1
|
Carrillo-Carrasco VP, van Galen M, Bronkhorst J, Mutte S, Kohlen W, Sprakel J, Hernández-García J, Weijers D. Auxin and tryptophan trigger common responses in the streptophyte alga Penium margaritaceum. Curr Biol 2025:S0960-9822(25)00353-7. [PMID: 40209711 DOI: 10.1016/j.cub.2025.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/13/2025] [Accepted: 03/19/2025] [Indexed: 04/12/2025]
Abstract
Auxin is a signaling molecule that regulates multiple processes in the growth and development of land plants. Research gathered from model species, particularly Arabidopsis thaliana, has revealed that the nuclear auxin pathway controls many of these processes through transcriptional regulation. Recently, a non-transcriptional pathway based on rapid phosphorylation mediated by kinases has been described, complementing the understanding of the complexity of auxin-regulated processes. Phylogenetic inferences of both pathways indicate that only some of these components are conserved beyond land plants. This raises fundamental questions about the evolutionary origin of auxin responses and whether algal sisters share mechanistic features with land plants. Here, we explore auxin responses in the unicellular streptophyte alga Penium margaritaceum. By assessing physiological, transcriptomic, and cellular responses, we found that auxin triggers cell proliferation, gene regulation, and acceleration of cytoplasmic streaming. Notably, all these responses are also triggered by the structurally related tryptophan. These results identify shared auxin response features among land plants and algae and suggest that less chemically specific responses preceded the emergence of auxin-specific regulatory networks in land plants.
Collapse
Affiliation(s)
| | - Martijn van Galen
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, the Netherlands
| | - Jochem Bronkhorst
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, the Netherlands
| | - Sumanth Mutte
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, the Netherlands
| | - Wouter Kohlen
- Laboratory of Cell Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708WE Wageningen, the Netherlands
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, the Netherlands
| | - Jorge Hernández-García
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, the Netherlands.
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, the Netherlands.
| |
Collapse
|
2
|
de Vries S, Feussner I. Biotic interactions, evolutionary forces and the pan-plant specialized metabolism. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230362. [PMID: 39343027 PMCID: PMC11449213 DOI: 10.1098/rstb.2023.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 10/01/2024] Open
Abstract
Plant specialized metabolism has a complex evolutionary history. Some aspects are conserved across the green lineage, but many metabolites are unique to certain lineages. The network of specialized metabolism continuously diversified, simplified or reshaped during the evolution of streptophytes. Many routes of pan-plant specialized metabolism are involved in plant defence. Biotic interactions are recalled as major drivers of lineage-specific metabolomic diversification. However, the consequences of this diversity of specialized metabolism in the context of plant terrestrialization and land plant diversification into the major lineages of bryophytes, lycophytes, ferns, gymnosperms and angiosperms remain only little explored. Overall, this hampers conclusions on the evolutionary scenarios that shaped specialized metabolism. Recent efforts have brought forth new streptophyte model systems, an increase in genetically accessible species from distinct major plant lineages, and new functional data from a diversity of land plants on specialized metabolic pathways. In this review, we will integrate the recent data on the evolution of the plant immune system with the molecular data of specialized metabolism and its recognition. Based on this we will provide a contextual framework of the pan-plant specialized metabolism, the evolutionary aspects that shape it and the impact on adaptation to the terrestrial environment.This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, Goettingen 37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, Goettingen 37077, Germany
| |
Collapse
|
3
|
Batista RA, Wang L, Bogaert KA, Coelho SM. Insights into the molecular bases of multicellular development from brown algae. Development 2024; 151:dev203004. [PMID: 39302848 DOI: 10.1242/dev.203004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The transition from simple to complex multicellularity represents a major evolutionary step that occurred in only a few eukaryotic lineages. Comparative analyses of these lineages provide insights into the molecular and cellular mechanisms driving this transition, but limited understanding of the biology of some complex multicellular lineages, such as brown algae, has hampered progress. This Review explores how recent advances in genetic and genomic technologies now allow detailed investigations into the molecular bases of brown algae development. We highlight how forward genetic techniques have identified mutants that enhance our understanding of pattern formation and sexual differentiation in these organisms. Additionally, the existence and nature of morphogens in brown algae and the potential influence of the microbiome in key developmental processes are examined. Outstanding questions, such as the identity of master regulators, the definition and characterization of cell types, and the molecular bases of developmental plasticity are discussed, with insights into how recent technical advances could provide answers. Overall, this Review highlights how brown algae are emerging as alternative model organisms, contributing to our understanding of the evolution of multicellular life and the diversity of body plans.
Collapse
Affiliation(s)
- Rita A Batista
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Liping Wang
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Kenny A Bogaert
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Bierenbroodspot MJ, Pröschold T, Fürst-Jansen JMR, de Vries S, Irisarri I, Darienko T, de Vries J. Phylogeny and evolution of streptophyte algae. ANNALS OF BOTANY 2024; 134:385-400. [PMID: 38832756 PMCID: PMC11341676 DOI: 10.1093/aob/mcae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
The Streptophyta emerged about a billion years ago. Nowadays, this branch of the green lineage is most famous for one of its clades, the land plants (Embryophyta). Although Embryophyta make up the major share of species numbers in Streptophyta, there is a diversity of probably >5000 species of streptophyte algae that form a paraphyletic grade next to land plants. Here, we focus on the deep divergences that gave rise to the diversity of streptophytes, hence particularly on the streptophyte algae. Phylogenomic efforts have not only clarified the position of streptophyte algae relative to land plants, but recent efforts have also begun to unravel the relationships and major radiations within streptophyte algal diversity. We illustrate how new phylogenomic perspectives have changed our view on the evolutionary emergence of key traits, such as intricate signalling networks that are intertwined with multicellular growth and the chemodiverse hotbed from which they emerged. These traits are key for the biology of land plants but were bequeathed from their algal progenitors.
Collapse
Affiliation(s)
- Maaike J Bierenbroodspot
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstraße 1, 37077 Goettingen, Germany
| | - Thomas Pröschold
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstraße 1, 37077 Goettingen, Germany
- Research Department for Limnology, University of Innsbruck, Mondseestr. 9, 5310 Mondsee, Austria
| | - Janine M R Fürst-Jansen
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstraße 1, 37077 Goettingen, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstraße 1, 37077 Goettingen, Germany
| | - Iker Irisarri
- Section of Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Tatyana Darienko
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstraße 1, 37077 Goettingen, Germany
- Department of Experimental Phycology and Culture Collection of Algae, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Nikolausberger Weg 18, 37073 Goettingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstraße 1, 37077 Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidstraße 1, 37077 Goettingen, Germany
- Department of Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goldschmidtstraße 1, 37077 Goettingen, Germany
| |
Collapse
|
5
|
Dhabalia Ashok A, de Vries S, Darienko T, Irisarri I, de Vries J. Evolutionary assembly of the plant terrestrialization toolkit from protein domains. Proc Biol Sci 2024; 291:20240985. [PMID: 39081174 PMCID: PMC11289646 DOI: 10.1098/rspb.2024.0985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Land plants (embryophytes) came about in a momentous evolutionary singularity: plant terrestrialization. This event marks not only the conquest of land by plants but also the massive radiation of embryophytes into a diverse array of novel forms and functions. The unique suite of traits present in the earliest land plants is thought to have been ushered in by a burst in genomic novelty. Here, we asked the question of how these bursts were possible. For this, we explored: (i) the initial emergence and (ii) the reshuffling of domains to give rise to hallmark environmental response genes of land plants. We pinpoint that a quarter of the embryophytic genes for stress physiology are specific to the lineage, yet a significant portion of this novelty arises not de novo but from reshuffling and recombining of pre-existing domains. Our data suggest that novel combinations of old genomic substrate shaped the plant terrestrialization toolkit, including hallmark processes in signalling, biotic interactions and specialized metabolism.
