1
|
Zhang J, Wang X, Dou G, Meng D, Tang C, Lv J, Wang N, Wang X, Li J, Bao Y, Zhang G, Huang T, Shi Y. Genome-wide identification of rice CXE gene family and mining of alleles for potential application in rice improvement. FRONTIERS IN PLANT SCIENCE 2024; 15:1435420. [PMID: 39483679 PMCID: PMC11524881 DOI: 10.3389/fpls.2024.1435420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024]
Abstract
Carboxylesterases (CXE, EC 3.1.1.1), a class of hydrolases with an α/β folding domain, play important roles in plant growth and development and stress response. Here, we identified 32, 63, 41, and 45 CXE genes in Oryza sativa Japonica (Nipponbare), Oryza sativa Indica (93-11), Oryza sativa Indica (Xian-1B1 var.IR64), and Oryza sativa Japonica (Geng-sbtrp var.ChaoMeo), respectively. Then, we analyzed the chromosomal location, physical and chemical properties, subcellular localization, collinearity, and selection pressure of CXE genes in four rice varieties. We also analyzed the functional interaction network, cis-regulatory elements, evolutionary relationship, and protein tertiary structure, and performed gene expression profiling and qPCR verification under abiotic stress, as well as diversity analysis of 3010 gene-CDS-haplotype (gcHap) rice samples, aiming to understand the potential function of the 32 OsCXE genes. Our results indicated that fragment replication is the main reason for amplification of the CXE gene family in rice, and the gene family has undergone strong purification selection. OsCXE3.1, OsCXE3.2, OsCXE3.3, OsCXE5.1, and OsCXE7.3 may be used to improve the tolerance of rice to abiotic stress. OsCXE play important roles in rice population differentiation and improvement, and the major gcHaps at most OsCXE locus are significantly associated with yield traits. Therefore, natural variations of most OsCXE locus have great potential value for improvement of rice productivity.
Collapse
Affiliation(s)
- Jinguo Zhang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xinchen Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Guohui Dou
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Dezhuang Meng
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Chenghang Tang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jiaqi Lv
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Nansheng Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xingmeng Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jianfeng Li
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yaling Bao
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Guogeng Zhang
- School of Agronomy, Anhui Agricultural University, Hefei, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Huang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yingyao Shi
- School of Agronomy, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Shukla P, Gautam R, Singh NK, Ahmed I, Kirti PB. A proteomic study of cysteine protease induced cell death in anthers of male sterile tobacco transgenic plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1073-1082. [PMID: 31402825 PMCID: PMC6656835 DOI: 10.1007/s12298-019-00642-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 05/06/2023]
Abstract
Manifestation of male sterility in plants is an important requirement for hybrid seed production. Tapetum cell layer of anther is a primary target for genetic manipulation for male sterility. In our previous report, the targeted expression of Arachis cysteine protease in tapetum led to premature degeneration of tapetal layer that resulted in complete male sterility in transgenic tobacco plants. To correlate cysteine protease mediated cell death of tapetum, transmission electron microscopy (TEM) and proteomic pattern of anthers of cysteine protease induced male sterile plant were compared with the untransformed control plant. TEM study revealed the abnormal growth of tapetal cells exhibiting excessive vacuolization that synchronized with irregular exine wall formation of the microspores. In anther proteome, a total 250 protein spots were detected that were reproducible and exhibited similar distribution pattern. Further, anther proteome of male sterile plant showed the significant upregulation (≥ 1.5) of 56 protein spots. Using Mass spectroscopy (MALDI TOF/TOF), we have identified 14 protein spots that were involved in several processes such as energy metabolism, protein synthesis, plastid protein, lipid metabolism, and cell wall assembly. Upregulation of patatin-like protein-2 homolog, carboxylesterase 17 and dicer like protein-4 in male sterile anthers that have been demonstrated to induce cell death, suggesting that cysteine protease mediated premature tapetal cell death might involve the lipid peroxidation pathway in coordination with gene silencing mechanism.
Collapse
Affiliation(s)
- Pawan Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
- Present Address: Central Sericultural Research and Training Institute (CSR&TI), Central Silk Board, NH-1A, Gallandar, Pampore, J&K 192 121 India
| | - Ranjana Gautam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Naveen Kumar Singh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
- Present Address: Agricultural Research Organization-The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, 7505101 Rishon LeZion, Israel
| | - Israr Ahmed
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Pulugurtha Bharadwaja Kirti
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
- Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar India
- Agri Biotech Foundation, Rajendra Nagar, Hyderabad, India
| |
Collapse
|
3
|
Abstract
Mitochondria, a nearly ubiquitous feature of eukaryotes, are derived from an ancient symbiosis. Despite billions of years of cooperative coevolution - in what is arguably the most important mutualism in the history of life - the persistence of mitochondrial genomes also creates conditions for genetic conflict with the nucleus. Because mitochondrial genomes are present in numerous copies per cell, they are subject to both within- and among-organism levels of selection. Accordingly, 'selfish' genotypes that increase their own proliferation can rise to high frequencies even if they decrease organismal fitness. It has been argued that uniparental (often maternal) inheritance of cytoplasmic genomes evolved to curtail such selfish replication by minimizing within-individual variation and, hence, within-individual selection. However, uniparental inheritance creates conditions for cytonuclear conflict over sex determination and sex ratio, as well as conditions for sexual antagonism when mitochondrial variants increase transmission by enhancing maternal fitness but have the side-effect of being harmful to males (i.e., 'mother's curse'). Here, we review recent advances in understanding selfish replication and sexual antagonism in the evolution of mitochondrial genomes and the mechanisms that suppress selfish interactions, drawing parallels and contrasts with other organelles (plastids) and bacterial endosymbionts that arose more recently. Although cytonuclear conflict is widespread across eukaryotes, it can be cryptic due to nuclear suppression, highly variable, and lineage-specific, reflecting the diverse biology of eukaryotes and the varying architectures of their cytoplasmic genomes.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA.
| | - Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Nomura T. Function and application of a non-ester-hydrolyzing carboxylesterase discovered in tulip. Biosci Biotechnol Biochem 2017; 81:81-94. [DOI: 10.1080/09168451.2016.1240608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Plants have evolved secondary metabolite biosynthetic pathways of immense rich diversity. The genes encoding enzymes for secondary metabolite biosynthesis have evolved through gene duplication followed by neofunctionalization, thereby generating functional diversity. Emerging evidence demonstrates that some of those enzymes catalyze reactions entirely different from those usually catalyzed by other members of the same family; e.g. transacylation catalyzed by an enzyme similar to a hydrolytic enzyme. Tuliposide-converting enzyme (TCE), which we recently discovered from tulip, catalyzes the conversion of major defensive secondary metabolites, tuliposides, to antimicrobial tulipalins. The TCEs belong to the carboxylesterase family in the α/β-hydrolase fold superfamily, and specifically catalyze intramolecular transesterification, but not hydrolysis. This non-ester-hydrolyzing carboxylesterase is an example of an enzyme showing catalytic properties that are unpredictable from its primary structure. This review describes the biochemical and physiological aspects of tulipalin biogenesis, and the diverse functions of plant carboxylesterases in the α/β-hydrolase fold superfamily.
