1
|
Shukla K, Nikita, Ahmad A, Noorani MS, Gupta R. Phytohormones and emerging plant growth regulators in tailoring plant immunity against viral infections. PHYSIOLOGIA PLANTARUM 2025; 177:e70171. [PMID: 40128467 PMCID: PMC11932968 DOI: 10.1111/ppl.70171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/05/2025] [Indexed: 03/26/2025]
Abstract
Viral infections are major contributors to crop yield loss and represent a significant threat to sustainable agriculture. Plants respond to virus attacks by activating sophisticated signalling cascades that initiate multiple defence mechanisms. Notably, several phytohormones, including salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), and ethylene (ET), are known to shape these defence responses. In recent years, various plant growth regulators (PGRs) such as melatonin, carrageenans, sulfated fucan oligosaccharides, nitric oxide (NO), brassinosteroids (BRs), and hydrogen sulfide (H2S) have also emerged as crucial regulators of plant defence responses against virus infections. Emerging evidence indicates that these PGRs coordinate with phytohormones to activate various defence strategies, including (1) stomatal closure to limit pathogen entry, (2) callose deposition to block plasmodesmata and restrict viral spread within host tissues, (3) attenuation of viral replication, and (4) activation of RNA interference (RNAi), a crucial antiviral defence response. However, the interactions and crosstalk between PGRs and phytohormones remain largely underexplored, thereby limiting our ability to develop innovative strategies for managing viral diseases. This review discusses the diverse functions and crosstalk among various phytohormones and PGRs in orchestrating the plant defence mechanisms, highlighting their impact on viral replication, movement, and intercellular transport.
Collapse
Affiliation(s)
- Kritika Shukla
- Plant Molecular Virology Lab, Department of Botany, School of Chemical and Life SciencesJamia HamdardNew DelhiIndia
| | - Nikita
- Plant Molecular Virology Lab, Department of Botany, School of Chemical and Life SciencesJamia HamdardNew DelhiIndia
| | - Altaf Ahmad
- Department of Botany, Faculty of Life SciencesAligarh Muslim UniversityAligarhUttar PradeshIndia
| | - Md Salik Noorani
- Plant Molecular Virology Lab, Department of Botany, School of Chemical and Life SciencesJamia HamdardNew DelhiIndia
| | - Ravi Gupta
- Plant Stress Physiology and Proteomics Laboratory, College of General EducationKookmin UniversitySeoulSouth Korea
| |
Collapse
|
2
|
Hydropriming and Osmotic Priming Induce Resistance against Aspergillus niger in Wheat ( Triticum aestivum L.) by Activating β-1, 3-glucanase, Chitinase, and Thaumatin-like Protein Genes. Life (Basel) 2022; 12:life12122061. [PMID: 36556426 PMCID: PMC9781612 DOI: 10.3390/life12122061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Priming is used as a method to improve plant growth and alleviate the detrimental effects of pathogens. The present study was conducted to evaluate the effects of different priming methods in the context of resistance to Aspergillus niger in wheat (Triticum aestivum L.). Here, we show that different priming treatments—viz., hydropriming, osmotic priming, halopriming, and hormonal priming techniques can induce disease resistance by improving the biochemical contents of wheat, including chlorophyll, protein, proline, and sugar. In addition, physiological parameters—such as root length, shoot length, fresh and dry root/shoot ratios, and relative water content were positively affected by these priming methods. In essence, hydropriming and osmotic priming treatments were found to be more potent for enhancing wheat biochemical contents, along with all the physiological parameters, and for reducing disease severity. Hydropriming and osmotic priming significantly decreased disease severity, by 70.59−75.00% and 64.71−88.33%, respectively. RT-PCR and quantitative real-time PCR analyses of potentially important pathogenesis-related (PR)-protein genes (Thaumatin-like protein (TLP), chitinase, and β-1,3-glucanase) in primed plants were evaluated: β-1,3-glucanase was most highly expressed in all primed plants; Chitinase and TLP exhibited higher expression in hormonal-, halo-, osmotic-, and hydro-primed plants, respectively. These results suggest that the higher expression of β-1,3-glucanase, TLP, and chitinase after hydropriming and osmotic priming may increase disease resistance in wheat. Our study demonstrates the greater potential of hydropriming and osmotic priming for alleviating stress caused by A. niger inoculation, and enhancing resistance to it, in addition to significantly improving plant growth. Thus, these priming methods could be beneficial for better plant growth and disease resistance in other plants.
Collapse
|
3
|
Abdelkhalek A, El-Gendi H, Alotibi FO, Al-Askar AA, Elbeaino T, Behiry SI, Abd-Elsalam KA, Moawad H. Ocimum basilicum-Mediated Synthesis of Silver Nanoparticles Induces Innate Immune Responses against Cucumber Mosaic Virus in Squash. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202707. [PMID: 36297731 PMCID: PMC9609463 DOI: 10.3390/plants11202707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 06/12/2023]
Abstract
Cucumber mosaic virus (CMV) causes a significant threat to crop output sustainability and human nutrition worldwide, since it is one of the most prevalent plant viruses infecting most kinds of plants. Nowadays, different types of nanomaterials are applied as a control agent against different phytopathogens. However, their effects against viral infections are still limited. In the current study, the antiviral activities of the biosynthesized silver nanoparticles (Ag-NPs) mediated by aqueous extract of Ocimum basilicum against cucumber mosaic virus in squash (Cucurbita pepo L.) were investigated. The prepared Ag-NPs were characterized using scanning electron microscopy (SEM), dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and zeta potential distribution techniques. DLS, SEM, and TEM analyses showed that the Ag-NPs were spherical, with sizes ranging from 26.3 to 83 nm with an average particle size of about 32.6 nm. FTIR identified different functional groups responsible for the capping and stability of Ag-NPs. The zeta potential was reported as being -11.1 mV. Under greenhouse conditions, foliar sprays of Ag-NPs (100 µg/mL) promoted growth, delayed disease symptom development, and significantly reduced CMV accumulation levels of treated plants compared to non-treated plants. Treatment with Ag-NPs 24 h before or after CMV infection reduced CMV accumulation levels by 92% and 86%, respectively. There was also a significant increase in total soluble carbohydrates, free radical scavenging activity, antioxidant enzymes (PPO, SOD, and POX), as well as total phenolic and flavonoid content. Furthermore, systemic resistance was induced by significantly increasing the expression levels of pathogenesis-related genes (PR-1 and PR-5) and polyphenolic pathway genes (HCT and CHI). These findings suggest that Ag-NPs produced by O. basilicum could be used as an elicitor agent and as a control agent in the induction and management of plant viral infections.
Collapse
Affiliation(s)
- Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab City 21934, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City 21934, Egypt
| | - Fatimah O. Alotibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Toufic Elbeaino
- Istituto Agronomico Mediterraneo di Bari (CIHEAM-IAMB), Via Ceglie 9, Valenzano, 70010 Bari, Italy
| | - Said I. Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Centre, Giza 12619, Egypt
| | - Hassan Moawad
- Agriculture Microbiology Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
4
|
Morcillo M, Sales E, Corredoira E, Martínez MT, Segura J, Arrillaga I. Effect of Methyl Jasmonate in Gene Expression, and in Hormonal and Phenolic Profiles of Holm Oak Embryogenic Lines Before and After Infection With Phytophthora cinnamomi. FRONTIERS IN PLANT SCIENCE 2022; 13:824781. [PMID: 35356118 PMCID: PMC8959775 DOI: 10.3389/fpls.2022.824781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The dieback syndrome affecting Quercus ilex and other oak species impels the search for tolerant plant genotypes, as well as methods of plant immunization against such infections. Elicitation treatments can be an effective strategy to activate plant defense response and embryogenic lines represent a promising tool to generate new tolerant genotypes and also to study early markers involved in defense response. The aim of the presented work was to investigate changes in gene expression, and in hormonal and phenolic profiles induced in three holm oak embryogenic lines (ELs) elicited with methyl jasmonate (MeJA) before and after infection with the oomycete Phytophthora cinnamomi, which is the main biotic agent involved in this pathogenic process. The three ELs, derived from three genotypes, showed different basal profiles in all tested parameters, noting that the VA5 naïve genotype from a scape tree was characterized by a basal higher expression in NADPH-dependent cinnamyl alcohol dehydrogenase (CAD) and chalcone synthase (CHS) genes and also by higher caffeic acid content. Our work also identifies changes triggered by MeJA elicitation in holm oak embryogenic lines, such as increases in ABA and JA contents, as well as in levels of most of the determined phenolic compounds, especially in caffeic acid in Q8 and E00 ELs, but not in their biosynthesis genes. Irrespective of the EL, the response to oomycete infection in holm oak elicited plant material was characterized by a further increase in JA. Since JA and phenols have been described as a part of the Q. ilex defense response against P. cinnamomi, we propose that MeJA may act as an induced resistance (IR) stimulus and that in our embryogenic material induced both direct (detected prior to any challenge) and primed (detected after subsequent challenge) defense responses.
Collapse
Affiliation(s)
- Marian Morcillo
- Departamento de Biología Vegetal, Facultad de Farmacia, Instituto de Biotecnología y Biomedicina (BiotecMed), Universidad de Valencia, Valencia, Spain
| | - Ester Sales
- Departamento de Ciencias Agrarias y del Medio Natural, Instituto Universitario de Investigación en Ciencias Ambientales (IUCA), Universidad de Zaragoza, Escuela Politécnica Superior, Huesca, Spain
| | - Elena Corredoira
- Unidad Técnica Biotecnología y Mejora Forestal, Misión Biológica de Galicia, CSIC, Santiago de Compostela, Spain
| | - María Teresa Martínez
- Unidad Técnica Biotecnología y Mejora Forestal, Misión Biológica de Galicia, CSIC, Santiago de Compostela, Spain
| | - Juan Segura
- Departamento de Biología Vegetal, Facultad de Farmacia, Instituto de Biotecnología y Biomedicina (BiotecMed), Universidad de Valencia, Valencia, Spain
| | - Isabel Arrillaga
- Departamento de Biología Vegetal, Facultad de Farmacia, Instituto de Biotecnología y Biomedicina (BiotecMed), Universidad de Valencia, Valencia, Spain
| |
Collapse
|
5
|
Trichoderma hamatum Strain Th23 Promotes Tomato Growth and Induces Systemic Resistance against Tobacco Mosaic Virus. J Fungi (Basel) 2022; 8:jof8030228. [PMID: 35330230 PMCID: PMC8951347 DOI: 10.3390/jof8030228] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/22/2022] Open
Abstract
Trichoderma hamatum strain Th23, isolated from tomato roots, was molecularly identified using phylogenetic analysis based on ITS, tef1, and rpb2 gene sequences and evaluated for its efficiency in suppressing tobacco mosaic virus (TMV) infection for the first time. Under greenhouse conditions, the application of Th23 promoted tomato growth with significant increases in shoot and root parameters as well as improved total chlorophyll content. Compared to the nontreated tomato plants, the soil pretreatment of tomato plants 48 h before TMV inoculation produced a significant reduction in the TMV accumulation level by 84.69% and enhanced different growth parameters. In contrast, TMV had a deleterious impact on fresh and dry matter accumulation and inhibited photosynthetic capacity. Furthermore, the protective activity of Th23 was associated with a significant increase in reactive oxygen species scavenging enzymes (PPO, CAT, and SOD) as well as decreased nonenzymatic oxidative stress markers (H2O2 and MDA) compared to the TMV treatment at 15 days post-viral inoculation (dpi). In addition, considerable increases in the transcriptional levels of polyphenolic genes (HQT and CHS) and pathogenesis-related proteins (PR-1 and PR-7) were shown to induce systemic resistance against TMV. Consequently, the ability of T. hamatum strain Th23 to promote plant growth, induce systemic resistance, and boost innate immunity against TMV infestation supported the incorporation of Th23 as a potential biocontrol agent for managing plant viral infections. To the best of our knowledge, this is the first report of the antiviral activity of T. hamatum against plant viral infection.