Collapse
Affiliation(s)
- Amra Dhabalia Ashok
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Tatyana Darienko
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Iker Irisarri
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, Goettingen37077, Germany
- Section Phylogenomics, Centre for Molecular biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature Hamburg, Martin-Luther-King-Platz 3, Hamburg20146, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, Goettingen37077, Germany
- Department of Applied Bioinformatics, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtstr. 1, Goettingen37077, Germany
| |
Collapse
|
6
|
Schmidt V, Skokan R, Depaepe T, Kurtović K, Haluška S, Vosolsobě S, Vaculíková R, Pil A, Dobrev PI, Motyka V, Van Der Straeten D, Petrášek J. Phytohormone profiling in an evolutionary framework. Nat Commun 2024; 15:3875. [PMID: 38719800 PMCID: PMC11079000 DOI: 10.1038/s41467-024-47753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
The genomes of charophyte green algae, close relatives of land plants, typically do not show signs of developmental regulation by phytohormones. However, scattered reports of endogenous phytohormone production in these organisms exist. We performed a comprehensive analysis of multiple phytohormones in Viridiplantae, focusing mainly on charophytes. We show that auxin, salicylic acid, ethylene and tRNA-derived cytokinins including cis-zeatin are found ubiquitously in Viridiplantae. By contrast, land plants but not green algae contain the trans-zeatin type cytokinins as well as auxin and cytokinin conjugates. Charophytes occasionally produce jasmonates and abscisic acid, whereas the latter is detected consistently in land plants. Several phytohormones are excreted into the culture medium, including auxin by charophytes and cytokinins and salicylic acid by Viridiplantae in general. We note that the conservation of phytohormone biosynthesis and signaling pathways known from angiosperms does not match the capacity for phytohormone biosynthesis in Viridiplantae. Our phylogenetically guided analysis of established algal cultures provides an important insight into phytohormone biosynthesis and metabolism across Streptophyta.
Collapse
Affiliation(s)
- Vojtěch Schmidt
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Roman Skokan
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia.
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Katarina Kurtović
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Samuel Haluška
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Stanislav Vosolsobě
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Roberta Vaculíková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
| | - Anthony Pil
- Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Petre Ivanov Dobrev
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
| | - Václav Motyka
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Jan Petrášek
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia.
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia.
| |
Collapse
|
7
|
Bierenbroodspot MJ, Darienko T, de Vries S, Fürst-Jansen JMR, Buschmann H, Pröschold T, Irisarri I, de Vries J. Phylogenomic insights into the first multicellular streptophyte. Curr Biol 2024; 34:670-681.e7. [PMID: 38244543 PMCID: PMC10849092 DOI: 10.1016/j.cub.2023.12.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
Streptophytes are best known as the clade containing the teeming diversity of embryophytes (land plants).1,2,3,4 Next to embryophytes are however a range of freshwater and terrestrial algae that bear important information on the emergence of key traits of land plants. Among these, the Klebsormidiophyceae stand out. Thriving in diverse environments-from mundane (ubiquitous occurrence on tree barks and rocks) to extreme (from the Atacama Desert to the Antarctic)-Klebsormidiophyceae can exhibit filamentous body plans and display remarkable resilience as colonizers of terrestrial habitats.5,6 Currently, the lack of a robust phylogenetic framework for the Klebsormidiophyceae hampers our understanding of the evolutionary history of these key traits. Here, we conducted a phylogenomic analysis utilizing advanced models that can counteract systematic biases. We sequenced 24 new transcriptomes of Klebsormidiophyceae and combined them with 14 previously published genomic and transcriptomic datasets. Using an analysis built on 845 loci and sophisticated mixture models, we establish a phylogenomic framework, dividing the six distinct genera of Klebsormidiophyceae in a novel three-order system, with a deep divergence more than 830 million years ago. Our reconstructions of ancestral states suggest (1) an evolutionary history of multiple transitions between terrestrial-aquatic habitats, with stem Klebsormidiales having conquered land earlier than embryophytes, and (2) that the body plan of the last common ancestor of Klebsormidiophyceae was multicellular, with a high probability that it was filamentous whereas the sarcinoids and unicells in Klebsormidiophyceae are likely derived states. We provide evidence that the first multicellular streptophytes likely lived about a billion years ago.
Collapse
Affiliation(s)
- Maaike J Bierenbroodspot
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tatyana Darienko
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Sophie de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Janine M R Fürst-Jansen
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
| | - Henrik Buschmann
- University of Applied Sciences Mittweida, Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, Technikumplatz 17, 09648 Mittweida, Germany
| | - Thomas Pröschold
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Innsbruck, Research Department for Limnology, 5310 Mondsee, Austria
| | - Iker Irisarri
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany.
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany.
| |
Collapse
|
8
|
Kuhn A, Roosjen M, Mutte S, Dubey SM, Carrillo Carrasco VP, Boeren S, Monzer A, Koehorst J, Kohchi T, Nishihama R, Fendrych M, Sprakel J, Friml J, Weijers D. RAF-like protein kinases mediate a deeply conserved, rapid auxin response. Cell 2024; 187:130-148.e17. [PMID: 38128538 PMCID: PMC10783624 DOI: 10.1016/j.cell.2023.11.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/29/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
The plant-signaling molecule auxin triggers fast and slow cellular responses across land plants and algae. The nuclear auxin pathway mediates gene expression and controls growth and development in land plants, but this pathway is absent from algal sister groups. Several components of rapid responses have been identified in Arabidopsis, but it is unknown if these are part of a conserved mechanism. We recently identified a fast, proteome-wide phosphorylation response to auxin. Here, we show that this response occurs across 5 land plant and algal species and converges on a core group of shared targets. We found conserved rapid physiological responses to auxin in the same species and identified rapidly accelerated fibrosarcoma (RAF)-like protein kinases as central mediators of auxin-triggered phosphorylation across species. Genetic analysis connects this kinase to both auxin-triggered protein phosphorylation and rapid cellular response, thus identifying an ancient mechanism for fast auxin responses in the green lineage.
Collapse
Affiliation(s)
- Andre Kuhn
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Mark Roosjen
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Sumanth Mutte
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Shiv Mani Dubey
- Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
| | | | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Aline Monzer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jasper Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Matyáš Fendrych
- Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands.
| |
Collapse
|
9
|
Wójcikowska B, Belaidi S, Robert HS. Game of thrones among AUXIN RESPONSE FACTORs-over 30 years of MONOPTEROS research. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6904-6921. [PMID: 37450945 PMCID: PMC10690734 DOI: 10.1093/jxb/erad272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
For many years, research has been carried out with the aim of understanding the mechanism of auxin action, its biosynthesis, catabolism, perception, and transport. One central interest is the auxin-dependent gene expression regulation mechanism involving AUXIN RESPONSE FACTOR (ARF) transcription factors and their repressors, the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins. Numerous studies have been focused on MONOPTEROS (MP)/ARF5, an activator of auxin-dependent gene expression with a crucial impact on plant development. This review summarizes over 30 years of research on MP/ARF5. We indicate the available analytical tools to study MP/ARF5 and point out the known mechanism of MP/ARF5-dependent regulation of gene expression during various developmental processes, namely embryogenesis, leaf formation, vascularization, and shoot and root meristem formation. However, many questions remain about the auxin dose-dependent regulation of gene transcription by MP/ARF5 and its isoforms in plant cells, the composition of the MP/ARF5 protein complex, and, finally, all the genes under its direct control. In addition, information on post-translational modifications of MP/ARF5 protein is marginal, and knowledge about their consequences on MP/ARF5 function is limited. Moreover, the epigenetic factors and other regulators that act upstream of MP/ARF5 are poorly understood. Their identification will be a challenge in the coming years.
Collapse
Affiliation(s)
- Barbara Wójcikowska
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Samia Belaidi
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hélène S Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
10
|
Tounosu N, Sesoko K, Hori K, Shimojima M, Ohta H. Cis-regulatory elements and transcription factors related to auxin signaling in the streptophyte algae Klebsormidium nitens. Sci Rep 2023; 13:9635. [PMID: 37322074 PMCID: PMC10272232 DOI: 10.1038/s41598-023-36500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
The phytohormone auxin affects numerous processes in land plants. The central auxin signaling machinery, called the nuclear auxin pathway, is mediated by its pivotal receptor named TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFB). The nuclear auxin pathway is widely conserved in land plants, but auxin also accumulates in various algae. Although auxin affects the growth of several algae, the components that mediate auxin signaling have not been identified. We previously reported that exogenous auxin suppresses cell proliferation in the Klebsormidium nitens that is a member of streptophyte algae, a paraphyletic group sharing the common ancestor with land plants. Although K. nitens lacks TIR1/AFB, auxin affects the expression of numerous genes. Thus, elucidation of the mechanism of auxin-inducible gene expression in K. nitens would provide important insights into the evolution of auxin signaling. Here, we show that some motifs are enriched in the promoter sequences of auxin-inducible genes in K. nitens. We also found that the transcription factor KnRAV activates several auxin-inducible genes and directly binds the promoter of KnLBD1, a representative auxin-inducible gene. We propose that KnRAV has the potential to regulate auxin-responsive gene expression in K. nitens.
