1
|
Xiang LT, Li HL, He JL, Liu GS, Fu DQ. Transcription factors SlNOR and SlNOR-like1 regulate steroidal glycoalkaloids biosynthesis in tomato fruit. Int J Biol Macromol 2025; 299:140157. [PMID: 39848374 DOI: 10.1016/j.ijbiomac.2025.140157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Steroidal glycoalkaloids (SGAs) are specialized metabolites in Solanaceae that serve as defensive compounds and undergo significant compositional changes during fruit ripening. This study explored the roles of transcription factors SlNOR and SlNOR-like1 in SGAs biosynthesis during tomato fruit development. UPLC-MS/MS revealed dynamic changes in four major SGAs: tomatidine, β-tomatine, α-tomatine, and Esculeoside A. Transgenic studies with knockout and overexpression lines demonstrated that both SlNOR and SlNOR-like1 positively regulated SGAs accumulation. RT-qPCR analysis showed that these transcription factors modulated multiple GAME genes in the SGAs biosynthetic pathway. Through EMSA and DLR assays, we established that SlNOR and SlNOR-like1 directly bound to and activated GAME25 and GAME40 promoters, two key genes involved in tomatidine synthesis and α-tomatine conversion, respectively. These findings reveal a previously unknown regulatory mechanism of SGAs metabolism and suggest potential strategies for optimizing tomato fruit quality through molecular breeding.
Collapse
Affiliation(s)
- Lan-Ting Xiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hong-Li Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jian-Lin He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Gang-Shuai Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Da-Qi Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Akiyama R, Terami D, Noda A, Watanabe B, Umemoto N, Muranaka T, Saito K, Sugimoto Y, Mizutani M. Two reductases complete steroidal glycoalkaloids biosynthesis in potato. THE NEW PHYTOLOGIST 2025; 245:2632-2644. [PMID: 39821169 PMCID: PMC11840414 DOI: 10.1111/nph.20411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Steroidal glycoalkaloids (SGAs) are specialized metabolites primarily produced by Solanaceae plants such as potatoes and tomatoes. Notably, α-solanine and α-chaconine are recognized as toxic substances in potatoes. While the biosynthetic pathways of SGAs are largely understood, the final steps of α-solanine and α-chaconine biosynthesis remained elusive. In this study, we discovered that two reductase-encoding genes, reductase for potato glycoalkaloid biosynthesis 1 (RPG1) and RPG2, complete SGA biosynthesis in potato. Knockout of both RPG1 and RPG2 in potato hairy roots halted α-solanine production, leading to the accumulation of zwittersolanine. We analyzed the catalytic function of recombinant enzymes and conducted structural determination of the reaction products by nuclear magnetic resonance. As a result, RPG1 converted zwittersolanine to 16-iminiumsolanine, and RPG2 further converted it to α-solanine. RPG2 also transformed zwittersolanine to 22-iminiumsolanine, which RPG1 then converted to α-solanine. Similar processes were observed for α-chaconine synthesis from zwitterchaconine. Due to differences in enzymatic reaction efficiency, the biosynthetic pathway via 16-iminiumsolanine/16-iminiumchaconine was suggested to be predominant in potato. Our results could pave the way for tailoring SGA structures within Solanum plants, enabling the development of Solanum crop varieties with reduced toxicity or enhanced resistance to diseases and pests.
Collapse
Affiliation(s)
- Ryota Akiyama
- Graduate School of Agricultural ScienceKobe UniversityRokkoudai 1‐1, NadaKobeHyogo657‐8501Japan
| | - Daiki Terami
- Graduate School of Agricultural ScienceKobe UniversityRokkoudai 1‐1, NadaKobeHyogo657‐8501Japan
| | - Aozora Noda
- Graduate School of Agricultural ScienceKobe UniversityRokkoudai 1‐1, NadaKobeHyogo657‐8501Japan
| | - Bunta Watanabe
- The Jikei University School of Medicine8‐3‐1 KokuryoChohuTokyo182‐8570Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource ScienceSuehiro‐cho 1‐7‐22, Tsurumi‐kuYokohamaKanagawa230‐0045Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of EngineeringOsaka UniversityYamadaoka 2‐1, SuitaOsaka565‐0871Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource ScienceSuehiro‐cho 1‐7‐22, Tsurumi‐kuYokohamaKanagawa230‐0045Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural ScienceKobe UniversityRokkoudai 1‐1, NadaKobeHyogo657‐8501Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural ScienceKobe UniversityRokkoudai 1‐1, NadaKobeHyogo657‐8501Japan
| |
Collapse
|
3
|
Lezin E, Papon N, Courdavault V. A GAME changer in steroidal metabolite biosynthesis. PLANT COMMUNICATIONS 2025; 6:101201. [PMID: 39632754 PMCID: PMC11783872 DOI: 10.1016/j.xplc.2024.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Enzo Lezin
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Nicolas Papon
- University Angers, University Brest, IRF, SFR ICAT, 49000 Angers, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France.
| |
Collapse
|
4
|
Grzech D, Smit SJ, Alam RM, Boccia M, Nakamura Y, Hong B, Barbole R, Heinicke S, Kunert M, Seibt W, Grabe V, Caputi L, Lichman BR, O'Connor SE, Aharoni A, Sonawane PD. Incorporation of nitrogen in antinutritional Solanum alkaloid biosynthesis. Nat Chem Biol 2025; 21:131-142. [PMID: 39271954 PMCID: PMC11666457 DOI: 10.1038/s41589-024-01735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Steroidal glycoalkaloids (SGAs) are specialized metabolites produced by hundreds of Solanum species including food crops, such as tomato, potato and eggplant. Unlike true alkaloids, nitrogen is introduced at a late stage of SGA biosynthesis through an unknown transamination reaction. Here, we reveal the mechanism by which GLYCOALKALOID METABOLISM12 (GAME12) directs the biosynthesis of nitrogen-containing steroidal alkaloid aglycone in Solanum. We report that GAME12, a neofunctionalized γ-aminobutyric acid (GABA) transaminase, undergoes changes in both active site specificity and subcellular localization to switch from its renown and generic activity in core metabolism to function in a specialized metabolic pathway. Moreover, overexpression of GAME12 alone in engineered S. nigrum leaves is sufficient for de novo production of nitrogen-containing SGAs. Our results highlight how hijacking a core metabolism GABA shunt enzyme is crucial in numerous Solanum species for incorporating a nitrogen to a steroidal-specialized metabolite backbone and form defensive alkaloids.
Collapse
Affiliation(s)
- Dagny Grzech
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Ryan M Alam
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Marianna Boccia
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Benke Hong
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ranjit Barbole
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Wibke Seibt
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Microscopic Imaging Service Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lorenzo Caputi
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Prashant D Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
5
|
Jozwiak A, Panda S, Akiyama R, Yoneda A, Umemoto N, Saito K, Yasumoto S, Muranaka T, Gharat SA, Kazachkova Y, Dong Y, Arava S, Goliand I, Nevo R, Rogachev I, Meir S, Mizutani M, Aharoni A. A cellulose synthase-like protein governs the biosynthesis of Solanum alkaloids. Science 2024; 386:eadq5721. [PMID: 39700293 DOI: 10.1126/science.adq5721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/01/2024] [Indexed: 12/21/2024]
Abstract
Decades of research on the infamous antinutritional steroidal glycoalkaloids (SGAs) in Solanaceae plants have provided deep insights into their metabolism and roles. However, engineering SGAs in heterologous hosts has remained a challenge. We discovered that a protein evolved from the machinery involved in building plant cell walls is the crucial link in the biosynthesis of SGAs. We show that cellulose synthase-like M [GLYCOALKALOID METABOLISM15 (GAME15)] functions both as a cholesterol glucuronosyltransferase and a scaffold protein. Silencing GAME15 depletes SGAs, which makes plants more vulnerable to pests. Our findings illuminate plant evolutionary adaptations that balance chemical defense and self-toxicity and open possibilities for producing steroidal compounds in heterologous systems for food, cosmetics, and pharmaceuticals.
Collapse
Affiliation(s)
- Adam Jozwiak
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Ryota Akiyama
- Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Ayano Yoneda
- Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Sachin A Gharat
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yana Kazachkova
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yonghui Dong
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shlomy Arava
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Goliand
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Reinat Nevo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Boccia M, Kessler D, Seibt W, Grabe V, Rodríguez López CE, Grzech D, Heinicke S, O'Connor SE, Sonawane PD. A scaffold protein manages the biosynthesis of steroidal defense metabolites in plants. Science 2024; 386:1366-1372. [PMID: 39418343 DOI: 10.1126/science.ado3409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/03/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
Solanaceae plants produce two major classes of valuable sterol-derived natural products-steroidal glycoalkaloids and steroidal saponins-from a common cholesterol precursor. Attempts to heterologously produce these molecules have consistently failed, although the genes responsible for each biosynthetic step have been identified. Here we identify a cellulose synthase-like protein, an unexpected biosynthetic component that interacts with the early pathway enzymes, enabling steroidal scaffolds production in plants. Moreover, knockout of this gene in black nightshade, Solanum nigrum, resulted in plants lacking both steroidal alkaloids and saponins. Unexpectedly, these knockout plants also revealed that steroidal saponins deter serious agricultural insect pests. This discovery provides the missing link to engineer these high-value steroidal molecules and also pinpoints the ecological role for steroidal saponins.
Collapse
Affiliation(s)
- Marianna Boccia
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Danny Kessler
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Wibke Seibt
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Microscopy Imaging Service, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Carlos E Rodríguez López
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
- Integrative Biology Unit, The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | - Dagny Grzech
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Prashant D Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
7
|
Liu Y, Liu X, Li Y, Pei Y, Jaleel A, Ren M. Potato steroidal glycoalkaloids: properties, biosynthesis, regulation and genetic manipulation. MOLECULAR HORTICULTURE 2024; 4:43. [PMID: 39668379 PMCID: PMC11639122 DOI: 10.1186/s43897-024-00118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/11/2024] [Indexed: 12/14/2024]
Abstract
Steroidal glycoalkaloids (SGAs), predominantly comprising α-solanine (C45H73NO15) and α-chaconine (C45H73NO14), function as natural phytotoxins within potatoes. In addition to their other roles, these SGAs are crucial for enabling potato plants to withstand biotic stresses. However, they also exhibit toxicity towards humans and animals. Consequently, the content and distribution of SGAs are crucial traits for the genetic improvement of potatoes. This review focuses on advancing research related to the biochemical properties, biosynthesis, regulatory mechanisms, and genetic improvement of potato SGAs. Furthermore, we provide perspectives on future research directions to further enhance our understanding of SGA biosynthesis and regulation, ultimately facilitating the targeted development of superior potato varieties.
Collapse
Affiliation(s)
- Yongming Liu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, 610213, China.