Collapse
|
6
|
Nunes da Silva M, Carvalho SMP, Rodrigues AM, Gómez-Cadenas A, António C, Vasconcelos MW. Defence-related pathways, phytohormones and primary metabolism are key players in kiwifruit plant tolerance to Pseudomonas syringae pv. actinidiae. PLANT, CELL & ENVIRONMENT 2022; 45:528-541. [PMID: 34773419 DOI: 10.1111/pce.14224] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 05/07/2023]
Abstract
The reasons underlying the differential tolerance of Actinidia spp. to the pandemic pathogen Pseudomonas syringae pv. actinidiae (Psa) have not yet been elucidated. We hypothesized that differential plant-defence strategies linked to transcriptome regulation, phytohormones and primary metabolism might be key and that Actinidia chinensis susceptibility results from an inefficient activation of defensive mechanisms and metabolic impairments shortly following infection. Here, 48 h postinoculation bacterial density was 10-fold higher in A. chinensis var. deliciosa than in Actinidia arguta, accompanied by significant increases in glutamine, ornithine, jasmonic acid (JA) and salicylic acid (SA) (up to 3.2-fold). Actinidia arguta showed decreased abscisic acid (ABA) (0.7-fold), no changes in primary metabolites, and 20 defence-related genes that were only differentially expressed in this species. These include GLOX1, FOX1, SN2 and RBOHA, which may contribute to its higher tolerance. Results suggest that A. chinensis' higher susceptibility to Psa is due to an inefficient activation of plant defences, with the involvement of ABA, JA and SA, leading to impairments in primary metabolism, particularly the ammonia assimilation cycle. A schematic overview on the interaction between Psa and genotypes with distinct tolerance is provided, highlighting the key transcriptomic and metabolomic aspects contributing to the different plant phenotypes after infection.
Collapse
Affiliation(s)
- Marta Nunes da Silva
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Porto, Portugal
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of University of Porto, Vairão, Portugal
| | - Susana M P Carvalho
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of University of Porto, Vairão, Portugal
| | - Ana M Rodrigues
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Oeiras, Portugal
| | - Aurelio Gómez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló de la Plana, Spain
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Oeiras, Portugal
| | - Marta W Vasconcelos
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
7
|
Nartey LK, Pu Q, Zhu W, Zhang S, Li J, Yao Y, Hu X. Antagonistic and plant growth promotion effects of Mucor moelleri, a potential biocontrol agent. Microbiol Res 2021; 255:126922. [PMID: 34839169 DOI: 10.1016/j.micres.2021.126922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/10/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
With the increasing demand for high quality and environmentally safe or green food, Biological Control Agents (BCAs) are playing critical roles in green agriculture, which in turn has paved the way for the requirement of effective, appropriate microbial antagonists. In this study, Mucor moelleri AA1 was isolated and investigated for its growth promotion and antagonism against Athelia rolfsii and Colletotrichum gloeosporiodes. The results showed a high antagonistic activity of M. moelleri against A. rolfsii and C. gloeosporiodes with percentage inhibitions of 73 % and 86 % respectively using the dual plate method, and the same antagonistic activity was also observed in liquid cocultures. A pot study analysis showed significant suppression of the diseases as well as growth promotion on tomato. Scanning electron microscopy (SEM) indicated that M. moelleri inhibited the growth of mycelium and the production of web-like materials. Based on headspace-solid phase microextraction (HS-SPME) analysis, microbial volatile compounds were determined, which were mainly aromatic compounds and alkaloids. Also, several antagonistic enzymes, such as β-1, 3- glucanase, proteases, catalase and ACC deaminase as well as the phytohormone IAA, were found to be produced by M. moelleri. Overall, these results combine to make M. moelleri a good prospective candidate for biological control and as a plant growth-promoting agent. The present study appears to be the first report identifying M. moelleri as a biological control agent.
Collapse
Affiliation(s)
- Linda Korkor Nartey
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qian Pu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weijing Zhu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shuaishuai Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jin Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yanlai Yao
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiufang Hu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
8
|
Abdelkhalek A, Al-Askar AA, Alsubaie MM, Behiry SI. First Report of Protective Activity of Paronychia argentea Extract against Tobacco Mosaic Virus Infection. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112435. [PMID: 34834798 PMCID: PMC8620274 DOI: 10.3390/plants10112435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 05/04/2023]
Abstract
The widespread use of chemical control agents and pesticides for plant-pathogen control has caused many human health and environmental issues. Plant extracts and biocontrol agents have robust antimicrobial activity against different plant pathogens. However, their antiviral activities are still being investigated. In the present study, the methanol extract of Paronychia argentea was characterized and evaluated for its protective activity against the tobacco mosaic virus (TMV) infection in tomato plants under greenhouse conditions at 21 days post-inoculation. The results showed that the foliar application of P. argentea extract (10 µg/mL) enhanced tomato plant growth, resulting in significant increases in shoot and root parameters and total chlorophyll contents. Moreover, a significant reduction in TMV accumulation level in P. argentea-treated plants of 77.88% compared to non-treated plants was reported. Furthermore, induction of systemic resistance with significant elevation in production of antioxidant enzymes (PPO, CAT, and SOD) and transcriptional levels of the pathogenesis-related proteins (PR-1 and PR-7) and polyphenolic genes (CHS and HQT) were also observed. Out of 16 detected compounds, HPLC analysis revealed that the most abundant polyphenolic compounds found in P. argentea extract were gallic acid (5.36 µg/mL), kaempferol (7.39 µg/mL), quercetin (7.44 µg/mL), ellagic acid (7.89 µg/mL), myricetin (8.36 µg/mL), and ferulic acid (8.69 µg/mL). The findings suggest that the use of P. argentea extract as an effective and safe source for the production of bioactive compounds may offer a solution for a promising approach for the management of plant viral infections. To the best of our knowledge, this is the first report of the protective activity of P. argentea extract against plant viral diseases.
Collapse
Affiliation(s)
- Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab City, Alexandria 21934, Egypt
- Correspondence: (A.A.); (A.A.A.-A.)
| | - Abdulaziz A. Al-Askar
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence: (A.A.); (A.A.A.-A.)
| | - Maha M. Alsubaie
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Said I. Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| |
Collapse
|
9
|
Hu S, Bidochka MJ. Abscisic acid implicated in differential plant responses of Phaseolus vulgaris during endophytic colonization by Metarhizium and pathogenic colonization by Fusarium. Sci Rep 2021; 11:11327. [PMID: 34059713 PMCID: PMC8167117 DOI: 10.1038/s41598-021-90232-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
Metarhizium robertsii is an insect pathogen as well as an endophyte, and can antagonize the phytopathogen, Fusarium solani during bean colonization. However, plant immune responses to endophytic colonization by Metarhizium are largely unknown. We applied comprehensive plant hormone analysis, transcriptional expression and stomatal size analysis in order to examine plant immune responses to colonization by Metarhizium and/or Fusarium. The total amount of abscisic acid (ABA) and ABA metabolites decreased significantly in bean leaves by plant roots colonized by M. robertsii and increased significantly with F. solani compared to the un-inoculated control bean plant. Concomitantly, in comparison to the un-inoculated bean, root colonization by Metarhizium resulted in increased stomatal size in leaves and reduced stomatal size with Fusarium. Meanwhile, expression of plant immunity genes was repressed by Metarhizium and, alternately, triggered by Fusarium compared to the un-inoculated plant. Furthermore, exogenous application of ABA resulted in reduction of bean root colonization by Metarhizium but increased colonization by Fusarium compared to the control without ABA application. Our study suggested that ABA plays a central role in differential responses to endophytic colonization by Metarhizium and pathogenic colonization by Fusarium and, we also observed concomitant differences in stomatal size and expression of plant immunity genes.
Collapse
Affiliation(s)
- Shasha Hu
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Michael J Bidochka
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
10
|
Li Y, Jiao M, Li Y, Zhong Y, Li X, Chen Z, Chen S, Wang J. Penicillium chrysogenum polypeptide extract protects tobacco plants from tobacco mosaic virus infection through modulation of ABA biosynthesis and callose priming. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3526-3539. [PMID: 33687058 PMCID: PMC8096601 DOI: 10.1093/jxb/erab102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 03/02/2021] [Indexed: 05/26/2023]
Abstract
The polypeptide extract of the dry mycelium of Penicillium chrysogenum (PDMP) can protect tobacco plants from tobacco mosaic virus (TMV), although the mechanism underlying PDMP-mediated TMV resistance remains unknown. In our study, we analysed a potential mechanism via RNA sequencing (RNA-seq) and found that the abscisic acid (ABA) biosynthetic pathway and β-1,3-glucanase, a callose-degrading enzyme, might play an important role in PDMP-induced priming of resistance to TMV. To test our hypothesis, we successfully generated a Nicotiana benthamiana ABA biosynthesis mutant and evaluated the role of the ABA pathway in PDMP-induced callose deposition during resistance to TMV infection. Our results suggested that PDMP can induce callose priming to defend against TMV movement. PDMP inhibited TMV movement by increasing callose deposition around plasmodesmata, but this phenomenon did not occur in the ABA biosynthesis mutant; moreover, these effects of PDMP on callose deposition could be rescued by treatment with exogenous ABA. Our results suggested that callose deposition around plasmodesmata in wild-type plants is mainly responsible for the restriction of TMV movement during the PDMP-induced defensive response to TMV infection, and that ABA biosynthesis apparently plays a crucial role in PDMP-induced callose priming for enhancing defence against TMV.
Collapse
Affiliation(s)
- Yu Li
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Mengting Jiao
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Yingjuan Li
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Yu Zhong
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Xiaoqin Li
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Zhuangzhuang Chen
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Suiyun Chen
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Jianguang Wang
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| |
Collapse
|
11
|
Abstract
Phytohormones mediate plant development and responses to stresses caused by biotic agents or abiotic factors. The functions of phytohormones in responses to viral infection have been intensively studied, and the emerging picture of complex mechanisms provides insights into the roles that phytohormones play in defense regulation as a whole. These hormone signaling pathways are not simple linear or isolated cascades, but exhibit crosstalk with each other. Here, we summarized the current understanding of recent advances for the classical defense hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) and also the roles of abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinins (CKs), and brassinosteroids (BRs) in modulating plant–virus interactions.
Collapse
|
12
|
Effect of virus infection on the secondary metabolite production and phytohormone biosynthesis in plants. 3 Biotech 2020; 10:547. [PMID: 33269181 DOI: 10.1007/s13205-020-02541-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 10/31/2020] [Indexed: 02/06/2023] Open
Abstract
Plants have evolved according to their environmental conditions and continuously interact with different biological entities. These interactions induce many positive and negative effects on plant metabolism. Many viruses also associate with various plant species and alter their metabolism. Further, virus-plant interaction also alters the expression of many plant hormones. To overcome the biotic stress imposed by the virus's infestation, plants produce different kinds of secondary metabolites that play a significant role in plant defense against the viral infection. In this review, we briefly highlight the mechanism of virus infection, their influence on the plant secondary metabolites and phytohormone biosynthesis in response to the virus-plant interactions.