Collapse
Affiliation(s)
- Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Japan
| |
Collapse
|
5
|
Shimizu Y, Ogata H, Goto S. Type III Polyketide Synthases: Functional Classification and Phylogenomics. Chembiochem 2016; 18:50-65. [DOI: 10.1002/cbic.201600522] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Yugo Shimizu
- Bioinformatics Center; Institute for Chemical Research; Kyoto University; Gokasho Uji Kyoto 611-0011 Japan
| | - Hiroyuki Ogata
- Bioinformatics Center; Institute for Chemical Research; Kyoto University; Gokasho Uji Kyoto 611-0011 Japan
| | - Susumu Goto
- Bioinformatics Center; Institute for Chemical Research; Kyoto University; Gokasho Uji Kyoto 611-0011 Japan
| |
Collapse
|
6
|
Gramzow L, Weilandt L, Theißen G. MADS goes genomic in conifers: towards determining the ancestral set of MADS-box genes in seed plants. ANNALS OF BOTANY 2014; 114:1407-29. [PMID: 24854168 PMCID: PMC4204780 DOI: 10.1093/aob/mcu066] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/10/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. METHODS The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. KEY RESULTS Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11-14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14-16 Type II MADS-box genes. CONCLUSIONS The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS-box genes for the development of gymnosperms. This study is the first that provides a comprehensive overview of MADS-box genes in conifers and thus will provide a framework for future work on MADS-box genes in seed plants.
Collapse
Affiliation(s)
- Lydia Gramzow
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Lisa Weilandt
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| |
Collapse
|
7
|
Budahn H, Barański R, Grzebelus D, Kiełkowska A, Straka P, Metge K, Linke B, Nothnagel T. Mapping genes governing flower architecture and pollen development in a double mutant population of carrot. FRONTIERS IN PLANT SCIENCE 2014; 5:504. [PMID: 25339960 PMCID: PMC4189388 DOI: 10.3389/fpls.2014.00504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 09/09/2014] [Indexed: 05/20/2023]
Abstract
A linkage map of carrot (Daucus carota L.) was developed in order to study reproductive traits. The F2 mapping population derived from an initial cross between a yellow leaf (yel) chlorophyll mutant and a compressed lamina (cola) mutant with unique flower defects of the sporophytic parts of male and female organs. The genetic map has a total length of 781 cM and included 285 loci. The length of the nine linkage groups (LGs) ranged between 65 and 145 cM. All LGs have been anchored to the reference map. The objective of this study was the generation of a well-saturated linkage map of D. carota. Mapping of the cola-locus associated with flower development and fertility was successfully demonstrated. Two MADS-box genes (DcMADS3, DcMADS5) with prominent roles in flowering and reproduction as well as three additional genes (DcAOX2a, DcAOX2b, DcCHS2) with further importance for male reproduction were assigned to different loci that did not co-segregate with the cola-locus.
Collapse
Affiliation(s)
- Holger Budahn
- Institute for Breeding Research on Horticultural Crops, Federal Research Centre for Cultivated Plants, Julius Kühn-InstituteQuedlinburg, Germany
| | - Rafał Barański
- Department of Genetics, Plant Breeding and Seed Science, Faculty of Horticulture, University of AgricultureKraków, Poland
| | - Dariusz Grzebelus
- Department of Genetics, Plant Breeding and Seed Science, Faculty of Horticulture, University of AgricultureKraków, Poland
| | - Agnieszka Kiełkowska
- Department of Genetics, Plant Breeding and Seed Science, Faculty of Horticulture, University of AgricultureKraków, Poland
| | - Petra Straka
- Institute for Biosafety in Plant Biotechnology, Federal Research Centre for Cultivated Plants, Julius Kühn-InstituteQuedlinburg, Germany
| | - Kai Metge
- Institute for Biosafety in Plant Biotechnology, Federal Research Centre for Cultivated Plants, Julius Kühn-InstituteQuedlinburg, Germany
| | - Bettina Linke
- Department of Biology, Humboldt UniversityBerlin, Germany
| | - Thomas Nothnagel
- Institute for Breeding Research on Horticultural Crops, Federal Research Centre for Cultivated Plants, Julius Kühn-InstituteQuedlinburg, Germany
| |
Collapse
|
8
|
Jepson C, Karppinen K, Daku RM, Sterenberg BT, Suh DY. Hypericum perforatum hydroxyalkylpyrone synthase involved in sporopollenin biosynthesis--phylogeny, site-directed mutagenesis, and expression in nonanther tissues. FEBS J 2014; 281:3855-68. [PMID: 25040801 DOI: 10.1111/febs.12920] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/10/2014] [Accepted: 07/07/2014] [Indexed: 11/30/2022]
Abstract
Anther-specific chalcone synthase-like enzyme (ASCL), an ancient plant type III polyketide synthase, is involved in the biosynthesis of sporopollenin, the stable biopolymer found in the exine layer of the wall of a spore or pollen grain. The gene encoding polyketide synthase 1 from Hypericum perforatum (HpPKS1) was previously shown to be expressed mainly in young flower buds, but also in leaves and other tissues at lower levels. Angiosperm ASCLs, identified by sequence and phylogenetic analyses, are divided into two sister clades, the Ala-clade and the Val-clade, and HpPKS1 belongs to the Ala-clade. Recombinant HpPKS1 produced triketide and, to a lesser extent, tetraketide alkylpyrones from medium-chain (C6) to very long-chain (C24) fatty acyl-CoA substrates. Like other ASCLs, HpPKS1 also preferred hydroxyl fatty acyl-CoA esters over the analogous unsubstituted fatty acyl-CoA esters. To study the structural basis of the substrate preference, mutants of Ala200 and Ala215 at the putative active site and Arg202 and Asp211 at the modeled acyl-binding tunnel were constructed. The A200T/A215Q mutant accepted decanoyl-CoA, a poor substrate for the wild-type enzyme, possibly because of active site constriction by bulkier substitutions. The substrate preference of the A215V and A200T/A215Q mutants shifted toward nonhydroxylated, medium-chain to long-chain fatty acyl-CoA substrates. The R202L/D211V double mutant was selective for acyl-CoA with chain lengths of C16-C18, and showed a diminished preference for the hydroxylated acyl-CoA substrates. Transient upregulation by abscisic acid and downregulation by jasmonic acid and wounding suggested that HpPKS1, and possibly other Ala-clade ASCLs, may be involved in the biosynthesis of minor cell wall components in nonanther tissues.
Collapse
Affiliation(s)
- Christina Jepson
- Department of Chemistry and Biochemistry, University of Regina, Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
9
|
Neale DB, Langley CH, Salzberg SL, Wegrzyn JL. Open access to tree genomes: the path to a better forest. Genome Biol 2013; 14:120. [PMID: 23796049 PMCID: PMC3706761 DOI: 10.1186/gb-2013-14-6-120] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
An open-access culture and a well-developed comparative-genomics infrastructure must be developed in forest trees to derive the full potential of genome sequencing in this diverse group of plants that are the dominant species in much of the earth's terrestrial ecosystems.
Collapse
|
10
|
Lin W, Wu L, Lin S, Zhang A, Zhou M, Lin R, Wang H, Chen J, Zhang Z, Lin R. Metaproteomic analysis of ratoon sugarcane rhizospheric soil. BMC Microbiol 2013; 13:135. [PMID: 23773576 PMCID: PMC3687580 DOI: 10.1186/1471-2180-13-135] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 05/30/2013] [Indexed: 11/13/2022] Open
Abstract
Background The current study was undertaken to elucidate the mechanism of yield decline in ratoon sugarcane using soil metaproteomics combined with community level physiological profiles (CLPP) analysis. Results The available stalk number, stalk diameter, single stalk weight and theoretical yield of ratoon cane (RS) were found to be significantly lower than those of plant cane (NS). The activities of several carbon, nitrogen and phosphorus processing enzymes, including invertase, peroxidase, urease and phosphomonoesterase were found to be significantly lower in RS soil than in NS soil. BIOLOG analysis indicated a significant decline in average well-color development (AWCD), Shannon’s diversity and evenness indices in RS soil as compared to NS soil. To profile the rhizospheric metaproteome, 109 soil protein spots with high resolution and repeatability were successfully identified. These proteins were found to be involved in carbohydrate/energy, amino acid, protein, nucleotide, auxin and secondary metabolisms, membrane transport, signal transduction and resistance, etc. Comparative metaproteomics analysis revealed that 38 proteins were differentially expressed in the RS soil as compared to the control soil or NS soil. Among these, most of the plant proteins related to carbohydrate and amino acid metabolism and stress response were up-regulated in RS soil. Furthermore, several microbial proteins related to membrane transport and signal transduction were up-regulated in RS soil. These proteins were speculated to function in root colonization by microbes. Conclusions Our experiments revealed that sugarcane ratooning practice induced significant changes in the soil enzyme activities, the catabolic diversity of microbial community, and the expression level of soil proteins. They influenced the biochemical processes in the rhizosphere ecosystem and mediated the interactions between plants and soil microbes.
