1
|
Rahmati Ishka M, Sussman H, Hu Y, Alqahtani MD, Craft E, Sicat R, Wang M, Yu L, Ait-Haddou R, Li B, Drakakaki G, Nelson ADL, Pineros M, Korte A, Jaremko Ł, Testerink C, Tester M, Julkowska MM. Natural variation in salt-induced changes in root:shoot ratio reveals SR3G as a negative regulator of root suberization and salt resilience in Arabidopsis. eLife 2025; 13:RP98896. [PMID: 40153306 PMCID: PMC11952752 DOI: 10.7554/elife.98896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025] Open
Abstract
Soil salinity is one of the major threats to agricultural productivity worldwide. Salt stress exposure alters root and shoots growth rates, thereby affecting overall plant performance. While past studies have extensively documented the effect of salt stress on root elongation and shoot development separately, here we take an innovative approach by examining the coordination of root and shoot growth under salt stress conditions. Utilizing a newly developed tool for quantifying the root:shoot ratio in agar-grown Arabidopsis seedlings, we found that salt stress results in a loss of coordination between root and shoot growth rates. We identify a specific gene cluster encoding domain-of-unknown-function 247 (DUF247), and characterize one of these genes as Salt Root:shoot Ratio Regulator Gene (SR3G). Further analysis elucidates the role of SR3G as a negative regulator of salt stress tolerance, revealing its function in regulating shoot growth, root suberization, and sodium accumulation. We further characterize that SR3G expression is modulated by WRKY75 transcription factor, known as a positive regulator of salt stress tolerance. Finally, we show that the salt stress sensitivity of wrky75 mutant is completely diminished when it is combined with sr3g mutation. Together, our results demonstrate that utilizing root:shoot ratio as an architectural feature leads to the discovery of a new stress resilience gene. The study's innovative approach and findings not only contribute to our understanding of plant stress tolerance mechanisms but also open new avenues for genetic and agronomic strategies to enhance crop environmental resilience.
Collapse
Affiliation(s)
| | | | - Yunfei Hu
- School of Life Sciences, Lanzhou UniversityLanzhouChina
| | | | | | - Ronell Sicat
- Visualization Core Lab, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Minmin Wang
- University of California, DavisDavisUnited States
| | - Li'ang Yu
- Boyce Thompson InstituteIthacaUnited States
| | - Rachid Ait-Haddou
- Department of Mathematics, King Fahd University of Petroleum and MineralsDhahranSaudi Arabia
| | - Bo Li
- School of Life Sciences, Lanzhou UniversityLanzhouChina
| | | | | | | | - Arthur Korte
- Julius-von-Sachs-Institute and Center for Computational and Theoretical Biology, Julius Maximilian UniversityWuerzburgGermany
| | - Łukasz Jaremko
- King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | | | - Mark Tester
- Center for Desert Agriculture, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Magdalena M Julkowska
- Boyce Thompson InstituteIthacaUnited States
- Center for Desert Agriculture, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| |
Collapse
|
2
|
Wang D, Zheng K, Long W, Zhao L, Li W, Xue X, Han S. Cytosolic and Nucleosolic Calcium-Regulated Long Non-Coding RNAs and Their Target Protein-Coding Genes in Response to Hyperosmolarity and Salt Stresses in Arabidopsis thaliana. Int J Mol Sci 2025; 26:2086. [PMID: 40076708 PMCID: PMC11900983 DOI: 10.3390/ijms26052086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in plant biotic and abiotic stress responses, in which Ca2+ also plays a significant role. There is diversity in the regulation of different gene expressions by cytosolic Ca2+ ([Ca2+]cyt) and nucleosolic Ca2+ ([Ca2+]nuc). However, no studies have yet explored the interrelationship between lncRNAs and calcium signaling, nor how calcium signaling regulates the expression of lncRNAs. Here, we use transgenic materials PV-NES and NLS-PV, which simulate [Ca2+]cyt- and [Ca2+]nuc-deficient mutants, respectively, and wild type (WT) materials in response to hyperosmolarity (250 mM sorbitol) or salt stresses (125 mM NaCl) at different time points to obtain RNA-seq data, respectively. Then, we proceed with the screening of lncRNAs, adding 688 new lncRNAs to the known Arabidopsis lncRNA database. Subsequently, through the analysis of differentially expressed lncRNA genes, it was found that cytosolic or nucleosolic calcium signals have distinct regulatory effects on differentially expressed lncRNAs (DElncRNAs) and differentially expressed protein-coding genes (DEPCGs) treated with high-concentration NaCl and sorbitol at different times. Furthermore, through weighted correlation network analysis (WGCNA), it is discovered that under hyperosmolarity and salt stresses, lncRNA-associated PCGs are related to the cell wall structure, the plasma membrane component, and osmotic substances through trans-regulation. In addition, by screening for cis-regulatory target PCGs of Ca2+-regulated lncRNAs related to osmotic stress, we obtain a series of lncRNA-PCG pairs related to water transport, cell wall components, and lateral root formation. Therefore, we expand the existing Arabidopsis lncRNA database and obtain a series of lncRNAs and PCGs regulated by [Ca2+]cyt or [Ca2+]nuc in response to salt and hyperosmolarity stress, providing a new perspective for subsequent research on lncRNAs. We also explore the trans- and cis-regulated target PCGs of lncRNAs regulated by calcium signaling, providing new insights for further studying salt stress and osmotic stress.
Collapse
Affiliation(s)
- Doudou Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Kaifeng Zheng
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Wenfen Long
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Liang Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Wanjie Li
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Xiuhua Xue
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining 810008, China
| |
Collapse
|
3
|
Hu Y, Wang D, Zhang X, Lv X, Li B. Current progress in deciphering the molecular mechanisms underlying plant salt tolerance. CURRENT OPINION IN PLANT BIOLOGY 2025; 83:102671. [PMID: 39603169 DOI: 10.1016/j.pbi.2024.102671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Enhancing crop salt tolerance through genetics and genomics is important for food security. It is environmentally friendly and cost-effective in maintaining crop production in farmlands affected by soil salinization and can also facilitate the utilization of marginal saline land. Despite the limited success achieved so far, it is becoming possible to bridge the gap between fundamental research and crop breeding owing to a deeper understanding of plant salt tolerance at both physiological and molecular levels. Therefore, we review the recent key progress in identifying the molecular mechanisms contributing to plant salt tolerance with a focus on balancing growth and salt resilience. With the accruing knowledge and the rapidly evolving tools (e.g. genome editing and artificial intelligence), it is reasonable to expect the future salt-tolerant crops in a few decades.
Collapse
Affiliation(s)
- Yunfei Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China; Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Dan Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China; Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Xiaohua Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China; Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Xiaodong Lv
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China; Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Bo Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China; Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China.
| |
Collapse
|
4
|
Zhou S, Walker RR, Edwards EJ. Fine-root and leaf acquisitive traits decoupled from chloride accumulation in reflecting the differential salinity tolerance among Prunus hybrids. FRONTIERS IN PLANT SCIENCE 2025; 15:1502201. [PMID: 39845487 PMCID: PMC11750577 DOI: 10.3389/fpls.2024.1502201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/20/2024] [Indexed: 01/24/2025]
Abstract
Improving crop salinity management requires enhanced understanding of salinity responses of leaf and fine-root traits governing resource acquisition, ideally in relation to ion accumulation at intra- or inter-specific levels. We hypothesized that these responses are coupled towards integrated resource conservation for plants under prolonged salt treatment. We tested the hypothesis with a glasshouse experiment on saplings of six contrasting Prunus hybrids, subjected to either control or salt treatment (reverse osmosis water versus 3.3 dS m-1 chloride solution containing mixed cations). Sample collections were carried out at 30 and at 60 days after the start of treatments. All six hybrids showed significantly higher lamina chloride concentration in response to salt treatment, with GF677 accumulating a lower concentration than the other five hybrids. There was significantly lower specific leaf area (SLA) in 'Monegro' and lower root tissue density (RTD) in 'Nemaguard' after 60 days - but not 30 days - of salt treatment. No hybrid showed concurrent significant decrease of SLA and specific root surface area (SRA) under salt treatment. The a priori known salinity-sensitive hybrid 'Nemaguard' not only showed decreased RTD and a negative relationship between root biomass and salt treatment duration, but also showed increased SRA without notable change of average root diameter. Lamina chloride accumulation and leaf gas exchange response were closely correlated along a gradient towards resource conservation from control to salt-treated plants in all hybrids, which was orthogonal to another gradient characterized by a hybrid-dependent modification of SLA, SRA, RTD and percentage of root length within the finest diameter class. This study highlighted the intraspecific differential resource investment strategies, reflected by the hybrid-specific salinity-response coordination among leaf and fine-root acquisitive traits.
Collapse
|
5
|
Zang F, Wu Q, Li Z, Li L, Xie X, Tong B, Yu S, Liang Z, Chu C, Zang D, Ma Y. RrWRKY1, a Transcription Factor, Is Involved in the Regulation of the Salt Stress Response in Rosa rugosa. PLANTS (BASEL, SWITZERLAND) 2024; 13:2973. [PMID: 39519892 PMCID: PMC11547762 DOI: 10.3390/plants13212973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Salt stress has become a major environmental problem affecting plant growth and development. Some WRKY transcription factors have been reported to be involved in the salt stress response in plants. However, there are few studies on the involvement of WRKYs in the salt stress response in Rosa rugosa. In this study, we isolated a salt tolerance gene, RrWRKY1, from R. rugosa. RrWRKY1 was found to belong to Group I of the WRKY family, and it was specifically expressed in leaves and petals. RrWRKY1 expression was upregulated under NaCl stress in rose leaves. After silencing RrWRKY1 in R. rugosa, transgenic plants showed dry leaves and black and brown veins, indicating sensitivity to salt stress. At the same time, the transcription levels of the salt tolerance-related genes RrNHX1, RrABF2, RrRD22, RrNCED1, and RrHKT1 also changed significantly. The superoxide dismutase (SOD) and peroxidase (POD) activities decreased, the proline content decreased, and the malondialdehyde (MDA) content in the gene-silenced plants increased, indicating that RrWRKY1 regulates the salt tolerance of R. rugosa. In addition, the overexpression of RrWRKY1 in Arabidopsis thaliana improved the germination rate and the average of the main root and lateral root lengths, and the transgenic plants had a larger number of lateral roots than the WT plants under salt stress. This study provides candidate gene resources for salinity tolerance breeding and a theoretical basis for analyzing the salinity tolerance mechanism of the WRKY gene.
Collapse
Affiliation(s)
- Fengqi Zang
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Qichao Wu
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Zhe Li
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Ling Li
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Xiaoman Xie
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Shuhan Yu
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Zhaoan Liang
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Chunxue Chu
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Dekui Zang
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Yan Ma
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
6
|
Zou Y, Gigli-Bisceglia N, van Zelm E, Kokkinopoulou P, Julkowska MM, Besten M, Nguyen TP, Li H, Lamers J, de Zeeuw T, Dongus JA, Zeng Y, Cheng Y, Koevoets IT, Jørgensen B, Giesbers M, Vroom J, Ketelaar T, Petersen BL, Engelsdorf T, Sprakel J, Zhang Y, Testerink C. Arabinosylation of cell wall extensin is required for the directional response to salinity in roots. THE PLANT CELL 2024; 36:3328-3343. [PMID: 38691576 PMCID: PMC11371136 DOI: 10.1093/plcell/koae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Soil salinity is a major contributor to crop yield losses. To improve our understanding of root responses to salinity, we developed and exploited a real-time salt-induced tilting assay. This assay follows root growth upon both gravitropic and salt challenges, revealing that root bending upon tilting is modulated by Na+ ions, but not by osmotic stress. Next, we measured this salt-specific response in 345 natural Arabidopsis (Arabidopsis thaliana) accessions and discovered a genetic locus, encoding the cell wall-modifying enzyme EXTENSIN ARABINOSE DEFICIENT TRANSFERASE (ExAD) that is associated with root bending in the presence of NaCl (hereafter salt). Extensins are a class of structural cell wall glycoproteins known as hydroxyproline (Hyp)-rich glycoproteins, which are posttranslationally modified by O-glycosylation, mostly involving Hyp-arabinosylation. We show that salt-induced ExAD-dependent Hyp-arabinosylation influences root bending responses and cell wall thickness. Roots of exad1 mutant seedlings, which lack Hyp-arabinosylation of extensin, displayed increased thickness of root epidermal cell walls and greater cell wall porosity. They also showed altered gravitropic root bending in salt conditions and a reduced salt-avoidance response. Our results suggest that extensin modification via Hyp-arabinosylation is a unique salt-specific cellular process required for the directional response of roots exposed to salinity.