Collapse
|
13
|
Yang X, Lu Y, Wang F, Chen Y, Tian Y, Jiang L, Peng J, Zheng H, Lin L, Yan C, Taliansky M, MacFarlane S, Wu Y, Chen J, Yan F. Involvement of the chloroplast gene ferredoxin 1 in multiple responses of Nicotiana benthamiana to Potato virus X infection. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2142-2156. [PMID: 31872217 PMCID: PMC7094082 DOI: 10.1093/jxb/erz565] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 05/14/2023]
Abstract
The chloroplast protein ferredoxin 1 (FD1), with roles in the chloroplast electron transport chain, is known to interact with the coat proteins (CPs) of Tomato mosaic virus and Cucumber mosaic virus. However, our understanding of the roles of FD1 in virus infection remains limited. Here, we report that the Potato virus X (PVX) p25 protein interacts with FD1, whose mRNA and protein levels are reduced by PVX infection or by transient expression of p25. Silencing of FD1 by Tobacco rattle virus-based virus-induced gene silencing (VIGS) promoted the local and systemic infection of plants by PVX. Use of a drop-and-see (DANS) assay and callose staining revealed that the permeability of plasmodesmata (PDs) was increased in FD1-silenced plants together with a consistently reduced level of PD callose deposition. After FD1 silencing, quantitative reverse transcription-real-time PCR (qRT-PCR) analysis and LC-MS revealed these plants to have a low accumulation of the phytohormones abscisic acid (ABA) and salicylic acid (SA), which contributed to the decreased callose deposition at PDs. Overexpression of FD1 in transgenic plants manifested resistance to PVX infection, but the contents of ABA and SA, and the PD callose deposition were not increased in transgenic plants. Overexpression of FD1 interfered with the RNA silencing suppressor function of p25. These results demonstrate that interfering with FD1 function causes abnormal plant hormone-mediated antiviral processes and thus enhances PVX infection.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Fang Wang
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Ying Chen
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Yanzhen Tian
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangliang Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chengqi Yan
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Michael Taliansky
- The James Hutton Institute, Cell and Molecular Sciences Group, Invergowrie, Dundee, UK
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, Russia
| | - Stuart MacFarlane
- The James Hutton Institute, Cell and Molecular Sciences Group, Invergowrie, Dundee, UK
| | - Yuanhua Wu
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
14
|
Ali S, Saldias S, Weerasuriya N, Delaney K, Kandasamy S, Lazarovits G. Corn microbial diversity and its relationship to yield. Can J Microbiol 2020; 66:457-473. [PMID: 32155347 DOI: 10.1139/cjm-2020-0002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study aimed to identify possible relationships between corn (Zea mays L.) productivity and its endosphere microbial community. Any insights would be used to develop testable hypotheses at the farm level. Sap was collected from 14 fields in 2014 and 10 fields in 2017, with a yield range of 10.1 to 21.7 tonnes per hectare (t/ha). The microbial sap communities were analyzed using terminal restriction fragment length polymorphism (TRFLP) and identified using an internal pure culture reference database and BLAST. This technique is rapid and inexpensive and is suitable for use at the grower level. Diversity, richness, and normalized abundances of each bacterial population in corn sap samples were evaluated to link the microbiome of a specific field to its yield. A negative trend was observed (r = -0.60), with higher-yielding fields having lower terminal restriction fragment (TRF) richness. A partial least square regression analysis of TRF intensity and binary data from 2014 identified 10 TRFs (bacterial genera) that positively, or negatively, correlated with corn yields, when either absent or present at certain levels or ratios. Using these observations, a model was developed that accommodated criteria for each of the 10 microbes and assigned a score for each field out of 10. Data collected in 2014 showed that sites with higher model scores were highly correlated with larger yields (r = 0.83). This correlation was also seen when the 2017 data set was used (r = 0.87). We were able to conclude that a positive significant effect was seen with the model score and yield (adjusted R2 = 0.67, F[1,22] = 46.7, p < 0.001) when combining 2014 and 2017 data. The results of this study are being expanded to identify the key microbes in the corn sap community that potentially impact corn yield, regardless of corn variety, geographic factors, or edaphic factors.
Collapse
Affiliation(s)
- Shimaila Ali
- A&L Biologicals, Agroecological Research Services Centre, 2136 Jetstream Road, London, ON N5V 3P5, Canada
| | - Soledad Saldias
- A&L Biologicals, Agroecological Research Services Centre, 2136 Jetstream Road, London, ON N5V 3P5, Canada
| | - Nimalka Weerasuriya
- A&L Biologicals, Agroecological Research Services Centre, 2136 Jetstream Road, London, ON N5V 3P5, Canada.,Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| | - Kristen Delaney
- A&L Biologicals, Agroecological Research Services Centre, 2136 Jetstream Road, London, ON N5V 3P5, Canada
| | - Saveetha Kandasamy
- A&L Biologicals, Agroecological Research Services Centre, 2136 Jetstream Road, London, ON N5V 3P5, Canada
| | - George Lazarovits
- A&L Biologicals, Agroecological Research Services Centre, 2136 Jetstream Road, London, ON N5V 3P5, Canada.,Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| |
Collapse
|
15
|
Liu C, Peng H, Li X, Liu C, Lv X, Wei X, Zou A, Zhang J, Fan G, Ma G, Ma L, Sun X. Genome-wide analysis of NDR1/HIN1-like genes in pepper ( Capsicum annuum L.) and functional characterization of CaNHL4 under biotic and abiotic stresses. HORTICULTURE RESEARCH 2020; 7:93. [PMID: 32528705 PMCID: PMC7261774 DOI: 10.1038/s41438-020-0318-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 05/21/2023]
Abstract
Plant NDR1/HIN1-like (NHL) genes play an important role in triggering plant defenses in response to biotic stresses. In this study, we performed a genome-wide identification of the NHL genes in pepper (Capsicum annuum L.) and characterized the functional roles of these CaNHL genes in response to abiotic stresses and infection by different pathogens. Phylogenetic analysis revealed that CaNHLs can be classified into five distinct subgroups, with each group containing generic and specific motifs. Regulatory element analysis showed that the majority of the promoter regions of the identified CaNHLs contain jasmonic acid (JA)-responsive and salicylic acid (SA)-responsive elements, and transcriptomic analysis revealed that CaNHL genes are expressed in all the examined tissues of pepper. The CaNHL1, CaNHL4, CaNHL6, CaNHL10, CaNHL11, and CaNHL12 genes were significantly upregulated under abiotic stress as well as in response to different pathogens, such as TMV, Phytophthora capsici and Pseudomonas syringae. In addition, we found that CaNHL4 localizes to the plasma membrane. CaNHL4-silenced pepper plants display significantly increased susceptibility to TMV, Phytophthora capsici and Pseudomonas syringae, exhibiting reduced expression of JA-related and SA-related genes and reduced ROS production. However, transient overexpression of CaNHL4 in pepper increases the expression of JA-related and SA-related genes, enhances the accumulation of ROS, and inhibits the infection of these three pathogens. Collectively, for the first time, we identified the NHL genes in pepper and demonstrated that CaNHL4 is involved in the production of ROS and that it also regulates the expression of JA-related and SA-related genes in response to different pathogens, suggesting that members of the CaNHL family play an essential role in the disease resistance of pepper.
Collapse
Affiliation(s)
- Changyun Liu
- Laboratory of plant immunity and ecological control of plant disease, College of Plant Protection, Southwest University, 400716 Chongqing, China
| | - Haoran Peng
- Department of Botany and Plant Biology, Section of Biology, Faculty of Science, University of Geneva, 1211 Geneva 4, Switzerland
| | - Xinyu Li
- Laboratory of plant immunity and ecological control of plant disease, College of Plant Protection, Southwest University, 400716 Chongqing, China
| | - Chaolong Liu
- Laboratory of plant immunity and ecological control of plant disease, College of Plant Protection, Southwest University, 400716 Chongqing, China
| | - Xing Lv
- Laboratory of plant immunity and ecological control of plant disease, College of Plant Protection, Southwest University, 400716 Chongqing, China
| | - Xuefeng Wei
- Laboratory of plant immunity and ecological control of plant disease, College of Plant Protection, Southwest University, 400716 Chongqing, China
| | - Aihong Zou
- Laboratory of plant immunity and ecological control of plant disease, College of Plant Protection, Southwest University, 400716 Chongqing, China
| | - Jian Zhang
- Laboratory of plant immunity and ecological control of plant disease, College of Plant Protection, Southwest University, 400716 Chongqing, China
| | - Guangjin Fan
- Laboratory of plant immunity and ecological control of plant disease, College of Plant Protection, Southwest University, 400716 Chongqing, China
| | - Guanhua Ma
- Laboratory of plant immunity and ecological control of plant disease, College of Plant Protection, Southwest University, 400716 Chongqing, China
| | - Lisong Ma
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, 071001 Baoding, China
| | - Xianchao Sun
- Laboratory of plant immunity and ecological control of plant disease, College of Plant Protection, Southwest University, 400716 Chongqing, China
| |
Collapse
|
16
|
Hashami SZ, Nakamura H, Ohkama-Ohtsu N, Kojima K, Djedidi S, Fukuhara I, Haidari MD, Sekimoto H, Yokoyama T. Evaluation of Immune Responses Induced by Simultaneous Inoculations of Soybean (Glycine max [L.] Merr.) with Soil Bacteria and Rhizobia. Microbes Environ 2019; 34:64-75. [PMID: 30726789 PMCID: PMC6440728 DOI: 10.1264/jsme2.me18110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/25/2018] [Indexed: 11/12/2022] Open
Abstract
Legumes form root nodules and fix atmospheric nitrogen by establishing symbiosis with rhizobia. However, excessive root nodules are harmful to plants because of the resulting overconsumption of energy from photosynthates. The delay of an inoculation of the soybean super-nodulation mutant NOD1-3 with Bradyrhizobium diazoefficiens USDA110T by 5 d after an inoculation with several soil bacteria confirmed that one bacterial group significantly decreased root nodules throughout the study period. Moreover, no significant changes were observed in nitrogen fixation by root nodules between an inoculation with USDA 110T only and co-inoculation treatments. To clarify the potential involvement of PR proteins in the restriction of nodule formation in the plants tested, the relative expression levels of PR-1, PR-2, PR-5, and PDF1.2 in NOD1-3 roots were measured using real-time PCR. One group of soil bacteria (Gr.3), which markedly reduced nodule numbers, significantly induced the expression of PR-1, PR-5 and PDF1.2 genes by day 5 after the inoculation. By days 7, 10, and 20 after the inoculation, the expression levels of PR-2 and PR-5 were lower than those with the uninoculated treatment. Inoculations with this group of soil bacteria resulted in lower root nodule numbers than with other tested soil bacteria exerting weak inhibitory effects on nodulation, and were accompanied by the induction of plant defense-related genes. Thus, PR genes appear to play important roles in the mechanisms that suppresses nodule formation on soybean roots.