Collapse
Affiliation(s)
- Wenxiong Lin
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, P R China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kurita M, Konagaya KI, Watanabe A, Kondo T, Ishii K, Taniguchi T. The promoter of an A9 homolog from the conifer Cryptomeria japonica imparts male strobilus-dominant expression in transgenic trees. PLANT CELL REPORTS 2013; 32:319-28. [PMID: 23160637 DOI: 10.1007/s00299-012-1365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/19/2012] [Accepted: 10/29/2012] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE : GUS analysis in Cryptomeria japonica revealed that the CjMALE1 promoter is activated in the male strobilus of C. japonica. Toward the development of male sterile technology for Cryptomeria japonica, a male strobilus-dominant promoter of C. japonica was isolated. The CjMALE1 gene was isolated from a male strobilus-specific suppression subtractive hybridization (SSH) library, and the promoter was isolated by the TAIL-PCR method. To characterize the CjMALE1 promoter, β-glucuronidase (GUS)-fused genes were constructed and introduced into C. japonica using Agrobacterium tumefaciens. GUS expression from CjMALE1-2.5 K (2,718 bp fragment)::GUS C. japonica and CjMALE1-1 K (1,029 bp fragment)::GUS C. japonica was detected in the tapetum and microspore mother cells. These promoter fragments were comparably active in the pre-meiotic stage of the male strobilus of C. japonica. Our analysis showed that the 1,029 bp promoter had all the cis-elements necessary for male strobilus-dominant expression of CjMALE1. When CjMALE1-1 K::GUS was introduced into Arabidopsis, GUS expression was detected in the same spatiotemporal pattern as in C. japonica. These results suggest that the CjMALE1 promoter is subject to transcriptional regulatory systems consisting of cis- and trans-elements that have been highly conserved during evolution.
Collapse
Affiliation(s)
- Manabu Kurita
- Forestry and Forest Products Research Institute, Forest Tree Breeding Center, 3809-1 Ishi, Juo, Hitachi, Ibaraki 319-1301, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Zhang C, Norris-Caneda KH, Rottmann WH, Gulledge JE, Chang S, Kwan BYH, Thomas AM, Mandel LC, Kothera RT, Victor AD, Pearson L, Hinchee MA. Control of pollen-mediated gene flow in transgenic trees. PLANT PHYSIOLOGY 2012; 159:1319-34. [PMID: 22723085 PMCID: PMC3425181 DOI: 10.1104/pp.112.197228] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/18/2012] [Indexed: 05/07/2023]
Abstract
Pollen elimination provides an effective containment method to reduce direct gene flow from transgenic trees to their wild relatives. Until now, only limited success has been achieved in controlling pollen production in trees. A pine (Pinus radiata) male cone-specific promoter, PrMC2, was used to drive modified barnase coding sequences (barnaseH102E, barnaseK27A, and barnaseE73G) in order to determine their effectiveness in pollen ablation. The expression cassette PrMC2-barnaseH102E was found to efficiently ablate pollen in tobacco (Nicotiana tabacum), pine, and Eucalyptus (spp.). Large-scale and multiple-year field tests demonstrated that complete prevention of pollen production was achieved in greater than 95% of independently transformed lines of pine and Eucalyptus (spp.) that contained the PrMC2-barnaseH102E expression cassette. A complete pollen control phenotype was achieved in transgenic lines and expressed stably over multiple years, multiple test locations, and when the PrMC2-barnaseH102E cassette was flanked by different genes. The PrMC2-barnaseH102E transgenic pine and Eucalyptus (spp.) trees grew similarly to control trees in all observed attributes except the pollenless phenotype. The ability to achieve the complete control of pollen production in field-grown trees is likely the result of a unique combination of three factors: the male cone/anther specificity of the PrMC2 promoter, the reduced RNase activity of barnaseH102E, and unique features associated with a polyploid tapetum. The field performance of the PrMC2-barnaseH102E in representative angiosperm and gymnosperm trees indicates that this gene can be used to mitigate pollen-mediated gene flow associated with large-scale deployment of transgenic trees.
Collapse
|
13
|
Kim SS, Grienenberger E, Lallemand B, Colpitts CC, Kim SY, Souza CDA, Geoffroy P, Heintz D, Krahn D, Kaiser M, Kombrink E, Heitz T, Suh DY, Legrand M, Douglas CJ. LAP6/POLYKETIDE SYNTHASE A and LAP5/POLYKETIDE SYNTHASE B encode hydroxyalkyl α-pyrone synthases required for pollen development and sporopollenin biosynthesis in Arabidopsis thaliana. THE PLANT CELL 2010; 22:4045-66. [PMID: 21193570 PMCID: PMC3027170 DOI: 10.1105/tpc.110.080028] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/24/2010] [Accepted: 12/14/2010] [Indexed: 05/17/2023]
Abstract
Plant type III polyketide synthases (PKSs) catalyze the condensation of malonyl-CoA units with various CoA ester starter molecules to generate a diverse array of natural products. The fatty acyl-CoA esters synthesized by Arabidopsis thaliana ACYL-COA SYNTHETASE5 (ACOS5) are key intermediates in the biosynthesis of sporopollenin, the major constituent of exine in the outer pollen wall. By coexpression analysis, we identified two Arabidopsis PKS genes, POLYKETIDE SYNTHASE A (PKSA) and PKSB (also known as LAP6 and LAP5, respectively) that are tightly coexpressed with ACOS5. Recombinant PKSA and PKSB proteins generated tri-and tetraketide α-pyrone compounds in vitro from a broad range of potential ACOS5-generated fatty acyl-CoA starter substrates by condensation with malonyl-CoA. Furthermore, substrate preference profile and kinetic analyses strongly suggested that in planta substrates for both enzymes are midchain- and ω-hydroxylated fatty acyl-CoAs (e.g., 12-hydroxyoctadecanoyl-CoA and 16-hydroxyhexadecanoyl-CoA), which are the products of sequential actions of anther-specific fatty acid hydroxylases and acyl-CoA synthetase. PKSA and PKSB are specifically and transiently expressed in tapetal cells during microspore development in Arabidopsis anthers. Mutants compromised in expression of the PKS genes displayed pollen exine layer defects, and a double pksa pksb mutant was completely male sterile, with no apparent exine. These results show that hydroxylated α-pyrone polyketide compounds generated by the sequential action of ACOS5 and PKSA/B are potential and previously unknown sporopollenin precursors.