Collapse
Affiliation(s)
- Yutao Zou
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Plant Cell Biology, Swammerdam Institute for Life Science, Universiteit van Amsterdam, 1090 GE Amsterdam, the Netherlands
| | - Nora Gigli-Bisceglia
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, 3508 TB Utrecht, the Netherlands
| | - Eva van Zelm
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Pinelopi Kokkinopoulou
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | | | - Maarten Besten
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| | - Thu-Phuong Nguyen
- Laboratory of Genetics, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Hongfei Li
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Jasper Lamers
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Thijs de Zeeuw
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Joram A Dongus
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Yuxiao Zeng
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Yu Cheng
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Iko T Koevoets
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- Plant Cell Biology, Swammerdam Institute for Life Science, Universiteit van Amsterdam, 1090 GE Amsterdam, the Netherlands
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Marcel Giesbers
- Wageningen Electron Microscopy Centre, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Jelmer Vroom
- Wageningen Electron Microscopy Centre, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Bent Larsen Petersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Timo Engelsdorf
- Molecular Plant Physiology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
- College of Agriculture, South China Agricultural University, 510642 Guangzhou, China
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
7
|
Juraniec M, Goormaghtigh E, Posmyk MM, Verbruggen N. An ecotype-specific effect of osmopriming and melatonin during salt stress in Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:707. [PMID: 39054444 PMCID: PMC11270801 DOI: 10.1186/s12870-024-05434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Natural populations of Arabidopsis thaliana exhibit phenotypic variations in specific environments and growth conditions. However, this variation has not been explored after seed osmopriming treatments. The natural variation in biomass production and root system architecture (RSA) was investigated across the Arabidopsis thaliana core collection in response to the pre-sawing seed treatments by osmopriming, with and without melatonin (Mel). The goal was to identify and characterize physiologically contrasting ecotypes. RESULTS Variability in RSA parameters in response to PEG-6000 seed osmopriming with and without Mel was observed across Arabidopsis thaliana ecotypes with especially positive impact of Mel addition under both control and 100 mM NaCl stress conditions. Two ecotypes, Can-0 and Kn-0, exhibited contrasted root phenotypes: seed osmopriming with and without Mel reduced the root growth of Can-0 plants while enhancing it in Kn-0 ones under both control and salt stress conditions. To understand the stress responses in these two ecotypes, main stress markers as well as physiological analyses were assessed in shoots and roots. Although the effect of Mel addition was evident in both ecotypes, its protective effect was more pronounced in Kn-0. Antioxidant enzymes were induced by osmopriming with Mel in both ecotypes, but Kn-0 was characterized by a higher responsiveness, especially in the activities of peroxidases in roots. Kn-0 plants experienced lower oxidative stress, and salt-induced ROS accumulation was reduced by osmopriming with Mel. In contrast, Can-0 exhibited lower enzyme activities but the accumulation of proline in its organs was particularly high. In both ecotypes, a greater response of antioxidant enzymes and proline accumulation was observed compared to mechanisms involving the reduction of Na+ content and prevention of K+ efflux. CONCLUSIONS In contrast to Can-0, Kn-0 plants grown from seeds osmoprimed with and without Mel displayed a lower root sensitivity to NaCl-induced oxidative stress. The opposite root growth patterns, enhanced by osmopriming treatments might result from different protective mechanisms employed by these two ecotypes which in turn result from adaptive strategies proper to specific habitats from which Can-0 and Kn-0 originate. The isolation of contrasting phenotypes paves the way for the identification of genetic factors affecting osmopriming efficiency.
Collapse
Affiliation(s)
- Michał Juraniec
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90 237, Poland.
| | - Erik Goormaghtigh
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Faculté des Sciences, Université libre de Bruxelles, Brussels, 1050, Belgium
| | - Małgorzata M Posmyk
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90 237, Poland.
| | - Nathalie Verbruggen
- Laboratoire de Physiologie et de Génétique Moléculaire des Plantes, Faculté des Sciences, Université libre de Bruxelles, Brussels, 1050, Belgium
| |
Collapse
|
8
|
Xu S, Zhao R, Sun J, Sun Y, Xu G, Wang F. Microplastics change soil properties, plant performance, and bacterial communities in salt-affected soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134333. [PMID: 38643581 DOI: 10.1016/j.jhazmat.2024.134333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Microplastics (MPs) are emerging contaminants found globally. However, their effects on soil-plant systems in salt-affected habitats remain unknown. Here, we examined the effects of polyethylene (PE) and polylactic acid (PLA) on soil properties, maize performance, and bacterial communities in soils with different salinity levels. Overall, MPs decreased soil electrical conductivity and increased NH4+-N and NO3--N contents. Adding NaCl alone had promoting and inhibitive effects on plant growth in a concentration-dependent manner. Overall, the addition of 0.2% PLA increased shoot biomass, while 2% PLA decreased it. Salinity increased Na content and decreased K/Na ratio in plant tissues (particularly roots), which were further modified by MPs. NaCl and MPs singly and jointly regulated the expression of functional genes related to salt tolerance in leaves, including ZMSOS1, ZMHKT1, and ZMHAK1. Exposure to NaCl alone had a slight effect on soil bacterial α-diversity, but in most cases, MPs increased ACE, Chao1, and Shannon indexes. Both MPs and NaCl altered bacterial community composition, although the specific effects varied depending on the type and concentration of MPs and the salinity level. Overall, PLA had more pronounced effects on soil-plant systems compared to PE. These findings bridge knowledge gaps in the risks of MPs in salt-affected habitats.
Collapse
Affiliation(s)
- Shuang Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Rong Zhao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Jiao Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China; Shandong Vocational College of Science and Technology, Weifang, Shandong 261000, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Guangjian Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China.
| |
Collapse
|
9
|
Zhu C, Yu H, Lu T, Li Y, Jiang W, Li Q. Deep learning-based association analysis of root image data and cucumber yield. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:696-716. [PMID: 38193347 DOI: 10.1111/tpj.16627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
The root system is important for the absorption of water and nutrients by plants. Cultivating and selecting a root system architecture (RSA) with good adaptability and ultrahigh productivity have become the primary goals of agricultural improvement. Exploring the correlation between the RSA and crop yield is important for cultivating crop varieties with high-stress resistance and productivity. In this study, 277 cucumber varieties were collected for root system image analysis and yield using germination plates and greenhouse cultivation. Deep learning tools were used to train ResNet50 and U-Net models for image classification and segmentation of seedlings and to perform quality inspection and productivity prediction of cucumber seedling root system images. The results showed that U-Net can automatically extract cucumber root systems with high quality (F1_score ≥ 0.95), and the trained ResNet50 can predict cucumber yield grade through seedling root system image, with the highest F1_score reaching 0.86 using 10-day-old seedlings. The root angle had the strongest correlation with yield, and the shallow- and steep-angle frequencies had significant positive and negative correlations with yield, respectively. RSA and nutrient absorption jointly affected the production capacity of cucumber plants. The germination plate planting method and automated root system segmentation model used in this study are convenient for high-throughput phenotypic (HTP) research on root systems. Moreover, using seedling root system images to predict yield grade provides a new method for rapidly breeding high-yield RSA in crops such as cucumbers.
Collapse
Affiliation(s)
- Cuifang Zhu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongjun Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Lu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weijie Jiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Qiang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
10
|
Ahmed HGMD, Zeng Y, Yang X, Faisal A, Fatima N, Ullah A, Hussain GS, Iftikhar M, Anwar MR. Heritability and Genotypic Association Among Seedling Attribute Against Salinity Stress Tolerance in Wheat Genotypes for Sustainable Food Security. JOURNAL OF CROP HEALTH 2024; 76:519-531. [DOI: 10.1007/s10343-023-00965-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/20/2023] [Indexed: 11/07/2024]
|
11
|
Zhang Y, Li Y, de Zeeuw T, Duijts K, Kawa D, Lamers J, Munzert KS, Li H, Zou Y, Meyer AJ, Yan J, Verstappen F, Wang Y, Gijsberts T, Wang J, Gigli-Bisceglia N, Engelsdorf T, van Dijk ADJ, Testerink C. Root branching under high salinity requires auxin-independent modulation of LATERAL ORGAN BOUNDARY DOMAIN 16 function. THE PLANT CELL 2024; 36:899-918. [PMID: 38142228 PMCID: PMC10980347 DOI: 10.1093/plcell/koad317] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/17/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023]
Abstract
Salinity stress constrains lateral root (LR) growth and severely affects plant growth. Auxin signaling regulates LR formation, but the molecular mechanism by which salinity affects root auxin signaling and whether salt induces other pathways that regulate LR development remains unknown. In Arabidopsis thaliana, the auxin-regulated transcription factor LATERAL ORGAN BOUNDARY DOMAIN 16 (LBD16) is an essential player in LR development under control conditions. Here, we show that under high-salt conditions, an alternative pathway regulates LBD16 expression. Salt represses auxin signaling but, in parallel, activates ZINC FINGER OF ARABIDOPSIS THALIANA 6 (ZAT6), a transcriptional activator of LBD16. ZAT6 activates LBD16 expression, thus contributing to downstream cell wall remodeling and promoting LR development under high-salt conditions. Our study thus shows that the integration of auxin-dependent repressive and salt-activated auxin-independent pathways converging on LBD16 modulates root branching under high-salt conditions.
Collapse
Affiliation(s)
- Yanxia Zhang
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
- Plant Cell Biology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
- College of Agriculture, South China Agricultural University, 510642 Guangzhou, China
| | - Yiyun Li
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Thijs de Zeeuw
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Kilian Duijts
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Dorota Kawa
- Plant Cell Biology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Jasper Lamers
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Kristina S Munzert
- Molecular Plant Physiology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Hongfei Li
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Yutao Zou
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - A Jessica Meyer
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Jinxuan Yan
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Francel Verstappen
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Yixuan Wang
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Tom Gijsberts
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Jielin Wang
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Nora Gigli-Bisceglia
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Timo Engelsdorf
- Molecular Plant Physiology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
12
|
Obrecht A, Paneque M. Unraveling the Role of AtSRT2 in Energy Metabolism, Stress Responses, and Gene Expression during Osmotic Stress in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:711. [PMID: 38475557 DOI: 10.3390/plants13050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Sirtuins participate in chromatin remodeling and gene expression regulation during stress responses. They are the only deacetylases that couple the cellular NAD+-dependent energy metabolism with transcriptional regulation. They catalyze the production of nicotinamide, inhibiting sirtuin 2 (SIR2) activity in vivo. The SIR2 homolog, AtSRT2, deacetylates non-histone proteins associated with mitochondrial energy metabolism. To date, AtSRT2 mechanisms during stress responses in Arabidopsis thaliana remain unclear. The transduction of mitochondrial metabolic signals links the energy status to transcriptional regulation, growth, and stress responses. These signals induce changes by regulating nuclear gene expression. The present study aimed to determine the role of SRT2 and its product nicotinamide in the development of A. thaliana and the expression of osmotic stress-response genes. Leaf development was greater in srt2+ plants than in the wild type, indicating that SET2 plays a role in energy metabolism. Treatment with polyethylene glycol activated and inhibited gene expression in srt2- and srt2+ lines, respectively. Therefore, we concluded that SRT2-stimulated plant growth and repressed signaling are associated with osmotic stress.
Collapse
Affiliation(s)
- Alberto Obrecht
- Doctoral Program in Biotechnology, Universidad de Santiago de Chile, Av. Lib. Bdo. O'Higgins 3363, Estación Central, Santiago 9170022, Chile
- Department of Environmental Sciences and Natural Resources, Faculty of Agricultural Sciences, University of Chile, Santa Rosa 11.315, La Pintana, Santiago 8820808, Chile
| | - Manuel Paneque
- Department of Environmental Sciences and Natural Resources, Faculty of Agricultural Sciences, University of Chile, Santa Rosa 11.315, La Pintana, Santiago 8820808, Chile
| |
Collapse
|
13
|
Zhou H, Shi H, Yang Y, Feng X, Chen X, Xiao F, Lin H, Guo Y. Insights into plant salt stress signaling and tolerance. J Genet Genomics 2024; 51:16-34. [PMID: 37647984 DOI: 10.1016/j.jgg.2023.08.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Soil salinization is an essential environmental stressor, threatening agricultural yield and ecological security worldwide. Saline soils accumulate excessive soluble salts which are detrimental to most plants by limiting plant growth and productivity. It is of great necessity for plants to efficiently deal with the adverse effects caused by salt stress for survival and successful reproduction. Multiple determinants of salt tolerance have been identified in plants, and the cellular and physiological mechanisms of plant salt response and adaption have been intensely characterized. Plants respond to salt stress signals and rapidly initiate signaling pathways to re-establish cellular homeostasis with adjusted growth and cellular metabolism. This review summarizes the advances in salt stress perception, signaling, and response in plants. A better understanding of plant salt resistance will contribute to improving crop performance under saline conditions using multiple engineering approaches. The rhizosphere microbiome-mediated plant salt tolerance as well as chemical priming for enhanced plant salt resistance are also discussed in this review.