Collapse
Affiliation(s)
- Sayed Ziauddin Hashami
- The United Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT)3–5–8 Saiwai-cho, Fuchu, Tokyo 183–8509Japan
| | - Hiroyuki Nakamura
- Faculty of Agriculture, TUAT3–5–8 Saiwai-cho, Fuchu, Tokyo 183–8509Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Agriculture, TUAT3–5–8 Saiwai-cho, Fuchu, Tokyo 183–8509Japan
| | - Katsuhiro Kojima
- Faculty of Agriculture, TUAT3–5–8 Saiwai-cho, Fuchu, Tokyo 183–8509Japan
| | - Salem Djedidi
- Faculty of Agriculture, TUAT3–5–8 Saiwai-cho, Fuchu, Tokyo 183–8509Japan
| | - Izumi Fukuhara
- Faculty of Agriculture, TUAT3–5–8 Saiwai-cho, Fuchu, Tokyo 183–8509Japan
| | | | - Hitoshi Sekimoto
- Faculty of Agriculture, Utsunomiya University7–1–2 Yoto, Utsunomiya 321–8585Japan
| | - Tadashi Yokoyama
- Institute of Agriculture, TUAT3–5–8 Saiwai-cho, Fuchu, Tokyo 183–8509Japan
| |
Collapse
|
17
|
Alazem M, Tseng KC, Chang WC, Seo JK, Kim KH. Elements Involved in the Rsv3-Mediated Extreme Resistance against an Avirulent Strain of Soybean Mosaic Virus. Viruses 2018; 10:E581. [PMID: 30355968 PMCID: PMC6267276 DOI: 10.3390/v10110581] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/06/2023] Open
Abstract
Extreme resistance (ER) is a type of R-gene-mediated resistance that rapidly induces a symptomless resistance phenotype, which is different from the phenotypical R-resistance manifested by the programmed cell death, accumulation of reactive oxygen species, and hypersensitive response. The Rsv3 gene in soybean cultivar L29 is responsible for ER against the avirulent strain G5H of soybean mosaic virus (SMV), but is ineffective against the virulent strain G7H. Rsv3-mediated ER is achieved through the rapid accumulation of callose, which arrests SMV-G5H at the point of infection. Callose accumulation, however, may not be the lone mechanism of this ER. Analyses of RNA-seq data obtained from infected soybean plants revealed a rapid induction of the abscisic acid pathway at 8 h post infection (hpi) in response to G5H but not to G7H, which resulted in the down-regulation of transcripts encoding β-1,3 glucanases that degrade callose in G5H-infected but not G7H-infected plants. In addition, parts of the autophagy and the small interfering (si) RNA pathways were temporally up-regulated at 24 hpi in response to G5H but not in response to G7H. The jasmonic acid (JA) pathway and many WRKY factors were clearly up-regulated only in G7H-infected plants. These results suggest that ER against SMV-G5H is achieved through the quick and temporary induction of ABA, autophagy, and the siRNA pathways, which rapidly eliminate G5H. The results also suggest that suppression of the JA pathway in the case of G5H is important for the Rsv3-mediated ER.
Collapse
Affiliation(s)
- Mazen Alazem
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Kuan-Chieh Tseng
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan.
| | - Wen-Chi Chang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan.
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan.
| | - Jang-Kyun Seo
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea.
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
18
|
Xie K, Li L, Zhang H, Wang R, Tan X, He Y, Hong G, Li J, Ming F, Yao X, Yan F, Sun Z, Chen J. Abscisic acid negatively modulates plant defence against rice black-streaked dwarf virus infection by suppressing the jasmonate pathway and regulating reactive oxygen species levels in rice. PLANT, CELL & ENVIRONMENT 2018; 41:2504-2514. [PMID: 29920686 DOI: 10.1111/pce.13372] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/12/2018] [Indexed: 05/20/2023]
Abstract
Abscisic acid (ABA) plays a multifaceted role in plant immunity and can either increase resistance or increase susceptibility to some bacterial and fungal pathogens depending on the pathosystem. ABA is also known to mediate plant defence to some viruses. In this study, the relationship between the ABA pathway and rice black-streaked dwarf virus (RBSDV) was investigated in rice. The expression of ABA pathway genes was significantly reduced upon RBSDV infection. Application of exogenous hormones and various ABA pathway mutants revealed that the ABA pathway plays a negative role in rice defence against RBSDV. Exogenous hormone treatment and virus inoculation showed that ABA inhibits the jasmonate-mediated resistance to RBSDV. ABA treatment also suppressed accumulation of reactive oxygen species by inducing the expression of superoxidase dismutases and catalases. Thus, ABA modulates the rice-RBSDV interaction by suppressing the jasmonate pathway and regulating reactive oxygen species levels. This is the first example of ABA increasing susceptibility to a plant virus.
Collapse
Affiliation(s)
- Kaili Xie
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Virology, Ningbo University, Ningbo, China
- Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key laboratory of Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lulu Li
- Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key laboratory of Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hehong Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key laboratory of Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key laboratory of Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoxiang Tan
- Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key laboratory of Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuqing He
- Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key laboratory of Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Gaojie Hong
- Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key laboratory of Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Junmin Li
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Feng Ming
- School of Life Sciences, Fudan University, Shanghai, China
| | - Xuefeng Yao
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fei Yan
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zongtao Sun
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
19
|
Wan C, Wang M, Yang D, Han X, Che C, Ding S, Xiao Y, Qin Z. Synthesis and Biological Activity of 2',3'-iso-Aryl-abscisic Acid Analogs. Molecules 2017; 22:E2229. [PMID: 29244719 PMCID: PMC6149786 DOI: 10.3390/molecules22122229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 01/08/2023] Open
Abstract
2',3'-iso-Benzoabscisic acid (iso-PhABA), an excellent selective abscisic acid (ABA) analog, was developed in our previous work. In order to find its more structure-activity information, some structural modifications were completed in this paper, including the substitution of phenyl ring and replacing the ring with heterocycles. Thus, 16 novel analogs of iso-PhABA were synthesized and screened with three bioassays, Arabidopsis and lettuce seed germination and rice seedling elongation. Some of them, i.e., 2',3'-iso-pyridoabscisic acid (iso-PyABA) and 2',3'-iso-franoabscisic acid (iso-FrABA), displayed good bioactivities that closed to iso-PhABA and natural (+)-ABA. Some others, for instance, substituted-iso-PhABA, exhibited certain selectivity to different physiological process when compared to iso-PhABA or (+)-ABA. These analogs not only provided new candidates of ABA-like synthetic plant growth regulators (PGRs) for practical application, but also new potential selective agonist/antagonist for probing the specific function of ABA receptors.
Collapse
Affiliation(s)
- Chuan Wan
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Mingan Wang
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Dongyan Yang
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Xiaoqiang Han
- College of Agriculture, Shihezi University, Shihezi 832000, China.
| | - Chuanliang Che
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Shanshan Ding
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Yumei Xiao
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Zhaohai Qin
- College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
20
|
Liu J, Du H, Ding X, Zhou Y, Xie P, Wu J. Mechanisms of callose deposition in rice regulated by exogenous abscisic acid and its involvement in rice resistance to Nilaparvata lugens Stål (Hemiptera: Delphacidae). PEST MANAGEMENT SCIENCE 2017; 73:2559-2568. [PMID: 28664567 DOI: 10.1002/ps.4655] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 06/12/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Callose is a plant cell wall polysaccharide controlled by β-1,3-glucanase and synthase. Abscisic acid (ABA) is an important plant hormone. Exogenous ABA promotes rice resistance to pests. Whether exogenous ABA could reduce the decline in rice yield after brown planthopper (Nilaparvata lugens Stål; BPH) feeding is an important question, however, the mechanisms behind rice resistance induced by ABA remain obscure. RESULTS Electronic penetration graph (EPG) recording indicated a significant increase in rice resistance to BPH, and the number of BPH eggs decreased significantly upon application of exogenous ABA. As the concentration of ABA increased, the reduction in rice yield decreased significantly after BPH feeding. Further studies showed that β-1,3-glucanase activity was significantly lower, but synthase activity was higher after ABA treatment than in controls. CONCLUSIONS Our results demonstrated that exogenous ABA suppressed β-1,3-glucanase and induced synthase activity, and promoted callose deposition. This is an important defense mechanism that prevents BPH from ingesting phloem sap. These studies provide support for an insect-resistance mechanism after ABA treatment and provide a reference for the integrated management of other piercing-sucking pests. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinglan Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Haitao Du
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xu Ding
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yaodong Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Pengfei Xie
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jincai Wu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
21
|
Calil IP, Fontes EPB. Plant immunity against viruses: antiviral immune receptors in focus. ANNALS OF BOTANY 2017; 119:711-723. [PMID: 27780814 PMCID: PMC5604577 DOI: 10.1093/aob/mcw200] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/05/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Among the environmental limitations that affect plant growth, viruses cause major crop losses worldwide and represent serious threats to food security. Significant advances in the field of plant-virus interactions have led to an expansion of potential strategies for genetically engineered resistance in crops during recent years. Nevertheless, the evolution of viral virulence represents a constant challenge in agriculture that has led to a continuing interest in the molecular mechanisms of plant-virus interactions that affect disease or resistance. SCOPE AND CONCLUSION This review summarizes the molecular mechanisms of the antiviral immune system in plants and the latest breakthroughs reported in plant defence against viruses. Particular attention is given to the immune receptors and transduction pathways in antiviral innate immunity. Plants counteract viral infection with a sophisticated innate immune system that resembles the non-viral pathogenic system, which is broadly divided into pathogen-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity. An additional recently uncovered virus-specific defence mechanism relies on host translation suppression mediated by a transmembrane immune receptor. In all cases, the recognition of the virus by the plant during infection is central for the activation of these innate defences, and, conversely, the detection of host plants enables the virus to activate virulence strategies. Plants also circumvent viral infection through RNA interference mechanisms by utilizing small RNAs, which are often suppressed by co-evolving virus suppressors. Additionally, plants defend themselves against viruses through hormone-mediated defences and activation of the ubiquitin-26S proteasome system (UPS), which alternatively impairs and facilitates viral infection. Therefore, plant defence and virulence strategies co-evolve and co-exist; hence, disease development is largely dependent on the extent and rate at which these opposing signals emerge in host and non-host interactions. A deeper understanding of plant antiviral immunity may facilitate innovative biotechnological, genetic and breeding approaches for crop protection and improvement.
Collapse
Affiliation(s)
- Iara P. Calil
- Departamento de Bioquímica e Biologia Molecular/National Institute of Science and Technology in Plant–Pest Interactions/Bioagro, Universidade Federal de Viçosa, 36570.000, Viçosa, MG, Brazil
| | - Elizabeth P. B. Fontes
- Departamento de Bioquímica e Biologia Molecular/National Institute of Science and Technology in Plant–Pest Interactions/Bioagro, Universidade Federal de Viçosa, 36570.000, Viçosa, MG, Brazil
- For correspondence. E-mail
| |
Collapse
|
22
|
Alazem M, Lin NS. Antiviral Roles of Abscisic Acid in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1760. [PMID: 29075279 PMCID: PMC5641568 DOI: 10.3389/fpls.2017.01760] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/26/2017] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) is a key hormone involved in tuning responses to several abiotic stresses and also has remarkable impacts on plant defense against various pathogens. The roles of ABA in plant defense against bacteria and fungi are multifaceted, inducing or reducing defense responses depending on its time of action. However, ABA induces different resistance mechanisms to viruses regardless of the induction time. Recent studies have linked ABA to the antiviral silencing pathway, which interferes with virus accumulation, and the micro RNA (miRNA) pathway through which ABA affects the maturation and stability of miRNAs. ABA also induces callose deposition at plasmodesmata, a mechanism that limits viral cell-to-cell movement. Bamboo mosaic virus (BaMV) is a member of the potexvirus group and is one of the most studied viruses in terms of the effects of ABA on its accumulation and resistance. In this review, we summarize how ABA interferes with the accumulation and movement of BaMV and other viruses. We also highlight aspects of ABA that may have an effect on other types of resistance and that require further investigation.