Collapse
Affiliation(s)
- Noriaki Tounosu
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B-65, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Kanami Sesoko
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B-65, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Koichi Hori
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B-65, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B-65, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B-65, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
11
|
Su L, Zhang T, Yang B, Dong T, Liu X, Bai Y, Liu H, Xiong J, Zhong Y, Cheng ZMM. Different evolutionary patterns of TIR1/AFBs and AUX/IAAs and their implications for the morphogenesis of land plants. BMC PLANT BIOLOGY 2023; 23:265. [PMID: 37202746 DOI: 10.1186/s12870-023-04253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND The plant hormone auxin is widely involved in plant growth, development, and morphogenesis, and the TIR1/AFB and AUX/IAA proteins are closely linked to rapid auxin response and signal transmission. However, their evolutionary history, historical patterns of expansion and contraction, and changes in interaction relationships are still unknown. RESULTS Here, we analyzed the gene duplications, interactions, and expression patterns of TIR1/AFBs and AUX/IAAs to understand their underlying mechanisms of evolution. The ratios of TIR1/AFBs to AUX/IAAs range from 4:2 in Physcomitrium patens to 6:29 in Arabidopsis thaliana and 3:16 in Fragaria vesca. Whole-genome duplication (WGD) and tandem duplication have contributed to the expansion of the AUX/IAA gene family, but numerous TIR1/AFB gene duplicates were lost after WGD. We further analyzed the expression profiles of TIR1/AFBs and AUX/IAAs in different tissue parts of Physcomitrium patens, Selaginella moellendorffii, Arabidopsis thaliana and Fragaria vesca, and found that TIR1/AFBs and AUX/IAAs were highly expressed in all tissues in P. patens, S. moellendorffii. In A. thaliana and F. vesca, TIR1/AFBs maintained the same expression pattern as the ancient plants with high expression in all tissue parts, while AUX/IAAs appeared tissue-specific expression. In F. vesca, 11 AUX/IAAs interacted with TIR1/AFBs with different interaction strengths, and the functional specificity of AUX/IAAs was related to their ability to bind TIR1/AFBs, thus promoting the development of specific higher plant organs. Verification of the interactions among TIR1/AFBs and AUX/IAAs in Marchantia polymorpha and F. vesca also showed that the regulation of AUX/IAA members by TIR1/AFBs became more refined over the course of plant evolution. CONCLUSIONS Our results indicate that specific interactions and specific gene expression patterns both contributed to the functional diversification of TIR1/AFBs and AUX/IAAs.
Collapse
Affiliation(s)
- Liyao Su
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tian Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bin Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianyu Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyu Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yibo Bai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingsong Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Zhong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zong-Ming Max Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Fisher TJ, Flores-Sandoval E, Alvarez JP, Bowman JL. PIN-FORMED is required for shoot phototropism/gravitropism and facilitates meristem formation in Marchantia polymorpha. THE NEW PHYTOLOGIST 2023; 238:1498-1515. [PMID: 36880411 DOI: 10.1111/nph.18854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
PIN-FORMED auxin efflux transporters, a subclass of which is plasma membrane-localised, mediate a variety of land-plant developmental processes via their polar localisation and subsequent directional auxin transport. We provide the first characterisation of PIN proteins in liverworts using Marchantia polymorpha as a model system. Marchantia polymorpha possesses a single PIN-FORMED gene, whose protein product is predicted to be plasma membrane-localised, MpPIN1. To characterise MpPIN1, we created loss-of-function alleles and produced complementation lines in both M. polymorpha and Arabidopsis. In M. polymorpha, gene expression and protein localisation were tracked using an MpPIN1 transgene encoding a translationally fused fluorescent protein. Overexpression of MpPIN1 can partially complement loss of an orthologous gene, PIN-FORMED1, in Arabidopsis. In M. polymorpha, MpPIN1 influences development in numerous ways throughout its life cycle. Most notably, MpPIN1 is required to establish gemmaling dorsiventral polarity and for orthotropic growth of gametangiophore stalks, where MpPIN1 is basally polarised. PIN activity is largely conserved within land plants, with PIN-mediated auxin flow providing a flexible mechanism to organise growth. Specifically, PIN is fundamentally linked to orthotropism and to the establishment of de novo meristems, the latter potentially involving the formation of both auxin biosynthesis maxima and auxin-signalling minima.
Collapse
Affiliation(s)
- Tom J Fisher
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Vic., 3800, Australia
| | - Eduardo Flores-Sandoval
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Vic., 3800, Australia
| | - John P Alvarez
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Vic., 3800, Australia
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Vic., 3800, Australia
| |
Collapse
|
13
|
Carrillo‐Carrasco VP, Hernandez‐Garcia J, Mutte SK, Weijers D. The birth of a giant: evolutionary insights into the origin of auxin responses in plants. EMBO J 2023; 42:e113018. [PMID: 36786017 PMCID: PMC10015382 DOI: 10.15252/embj.2022113018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
The plant signaling molecule auxin is present in multiple kingdoms of life. Since its discovery, a century of research has been focused on its action as a phytohormone. In land plants, auxin regulates growth and development through transcriptional and non-transcriptional programs. Some of the molecular mechanisms underlying these responses are well understood, mainly in Arabidopsis. Recently, the availability of genomic and transcriptomic data of green lineages, together with phylogenetic inference, has provided the basis to reconstruct the evolutionary history of some components involved in auxin biology. In this review, we follow the evolutionary trajectory that allowed auxin to become the "giant" of plant biology by focusing on bryophytes and streptophyte algae. We consider auxin biosynthesis, transport, physiological, and molecular responses, as well as evidence supporting the role of auxin as a chemical messenger for communication within ecosystems. Finally, we emphasize that functional validation of predicted orthologs will shed light on the conserved properties of auxin biology among streptophytes.
Collapse
Affiliation(s)
| | | | - Sumanth K Mutte
- Laboratory of BiochemistryWageningen UniversityWageningenthe Netherlands
| | - Dolf Weijers
- Laboratory of BiochemistryWageningen UniversityWageningenthe Netherlands
| |
Collapse
|
14
|
Parveen N, Kandhol N, Sharma S, Singh VP, Chauhan DK, Ludwig-Müller J, Corpas FJ, Tripathi DK. Auxin Crosstalk with Reactive Oxygen and Nitrogen Species in Plant Development and Abiotic Stress. PLANT & CELL PHYSIOLOGY 2023; 63:1814-1825. [PMID: 36208156 DOI: 10.1093/pcp/pcac138] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The phytohormone auxin acts as an important signaling molecule having regulatory functions during the growth and development of plants. Reactive oxygen species (ROS) are also known to perform signaling functions at low concentrations; however, over-accumulation of ROS due to various environmental stresses damages the biomolecules and cell structures and leads to cell death, and therefore, it can be said that ROS act as a double-edged sword. Nitric oxide (NO), a gaseous signaling molecule, performs a wide range of favorable roles in plants. NO displays its positive role in photomorphogenesis, root growth, leaf expansion, seed germination, stomatal closure, senescence, fruit maturation, mitochondrial activity and metabolism of iron. Studies have revealed the early existence of these crucial molecules during evolution. Moreover, auxin, ROS and NO together show their involvement in various developmental processes and abiotic stress tolerance. Redox signaling is a primary response during exposure of plants to stresses and shows a link with auxin signaling. This review provides updated information related to crosstalk between auxin, ROS and NO starting from their evolution during early Earth periods and their interaction in plant growth and developmental processes as well as in the case of abiotic stresses to plants.