Collapse
Affiliation(s)
- Huapeng Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Haifan Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China
| | - Xixian Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xi Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Liu L, Li X, Wang C, Ni Y, Liu X. The Role of Chloride Channels in Plant Responses to NaCl. Int J Mol Sci 2023; 25:19. [PMID: 38203189 PMCID: PMC10778697 DOI: 10.3390/ijms25010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Chloride (Cl-) is considered a crucial nutrient for plant growth, but it can be a challenge under saline conditions. Excessive accumulation of Cl- in leaves can cause toxicity. Chloride channels (CLCs) are expressed in the inner membranes of plant cells and function as essential Cl- exchangers or channels. In response to salt stress in plants, CLCs play a crucial role, and CLC proteins assist in maintaining the intracellular Cl- homeostasis by sequestering Cl- into vacuoles. Sodium chloride (NaCl) is the primary substance responsible for causing salt-induced phytotoxicity. However, research on plant responses to Cl- stress is comparatively rare, in contrast to that emphasizing Na+. This review provides a comprehensive overview of the plant response and tolerance to Cl- stress, specifically focusing on comparative analysis of CLC protein structures in different species. Additionally, to further gain insights into the underlying mechanisms, the study summarizes the identified CLC genes that respond to salt stress. This review provides a comprehensive overview of the response of CLCs in terrestrial plants to salt stress and their biological functions, aiming to gain further insights into the mechanisms underlying the response of CLCs in plants to salt stress.
Collapse
Affiliation(s)
- Lulu Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.L.); (C.W.); (Y.N.)
| | - Xiaofei Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.L.); (C.W.); (Y.N.)
| | - Chao Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.L.); (C.W.); (Y.N.)
| | - Yuxin Ni
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.L.); (C.W.); (Y.N.)
| | - Xunyan Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.L.); (C.W.); (Y.N.)
| |
Collapse
|
15
|
Nouman W, Gull T, Shaheen M, Gul R. Hormesis management of Moringa oleifera with exogenous application of plant growth regulators under saline conditions. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:947-963. [PMID: 38013429 DOI: 10.1080/15226514.2023.2285846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The study investigated the adaptability of Moringa oleifera to saline conditions, focusing on its hormesis behavior. It also examined how various plant growth regulators affected growth, physiological parameters, and bioactive compounds of moringa. In the first phase, different NaCl stress levels (0, 50, 100, 150, 200, and 250 mM) were applied. Notably, significant stimulation was observed at 100 mM stress for growth, total phenolics, total flavonoids and total chlorophyll content while 150 mM stress had a marked inhibitory effect, with survival decreasing at 200 and 250 mM NaCl levels. A 38% reduction in root attributes and shoot length, along with a 55% decrease in leaf score, was observed at 150 mM stress. Total phenolics showed a positive correlation with growth attributes. In the second phase, moringa plants grown under 50, 100, and 150 mM NaCl stress were treated with various plant growth regulators, including cytokinin (50 mg L-1), thiourea (5 mM), bezyl amino purine (BAP @50 mg L-1), salicylic acid (50 mg L-1), hydrogen peroxide (H2O2@120 μM), or ascorbic acid (50 mg L-1) to mitigate adverse effects of salinity. Cytokinin, BAP, and salicylic acid applications improved salinity tolerance, enhancing enzymatic, and non-enzymatic antioxidants, and the abundance of kaempferol, quercetin, hydroxybenzoic, and hydroxycinnamic acids. Pearson correlation and principal component analysis manifested relationships among growth parameters, antioxidant activities, flavonoids, and phenolic acids. This study provides new insights into hormesis management for moringa plants and the influence of plant growth regulators on flavonoids and phenolic acid levels in moringa leaves under saline conditions.
Collapse
Affiliation(s)
- Wasif Nouman
- Department of Forestry and Range Management, Bahauddin Zakariya University, Multan, Pakistan
- Times Institute, Multan, Pakistan
| | - Tehseen Gull
- Department of Chemistry, Times Institute, Multan, Pakistan
| | - Mehak Shaheen
- Department of Forestry, Range and Wildlife, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Rehman Gul
- Soil and Water Testing Laboratory for Research, Lahore, Pakistan
| |
Collapse
|
16
|
Okooboh GO, Haferkamp I, Rühle T, Leister D, Neuhaus HE. Expression of the plastocyanin gene PETE2 in Camelina sativa improves seed yield and salt tolerance. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154103. [PMID: 37788546 DOI: 10.1016/j.jplph.2023.154103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Plastocyanin functions as an electron carrier in the photosynthetic electron transport chain, located at the thylakoid membrane. In several species, endogenous plastocyanin levels are correlated with the photosynthetic electron transport rate. Overexpression of plastocyanin genes in Arabidopsis thaliana increases plant size, but this phenomenon has not been observed in crop species. Here, we investigated the effects of heterologous expression of a gene encoding a plastocyanin isoform from Arabidopsis, AtPETE2, in the oil seed crop Camelina sativa under standard growth conditions and under salt stress. AtPETE2 heterologous expression enhanced photosynthetic activity in Camelina, accelerating plant development and improving seed yield under standard growth conditions. Additionally, CsPETE2 from Camelina was induced by salt stress and AtPETE2 expression lines had larger primary roots and more lateral roots than the wild type. AtPETE2 expression lines also had larger seeds and higher total seed yield under long-term salt stress compared with non-transgenic Camelina. Our results demonstrate that increased plastocyanin levels in Camelina can enhance photosynthesis and productivity, as well as tolerance to osmotic and salt stresses. Heterologous expression of plastocyanin may be a useful strategy to mitigate crop stress in saline soils.
Collapse
Affiliation(s)
- Gloria O Okooboh
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653, Kaiserslautern, Germany
| | - Ilka Haferkamp
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653, Kaiserslautern, Germany
| | - Thilo Rühle
- Department of Biology I, Molecular Plant Biology, Ludwig-Maximilians University of Munich, D-82152, Planegg, Martinsried, Germany
| | - Dario Leister
- Department of Biology I, Molecular Plant Biology, Ludwig-Maximilians University of Munich, D-82152, Planegg, Martinsried, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653, Kaiserslautern, Germany.
| |
Collapse
|
17
|
Ageyeva MN, Zdobnova TA, Nazarova MS, Raldugina GN, Beliaev DV, Vodeneev VA, Brilkina AA. The Morphological Parameters and Cytosolic pH of Cells of Root Zones in Tobacco Plants ( Nicotiana tabacum L.): Nonlinear Effects of NaCl Concentrations. PLANTS (BASEL, SWITZERLAND) 2023; 12:3708. [PMID: 37960064 PMCID: PMC10648452 DOI: 10.3390/plants12213708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Salinity impacts important processes in plants, reducing their yield. The effect of salinity on the cytosolic pH (pHcyt) has been little studied. In this research, we employed transgenic tobacco plants expressing the pH sensor Pt-GFP to investigate the alterations in pHcyt in cells across various root zones. Furthermore, we examined a wide spectrum of NaCl concentrations (ranging from 0 to 150 mM) and assessed morphological parameters and plant development. Our findings revealed a pattern of cytosolic acidification in cells across all root zones at lower NaCl concentrations (50, 100 mM). Interestingly, at 150 mM NaCl, pHcyt levels either increased or returned to normal, indicating a nonlinear effect of salinity on pHcyt. Most studied parameters related to development and morphology exhibited an inhibitory influence in response to NaCl. Notably, a nonlinear relationship was observed in the cell length within the elongation and differentiation zones. While cell elongation occurred at 50 and 100 mM NaCl, it was not evident at 150 mM NaCl. This suggests a complex interplay between stimulating and inhibitory effects of salinity, contributing to the nonlinear relationship observed between pHcyt, cell length, and NaCl concentration.
Collapse
Affiliation(s)
- Maria N. Ageyeva
- Department of Biochemistry and Biotechnology, National Research Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (M.S.N.); (A.A.B.)
| | - Tatiana A. Zdobnova
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (T.A.Z.); (V.A.V.)
| | - Mariia S. Nazarova
- Department of Biochemistry and Biotechnology, National Research Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (M.S.N.); (A.A.B.)
| | - Galina N. Raldugina
- Laboratory of Ion Transport and Salinity Resistance, K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia;
| | - Denis V. Beliaev
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia;
| | - Vladimir A. Vodeneev
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (T.A.Z.); (V.A.V.)
| | - Anna A. Brilkina
- Department of Biochemistry and Biotechnology, National Research Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (M.S.N.); (A.A.B.)
| |
Collapse
|
18
|
Rahmati Ishka M, Julkowska M. Tapping into the plasticity of plant architecture for increased stress resilience. F1000Res 2023; 12:1257. [PMID: 38434638 PMCID: PMC10905174 DOI: 10.12688/f1000research.140649.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 03/05/2024] Open
Abstract
Plant architecture develops post-embryonically and emerges from a dialogue between the developmental signals and environmental cues. Length and branching of the vegetative and reproductive tissues were the focus of improvement of plant performance from the early days of plant breeding. Current breeding priorities are changing, as we need to prioritize plant productivity under increasingly challenging environmental conditions. While it has been widely recognized that plant architecture changes in response to the environment, its contribution to plant productivity in the changing climate remains to be fully explored. This review will summarize prior discoveries of genetic control of plant architecture traits and their effect on plant performance under environmental stress. We review new tools in phenotyping that will guide future discoveries of genes contributing to plant architecture, its plasticity, and its contributions to stress resilience. Subsequently, we provide a perspective into how integrating the study of new species, modern phenotyping techniques, and modeling can lead to discovering new genetic targets underlying the plasticity of plant architecture and stress resilience. Altogether, this review provides a new perspective on the plasticity of plant architecture and how it can be harnessed for increased performance under environmental stress.
Collapse
|
19
|
Hu Y, Zeng L, Lv X, Guo J, Li X, Zhang X, Wang D, Wang J, Bi J, Julkowska MM, Li B. NIGT1.4 maintains primary root elongation in response to salt stress through induction of ERF1 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:173-186. [PMID: 37366219 DOI: 10.1111/tpj.16369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Plants employ various molecular mechanisms to maintain primary root elongation upon salt stress. Identification of key functional genes, therein, is important for improving crop salt tolerance. Through analyzing natural variation of the primary root length of Arabidopsis natural population under salt stress, we identified NIGT1.4, encoding an MYB transcription factor, as a novel contributor to maintained root growth under salt stress. Using both T-DNA knockout and functional complementation, NIGT1.4 was confirmed to have a role in promoting primary root growth in response to salt stress. The expression of NIGT1.4 in the root was shown induced by NaCl treatments in an ABA-dependent manner. SnRK2.2 and 2.3 were shown to interact with and phosphorylate NIGT1.4 individually. The growth of the primary root of snrk2.2/2.3/2.6 triple mutant was shown sensitive to salt stress, which was similar to nigt1.4 plants. Using DNA affinity purification sequencing, ERF1, a known positive regulator for primary root elongation and salt tolerance, was identified as a target gene for NIGT1.4. The transcriptional induction of ERF1 by salt stress was shown absent in nigt1.4 background. NIGT1.4 was also confirmed to bind to the promoter region of ERF1 by yeast one-hybrid experiment and to induce the expression of ERF1 by dual-luciferase analysis. All data support the notion that salt- and ABA-elicited NIGT1.4 induces the expression of ERF1 to regulate downstream functional genes that contribute to maintained primary root elongation. NIGT1.4-ERF1, therefore, acts as a signaling node linking regulators for stress resilience and root growth, providing new insights for breeding salt-tolerant crops.