Collapse
|
23
|
Shigenaga AM, Argueso CT. No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens. Semin Cell Dev Biol 2016; 56:174-189. [PMID: 27312082 DOI: 10.1016/j.semcdb.2016.06.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 11/17/2022]
Abstract
Plant hormones are essential regulators of plant growth and immunity. In the last few decades, a vast amount of information has been obtained detailing the role of different plant hormones in immunity, and how they work together to ultimately shape the outcomes of plant pathogen interactions. Here we provide an overview on the roles of the main classes of plant hormones in the regulation of plant immunity, highlighting their metabolic and signaling pathways and how plants and pathogens utilize these pathways to activate or suppress defence.
Collapse
Affiliation(s)
- Alexandra M Shigenaga
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Cristiana T Argueso
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
24
|
Collum TD, Culver JN. The impact of phytohormones on virus infection and disease. Curr Opin Virol 2015; 17:25-31. [PMID: 26656395 DOI: 10.1016/j.coviro.2015.11.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/26/2015] [Accepted: 11/09/2015] [Indexed: 11/26/2022]
Abstract
Phytohormones play a critical role in nearly every aspect of plant biology, including development and pathogen defense. During virus infection disruption of the plant's normal developmental physiology has often been associated with alterations in phytohormone accumulation and signaling. Only recently has evidence emerged describing mechanistically how viruses modulate phytohormone levels and the impact these modulations have on plant physiology and virus biology. From these studies there is an emerging theme of virus directed manipulation of plant hormone responses to disarm defense responses and reprogram the cellular environment to enhance replication and spread. In this review we examine the impact viruses have on plant hormone systems and the effects of this phytohormone manipulation on virus biology.
Collapse
Affiliation(s)
- Tamara D Collum
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - James N Culver
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
25
|
Garcia-Seco D, Zhang Y, Gutierrez-Mañero FJ, Martin C, Ramos-Solano B. Application of Pseudomonas fluorescens to Blackberry under Field Conditions Improves Fruit Quality by Modifying Flavonoid Metabolism. PLoS One 2015; 10:e0142639. [PMID: 26559418 PMCID: PMC4641737 DOI: 10.1371/journal.pone.0142639] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/23/2015] [Indexed: 01/02/2023] Open
Abstract
Application of a plant growth promoting rhizobacterium (PGPR), Pseudomonas fluorescens N21.4, to roots of blackberries (Rubus sp.) is part of an optimised cultivation practice to improve yields and quality of fruit throughout the year in this important fruit crop. Blackberries are especially rich in flavonoids and therefore offer potential benefits for human health in prevention or amelioration of chronic diseases. However, the phenylpropanoid pathway and its regulation during ripening have not been studied in detail, in this species. PGPR may trigger flavonoid biosynthesis as part of an induced systemic response (ISR) given the important role of this pathway in plant defence, to cause increased levels of flavonoids in the fruit. We have identified structural genes encoding enzymes of the phenylpropanoid and flavonoid biosynthetic pathways catalysing the conversion of phenylalanine to the final products including flavonols, anthocyanins and catechins from blackberry, and regulatory genes likely involved in controlling the activity of pathway branches. We have also measured the major flavonols, anthocyanins and catechins at three stages during ripening. Our results demonstrate the coordinated expression of flavonoid biosynthetic genes with the accumulation of anthocyanins, catechins, and flavonols in developing fruits of blackberry. Elicitation of blackberry plants by treatment of roots with P.fluorescens N21.4, caused increased expression of some flavonoid biosynthetic genes and an accompanying increase in the concentration of selected flavonoids in fruits. Our data demonstrate the physiological mechanisms involved in the improvement of fruit quality by PGPR under field conditions, and highlight some of the genetic targets of elicitation by beneficial bacteria.
Collapse
Affiliation(s)
- Daniel Garcia-Seco
- Facultad de Farmacia, Universidad CEU San Pablo, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, Madrid, Spain
| | - Yang Zhang
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Cathie Martin
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Beatriz Ramos-Solano
- Facultad de Farmacia, Universidad CEU San Pablo, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
26
|
Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation. World J Microbiol Biotechnol 2015; 31:1517-27. [PMID: 26160009 DOI: 10.1007/s11274-015-1896-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
The fungus Rhizoctonia solani is one of the causal agents of numerous diseases that affect crop growth and yield. The aim of this present investigation was to identify a biocontrol agent that acts against R. solani and to determine the agent's protective effect through phytohormones and antioxidant regulation in experimentally infected Chinese cabbage plants. Four rhizospheric soil bacterial isolates GR53, GR169, GR786, and GR320 were tested for their antagonistic activity against R. solani. Among these isolates, GR53 significantly suppressed fungal growth. GR53 was identified as Bacillus amyloliquefaciens subsp. plantarum by phylogenetic analysis of the 16S rDNA sequence. The biocontrol activity of B. amyloliquefaciens subsp. plantarum GR53 was tested in Chinese cabbage plants under controlled conditions. Results showed that R. solani inhibited plant growth (length, width, fresh and dry weight of leaves) by reducing chlorophyll and total phenolic content, as well as by increasing the levels of salicylic acid, jasmonic acid, abscisic acid, and DPPH scavenging activity. By regulating the levels of these compounds, the co-inoculation of B. amyloliquefaciens subsp. plantarum GR53 heightened induced systemic resistance in infected Chinese cabbage, effectively mitigating R. solani-induced damaging effects and improving plant growth. The results obtained from this study suggest that B. amyloliquefaciens subsp. plantarum GR53 is an effective biocontrol agent to prevent the damage caused by R. solani in Chinese cabbage plants.
Collapse
|
27
|
Ramegowda V, Senthil-Kumar M. The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. JOURNAL OF PLANT PHYSIOLOGY 2015; 176:47-54. [PMID: 25546584 DOI: 10.1016/j.jplph.2014.11.008] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/29/2014] [Accepted: 11/29/2014] [Indexed: 05/20/2023]
Abstract
In nature, plants are simultaneously exposed to a combination of biotic and abiotic stresses that limit crop yields. Only recently, researchers have started understanding the molecular basis of combined biotic and abiotic stress interactions. Evidences suggest that under combined stress plants exhibit tailored physiological and molecular responses, in addition to several shared responses as part of their stress tolerance strategy. These tailored responses are suggested to occur only in plants exposed to simultaneous stresses and this information cannot be inferred from individual stress studies. In this review article, we provide update on the responses of plants to simultaneous biotic and abiotic stresses, in particular drought and pathogen. Simultaneous occurrence of drought and pathogen during plant growth provokes complex pathways controlled by different signaling events resulting in positive or negative impact of one stress over the other. Here, we summarize the effect of combined drought and pathogen infection on plants and highlight the tailored strategies adapted by plants. Besides, we enumerate the evidences from pathogen derived elicitors and ABA response studies for understanding simultaneous drought and pathogen tolerance.
Collapse
Affiliation(s)
- Venkategowda Ramegowda
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, 560065, India.
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
28
|
Xie YR, Raruang Y, Chen ZY, Brown RL, Cleveland TE. ZmGns, a maize class I β-1,3-glucanase, is induced by biotic stresses and possesses strong antimicrobial activity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:271-83. [PMID: 25251325 DOI: 10.1111/jipb.12286] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 09/20/2014] [Indexed: 05/26/2023]
Abstract
Plant β-1,3-glucanases are members of the pathogenesis-related protein 2 (PR-2) family, which is one of the 17 PR protein families and plays important roles in biotic and abiotic stress responses. One of the differentially expressed proteins (spot 842) identified in a recent proteomic comparison between five pairs of closely related maize (Zea mays L.) lines differing in aflatoxin resistance was further investigated in the present study. Here, the corresponding cDNA was cloned from maize and designated as ZmGns. ZmGns encodes a protein of 338 amino acids containing a potential signal peptide. The expression of ZmGns was detectible in all tissues studied with the highest level in silks. ZmGns was significantly induced by biotic stresses including three bacteria and the fungus Aspergillus flavus. ZmGns was also induced by most abiotic stresses tested and growth hormones including salicylic acid. In vivo, ZmGns showed a significant inhibitory activity against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and fungal pathogen Botrytis cinerea when it overexpressed in Arabidopsis. Its high level of expression in the silk tissue and its induced expression by phytohormone treatment, as well as by bacterial and fungal infections, suggest it plays a complex role in maize growth, development, and defense.
Collapse
MESH Headings
- Amino Acid Sequence
- Anti-Infective Agents/pharmacology
- Antifungal Agents/pharmacology
- Arabidopsis/genetics
- Arabidopsis/microbiology
- Aspergillus/drug effects
- Botrytis/drug effects
- Cloning, Molecular
- Endo-1,3(4)-beta-Glucanase/chemistry
- Endo-1,3(4)-beta-Glucanase/genetics
- Endo-1,3(4)-beta-Glucanase/metabolism
- Escherichia coli/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant
- Hydrogen-Ion Concentration
- Molecular Sequence Data
- Organ Specificity/drug effects
- Organ Specificity/genetics
- Phylogeny
- Plant Diseases/genetics
- Plant Diseases/microbiology
- Plant Growth Regulators/pharmacology
- Plant Leaves/drug effects
- Plant Leaves/enzymology
- Plant Leaves/genetics
- Plants, Genetically Modified
- Recombinant Proteins/metabolism
- Salicylic Acid/pharmacology
- Sequence Alignment
- Sequence Analysis, DNA
- Stress, Physiological/drug effects
- Substrate Specificity/drug effects
- Temperature
- Zea mays/drug effects
- Zea mays/enzymology
- Zea mays/genetics
- Zea mays/microbiology
Collapse
Affiliation(s)
- Yu-Rong Xie
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, 70803, USA
| | | | | | | | | |
Collapse
|
29
|
Etesami H, Alikhani HA, Mirseyed Hosseini H. Indole-3-Acetic Acid and 1-Aminocyclopropane-1-Carboxylate Deaminase: Bacterial Traits Required in Rhizosphere, Rhizoplane and/or Endophytic Competence by Beneficial Bacteria. BACTERIAL METABOLITES IN SUSTAINABLE AGROECOSYSTEM 2015. [DOI: 10.1007/978-3-319-24654-3_8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Oide S, Bejai S, Staal J, Guan N, Kaliff M, Dixelius C. A novel role of PR2 in abscisic acid (ABA) mediated, pathogen-induced callose deposition in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2013; 200:1187-99. [PMID: 23952213 DOI: 10.1111/nph.12436] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/02/2013] [Indexed: 05/20/2023]
Abstract
Pathogenesis-related protein 2 (PR2) is known to play a major role in plant defense and general stress responses. Resistance against the fungal pathogen Leptosphaeria maculans in Arabidopsis requires abscisic acid (ABA), which promotes the deposition of callose, a β-1,3-glucan polymer. Here, we examined the role of PR2 in callose deposition in relation to ABA treatment and challenge with L. maculans and Pseudomonas syringae. Characterization of PR2-overexpressing plants and the knockout line indicated that PR2 negatively affects callose deposition. Recombinant PR2 purified from Pichia pastoris showed callose-degrading activity, and a considerable reduction in the callose-degrading activity was observed in the leaf extract of the PR2 knockout line compared with the wild-type. ABA pretreatment before challenge with L. maculans concomitantly repressed PR2 and enhanced callose accumulation. Likewise, overexpression of an ABA biosynthesis gene NCED3 resulted in reduced PR2 expression and increased callose deposition. We propose that ABA promotes callose deposition through the transcriptional repression of PR2 in Arabidopsis challenged by L. maculans and P. syringae. Callose by itself is likely to act antagonistically on salicylic acid (SA) defense signaling, suggesting that PR2 may function as a modulator of callose- and SA-dependent defense responses.