Collapse
Affiliation(s)
- Nishat Parveen
- Department of Botany, D D Pant Interdisciplinary Research Laboratory, University of Allahabad, Prayagraj-211002, India
| | - Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj-211004, India
| | - Vijay Pratap Singh
- Department of Botany, Plant Physiology Laboratory, CMP, Degree Collage, University of Allahabad, Prayagraj-211002, India
| | - Devendra Kumar Chauhan
- Department of Botany, D D Pant Interdisciplinary Research Laboratory, University of Allahabad, Prayagraj-211002, India
| | - Jutta Ludwig-Müller
- Department of Biology, Technische Universität Dresden, Dresden 01062, Germany
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), C/Professor Albareda, 1, Granada 18008, Spain
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| |
Collapse
|
15
|
Bogaert KA, Zakka EE, Coelho SM, De Clerck O. Polarization of brown algal zygotes. Semin Cell Dev Biol 2023; 134:90-102. [PMID: 35317961 DOI: 10.1016/j.semcdb.2022.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
Brown algae are a group of multicellular, heterokont algae that have convergently evolved developmental complexity that rivals that of embryophytes, animals or fungi. Early in development, brown algal zygotes establish a basal and an apical pole, which will become respectively the basal system (holdfast) and the apical system (thallus) of the adult alga. Brown algae are interesting models for understanding the establishment of cell polarity in a broad evolutionary context, because they exhibit a large diversity of life cycles, reproductive strategies and, importantly, their zygotes are produced in large quantities free of parental tissue, with symmetry breaking and asymmetric division taking place in a highly synchronous manner. This review describes the current knowledge about the establishment of the apical-basal axis in the model brown seaweeds Ectocarpus, Dictyota, Fucus and Saccharina, highlighting the advantages and specific interests of each system. Ectocarpus is a genetic model system that allows access to the molecular basis of early development and life-cycle control over apical-basal polarity. The oogamous brown alga Fucus, together with emerging comparative models Dictyota and Saccharina, emphasize the diversity of strategies of symmetry breaking in determining a cell polarity vector in brown algae. A comparison with symmetry-breaking mechanisms in land plants, animals and fungi, reveals that the one-step zygote polarisation of Fucus compares well to Saccharomyces budding and Arabidopsis stomata development, while the two-phased symmetry breaking in the Dictyota zygote compares to Schizosaccharomyces fission, the Caenorhabditis anterior-posterior zygote polarisation and Arabidopsis prolate pollen polarisation. The apical-basal patterning in Saccharina zygotes on the other hand, may be seen as analogous to that of land plants. Overall, brown algae have the potential to bring exciting new information on how a single cell gives rise to an entire complex body plan.
Collapse
Affiliation(s)
- Kenny A Bogaert
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium.
| | - Eliane E Zakka
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Olivier De Clerck
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium
| |
Collapse
|
16
|
Bowman JL. The origin of a land flora. NATURE PLANTS 2022; 8:1352-1369. [PMID: 36550365 DOI: 10.1038/s41477-022-01283-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/19/2022] [Indexed: 05/12/2023]
Abstract
The origin of a land flora fundamentally shifted the course of evolution of life on earth, facilitating terrestrialization of other eukaryotic lineages and altering the planet's geology, from changing atmospheric and hydrological cycles to transforming continental erosion processes. Despite algal lineages inhabiting the terrestrial environment for a considerable preceding period, they failed to evolve complex multicellularity necessary to conquer the land. About 470 million years ago, one lineage of charophycean alga evolved complex multicellularity via developmental innovations in both haploid and diploid generations and became land plants (embryophytes), which rapidly diversified to dominate most terrestrial habitats. Genome sequences have provided unprecedented insights into the genetic and genomic bases for embryophyte origins, with some embryophyte-specific genes being associated with the evolution of key developmental or physiological attributes, such as meristems, rhizoids and the ability to form mycorrhizal associations. However, based on the fossil record, the evolution of the defining feature of embryophytes, the embryo, and consequently the sporangium that provided a reproductive advantage, may have been most critical in their rise to dominance. The long timeframe and singularity of a land flora were perhaps due to the stepwise assembly of a large constellation of genetic innovations required to conquer the terrestrial environment.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
17
|
Chatelain P, Blanchard C, Astier J, Klinguer A, Wendehenne D, Jeandroz S, Rosnoblet C. Reliable reference genes and abiotic stress marker genes in Klebsormidium nitens. Sci Rep 2022; 12:18988. [PMID: 36348043 PMCID: PMC9643330 DOI: 10.1038/s41598-022-23783-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Microalgae have recently emerged as a key research topic, especially as biological models. Among them, the green alga Klebsormidium nitens, thanks to its particular adaptation to environmental stresses, represents an interesting photosynthetic eukaryote for studying the transition stages leading to the colonization of terrestrial life. The tolerance to different stresses is manifested by changes in gene expression, which can be monitored by quantifying the amounts of transcripts by RT-qPCR. The identification of optimal reference genes for experiment normalization was therefore necessary. In this study, using four statistical algorithms followed by the RankAggreg package, we determined the best reference gene pairs suitable for normalizing RT-qPCR data in K. nitens in response to three abiotic stresses: high salinity, PEG-induced dehydration and heat shock. Based on these reference genes, we were able to identify marker genes in response to the three abiotic stresses in K. nitens.
Collapse
Affiliation(s)
- Pauline Chatelain
- grid.493090.70000 0004 4910 6615Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Cécile Blanchard
- grid.493090.70000 0004 4910 6615Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Jeremy Astier
- grid.493090.70000 0004 4910 6615Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Agnès Klinguer
- grid.493090.70000 0004 4910 6615Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - David Wendehenne
- grid.493090.70000 0004 4910 6615Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sylvain Jeandroz
- grid.493090.70000 0004 4910 6615Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Claire Rosnoblet
- grid.493090.70000 0004 4910 6615Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
18
|
Domozych DS, Bagdan K. The cell biology of charophytes: Exploring the past and models for the future. PLANT PHYSIOLOGY 2022; 190:1588-1608. [PMID: 35993883 PMCID: PMC9614468 DOI: 10.1093/plphys/kiac390] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Charophytes (Streptophyta) represent a diverse assemblage of extant green algae that are the sister lineage to land plants. About 500-600+ million years ago, a charophyte progenitor successfully colonized land and subsequently gave rise to land plants. Charophytes have diverse but relatively simple body plans that make them highly attractive organisms for many areas of biological research. At the cellular level, many charophytes have been used for deciphering cytoskeletal networks and their dynamics, membrane trafficking, extracellular matrix secretion, and cell division mechanisms. Some charophytes live in challenging habitats and have become excellent models for elucidating the cellular and molecular effects of various abiotic stressors on plant cells. Recent sequencing of several charophyte genomes has also opened doors for the dissection of biosynthetic and signaling pathways. While we are only in an infancy stage of elucidating the cell biology of charophytes, the future application of novel analytical methodologies in charophyte studies that include a broader survey of inclusive taxa will enhance our understanding of plant evolution and cell dynamics.
Collapse
Affiliation(s)
| | - Kaylee Bagdan
- Department of Biology, Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866, USA
| |
Collapse
|
19
|
Rico‐Jiménez M, Roca A, Krell T, Matilla MA. A bacterial chemoreceptor that mediates chemotaxis to two different plant hormones. Environ Microbiol 2022; 24:3580-3597. [PMID: 35088505 PMCID: PMC9543091 DOI: 10.1111/1462-2920.15920] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 11/30/2022]
Abstract
Indole-3-acetic acid (IAA) is the main naturally occurring auxin and is produced by organisms of all kingdoms of life. In addition to the regulation of plant growth and development, IAA plays an important role in the interaction between plants and growth-promoting and phytopathogenic bacteria by regulating bacterial gene expression and physiology. We show here that an IAA metabolizing plant-associated Pseudomonas putida isolate exhibits chemotaxis to IAA that is independent of auxin metabolism. We found that IAA chemotaxis is based on the activity of the PcpI chemoreceptor and heterologous expression of pcpI conferred IAA taxis to different environmental and human pathogenic isolates of the Pseudomonas genus. Using ligand screening, microcalorimetry and quantitative chemotaxis assays, we found that PcpI failed to bind IAA directly, but recognized and mediated chemoattractions to various aromatic compounds, including the phytohormone salicylic acid. The expression of pcpI and its role in the interactions with plants was also investigated. PcpI extends the range of central signal molecules recognized by chemoreceptors. To our knowledge, this is the first report on a bacterial receptor that responds to two different phytohormones. Our study reinforces the multifunctional role of IAA and salicylic acid as intra- and inter-kingdom signal molecules.