- Yazhouwan National Laboratory, Sanya, 572025, China.
| | - Xiaowei Liu
- Chengdu Agricultural College, Chengdu, 611130, China
| | - Yingge Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, 610213, China
| | - Yanfei Pei
- Hainan Seed Industry Laboratory, Sanya, 572025, China
| | - Abdul Jaleel
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, 610213, China.
| |
Collapse
|
8
|
Li L, Zhu T, Wen L, Zhang T, Ren M. Biofortification of potato nutrition. J Adv Res 2024:S2090-1232(24)00487-9. [PMID: 39486784 DOI: 10.1016/j.jare.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Potato (Solanum tuberosum L.) is the fourth most important food crop after rice, wheat and maize in the world with the potential to feed the world's population, and potato is a major staple food in many countries. Currently, potato is grown in more than 100 countries and is consumed by more than 1 billion people worldwide, and the global annual output exceeds 300 million tons. With the rapid increase in the global population, potato will play a key role in food supply. These aspects have driven scientists to genetically engineer potato for yield and nutrition improvement. AIM OF REVIEW Potato is an excellent source of carbohydrates, rich in vitamins, phenols and minerals. At present, the nutritional fortification of potato has made remarkable progress, and the biomass and nutrient compositions of potato have been significantly improved through agronomic operation and genetic improvement. This review aims to summarize recent advances in the nutritional fortification of potato protein, lipid and vitamin, and provides new insights for future potato research. KEY SCIENTIFIC CONCEPTS OF REVIEW This review comprehensively summarizes the biofortification of potato five nutrients from protein, lipid, starch, vitamin to mineral. Meanwhile, we also discuss the multilayered insights in the prospects of edible potato fruit, vaccines and high-value products synthesis, and diploid potato seeds reproduction.
Collapse
Affiliation(s)
- Linxuan Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Tingting Zhu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Lina Wen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, China
| | - Tanran Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China; School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Yasumoto S, Lee HJ, Akiyama R, Sawai S, Mizutani M, Umemoto N, Saito K, Muranaka T. Disruption of CYP88B1 by transcription activator-like effector nuclease in potato and potential use to produce useful saponins. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:289-293. [PMID: 40115763 PMCID: PMC11921144 DOI: 10.5511/plantbiotechnology.24.0614a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 03/23/2025]
Abstract
Potatoes produce steroidal glycoalkaloids (SGAs), toxic secondary metabolites associated with food poisoning. SGAs are synthesized by multiple biosynthetic enzymes. Knockdown of the CYP88B1 gene, also known as PGA3 or GAME4, is predicted to reduce toxic SGAs and accumulate steroidal saponins. These saponins not only serve as a source of steroidal drugs but are also anticipated to confer disease resistance to potatoes. In this study, we employed transcription activator-like effector nucleases (TALENs) for genome editing to disrupt CYP88B1. We introduced the TALEN expression vector via Agrobacterium-mediated transformation into seven potato lines. In six of these lines, disruption of the CYP88B1 gene was confirmed. Liquid chromatography-mass spectrometry analysis revealed that SGAs were reduced to undetectable levels, corroborating the accumulation of steroidal saponins observed in previous knockdown studies. Our findings demonstrate the feasibility of generating low-toxicity potato lines through CYP88B1 gene disruption using genome editing techniques.
Collapse
Affiliation(s)
- Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hyoung Jae Lee
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Ryota Akiyama
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Satoru Sawai
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Huang L, Liang S, Luo L, Wu M, Fu H, Zhong Z. Transcriptomic analysis reveals effects of fertilization towards growth and quality of Fritillariae thunbergii bulbus. PLoS One 2024; 19:e0309978. [PMID: 39302908 DOI: 10.1371/journal.pone.0309978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/17/2024] [Indexed: 09/22/2024] Open
Abstract
Fritillariae thunbergii Bulbus (FTB) is a traditional Chinese medicine that has been widely cultivated for its expectorant, antitussive, antiasthmatic, antiviral, and anticancer properties. The yield and quality of F. thunbergii are influenced by cultivation conditions, such as the use of fertilizers. However, the optimal type of fertilizers for maximum quality and yield and underlying mechanisms are not clear. We collected F. thunbergii using raw chicken manure (RC), organic fertilizer (OF), and plant ash (PA) as the base fertilizer in Pan'an County, Jinhua City, Zhejiang Province as experimental materials. The combined results of HPLC-ELSD detection and yield statistics showed that the F. thunbergii with OF application was the best, with the content of peimine and peiminine reaching 0.0603% and 0.0502%, respectively. In addition, the yield was 2.70 kg/m2. Transcriptome analysis indicated that up-regulation of the ABA signaling pathway might promote bulb yield. Furthermore, putative key genes responsible for steroidal alkaloid accumulation were identified. These results provided guiding significance for the rational fertilization conditions of F. thunbergii as well as the basis for the exploration of functional genes related to the alkaloid biosynthesis pathway.
Collapse
Affiliation(s)
- Luman Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Shuang Liang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Lei Luo
- Zhejiang Institute for Food and Drug Control, Hangzhou, P.R. China
| | - Mengmin Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Hongwei Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Zhuoheng Zhong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| |
Collapse
|
11
|
Singh B, Nathawat S, Saxena A, Khangarot K, Sharma RA. Enhancement of production of glycoalkaloids by elicitors along with characterization of gene expression of pathways in Solanum xanthocarpum. J Biotechnol 2024; 391:81-91. [PMID: 38825191 DOI: 10.1016/j.jbiotec.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024]
Abstract
Solanum xanthocarpum fruits are used in the treatment of cough, fever, and heart disorders. It possesses antipyretic, hypotensive, antiasthmatic, aphrodisiac and antianaphylactic properties. In the present study, 24 elicitors (both biotic and abiotic) were used to enhance the production of glycoalkaloids in cell cultures of S. xanthocarpum. Four concentrations of elicitors were added into the MS culture medium. The maximum accumulation (5.56-fold higher than control) of demissidine was induced by sodium nitroprusside at 50 mM concentration whereas the highest growth of cell biomass (4.51-fold higher than control) stimulated by systemin at 30 mM concentration. A total of 17 genes of biosynthetic pathways of glycoalkaloids were characterized from the cells of S. xanthocarpum. The greater accumulation of demissidine was confirmed with the expression analysis of 11 key biosynthetic pathway enzymes e.g., acetoacetic-CoA thiolase, 3- hydroxy 3-methyl glutaryl synthase, β-hydroxy β-methylglutaryl CoA reductase, mevalonate kinase, farnesyl diphosphate synthase, squalene synthase, squalene epoxidase, squalene-2,3- epoxide cyclase, cycloartenol synthase, UDP-glucose: solanidine glucosyltransferase and UDP-rhamnose: solanidine rhamno-galactosyl transferase. The maximum expression levels of UDP-rhamnose: solanidine rhamno-galactosyl transferase gene was recorded in this study.
Collapse
Affiliation(s)
- Bharat Singh
- AIB, Amity University Rajasthan, Jaipur 303002, India.
| | | | - Anuja Saxena
- AIB, Amity University Rajasthan, Jaipur 303002, India
| | - Kiran Khangarot
- Department of Botany, University of Rajasthan, Jaipur 302004, India
| | - Ram A Sharma
- Department of Botany, University of Rajasthan, Jaipur 302004, India
| |
Collapse
|
12
|
Lucier R, Kamileen MO, Nakamura Y, Serediuk S, Barbole R, Wurlitzer J, Kunert M, Heinicke S, O'Connor SE, Sonawane PD. Steroidal scaffold decorations in Solanum alkaloid biosynthesis. MOLECULAR PLANT 2024; 17:1236-1254. [PMID: 38937971 DOI: 10.1016/j.molp.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Steroidal glycoalkaloids (SGAs) are specialized metabolites produced by hundreds of Solanum species, including important vegetable crops such as tomato, potato, and eggplant. Although it has been known that SGAs play important roles in defense in plants and "anti-nutritional" effects (e.g., toxicity and bitterness) to humans, many of these molecules have documented anti-cancer, anti-microbial, anti-inflammatory, anti-viral, and anti-pyretic activities. Among these, α-solasonine and α-solamargine isolated from black nightshade (Solanum nigrum) are reported to have potent anti-tumor, anti-proliferative, and anti-inflammatory activities. Notably, α-solasonine and α-solamargine, along with the core steroidal aglycone solasodine, are the most widespread SGAs produced among the Solanum plants. However, it is still unknown how plants synthesize these bioactive steroidal molecules. Through comparative metabolomic-transcriptome-guided approach, biosynthetic logic, combinatorial expression in Nicotiana benthamiana, and functional recombinant enzyme assays, here we report the discovery of 12 enzymes from S. nigrum that converts the starting cholesterol precursor to solasodine aglycone, and the downstream α-solasonine, α-solamargine, and malonyl-solamargine SGA products. We further identified six enzymes from cultivated eggplant that catalyze the production of α-solasonine, α-solamargine, and malonyl-solamargine SGAs from solasodine aglycone via glycosylation and atypical malonylation decorations. Our work provides the gene tool box and platform for engineering the production of high-value, steroidal bioactive molecules in heterologous hosts using synthetic biology.
Collapse
Affiliation(s)
- Rosalind Lucier
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Mohamed O Kamileen
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Research Group Biosynthesis and NMR, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sofiia Serediuk
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ranjit Barbole
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Jens Wurlitzer
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| | - Prashant D Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| |
Collapse
|
13
|
Bueno da Silva M, Wiese-Klinkenberg A, Usadel B, Genzel F. Potato Berries as a Valuable Source of Compounds Potentially Applicable in Crop Protection and Pharmaceutical Sectors: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15449-15462. [PMID: 38970497 PMCID: PMC11261637 DOI: 10.1021/acs.jafc.4c03071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Potato (Solanum tuberosum) is a major agricultural crop cultivated worldwide. To meet market demand, breeding programs focus on enhancing important agricultural traits such as disease resistance and improvement of tuber palatability. However, while potato tubers get a lot of attention from research, potato berries are mostly overlooked due to their level of toxicity and lack of usefulness for the food production sector. Generally, they remain unused in the production fields after harvesting the tuber. These berries are toxic due to high levels of glycoalkaloids, which might confer some interesting bioactivities. Berries of various solanaceous species contain bioactive secondary metabolites, suggesting that potato berries might contain similarly valuable metabolites. Therefore, possible applications of potato berries, e.g., in the protection of plants against pests and pathogens, as well as the medical exploitation of their anti-inflammatory, anticarcinogenic, and antifungal properties, are plausible. The presence of valuable compounds in potato berries could also contribute to the bioeconomy by providing a novel use for otherwise discarded agricultural side streams. Here we review the potential use of these berries for the extraction of compounds that can be exploited to produce pharmaceuticals and plant protection products.
Collapse
Affiliation(s)
- Marília Bueno da Silva
- Institute
of Bio- and Geosciences (IBG-4: Bioinformatics), Bioeconomy Science
Center (BioSC), CEPLAS, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| | - Anika Wiese-Klinkenberg
- Institute
of Bio- and Geosciences (IBG-4: Bioinformatics), Bioeconomy Science
Center (BioSC), CEPLAS, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| | - Björn Usadel
- Institute
of Bio- and Geosciences (IBG-4: Bioinformatics), Bioeconomy Science
Center (BioSC), CEPLAS, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Faculty
of Mathematics and Natural Sciences, CEPLAS, Institute for Biological
Data Science, Heinrich Heine University
Düsseldorf, 40225 Düsseldorf, Germany
| | - Franziska Genzel
- Institute
of Bio- and Geosciences (IBG-4: Bioinformatics), Bioeconomy Science
Center (BioSC), CEPLAS, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
14
|
Pang Y, Cheng X, Ban Y, Li Y, Lv B, Li C. Efficient production of 22(R)-hydroxycholesterol via combination optimization of Saccharomyces cerevisiae. Biotechnol J 2024; 19:e2400286. [PMID: 39014927 DOI: 10.1002/biot.202400286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/25/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024]
Abstract
22(R)-hydroxycholesterol (22(R)-HCHO) is a crucial precursor of steroids biosynthesis with various biological functions. However, the production of 22(R)-HCHO is expensive and unsustainable due to chemical synthesis and extraction from plants or animals. This study aimed to construct a microbial cell factory to efficiently produce 22(R)-HCHO through systems metabolic engineering. First, we tested 7-dehydrocholesterol reductase (Dhcr7s) and cholesterol C22-hydroxylases from different sources in Saccharomyces cerevisiae, and the titer of 22(R)-HCHO reached 128.30 mg L-1 in the engineered strain expressing Dhcr7 from Columba livia (ClDhcr7) and cholesterol 22-hydroxylase from Veratrum californicum (VcCyp90b27). Subsequently, the 22(R)-HCHO titer was significantly increased to 427.78 mg L-1 by optimizing the critical genes involved in 22(R)-HCHO biosynthesis. Furthermore, hybrid diploids were constructed to balance cell growth and 22(R)-HCHO production and to improve stress tolerance. Finally, the engineered strain produced 2.03 g L-1 of 22(R)-HCHO in a 5-L fermenter, representing the highest 22(R)-HCHO titer reported to date in engineered microbial cell factories. The results of this study provide a foundation for further applications of 22(R)-HCHO in various industrially valuable steroids.