Collapse
Affiliation(s)
- Shinichi Oide
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, 750 07, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
31
|
Jeandet P, Clément C, Courot E, Cordelier S. Modulation of phytoalexin biosynthesis in engineered plants for disease resistance. Int J Mol Sci 2013; 14:14136-70. [PMID: 23880860 PMCID: PMC3742236 DOI: 10.3390/ijms140714136] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/19/2013] [Accepted: 06/25/2013] [Indexed: 01/16/2023] Open
Abstract
Phytoalexins are antimicrobial substances of low molecular weight produced by plants in response to infection or stress, which form part of their active defense mechanisms. Starting in the 1950's, research on phytoalexins has begun with biochemistry and bio-organic chemistry, resulting in the determination of their structure, their biological activity as well as mechanisms of their synthesis and their catabolism by microorganisms. Elucidation of the biosynthesis of numerous phytoalexins has permitted the use of molecular biology tools for the exploration of the genes encoding enzymes of their synthesis pathways and their regulators. Genetic manipulation of phytoalexins has been investigated to increase the disease resistance of plants. The first example of a disease resistance resulting from foreign phytoalexin expression in a novel plant has concerned a phytoalexin from grapevine which was transferred to tobacco. Transformations were then operated to investigate the potential of other phytoalexin biosynthetic genes to confer resistance to pathogens. Unexpectedly, engineering phytoalexins for disease resistance in plants seem to have been limited to exploiting only a few phytoalexin biosynthetic genes, especially those encoding stilbenes and some isoflavonoids. Research has rather focused on indirect approaches which allow modulation of the accumulation of phytoalexin employing transcriptional regulators or components of upstream regulatory pathways. Genetic approaches using gain- or less-of functions in phytoalexin engineering together with modulation of phytoalexin accumulation through molecular engineering of plant hormones and defense-related marker and elicitor genes have been reviewed.
Collapse
Affiliation(s)
- Philippe Jeandet
- Laboratory of Stress, Defenses and Plant Reproduction, Research Unit “Vines and Wines of Champagne”, UPRES EA 4707, Faculty of Sciences, University of Reims, P.O. Box 1039, Reims 51687, France; E-Mails: (C.C.); (E.C.); (S.C.)
| | - Christophe Clément
- Laboratory of Stress, Defenses and Plant Reproduction, Research Unit “Vines and Wines of Champagne”, UPRES EA 4707, Faculty of Sciences, University of Reims, P.O. Box 1039, Reims 51687, France; E-Mails: (C.C.); (E.C.); (S.C.)
| | - Eric Courot
- Laboratory of Stress, Defenses and Plant Reproduction, Research Unit “Vines and Wines of Champagne”, UPRES EA 4707, Faculty of Sciences, University of Reims, P.O. Box 1039, Reims 51687, France; E-Mails: (C.C.); (E.C.); (S.C.)
| | - Sylvain Cordelier
- Laboratory of Stress, Defenses and Plant Reproduction, Research Unit “Vines and Wines of Champagne”, UPRES EA 4707, Faculty of Sciences, University of Reims, P.O. Box 1039, Reims 51687, France; E-Mails: (C.C.); (E.C.); (S.C.)
| |
Collapse
|
32
|
WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc Natl Acad Sci U S A 2013; 110:E1963-71. [PMID: 23650359 DOI: 10.1073/pnas.1221347110] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
WRKY transcription factors are key players in the plant immune response, but less is known about their involvement in antiviral defense than about their roles in defense against bacterial or fungi pathogens. Here, we report that Arabidopsis thaliana WRKY DNA-binding protein 8 (WRKY8) has a role in mediating the long-distance movement of crucifer-infecting tobacco mosaic virus (TMV-cg). The expression of WRKY8 was inhibited by TMV-cg infection, and mutation of WRKY8 accelerated the accumulation of TMV-cg in systemically infected leaves. Quantitative RT-PCR analysis showed that the expression of ABA insensitive 4 (ABI4) was reduced and the expression of 1-aminocyclopropane-1-carboxylic acid synthase 6 (ACS6) and ethylene response factor 104 (ERF104) was enhanced in the systemically infected leaves of wrky8. Immunoprecipitation assays demonstrated that WRKY8 could bind selectively to putative W-boxes of the ABI4, ACS6, and ERF104 promoters. Furthermore, TMV-cg infection enhanced WRKY8 binding to the ABI4 promoter but reduced the binding of WRKY8 to the ACS6 and ERF104 promoters, indicating that regulation of ABI4, ACS6, and ERF104 by WRKY8 is at least partially dependent on TMV-cg. Exogenous applications of abscisic acid (ABA) reduced the systemic accumulation of TMV-cg. Mutations in ABA deficient 1, ABA deficient 2, ABA deficient 3, or abi4 accelerated systemic TMV-cg accumulation. In contrast, exogenous application of aminocyclopropane-1-carboxylic acid enhanced the systemic accumulation of TMV-cg, but mutations in acs6, erf104, or an octuple acs mutant inhibited systemic TMV-cg accumulation. Our results demonstrate that WRKY8 is involved in the defense response against TMV-cg through the direct regulation of the expression of ABI4, ACS6, and ERF104 and may mediate the crosstalk between ABA and ethylene signaling during the TMV-cg-Arabidopsis interaction.
Collapse
|
33
|
Amil-Ruiz F, Blanco-Portales R, Muñoz-Blanco J, Caballero JL. The Strawberry Plant Defense Mechanism: A Molecular Review. ACTA ACUST UNITED AC 2011; 52:1873-903. [DOI: 10.1093/pcp/pcr136] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Chen L, Zhang L, Yu D. Wounding-induced WRKY8 is involved in basal defense in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:558-65. [PMID: 20367464 DOI: 10.1094/mpmi-23-5-0558] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The WRKY family of plant transcription factors controls several types of plant stress responses. Arabidopsis WRKY8, localized to the nucleus, is mainly induced by abscissic acid, H(2)O(2), wounding, Pseudomonas syringae and Botrytis cinerea infection, and aphid and maggot feeding. To determine its biological functions, we isolated loss-of-function T-DNA insertion mutants and generated gain-of-function overexpressing WRKY8 transgenic plants in Arabidopsis. Plants expressing the mutated WRKY8 gene showed increased resistance to P. syringae but slightly decreased resistance to B. cinerea. In contrast, transgenic plants overexpressing WRKY8 were more susceptible to P. syringae infection but more resistant to B. cinerea infection. The contrasting responses to the two pathogens were correlated with opposite effects on pathogen-induced expression of two genes; salicylic acid-regulated PATHOGENESIS-RELATED1 (PR1) and jasmonic acid-regulated PDF1.2. Therefore, our results suggest that WRKY8 is a negative regulator of basal resistance to P. syringae and positive regulator to B. cinerea.
Collapse
Affiliation(s)
- Ligang Chen
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | | | | |
Collapse
|
35
|
Allègre M, Héloir MC, Trouvelot S, Daire X, Pugin A, Wendehenne D, Adrian M. Are grapevine stomata involved in the elicitor-induced protection against downy mildew? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:977-86. [PMID: 19589073 DOI: 10.1094/mpmi-22-8-0977] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Stomata, natural pores bordered by guard cells, regulate transpiration and gas exchanges between plant leaves and the atmosphere. These natural openings also constitute a way of penetration for microorganisms. In plants, the perception of potentially pathogenic microorganisms or elicitors of defense reactions induces a cascade of events, including H(2)O(2) production, that allows the activation of defense genes, leading to defense reactions. Similar signaling events occur in guard cells in response to the perception of abscisic acid (ABA), leading to stomatal closure. Moreover, few elicitors were reported to induce stomatal closure in Arabidopsis and Vicia faba leaves. Because responses to ABA and elicitors share common signaling events, it led us to question whether stomatal movements and H(2)O(2) production in guard cells could play a key role in elicitor-induced protection against pathogens that use stomata for infection. This study was performed using the grapevine-Plasmopara viticola pathosystem. Using epidermal peels, we showed that, as for ABA, the elicitor-induced stomatal closure is mediated by reactive oxygen species (ROS) production in guard cells. In plants, we observed that the protection against downy mildew induced by some elicitors is probably not due only to effects on stomatal movements or to a guard-cell-specific activation of ROS production.
Collapse
Affiliation(s)
- Mathilde Allègre
- Unité Mixte de Recherche INRA 1088/CNRS 5184/ Université de Bourgogne Plante-Microbe-Environnement, 17 rue Sully, BP 86510, 21065 Dijon cedex, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Mialoundama AS, Heintz D, Debayle D, Rahier A, Camara B, Bouvier F. Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco. PLANT PHYSIOLOGY 2009; 150:1556-66. [PMID: 19420326 PMCID: PMC2705044 DOI: 10.1104/pp.109.138420] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 05/01/2009] [Indexed: 05/04/2023]
Abstract
In the Solanaceae, biotic and abiotic elicitors induce de novo synthesis of sesquiterpenoid stress metabolites known as phytoalexins. Because plant hormones play critical roles in the induction of defense-responsive genes, we have explored the effect of abscisic acid (ABA) on the synthesis of capsidiol, the major wild tobacco (Nicotiana plumbaginifolia) sesquiterpenoid phytoalexin, using wild-type plants versus nonallelic mutants Npaba2 and Npaba1 that are deficient in ABA synthesis. Npaba2 and Npaba1 mutants exhibited a 2-fold higher synthesis of capsidiol than wild-type plants when elicited with either cellulase or arachidonic acid or when infected by Botrytis cinerea. The same trend was observed for the expression of the capsidiol biosynthetic genes 5-epi-aristolochene synthase and 5-epi-aristolochene hydroxylase. Treatment of wild-type plants with fluridone, an inhibitor of the upstream ABA pathway, recapitulated the behavior of Npaba2 and Npaba1 mutants, while the application of exogenous ABA reversed the enhanced synthesis of capsidiol in Npaba2 and Npaba1 mutants. Concomitant with the production of capsidiol, we observed the induction of ABA 8'-hydroxylase in elicited plants. In wild-type plants, the induction of ABA 8'-hydroxylase coincided with a decrease in ABA content and with the accumulation of ABA catabolic products such as phaseic acid and dihydrophaseic acid, suggesting a negative regulation exerted by ABA on capsidiol synthesis. Collectively, our data indicate that ABA is not required per se for the induction of capsidiol synthesis but is essentially implicated in a stress-response checkpoint to fine-tune the amplification of capsidiol synthesis in challenged plants.
Collapse
Affiliation(s)
- Alexis Samba Mialoundama
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
| | | | | | | | | | | |
Collapse
|
37
|
Iriti M, Faoro F. Abscisic acid is involved in chitosan-induced resistance to tobacco necrosis virus (TNV). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:1106-1111. [PMID: 18835780 DOI: 10.1016/j.plaphy.2008.08.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 08/06/2008] [Accepted: 08/15/2008] [Indexed: 05/26/2023]
Abstract
Chitosan (CHT) antiviral activity has been further investigated in the pathosystem Phaseolus vulgaris - tobacco necrosis virus (TNV). CHT application elicited both callose apposition and ABA accumulation in leaf tissues, at 12 and 24h after treatment, respectively, and induced a high level of resistance against TNV. Besides, treatment with the ABA inhibitor nordihydroguaiaretic acid (NDGA), before CHT application, reduced both callose deposition and plant resistance to the virus, thus indicating the involvement of ABA in these processes. Exogenous application of ABA also induced a significant resistance to TNV, though this resistance was abolished by NDGA pre-treatment. These results, overall, indicate that the rise of ABA synthesis induced by chitosan plays an important role in enhancing callose deposition but the latter has only a partial effect on virus spreading, which must be constraint by other resistance mechanisms.