Collapse
Affiliation(s)
- Miriam Rico‐Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Amalia Roca
- Department of Microbiology, Facultad de FarmaciaCampus Universitario de Cartuja, Universidad de GranadaGranada18071Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Miguel A. Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| |
Collapse
|
20
|
Bogaert KA, Blomme J, Beeckman T, De Clerck O. Auxin's origin: do PILS hold the key? TRENDS IN PLANT SCIENCE 2022; 27:227-236. [PMID: 34716098 DOI: 10.1016/j.tplants.2021.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/23/2021] [Accepted: 09/28/2021] [Indexed: 05/12/2023]
Abstract
Auxin is a key regulator of many developmental processes in land plants and plays a strikingly similar role in the phylogenetically distant brown seaweeds. Emerging evidence shows that the PIN and PIN-like (PILS) auxin transporter families have preceded the evolution of the canonical auxin response pathway. A wide conservation of PILS-mediated auxin transport, together with reports of auxin function in unicellular algae, would suggest that auxin function preceded the advent of multicellularity. We find that PIN and PILS transporters form two eukaryotic subfamilies within a larger bacterial family. We argue that future functional characterisation of algal PIN and PILS transporters can shed light on a common origin of an auxin function followed by independent co-option in a multicellular context.
Collapse
Affiliation(s)
- Kenny Arthur Bogaert
- Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium.
| | - Jonas Blomme
- Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB-UGent, Technologiepark 72, B-9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB-UGent, Technologiepark 72, B-9052 Ghent, Belgium
| | - Olivier De Clerck
- Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium
| |
Collapse
|
21
|
Serrano-Pérez E, Romero-Losada AB, Morales-Pineda M, García-Gómez ME, Couso I, García-González M, Romero-Campero FJ. Transcriptomic and Metabolomic Response to High Light in the Charophyte Alga Klebsormidium nitens. FRONTIERS IN PLANT SCIENCE 2022; 13:855243. [PMID: 35599877 PMCID: PMC9121098 DOI: 10.3389/fpls.2022.855243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 05/04/2023]
Abstract
The characterization of the molecular mechanisms, such as high light irradiance resistance, that allowed plant terrestralization is a cornerstone in evolutionary studies since the conquest of land by plants played a pivotal role in life evolution on Earth. Viridiplantae or the green lineage is divided into two clades, Chlorophyta and Streptophyta, that in turn splits into Embryophyta or land plants and Charophyta. Charophyta are used in evolutionary studies on plant terrestralization since they are generally accepted as the extant algal species most closely related to current land plants. In this study, we have chosen the facultative terrestrial early charophyte alga Klebsormidium nitens to perform an integrative transcriptomic and metabolomic analysis under high light in order to unveil key mechanisms involved in the early steps of plants terrestralization. We found a fast chloroplast retrograde signaling possibly mediated by reactive oxygen species and the inositol polyphosphate 1-phosphatase (SAL1) and 3'-phosphoadenosine-5'-phosphate (PAP) pathways inducing gene expression and accumulation of specific metabolites. Systems used by both Chlorophyta and Embryophyta were activated such as the xanthophyll cycle with an accumulation of zeaxanthin and protein folding and repair mechanisms constituted by NADPH-dependent thioredoxin reductases, thioredoxin-disulfide reductases, and peroxiredoxins. Similarly, cyclic electron flow, specifically the pathway dependent on proton gradient regulation 5, was strongly activated under high light. We detected a simultaneous co-activation of the non-photochemical quenching mechanisms based on LHC-like stress related (LHCSR) protein and the photosystem II subunit S that are specific to Chlorophyta and Embryophyta, respectively. Exclusive Embryophyta systems for the synthesis, sensing, and response to the phytohormone auxin were also activated under high light in K. nitens leading to an increase in auxin content with the concomitant accumulation of amino acids such as tryptophan, histidine, and phenylalanine.
Collapse
Affiliation(s)
- Emma Serrano-Pérez
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
| | - Ana B. Romero-Losada
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
| | - María Morales-Pineda
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - M. Elena García-Gómez
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Inmaculada Couso
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Mercedes García-González
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Francisco J. Romero-Campero
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
- *Correspondence: Francisco J. Romero-Campero,
| |
Collapse
|
22
|
Bowman JL, Flores Sandoval E, Kato H. On the Evolutionary Origins of Land Plant Auxin Biology. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a040048. [PMID: 33558368 DOI: 10.1101/cshperspect.a040048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Indole-3-acetic acid, that is, auxin, is a molecule found in a broad phylogenetic distribution of organisms, from bacteria to eukaryotes. In the ancestral land plant auxin was co-opted to be the paramount phytohormone mediating tropic responses and acting as a facilitator of developmental decisions throughout the life cycle. The evolutionary origins of land plant auxin biology genes can now be traced with reasonable clarity. Genes encoding the two enzymes of the land plant auxin biosynthetic pathway arose in the ancestral land plant by a combination of horizontal gene transfer from bacteria and possible neofunctionalization following gene duplication. Components of the auxin transcriptional signaling network have their origins in ancestral alga genes, with gene duplication and neofunctionalization of key domains allowing integration of a portion of the preexisting transcriptional network with auxin. Knowledge of the roles of orthologous genes in extant charophycean algae is lacking, but could illuminate the ancestral functions of both auxin and the co-opted transcriptional network.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Science, Monash University, Melbourne, Victoria 3800, Australia
| | | | - Hirotaka Kato
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
23
|
Kapoore RV, Wood EE, Llewellyn CA. Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol Adv 2021; 49:107754. [PMID: 33892124 DOI: 10.1016/j.biotechadv.2021.107754] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/24/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
For the growing human population to be sustained during present climatic changes, enhanced quality and quantity of crops are essential to enable food security worldwide. The current consensus is that we need to make a transition from a petroleum-based to a bio-based economy via the development of a sustainable circular economy and biorefinery approaches. Both macroalgae (seaweeds) and microalgae have been long considered a rich source of plant biostimulants with an attractive business opportunity in agronomy and agro-industries. To date, macroalgae biostimulants have been well explored. In contrast, microalgal biostimulants whilst known to have positive effects on development, growth and yields of crops, their commercial implementation is constrained by lack of research and cost of production. The present review highlights the current knowledge on potential biostimulatory compounds, key sources and their quantitative information from algae. Specifically, we provide an overview on the prospects of microalgal biostimulants to advance crop production and quality. Key aspects such as specific biostimulant effects caused by extracts of microalgae, feasibility and potential of co-cultures and later co-application with other biostimulants/biofertilizers are highlighted. An overview of the current knowledge, recent advances and achievements on extraction techniques, application type, application timing, current market and regulatory aspects are also discussed. Moreover, aspects involved in circular economy and biorefinery approaches are also covered, such as: integration of waste resources and implementation of high-throughput phenotyping and -omics tools in isolating novel strains, exploring synergistic interactions and illustrating the underlying mode of microalgal biostimulant action. Overall, this review highlights the current and future potential of microalgal biostimulants, algal biochemical components behind these traits and finally bottlenecks and prospects involved in the successful commercialisation of microalgal biostimulants for sustainable agricultural practices.
Collapse
Affiliation(s)
- Rahul Vijay Kapoore
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK.
| | - Eleanor E Wood
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - Carole A Llewellyn
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK
| |
Collapse
|
24
|
Ramos Báez R, Nemhauser JL. Expansion and innovation in auxin signaling: where do we grow from here? Development 2021; 148:dev187120. [PMID: 33712444 PMCID: PMC7970066 DOI: 10.1242/dev.187120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The phytohormone auxin plays a role in almost all growth and developmental responses. The primary mechanism of auxin action involves the regulation of transcription via a core signaling pathway comprising proteins belonging to three classes: receptors, co-receptor/co-repressors and transcription factors. Recent studies have revealed that auxin signaling can be traced back at least as far as the transition to land. Moreover, studies in flowering plants have highlighted how expansion of the gene families encoding auxin components is tied to functional diversification. As we review here, these studies paint a picture of auxin signaling evolution as a driver of innovation.