Collapse
Affiliation(s)
- Yaru Pang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Xu Cheng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yali Ban
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yue Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
Kumar S, Bandyopadhyay N, Saxena S, Hajare SN, More V, Tripathi J, Dahia Y, Gautam S. Differential gene expression in irradiated potato tubers contributed to sprout inhibition and quality retention during a commercial scale storage. Sci Rep 2024; 14:13484. [PMID: 38866836 PMCID: PMC11169491 DOI: 10.1038/s41598-024-58949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/04/2024] [Indexed: 06/14/2024] Open
Abstract
Current study is the first ever storage cum market trial of radiation processed (28 tons) of potato conducted in India at a commercial scale. The objective was to affirm the efficacy of very low dose of gamma radiation processing of potato for extended storage with retained quality and to understand the plausible mechanism at the gene modulation level for suppression of potato sprouting. Genes pertaining to abscisic acid (ABA) biosynthesis were upregulated whereas its catabolism was downregulated in irradiated potatoes. Additionally, genes related to auxin buildup were downregulated in irradiated potatoes. The change in the endogenous phytohormone contents in irradiated potato with respect to the control were found to be correlated well with the differential expression level of certain related genes. Irradiated potatoes showed retention of processing attributes including cooking and chip-making qualities, which could be attributed to the elevated expression of invertase inhibitor in these tubers. Further, quality retention in radiation treated potatoes may also be related to inhibition in the physiological changes due to sprout inhibition. Ecological and economical analysis of national and global data showed that successful adoption of radiation processing may gradually replace sprout suppressants like isopropyl N-(3-chlorophenyl) carbamate (CIPC), known to leave residue in the commodity, stabilize the wholesale annual market price, and provide a boost to the industries involved in product manufacturing.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | | | - Sudhanshu Saxena
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - Sachin N Hajare
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - Varsha More
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - Jyoti Tripathi
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - Yogesh Dahia
- Natural Storage Solutions Private Limited, Gandhinagar, 382 729, India
| | - Satyendra Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India.
- Homi Bhabha National Institute, Mumbai, 400 094, India.
| |
Collapse
|
16
|
Li H, Brouwer M, Pup ED, van Lieshout N, Finkers R, Bachem CWB, Visser RGF. Allelic variation in the autotetraploid potato: genes involved in starch and steroidal glycoalkaloid metabolism as a case study. BMC Genomics 2024; 25:274. [PMID: 38475714 DOI: 10.1186/s12864-024-10186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Tuber starch and steroidal glycoalkaloid (SGA)-related traits have been consistently prioritized in potato breeding, while allelic variation pattern of genes that underlie these traits is less explored. RESULTS Here, we focused on the genes involved in two important metabolic pathways in the potato: starch metabolism and SGA biosynthesis. We identified 119 genes consisting of 81 involved in starch metabolism and 38 in the biosynthesis of steroidal glycoalkaloids, and discovered 96,166 allelic variants among 2,169 gene haplotypes in six autotetraploid potato genomes. Comparative analyses revealed an uneven distribution of allelic variants among gene haplotypes and that the vast majority of deleterious mutations in these genes are retained in heterozygous state in the autotetraploid potato genomes. Leveraging full-length cDNA sequencing data, we find that approximately 70% of haplotypes of the 119 genes are transcribable. Population genetic analyses identify starch and SGA biosynthetic genes that are potentially conserved or diverged between potato varieties with varying starch or SGA content. CONCLUSIONS These results deepen the understanding of haplotypic diversity within functionally important genes in autotetraploid genomes and may facilitate functional characterization of genes or haplotypes contributing to traits related to starch and SGA in potato.
Collapse
Affiliation(s)
- Hongbo Li
- Plant Breeding, Wageningen University & Research, P. O. Box 386, Wageningen, 6700 AJ, the Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University and Research, Wageningen, the Netherlands
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Matthijs Brouwer
- Plant Breeding, Wageningen University & Research, P. O. Box 386, Wageningen, 6700 AJ, the Netherlands
| | - Elena Del Pup
- Plant Breeding, Wageningen University & Research, P. O. Box 386, Wageningen, 6700 AJ, the Netherlands
| | - Natascha van Lieshout
- Plant Breeding, Wageningen University & Research, P. O. Box 386, Wageningen, 6700 AJ, the Netherlands
- , SURFsara, Science Park 140, Amsterdam, 1098 XG, the Netherlands
| | - Richard Finkers
- Plant Breeding, Wageningen University & Research, P. O. Box 386, Wageningen, 6700 AJ, the Netherlands
- Gennovation B.V, Agro Business Park 10, Wageningen, 6708 PW, the Netherlands
| | - Christian W B Bachem
- Plant Breeding, Wageningen University & Research, P. O. Box 386, Wageningen, 6700 AJ, the Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, P. O. Box 386, Wageningen, 6700 AJ, the Netherlands.
| |
Collapse
|
17
|
Liu J, Cai C, Liu S, Li L, Wang Q, Wang X. StBIN2 Positively Regulates Potato Formation through Hormone and Sugar Signaling. Int J Mol Sci 2023; 24:16087. [PMID: 38003283 PMCID: PMC10671401 DOI: 10.3390/ijms242216087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Potato is an important food crop worldwide. Brassinosteroids (BRs) are widely involved in plant growth and development, and BIN2 (brassinosteroid insensitive 2) is the negative regulator of their signal transduction. However, the function of BIN2 in the formation of potato tubers remains unclear. In this study, transgenic methods were used to regulate the expression level of StBIN2 in plants, and tuber related phenotypes were analyzed. The overexpression of StBIN2 significantly increased the number of potatoes formed per plant and the weight of potatoes in transgenic plants. In order to further explore the effect of StBIN2 on the formation of potato tubers, this study analyzed BRs, ABA hormone signal transduction, sucrose starch synthase activity, the expression levels of related genes, and interacting proteins. The results show that the overexpression of StBIN2 enhanced the downstream transmission of ABA signals. At the same time, the enzyme activity of the sugar transporter and the expression of synthetic genes were increased in potato plants overexpressing StBIN2, which also demonstrated the upregulation of sucrose and the expression of the starch synthesis gene. Apparently, StBIN2 affected the conversion and utilization of key substances such as glucose, sucrose, and starch in the process of potato formation so as to provide a material basis and energy preparation for forming potatoes. In addition, StBIN2 also promoted the expression of the tuber formation factors StSP6A and StS6K. Altogether, this investigation enriches the study on the mechanism through which StBIN2 regulates potato tuber formation and provides a theoretical basis for achieving a high and stable yield of potato.
Collapse
Affiliation(s)
- Jie Liu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China; (J.L.); (C.C.); (S.L.); (L.L.)
- Potato Research and Development Center, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengcheng Cai
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China; (J.L.); (C.C.); (S.L.); (L.L.)
- Potato Research and Development Center, Sichuan Agricultural University, Chengdu 611130, China
| | - Shifeng Liu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China; (J.L.); (C.C.); (S.L.); (L.L.)
- Potato Research and Development Center, Sichuan Agricultural University, Chengdu 611130, China
| | - Liqin Li
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China; (J.L.); (C.C.); (S.L.); (L.L.)
- Potato Research and Development Center, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Wang
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China; (J.L.); (C.C.); (S.L.); (L.L.)
- Potato Research and Development Center, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiyao Wang
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China; (J.L.); (C.C.); (S.L.); (L.L.)
- Potato Research and Development Center, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
18
|
Kunert M, Langley C, Lucier R, Ploss K, Rodríguez López CE, Serna Guerrero DA, Rothe E, O'Connor SE, Sonawane PD. Promiscuous CYP87A enzyme activity initiates cardenolide biosynthesis in plants. NATURE PLANTS 2023; 9:1607-1617. [PMID: 37723202 PMCID: PMC10581899 DOI: 10.1038/s41477-023-01515-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/16/2023] [Indexed: 09/20/2023]
Abstract
Cardenolides are specialized, steroidal metabolites produced in a wide array of plant families1,2. Cardenolides play protective roles in plants, but these molecules, including digoxin from foxglove (Digitalis spp.), are better known for treatment of congenital heart failure, atrial arrhythmia, various cancers and other chronic diseases3-9. However, it is still unknown how plants synthesize 'high-value', complex cardenolide structures from, presumably, a sterol precursor. Here we identify two cytochrome P450, family 87, subfamily A (CYP87A) enzymes that act on both cholesterol and phytosterols (campesterol and β-sitosterol) to form pregnenolone, the first committed step in cardenolide biosynthesis in the two phylogenetically distant plants Digitalis purpurea and Calotropis procera. Arabidopsis plants overexpressing these CYP87A enzymes ectopically accumulated pregnenolone, whereas silencing of CYP87A in D. purpurea leaves by RNA interference resulted in substantial reduction of pregnenolone and cardenolides. Our work uncovers the key entry point to the cardenolide pathway, and expands the toolbox for sustainable production of high-value plant steroids via synthetic biology.
Collapse
Affiliation(s)
- Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Chloe Langley
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Rosalind Lucier
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Kerstin Ploss
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Carlos E Rodríguez López
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Delia A Serna Guerrero
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Eva Rothe
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | - Prashant D Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
19
|
Umemoto N, Yasumoto S, Yamazaki M, Asano K, Akai K, Lee HJ, Akiyama R, Mizutani M, Nagira Y, Saito K, Muranaka T. Integrated gene-free potato genome editing using transient transcription activator-like effector nucleases and regeneration-promoting gene expression by Agrobacterium infection. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:211-218. [PMID: 38420569 PMCID: PMC10901161 DOI: 10.5511/plantbiotechnology.23.0530a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/30/2023] [Indexed: 03/02/2024]
Abstract
Genome editing is highly useful for crop improvement. The method of expressing genome-editing enzymes using a transient expression system in Agrobacterium, called agrobacterial mutagenesis, is a shortcut used in genome-editing technology to improve elite varieties of vegetatively propagated crops, including potato. However, with this method, edited individuals cannot be selected. The transient expression of regeneration-promoting genes can result in shoot regeneration from plantlets, while the constitutive expression of most regeneration-promoting genes does not result in normally regenerated shoots. Here, we report that we could obtain genome-edited potatoes by positive selection. These regenerated shoots were obtained via a method that combined a regeneration-promoting gene with the transient expression of a genome-editing enzyme gene. Moreover, we confirmed that the genome-edited potatoes obtained using this method did not contain the sequence of the binary vector used in Agrobacterium. Our data have been submitted to the Japanese regulatory authority, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), and we are in the process of conducting field tests for further research on these potatoes. Our work presents a powerful method for regarding regeneration and acquisition of genome-edited crops through transient expression of regeneration-promoting gene.