Collapse
Affiliation(s)
- Marcello Iriti
- Istituto di Patologia Vegetale, Università di Milano, Milano, Italy
| | | |
Collapse
|
38
|
Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T, Maruyama-Nakashita A, Kudo T, Shinozaki K, Yoshida S, Nakashita H. Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. THE PLANT CELL 2008; 20:1678-92. [PMID: 18586869 PMCID: PMC2483369 DOI: 10.1105/tpc.107.054296] [Citation(s) in RCA: 314] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 05/26/2008] [Accepted: 06/06/2008] [Indexed: 05/18/2023]
Abstract
Systemic acquired resistance (SAR) is a potent innate immunity system in plants that is effective against a broad range of pathogens. SAR development in dicotyledonous plants, such as tobacco (Nicotiana tabacum) and Arabidopsis thaliana, is mediated by salicylic acid (SA). Here, using two types of SAR-inducing chemicals, 1,2-benzisothiazol-3(2H)-one1,1-dioxide and benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester, which act upstream and downstream of SA in the SAR signaling pathway, respectively, we show that treatment with abscisic acid (ABA) suppresses the induction of SAR in Arabidopsis. In an analysis using several mutants in combination with these chemicals, treatment with ABA suppressed SAR induction by inhibiting the pathway both upstream and downstream of SA, independently of the jasmonic acid/ethylene-mediated signaling pathway. Suppression of SAR induction by the NaCl-activated environmental stress response proved to be ABA dependent. Conversely, the activation of SAR suppressed the expression of ABA biosynthesis-related and ABA-responsive genes, in which the NPR1 protein or signaling downstream of NPR1 appears to contribute. Therefore, our data have revealed that antagonistic crosstalk occurs at multiple steps between the SA-mediated signaling of SAR induction and the ABA-mediated signaling of environmental stress responses.
Collapse
Affiliation(s)
- Michiko Yasuda
- Plant Acquired Immunity Research Unit, Advanced Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Asselbergh B, De Vleesschauwer D, Höfte M. Global switches and fine-tuning-ABA modulates plant pathogen defense. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:709-19. [PMID: 18624635 DOI: 10.1094/mpmi-21-6-0709] [Citation(s) in RCA: 256] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants are obliged to defend themselves against a wide range of biotic and abiotic stresses. Complex regulatory signaling networks mount an appropriate defense response depending on the type of stress that is perceived. In response to abiotic stresses such as drought, cold, and salinity, the function of abscisic acid (ABA) is well documented: elevation of plant ABA levels and activation of ABA-responsive signaling result in regulation of stomatal aperture and expression of stress-responsive genes. In response to pathogens, the role of ABA is more obscure and is a research topic that has long been overlooked. This article aims to evaluate and review the reported modes of ABA action on pathogen defense and highlight recent advances in deciphering the complex role of ABA in plant-pathogen interactions. The proposed mechanisms responsible for positive or negative effects of ABA on pathogen defense are discussed, as well as the regulation of ABA signaling and in planta ABA concentrations by beneficial and pathogenic microorganisms. In addition, the fast-growing number of reports that characterize antagonistic and synergistic interactions between abiotic and biotic stress responses point to ABA as an essential component in integrating and fine-tuning abiotic and biotic stress-response signaling networks.
Collapse
Affiliation(s)
- Bob Asselbergh
- Laboratory of Phytopathology, Ghent University, 9000 Gent, Belgium
| | | | | |
Collapse
|
40
|
Lee BR, Jung WJ, Lee BH, Avice JC, Ourry A, Kim TH. Kinetics of drought-induced pathogenesis-related proteins and its physiological significance in white clover leaves. PHYSIOLOGIA PLANTARUM 2008; 132:329-337. [PMID: 18275464 DOI: 10.1111/j.1399-3054.2007.01014.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To investigate the responses of pathogenesis-related (PR) proteins to the intensity of drought stress and their physiological significance in white clover (Trifolium repens L.), the change of enzyme activity and its relationship with some physiological parameters were assessed for 28 days under well-watered (control) and water-deficit conditions. Water-deficit treatment gradually decreased leaf water potential (Psi(w)) to -2.33 MPa at day 28. Dry matter significantly decreased from 21 days of water-deficit treatment, while proline and ammonia concentration increased within 7 days. The increase in PR-protein activity was closely related with the decrease in Psi(w). The beta-1,3-glucanase (EC 3.2.1.39) activity in water-deficit leaves rapidly increased for the first 14 days (Psi(w) >or= -1.67) and then slightly decreased, while the chitinase (EC 3.2.1.14) and cellulase (EC 3.2.1.4) activity continued to increase throughout the experimental period. The enhanced activation of beta-1,3-glucanase, chitinase and cellulase for the period of days 0-14 was significantly (P <or= 0.01) related to the increase of proline and ammonia concentrations. The results indicate that the enhanced activity of beta-1,3-glucanase, cellulase and chitinase for the early period might be an act of transient tolerance to drought stress, but the activation of these enzymes during terminal stress might be a drought-stress-induced injurious symptom.
Collapse
Affiliation(s)
- Bok-Rye Lee
- Department of Animal Science, Institute of Agricultural Science and Technology, Environmental-Friendly Agriculture Research Center, College of Agriculture and Life Science, Chonnam National University, Gwangju 500-757, Korea
| | | | | | | | | | | |
Collapse
|
41
|
Seo PJ, Lee AK, Xiang F, Park CM. Molecular and functional profiling of Arabidopsis pathogenesis-related genes: insights into their roles in salt response of seed germination. PLANT & CELL PHYSIOLOGY 2008; 49:334-44. [PMID: 18203731 DOI: 10.1093/pcp/pcn011] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pathogenesis-related (PR) proteins are a group of heterogeneous proteins encoded by genes that are rapidly induced by pathogenic infections and by salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). They are widely used as molecular markers for resistance response to pathogens and systemic acquired response (SAR). However, recent studies have shown that the PR genes are also regulated by environmental factors, including light and abiotic stresses, and by developmental cues, suggesting that they also play a role in certain stress responses and developmental processes. In this work, we systematically examined the expression patterns of Arabidopsis PR genes. We also investigated the effects of environmental stresses and growth hormones on the expression of PR genes. We found that individual PR genes are temporally and spatially regulated in distinct patterns. In addition, they are differentially regulated by plant growth hormones, including SA, ABA, JA, ET and brassinosteroid (BR), and by diverse abiotic stresses, supporting the contention that the PR proteins play a role in plant developmental processes other than disease resistance response. Interestingly, PR-3 was induced significantly by high salt in an ABA-dependent manner. Consistent with this, a T-DNA insertional knockout plant with disruption of the PR-3 gene showed a significantly reduced rate of seed germination in the presence of high salt. It is thus proposed that PR-3 mediates ABA-dependent salt stress signals that affect seed germination in Arabidopsis. PR-4 and PR-5 also contributed to salt regulation of seed germination, although their effects were not as evident as those of PR-3.
Collapse
Affiliation(s)
- Pil Joon Seo
- Molecular Signaling Laboratory, Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
42
|
Parallel expression profiling of barley-stem rust interactions. Funct Integr Genomics 2008; 8:187-98. [PMID: 18196301 DOI: 10.1007/s10142-007-0069-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 12/04/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
Abstract
The dominant barley stem rust resistance gene Rpg1 confers resistance to many but not all pathotypes of the stem rust fungus Puccinia graminis f. sp. tritici (Pgt). Transformation of Rpg1 into susceptible cultivar Golden Promise rendered the transgenic plants resistant to Pgt pathotype MCC but not to Pgt pathotype QCC. Our objective was to identify genes that are induced/repressed during the early stages of pathogen infection to elucidate the molecular mechanisms and role of Rpg1 in defense. A messenger ribonucleic acid expression analysis using the 22K Barley1 GeneChip was conducted in all pair-wise combinations of two isolines (cv. Golden Promise and Rpg1 transgenic line G02-448F-3R) and two Pgt pathotypes (MCC and QCC) across six time points. Analysis showed that a total of 34 probe sets exhibited expression pattern differences between Golden Promise (susceptible) and G02-448F-3R (resistant) infected with Pgt-MCC. A total of 14 probe sets exhibited expression pattern differences between Pgt-MCC (avirulent) and Pgt-QCC (virulent) inoculated onto G02-448F-3R. These differentially expressed genes were activated during the early infection process, before the hypersensitive response or fungal growth inhibition occurred. Our analysis provides a list of candidate signaling components, which can be analyzed for function in Rpg1-mediated disease resistance.
Collapse
|
43
|
Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci U S A 2007; 104:20131-6. [PMID: 18056646 DOI: 10.1073/pnas.0704901104] [Citation(s) in RCA: 227] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Pseudomonas syringae type III effector AvrRpt2 promotes bacterial virulence on Arabidopsis thaliana plants lacking a functional RPS2 gene (rps2 mutant plants). To investigate the mechanisms underlying the virulence activity of AvrRpt2, we examined the phenotypes of transgenic A. thaliana rps2 seedlings constitutively expressing AvrRpt2. These seedlings exhibited phenotypes reminiscent of A. thaliana mutants with altered auxin physiology, including longer primary roots, increased number of lateral roots, and increased sensitivity to exogenous auxin. They also had increased levels of free indole acetic acid (IAA). The presence of AvrRpt2 also was correlated with a further increase in free IAA levels during infection with P. syringae pv. tomato strain DC3000 (PstDC3000). These results indicate that AvrRpt2 alters A. thaliana auxin physiology. Application of the auxin analog 1-naphthaleneacetic acid promoted disease symptom development in PstDC3000-infected plants, suggesting that elevated auxin levels within host tissue promote PstDC3000 virulence. Thus, AvrRpt2 may be among the virulence factors of P. syringae that modulate host auxin physiology to promote disease.
Collapse
|
44
|
Kaliff M, Staal J, Myrenås M, Dixelius C. ABA is required for Leptosphaeria maculans resistance via ABI1- and ABI4-dependent signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:335-45. [PMID: 17427804 DOI: 10.1094/mpmi-20-4-0335] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Abscisic acid (ABA) is a defense hormone with influence on callose-dependent and -independent resistance against Leptosphaeria maculans acting in the RLMcol pathway. ABA-deficient and -insensitive mutants in Ler-0 background (abal-3 and abil-1) displayed susceptibility to L. maculans, along with a significantly decreased level of callose depositions, whereas abi2-1 and abi3-1 remained resistant, together with the abi5-1 mutant of Ws-0 background. Suppressor mutants of abil-1 confirmed that the L. maculans-susceptible response was due to the dominant negative nature of the abil-1 mutant. Highly induced camalexin levels made ABA mutants in Col-0 background (aba2-1, aba3-1, and abi4-1) appear resistant, but displayed enhanced susceptibility as double mutants with pad3-1, impaired in camalexin biosynthesis. beta-Aminobutyric acid (BABA) pretreatment of Ler-0 contributed to an elevated level of endogenous ABA after L. maculans inoculation. Comparisons between (RLM1co1)pad3 and rlmlLerpad3 showed that ABA and BABA enhancement of callose deposition requires induction from RLM1col. ABII, but not ABI2, was found to be involved in a feedback mechanism that modulates RLM1co, expression. Genetic analysis showed further that this feedback occurs upstream of ABI4 and that components downstream of ABI4 modulate ABIJ activity. ABA and BABA treatments of the L. maculans-susceptible callose synthase mutant pmr4 showed that ABA also induces a callose-independent resistance. Similar treatments enhanced callose depositions and induced resistance to L. maculans in oilseed rape, and BABA-induced resistance was found to be independent of salicylic acid.