Collapse
Affiliation(s)
- Román Ramos Báez
- University of Washington, Department of Biology, Seattle, WA 98105-1800, USA
| | | |
Collapse
|
25
|
Rashotte AM. The evolution of cytokinin signaling and its role in development before Angiosperms. Semin Cell Dev Biol 2021; 109:31-38. [DOI: 10.1016/j.semcdb.2020.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/02/2023]
|
26
|
Turnaev II, Gunbin KV, Suslov VV, Akberdin IR, Kolchanov NA, Afonnikov DA. The Phylogeny of Class B Flavoprotein Monooxygenases and the Origin of the YUCCA Protein Family. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1092. [PMID: 32854417 PMCID: PMC7570161 DOI: 10.3390/plants9091092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
YUCCA (YUCCA flavin-dependent monooxygenase) is one of the two enzymes of the main auxin biosynthesis pathway (tryptophan aminotransferase enzyme (TAA)/YUCCA) in land plants. The evolutionary origin of the YUCCA family is currently controversial: YUCCAs are assumed to have emerged via a horizontal gene transfer (HGT) from bacteria to the most recent common ancestor (MRCA) of land plants or to have inherited it from their ancestor, the charophyte algae. To refine YUCCA origin, we performed a phylogenetic analysis of the class B flavoprotein monooxygenases and comparative analysis of the sequences belonging to different families of this protein class. We distinguished a new protein family, named type IIb flavin-containing monooxygenases (FMOs), which comprises homologs of YUCCA from Rhodophyta, Chlorophyta, and Charophyta, land plant proteins, and FMO-E, -F, and -G of the bacterium Rhodococcus jostii RHA1. The type IIb FMOs differ considerably in the sites and domain composition from the other families of class B flavoprotein monooxygenases, YUCCAs included. The phylogenetic analysis also demonstrated that the type IIb FMO clade is not a sibling clade of YUCCAs. We have also identified the bacterial protein group named YUC-like FMOs as the closest to YUCCA homologs. Our results support the hypothesis of the emergence of YUCCA via HGT from bacteria to MRCA of land plants.
Collapse
Affiliation(s)
- Igor I. Turnaev
- Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia; (I.I.T.); (K.V.G.); (V.V.S.); (I.R.A.); (N.A.K.)
| | - Konstantin V. Gunbin
- Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia; (I.I.T.); (K.V.G.); (V.V.S.); (I.R.A.); (N.A.K.)
| | - Valentin V. Suslov
- Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia; (I.I.T.); (K.V.G.); (V.V.S.); (I.R.A.); (N.A.K.)
| | - Ilya R. Akberdin
- Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia; (I.I.T.); (K.V.G.); (V.V.S.); (I.R.A.); (N.A.K.)
- Biosoft.ru, 630058 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia; (I.I.T.); (K.V.G.); (V.V.S.); (I.R.A.); (N.A.K.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia
| | - Dmitry A. Afonnikov
- Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia; (I.I.T.); (K.V.G.); (V.V.S.); (I.R.A.); (N.A.K.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
27
|
de Vries J, de Vries S, Curtis BA, Zhou H, Penny S, Feussner K, Pinto DM, Steinert M, Cohen AM, von Schwartzenberg K, Archibald JM. Heat stress response in the closest algal relatives of land plants reveals conserved stress signaling circuits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1025-1048. [PMID: 32333477 DOI: 10.1111/tpj.14782] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/28/2020] [Accepted: 04/08/2020] [Indexed: 05/20/2023]
Abstract
All land plants (embryophytes) share a common ancestor that likely evolved from a filamentous freshwater alga. Elucidating the transition from algae to embryophytes - and the eventual conquering of Earth's surface - is one of the most fundamental questions in plant evolutionary biology. Here, we investigated one of the organismal properties that might have enabled this transition: resistance to drastic temperature shifts. We explored the effect of heat stress in Mougeotia and Spirogyra, two representatives of Zygnematophyceae - the closest known algal sister lineage to land plants. Heat stress induced pronounced phenotypic alterations in their plastids, and high-performance liquid chromatography-tandem mass spectroscopy-based profiling of 565 transitions for the analysis of main central metabolites revealed significant shifts in 43 compounds. We also analyzed the global differential gene expression responses triggered by heat, generating 92.8 Gbp of sequence data and assembling a combined set of 8905 well-expressed genes. Each organism had its own distinct gene expression profile; less than one-half of their shared genes showed concordant gene expression trends. We nevertheless detected common signature responses to heat such as elevated transcript levels for molecular chaperones, thylakoid components, and - corroborating our metabolomic data - amino acid metabolism. We also uncovered the heat-stress responsiveness of genes for phosphorelay-based signal transduction that links environmental cues, calcium signatures and plastid biology. Our data allow us to infer the molecular heat stress response that the earliest land plants might have used when facing the rapidly shifting temperature conditions of the terrestrial habitat.
Collapse
Affiliation(s)
- Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, 37077, Goettingen, Germany
| | - Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitätsstr. 1, 40225, Duesseldorf, Germany
| | - Bruce A Curtis
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada
| | - Hong Zhou
- Microalgae and Zygnematophyceae Collection Hamburg (MZCH) and Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, Universität Hamburg, 22609, Hamburg, Germany
| | - Susanne Penny
- National Research Council, Human Health Therapeutics, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| | - Kirstin Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), 37077, Goettingen, Germany
| | - Devanand M Pinto
- National Research Council, Human Health Therapeutics, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
- Department of Chemistry, Dalhousie University, 6274 Coburg Rd, Halifax, NS, B3H 4R2, Canada
| | - Michael Steinert
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Alejandro M Cohen
- Biological Spectrometry Core Facility, Life Sciences Research Institute, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Klaus von Schwartzenberg
- Microalgae and Zygnematophyceae Collection Hamburg (MZCH) and Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, Universität Hamburg, 22609, Hamburg, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada
- Canadian Institute for Advanced Research, 661 University Ave, Suite 505, Toronto, ON, M5G 1M1, Canada
| |
Collapse
|
28
|
Caisová L. Draparnaldia: a chlorophyte model for comparative analyses of plant terrestrialization. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3305-3313. [PMID: 32100007 DOI: 10.1093/jxb/eraa102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/25/2020] [Indexed: 05/22/2023]
Abstract
It is generally accepted that land plants evolved from streptophyte algae. However, there are also many chlorophytes (a sister group of streptophyte algae and land plants) that moved to terrestrial habitats and even resemble mosses. This raises the question of why no land plants evolved from chlorophytes. In order to better understand what enabled streptophyte algae to conquer the land, it is necessary to study the chlorophytes as well. This review will introduce the freshwater filamentous chlorophyte alga Draparnaldia sp. (Chaetophorales, Chlorophyceae) as a model for comparative analyses between these two lineages. It will also focus on current knowledge about the evolution of morphological complexity in chlorophytes versus streptophytes and their respective morphological/behavioural adaptations to semi-terrestrial habitats, and will show why Draparnaldia is needed as a new model system.
Collapse
Affiliation(s)
- Lenka Caisová
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds, UK
| |
Collapse
|
29
|
Fürst-Jansen JMR, de Vries S, de Vries J. Evo-physio: on stress responses and the earliest land plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3254-3269. [PMID: 31922568 PMCID: PMC7289718 DOI: 10.1093/jxb/eraa007] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/07/2020] [Indexed: 05/19/2023]
Abstract
Embryophytes (land plants) can be found in almost any habitat on the Earth's surface. All of this ecologically diverse embryophytic flora arose from algae through a singular evolutionary event. Traits that were, by their nature, indispensable for the singular conquest of land by plants were those that are key for overcoming terrestrial stressors. Not surprisingly, the biology of land plant cells is shaped by a core signaling network that connects environmental cues, such as stressors, to the appropriate responses-which, thus, modulate growth and physiology. When did this network emerge? Was it already present when plant terrestrialization was in its infancy? A comparative approach between land plants and their algal relatives, the streptophyte algae, allows us to tackle such questions and resolve parts of the biology of the earliest land plants. Exploring the biology of the earliest land plants might shed light on exactly how they overcame the challenges of terrestrialization. Here, we outline the approaches and rationale underlying comparative analyses towards inferring the genetic toolkit for the stress response that aided the earliest land plants in their conquest of land.