Collapse
Affiliation(s)
- Yunfei Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Li Zeng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Xiaodong Lv
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Junhua Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Xiaoyan Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Xiaohua Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Dan Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Jingya Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Jinlong Bi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | | | - Bo Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| |
Collapse
|
20
|
Shao J, Tang W, Huang K, Ding C, Wang H, Zhang W, Li R, Aamer M, Hassan MU, Elnour RO, Hashem M, Huang G, Qari SH. How Does Zinc Improve Salinity Tolerance? Mechanisms and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2023; 12:3207. [PMID: 37765371 PMCID: PMC10534951 DOI: 10.3390/plants12183207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Salinity stress (SS) is a serious abiotic stress and a major constraint to agricultural productivity across the globe. High SS negatively affects plant growth and yield by altering soil physio-chemical properties and plant physiological, biochemical, and molecular processes. The application of micronutrients is considered an important practice to mitigate the adverse effects of SS. Zinc (Zn) is an important nutrient that plays an imperative role in plant growth, and it could also help alleviate the effects of salt stress. Zn application improves seed germination, seedling growth, water uptake, plant water relations, nutrient uptake, and nutrient homeostasis, therefore improving plant performance and saline conditions. Zn application also protects the photosynthetic apparatus from salinity-induced oxidative stress and improves stomata movement, chlorophyll synthesis, carbon fixation, and osmolytes and hormone accumulation. Moreover, Zn application also increases the synthesis of secondary metabolites and the expression of stress responsive genes and stimulates antioxidant activities to counter the toxic effects of salt stress. Therefore, to better understand the role of Zn in plants under SS, we have discussed the various mechanisms by which Zn induces salinity tolerance in plants. We have also identified diverse research gaps that must be filled in future research programs. The present review article will fill the knowledge gaps on the role of Zn in mitigating salinity stress. This review will also help readers to learn more about the role of Zn and will provide new suggestions on how this knowledge can be used to develop salt tolerance in plants by using Zn.
Collapse
Affiliation(s)
- Jinhua Shao
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Wei Tang
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
| | - Kai Huang
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
| | - Can Ding
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
| | - Haocheng Wang
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Wenlong Zhang
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning 530023, China; (J.S.); (W.T.); (K.H.); (C.D.); (W.Z.)
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Ronghui Li
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
| | - Muhammad Aamer
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Rehab O. Elnour
- Biology Department, Faculty of Sciences and Arts, King Khalid University, Dahran Al-Janoub, Abha 64353, Saudi Arabia;
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Guoqin Huang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.); (G.H.)
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| |
Collapse
|
21
|
Do BH, Hiep NT, Lao TD, Nguyen NH. Loss-of-Function Mutation of ACTIN-RELATED PROTEIN 6 (ARP6) Impairs Root Growth in Response to Salinity Stress. Mol Biotechnol 2023; 65:1414-1420. [PMID: 36627550 DOI: 10.1007/s12033-023-00653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
H2A.Z-containing nucleosomes have been found to function in various developmental programs in Arabidopsis (e.g., floral transition, warm ambient temperature, and drought stress responses). The SWI2/SNF2-Related 1 Chromatin Remodeling (SWR1) complex is known to control the deposition of H2A.Z, and it has been unraveled that ACTIN-RELATED PROTEIN 6 (ARP6) is one component of this SWR1 complex. Previous studies showed that the arp6 mutant exhibited some distinguished phenotypes such as early flowering, leaf serration, elongated hypocotyl, and reduced seed germination rate in response to osmotic stress. In this study, we aimed to investigate the changes of arp6 mutant when the plants were grown in salt stress condition. The phenotypic observation showed that the arp6 mutant was more sensitive to salt stress than the wild type. Upon salt stress condition, this mutant exhibited attenuated root phenotypes such as shorter primary root length and fewer lateral root numbers. The transcript levels of stress-responsive genes, ABA INSENSITIVE 1 (ABI1) and ABI2, were found to be impaired in the arp6 mutant in comparison with wild-type plants in response to salt stress. In addition, a meta-analysis of published data indicated a number of genes involved in auxin response were induced in arp6 mutant grown in non-stress condition. These imply that the loss of H2A.Z balance (in arp6 mutant) may lead to change stress and auxin responses resulting in alternative root morphogenesis upon both normal and salinity stress conditions.
Collapse
Affiliation(s)
- Bich Hang Do
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | | - Thuan Duc Lao
- Faculty of Biotechnology, Ho Chi Minh City Open University, 97 Vo Van Tan Street, District 3, Ho Chi Minh, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, 97 Vo Van Tan Street, District 3, Ho Chi Minh, Vietnam.
| |
Collapse
|
22
|
Liu X, Yu X, Shi Y, Ma L, Fu Y, Guo Y. Phosphorylation of RhoGDI1, a Rho GDP dissociation inhibitor, regulates root hair development in Arabidopsis under salt stress. Proc Natl Acad Sci U S A 2023; 120:e2217957120. [PMID: 37590409 PMCID: PMC10450838 DOI: 10.1073/pnas.2217957120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/07/2023] [Indexed: 08/19/2023] Open
Abstract
To ensure optimal growth, plants actively regulate their growth and development based on environmental changes. Among these, salt stress significantly influences growth and yield. In this study, we demonstrate that the growth of root hairs of salt-stressed Arabidopsis thaliana seedlings is regulated by the SALT OVERLY SENSITIVE 2 (SOS2)-GUANOSINE NUCLEOTIDE DIPHOSPHATE DISSOCIATION INHIBITOR 1 (RhoGDI1)-Rho GTPASE OF PLANTS 2 (ROP2) module. We show here that the kinase SOS2 is activated by salt stress and subsequently phosphorylates RhoGDI1, a root hair regulator, thereby decreasing its stability. This change in RhoGDI1 abundance resulted in a fine-tuning of polar localization of ROP2 and root hair initiation followed by polar growth, demonstrating how SOS2-regulated root hair development is critical for plant growth under salt stress. Our results reveal how a tissue-specific response to salt stress balances the relationship of salt resistance and basic growth.
Collapse
Affiliation(s)
- Xiangning Liu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Xiang Yu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Yue Shi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Ying Fu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing100193, China
| |
Collapse
|
23
|
Zhang X, Wang H, Yang M, Liu R, Zhang X, Jia Z, Li P. Natural variation in ZmNAC087 contributes to total root length regulation in maize seedlings under salt stress. BMC PLANT BIOLOGY 2023; 23:392. [PMID: 37580686 PMCID: PMC10424409 DOI: 10.1186/s12870-023-04393-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Soil salinity poses a significant challenge to crop growth and productivity, particularly affecting the root system, which is vital for water and nutrient uptake. To identify genetic factors that influence root elongation in stressful environments, we conducted a genome-wide association study (GWAS) to investigate the natural variation associated with total root length (TRL) under salt stress and normal conditions in maize seedlings. Our study identified 69 genetic variants associated with 38 candidate genes, among which a specific single nucleotide polymorphism (SNP) in ZmNAC087 was significantly associated with TRL under salt stress. Transient expression and transactivation assays revealed that ZmNAC087 encodes a nuclear-localized protein with transactivation activity. Further candidate gene association analysis showed that non-coding variations in ZmNAC087 promoter contribute to differential ZmNAC087 expression among maize inbred lines, potentially influencing the variation in salt-regulated TRL. In addition, through nucleotide diversity analysis, neutrality tests, and coalescent simulation, we demonstrated that ZmNAC087 underwent selection during maize domestication and improvement. These findings highlight the significance of natural variation in ZmNAC087, particularly the favorable allele, in maize salt tolerance, providing theoretical basis and valuable genetic resources for the development of salt-tolerant maize germplasm.
Collapse
Affiliation(s)
- Xiaomin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| | - Houmiao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Mengling Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Runxiao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhongtao Jia
- State Key Laboratory of Nutrient Use and Management (SKL-NUM), College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
24
|
van Zelm E, Bugallo-Alfageme S, Behrouzi P, Meyer AJ, Testerink C, Gommers CMM. Natural variation in salt-induced root growth phases and their contribution to root architecture plasticity. PLANT, CELL & ENVIRONMENT 2023; 46:2174-2186. [PMID: 36912402 DOI: 10.1111/pce.14583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/14/2023] [Accepted: 03/10/2023] [Indexed: 06/08/2023]
Abstract
The root system architecture of a plant changes during salt stress exposure. Different accessions of Arabidopsis thaliana have adopted different strategies in remodelling their root architecture during salt stress. Salt induces a multiphase growth response in roots, consisting of a stop phase, quiescent phase, recovery phase and eventually a new level of homoeostasis. We explored natural variation in the length of and growth rate during these phases in both main and lateral roots and find that some accessions lack the quiescent phase. Using mathematical models and correlation-based network, allowed us to correlate dynamic traits to overall root architecture and discover that both the main root growth rate during homoeostasis and lateral root appearance are the strongest determinants of overall root architecture. In addition, this approach revealed a trade-off between investing in main or lateral root length during salt stress. By studying natural variation in high-resolution temporal root growth using mathematical modelling, we gained new insights in the interactions between dynamic root growth traits and we identified key traits that modulate overall root architecture during salt stress.
Collapse
Affiliation(s)
- Eva van Zelm
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Silvia Bugallo-Alfageme
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Pariya Behrouzi
- Mathematical-Statistical Method Group, Wageningen University & Research, Wageningen, The Netherlands
| | - A Jessica Meyer
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Charlotte M M Gommers
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
25
|
Feng X, Li S, Meng D, Di Q, Zhou M, Yu X, He C, Yan Y, Wang J, Sun M, Li Y. CsBPC2 is a key regulator of root growth and development. PHYSIOLOGIA PLANTARUM 2023; 175:e13977. [PMID: 37616013 DOI: 10.1111/ppl.13977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 08/25/2023]
Abstract
BASIC PENTACYSTEINE (BPCs) transcription factors are important regulators of plant growth and development. However, the regulatory mechanism of BPC2 in roots remains unclear. In our previous study, we created Csbpc2 cucumber mutants by the CRISPR/Cas9 system, and our studies on the phenotype of Csbpc2 mutants showed that the root growth was inhibited compared with wide-type (WT). Moreover, the surface area, volume and number of roots decreased significantly, with root system architecture changing from dichotomous branching to herringbone branching. Compared with WT, the leaf growth of the Csbpc2 mutants was not affected. However, the palisade and spongy tissue were significantly thinner, which was not beneficial for photosynthesis. The metabolome of root exudates showed that compared with WT, amino acids and their derivatives were significantly decreased, and the enriched pathways were mainly regulated by amino acids and their derivatives, indicating that knockout of CsBPC2 mainly affected the amino acid content in root exudates. Importantly, transcriptome analysis showed that knockout of CsBPC2 mainly affected root gene expression. Knockout of CsBPC2 significantly reduced the gene expression of gibberellins synthesis. However, the expression of genes related to amino acid synthesis, nitrogen fixation and PSII-related photosynthesis increased significantly, which may be due to the effect of knocking out CsBPC2 on gibberellins synthesis, resulting in the inhibition of seedling growth, thus forming negative feedback regulation. Generally, we showed for the first time that BPC2 is a key regulator gene of root growth and development, laying the foundation for future mechanisms of BPC2 regulation in roots.
Collapse
Affiliation(s)
- Xiaojie Feng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuzhen Li
- Ganzhou Key Laboratory of Greenhouse Vegetable, College of Life Science, Gannan Normal University, Ganzhou, China
| | - Di Meng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinghua Di
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengdi Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianchang Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaoxing He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Yan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mintao Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yansu Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
Zhang M, Qin S, Yan J, Li L, Xu M, Liu Y, Zhang W. Genome-wide identification and analysis of TCP family genes in Medicago sativa reveal their critical roles in Na +/K + homeostasis. BMC PLANT BIOLOGY 2023; 23:301. [PMID: 37280506 DOI: 10.1186/s12870-023-04318-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Medicago sativa is the most important forage world widely, and is characterized by high quality and large biomass. While abiotic factors such as salt stress can negatively impact the growth and productivity of alfalfa. Maintaining Na+/K+ homeostasis in the cytoplasm helps reduce cell damage and nutritional deprivation, which increases a salt-tolerance of plant. Teosinte Branched1/ Cycloidea/ Proliferating cell factors (TCP) family genes, a group of plant-specific transcription factors (TFs), involved in regulating plant growth and development and abiotic stresses. Recent studies have shown TCPs control the Na+/K+ concentration of plants during salt stress. In order to improve alfalfa salt tolerance, it is important to identify alfalfa TCP genes and investigate if and how they regulate alfalfa Na+/K+ homeostasis. RESULTS Seventy-one MsTCPs including 23 non-redundant TCP genes were identified in the database of alfalfa genome (C.V XinJiangDaYe), they were classified into class I PCF (37 members) and class II: CIN (28 members) and CYC/TB1 (9 members). Their distribution on chromosome were unequally. MsTCPs belonging to PCF were expressed specifically in different organs without regularity, which belonging to CIN class were mainly expressed in mature leaves. MsTCPs belongs to CYC/TB1 clade had the highest expression level at meristem. Cis-elements in the promoter of MsTCPs were also predicted, the results indicated that most of the MsTCPs will be induced by phytohormone and stress treatments, especially by ABA-related stimulus including salinity stress. We found 20 out of 23 MsTCPs were up-regulated in 200 mM NaCl treatment, and MsTCP3/14/15/18 were significantly induced by 10 μM KCl, a K+ deficiency treatment. Fourteen non-redundant MsTCPs contained miR319 target site, 11 of them were upregulated in MIM319 transgenic alfalfa, and among them four (MsTCP3/4/10A/B) genes were directly degraded by miR319. MIM319 transgene alfalfa plants showed a salt sensitive phenotype, which caused by a lower content of potassium in alfalfa at least partly. The expression of potassium transported related genes showed significantly higher expression in MIM319 plants. CONCLUSIONS We systematically analyzes the MsTCP gene family at a genome-wide level and reported that miR319-TCPs model played a function in K+ up-taking and/ or transportation especially in salt stress. The study provide valuable information for future study of TCP genes in alfalfa and supplies candidate genes for salt-tolerance alfalfa molecular-assisted breeding.
