh) uox double mutant, demonstrating that the underlying cause is not the defective purine base catabolism, or the lack of UOX per se, but the elevated uric acid concentration in the embryo. Remarkably, xanthine accumulates to similar levels in the xdh mutant without toxicity. This is paralleled in humans, where hyperuricemia is associated with many diseases whereas xanthinuria is asymptomatic. Searching for the molecular cause of uric acid toxicity, we discovered a local defect of peroxisomes (glyoxysomes) mostly confined to the cotyledons of the mature embryos, which resulted in the accumulation of free fatty acids in dry seeds. The peroxisomal defect explains the developmental phenotypes of the uox mutant, drawing a novel link between uric acid and peroxisome function, which may be relevant beyond plants.
Collapse
Affiliation(s)
- Oliver K Hauck
- Freie Universität Berlin, Dahlem Centre of Plant Sciences, Department of Plant Biochemistry, 14195 Berlin, Germany
| | - Jana Scharnberg
- Freie Universität Berlin, Dahlem Centre of Plant Sciences, Department of Plant Biochemistry, 14195 Berlin, Germany
| | - Nieves Medina Escobar
- Freie Universität Berlin, Dahlem Centre of Plant Sciences, Department of Plant Biochemistry, 14195 Berlin, Germany
| | - Gerhard Wanner
- Biozentrum der Ludwig-Maximillians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Patrick Giavalisco
- Max-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Claus-Peter Witte
- Freie Universität Berlin, Dahlem Centre of Plant Sciences, Department of Plant Biochemistry, 14195 Berlin, Germany
| |
Collapse
|
34
|
Coleto I, Pineda M, Rodiño AP, De Ron AM, Alamillo JM. Comparison of inhibition of N2 fixation and ureide accumulation under water deficit in four common bean genotypes of contrasting drought tolerance. ANNALS OF BOTANY 2014; 113:1071-82. [PMID: 24638821 PMCID: PMC3997645 DOI: 10.1093/aob/mcu029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/12/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Drought is the principal constraint on world production of legume crops. There is considerable variability among genotypes in sensitivity of nitrogen fixation to drought, which has been related to accumulation of ureides in soybean. The aim of this study was to search for genotypic differences in drought sensitivity and ureide accumulation in common bean (Phaseolus vulgaris) germplasm that may be useful in the improvement of tolerance to water deficit in common bean. METHODS Changes in response to water deficit of nitrogen fixation rates, ureide content and the expression and activity of key enzymes for ureide metabolism were measured in four P. vulgaris genotypes differing in drought tolerance. KEY RESULTS A variable degree of drought-induced nitrogen fixation inhibition was found among the bean genotypes. In addition to inhibition of nitrogen fixation, there was accumulation of ureides in stems and leaves of sensitive and tolerant genotypes, although this was higher in the leaves of the most sensitive ones. In contrast, there was no accumulation of ureides in the nodules or roots of stressed plants. In addition, the level of ureides in the most sensitive genotype increased after inhibition of nitrogen fixation, suggesting that ureides originate in vegetative tissues as a response to water stress, probably mediated by the induction of allantoinase. CONCLUSIONS Variability of drought-induced inhibition of nitrogen fixation among the P. vulgaris genotypes was accompanied by subsequent accumulation of ureides in stems and leaves, but not in nodules. The results indicate that shoot ureide accumulation after prolonged exposure to drought could not be the cause of inhibition of nitrogen fixation, as has been suggested in soybean. Instead, ureides seem to be produced as part of a general response to stress, and therefore higher accumulation might correspond to higher sensitivity to the stressful conditions.
Collapse
Affiliation(s)
- I. Coleto
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas del Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus Rabanales, Edif. Severo Ochoa, 1 planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - M. Pineda
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas del Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus Rabanales, Edif. Severo Ochoa, 1 planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - A. P. Rodiño
- Departamento de Recursos Fitogenéticos, Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-CSIC, El Palacio-Salcedo, 36143 Pontevedra, Spain
| | - A. M. De Ron
- Departamento de Recursos Fitogenéticos, Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-CSIC, El Palacio-Salcedo, 36143 Pontevedra, Spain
| | - J. M. Alamillo
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas del Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus Rabanales, Edif. Severo Ochoa, 1 planta, Universidad de Córdoba, 14071 Córdoba, Spain
- For correspondence. E-mail
| |
Collapse
|
35
|
Dahncke K, Witte CP. Plant purine nucleoside catabolism employs a guanosine deaminase required for the generation of xanthosine in Arabidopsis. THE PLANT CELL 2013; 25:4101-9. [PMID: 24130159 PMCID: PMC3877791 DOI: 10.1105/tpc.113.117184] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/19/2013] [Accepted: 09/27/2013] [Indexed: 05/17/2023]
Abstract
Purine nucleotide catabolism is common to most organisms and involves a guanine deaminase to convert guanine to xanthine in animals, invertebrates, and microorganisms. Using metabolomic analysis of mutants, we demonstrate that Arabidopsis thaliana uses an alternative catabolic route employing a highly specific guanosine deaminase (GSDA) not reported from any organism so far. The enzyme is ubiquitously expressed and deaminates exclusively guanosine and 2'-deoxyguanosine but no other aminated purines, pyrimidines, or pterines. GSDA belongs to the cytidine/deoxycytidylate deaminase family of proteins together with a deaminase involved in riboflavin biosynthesis, the chloroplastic tRNA adenosine deaminase Arg and a predicted tRNA-specific adenosine deaminase 2 in A. thaliana. GSDA is conserved in plants, including the moss Physcomitrella patens, but is absent in the algae and outside the plant kingdom. Our data show that xanthosine is exclusively generated through the deamination of guanosine by GSDA in A. thaliana, excluding other possible sources like the dephosphorylation of xanthosine monophosphate. Like the nucleoside hydrolases NUCLEOSIDE HYDROLASE1 (NSH1) and NSH2, GSDA is located in the cytosol, indicating that GMP catabolism to xanthine proceeds in a mostly cytosolic pathway via guanosine and xanthosine. Possible implications for the biosynthetic route of purine alkaloids (caffeine and theobromine) and ureides in other plants are discussed.
Collapse
|