Collapse
Affiliation(s)
- Janine M R Fürst-Jansen
- University of Göttingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Göttingen, Germany
| | - Sophie de Vries
- Population Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan de Vries
- University of Göttingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Göttingen, Germany
- University of Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| |
Collapse
|
30
|
Buschmann H, Holzinger A. Understanding the algae to land plant transition. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3241-3246. [PMID: 32529251 DOI: 10.1093/jxb/eraa196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
31
|
Vosolsobě S, Skokan R, Petrášek J. The evolutionary origins of auxin transport: what we know and what we need to know. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3287-3295. [PMID: 32246155 DOI: 10.1093/jxb/eraa169] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/02/2020] [Indexed: 05/24/2023]
Abstract
Auxin, represented by indole-3-acetic acid (IAA), has for a long time been studied mainly with respect to the development of land plants, and recent evidence confirms that canonical nuclear auxin signaling is a land plant apomorphy. Increasing sequential and physiological data show that the presence of auxin transport machinery pre-dates the emergence of canonical signaling. In this review, we summarize the present state of knowledge regarding the origins of auxin transport in the green lineage (Viridiplantae), integrating both data from wet lab experiments and sequence evidence on the presence of PIN-FORMED (PIN), PIN-LIKES (PILS), and AUXIN RESISTANT 1/LIKE-AUX1 (AUX1/LAX) homologs. We discuss a high divergence of auxin carrier homologs among algal lineages and emphasize the urgent need for the establishment of good molecular biology models from within the streptophyte green algae. We further postulate and discuss two hypotheses for the ancestral role of auxin in the green lineage. First, auxin was present as a by-product of cell metabolism and the evolution of its transport was stimulated by the need for IAA sequestration and cell detoxification. Second, auxin was primarily a signaling compound, possibly of bacterial origin, and its activity in the pre-plant green algae was a consequence of long-term co-existence with bacteria in shared ecological consortia.
Collapse
Affiliation(s)
- Stanislav Vosolsobě
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Czech Republic
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová, Czech Republic
| | - Roman Skokan
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Czech Republic
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová, Czech Republic
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Czech Republic
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová, Czech Republic
| |
Collapse
|
32
|
Morffy N, Strader LC. Old Town Roads: routes of auxin biosynthesis across kingdoms. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:21-27. [PMID: 32199307 PMCID: PMC7540728 DOI: 10.1016/j.pbi.2020.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/28/2020] [Accepted: 02/09/2020] [Indexed: 05/04/2023]
Abstract
Auxin is an important signaling molecule synthesized in organisms from multiple kingdoms of life, including land plants, green algae, and bacteria. In this review, we highlight the similarities and differences in auxin biosynthesis among these organisms. Tryptophan-dependent routes to IAA are found in land plants, green algae and bacteria. Recent sequencing efforts show that the indole-3-pyruvic acid pathway, one of the primary biosynthetic pathways in land plants, is also found in the green algae. These similarities raise questions about the origin of auxin biosynthesis. Future studies comparing auxin biosynthesis across kingdoms will shed light on its origin and role outside of the plant lineage.
Collapse
Affiliation(s)
- Nicholas Morffy
- Department of Biology, Washington University, St. Louis, MO 63130, United States; Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130, United States.
| | - Lucia C Strader
- Department of Biology, Washington University, St. Louis, MO 63130, United States; Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130, United States; Center for Engineering MechanoBiology, Washington University, St. Louis, MO 63130, United States.
| |
Collapse
|
33
|
Jiao C, Sørensen I, Sun X, Sun H, Behar H, Alseekh S, Philippe G, Palacio Lopez K, Sun L, Reed R, Jeon S, Kiyonami R, Zhang S, Fernie AR, Brumer H, Domozych DS, Fei Z, Rose JKC. The Penium margaritaceum Genome: Hallmarks of the Origins of Land Plants. Cell 2020; 181:1097-1111.e12. [PMID: 32442406 DOI: 10.1016/j.cell.2020.04.019] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/14/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
The evolutionary features and molecular innovations that enabled plants to first colonize land are not well understood. Here, insights are provided through our report of the genome sequence of the unicellular alga Penium margaritaceum, a member of the Zygnematophyceae, the sister lineage to land plants. The genome has a high proportion of repeat sequences that are associated with massive segmental gene duplications, likely facilitating neofunctionalization. Compared with representatives of earlier diverging algal lineages, P. margaritaceum has expanded repertoires of gene families, signaling networks, and adaptive responses that highlight the evolutionary trajectory toward terrestrialization. These encompass a broad range of physiological processes and protective cellular features, such as flavonoid compounds and large families of modifying enzymes involved in cell wall biosynthesis, assembly, and remodeling. Transcriptome profiling further elucidated adaptations, responses, and selective pressures associated with the semi-terrestrial ecosystems of P. margaritaceum, where a simple body plan would be an advantage.
Collapse
Affiliation(s)
- Chen Jiao
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Honghe Sun
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Hila Behar
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, BC V6T 1Z3, Canada
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Glenn Philippe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Li Sun
- Skidmore College, Saratoga Springs, NY, USA
| | | | - Susan Jeon
- Skidmore College, Saratoga Springs, NY, USA
| | - Reiko Kiyonami
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, CA, USA
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, BC V6T 1Z3, Canada; Department of Botany, University of British Columbia, 3200-6270 University Blvd., Vancouver, BC V6H 1Z4, Canada; Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | | | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, USA; U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA.
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
34
|
Abstract
This review focuses on the evolution of plant hormone signaling pathways. Like the chemical nature of the hormones themselves, the signaling pathways are diverse. Therefore, we focus on a group of hormones whose primary perception mechanism involves an Skp1/Cullin/F-box-type ubiquitin ligase: auxin, jasmonic acid, gibberellic acid, and strigolactone. We begin with a comparison of the core signaling pathways of these four hormones, which have been established through studies conducted in model organisms in the Angiosperms. With the advent of next-generation sequencing and advanced tools for genetic manipulation, the door to understanding the origins of hormone signaling mechanisms in plants beyond these few model systems has opened. For example, in-depth phylogenetic analyses of hormone signaling components are now being complemented by genetic studies in early diverging land plants. Here we discuss recent investigations of how basal land plants make and sense hormones. Finally, we propose connections between the emergence of hormone signaling complexity and major developmental transitions in plant evolution.
Collapse
Affiliation(s)
- Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain;
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA;
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6708WE Wageningen, The Netherlands;
| |
Collapse
|
35
|
Lin WJ, Ho HC, Chu SC, Chou JY. Effects of auxin derivatives on phenotypic plasticity and stress tolerance in five species of the green alga Desmodesmus (Chlorophyceae, Chlorophyta). PeerJ 2020; 8:e8623. [PMID: 32195045 PMCID: PMC7067201 DOI: 10.7717/peerj.8623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/22/2020] [Indexed: 01/03/2023] Open
Abstract
Green microalgae of the genus Desmodesmus are characterized by a high degree of phenotypic plasticity (i.e. colony morphology), allowing them to be truly cosmopolitan and withstand environmental fluctuations. This flexibility enables Desmodesmus to produce a phenotype–environment match across a range of environments broader compared to algae with more fixed phenotypes. Indoles and their derivatives are a well-known crucial class of heterocyclic compounds and are widespread in different species of plants, animals, and microorganisms. Indole-3-acetic acid (IAA) is the most common, naturally occurring plant hormone of the auxin class. IAA may behave as a signaling molecule in microorganisms, and the physiological cues of IAA may also trigger phenotypic plasticity responses in Desmodesmus. In this study, we demonstrated that the changes in colonial morphs (cells per coenobium) of five species of the green alga Desmodesmus were specific to IAA but not to the chemically more stable synthetic auxins, naphthalene-1-acetic acid and 2,4-dichlorophenoxyacetic acid. Moreover, inhibitors of auxin biosynthesis and polar auxin transport inhibited cell division. Notably, different algal species (even different intraspecific strains) exhibited phenotypic plasticity different to that correlated to IAA. Thus, the plasticity involving individual-level heterogeneity in morphological characteristics may be crucial for microalgae to adapt to changing or novel conditions, and IAA treatment potentially increases the tolerance of Desmodesmus algae to several stress conditions. In summary, our results provide circumstantial evidence for the hypothesized role of IAA as a diffusible signal in the communication between the microalga and microorganisms. This information is crucial for elucidation of the role of plant hormones in plankton ecology.