Collapse
Affiliation(s)
- Sung Soo Kim
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Etienne Grienenberger
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Benjamin Lallemand
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Che C. Colpitts
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Sun Young Kim
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Clarice de Azevedo Souza
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Pierrette Geoffroy
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Dimitri Heintz
- Plate-Forme d’Analyses Métaboliques de l’Institut de Biologie Moléculaire des Plantes, Institut de Botanique, 67083 Strasbourg Cedex, France
| | - Daniel Krahn
- Zentrum für Medizinische Biotechnologie, Fachbereich Biologie und Geographie, Universität Duisburg-Essen, 45117 Essen, Germany
| | - Markus Kaiser
- Zentrum für Medizinische Biotechnologie, Fachbereich Biologie und Geographie, Universität Duisburg-Essen, 45117 Essen, Germany
| | - Erich Kombrink
- Max Planck Institute for Plant Breeding Research, Department of Plant–Microbe Interactions, 50829 Cologne, Germany
| | - Thierry Heitz
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Dae-Yeon Suh
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Michel Legrand
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Carl J. Douglas
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Address correspondence to
| |
Collapse
|
14
|
Dobritsa AA, Lei Z, Nishikawa SI, Urbanczyk-Wochniak E, Huhman DV, Preuss D, Sumner LW. LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis. PLANT PHYSIOLOGY 2010; 153:937-55. [PMID: 20442277 PMCID: PMC2899912 DOI: 10.1104/pp.110.157446] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 04/30/2010] [Indexed: 05/17/2023]
Abstract
Pollen grains of land plants have evolved remarkably strong outer walls referred to as exine that protect pollen and interact with female stigma cells. Exine is composed of sporopollenin, and while the composition and synthesis of this biopolymer are not well understood, both fatty acids and phenolics are likely components. Here, we describe mutations in the Arabidopsis (Arabidopsis thaliana) LESS ADHESIVE POLLEN (LAP5) and LAP6 that affect exine development. Mutation of either gene results in abnormal exine patterning, whereas pollen of double mutants lacked exine deposition and subsequently collapsed, causing male sterility. LAP5 and LAP6 encode anther-specific proteins with homology to chalcone synthase, a key flavonoid biosynthesis enzyme. lap5 and lap6 mutations reduced the accumulation of flavonoid precursors and flavonoids in developing anthers, suggesting a role in the synthesis of phenolic constituents of sporopollenin. Our in vitro functional analysis of LAP5 and LAP6 using 4-coumaroyl-coenzyme A yielded bis-noryangonin (a commonly reported derailment product of chalcone synthase), while similar in vitro analyses using fatty acyl-coenzyme A as the substrate yielded medium-chain alkyl pyrones. Thus, in vitro assays indicate that LAP5 and LAP6 are multifunctional enzymes and may play a role in both the synthesis of pollen fatty acids and phenolics found in exine. Finally, the genetic interaction between LAP5 and an anther gene involved in fatty acid hydroxylation (CYP703A2) demonstrated that they act synergistically in exine production.
Collapse
Affiliation(s)
- Anna A Dobritsa
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Zhou YL, Xu MR, Zhao MF, Xie XW, Zhu LH, Fu BY, Li ZK. Genome-wide gene responses in a transgenic rice line carrying the maize resistance gene Rxo1 to the rice bacterial streak pathogen, Xanthomonas oryzae pv. oryzicola. BMC Genomics 2010; 11:78. [PMID: 20122142 PMCID: PMC2824728 DOI: 10.1186/1471-2164-11-78] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 02/01/2010] [Indexed: 11/18/2022] Open
Abstract
Background Non-host resistance in rice to its bacterial pathogen, Xanthomonas oryzae pv. oryzicola (Xoc), mediated by a maize NBS-LRR type R gene, Rxo1 shows a typical hypersensitive reaction (HR) phenotype, but the molecular mechanism(s) underlying this type of non-host resistance remain largely unknown. Results A microarray experiment was performed to reveal the molecular mechanisms underlying HR of rice to Xoc mediated by Rxo1 using a pair of transgenic and non-transgenic rice lines. Our results indicated that Rxo1 appeared to function in the very early step of the interaction between rice and Xoc, and could specifically activate large numbers of genes involved in signaling pathways leading to HR and some basal defensive pathways such as SA and ET pathways. In the former case, Rxo1 appeared to differ from the typical host R genes in that it could lead to HR without activating NDR1. In the latter cases, Rxo1 was able to induce a unique group of WRKY TF genes and a large set of genes encoding PPR and RRM proteins that share the same G-box in their promoter regions with possible functions in post-transcriptional regulation. Conclusions In conclusion, Rxo1, like most host R genes, was able to trigger HR against Xoc in the heterologous rice plants by activating multiple defensive pathways related to HR, providing useful information on the evolution of plant resistance genes. Maize non-host resistance gene Rxo1 could trigger the pathogen-specific HR in heterologous rice, and ultimately leading to a localized programmed cell death which exhibits the characteristics consistent with those mediated by host resistance genes, but a number of genes encoding pentatricopeptide repeat and RNA recognition motif protein were found specifically up-regulated in the Rxo1 mediated disease resistance. These results add to our understanding the evolution of plant resistance genes.
Collapse
Affiliation(s)
- Yong-Li Zhou
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | | | | | | | | | | | | |
Collapse
|
16
|
Ageez A, Kazama Y, Sugiyama R, Kawano S. Male-fertility genes expressed in male flower buds of Silene latifolia include homologs of anther-specific genes. Genes Genet Syst 2009; 80:403-13. [PMID: 16501309 DOI: 10.1266/ggs.80.403] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
When the female plant of Silene latifolia is infected with the smut fungus Microbotryum violaceum, its rudimentary stamens develop into anthers which contain fungus teliospores instead of pollen. To identify genes required for maturation of anthers in S. latifolia, we performed a cDNA subtraction approach with healthy male buds and female buds infected with M. violaceum. We isolated five cDNA clones, which were preferentially expressed in healthy male buds during stages associated with a burst in tapetal activity. These five cDNAs are predicted to encode a mandelonitrile lyase protein (SlMDL1), a strictosidine synthase protein (SlSs), a glycosyl hydrolase 17 protein (SlGh17), a proline-rich protein APG precursor (SlAPG), and a chalcone-synthase-like protein (SlChs). All five genes showed expression in both healthy and fungus-infected male buds, but not expressed in either healthy or infected female buds. The first three genes were highly expressed in both tapetum and pollen grains while the last two genes were expressed only inside the tapetum of male flower buds. Phylogenetic analysis results showed that SlChs and SlGh17 belong to anther-specific subgroups of chalcone-synthase-like genes and glycosyl hydrolase 17 family genes, respectively. Our results suggest that the isolated five genes are related to the fertility of the anther leading to the development of fertile pollen. The smut fungus was not able to induce the expression of the five genes in the infected female buds. This raises the possibility that these genes are under the control of master gene(s) on the Y chromosome.
Collapse
Affiliation(s)
- Amr Ageez
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | | | | | | |
Collapse
|
17
|
Yang S, Terachi T, Yamagishi H. Inhibition of chalcone synthase expression in anthers of Raphanus sativus with Ogura male sterile cytoplasm. ANNALS OF BOTANY 2008; 102:483-9. [PMID: 18625698 PMCID: PMC2701772 DOI: 10.1093/aob/mcn116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/14/2008] [Accepted: 06/12/2008] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Expression of the mitochondrial gene orf138 causes Ogura cytoplasmic male sterility (CMS) in Raphanus sativus, but little is known about the mechanism by which CMS takes place. A preliminary microarray experiment revealed that several nuclear genes concerned with flavonoid biosynthesis were inhibited in the male-sterile phenotype. In particular, a gene for one of the key enzymes for flavonoid biosynthesis, chalcone synthase (CHS), was strongly inhibited. A few reports have suggested that the inhibition of CHS causes nuclear-dependent male sterile expression; however, there do not appear to be any reports elucidating the effect of CHS on CMS expression. In this study, the expression patterns of the early genes in the flavonoid biosynthesis pathway, including CHS, were investigated in normal and male-sterile lines. METHODS In order to determine the aberrant stage for CMS expression, the characteristics of male-sterile anthers are observed using light and transmission electron microscopy for several stages of flower buds. The expression of CHS and the other flavonoid biosynthetic genes in the anthers were compared between normal and male-sterile types using real time RT-PCR. KEY RESULTS Among the flavonoid biosynthetic genes analysed, the expression of CHS was strongly inhibited in the later stages of anther development in sterility cytoplasm; accumulation of putative naringenin derivatives was also inhibited. CONCLUSIONS These results show that flavonoids play an important role in the development of functional pollen, not only in nuclear-dependent male sterility, but also in CMS.