Collapse
Affiliation(s)
- Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | - Shuhei Yasumoto
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Muneo Yamazaki
- National Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki 305-8518, Japan
| | - Kenji Asano
- National Agricultural Research Center for Hokkaido Region, National Agriculture and Food Research Organization, Hokkaido 082-0081, Japan
| | - Kotaro Akai
- National Agricultural Research Center for Hokkaido Region, National Agriculture and Food Research Organization, Hokkaido 082-0081, Japan
| | - Hyoung Jae Lee
- Graduate School of Agricultural Science, Kobe University, Hyogo 657-8501, Japan
| | - Ryota Akiyama
- Graduate School of Agricultural Science, Kobe University, Hyogo 657-8501, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Hyogo 657-8501, Japan
| | - Yozo Nagira
- Agri-Bio Research Center, Kaneka Co., Shizuoka 438-0802, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | - Toshiya Muranaka
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Akiyama R, Umemoto N, Mizutani M. Recent advances in steroidal glycoalkaloid biosynthesis in the genus Solanum. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:185-191. [PMID: 38293253 PMCID: PMC10824493 DOI: 10.5511/plantbiotechnology.23.0717b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/17/2023] [Indexed: 02/01/2024]
Abstract
Steroidal glycoalkaloids (SGAs) are specialized metabolites found in members of Solanum species, and are also known as toxic substances in Solanum food crops such as tomato (Solanum lycopersicum), potato (Solanum tuberosum), and eggplant (Solanum melongena). SGA biosynthesis can be divided into two main parts: formation of steroidal aglycones, which are derived from cholesterol, and glycosylation at the C-3 hydroxy group. This review focuses on recent studies that shed light on the complete process of the aglycone formation in SGA biosynthesis and structural diversification of SGAs by duplicated dioxygenases, as well as the development of non-toxic potatoes through genome editing using these findings.
Collapse
Affiliation(s)
- Ryota Akiyama
- Graduate School of Agricultural Science, Kobe University, Hyogo 657-8501, Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Hyogo 657-8501, Japan
| |
Collapse
|
21
|
Liu Y, Hu H, Yang R, Zhu Z, Cheng K. Current Advances in the Biosynthesis, Metabolism, and Transcriptional Regulation of α-Tomatine in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:3289. [PMID: 37765452 PMCID: PMC10534454 DOI: 10.3390/plants12183289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Steroid glycoalkaloids (SGAs) are a class of cholesterol-derived metabolites commonly found in the Solanaceae plants. α-Tomatine, a well-known bitter-tasting compound, is the major SGA in tomato, accumulating extensively in all plant tissues, particularly in the leaves and immature green fruits. α-Tomatine exhibits diverse biological activities that contribute to plant defense against pathogens and herbivores, as well as conferring certain medicinal benefits for human health. This review summarizes the current knowledge on α-tomatine, including its molecular chemical structure, physical and chemical properties, biosynthetic and metabolic pathways, and transcriptional regulatory mechanisms. Moreover, potential future research directions and applications of α-tomatine are also discussed.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (H.H.); (R.Y.)
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China
| | - Hanru Hu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (H.H.); (R.Y.)
| | - Rujia Yang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (H.H.); (R.Y.)
| | - Zhujun Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (H.H.); (R.Y.)
| | - Kejun Cheng
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China
| |
Collapse
|
22
|
Chakraborty P, Biswas A, Dey S, Bhattacharjee T, Chakrabarty S. Cytochrome P450 Gene Families: Role in Plant Secondary Metabolites Production and Plant Defense. J Xenobiot 2023; 13:402-423. [PMID: 37606423 PMCID: PMC10443375 DOI: 10.3390/jox13030026] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023] Open
Abstract
Cytochrome P450s (CYPs) are the most prominent family of enzymes involved in NADPH- and O2-dependent hydroxylation processes throughout all spheres of life. CYPs are crucial for the detoxification of xenobiotics in plants, insects, and other organisms. In addition to performing this function, CYPs serve as flexible catalysts and are essential for producing secondary metabolites, antioxidants, and phytohormones in higher plants. Numerous biotic and abiotic stresses frequently affect the growth and development of plants. They cause a dramatic decrease in crop yield and a deterioration in crop quality. Plants protect themselves against these stresses through different mechanisms, which are accomplished by the active participation of CYPs in several biosynthetic and detoxifying pathways. There are immense potentialities for using CYPs as a candidate for developing agricultural crop species resistant to biotic and abiotic stressors. This review provides an overview of the plant CYP families and their functions to plant secondary metabolite production and defense against different biotic and abiotic stresses.
Collapse
Affiliation(s)
- Panchali Chakraborty
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
| | - Ashok Biswas
- Annual Bast Fiber Breeding Laboratory, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
- Department of Horticulture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Susmita Dey
- Annual Bast Fiber Breeding Laboratory, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
- Department of Plant Pathology and Seed Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Tuli Bhattacharjee
- Department of Chemistry, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Swapan Chakrabarty
- College of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA
- College of Computing, Department of Computer Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
23
|
Cheng Q, Zeng L, Wen H, Brown SE, Wu H, Li X, Lin C, Liu Z, Mao Z. Steroidal saponin profiles and their key genes for synthesis and regulation in Asparagus officinalis L. by joint analysis of metabolomics and transcriptomics. BMC PLANT BIOLOGY 2023; 23:207. [PMID: 37081391 PMCID: PMC10116787 DOI: 10.1186/s12870-023-04222-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Asparagus officinalis L. is a worldwide cultivated vegetable enrichened in both nutrient and steroidal saponins with multiple pharmacological activities. The upstream biosynthetic pathway of steroidal saponins (USSP) for cholesterol (CHOL) synthesis has been studied, while the downstream pathway of steroidal saponins (DSSP) starting from cholesterol and its regulation in asparagus remains unknown. RESULTS Metabolomics, Illumina RNAseq, and PacBio IsoSeq strategies were applied to different organs of both cultivated green and purple asparagus to detect the steroidal metabolite profiles & contents and to screen their key genes for biosynthesis and regulation. The results showed that there is a total of 427 compounds, among which 18 steroids were detected with fluctuated concentrations in roots, spears and flowering twigs of two garden asparagus cultivars. The key genes of DSSP include; steroid-16-hydroxylase (S16H), steroid-22-hydroxylase (S22H) and steroid-22-oxidase-16-hydroxylase (S22O-16H), steroid-26-hydroxylase (S26H), steroid-3-β-glycosyltransferase (S3βGT) and furostanol glycoside 26-O-beta-glucosidases (F26GHs) which were correlated with the contents of major steroidal saponins were screened, and the transcriptional factors (TFs) co-expressing with the resulted from synthetic key genes, including zinc fingers (ZFs), MYBs and WRKYs family genes were also screened. CONCLUSIONS Based on the detected steroidal chemical structures, profiles and contents which correlated to the expressions of screened synthetic and TFs genes, the full steroidal saponin synthetic pathway (SSP) of asparagus, including its key regulation networks was proposed for the first time.
Collapse
Affiliation(s)
- Qin Cheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
| | - Liangqin Zeng
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
| | - Hao Wen
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
| | - Sylvia E Brown
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
| | - He Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
| | - Xingyu Li
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China
- The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China
| | - Chun Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China.
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China.
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China.
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China.
- The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China.
| |
Collapse
|
24
|
Role of Cytochrome P450 Enzyme in Plant Microorganisms' Communication: A Focus on Grapevine. Int J Mol Sci 2023; 24:ijms24054695. [PMID: 36902126 PMCID: PMC10003686 DOI: 10.3390/ijms24054695] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Cytochromes P450 are ancient enzymes diffused in organisms belonging to all kingdoms of life, including viruses, with the largest number of P450 genes found in plants. The functional characterization of cytochromes P450 has been extensively investigated in mammals, where these enzymes are involved in the metabolism of drugs and in the detoxification of pollutants and toxic chemicals. The aim of this work is to present an overview of the often disregarded role of the cytochrome P450 enzymes in mediating the interaction between plants and microorganisms. Quite recently, several research groups have started to investigate the role of P450 enzymes in the interactions between plants and (micro)organisms, focusing on the holobiont Vitis vinifera. Grapevines live in close association with large numbers of microorganisms and interact with each other, regulating several vine physiological functions, from biotic and abiotic stress tolerance to fruit quality at harvest.
Collapse
|
25
|
Nicolao R, Gaiero P, Castro CM, Heiden G. Solanum malmeanum, a promising wild relative for potato breeding. FRONTIERS IN PLANT SCIENCE 2023; 13:1046702. [PMID: 36891130 PMCID: PMC9986444 DOI: 10.3389/fpls.2022.1046702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Crop wild relatives are gaining increasing attention. Their use in plant breeding is essential to broaden the genetic basis of crops as well as to meet industrial demands, for global food security and sustainable production. Solanum malmeanum (Solanum sect. Petota, Solanaceae) is a wild relative of potatoes (S. tuberosum) from Southern South America, occurring in Argentina, Brazil, Paraguay and Uruguay. This wild potato has been largely mistaken for or historically considered as conspecific with S. commersonii. Recently, it was reinstated at the species level. Retrieving information on its traits and applied uses is challenging, because the species name has not always been applied correctly and also because species circumscriptions and morphological criteria applied to recognize it have not been consistent. To overcome these difficulties, we performed a thorough literature reference survey, herbaria specimens' identification revision and genebank database queries to review and update the information available on this potato wild relative, contributing to an increase in research on it to fully understand and explore its potential for potato breeding. Scarce studies have been carried out concerning its reproductive biology, resistance against pests and diseases as well as tolerance to abiotic stresses and evaluation of quality traits. The scattered information available makes it less represented in genebanks and genetic studies are missing. We compile, update and present available information for S. malmeanum on taxonomy, geographical distribution, ecology, reproductive biology, relationship with its closest relatives, biotic and abiotic stresses resistance and quality traits and discuss ways to overcome sexual barriers of hybridization and future perspectives for its use in potato breeding. As a final remark, we highlight that this species' potential uses have been neglected and must be unlocked. Thus, further studies on morphological and genetic variability with molecular tools are fundamental for an efficient conservation and applied use of this promising genetic resource.