Collapse
Affiliation(s)
- Maria Kaliff
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, P.O. Box 7080, 750 07 Uppsala, Sweden.
| | | | | | | |
Collapse
|
45
|
Liu CT, Aono T, Kinoshita M, Miwa H, Iki T, Lee KB, Oyaizu H. Isolation and differential expression of β-1,3-glucanase messenger RNAs, SrGLU3 and SrGLU4, following inoculation of Sesbania rostrata. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:983-990. [PMID: 32689309 DOI: 10.1071/fp06086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 06/27/2006] [Indexed: 06/11/2023]
Abstract
We report here the isolation and characterisation of two new β-1,3-glucanase cDNAs, SrGLU3 and SrGLU4, from a tropical legume Sesbania rostrata Bremek. & Oberm., which form N2-fixing nodules on the stem after infection by Azorhizobium caulinodans. SrGLU3 was characterised as being grouped in a branch with tobacco class I β-1,3-glucanases, where the isoforms were reported to be induced by either pathogen infection or ethylene treatment. SrGLU4 was characterised as separate from other classes, and we propose this new branch as a new class (Class VI). The SrGLU3 gene was constitutively expressed in normal stem nodules induced by the wild type strain of A. caulinodans (ORS571), and also even in immature stem nodules induced by a mutant (ORS571-C1), which could not form mature stem-nodules. In contrast, the transcript accumulation of SrGLU4 was hardly detectable in immature nodules inoculated by the ORS571-C1 mutant. We suggest that S. rostrata makes use of SrGLU4 to discriminate between symbionts and non-symbionts (mutants) in developing nodules. We propose the SrGLU4 gene as a new nodulin during nodulation.
Collapse
Affiliation(s)
- Chi-Te Liu
- Laboratory of Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshihiro Aono
- Laboratory of Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Misako Kinoshita
- Laboratory of Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroki Miwa
- Laboratory of Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Taichiro Iki
- Laboratory of Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kyung-Bum Lee
- Laboratory of Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroshi Oyaizu
- Laboratory of Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
46
|
Johansson A, Staal J, Dixelius C. Early responses in the Arabidopsis-Verticillium longisporum pathosystem are dependent on NDR1, JA- and ET-associated signals via cytosolic NPR1 and RFO1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:958-69. [PMID: 16941900 DOI: 10.1094/mpmi-19-0958] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The responses of Arabidopsis accessions and characterized genotypes were used to explore components in the early defense responses to the soilborne fungus Verticillium longisporum. V. longisporum susceptibility was found to be a complex trait, in which different disease phenotypes, such as stunting, altered flowering time, weight loss, and chlorosis were perceived differently across genotypes. A Bay-0 x Shahdara recombinant inbred line population was used to identify two loci on chromosomes 2 and 3 of Bay-0 origin that caused enhanced chlorosis after V. longisporum challenge. Furthermore, the observation that a mutation in RFO1 in Col-0 resulted in susceptibility whereas the natural rfo1 allele in Ty-0 showed a high degree of resistance to the pathogen supports the hypothesis that several resistance quantitative trait loci reside among Arabidopsis accessions. Analysis of mutants impaired in known pathogen response pathways revealed an enhanced susceptibility in ein2-1, ein4-1, ein6-1, esa1-1, and pad1-1, but not in other jasmonic acid (JA)-, ethylene (ET)-, or camalexin-deficient mutants, suggesting that V. longisporum resistance is regulated via a hitherto unknown JA- and ET-associated pathway. Pretreatments with the ET precursor 1-aminocyclo-propane-1-carboxylic acid (ACC) or methyl jasmonate (MeJA) caused enhanced resistance to V. longisporum. Mutants in the salicylic acid (SA) pathway (eds1-1, NahG, npr1-3, pad4-1, and sid2-1) did not show enhanced susceptibility to V. longisporum. In contrast, the more severe npr1-1 allele displayed enhanced V. longisporum susceptibility and decreased responses to ACC or MeJA pretreatments. This shows that cytosolic NPR1, in addition to SA responses, is required for JA- and ET-mediated V. longisporum resistance. Expression of the SA-dependent PR-1 and PR-2 and the ET-dependent PR-4 were increased 7 days postinoculation with V. longisporum. This indicates increased levels of SA and ET in response to V. longisporum inoculation. The R-gene signaling mutant ndr1-1 was found to be susceptible to V. longisporum, which could be complemented by ACC or MeJA pretreatments, in contrast to the rfo1 T-DNA mutant, which remained susceptible, suggesting that RFO1 (Fusarium oxysporum resistance) and NDR1 (nonrace specific disease resistance 1) activate two distinct signaling pathways for V. longisporum resistance.
Collapse
Affiliation(s)
- Anna Johansson
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Box 7080, 750 07 Uppsala, Sweden
| | | | | |
Collapse
|
47
|
Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA, Griffith M, Moffatt BA. Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. PLANT PHYSIOLOGY 2006; 140:1437-50. [PMID: 16500996 PMCID: PMC1435811 DOI: 10.1104/pp.105.070508] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2005] [Revised: 12/10/2005] [Accepted: 01/19/2006] [Indexed: 05/06/2023]
Abstract
Thellungiella, an Arabidopsis (Arabidopsis thaliana)-related halophyte, is an emerging model species for studies designed to elucidate molecular mechanisms of abiotic stress tolerance. Using a cDNA microarray containing 3,628 unique sequences derived from previously described libraries of stress-induced cDNAs of the Yukon ecotype of Thellungiella salsuginea, we obtained transcript profiles of its response to cold, salinity, simulated drought, and rewatering after simulated drought. A total of 154 transcripts were differentially regulated under the conditions studied. Only six of these genes responded to all three stresses of drought, cold, and salinity, indicating a divergence among the end responses triggered by each of these stresses. Unlike in Arabidopsis, there were relatively few transcript changes in response to high salinity in this halophyte. Furthermore, the gene products represented among drought-responsive transcripts in Thellungiella associate a down-regulation of defense-related transcripts with exposure to water deficits. This antagonistic interaction between drought and biotic stress response may demonstrate Thellungiella's ability to respond precisely to environmental stresses, thereby conserving energy and resources and maximizing its survival potential. Intriguingly, changes of transcript abundance in response to cold implicate the involvement of jasmonic acid. While transcripts associated with photosynthetic processes were repressed by cold, physiological responses in plants developed at low temperature suggest a novel mechanism for photosynthetic acclimation. Taken together, our results provide useful starting points for more in-depth analyses of Thellungiella's extreme stress tolerance.
Collapse
Affiliation(s)
- Chui E Wong
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
van Loon LC, Rep M, Pieterse CMJ. Significance of inducible defense-related proteins in infected plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2006; 44:135-62. [PMID: 16602946 DOI: 10.1146/annurev.phyto.44.070505.143425] [Citation(s) in RCA: 1707] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Inducible defense-related proteins have been described in many plant species upon infection with oomycetes, fungi, bacteria, or viruses, or insect attack. Several types of proteins are common and have been classified into 17 families of pathogenesis-related proteins (PRs). Others have so far been found to occur more specifically in some plant species. Most PRs and related proteins are induced through the action of the signaling compounds salicylic acid, jasmonic acid, or ethylene, and possess antimicrobial activities in vitro through hydrolytic activities on cell walls, contact toxicity, and perhaps an involvement in defense signaling. However, when expressed in transgenic plants, they reduce only a limited number of diseases, depending on the nature of the protein, plant species, and pathogen involved. As exemplified by the PR-1 proteins in Arabidopsis and rice, many homologous proteins belonging to the same family are regulated developmentally and may serve different functions in specific organs or tissues. Several defense-related proteins are induced during senescence, wounding or cold stress, and some possess antifreeze activity. Many defense-related proteins are present constitutively in floral tissues and a substantial number of PR-like proteins in pollen, fruits, and vegetables can provoke allergy in humans. The evolutionary conservation of similar defense-related proteins in monocots and dicots, but also their divergent occurrence in other conditions, suggest that these proteins serve essential functions in plant life, whether in defense or not.
Collapse
Affiliation(s)
- L C van Loon
- Phytopathology, Institute of Environmental Biology, Science Faculty, Utrecht University, 3508 TB Utrecht, The Netherlands.
| | | | | |
Collapse
|
49
|
Mauch-Mani B, Mauch F. The role of abscisic acid in plant-pathogen interactions. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:409-14. [PMID: 15939661 DOI: 10.1016/j.pbi.2005.05.015] [Citation(s) in RCA: 434] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 05/19/2005] [Indexed: 05/02/2023]
Abstract
The effect of the abiotic stress hormone abscisic acid on plant disease resistance is a neglected field of research. With few exceptions, abscisic acid has been considered a negative regulator of disease resistance. This negative effect appears to be due to the interference of abscisic acid with biotic stress signaling that is regulated by salicylic acid, jasmonic acid and ethylene, and to an additional effect of ABA on shared components of stress signaling. However, recent research shows that abscisic acid can also be implicated in increasing the resistance of plants towards pathogens via its positive effect on callose deposition.
Collapse
Affiliation(s)
- Brigitte Mauch-Mani
- University of Neuchâtel, Faculty of Science, Institute of Botany, Biochemistry and Molecular Biology Laboratory, Rue Emile Argand 11, BP 2, 2007 Neuchâtel, Switzerland
| | | |
Collapse
|
50
|
Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. THE PLANT CELL 2004; 16:3460-79. [PMID: 15548743 PMCID: PMC535886 DOI: 10.1105/tpc.104.025833] [Citation(s) in RCA: 701] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 09/24/2004] [Indexed: 05/17/2023]
Abstract
The plant hormones abscisic acid (ABA), jasmonic acid (JA), and ethylene are involved in diverse plant processes, including the regulation of gene expression during adaptive responses to abiotic and biotic stresses. Previously, ABA has been implicated in enhancing disease susceptibility in various plant species, but currently very little is known about the molecular mechanisms underlying this phenomenon. In this study, we obtained evidence that a complex interplay between ABA and JA-ethylene signaling pathways regulate plant defense gene expression and disease resistance. First, we showed that exogenous ABA suppressed both basal and JA-ethylene-activated transcription from defense genes. By contrast, ABA deficiency as conditioned by the mutations in the ABA1 and ABA2 genes, which encode enzymes involved in ABA biosynthesis, resulted in upregulation of basal and induced transcription from JA-ethylene responsive defense genes. Second, we found that disruption of AtMYC2 (allelic to JASMONATE INSENSITIVE1 [JIN1]), encoding a basic helix-loop-helix Leu zipper transcription factor, which is a positive regulator of ABA signaling, results in elevated levels of basal and activated transcription from JA-ethylene responsive defense genes. Furthermore, the jin1/myc2 and aba2-1 mutants showed increased resistance to the necrotrophic fungal pathogen Fusarium oxysporum. Finally, using ethylene and ABA signaling mutants, we showed that interaction between ABA and ethylene signaling is mutually antagonistic in vegetative tissues. Collectively, our results indicate that the antagonistic interactions between multiple components of ABA and the JA-ethylene signaling pathways modulate defense and stress responsive gene expression in response to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Jonathan P Anderson
- Cooperative Research Centre for Tropical Plant Protection, University of Queensland, St. Lucia, Queensland, 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|