Collapse
|
18
|
Wu S, O'Leary SJB, Gleddie S, Eudes F, Laroche A, Robert LS. A chalcone synthase-like gene is highly expressed in the tapetum of both wheat (Triticum aestivum L.) and triticale (xTriticosecale Wittmack). PLANT CELL REPORTS 2008; 27:1441-1449. [PMID: 18592248 DOI: 10.1007/s00299-008-0572-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 04/24/2008] [Accepted: 06/12/2008] [Indexed: 05/26/2023]
Abstract
A novel anther-specific chalcone synthase-like gene, TaCHSL1, was isolated and characterized. The TaCHSL1 transcript was detected only within the tapetum during the "free" and early vacuolated microspore stages in both wheat and triticale. Sequence analysis indicated that the 41.8 kDa TaCHSL1 deduced protein belongs to a small distinct group of type III polyketide synthases that includes angiosperm and gymnosperm orthologs shown to be anther-specific. TaCHSL1 sequence characteristics and conservation, as well as its restricted expression pattern, point to a distinct and important biochemical role in developing anthers.
Collapse
Affiliation(s)
- Shaobo Wu
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, KW Neatby Bldg, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Futamura N, Totoki Y, Toyoda A, Igasaki T, Nanjo T, Seki M, Sakaki Y, Mari A, Shinozaki K, Shinohara K. Characterization of expressed sequence tags from a full-length enriched cDNA library of Cryptomeria japonica male strobili. BMC Genomics 2008; 9:383. [PMID: 18691438 PMCID: PMC2568000 DOI: 10.1186/1471-2164-9-383] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 08/11/2008] [Indexed: 12/05/2022] Open
Abstract
Background Cryptomeria japonica D. Don is one of the most commercially important conifers in Japan. However, the allergic disease caused by its pollen is a severe public health problem in Japan. Since large-scale analysis of expressed sequence tags (ESTs) in the male strobili of C. japonica should help us to clarify the overall expression of genes during the process of pollen development, we constructed a full-length enriched cDNA library that was derived from male strobili at various developmental stages. Results We obtained 36,011 expressed sequence tags (ESTs) from either one or both ends of 19,437 clones derived from the cDNA library of C. japonica male strobili at various developmental stages. The 19,437 cDNA clones corresponded to 10,463 transcripts. Approximately 80% of the transcripts resembled ESTs from Pinus and Picea, while approximately 75% had homologs in Arabidopsis. An analysis of homologies between ESTs from C. japonica male strobili and known pollen allergens in the Allergome Database revealed that products of 180 transcripts exhibited significant homology. Approximately 2% of the transcripts appeared to encode transcription factors. We identified twelve genes for MADS-box proteins among these transcription factors. The twelve MADS-box genes were classified as DEF/GLO/GGM13-, AG-, AGL6-, TM3- and TM8-like MIKCC genes and type I MADS-box genes. Conclusion Our full-length enriched cDNA library derived from C. japonica male strobili provides information on expression of genes during the development of male reproductive organs. We provided potential allergens in C. japonica. We also provided new information about transcription factors including MADS-box genes expressed in male strobili of C. japonica. Large-scale gene discovery using full-length cDNAs is a valuable tool for studies of gymnosperm species.
Collapse
Affiliation(s)
- Norihiro Futamura
- Department of Molecular and Cell Biology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yang Y, Xu R, Ma CJ, Vlot AC, Klessig DF, Pichersky E. Inactive methyl indole-3-acetic acid ester can be hydrolyzed and activated by several esterases belonging to the AtMES esterase family of Arabidopsis. PLANT PHYSIOLOGY 2008; 147:1034-45. [PMID: 18467465 PMCID: PMC2442527 DOI: 10.1104/pp.108.118224] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 04/23/2008] [Indexed: 05/18/2023]
Abstract
The plant hormone auxin (indole-3-acetic acid [IAA]) is found both free and conjugated to a variety of carbohydrates, amino acids, and peptides. We have recently shown that IAA could be converted to its methyl ester (MeIAA) by the Arabidopsis (Arabidopsis thaliana) enzyme IAA carboxyl methyltransferase 1. However, the presence and function of MeIAA in vivo remains unclear. Recently, it has been shown that the tobacco (Nicotiana tabacum) protein SABP2 (salicylic acid binding protein 2) hydrolyzes methyl salicylate to salicylic acid. There are 20 homologs of SABP2 in the genome of Arabidopsis, which we have named AtMES (for methyl esterases). We tested 15 of the proteins encoded by these genes in biochemical assays with various substrates and identified several candidate MeIAA esterases that could hydrolyze MeIAA. MeIAA, like IAA, exerts inhibitory activity on the growth of wild-type roots when applied exogenously. However, the roots of Arabidopsis plants carrying T-DNA insertions in the putative MeIAA esterase gene AtMES17 (At3g10870) displayed significantly decreased sensitivity to MeIAA compared with wild-type roots while remaining as sensitive to free IAA as wild-type roots. Incubating seedlings in the presence of [(14)C]MeIAA for 30 min revealed that mes17 mutants hydrolyzed only 40% of the [(14)C]MeIAA taken up by plants, whereas wild-type plants hydrolyzed 100% of absorbed [(14)C]MeIAA. Roots of Arabidopsis plants overexpressing AtMES17 showed increased sensitivity to MeIAA but not to IAA. Additionally, mes17 plants have longer hypocotyls and display increased expression of the auxin-responsive DR5:beta-glucuronidase reporter gene, suggesting a perturbation in IAA homeostasis and/or transport. mes17-1/axr1-3 double mutant plants have the same phenotype as axr1-3, suggesting MES17 acts upstream of AXR1. The protein encoded by AtMES17 had a K(m) value of 13 microm and a K(cat) value of 0.18 s(-1) for MeIAA. AtMES17 was expressed at the highest levels in shoot apex, stem, and root of Arabidopsis. Our results demonstrate that MeIAA is an inactive form of IAA, and the manifestations of MeIAA in vivo activity are due to the action of free IAA that is generated from MeIAA upon hydrolysis by one or more plant esterases.
Collapse
Affiliation(s)
- Yue Yang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | | | | | |
Collapse
|
21
|
Swarbrick PJ, Huang K, Liu G, Slate J, Press MC, Scholes JD. Global patterns of gene expression in rice cultivars undergoing a susceptible or resistant interaction with the parasitic plant Striga hermonthica. THE NEW PHYTOLOGIST 2008; 179:515-529. [PMID: 19086183 DOI: 10.1111/j.1469-8137.2008.02484.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Striga hermonthica is a root hemiparasite of cereals that causes devastating loss of yield. Recently, a rice cultivar, Nipponbare, was discovered, which exhibits post-attachment resistance to this parasite and quantitative trait loci (QTL) associated with the resistance were identified. Changes in gene expression in susceptible (IAC 165) and resistant (Nipponbare) rice cultivars were profiled using rice whole-genome microarrays. In addition to a functional categorization of changes in gene expression, genes that were significantly up-regulated within resistance QTL were identified. The resistance reaction was characterized by up-regulation of defence genes, including pathogenesis-related proteins, pleiotropic drug resistance ABC transporters, genes involved in phenylpropanoid metabolism and WRKY transcription factors. These changes in gene expression resemble those associated with resistance to microbial pathogens. Three genes encoding proteins of unknown function, within a major resistance QTL on chromosome 12, were highly up-regulated and are excellent candidate resistance genes. The susceptible interaction was characterized by large-scale down-regulation of gene expression, particularly within the functional categories plant growth regulator signalling and metabolism, biogenesis of cellular components and cell division. Up-regulated genes included nutrient transporters, enzymes of amino acid metabolism and some abiotic stress genes.