Collapse
Affiliation(s)
- Rodrigo Nicolao
- Programa de Pós-Graduação em Agronomia/Fitomelhoramento - Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Paola Gaiero
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Caroline M. Castro
- Laboratório de Recursos Genéticos, Embrapa Clima Temperado, Pelotas, RS, Brazil
| | - Gustavo Heiden
- Laboratório de Recursos Genéticos, Embrapa Clima Temperado, Pelotas, RS, Brazil
| |
Collapse
|
26
|
Swinnen G, De Meyer M, Pollier J, Molina-Hidalgo FJ, Ceulemans E, Venegas-Molina J, De Milde L, Fernández-Calvo P, Ron M, Pauwels L, Goossens A. The basic helix-loop-helix transcription factors MYC1 and MYC2 have a dual role in the regulation of constitutive and stress-inducible specialized metabolism in tomato. THE NEW PHYTOLOGIST 2022; 236:911-928. [PMID: 35838067 DOI: 10.1111/nph.18379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Plants produce specialized metabolites to protect themselves from biotic enemies. Members of the Solanaceae family accumulate phenylpropanoid-polyamine conjugates (PPCs) in response to attackers while also maintaining a chemical barrier of steroidal glycoalkaloids (SGAs). Across the plant kingdom, biosynthesis of such defense compounds is promoted by jasmonate signaling in which clade IIIe basic helix-loop-helix (bHLH) transcription factors play a central role. By characterizing hairy root mutants obtained through Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated protein 9 (CRISPR-Cas9) genome editing, we show that the tomato clade IIIe bHLH transcription factors, MYC1 and MYC2, redundantly control jasmonate-inducible PPC and SGA production, and are also essential for constitutive SGA biosynthesis. Double myc1 myc2 loss-of-function tomato hairy roots displayed suppressed constitutive expression of SGA biosynthesis genes, and severely reduced levels of the main tomato SGAs α-tomatine and dehydrotomatine. In contrast, basal expression of genes involved in PPC biosynthesis was not affected. CRISPR-Cas9(VQR) genome editing of a specific cis-regulatory element, targeted by MYC1/2, in the promoter of a SGA precursor biosynthesis gene led to decreased constitutive expression of this gene, but did not affect its jasmonate inducibility. Our results demonstrate that clade IIIe bHLH transcriptional regulators have evolved under the control of distinct regulatory cues to specifically steer constitutive and stress-inducible specialized metabolism.
Collapse
Affiliation(s)
- Gwen Swinnen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Margaux De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- VIB Metabolomics Core, 9052, Ghent, Belgium
| | - Francisco Javier Molina-Hidalgo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Evi Ceulemans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Jhon Venegas-Molina
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Liesbeth De Milde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Patricia Fernández-Calvo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Mily Ron
- Department of Plant Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| |
Collapse
|
27
|
Irungu FG, Tanga CM, Ndiritu FG, Mwaura L, Moyo M, Mahungu SM. Use of magnetic fields reduces α‐chaconine, α‐solanine, and total glycoalkaloids in stored potatoes (
Solanum tuberosum
L.). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Francis Gichuho Irungu
- Department of Food Technology Chuka University Chuka Kenya
- Department of Dairy and Food Science and Technology Egerton University Kenya
| | | | | | - Lucy Mwaura
- Food and Nutritional Evaluation Laboratory International Potato Center (CIP) Nairobi Kenya
| | - Mukani Moyo
- Food and Nutritional Evaluation Laboratory International Potato Center (CIP) Nairobi Kenya
| | - Symon Maina Mahungu
- Department of Dairy and Food Science and Technology Egerton University Kenya
| |
Collapse
|
28
|
Shen DD, Hua YP, Huang JY, Yu ST, Wu TB, Zhang Y, Chen HL, Yue CP. Multiomic Analysis Reveals Core Regulatory Mechanisms underlying Steroidal Glycoalkaloid Metabolism in Potato Tubers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:415-426. [PMID: 34951540 DOI: 10.1021/acs.jafc.1c06867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Steroidal glycoalkaloids (SGAs) present in germinated potato tubers are toxic; however, the mechanisms underlying SGA metabolism are poorly understood. Therefore, integrated transcriptome, metabolome, and hormone analyses were performed in this study to identify and characterize the key regulatory genes, metabolites, and phytohormones related to glycoalkaloid regulation. Based on transcriptome sequencing of bud eyes of germinated and dormant potato tubers, a total of 6260 differentially expressed genes were identified, which were mainly responsible for phytohormone signal transduction, carbohydrate metabolism, and secondary metabolite biosynthesis. Two TCP14 genes were identified as the core transcription factors that potentially regulate SGA synthesis. Metabolite analysis indicated that 149 significantly different metabolites were detected, and they were enriched in metabolic and biosynthetic pathways of secondary metabolites. In these pathways, the α-solanine content was increased and the expression of genes related to glycoalkaloid biosynthesis was upregulated. Levels of gibberellin and jasmonic acid were increased, whereas that of abscisic acid was decreased. This study lays a foundation for investigating the biosynthesis and regulation of SGAs and provides the reference for the production and consumption of potato tubers.
Collapse
Affiliation(s)
- Dan-Dan Shen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jin-Yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shu-Ting Yu
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Tai-Bo Wu
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Yannning Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Huan-Li Chen
- Zhengzhou Vegetable Research Institute, Zhengzhou 450001, China
| | - Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
29
|
Nakayasu M, Umemoto N, Akiyama R, Ohyama K, Lee HJ, Miyachi H, Watanabe B, Muranaka T, Saito K, Sugimoto Y, Mizutani M. Characterization of C-26 aminotransferase, indispensable for steroidal glycoalkaloid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:81-92. [PMID: 34273198 DOI: 10.1111/tpj.15426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Steroidal glycoalkaloids (SGAs) are toxic specialized metabolites found in members of the Solanaceae, such as Solanum tuberosum (potato) and Solanum lycopersicum (tomato). The major potato SGAs are α-solanine and α-chaconine, which are biosynthesized from cholesterol. Previously, we have characterized two cytochrome P450 monooxygenases and a 2-oxoglutarate-dependent dioxygenase that function in hydroxylation at the C-22, C-26 and C-16α positions, but the aminotransferase responsible for the introduction of a nitrogen moiety into the steroidal skeleton remains uncharacterized. Here, we show that PGA4 encoding a putative γ-aminobutyrate aminotransferase is involved in SGA biosynthesis in potatoes. The PGA4 transcript was expressed at high levels in tuber sprouts, in which SGAs are abundant. Silencing the PGA4 gene decreased potato SGA levels and instead caused the accumulation of furostanol saponins. Analysis of the tomato PGA4 ortholog, GAME12, essentially provided the same results. Recombinant PGA4 protein exhibited catalysis of transamination at the C-26 position of 22-hydroxy-26-oxocholesterol using γ-aminobutyric acid as an amino donor. Solanum stipuloideum (PI 498120), a tuber-bearing wild potato species lacking SGA, was found to have a defective PGA4 gene expressing the truncated transcripts, and transformation of PI 498120 with functional PGA4 resulted in the complementation of SGA production. These findings indicate that PGA4 is a key enzyme for transamination in SGA biosynthesis. The disruption of PGA4 function by genome editing will be a viable approach for accumulating valuable steroidal saponins in SGA-free potatoes.
Collapse
Affiliation(s)
- Masaru Nakayasu
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Kobe, Hyogo, 657-8501, Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Yokohama, Kanagawa, 230-0045, Japan
- Central Laboratories for Key Technologies, Kirin Co., Ltd. Fukuura 1-13-5, Yokohama, Kanagawa, 236-0004, Japan
| | - Ryota Akiyama
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Kobe, Hyogo, 657-8501, Japan
| | - Kiyoshi Ohyama
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro, Tokyo, 152-8551, Japan
| | - Hyoung J Lee
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Kobe, Hyogo, 657-8501, Japan
| | - Haruka Miyachi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Kobe, Hyogo, 657-8501, Japan
| | - Bunta Watanabe
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Yokohama, Kanagawa, 230-0045, Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Kobe, Hyogo, 657-8501, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
30
|
Ke L, Wang Y, Schäfer M, Städler T, Zeng R, Fabian J, Pulido H, De Moraes CM, Song Y, Xu S. Transcriptomic Profiling Reveals Shared Signalling Networks Between Flower Development and Herbivory-Induced Responses in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:722810. [PMID: 34630470 PMCID: PMC8493932 DOI: 10.3389/fpls.2021.722810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 06/02/2023]
Abstract
Most flowering plants must defend themselves against herbivores for survival and attract pollinators for reproduction. Although traits involved in plant defence and pollinator attraction are often localised in leaves and flowers, respectively, they will show a diffuse evolution if they share the same molecular machinery and regulatory networks. We performed RNA-sequencing to characterise and compare transcriptomic changes involved in herbivory-induced defences and flower development, in tomato leaves and flowers, respectively. We found that both the herbivory-induced responses and flower development involved alterations in jasmonic acid signalling, suppression of primary metabolism and reprogramming of secondary metabolism. We identified 411 genes that were involved in both processes, a number significantly higher than expected by chance. Genetic manipulation of key regulators of induced defences also led to the expression changes in the same genes in both leaves and flowers. Targeted metabolomic analysis showed that among closely related tomato species, jasmonic acid and α-tomatine are correlated in flower buds and herbivory-induced leaves. These findings suggest that herbivory-induced responses and flower development share a common molecular machinery and likely have coevolved in nature.
Collapse
Affiliation(s)
- Lanlan Ke
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Yangzi Wang
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Martin Schäfer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Thomas Städler
- Plant Ecological Genetics Group, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jörg Fabian
- Institute for Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Hannier Pulido
- Department of Environmental Systems Sciences, ETH Zürich, Zürich, Switzerland
| | | | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
31
|
Huang M, Xing H, Li Z, Li H, Wu L, Jiang Y. Identification and expression profile of the soil moisture and Ralstonia solanacearum response CYPome in ginger ( Zingiber officinale). PeerJ 2021; 9:e11755. [PMID: 34414026 PMCID: PMC8340902 DOI: 10.7717/peerj.11755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/21/2021] [Indexed: 11/20/2022] Open
Abstract
Background Cytochrome P450s play crucial roles in various biosynthetic reactions. Ginger (Zingiber officinale), which is often threatened by Ralstonia solanacearum, is the most economically important crop in the family Zingiberaceae. Whether the cytochrome P450 complement (CYPome) significantly responds to this pathogen has remained unclear. Methods Transcriptomic responses to R. solanacearum and soil moisture were analyzed in ginger, and expression profiles of the CYPome were determined based on transcriptome data. Results A total of 821 P450 unigenes with ORFs ≥ 300 bp were identified. Forty percent soil moisture suppressed several key P450 unigenes involved in the biosynthesis of flavonoids, gingerols, and jasmonates, including unigenes encoding flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase, steroid 22-alpha-hydroxylase, cytochrome P450 family 724 subfamily B polypeptide 1, and allene oxide synthase. Conversely, the expression of P450 unigenes involved in gibberellin biosynthesis and abscisic acid catabolism, encoding ent-kaurene oxidase and abscisic acid 8'-hydroxylase, respectively, were promoted by 40% soil moisture. Under R. solanacearum infection, the expression of P450 unigenes involved in the biosynthesis of the above secondary metabolites were changed, but divergent expression patterns were observed under different soil moisture treatments. High moisture repressed expression of genes involved in flavonoid, brassinosteroid, gingerol, and jasmonate biosynthesis, but promoted expression of genes involved in GA anabolism and ABA catabolism. These results suggest possible mechanisms for how high moisture causes elevated susceptibility to R. solanacearum infection.