Collapse
Affiliation(s)
- Mingxiao Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shangqian Qin
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianping Yan
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lin Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mingzhi Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanrong Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Wanjun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
27
|
Li H, Duijts K, Pasini C, van Santen JE, Lamers J, de Zeeuw T, Verstappen F, Wang N, Zeeman SC, Santelia D, Zhang Y, Testerink C. Effective root responses to salinity stress include maintained cell expansion and carbon allocation. THE NEW PHYTOLOGIST 2023; 238:1942-1956. [PMID: 36908088 DOI: 10.1111/nph.18873] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/25/2023] [Indexed: 05/04/2023]
Abstract
Acclimation of root growth is vital for plants to survive salt stress. Halophytes are great examples of plants that thrive even under severe salinity, but their salt tolerance mechanisms, especially those mediated by root responses, are still largely unknown. We compared root growth responses of the halophyte Schrenkiella parvula with its glycophytic relative species Arabidopsis thaliana under salt stress and performed transcriptomic analysis of S. parvula roots to identify possible gene regulatory networks underlying their physiological responses. Schrenkiella parvula roots do not avoid salt and experience less growth inhibition under salt stress. Salt-induced abscisic acid levels were higher in S. parvula roots compared with Arabidopsis. Root transcriptomic analysis of S. parvula revealed the induction of sugar transporters and genes regulating cell expansion and suberization under salt stress. 14 C-labeled carbon partitioning analyses showed that S. parvula continued allocating carbon to roots from shoots under salt stress while carbon barely allocated to Arabidopsis roots. Further physiological investigation revealed that S. parvula roots maintained root cell expansion and enhanced suberization under severe salt stress. In summary, roots of S. parvula deploy multiple physiological and developmental adjustments under salt stress to maintain growth, providing new avenues to improve salt tolerance of plants using root-specific strategies.
Collapse
Affiliation(s)
- Hongfei Li
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Kilian Duijts
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Carlo Pasini
- Institute of Integrative Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Joyce E van Santen
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Jasper Lamers
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Thijs de Zeeuw
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Francel Verstappen
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Nan Wang
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Diana Santelia
- Institute of Integrative Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| |
Collapse
|
28
|
Tessi TM, Maurino VG, Shahriari M, Meissner E, Novak O, Pasternak T, Schumacher BS, Ditengou F, Li Z, Duerr J, Flubacher NS, Nautscher M, Williams A, Kazimierczak Z, Strnad M, Thumfart JO, Palme K, Desimone M, Teale WD. AZG1 is a cytokinin transporter that interacts with auxin transporter PIN1 and regulates the root stress response. THE NEW PHYTOLOGIST 2023; 238:1924-1941. [PMID: 36918499 DOI: 10.1111/nph.18879] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/29/2023] [Indexed: 05/04/2023]
Abstract
An environmentally responsive root system is crucial for plant growth and crop yield, especially in suboptimal soil conditions. This responsiveness enables the plant to exploit regions of high nutrient density while simultaneously minimizing abiotic stress. Despite the vital importance of root systems in regulating plant growth, significant gaps of knowledge exist in the mechanisms that regulate their architecture. Auxin defines both the frequency of lateral root (LR) initiation and the rate of LR outgrowth. Here, we describe a search for proteins that regulate root system architecture (RSA) by interacting directly with a key auxin transporter, PIN1. The native separation of Arabidopsis plasma membrane protein complexes identified several PIN1 co-purifying proteins. Among them, AZG1 was subsequently confirmed as a PIN1 interactor. Here, we show that, in Arabidopsis, AZG1 is a cytokinin (CK) import protein that co-localizes with and stabilizes PIN1, linking auxin and CK transport streams. AZG1 expression in LR primordia is sensitive to NaCl, and the frequency of LRs is AZG1-dependent under salt stress. This report therefore identifies a potential point for auxin:cytokinin crosstalk, which shapes RSA in response to NaCl.
Collapse
Affiliation(s)
- Tomás M Tessi
- Instituto Multidisciplinario de Biología Vegetal, Velez Sarsfield 249, 5000, Córdoba, Argentina
| | - Veronica G Maurino
- Molecular Plant Physiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Mojgan Shahriari
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Esther Meissner
- Conservation Ecology, Department Biology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, 35032, Marburg, Germany
| | - Ondrej Novak
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR and Palacky, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Taras Pasternak
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Benjamin S Schumacher
- Zentrum für Molekularbiologie der Pflanzen, Universität Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Franck Ditengou
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Zenglin Li
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Jasmin Duerr
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Noemi S Flubacher
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Moritz Nautscher
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Alyssa Williams
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Zuzanna Kazimierczak
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR and Palacky, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Jörg-Oliver Thumfart
- Faculty of Medicine, Institute of Physiology II, University of Freiburg, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany
- Labormedizinisches Zentrum Ostschweiz, Lagerstrasse 30, 9470, Buchs, SG, Switzerland
| | - Klaus Palme
- Molecular Plant Physiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- Centre of Biological Systems Analysis, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Marcelo Desimone
- Instituto Multidisciplinario de Biología Vegetal, Velez Sarsfield 249, 5000, Córdoba, Argentina
| | - William D Teale
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| |
Collapse
|
29
|
Chen HC, Huang SC, Chen YF, Kuo CW, Chen YH, Chang MC. Overexpression of OsERF106MZ promotes parental root growth in rice seedlings by relieving the ABA-mediated inhibition of root growth under salinity stress conditions. BMC PLANT BIOLOGY 2023; 23:144. [PMID: 36922804 PMCID: PMC10018881 DOI: 10.1186/s12870-023-04136-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Roots are essential for plant growth and have a variety of functions, such as anchoring the plant to the ground, absorbing water and nutrients from the soil, and sensing abiotic stresses, among others. OsERF106MZ is a salinity-induced gene that is expressed in germinating seeds and rice seedling roots. However, the roles of OsERF106MZ in root growth remain poorly understood. RESULTS Histochemical staining to examine β-glucuronidase (GUS) activity in transgenic rice seedlings harboring OsERF106MZp::GUS indicated that OsERF106MZ is mainly expressed in the root exodermis, sclerenchyma layer, and vascular system. OsERF106MZ overexpression in rice seedlings leads to an increase in primary root (PR) length. The phytohormone abscisic acid (ABA) is thought to act as a hidden architect of root system structure. The expression of the ABA biosynthetic gene OsAO3 is downregulated in OsERF106MZ-overexpressing roots under normal conditions, while the expression of OsNPC3, an AtNPC4 homolog involved in ABA sensitivity, is reduced in OsERF106MZ-overexpressing roots under both normal and NaCl-treated conditions. Under normal conditions, OsERF106MZ-overexpressing roots show a significantly reduced ABA level; moreover, exogenous application of 1.0 µM ABA can suppress OsERF106MZ-mediated root growth promotion. Additionally, OsERF106MZ-overexpressing roots display less sensitivity to ABA-mediated root growth inhibition when treated with 5.0 µM ABA under normal conditions or exposed to NaCl-treated conditions. Furthermore, chromatin immunoprecipitation (ChIP)-qPCR and luciferase (LUC) reporter assays showed that OsERF106MZ can bind directly to the sequence containing the GCC box in the promoter region of the OsAO3 gene and repress the expression of OsAO3. CONCLUSIONS OsERF106MZ may play a role in maintaining root growth for resource uptake when rice seeds germinate under salinity stress by alleviating ABA-mediated root growth inhibition.
Collapse
Affiliation(s)
- Hung-Chi Chen
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | - Shi-Cheng Huang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | - Yen-Fu Chen
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | - Che-Wei Kuo
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | - Ying-Hsuan Chen
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | - Men-Chi Chang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
30
|
Gupta A, Singh AN, Tiwari RK, Sahu PK, Yadav J, Srivastava AK, Kumar S. Salinity Alleviation and Reduction in Oxidative Stress by Endophytic and Rhizospheric Microbes in Two Rice Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:976. [PMID: 36903837 PMCID: PMC10005660 DOI: 10.3390/plants12050976] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Increased soil salinity poses serious limitations in crop yield and quality; thus, an attempt was made to explore microbial agents to mitigate the ill effects of salinity in rice. The hypothesis was mapping of microbial induction of stress tolerance in rice. Since the rhizosphere and endosphere are two different functional niches directly affected by salinity, it could be very crucial to evaluate them for salinity alleviation. In this experiment, endophytic and rhizospheric microbes were tested for differences in salinity stress alleviation traits in two rice cultivars, CO51 and PB1. Two endophytic bacteria, Bacillus haynesii 2P2 and Bacillus safensis BTL5, were tested with two rhizospheric bacteria, Brevibacterium frigoritolerans W19 and Pseudomonas fluorescens 1001, under elevated salinity (200 mM NaCl) along with Trichoderma viride as an inoculated check. The pot study indicated towards the presence of variable salinity mitigation mechanisms among these strains. Improvement in the photosynthetic machinery was also recorded. These inoculants were evaluated for the induction of antioxidant enzymes viz. CAT, SOD, PO, PPO, APX, and PAL activity along with the effect on proline levels. Modulation of the expression of salt stress responsive genes OsPIP1, MnSOD1, cAPXa, CATa, SERF, and DHN was assessed. Root architecture parameters viz. cumulative length of total root, projection area, average diameter, surface area, root volume, fractal dimension, number of tips, and forks were studied. Confocal scanning laser microscopy indicated accumulation of Na+ in leaves using cell impermeant Sodium Green™, Tetra (Tetramethylammonium) Salt. It was found that each of these parameters were induced differentially by endophytic bacteria, rhizospheric bacteria, and fungus, indicating different paths to complement one ultimate plant function. The biomass accumulation and number of effective tillers were highest in T4 (Bacillus haynesii 2P2) plants in both cultivars and showed the possibility of cultivar specific consortium. These strains and their mechanisms could form the basis for further evaluating microbial strains for climate-resilient agriculture.
Collapse
Affiliation(s)
- Amrita Gupta
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226028, UP, India
- ICAR-Indian Institute of Seed Sciences, Kushmaur, Maunath Bhanjan 275103, UP, India
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, UP, India
| | - Arvind Nath Singh
- ICAR-Indian Institute of Seed Sciences, Kushmaur, Maunath Bhanjan 275103, UP, India
| | - Rajesh Kumar Tiwari
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226028, UP, India
| | - Pramod Kumar Sahu
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, UP, India
| | - Jagriti Yadav
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, UP, India
| | - Alok Kumar Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, UP, India
| | - Sanjay Kumar
- ICAR-Indian Institute of Seed Sciences, Kushmaur, Maunath Bhanjan 275103, UP, India
| |
Collapse
|
31
|
Li S, Liu J, Xue C, Lin Y, Yan Q, Chen J, Wu R, Chen X, Yuan X. Identification and Functional Characterization of WRKY, PHD and MYB Three Salt Stress Responsive Gene Families in Mungbean ( Vigna radiata L.). Genes (Basel) 2023; 14:463. [PMID: 36833390 PMCID: PMC9956968 DOI: 10.3390/genes14020463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
WRKY-, PHD-, and MYB-like proteins are three important types of transcription factors in mungbeans, and play an important role in development and stress resistance. The genes' structures and characteristics were clearly reported and were shown to contain the conservative WRKYGQK heptapeptide sequence, Cys4-His-cys3 zinc binding motif, and HTH (helix) tryptophan cluster W structure, respectively. Knowledge on the response of these genes to salt stress is largely unknown. To address this issue, 83 VrWRKYs, 47 VrPHDs, and 149 VrMYBs were identified by using comparative genomics, transcriptomics, and molecular biology methods in mungbeans. An intraspecific synteny analysis revealed that the three gene families had strong co-linearity and an interspecies synteny analysis showed that mungbean and Arabidopsis were relatively close in genetic relationship. Moreover, 20, 10, and 20 genes showed significantly different expression levels after 15 days of salt treatment (p < 0.05; Log2 FC > 0.5), respectively. Additionally, in the qRT-PCR analysis, VrPHD14 had varying degrees of response to NaCl and PEG treatments after 12 h. VrWRKY49 was upregulated by ABA treatment, especially in the beginning (within 24 h). VrMYB96 was significantly upregulated in the early stages of ABA, NaCl, and PEG stress treatments (during the first 4 h). VrWRKY38 was significantly upregulated by ABA and NaCl treatments, but downregulated by PEG treatment. We also constructed a gene network centered on the seven DEGs under NaCl treatment; the results showed that VrWRKY38 was in the center of the PPI network and most of the homologous Arabidopsis genes of the interacted genes were reported to have response to biological stress. Candidate genes identified in this study provide abundant gene resources for the study of salt tolerance in mungbeans.