Collapse
Affiliation(s)
- P J Swarbrick
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - K Huang
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - G Liu
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - J Slate
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - M C Press
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - J D Scholes
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
22
|
Martins PK, Jordão BQ, Yamanaka N, Farias JR, Beneventi MA, Binneck E, Fuganti R, Stolf R, Nepomuceno AL. Differential gene expression and mitotic cell analysis of the drought tolerant soybean (Glycine max L. Merrill Fabales, Fabaceae) cultivar MG/BR46 (Conquista) under two water deficit induction systems. Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008000300019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Naoki Yamanaka
- Japan International Research Center for Agricultural Science, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Vandenbussche F, Fierro AC, Wiedemann G, Reski R, Van Der Straeten D. Evolutionary conservation of plant gibberellin signalling pathway components. BMC PLANT BIOLOGY 2007; 7:65. [PMID: 18047669 PMCID: PMC2234411 DOI: 10.1186/1471-2229-7-65] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 11/29/2007] [Indexed: 05/18/2023]
Abstract
BACKGROUND Gibberellins (GA) are plant hormones that can regulate germination, elongation growth, and sex determination. They ubiquitously occur in seed plants. The discovery of gibberellin receptors, together with advances in understanding the function of key components of GA signalling in Arabidopsis and rice, reveal a fairly short GA signal transduction route. The pathway essentially consists of GID1 gibberellin receptors that interact with F-box proteins, which in turn regulate degradation of downstream DELLA proteins, suppressors of GA-controlled responses. RESULTS Arabidopsis sequences of the gibberellin signalling compounds were used to screen databases from a variety of plants, including protists, for homologues, providing indications for the degree of conservation of the pathway. The pathway as such appears completely absent in protists, the moss Physcomitrella patens shares only a limited homology with the Arabidopsis proteins, thus lacking essential characteristics of the classical GA signalling pathway, while the lycophyte Selaginella moellendorffii contains a possible ortholog for each component. The occurrence of classical GA responses can as yet not be linked with the presence of homologues of the signalling pathway. Alignments and display in neighbour joining trees of the GA signalling components confirm the close relationship of gymnosperms, monocotyledonous and dicotyledonous plants, as suggested from previous studies. CONCLUSION Homologues of the GA-signalling pathway were mainly found in vascular plants. The GA signalling system may have its evolutionary molecular onset in Physcomitrella patens, where GAs at higher concentrations affect gravitropism and elongation growth.
Collapse
Affiliation(s)
- Filip Vandenbussche
- Unit Plant Hormone Signaling & Bio-imaging, Department of Molecular Genetics, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Ana C Fierro
- Department Microbial and Molecular Systems, K.U. Leuven, Kasteelpark Arenberg 20, 3000 Leuven, Belgium
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Dominique Van Der Straeten
- Unit Plant Hormone Signaling & Bio-imaging, Department of Molecular Genetics, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| |
Collapse
|
24
|
Proteomic evaluation of gymnosperm pollination drop proteins indicates highly conserved and complex biological functions. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s00497-007-0054-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Höfig KP, Möller R, Donaldson L, Putterill J, Walter C. Towards male sterility in Pinus radiata--a stilbene synthase approach to genetically engineer nuclear male sterility. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:333-43. [PMID: 17147639 DOI: 10.1111/j.1467-7652.2006.00185.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A male cone-specific promoter from Pinus radiata D. Don (radiata pine) was used to express a stilbene synthase gene (STS) in anthers of transgenic Nicotiana tabacum plants, resulting in complete male sterility in 70% of transformed plants. Three plants were 98%-99.9% male sterile, as evidenced by pollen germination. To identify the stage at which transgenic pollen first developed abnormally, tobacco anthers from six different developmental stages were assayed microscopically. Following the release of pollen grains from tetrads, transgenic pollen displayed an increasingly flake-like structure, which gradually rounded up during the maturation process. We further investigated whether STS expression may have resulted in an impaired flavonol or sporopollenin formation. A specific flavonol aglycone stain was used to demonstrate that significant amounts of these substances were produced only in late stages of normal pollen development, therefore excluding a diminished flavonol aglycone production as a reason for pollen ablation. A detailed analysis of the exine layer by transmission electron microscopy revealed minor structural changes in the exine layer of ablated pollen, and pyrolysis-gas chromatography-mass spectroscopy indicated that the biochemistry of sporopollenin production was unaffected. The promoter-STS construct may be useful for the ablation of pollen formation in coniferous gymnosperms and male sterility may potentially be viewed as a prerequisite for the commercial use of transgenic conifers.
Collapse
Affiliation(s)
- Kai P Höfig
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
26
|
Wagner A, Phillips L, Narayan RD, Moody JM, Geddes B. Gene silencing studies in the gymnosperm species Pinus radiata. PLANT CELL REPORTS 2005; 24:95-102. [PMID: 15662500 DOI: 10.1007/s00299-004-0911-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 12/04/2004] [Accepted: 12/06/2004] [Indexed: 05/20/2023]
Abstract
A biolistic transformation procedure was used to transform embryogenic Pinus radiata tissue with constructs containing the Zea mays UBI1 (ubiquitin)-promoter followed by the P. radiata CAD (cinnamyl alcohol dehydrogenase) cDNA in sense or anti-sense orientation or in the form of an inverted-repeat. The effect of the different constructs on silencing the endogenous CAD gene was monitored in embryogenic tissue and somatic seedlings of 28 P. radiata transclones. Quantitative CAD measurements demonstrated that the construct containing an inverted-repeat of the CAD cDNA was most efficient in triggering gene silencing in P. radiata. Northern hybridization experiments with silenced transclones revealed that reduced CAD activities were the result of reduced steady state levels of the targeted CAD mRNA. Monitoring of the activity of the UBI1-promoter in the P. radiata transclones and heat-shock experiments with transgenic somatic P. radiata seedlings indicated that gene silencing is positively correlated with the expression level of the transgene. The obtained data are also consistent with a role for the expression level of the endogenous CAD gene in gene silencing.