Collapse
Affiliation(s)
- Mengjun Huang
- College of Pharmaceutical Science and Chinese Medicine, Southwest University, Chongqing, Chongqing, China.,Research Institute for Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Haitao Xing
- Chongqing Key Laboratory of Economic Plant Biotechnology, Yongchuan, Chongqing, China
| | - Zhexin Li
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Honglei Li
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Lin Wu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Yongchuan, Chongqing, China
| | - Yusong Jiang
- College of Pharmaceutical Science and Chinese Medicine, Southwest University, Chongqing, Chongqing, China.,Research Institute for Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| |
Collapse
|
32
|
Hansen CC, Nelson DR, Møller BL, Werck-Reichhart D. Plant cytochrome P450 plasticity and evolution. MOLECULAR PLANT 2021; 14:1244-1265. [PMID: 34216829 DOI: 10.1016/j.molp.2021.06.028] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/28/2021] [Accepted: 06/30/2021] [Indexed: 05/27/2023]
Abstract
The superfamily of cytochrome P450 (CYP) enzymes plays key roles in plant evolution and metabolic diversification. This review provides a status on the CYP landscape within green algae and land plants. The 11 conserved CYP clans known from vascular plants are all present in green algae and several green algae-specific clans are recognized. Clan 71, 72, and 85 remain the largest CYP clans and include many taxa-specific CYP (sub)families reflecting emergence of linage-specific pathways. Molecular features and dynamics of CYP plasticity and evolution are discussed and exemplified by selected biosynthetic pathways. High substrate promiscuity is commonly observed for CYPs from large families, favoring retention of gene duplicates and neofunctionalization, thus seeding acquisition of new functions. Elucidation of biosynthetic pathways producing metabolites with sporadic distribution across plant phylogeny reveals multiple examples of convergent evolution where CYPs have been independently recruited from the same or different CYP families, to adapt to similar environmental challenges or ecological niches. Sometimes only a single or a few mutations are required for functional interconversion. A compilation of functionally characterized plant CYPs is provided online through the Plant P450 Database (erda.dk/public/vgrid/PlantP450/).
Collapse
Affiliation(s)
- Cecilie Cetti Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark.
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Daniele Werck-Reichhart
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France.
| |
Collapse
|
33
|
Patel P, Prasad A, Gupta SC, Niranjan A, Lehri A, Singh SS, Misra P, Chakrabarty D. Growth, phytochemical and gene expression changes related to the secondary metabolite synthesis of Solanum viarum Dunal. INDUSTRIAL CROPS AND PRODUCTS 2021; 166:113464. [DOI: 10.1016/j.indcrop.2021.113464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
34
|
Biosynthesis of α-solanine and α-chaconine in potato leaves (Solanum tuberosum L.) - A 13CO 2 study. Food Chem 2021; 365:130461. [PMID: 34229992 DOI: 10.1016/j.foodchem.2021.130461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/02/2021] [Accepted: 06/23/2021] [Indexed: 11/21/2022]
Abstract
α-Solanine and α-chaconine are the major glycoalkaloids (SGAs) in potatoes, but up to now the biosynthesis of these saponins is not fully understood. In planta13CO2 labeling experiments monitored by nuclear magnetic resonance spectroscopy (NMR) and high-resolution mass spectrometry (HRMS) unraveled the SGA biosynthetic pathways from CO2 photosynthates via early precursors to the SGAs. After a pulse of ~ 700 ppm 13CO2 for four hours, followed by a chase period for seven days, specific 13C-distributions were detected in SGAs from the leaves of the labeled plant. NMR analysis determined the positional 13C-enrichments in α-solanine and α-chaconine characterized by 13C2-pairs in their aglycones. These patterns were in perfect agreement with a mevalonate-dependent biosynthesis of the isopentenyl diphosphate and dimethylallyl diphosphate precursors. The 13C-distributions also suggested cyclization of the 2,3-oxidosqualene precursor into the solanidine aglycone backbone involving a non-stereoselective hydroxylation step of the sterol a mixture of 25S-/25R-epimers of the SGAs.
Collapse
|
35
|
Singh A, Panwar R, Mittal P, Hassan MI, Singh IK. Plant cytochrome P450s: Role in stress tolerance and potential applications for human welfare. Int J Biol Macromol 2021; 184:874-886. [PMID: 34175340 DOI: 10.1016/j.ijbiomac.2021.06.125] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/06/2023]
Abstract
Cytochrome P450s (CYPs) are a versatile group of enzymes and one of the largest families of proteins, controlling various physiological processes via biosynthetic and detoxification pathways. CYPs perform multiple roles through a critical irreversible enzymatic reaction in which an oxygen atom is inserted within hydrophobic molecules, converting them into the reactive and hydro soluble components. During evolution, plants have acquired significantly more number of CYPs and represent about 1% of the encoded genes . CYPs are highly conserved proteins involved in growth, development and tolerance against biotic and abiotic stresses. Furthermore, CYPs reinforce plants' molecular and chemical defense mechanisms by regulating the biosynthesis of secondary metabolites, enhancing reactive oxygen species (ROS) scavenging and controlling biosynthesis and homeostasis of phytohormones, including abscisic acid (ABA) and jasmonates. Thus, they are the critical targets of metabolic engineering for enhancing plant defense against environmental stresses. Additionally, CYPs are also used as biocatalysts in the fields of pharmacology and phytoremediation. Herein, we highlight the role of CYPs in plant stress tolerance and their applications for human welfare.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India.
| | - Ruby Panwar
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India
| | - Pooja Mittal
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India.
| |
Collapse
|
36
|
Nakayasu M, Ohno K, Takamatsu K, Aoki Y, Yamazaki S, Takase H, Shoji T, Yazaki K, Sugiyama A. Tomato roots secrete tomatine to modulate the bacterial assemblage of the rhizosphere. PLANT PHYSIOLOGY 2021; 186:270-284. [PMID: 33619554 PMCID: PMC8154044 DOI: 10.1093/plphys/kiab069] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/31/2021] [Indexed: 05/12/2023]
Abstract
Saponins are the group of plant specialized metabolites which are widely distributed in angiosperm plants and have various biological activities. The present study focused on α-tomatine, a major saponin present in tissues of tomato (Solanum lycopersicum) plants. α-Tomatine is responsible for defense against plant pathogens and herbivores, but its biological function in the rhizosphere remains unknown. Secretion of tomatine was higher at the early growth than the green-fruit stage in hydroponically grown plants, and the concentration of tomatine in the rhizosphere of field-grown plants was higher than that of the bulk soil at all growth stages. The effects of tomatine and its aglycone tomatidine on the bacterial communities in the soil were evaluated in vitro, revealing that both compounds influenced the microbiome in a concentration-dependent manner. Numerous bacterial families were influenced in tomatine/tomatidine-treated soil as well as in the tomato rhizosphere. Sphingomonadaceae species, which are commonly observed and enriched in tomato rhizospheres in the fields, were also enriched in tomatine- and tomatidine-treated soils. Moreover, a jasmonate-responsive ETHYLENE RESPONSE FACTOR 4 mutant associated with low tomatine production caused the root-associated bacterial communities to change with a reduced abundance of Sphingomonadaceae. Taken together, our results highlight the role of tomatine in shaping the bacterial communities of the rhizosphere and suggest additional functions of tomatine in belowground biological communication.
Collapse
Affiliation(s)
- Masaru Nakayasu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Kohei Ohno
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Kyoko Takamatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Yuichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Shinichi Yamazaki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Hisabumi Takase
- Faculty of Bioenvironmental Science, Kyoto University of Advanced Science, Kameoka, Kyoto 621-8555, Japan
| | - Tsubasa Shoji
- Department of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
- Author for communication:
| |
Collapse
|
37
|
Hellmann H, Goyer A, Navarre DA. Antioxidants in Potatoes: A Functional View on One of the Major Food Crops Worldwide. Molecules 2021; 26:2446. [PMID: 33922183 PMCID: PMC8122721 DOI: 10.3390/molecules26092446] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
With a growing world population, accelerating climate changes, and limited arable land, it is critical to focus on plant-based resources for sustainable food production. In addition, plants are a cornucopia for secondary metabolites, of which many have robust antioxidative capacities and are beneficial for human health. Potato is one of the major food crops worldwide, and is recognized by the United Nations as an excellent food source for an increasing world population. Potato tubers are rich in a plethora of antioxidants with an array of health-promoting effects. This review article provides a detailed overview about the biosynthesis, chemical and health-promoting properties of the most abundant antioxidants in potato tubers, including several vitamins, carotenoids and phenylpropanoids. The dietary contribution of diverse commercial and primitive cultivars are detailed and document that potato contributes much more than just complex carbohydrates to the diet. Finally, the review provides insights into the current and future potential of potato-based systems as tools and resources for healthy and sustainable food production.
Collapse
Affiliation(s)
- Hanjo Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Aymeric Goyer
- Hermiston Agricultural Research and Extension Center, Department of Botany and Plant Pathology, Oregon State University, Hermiston, OR 97838, USA;
| | | |
Collapse
|
38
|
The biosynthetic pathway of potato solanidanes diverged from that of spirosolanes due to evolution of a dioxygenase. Nat Commun 2021; 12:1300. [PMID: 33637735 PMCID: PMC7910490 DOI: 10.1038/s41467-021-21546-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
Potato (Solanum tuberosum), a worldwide major food crop, produces the toxic, bitter tasting solanidane glycoalkaloids α-solanine and α-chaconine. Controlling levels of glycoalkaloids is an important focus on potato breeding. Tomato (Solanum lycopersicum) contains a bitter spirosolane glycoalkaloid, α-tomatine. These glycoalkaloids are biosynthesized from cholesterol via a partly common pathway, although the mechanisms giving rise to the structural differences between solanidane and spirosolane remained elusive. Here we identify a 2-oxoglutarate dependent dioxygenase, designated as DPS (Dioxygenase for Potato Solanidane synthesis), that is a key enzyme for solanidane glycoalkaloid biosynthesis in potato. DPS catalyzes the ring-rearrangement from spirosolane to solanidane via C-16 hydroxylation. Evolutionary divergence of spirosolane-metabolizing dioxygenases contributes to the emergence of toxic solanidane glycoalkaloids in potato and the chemical diversity in Solanaceae. One goal of potato breeding is to reduce the accumulation of toxic solanidane glycoalkaloids. Here the authors show that potato DPS, a 2-oxoglutarate dependent dioxygenase, catalyzes ring rearrangement of a biosynthetic precursor to differentiate solanidanes from spirosolanes that are found in other solanaceous plants.
Collapse
|
39
|
Zhao DK, Zhao Y, Chen SY, Kennelly EJ. Solanum steroidal glycoalkaloids: structural diversity, biological activities, and biosynthesis. Nat Prod Rep 2021; 38:1423-1444. [DOI: 10.1039/d1np00001b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chemical structures of typical Solanum steroidal glycoalkaloids from eggplant, tomato, and potato.
Collapse
Affiliation(s)
- Da-Ke Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environment, Yunnan University, Kunming, 650504, P. R. China
| | - Yi Zhao
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York, 10468, USA
- PhD Program in Biology, The Graduate Center, City University of New York, New York, 10016, USA
| | - Sui-Yun Chen
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environment, Yunnan University, Kunming, 650504, P. R. China
| | - Edward J. Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York, 10468, USA
- PhD Program in Biology, The Graduate Center, City University of New York, New York, 10016, USA
| |
Collapse
|
40
|
Shimizu K, Kushida A, Akiyama R, Lee HJ, Okamura Y, Masuda Y, Sakata I, Tanino K, Matsukida S, Inoue T, Sugimoto Y, Mizutani M. Hatching stimulation activity of steroidal glycoalkaloids toward the potato cyst nematode, Globodera rostochiensis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:319-325. [PMID: 33088195 PMCID: PMC7557651 DOI: 10.5511/plantbiotechnology.20.0516a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cyst nematodes (Globodera spp. and Heterodera spp.) are highly evolved sedentary endoparasites that are considered as harmful pests worldwide. The hatching of the dormant eggs of cyst nematodes occurs in response to hatching factors (HFs), which are compounds that are secreted from the roots of host plants. Solanoeclepin A (SEA), a triterpene compound, has been isolated as HF for potato cyst nematode (PCN) eggs, whereas other compounds, such as steroidal glycoalkaloids (SGAs), are also known to show weak hatching stimulation (HS) activity. However, the structures of both compounds are different and the HF-mediated hatching mechanism is still largely unknown. In the present study, we observed specific hatching of PCN eggs stimulated by the hairy root culture media of potato and tomato, revealing the biosynthesis and secretion of HFs. SGAs, such as α-solanine, α-chaconine, and α-tomatine, showed significant HS activity, despite being remarkably less activities than that of SEA. Then, we evaluated the contribution of SGAs on the HS activities of the hairy root culture media. The estimated SGAs content in the hairy root culture media were low and nonconcordant with the HS activity of those, suggesting that the HS activity of SGAs did not contribute much. The analysis of structure-activity relationship revealed that the structural requirements of the HS activity of SGAs are dependent on the sugar moieties attached at the C3-hydoroxyl group and the alkaloid property of their aglycones. The stereochemistry in the EF rings of their aglycone also affected the strength of the HS activity.