Collapse
Affiliation(s)
- Shicong Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210000, China
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jinyang Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Chenchen Xue
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Qiang Yan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Ranran Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|
32
|
CPR5-mediated nucleo-cytoplasmic localization of IAA12 and IAA19 controls lateral root development during abiotic stress. Proc Natl Acad Sci U S A 2023; 120:e2209781120. [PMID: 36623191 PMCID: PMC9934060 DOI: 10.1073/pnas.2209781120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Plasticity of the root system architecture (RSA) is essential in enabling plants to cope with various environmental stresses and is mainly controlled by the phytohormone auxin. Lateral root development is a major determinant of RSA. Abiotic stresses reduce auxin signaling output, inhibiting lateral root development; however, how abiotic stress translates into a lower auxin signaling output is not fully understood. Here, we show that the nucleo-cytoplasmic distribution of the negative regulators of auxin signaling AUXIN/INDOLE-3-ACETIC ACID INDUCIBLE 12 (AUX/IAA12 or IAA12) and IAA19 determines lateral root development under various abiotic stress conditions. The cytoplasmic localization of IAA12 and IAA19 in the root elongation zone enforces auxin signaling output, allowing lateral root development. Among components of the nuclear pore complex, we show that CONSTITUTIVE EXPRESSOR OF PATHOGENESIS-RELATED GENES 5 (CPR5) selectively mediates the cytoplasmic translocation of IAA12/19. Under abiotic stress conditions, CPR5 expression is strongly decreased, resulting in the accumulation of nucleus-localized IAA12/19 in the root elongation zone and the suppression of lateral root development, which is reiterated in the cpr5 mutant. This study reveals a regulatory mechanism for auxin signaling whereby the spatial distribution of AUX/IAA regulators is critical for lateral root development, especially in fluctuating environmental conditions.
Collapse
|
33
|
Disomic Substitution of 3D Chromosome with Its Homoeologue 3E in Tetraploid Thinopyrum elongatum Enhances Wheat Seedlings Tolerance to Salt Stress. Int J Mol Sci 2023; 24:ijms24021609. [PMID: 36675124 PMCID: PMC9863149 DOI: 10.3390/ijms24021609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The halophytic wild relatives within Triticeae might provide valuable sources of salt tolerance for wheat breeding, and attempts to use these sources of tolerance have been made for improving salt tolerance in wheat by distant hybridization. A novel wheat substitution line of K17-1078-3 was developed using common wheat varieties of Chuannong16 (CN16), Zhengmai9023 (ZM9023), and partial amphidiploid Trititrigia8801 (8801) as parents, and identified as the 3E(3D) substitution line. The substitution line was compared with their parents for salt tolerance in hydroponic culture to assess their growth. The results showed that less Na+ accumulation and lower Na+/K+ ratio in both shoots and roots were achieved in K17-1078-3 under salinity compared to its wheat parents. The root growth and development of K17-1078-3 was less responsive to salinity. When exposed to high salt treatment, K17-1078-3 had a higher photosynthesis rate, more efficient water use efficiency, and greater antioxidant capacity and stronger osmotic adjustment ability than its wheat parents. In conclusion, a variety of physiological responses and root system adaptations were involved in enhancing salt tolerance in K17-1078-3, which indicated that chromosome 3E possessed the salt tolerance locus. It is possible to increase substantially the salt tolerance of wheat by the introduction of chromosome 3E into wheat genetic background.
Collapse
|
34
|
Almira Casellas MJ, Pérez‐Martín L, Busoms S, Boesten R, Llugany M, Aarts MGM, Poschenrieder C. A genome-wide association study identifies novel players in Na and Fe homeostasis in Arabidopsis thaliana under alkaline-salinity stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:225-245. [PMID: 36433704 PMCID: PMC10108281 DOI: 10.1111/tpj.16042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
In nature, multiple stress factors occur simultaneously. The screening of natural diversity panels and subsequent Genome-Wide Association Studies (GWAS) is a powerful approach to identify genetic components of various stress responses. Here, the nutritional status variation of a set of 270 natural accessions of Arabidopsis thaliana grown on a natural saline-carbonated soil is evaluated. We report significant natural variation on leaf Na (LNa) and Fe (LFe) concentrations in the studied accessions. Allelic variation in the NINJA and YUC8 genes is associated with LNa diversity, and variation in the ALA3 is associated with LFe diversity. The allelic variation detected in these three genes leads to changes in their mRNA expression and correlates with plant differential growth performance when plants are exposed to alkaline salinity treatment under hydroponic conditions. We propose that YUC8 and NINJA expression patters regulate auxin and jasmonic signaling pathways affecting plant tolerance to alkaline salinity. Finally, we describe an impairment in growth and leaf Fe acquisition associated with differences in root expression of ALA3, encoding a phospholipid translocase active in plasma membrane and the trans Golgi network which directly interacts with proteins essential for the trafficking of PIN auxin transporters, reinforcing the role of phytohormonal processes in regulating ion homeostasis under alkaline salinity.
Collapse
Affiliation(s)
- Maria Jose Almira Casellas
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
| | - Laura Pérez‐Martín
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
- Department of Botany and Plant BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Silvia Busoms
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
| | - René Boesten
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Mercè Llugany
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Bioscience FacultyUniversitat Autònoma de BarcelonaC/de la Vall Moronta s/nE‐08193BellaterraSpain
| |
Collapse
|
35
|
Liu R, Wen SS, Sun TT, Wang R, Zuo WT, Yang T, Wang C, Hu JJ, Lu MZ, Wang LQ. PagWOX11/12a positively regulates the PagSAUR36 gene that enhances adventitious root development in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7298-7311. [PMID: 36001042 DOI: 10.1093/jxb/erac345] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Adventitious root (AR) development is an extremely complex biological process that is affected by many intrinsic factors and extrinsic stimuli. Some WUSCHEL-related homeobox (WOX) transcription factors have been reported to play important roles in AR development, but their functional relationships with auxin signaling are poorly understood, especially the developmental plasticity of roots in response to adversity stress. Here, we identified that the WOX11/12a-SMALL AUXIN UP RNA36 (SAUR36) module mediates AR development through the auxin pathway in poplar, as well as under salt stress. PagWOX11/12a displayed inducible expression during AR development, and overexpression of PagWOX11/12a significantly promoted AR development and increased salt tolerance in poplar, whereas dominant repression of PagWOX11/12a produced the opposite phenotype. PagWOX11/12a proteins directly bind to the SAUR36 promoter to regulate SAUR36 transcription, and this binding was enhanced during salt stress. Genetic modification of PagWOX11/12a-PagSAUR36 expression revealed that the PagWOX11/12a-PagSAUR36 module is crucial for controlling AR development via the auxin pathway. Overall, our results indicate that a novel WOX11-SAUR-auxin signaling regulatory module is required for AR development in poplar. These findings provide key insights and a better understanding of the involvement of WOX11 in root developmental plasticity in saline environments.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Beijing 100091, China
| | - Shuang-Shuang Wen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Beijing 100091, China
| | - Ting-Ting Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Rui Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Wen-Teng Zuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Beijing 100091, China
| | - Tao Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jian-Jun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Beijing 100091, China
| | - Meng-Zhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Beijing 100091, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Liu-Qiang Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
36
|
Ma C, Yuan S, Xie B, Li Q, Wang Q, Shao M. IAA Plays an Important Role in Alkaline Stress Tolerance by Modulating Root Development and ROS Detoxifying Systems in Rice Plants. Int J Mol Sci 2022; 23:ijms232314817. [PMID: 36499144 PMCID: PMC9740826 DOI: 10.3390/ijms232314817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
Auxin regulates plant growth and development, as well as helps plants to survive abiotic stresses, but the effects of auxin on the growth of alkaline-stressed rice and the underlying molecular and physiological mechanisms remain unknown. Through exogenous application of IAA/TIBA, this study explored the physiological and molecular mechanisms of alkaline stress tolerance enhancement using two rice genotypes. Alkaline stress was observed to damage the plant growth, while exogenous application of IAA mitigates the alkaline-stress-induce inhibition of plant growth. After application of exogenous IAA to alkaline-stressed rice, dry shoot biomass, foliar chlorophyll content, photosynthetic rate in the two rice genotypes increased by 12.6-15.6%, 11.7-40.3%, 51.4-106.6%, respectively. The adventitious root number, root surface area, total root length and dry root biomass in the two rice genotypes increased by 29.3-33.3%, 26.4-27.2%, 42.5-35.5% and 12.8-33.1%, respectively. The accumulation of H2O2, MAD were significantly decreased with the application of IAA. The activities of CAT, POD, and SOD in rice plants were significantly increased by exogenous application of IAA. The expression levels of genes controlling IAA biosynthesis and transport were significantly increased, while there were no significant effects on the gene expression that controlled IAA catabolism. These results showed that exogenous application of IAA could mitigate the alkaline-stress-induced inhibition of plant growth by regulating the reactive oxygen species scavenging system, root development and expression of gene involved in IAA biosynthesis, transport and catabolism. These results provide a new direction and empirical basis for improving crop alkaline tolerance with exogenous application of IAA.
Collapse
Affiliation(s)
- Changkun Ma
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Correspondence: (C.M.); (Q.W.)
| | - Shuai Yuan
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
| | - Biao Xie
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
| | - Qian Li
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
| | - Quanjiu Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Correspondence: (C.M.); (Q.W.)
| | - Mingan Shao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
37
|
Willig J, Guarneri N, van Steenbrugge JJM, de Jong W, Chen J, Goverse A, Lozano Torres JL, Sterken MG, Bakker J, Smant G. The Arabidopsis transcription factor TCP9 modulates root architectural plasticity, reactive oxygen species-mediated processes, and tolerance to cyst nematode infections. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1070-1083. [PMID: 36181710 PMCID: PMC9828446 DOI: 10.1111/tpj.15996] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Infections by root-feeding nematodes have profound effects on root system architecture and consequently shoot growth of host plants. Plants harbor intraspecific variation in their growth responses to belowground biotic stresses by nematodes, but the underlying mechanisms are not well understood. Here, we show that the transcription factor TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR-9 (TCP9) modulates root system architectural plasticity in Arabidopsis thaliana in response to infections by the endoparasitic cyst nematode Heterodera schachtii. Young seedlings of tcp9 knock-out mutants display a significantly weaker primary root growth inhibition response to cyst nematodes than wild-type Arabidopsis. In older plants, tcp9 reduces the impact of nematode infections on the emergence and growth of secondary roots. Importantly, the altered growth responses by tcp9 are most likely not caused by less biotic stress on the root system, because TCP9 does not affect the number of infections, nematode development, and size of the nematode-induced feeding structures. RNA-sequencing of nematode-infected roots of the tcp9 mutants revealed differential regulation of enzymes involved in reactive oxygen species (ROS) homeostasis and responses to oxidative stress. We also found that root and shoot growth of tcp9 mutants is less sensitive to exogenous hydrogen peroxide and that ROS accumulation in nematode infection sites in these mutants is reduced. Altogether, these observations demonstrate that TCP9 modulates the root system architectural plasticity to nematode infections via ROS-mediated processes. Our study further points at a novel regulatory mechanism contributing to the tolerance of plants to root-feeding nematodes by mitigating the impact of belowground biotic stresses.