Collapse
MESH Headings
- Alcohol Oxidoreductases/genetics
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Gene Expression Regulation, Enzymologic/genetics
- Gene Expression Regulation, Plant/genetics
- Gene Silencing/physiology
- Pinus/embryology
- Pinus/genetics
- Pinus/growth & development
- Plant Proteins/genetics
- Plant Shoots/embryology
- Plant Shoots/genetics
- Plant Shoots/growth & development
- Plants, Genetically Modified/embryology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Promoter Regions, Genetic/genetics
- RNA, Messenger/metabolism
- Seeds/embryology
- Seeds/genetics
- Seeds/growth & development
- Transformation, Genetic/genetics
- Transgenes/genetics
- Ubiquitin C/genetics
Collapse
Affiliation(s)
- Armin Wagner
- Cellwall Biotechnology Centre (CBC), Forest Research, Private Bag 3020, Rotorua, New Zealand.
| | | | | | | | | |
Collapse
|
27
|
McNeil KJ, Smith AG. An anther-specific cysteine-rich protein of tomato localized to the tapetum and microspores. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:457-64. [PMID: 15900888 DOI: 10.1016/j.jplph.2004.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The tapetum is a nutritive tissue of the stamen that is essential for normal microspore development. While numerous tapetal-specific genes have been identified, little information is available on the localization and function of the proteins produced by these genes. The tapetally produced protein 5B-CRP is cysteine-rich, has a secretory signal sequence and lacks an endoplasmic reticulum retention sequence. The 5B-CRP mRNA is expressed specifically within the tapetum and accumulates from premeiosis to tetrad release. Antibodies generated against an Escherichia coli fusion protein only recognized 5B-CRP in the reduced state. The 5B-CRP was detected as a 6 kDa protein in extracts of stamens from microspore meiosis through anthesis and was also observed in extracts from dehisced pollen. In situ, 5B-CRP was localized in stamens to the tapetum and the developing microspores, from the tetrad through early free microspore stages. Based on similarity to proteins with known functions, 5B-CRP may inhibit proteasome activity within the stamen locule.
Collapse
Affiliation(s)
- Kenneth J McNeil
- Department of Horticultural Science, University of Minnesota, 356 Alderman Hall, St. Paul, MN 55108, USA
| | | |
Collapse
|
28
|
van Doorn WG, Woltering EJ. Many ways to exit? Cell death categories in plants. TRENDS IN PLANT SCIENCE 2005; 10:117-22. [PMID: 15749469 DOI: 10.1016/j.tplants.2005.01.006] [Citation(s) in RCA: 249] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Programmed cell death (PCD) is an integral part of plant development and defence. It occurs at all stages of the life cycle, from fertilization of the ovule to death of the whole plant. Without it, tall trees would probably not be possible and plants would more easily succumb to invading microorganisms. Here, we have attempted to categorize plant PCD in relation to three established morphological types of metazoan cell death: apoptosis, autophagy and non-lysosomal PCD. We conclude that (i) no examples of plant PCD conform to the apoptotic type, (ii) many examples of PCD during plant development agree with the autophagic type, and (iii) that other examples are apparently neither apoptotic nor autophagic.
Collapse
Affiliation(s)
- Wouter G van Doorn
- Wageningen University and Research Centre, PO Box 17, 6700 AA Wageningen, The Netherlands.
| | | |
Collapse
|
29
|
Akashi T, Aoki T, Ayabe SI. Molecular and biochemical characterization of 2-hydroxyisoflavanone dehydratase. Involvement of carboxylesterase-like proteins in leguminous isoflavone biosynthesis. PLANT PHYSIOLOGY 2005; 137:882-91. [PMID: 15734910 PMCID: PMC1065389 DOI: 10.1104/pp.104.056747] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 12/17/2004] [Accepted: 12/20/2004] [Indexed: 05/17/2023]
Abstract
Isoflavonoids are ecophysiologically active secondary metabolites of the Leguminosae and known for health-promoting phytoestrogenic functions. Isoflavones are synthesized by 1,2-elimination of water from 2-hydroxyisoflavanones, the first intermediate with the isoflavonoid skeleton, but details of this dehydration have been unclear. We screened the extracts of repeatedly fractionated Escherichia coli expressing a Glycyrrhiza echinata cDNA library for the activity to convert a radiolabeled precursor into formononetin (7-hydroxy-4'-methoxyisoflavone), and a clone of 2-hydroxyisoflavanone dehydratase (HID) was isolated. Another HID cDNA was cloned from soybean (Glycine max), based on the sequence information in its expressed sequence tag library. Kinetic studies revealed that G. echinata HID is specific to 2,7-dihydroxy-4'-methoxyisoflavanone, while soybean HID has broader specificity to both 4'-hydroxylated and 4'-methoxylated 2-hydroxyisoflavanones, reflecting the structures of isoflavones contained in each plant species. Strikingly, HID proteins were members of a large carboxylesterase family, of which plant proteins form a monophyletic group and some are assigned defensive functions with no intrinsic catalytic activities identified. Site-directed mutagenesis with soybean HID protein suggested that the characteristic oxyanion hole and catalytic triad are essential for the dehydratase as well as the faint esterase activities. The findings, to our knowledge, represent a new example of recruitment of enzymes of primary metabolism during the molecular evolution of plant secondary metabolism.
Collapse
Affiliation(s)
- Tomoyoshi Akashi
- Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa 252-8510, Japan
| | | | | |
Collapse
|
30
|
Marshall SDG, Putterill JJ, Plummer KM, Newcomb RD. The carboxylesterase gene family from Arabidopsis thaliana. J Mol Evol 2004; 57:487-500. [PMID: 14738307 DOI: 10.1007/s00239-003-2492-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2003] [Accepted: 05/12/2003] [Indexed: 11/29/2022]
Abstract
Carboxylesterases hydrolyze esters of short-chain fatty acids and have roles in animals ranging from signal transduction to xenobiotic detoxification. In plants, however, little is known of their roles. We have systematically mined the genome from the model plant Arabidopsis thaliana for carboxylesterase genes and studied their distribution in the genome and expression profile across a range of tissues. Twenty carboxylesterase genes (AtCXE) were identified. The AtCXE family shares conserved sequence motifs and secondary structure characteristics with carboxylesterases and other members of the larger alpha/beta hydrolase fold superfamily of enzymes. Phylogenetic analysis of the AtCXE genes together with other plant carboxylesterases distinguishes seven distinct clades, with an Arabidopsis thaliana gene represented in six of the seven clades. The AtCXE genes are widely distributed across the genome (present in four of five chromosomes), with the exception of three clusters of tandemly duplicated genes. Of the interchromosomal duplication events, two have been mediated through newly identified partial chromosomal duplication events that also include other genes surrounding the AtCXE loci. Eighteen of the 20 AtCXE genes are expressed over a broad range of tissues, while the remaining 2 (unrelated) genes are expressed only in the flowers and siliques. Finally, hypotheses for the functional roles of the AtCXE family members are presented based on the phylogenetic relationships with other plant carboxylesterases of known function, their expression profile, and knowledge of likely esterase substrates found in plants.
Collapse
Affiliation(s)
- Sean D G Marshall
- Mt Albert Research Centre, HortResearch, Private Bag 92 169, Mt Albert, Auckland, New Zealand
| | | | | | | |
Collapse
|
31
|
Li G, Asiegbu FO. Use of Scots pine seedling roots as an experimental model to investigate gene expression during interaction with the conifer pathogen Heterobasidion annosum (P-type). JOURNAL OF PLANT RESEARCH 2004; 117:155-162. [PMID: 15108035 DOI: 10.1007/s10265-003-0140-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 12/19/2003] [Indexed: 05/24/2023]
Abstract
The root-rot fungus Heterobasidion annosum is a major pathogen of woody trees in temperate regions of the world. In this study, seedling root of Scots pine was used as an experimental model to investigate gene expression in conifer trees during challenge with H. annosum. Initial cellular and histochemical studies have established the systems and indicated the key sequence of events during the infection process. Also, to correlate histochemical observations with the time-dependent pattern of events in host gene expression, a transcriptome profiling of a selected set of host genes from a pine-root subtraction cDNA library was conducted. Differential screening of the subset of genes arrayed on nylon membrane with cDNA probes made from seedling roots infected for 1, 3, 7 and 15 days revealed a number of up-regulated genes [disease-resistance gene analog, antimicrobial peptide (AMP) gene homolog etc.] following inoculation. The results also showed strong expression of genes involved in cell defense and protein synthesis at the early stages of the infection (3-7 days) with a decline at late stages of infection (15 days). The decline in expression of key defense genes at late stages of infection correlated well with the period of vascular colonization and subsequent loss of root turgor. Northern analyses with two of the major induced genes (AMP homolog and disease-resistance gene analog) indicated a several-fold increase in host gene expression following infection. In addition, a particular single gene (thaumatin-like protein) was consistently expressed throughout the four sampling periods of the experiment. BlastX analyses revealed that the Scots-pine thaumatin-like gene shared 51-77% sequence homology with other thaumatin-like proteins in GenBank. The importance of these results in tree defense and use of conifer seedling root in host-parasite interaction in forest trees is discussed.