Collapse
Affiliation(s)
- Kosuke Shimizu
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Atsuhiko Kushida
- Plant Nematology Group, Division of Agro-environmental Research, Hokkaido Agricultural Research Center, NARO, 1 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-8555, Japan
| | - Ryota Akiyama
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Hyoung Jae Lee
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Yuya Okamura
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Yuki Masuda
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Itaru Sakata
- Plant Nematology Group, Division of Agro-environmental Research, Hokkaido Agricultural Research Center, NARO, 1 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-8555, Japan
| | - Keiji Tanino
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Seiji Matsukida
- Odawara Research Center, Nippon Soda Co., Ltd., 345 Takada, Odawara, Kanagawa 250-0216, Japan
| | - Tsutomu Inoue
- Odawara Research Center, Nippon Soda Co., Ltd., 345 Takada, Odawara, Kanagawa 250-0216, Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
- E-mail: Tel: +81-78-803-5885 Fax: +81-78-803-5884
| |
Collapse
|
41
|
Szeliga M, Ciura J, Tyrka M. Representational Difference Analysis of Transcripts Involved in Jervine Biosynthesis. Life (Basel) 2020; 10:life10060088. [PMID: 32575579 PMCID: PMC7344996 DOI: 10.3390/life10060088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/28/2022] Open
Abstract
Veratrum-type steroidal alkaloids (VSA) are the major bioactive ingredients that strongly determine the pharmacological activities of Veratrum nigrum. Biosynthesis of VSA at the molecular and genetic levels is not well understood. Next-generation sequencing of representational difference analysis (RDA) products after elicitation and precursor feeding was applied to identify candidate genes involved in VSA biosynthesis. A total of 12,048 contigs with a median length of 280 bases were received in three RDA libraries obtained after application of methyl jasmonate, squalene and cholesterol. The comparative analysis of annotated sequences was effective in identifying candidate genes. GABAT2 transaminase and hydroxylases active at C-22, C-26, C-11, and C-16 positions in late stages of jervine biosynthesis were selected. Moreover, genes coding pyrroline-5-carboxylate reductase and enzymes from the short-chain dehydrogenases/reductases family (SDR) associated with the reduction reactions of the VSA biosynthesis process were proposed. The data collected contribute to better understanding of jervine biosynthesis and may accelerate implementation of biotechnological methods of VSA biosynthesis.
Collapse
Affiliation(s)
- Magdalena Szeliga
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-959 Rzeszow, Poland; (J.C.); (M.T.)
- Correspondence:
| | - Joanna Ciura
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-959 Rzeszow, Poland; (J.C.); (M.T.)
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Mirosław Tyrka
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave, 35-959 Rzeszow, Poland; (J.C.); (M.T.)
| |
Collapse
|
42
|
Nam KH, Kim DY, Moon YS, Pack IS, Jeong SC, Kim HB, Kim CG. Performance of hybrids between abiotic stress-tolerant transgenic rice and its weedy relatives under water-stressed conditions. Sci Rep 2020; 10:9319. [PMID: 32518274 PMCID: PMC7283212 DOI: 10.1038/s41598-020-66206-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/04/2020] [Indexed: 11/16/2022] Open
Abstract
Gene transfer from transgenic crops to their weedy relatives may introduce undesired ecological consequences that can increase the fitness and invasiveness of weedy populations. Here, we examined the rate of gene flow from abiotic stress-tolerant transgenic rice that over-express AtCYP78A7, a gene encoding cytochrome P450 protein, to six weedy rice accessions and compared the phenotypic performance and drought tolerance of their hybrids over generations. The rate of transgene flow from AtCYP78A7-overexpressing transgenic to weedy rice varied between 0% and 0.0396%. F1 hybrids containing AtCYP78A7 were significantly taller and heavier, but the percentage of ripened grains, grain numbers and weight per plant were significantly lower than their transgenic and weedy parents. The homozygous and hemizygous F2 progeny showed higher tolerance to drought stress than the nullizygous F2 progeny, as indicated by leaf rolling scores. Shoot growth of nullizygous F3 progeny was significantly greater than weedy rice under water-deficient conditions in a rainout shelter, however, that of homozygous F3 progeny was similar to weedy rice, indicating the cost of continuous expression of transgene. Our findings imply that gene flow from AtCYP78A7-overexpressing transgenic to weedy rice might increase drought tolerance as shown in the pot experiment, however, increased fitness under stressed conditions in the field were not observed for hybrid progeny containing transgenes.
Collapse
Affiliation(s)
- Kyong-Hee Nam
- LMO research team, National Institute of Ecology, Seocheon, 33657, Republic of Korea
| | - Do Young Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, 28116, Republic of Korea
| | - Ye Seul Moon
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, 28116, Republic of Korea
| | - In Soon Pack
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, 28116, Republic of Korea
| | - Soon-Chun Jeong
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, 28116, Republic of Korea
| | - Ho Bang Kim
- Life Sciences Research Institute, Biomedic Co., Ltd., Bucheon, 14548, Republic of Korea
| | - Chang-Gi Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, 28116, Republic of Korea.
| |
Collapse
|
43
|
Yu G, Li C, Zhang L, Zhu G, Munir S, Shi C, Zhang H, Ai G, Gao S, Zhang Y, Yang C, Zhang J, Li H, Ye Z. An allelic variant of GAME9 determines its binding capacity with the GAME17 promoter in the regulation of steroidal glycoalkaloid biosynthesis in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2527-2536. [PMID: 31943062 PMCID: PMC7210767 DOI: 10.1093/jxb/eraa014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/13/2020] [Indexed: 05/19/2023]
Abstract
Steroidal glycoalkaloids (SGAs) are cholesterol-derived molecules found in the family Solanaceae. SGA content varies among different plant species and varieties. However, the genetic mechanisms regulating SGA content remain unclear. Here, we demonstrate that genetic variation in GLYCOALKALOID METABOLISM 9 (GAME9) is responsible for the variation in SGA content in tomato (Solanum lycopersicum). During a sequential analysis we found a 1 bp substitution in the AP2/ERF binding domain of GAME9. The 1 bp substitution in GAME9 was significantly associated with high SGA content and determined the binding capacity of GAME9 with the promoter of GAME17, a core SGA biosynthesis gene. The high-SGA GAME9 allele is mainly present in S. pimpinellifolium and S. lycopersicum var. cerasiforme populations and encodes a protein that can bind the GAME17 promoter. In contrast, the low-SGA GAME9 allele is mainly present in the big-fruited varieties of S. lycopersicum and encodes a protein that shows weak binding to the GAME17 promoter. Our findings provide new insight into the regulation of SGA biosynthesis and the factors that affect the accumulation of SGA in tomato.
Collapse
Affiliation(s)
- Gang Yu
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Changxing Li
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Lei Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Guangtao Zhu
- The CAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, China
| | - Shoaib Munir
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Caixue Shi
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Hongyan Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Guo Ai
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shenghua Gao
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yuyang Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Changxian Yang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Junhong Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Correspondence: , , or
| | - Hanxia Li
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Correspondence: , , or
| | - Zhibiao Ye
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Correspondence: , , or
| |
Collapse
|
44
|
Prasad A, Patel P, Pandey S, Niranjan A, Misra P. Growth and alkaloid production along with expression profiles of biosynthetic pathway genes in two contrasting morphotypes of prickly and prickleless Solanum viarum Dunal. PROTOPLASMA 2020; 257:561-572. [PMID: 31814043 DOI: 10.1007/s00709-019-01446-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Growth and production kinetics of three important glycoalkaloids viz. α-solanine, solanidine, and solasodine in two contrasting prickly and prickleless plants of Solanum viarum Dunal were evaluated under in vitro conditions. The prickleless plants showed improved accumulation of total glycoalkaloid content [7.11 and 6.85 mg g-1 dry weight (DW)] and growth (GI = 11.08 and 19.26) after 45 and 50 days of culture cycle, respectively. For higher biomass (91.18 g l-1) as well as glycoalkaloid (52.56 mg l-1) recovery, the prickleless plants served as highly profitable platform. All the three studied glycoalkaloids were identified and quantified by mass spectrometry and HPLC. All the three studied glycoalkaloids accumulated in age-dependent manner. The presence of two constituents, i.e., solasodine and solanidine mainly contributed for higher accumulation of total glycoalkaloid content in the prickleless plants. However, the synthesis of α-solanine was highly age specific and could be detected after 4 to 5 weeks of culture cycle in both prickle containing as well as prickleless plants of S. viarum. The higher accumulation of glycoalkaloids in prickleless plants was also supported with the expression analysis of six key pathway enzymes viz. mevalonate kinase (MVK), 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGR), farnesyl diphosphate synthase (FPS), UDP-galactose/solanidine galactosyltransferase (SGT1), UDP-glucose/solanidine glucosyltransferase (SGT2), and cytochrome P450 monooxygenase (CYP). The results indicated that the plants harvested after 45 and 50 days of culture cycle accumulated maximum bioactive in-demand glycoalkaloids in the prickly and prickleless plants of S. viarum Dunal, respectively.