Collapse
Affiliation(s)
- Jaap‐Jan Willig
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | - Nina Guarneri
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | | | - Willem de Jong
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | - Jingrong Chen
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | - Aska Goverse
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | - José L. Lozano Torres
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | - Mark G. Sterken
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | - Jaap Bakker
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| | - Geert Smant
- Laboratory of NematologyWageningen University & Research6708PBWageningenThe Netherlands
| |
Collapse
|
38
|
Amro A, Harb S, Farghaly KA, Ali MMF, Mohammed AG, Mourad AMI, Afifi M, Börner A, Sallam A. Growth responses and genetic variation among highly ecologically diverse spring wheat genotypes grown under seawater stress. FRONTIERS IN PLANT SCIENCE 2022; 13:996538. [PMID: 36311097 PMCID: PMC9614663 DOI: 10.3389/fpls.2022.996538] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/22/2022] [Indexed: 06/01/2023]
Abstract
Most of the freshwaters worldwide are used for agriculture. Freshwater sources are expected to decline and will not suffice to support the food production needed for the growing population. Therefore, growing crops with seawater might constitute a solution. However, very little work has been done on the effect of seawater stress on wheat, an important cereal crop. The present study aimed to determine whether particular wheat genotypes provided better resistance to seawater stress. A set of 80 highly diverse spring wheat genotypes collected from different countries in Europe, Asia, Africa, North and South America was exposed to 50% seawater stress at the early growth stage. Four seeding shoot and root traits were scored for all genotypes. High genetic variations were found among all genotypes for the epicotyl length (EL), hypocotyl length (HL), number of radicles (NOR), and fresh weight (FW). Eight genotypes with high-performance scores of seedling traits were selected. The correlation analyses revealed highly significant correlations among all traits scored in this study. The strongest correlation was found between the NOR and the other seeding traits. Thus, the NOR might be an important adaptive trait for seawater tolerance. The genetic diversity among all genotypes was investigated based on genetic distance. A wide range of genetic distances among all genotypes was found. There was also a great genetic distance among the eight selected genotypes. In particular, the genetic distance between ATRI 5310 (France) and the other seven genotypes was the greatest. Such high genetic diversity might be utilized to select highly divergent genotypes for crossing in a future breeding program. The present study provides very useful information on the presence of different genetic resources in wheat for seawater tolerance.
Collapse
Affiliation(s)
- Ahmed Amro
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Shrouk Harb
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Khaled A. Farghaly
- Department of Soil and Water Resources, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Mahmoud M. F. Ali
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Aml G. Mohammed
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Amira M. I. Mourad
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Department of Agronomy, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Mohamed Afifi
- Ultrasonic Laboratory, National Institute of Standards, Giza, Egypt
| | - Andreas Börner
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, Egypt
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
39
|
Arbuscular mycorrhizal fungi and humic substances increased the salinity tolerance of rice plants. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
LaRue T, Lindner H, Srinivas A, Exposito-Alonso M, Lobet G, Dinneny JR. Uncovering natural variation in root system architecture and growth dynamics using a robotics-assisted phenomics platform. eLife 2022; 11:e76968. [PMID: 36047575 PMCID: PMC9499532 DOI: 10.7554/elife.76968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/28/2022] [Indexed: 11/29/2022] Open
Abstract
The plant kingdom contains a stunning array of complex morphologies easily observed above-ground, but more challenging to visualize below-ground. Understanding the magnitude of diversity in root distribution within the soil, termed root system architecture (RSA), is fundamental in determining how this trait contributes to species adaptation in local environments. Roots are the interface between the soil environment and the shoot system and therefore play a key role in anchorage, resource uptake, and stress resilience. Previously, we presented the GLO-Roots (Growth and Luminescence Observatory for Roots) system to study the RSA of soil-grown Arabidopsis thaliana plants from germination to maturity (Rellán-Álvarez et al., 2015). In this study, we present the automation of GLO-Roots using robotics and the development of image analysis pipelines in order to examine the temporal dynamic regulation of RSA and the broader natural variation of RSA in Arabidopsis, over time. These datasets describe the developmental dynamics of two independent panels of accessions and reveal highly complex and polygenic RSA traits that show significant correlation with climate variables of the accessions' respective origins.
Collapse
Affiliation(s)
- Therese LaRue
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Heike Lindner
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
- Institute of Plant Sciences, University of BernBernSwitzerland
| | - Ankit Srinivas
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Moises Exposito-Alonso
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Guillaume Lobet
- UCLouvain, Faculty of BioengineeringLouvain-la-NeuveBelgium
- Forschungszentrum Jülich, Agrosphere InstituteJuelichGermany
| | - José R Dinneny
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
41
|
Zhang Y, Zhao Y, Li T, Ni C, Han L, Du P, Xiao K. TaPYL4, an ABA receptor gene of wheat, positively regulates plant drought adaptation through modulating the osmotic stress-associated processes. BMC PLANT BIOLOGY 2022; 22:423. [PMID: 36050643 PMCID: PMC9434867 DOI: 10.1186/s12870-022-03799-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/12/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND Abscisic acid receptors (ABR) involve transduction of the ABA signaling in plants, impacting largely on stress-defensive physiological processes and plant osmotic stress response. In this study, we characterized TaPYL4, a gene of ABR family in T. aestivum, in mediating plant drought tolerance given scarcity of functional characterization on wheat ABR members thus far. RESULTS TaPYL4 harbors nine conserved domains shared by its PYL counterparts, targeting onto plasma membrane and nucleus after endoplasmic reticulum assortment. TaPYL4 interacts with TaPP2C2 whereas the latter with TaSnRK2.1, which establish a core module of the ABA signaling pathway. TaPYL4 expression was upregulated in root and aerial tissues upon drought stress. Overexpressing TaPYL4 conferred plants improved growth traits whereas knockdown expression of target gene alleviated growth feature compared with wild type under drought treatment. The TaPYL4-enhanced drought adaptation associates gene function in positively regulating stomata movement, osmolyte biosynthesis, and root system architecture (RSA) establishment. Expression analysis on the P5CS family genes involving proline biosynthesis indicated that TaP5CS1 exerts critical roles in promoting osmolytes accumulation in drought-challenged TaPYL4 lines. TaPIN9, a PIN-FORMED gene modulating cellular auxin translocation, was validated to function as a crucial mediator in defining RSA establishment underlying TaPYL4 regulation. Transcriptome analysis revealed that TaPYL4 controls transcription of numerous genes, which impact on physiological processes associated with 'biological process', 'molecular component', and 'cellular process'. Moreover, the differentially expressed genes mediated by TaPYL4 were closely related to stress defensive pathways. CONCLUSIONS Our investigation suggested that TaPYL4 acts as a positive regulator in plant drought tolerance and a valuable target for engineering drought-tolerant cultivars in T. aestivum.
Collapse
Affiliation(s)
- Yanyang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei, 071001, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, People's Republic of China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, People's Republic of China
| | - Yingjia Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei, 071001, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, People's Republic of China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, People's Republic of China
| | - Tianjiao Li
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei, 071001, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, People's Republic of China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, People's Republic of China
| | - Chenyang Ni
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei, 071001, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, People's Republic of China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, People's Republic of China
| | - Le Han
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei, 071001, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, People's Republic of China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, People's Republic of China
| | - Pingping Du
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei, 071001, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, People's Republic of China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, People's Republic of China
| | - Kai Xiao
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei, 071001, People's Republic of China.
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
- Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, People's Republic of China.
| |
Collapse
|
42
|
Wang H, Li Z, Ren H, Zhang C, Xiao D, Li Y, Hou X, Liu T. Regulatory interaction of BcWRKY33A and BcHSFA4A promotes salt tolerance in non-heading Chinese cabbage [ Brassica campestris (syn. Brassica rapa) ssp. chinensis]. HORTICULTURE RESEARCH 2022; 9:uhac113. [PMID: 35836472 PMCID: PMC9273956 DOI: 10.1093/hr/uhac113] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 06/05/2023]
Abstract
Salinity is a universal environmental stress that causes yield reduction in plants. WRKY33, which has been extensively studied in plant defense against necrotrophic pathogens, has recently been found to be important in salt-responsive pathways. However, the underlying molecular mechanisms controlling the involvement of WRKY33 in salt tolerance have not been fully characterized. Here, we explored the function of BcWRKY33A in non-heading Chinese cabbage (NHCC). Under salt stress, BcWRKY33A expression is significantly induced in roots. As a nuclear protein, BcWRKY33A has strong transcriptional activation activity. Overexpression of BcWRKY33A confers salt tolerance in Arabidopsis, whereas silencing of BcWRKY33A causes salt sensitivity in NHCC. Furthermore, BcHSFA4A, a protein that interacts with BcWRKY33A, could directly bind to the HSE motif within the promoters of BcZAT12 and BcHSP17.6A, which are involved in the plant response to salt stress. Finally, we found that BcWRKY33A could enhance the transcriptional activity of BcHSFA4A and affect its downstream genes (e.g. BcZAT12 and BcHSP17.6A), and co-overexpression of BcWRKY33A and BcHSFA4A could promote the expression of salt-related genes, suggesting that the regulatory interaction between BcWRKY33A and BcHSFA4A improves salt tolerance in plants. Overall, our results provide insight into the molecular framework of the BcWRKY33A-BcHSFA4A signaling pathway, which also aids in our understanding of the molecular mechanism of salt tolerance in plants.
Collapse
Affiliation(s)
- Huiyu Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhubo Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Haibo Ren
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Changwei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong Xiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
43
|
Valenzuela FJ, Reineke D, Leventini D, Chen CCL, Barrett-Lennard EG, Colmer TD, Dodd IC, Shabala S, Brown P, Bazihizina N. Plant responses to heterogeneous salinity: agronomic relevance and research priorities. ANNALS OF BOTANY 2022; 129:499-518. [PMID: 35171228 PMCID: PMC9007098 DOI: 10.1093/aob/mcac022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/14/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND Soil salinity, in both natural and managed environments, is highly heterogeneous, and understanding how plants respond to this spatiotemporal heterogeneity is increasingly important for sustainable agriculture in the era of global climate change. While the vast majority of research on crop response to salinity utilizes homogeneous saline conditions, a much smaller, but important, effort has been made in the past decade to understand plant molecular and physiological responses to heterogeneous salinity mainly by using split-root studies. These studies have begun to unravel how plants compensate for water/nutrient deprivation and limit salt stress by optimizing root-foraging in the most favourable parts of the soil. SCOPE This paper provides an overview of the patterns of salinity heterogeneity in rain-fed and irrigated systems. We then discuss results from split-root studies and the recent progress in understanding the physiological and molecular mechanisms regulating plant responses to heterogeneous root-zone salinity and nutrient conditions. We focus on mechanisms by which plants (salt/nutrient sensing, root-shoot signalling and water uptake) could optimize the use of less-saline patches within the root-zone, thereby enhancing growth under heterogeneous soil salinity conditions. Finally, we place these findings in the context of defining future research priorities, possible irrigation management and crop breeding opportunities to improve productivity from salt-affected lands.
Collapse
Affiliation(s)
| | - Daniela Reineke
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Dante Leventini
- Department of Plant Sciences, University of California, Davis, CA, USA
| | | | - Edward G Barrett-Lennard
- Land Management Group, Agriculture Discipline, College of Science, Health, Engineering and Education, Murdoch University, WA, Australia
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Timothy D Colmer
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
- Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Patrick Brown
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Nadia Bazihizina
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| |
Collapse
|
44
|
Rivera P, Moya C, O’Brien JA. Low Salt Treatment Results in Plant Growth Enhancement in Tomato Seedlings. PLANTS 2022; 11:plants11060807. [PMID: 35336689 PMCID: PMC8954722 DOI: 10.3390/plants11060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022]
Abstract
Climate change together with excessive fertilization and poor water quality can affect soil quality and salinization. In plants, high salinity causes osmotic stress, ionic toxicity, and oxidative stress. Consequently, salt stress limits plant development, growth, productivity, and yield. Tomatoes are a very common agricultural product, and some cultivars can partially tolerate salinity. However, most studies are focused on salt excess, which does not necessarily extrapolate on how plants develop in soils with low concentrations of salts. Thus, this study characterizes plant growth and the development of different salt concentrations from 25 to 200 mM in Solanum lycopersicum cv. Moneymaker. Tomato seedlings grown in Murashige and Skoog medium supplied with different NaCl concentrations (0, 25, 50, 75, 100, 125, 150, 175, and 200 mM) showed that low salt concentrations (25 and 50 mM) have a positive impact on lateral root development. This was further observed in physiological parameters such as shoot length, primary root length, and proliferation of lateral roots versus controls. Interestingly, no significant changes in Na+ concentration were observed in 25 mM NaCl in roots or shoots versus controls. Overall, our results suggest that non-toxic salt concentrations can have a positive impact on plant development.
Collapse
Affiliation(s)
- Paola Rivera
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (P.R.); (C.M.)
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Cristian Moya
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (P.R.); (C.M.)