Collapse
Affiliation(s)
- Guosheng Li
- Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007, Uppsala, Sweden
| | | |
Collapse
|
32
|
Höfig KP, Moyle RL, Putterill J, Walter C. Expression analysis of four Pinus radiata male cone promoters in the heterologous host Arabidopsis. PLANTA 2003; 217:858-867. [PMID: 12838419 DOI: 10.1007/s00425-003-1057-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2003] [Accepted: 04/23/2003] [Indexed: 05/24/2023]
Abstract
Four male cone-specific promoters were isolated from the genome of Pinus radiata D. Don, fused to the beta-glucuronidase (GUS) reporter gene and analysed in the heterologous host Arabidopsis thaliana (L.) Heynh. The temporal and spatial activities of the promoters PrCHS1, PrLTP2, PrMC2 and PrMALE1 during seven anther developmental stages are described in detail. The two promoters PrMC2 and PrMALE1 confer an identical GUS expression pattern on Arabidopsis anthers. DNA sequence analysis of the PrMC2 and PrMALE1 promoters revealed an 88% sequence identity over 276 bp and divergence further upstream (<40% sequence identity). GUS expression driven by a 276-bp PrMALE1 promoter fragment showed the same pattern in Arabidopsis anthers as observed for the full-length PrMALE1 promoter. Within the 276-bp promoter fragment a region of high homology to a previously described 16-bp anther-box was identified. In gain-of-function experiments the putative PrMALE1 anther-box was fused upstream of a 90-bp CaMV 35S minimal promoter, as a single copy in the sense direction and as an inverted repeat. No GUS expression was conferred to Arabidopsis anthers by either of these two constructs. In a loss-of-function experiment a 226-bp PrMALE1 deletion construct, which did not contain the putative PrMALE1 anther-box, still maintained the originally observed PrMALE1 GUS expression pattern. Hence, gain-of-function as well as loss-of-function experiments consistently showed that the putative anther-box of the PrMALE1 promoter is non-functional in the Arabidopsis genetic background. For the analysis of the four full-length pine promoters PrCHS1, PrLTP2, PrMC2 and PrMALE1, transformation vectors based on pCAMBIA2200 and pCAMBIA1302 were used. It will also be demonstrated in this article that sequences within the T-DNA borders of these vectors caused a characteristic histological background expression in Arabidopsis, with staining observed in vascular tissue of leaves, sepals, roots, filaments of stamens and in stems and pistils.
Collapse
Affiliation(s)
- Kai P Höfig
- New Zealand Forest Research Institute Ltd., Private Bag 3020, Rotorua, New Zealand
| | | | | | | |
Collapse
|
33
|
|
34
|
Balk J, Leaver CJ. The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. THE PLANT CELL 2001. [PMID: 11487694 DOI: 10.1105/tpc.13.8.1803] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In mammals, mitochondria have been shown to play a key intermediary role in apoptosis, a morphologically distinct form of programmed cell death (PCD), for example, through the release of cytochrome c, which activates a proteolytic enzyme cascade, resulting in specific nuclear DNA degradation and cell death. In plants, PCD is a feature of normal development, including the penultimate stage of anther development, leading to dehiscence and pollen release. However, there is little evidence that plant mitochondria are involved in PCD. In a wide range of plant species, anther and/or pollen development is disrupted in a class of mutants termed CMS (for cytoplasmic male sterility), which is associated with mutations in the mitochondrial genome. On the basis of the manifestation of a number of morphological and biochemical markers of apoptosis, we have shown that the PET1-CMS cytoplasm in sunflower causes premature PCD of the tapetal cells, which then extends to other anther tissues. These features included cell condensation, oligonucleosomal cleavage of nuclear DNA, separation of chromatin into delineated masses, and initial persistence of mitochondria. In addition, immunocytochemical analysis revealed that cytochrome c was released partially from the mitochondria into the cytosol of tapetal cells before the gross morphological changes associated with PCD. The decrease in cytochrome c content in mitochondria isolated from male sterile florets preceded a decrease in the integrity of the outer mitochondrial membrane and respiratory control ratio. Our data suggest that plant mitochondria, like mammalian mitochondria, play a key role in the induction of PCD. The tissue-specific nature of the CMS phenotype is discussed with regard to cellular respiratory demand and PCD during normal anther development.
Collapse
Affiliation(s)
- J Balk
- University of Oxford, Department of Plant Sciences, South Parks Road, Oxford OX1 3RB, United Kingdom.
| | | |
Collapse
|
35
|
Balk J, Leaver CJ. The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. THE PLANT CELL 2001; 13:1803-18. [PMID: 11487694 PMCID: PMC139137 DOI: 10.1105/tpc.010116] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2001] [Accepted: 05/22/2001] [Indexed: 05/19/2023]
Abstract
In mammals, mitochondria have been shown to play a key intermediary role in apoptosis, a morphologically distinct form of programmed cell death (PCD), for example, through the release of cytochrome c, which activates a proteolytic enzyme cascade, resulting in specific nuclear DNA degradation and cell death. In plants, PCD is a feature of normal development, including the penultimate stage of anther development, leading to dehiscence and pollen release. However, there is little evidence that plant mitochondria are involved in PCD. In a wide range of plant species, anther and/or pollen development is disrupted in a class of mutants termed CMS (for cytoplasmic male sterility), which is associated with mutations in the mitochondrial genome. On the basis of the manifestation of a number of morphological and biochemical markers of apoptosis, we have shown that the PET1-CMS cytoplasm in sunflower causes premature PCD of the tapetal cells, which then extends to other anther tissues. These features included cell condensation, oligonucleosomal cleavage of nuclear DNA, separation of chromatin into delineated masses, and initial persistence of mitochondria. In addition, immunocytochemical analysis revealed that cytochrome c was released partially from the mitochondria into the cytosol of tapetal cells before the gross morphological changes associated with PCD. The decrease in cytochrome c content in mitochondria isolated from male sterile florets preceded a decrease in the integrity of the outer mitochondrial membrane and respiratory control ratio. Our data suggest that plant mitochondria, like mammalian mitochondria, play a key role in the induction of PCD. The tissue-specific nature of the CMS phenotype is discussed with regard to cellular respiratory demand and PCD during normal anther development.
Collapse
Affiliation(s)
- J Balk
- University of Oxford, Department of Plant Sciences, South Parks Road, Oxford OX1 3RB, United Kingdom.
| | | |
Collapse
|
36
|
Genetic Engineering of Pinus Radiata and Picea Abies, Production of Transgenic Plants and Gene Expression Studies. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0921-0423(01)80075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
37
|
Abstract
The plant hormone jasmonate has been implicated in male fertility in Arabidopsis. Recent studies have identified the enzyme required for a critical step of jasmonate synthesis in anthers and shown that this enzyme really is required for male fertility.
Collapse
Affiliation(s)
- D Zhao
- Department of Biology, 504 Wartik Laboratory, Pennsylvania State University, PA 16802, USA
| | | |
Collapse
|