Collapse
Affiliation(s)
- Archana Prasad
- Department of Plant Biotechnology, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Preeti Patel
- Department of Plant Biotechnology, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Shatrujeet Pandey
- Department of Plant Biotechnology, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Abhishek Niranjan
- Central Instrumentation Facility, Council of Scientific and Industrial Research - National Botanical Research Institute, Lucknow, 226001, India
| | - Pratibha Misra
- Department of Plant Biotechnology, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| |
Collapse
|
45
|
Mohammadi M, Mashayekh T, Rashidi-Monfared S, Ebrahimi A, Abedini D. New insights into diosgenin biosynthesis pathway and its regulation in Trigonella foenum-graecum L. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:229-241. [PMID: 31469464 DOI: 10.1002/pca.2887] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Throughout history, thousands of medicinal and aromatic plants have been widely utilised by people worldwide. Owing to them possessing of valuable compounds with little side effects in comparison with chemical drugs, herbs have been of interest to humans for a number of purposes. Diosgenin, driven from fenugreek, Trigonella foenum-graecum L., has extensively drawn scientist's attention owing to having curable properties and being a precursor of steroid hormones synthesis. Nonetheless, complete knowledge about the biosynthesis pathway of this metabolite is still elusive. OBJECTIVE In the present research, we isolated the full-length CDS of 14 genes involving in diosgenin formation and measured their expression rate in various genotypes, which had illustrated different amount of diosgenin. METHODOLOGY The genes were successfully isolated, and functional motifs were also assessed using in silico approaches. RESULTS Moreover, combining transcript and metabolite analysis revealed that there are many genes playing the role in diosgenin formation, some of which are highly influential. Among them, ∆24 -reductase, which converts cycloartenol to cycloartanol, is the first-committed and rate-limiting enzyme in this pathway. Additionally, no transcripts indicating to the presence or expression of lanosterol synthase were detected, contradicting the previous hypothesis about the biosynthetic pathway of diosgenin in fenugreek. CONCLUSION Considering all these, therefore, we propose the most possible pathway of diosgenin. This knowledge will then pave the way toward cloning the genes as well as engineering the diosgenin biosynthesis pathway.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Tooba Mashayekh
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Sajad Rashidi-Monfared
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Amin Ebrahimi
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Davar Abedini
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
46
|
Nakayasu M, Akiyama R, Kobayashi M, Lee HJ, Kawasaki T, Watanabe B, Urakawa S, Kato J, Sugimoto Y, Iijima Y, Saito K, Muranaka T, Umemoto N, Mizutani M. Identification of α-Tomatine 23-Hydroxylase Involved in the Detoxification of a Bitter Glycoalkaloid. PLANT & CELL PHYSIOLOGY 2020; 61:21-28. [PMID: 31816045 DOI: 10.1093/pcp/pcz224] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/03/2019] [Indexed: 05/13/2023]
Abstract
Tomato plants (Solanum lycopersicum) contain steroidal glycoalkaloid α-tomatine, which functions as a chemical barrier to pathogens and predators. α-Tomatine accumulates in all tissues and at particularly high levels in leaves and immature green fruits. The compound is toxic and causes a bitter taste, but its presence decreases through metabolic conversion to nontoxic esculeoside A during fruit ripening. This study identifies the gene encoding a 23-hydroxylase of α-tomatine, which is a key to this process. Some 2-oxoglutarate-dependent dioxygenases were selected as candidates for the metabolic enzyme, and Solyc02g062460, designated Sl23DOX, was found to encode α-tomatine 23-hydroxylase. Biochemical analysis of the recombinant Sl23DOX protein demonstrated that it catalyzes the 23-hydroxylation of α-tomatine and the product spontaneously isomerizes to neorickiioside B, which is an intermediate in α-tomatine metabolism that appears during ripening. Leaves of transgenic tomato plants overexpressing Sl23DOX accumulated not only neorickiioside B but also another intermediate, lycoperoside C (23-O-acetylated neorickiioside B). Furthermore, the ripe fruits of Sl23DOX-silenced transgenic tomato plants contained lower levels of esculeoside A but substantially accumulated α-tomatine. Thus, Sl23DOX functions as α-tomatine 23-hydroxylase during the metabolic processing of toxic α-tomatine in tomato fruit ripening and is a key enzyme in the domestication of cultivated tomatoes.
Collapse
Affiliation(s)
- Masaru Nakayasu
- Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada-ku, Kobe, Hyogo, 657-8501 Japan
| | - Ryota Akiyama
- Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada-ku, Kobe, Hyogo, 657-8501 Japan
| | - Midori Kobayashi
- Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada-ku, Kobe, Hyogo, 657-8501 Japan
| | - Hyoung Jae Lee
- Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada-ku, Kobe, Hyogo, 657-8501 Japan
| | - Takashi Kawasaki
- Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada-ku, Kobe, Hyogo, 657-8501 Japan
| | - Bunta Watanabe
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011 Japan
| | - Shingo Urakawa
- Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada-ku, Kobe, Hyogo, 657-8501 Japan
| | - Junpei Kato
- Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada-ku, Kobe, Hyogo, 657-8501 Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada-ku, Kobe, Hyogo, 657-8501 Japan
| | - Yoko Iijima
- Department of Nutrition and Life Science, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa, 243-0292 Japan
| | - Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675 Japan
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871 Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada-ku, Kobe, Hyogo, 657-8501 Japan
| |
Collapse
|
47
|
Akiyama R, Lee HJ, Nakayasu M, Osakabe K, Osakabe Y, Umemoto N, Saito K, Muranaka T, Sugimoto Y, Mizutani M. Characterization of steroid 5α-reductase involved in α-tomatine biosynthesis in tomatoes. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2019; 36:253-263. [PMID: 31983879 PMCID: PMC6978498 DOI: 10.5511/plantbiotechnology.19.1030a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/30/2019] [Indexed: 05/19/2023]
Abstract
α-tomatine and dehydrotomatine are steroidal glycoalkaloids (SGAs) that accumulate in the mature green fruits, leaves, and flowers of tomatoes (Solanum lycopersicum) and function as defensive compounds against pathogens and predators. The aglycones of α-tomatine and dehydrotomatine are tomatidine and dehydrotomatidine (5,6-dehydrogenated tomatidine), and tomatidine is derived from dehydrotomatidine via four reaction steps: C3 oxidation, isomerization, C5α reduction, and C3 reduction. Our previous studies (Lee et al. 2019) revealed that Sl3βHSD is involved in the three reactions except for C5α reduction, and in the present study, we aimed to elucidate the gene responsible for the C5α reduction step in the conversion of dehydrotomatidine to tomatidine. We characterized the two genes, SlS5αR1 and SlS5αR2, which show high homology with DET2, a brassinosteroid 5α reductase of Arabidopsis thaliana. The expression pattern of SlS5αR2 is similar to those of SGA biosynthetic genes, while SlS5αR1 is ubiquitously expressed, suggesting the involvement of SlS5αR2 in SGA biosynthesis. Biochemical analysis of the recombinant proteins revealed that both of SlS5αR1 and SlS5αR2 catalyze the reduction of tomatid-4-en-3-one at C5α to yield tomatid-3-one. Then, SlS5αR1- or SlS5αR2-knockout hairy roots were constructed using CRISPR/Cas9 mediated genome editing. In the SlS5αR2-knockout hairy roots, the α-tomatine level was significantly decreased and dehydrotomatine was accumulated. On the other hand, no change in the amount of α-tomatine was observed in the SlS5αR1-knockout hairy root. These results indicate that SlS5αR2 is responsible for the C5α reduction in α-tomatine biosynthesis and that SlS5αR1 does not significantly contribute to α-tomatine biosynthesis.
Collapse
Affiliation(s)
- Ryota Akiyama
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkoudai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Hyoung Jae Lee
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkoudai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Masaru Nakayasu
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkoudai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Yuriko Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkoudai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkoudai, Nada, Kobe, Hyogo 657-8501, Japan
- E-mail: Tel: +81-78-803-5885 Fax: +81-78-803-5884
| |
Collapse
|
48
|
He J, Chen Q, Xin P, Yuan J, Ma Y, Wang X, Xu M, Chu J, Peters RJ, Wang G. CYP72A enzymes catalyse 13-hydrolyzation of gibberellins. NATURE PLANTS 2019; 5:1057-1065. [PMID: 31527846 PMCID: PMC7194175 DOI: 10.1038/s41477-019-0511-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/30/2019] [Indexed: 05/18/2023]
Abstract
Bioactive gibberellins (GAs or diterpenes) are essential hormones in land plants that control many aspects of plant growth and development. In flowering plants, 13-OH GAs (having low bioactivity-for example, GA1) and 13-H GAs (having high bioactivity-for example, GA4) frequently coexist in the same plant. However, the identity of the native Arabidopsis thaliana 13-hydroxylase GA and its physiological functions remain unknown. Here, we report that cytochrome P450 genes (CYP72A9 and its homologues) encode active GA 13-hydroxylases in Brassicaceae. Plants overexpressing CYP72A9 exhibited semi-dwarfism, which was caused by significant reduction in GA4 levels. Biochemical assays revealed that recombinant CYP72A9 protein catalysed the conversion of 13-H GAs to the corresponding 13-OH GAs. CYP72A9 was expressed predominantly in developing seeds in Arabidopsis. Freshly harvested seeds of cyp72a9 mutants germinated more quickly than the wild type, whereas stratification-treated seeds and seeds from long-term storage did not. The evolutionary origin of GA 13-oxidases from the CYP72A subfamily was also investigated and discussed here.
Collapse
Affiliation(s)
- Juan He
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Qingwen Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jia Yuan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yihua Ma
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Xuemei Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Meimei Xu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing, China.
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
49
|
Yasumoto S, Umemoto N, Lee HJ, Nakayasu M, Sawai S, Sakuma T, Yamamoto T, Mizutani M, Saito K, Muranaka T. Efficient genome engineering using Platinum TALEN in potato. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2019; 36:167-173. [PMID: 31768118 PMCID: PMC6854339 DOI: 10.5511/plantbiotechnology.19.0805a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/05/2019] [Indexed: 05/21/2023]
Abstract
Potato (Solanum tuberosum) is one of the most important crops in the world. However, it is generally difficult to breed a new variety of potato crops because they are highly heterozygous tetraploid. Steroidal glycoalkaloids (SGAs) such as α-solanine and α-chaconine found in potato are antinutritional specialized metabolites. Because of their toxicity following intake, controlling the SGA levels in potato varieties is critical in breeding programs. Recently, genome-editing technologies using artificial site-specific nucleases such as TALEN and CRISPR-Cas9 have been developed and used in plant sciences. In the present study, we developed a highly active Platinum TALEN expression vector construction system, and applied to reduce the SGA contents in potato. Using Agrobacterium-mediated transformation, we obtained three independent transgenic potatoes harboring the TALEN expression cassette targeting SSR2 gene, which encodes a key enzyme for SGA biosynthesis. Sequencing analysis of the target sequence indicated that all the transformants could be SSR2-knockout mutants. Reduced SGA phenotype in the mutants was confirmed by metabolic analysis using LC-MS. In vitro grown SSR2-knockout mutants exhibited no differences in morphological phenotype or yields when compared with control plants, indicating that the genome editing of SGA biosynthetic genes such as SSR2 could be a suitable strategy for controlling the levels of toxic metabolites in potato. Our simple and powerful plant genome-editing system, developed in the present study, provides an important step for future study in plant science.
Collapse
Affiliation(s)
- Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- E-mail: Tel: +81-45-503-9491 Fax: +81-45-503-9489
| | - Hyoung Jae Lee
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Masaru Nakayasu
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Satoru Sawai
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- E-mail: Tel: +81-6-6879-7423 Fax: +81-6-6879-7426
| |
Collapse
|
50
|
Wang S, Alseekh S, Fernie AR, Luo J. The Structure and Function of Major Plant Metabolite Modifications. MOLECULAR PLANT 2019; 12:899-919. [PMID: 31200079 DOI: 10.1016/j.molp.2019.06.001] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 05/23/2023]
Abstract
Plants produce a myriad of structurally and functionally diverse metabolites that play many different roles in plant growth and development and in plant response to continually changing environmental conditions as well as abiotic and biotic stresses. This metabolic diversity is, to a large extent, due to chemical modification of the basic skeletons of metabolites. Here, we review the major known plant metabolite modifications and summarize the progress that has been achieved and the challenges we are facing in the field. We focus on discussing both technical and functional aspects in studying the influences that various modifications have on biosynthesis, degradation, transport, and storage of metabolites, as well as their bioactivity and toxicity. Finally, we discuss some emerging insights into the evolution of metabolic pathways and metabolite functionality.
Collapse
Affiliation(s)
- Shouchuang Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 572208, China
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany; Centre of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany; Centre of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria.
| | - Jie Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 572208, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|