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - José A. O’Brien
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (P.R.); (C.M.)
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence:
| |
Collapse
|
45
|
Chandrasekhar A, Julkowska MM. A Mathematical Framework for Analyzing Wild Tomato Root Architecture. J Comput Biol 2022; 29:306-316. [PMID: 35235373 DOI: 10.1089/cmb.2021.0361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The root architecture of wild tomato, Solanum pimpinellifolium, can be viewed as a network connecting the main root to various lateral roots. Several constraints have been proposed on the structure of such biological networks, including minimizing the total amount of wire necessary for constructing the root architecture (wiring cost), and minimizing the distances (and by extension, resource transport time) between the base of the main root and the lateral roots (conduction delay). For a given set of lateral root tip locations, these two objectives compete with each other-optimizing one results in poorer performance on the other-raising the question how well S. pimpinellifolium root architectures balance this network design trade-off in a distributed manner. In this study, we describe how well S. pimpinellifolium roots resolve this trade-off using the theory of Pareto optimality. We describe a mathematical model for characterizing the network structure and design trade-offs governing the structure of S. pimpinellifolium root architecture. We demonstrate that S. pimpinellifolium arbors construct architectures that are more optimal than would be expected by chance. Finally, we use this framework to quantify structural differences between arbors grown in the presence of salt stress, classify arbors into four distinct architectural ideotypes, and test for heritability of variation in root architecture structure.
Collapse
Affiliation(s)
- Arjun Chandrasekhar
- Department of Computer Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
46
|
Zou Y, Zhang Y, Testerink C. Root dynamic growth strategies in response to salinity. PLANT, CELL & ENVIRONMENT 2022; 45:695-704. [PMID: 34716934 PMCID: PMC9298695 DOI: 10.1111/pce.14205] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 05/25/2023]
Abstract
Increasing soil salinization largely impacts crop yield worldwide. To deal with salinity stress, plants exhibit an array of responses, including root system architecture remodelling. Here, we review recent progress in physiological, developmental and cellular mechanisms of root growth responses to salinity. Most recent research in modulation of root branching, root tropisms, as well as in root cell wall modifications under salinity stress, is discussed in the context of the contribution of these responses to overall plant performance. We highlight the power of natural variation approaches revealing novel potential pathways responsible for differences in root salt stress responses. Together, these new findings promote our understanding of how salt shapes the root phenotype, which may provide potential avenues for engineering crops with better yield and survival in saline soils.
Collapse
Affiliation(s)
- Yutao Zou
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| |
Collapse
|
47
|
Cackett L, Cannistraci CV, Meier S, Ferrandi P, Pěnčík A, Gehring C, Novák O, Ingle RA, Donaldson L. Salt-Specific Gene Expression Reveals Elevated Auxin Levels in Arabidopsis thaliana Plants Grown Under Saline Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:804716. [PMID: 35222469 PMCID: PMC8866861 DOI: 10.3389/fpls.2022.804716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Soil salinization is increasing globally, driving a reduction in crop yields that threatens food security. Salinity stress reduces plant growth by exerting two stresses on plants: rapid shoot ion-independent effects which are largely osmotic and delayed ionic effects that are specific to salinity stress. In this study we set out to delineate the osmotic from the ionic effects of salinity stress. Arabidopsis thaliana plants were germinated and grown for two weeks in media supplemented with 50, 75, 100, or 125 mM NaCl (that imposes both an ionic and osmotic stress) or iso-osmolar concentrations (100, 150, 200, or 250 mM) of sorbitol, that imposes only an osmotic stress. A subsequent transcriptional analysis was performed to identify sets of genes that are differentially expressed in plants grown in (1) NaCl or (2) sorbitol compared to controls. A comparison of the gene sets identified genes that are differentially expressed under both challenge conditions (osmotic genes) and genes that are only differentially expressed in plants grown on NaCl (ionic genes, hereafter referred to as salt-specific genes). A pathway analysis of the osmotic and salt-specific gene lists revealed that distinct biological processes are modulated during growth under the two conditions. The list of salt-specific genes was enriched in the gene ontology (GO) term "response to auxin." Quantification of the predominant auxin, indole-3-acetic acid (IAA) and IAA biosynthetic intermediates revealed that IAA levels are elevated in a salt-specific manner through increased IAA biosynthesis. Furthermore, the expression of NITRILASE 2 (NIT2), which hydrolyses indole-3-acetonitile (IAN) into IAA, increased in a salt-specific manner. Overexpression of NIT2 resulted in increased IAA levels, improved Na:K ratios and enhanced survival and growth of Arabidopsis under saline conditions. Overall, our data suggest that auxin is involved in maintaining growth during the ionic stress imposed by saline conditions.
Collapse
Affiliation(s)
- Lee Cackett
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Carlo Vittorio Cannistraci
- Center for Complex Network Intelligence, Tsinghua Laboratory of Brain and Intelligence, Department of Computer Science, Tsinghua University, Beijing, China
- Center for Complex Network Intelligence, Tsinghua Laboratory of Brain and Intelligence, Department of Biomedical Engineering, Tsinghua University, Beijing, China
- Center for Systems Biology Dresden (CSBD), Dresden, Germany
| | - Stuart Meier
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Paul Ferrandi
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, Olomouc, Czechia
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, Olomouc, Czechia
| | - Robert A. Ingle
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Lara Donaldson
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| |
Collapse
|
48
|
Jain N, Farhat S, Kumar R, Singh N, Singh S, Sreevathsa R, Kalia S, Singh NK, Teruhiro T, Rai V. Alteration of proteome in germinating seedlings of piegonpea ( Cajanus cajan) after salt stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2833-2848. [PMID: 35035139 PMCID: PMC8720132 DOI: 10.1007/s12298-021-01116-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/07/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Pigeonpea (Cajanus cajan) is an important crop in semi-arid regions and a significant source of dietary proteins in India. The plant is sensitive to salinity stress, which adversely affects its productivity. Based on the dosage-dependent influence of salinity stress on the growth and ion contents in the young seedlings of pigeonpea, a comparative proteome analysis of control and salt stressed (150 mM NaCl) plants was conducted using 7 days-old seedlings. Among various amino acids, serine, aspartate and asparagine were the amino acids that showed increment in the root, whereas serine, aspartate and phenylalanine showed an upward trend in shoots under salt stress. Furthermore, a label-free and gel-free comparative Q-Tof, Liquid Chromatography-Mass spectrometry (LC-MS) revealed total of 118 differentially abundant proteins in roots and shoots with and without salt stress conditions. Proteins related to DNA-binding with one finger (Dof) transcription factor family and glycine betaine (GB) biosynthesis were differentially expressed in the shoot and root of the salinity-stressed seedlings. Exogenous application of choline on GB accumulation under salt stress showed the increase of GB pathway in C. cajan. Gene expression analysis for differentially abundant proteins revealed the higher induction of ethanolamine kinase (CcEthKin), choline-phosphate cytidylyltransferase 1-like (CcChoPh), serine hydroxymethyltransferase (CcSHMT) and Dof protein (CcDof29). The results indicate the importance of, choline precursor, serine biosynthetic pathways and glycine betaine synthesis in salinity stress tolerance. The glycine betaine protects plant from cellular damages and acts as osmoticum under stress condition. Protein interaction network (PIN) analysis demonstrated that 61% of the differentially expressed proteins exhibited positive interactions and 10% of them formed the center of the PIN. Further, The PIN analysis also highlighted the potential roles of the cytochrome c oxidases in sensing and signaling cascades governing salinity stress responses in pigeonpea. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01116-w.
Collapse
Affiliation(s)
- Neha Jain
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
| | - Sufia Farhat
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
- IK Gujral Punjab Technical University, Jalandhar, Punjab India
| | - Ram Kumar
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
| | - Nisha Singh
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
| | - Sangeeta Singh
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
| | | | - Nagendra Kumar Singh
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
| | - Takabe Teruhiro
- Research Institute, Meijo University, Nagoya, 468-8502 Japan
| | - Vandna Rai
- ICAR-National Institute for Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Road, New Delhi, 110012 India
| |
Collapse
|
49
|
Sahu PK, Singh S, Singh UB, Chakdar H, Sharma PK, Sarma BK, Teli B, Bajpai R, Bhowmik A, Singh HV, Saxena AK. Inter-Genera Colonization of Ocimum tenuiflorum Endophytes in Tomato and Their Complementary Effects on Na +/K + Balance, Oxidative Stress Regulation, and Root Architecture Under Elevated Soil Salinity. Front Microbiol 2021; 12:744733. [PMID: 34733259 PMCID: PMC8558678 DOI: 10.3389/fmicb.2021.744733] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022] Open
Abstract
Endophytic bacilli of ethano-botanical plant Ocimum tenuiflorum were screened for salt stress-alleviating traits in tomato. Four promising O. tenuiflorum endophytes (Bacillus safensis BTL5, Bacillus haynesii GTR8, Bacillus paralicheniformis GTR11, and Bacillus altitudinis GTS16) were used in this study. Confocal scanning laser microscopic studies revealed the inter-genera colonization of O. tenuiflorum endophytes in tomato plants, giving insights for widening the applicability of potential endophytes to other crops. Furthermore, in a pot trial under 150 mM NaCl concentration, the inoculated endophytes contributed in reducing salt toxicity and improving recovery from salt-induced oxidative stress by different mechanisms. Reduction in reactive oxygen species (ROS) (sub-cellular H2O2 and superoxide) accumulation was observed besides lowering programmed cell death and increasing chlorophyll content. Endophyte inoculation supplemented the plant antioxidant enzyme system via the modulation of enzymatic antioxidants, viz., peroxidase, ascorbate peroxidase, superoxide dismutase, and catalase, apart from increasing proline and total phenolics. Antioxidants like proline have dual roles of antioxidants and osmoregulation, which might also have contributed to improved water relation under elevated salinity. Root architecture, viz., root length, projection area, surface area, average diameter, tips, forks, crossings, and the number of links, was improved upon inoculation, indicating healthy root growth and enhanced nutrient flow and water homeostasis. Regulation of Na+/K+ balance and water homeostasis in the plants were also evident from the modulation in the expression of abiotic stress-responsive genes, viz., LKT1, NHX1, SOS1, LePIP2, SlERF16, and SlWRKY39. Shoot tissues staining with light-excitable Na+ indicator Sodium GreenTM Tetra (tetramethylammonium) salt showed low sodium transport and accumulation in endophyte-inoculated plants. All four endophytes exhibited different mechanisms for stress alleviation and indicated complementary effects on plant growth. Furthermore, this could be harnessed in the form of a consortium for salt stress alleviation. The present study established inter-genera colonization of O. tenuiflorum endophytes in tomato and revealed its potential in maintaining Na+/K+ balance, reducing ROS, and improving root architecture under elevated salinity.
Collapse
Affiliation(s)
- Pramod K Sahu
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Shailendra Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Udai B Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Pawan K Sharma
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Birinchi K Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Science, Banaras Hindu University, Varanasi, India
| | - Basavaraj Teli
- Department of Mycology and Plant Pathology, Institute of Agricultural Science, Banaras Hindu University, Varanasi, India
| | - Raina Bajpai
- Department of Mycology and Plant Pathology, Institute of Agricultural Science, Banaras Hindu University, Varanasi, India
| | - Arpan Bhowmik
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Harsh V Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Anil K Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| |
Collapse
|
50
|
Karlova R, Boer D, Hayes S, Testerink C. Root plasticity under abiotic stress. PLANT PHYSIOLOGY 2021; 187:1057-1070. [PMID: 34734279 PMCID: PMC8566202 DOI: 10.1093/plphys/kiab392] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/25/2021] [Indexed: 05/08/2023]
Abstract
Abiotic stresses increasingly threaten existing ecological and agricultural systems across the globe. Plant roots perceive these stresses in the soil and adapt their architecture accordingly. This review provides insights into recent discoveries showing the importance of root system architecture (RSA) and plasticity for the survival and development of plants under heat, cold, drought, salt, and flooding stress. In addition, we review the molecular regulation and hormonal pathways involved in controlling RSA plasticity, main root growth, branching and lateral root growth, root hair development, and formation of adventitious roots. Several stresses affect root anatomy by causing aerenchyma formation, lignin and suberin deposition, and Casparian strip modulation. Roots can also actively grow toward favorable soil conditions and avoid environments detrimental to their development. Recent advances in understanding the cellular mechanisms behind these different root tropisms are discussed. Understanding root plasticity will be instrumental for the development of crops that are resilient in the face of abiotic stress.
Collapse
Affiliation(s)
- Rumyana Karlova
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Damian Boer
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Scott Hayes
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Author for communication:
| |
Collapse
|