Collapse
Affiliation(s)
- Wei-Jiun Lin
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan
| | - Sheng-Chang Chu
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
36
|
Wang S, Li L, Li H, Sahu SK, Wang H, Xu Y, Xian W, Song B, Liang H, Cheng S, Chang Y, Song Y, Çebi Z, Wittek S, Reder T, Peterson M, Yang H, Wang J, Melkonian B, Van de Peer Y, Xu X, Wong GKS, Melkonian M, Liu H, Liu X. Genomes of early-diverging streptophyte algae shed light on plant terrestrialization. NATURE PLANTS 2020; 6:95-106. [PMID: 31844283 PMCID: PMC7027972 DOI: 10.1038/s41477-019-0560-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/28/2019] [Indexed: 05/18/2023]
Abstract
Mounting evidence suggests that terrestrialization of plants started in streptophyte green algae, favoured by their dual existence in freshwater and subaerial/terrestrial environments. Here, we present the genomes of Mesostigma viride and Chlorokybus atmophyticus, two sister taxa in the earliest-diverging clade of streptophyte algae dwelling in freshwater and subaerial/terrestrial environments, respectively. We provide evidence that the common ancestor of M. viride and C. atmophyticus (and thus of streptophytes) had already developed traits associated with a subaerial/terrestrial environment, such as embryophyte-type photorespiration, canonical plant phytochrome, several phytohormones and transcription factors involved in responses to environmental stresses, and evolution of cellulose synthase and cellulose synthase-like genes characteristic of embryophytes. Both genomes differed markedly in genome size and structure, and in gene family composition, revealing their dynamic nature, presumably in response to adaptations to their contrasting environments. The ancestor of M. viride possibly lost several genomic traits associated with a subaerial/terrestrial environment following transition to a freshwater habitat.
Collapse
Affiliation(s)
- Sibo Wang
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Linzhou Li
- BGI-Shenzhen, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Haoyuan Li
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Sunil Kumar Sahu
- BGI-Shenzhen, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Hongli Wang
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yan Xu
- BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Wenfei Xian
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Bo Song
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Hongping Liang
- BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Shifeng Cheng
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yue Chang
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yue Song
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Zehra Çebi
- Botanical Institute, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Sebastian Wittek
- Botanical Institute, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Tanja Reder
- Botanical Institute, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Morten Peterson
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Barbara Melkonian
- Botanical Institute, Cologne Biocenter, University of Cologne, Cologne, Germany
- University of Duisburg-Essen, Campus Essen, Faculty of Biology, Essen, Germany
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB/UGent Center for Plant Systems Biology, Ghent, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Gane Ka-Shu Wong
- BGI-Shenzhen, Shenzhen, China.
- Department of Biological Sciences and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | - Michael Melkonian
- Botanical Institute, Cologne Biocenter, University of Cologne, Cologne, Germany.
- University of Duisburg-Essen, Campus Essen, Faculty of Biology, Essen, Germany.
| | - Huan Liu
- BGI-Shenzhen, Shenzhen, China.
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, China.
- China National GeneBank, BGI-Shenzhen, Shenzhen, China.
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
| |
Collapse
|
37
|
|
38
|
Powers SK, Strader LC. Regulation of auxin transcriptional responses. Dev Dyn 2019; 249:483-495. [PMID: 31774605 PMCID: PMC7187202 DOI: 10.1002/dvdy.139] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/17/2019] [Accepted: 11/22/2019] [Indexed: 01/27/2023] Open
Abstract
The plant hormone auxin acts as a signaling molecule to regulate a vast number of developmental responses throughout all stages of plant growth. Tight control and coordination of auxin signaling is required for the generation of specific auxin‐response outputs. The nuclear auxin signaling pathway controls auxin‐responsive gene transcription through the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F‐BOX pathway. Recent work has uncovered important details into how regulation of auxin signaling components can generate unique and specific responses to determine auxin outputs. In this review, we discuss what is known about the core auxin signaling components and explore mechanisms important for regulating auxin response specificity. A review of recent updates to our understanding of auxin signaling.
Collapse
Affiliation(s)
- Samantha K Powers
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Lucia C Strader
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri.,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri.,Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
39
|
Skokan R, Medvecká E, Viaene T, Vosolsobě S, Zwiewka M, Müller K, Skůpa P, Karady M, Zhang Y, Janacek DP, Hammes UZ, Ljung K, Nodzyński T, Petrášek J, Friml J. PIN-driven auxin transport emerged early in streptophyte evolution. NATURE PLANTS 2019; 5:1114-1119. [PMID: 31712756 DOI: 10.1038/s41477-019-0542-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/07/2019] [Indexed: 05/27/2023]
Abstract
PIN-FORMED (PIN) transporters mediate directional, intercellular movement of the phytohormone auxin in land plants. To elucidate the evolutionary origins of this developmentally crucial mechanism, we analysed the single PIN homologue of a simple green alga Klebsormidium flaccidum. KfPIN functions as a plasma membrane-localized auxin exporter in land plants and heterologous models. While its role in algae remains unclear, PIN-driven auxin export is probably an ancient and conserved trait within streptophytes.
Collapse
Affiliation(s)
- Roman Skokan
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
- The Czech Academy of Sciences, Institute of Experimental Botany, Prague, Czech Republic
| | - Eva Medvecká
- CEITEC, Masaryk University, Mendel Centre for Genomics and Proteomics of Plants Systems, Brno, Czech Republic
| | - Tom Viaene
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Stanislav Vosolsobě
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marta Zwiewka
- CEITEC, Masaryk University, Mendel Centre for Genomics and Proteomics of Plants Systems, Brno, Czech Republic
| | - Karel Müller
- The Czech Academy of Sciences, Institute of Experimental Botany, Prague, Czech Republic
| | - Petr Skůpa
- The Czech Academy of Sciences, Institute of Experimental Botany, Prague, Czech Republic
| | - Michal Karady
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | | | - Dorina P Janacek
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Ulrich Z Hammes
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Tomasz Nodzyński
- CEITEC, Masaryk University, Mendel Centre for Genomics and Proteomics of Plants Systems, Brno, Czech Republic
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
- The Czech Academy of Sciences, Institute of Experimental Botany, Prague, Czech Republic
| | | |
Collapse
|
40
|
Evolution of the Auxin Response Factors from charophyte ancestors. PLoS Genet 2019; 15:e1008400. [PMID: 31553720 PMCID: PMC6797205 DOI: 10.1371/journal.pgen.1008400] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/17/2019] [Accepted: 09/04/2019] [Indexed: 01/08/2023] Open
Abstract
Auxin is a major developmental regulator in plants and the acquisition of a transcriptional response to auxin likely contributed to developmental innovations at the time of water-to-land transition. Auxin Response Factors (ARFs) Transcription Factors (TFs) that mediate auxin-dependent transcriptional changes are divided into A, B and C evolutive classes in land plants. The origin and nature of the first ARF proteins in algae is still debated. Here, we identify the most ‘ancient’ ARF homologue to date in the early divergent charophyte algae Chlorokybus atmophyticus, CaARF. Structural modelling combined with biochemical studies showed that CaARF already shares many features with modern ARFs: it is capable of oligomerization, interacts with the TOPLESS co-repressor and specifically binds Auxin Response Elements as dimer. In addition, CaARF possesses a DNA-binding specificity that differs from class A and B ARFs and that was maintained in class C ARF along plants evolution. Phylogenetic evidence together with CaARF biochemical properties indicate that the different classes of ARFs likely arose from an ancestral proto-ARF protein with class C-like features. The foundation of auxin signalling would have thus happened from a pre-existing hormone-independent transcriptional regulation together with the emergence of a functional hormone perception complex. Plants transition from water to land was determining for the history of our planet, since it led to atmospheric and soil condition changes that promoted the appearance of other life forms. This transition initiated around 1 billion years ago from a Charophyte algae lineage that acquired features allowing it to adapt to the very different terrestrial conditions. Land plants coordinate their development with external stimuli through signalling mechanisms triggered by plant hormones. Therefore, evolution of these molecules and their signalling pathways likely played an important role in the aquatic to terrestrial move. In this manuscript we study the origin of auxin signalling, a plant hormone implicated in all plant developmental steps. Our studies suggest that out of the three families of proteins originally proposed to trigger auxin signalling in land plants, only one existed in Charophyte ancestors as a likely transcriptional repressor independent of auxin. We show that despite millions of years of evolution, this family of proteins has conserved its biochemical and structural properties that are found today in land plants. The results presented here provide an insight on how hormone signalling pathways could have evolved by co-opting a pre-existing hormone-independent transcriptional regulatory mechanism.
Collapse
|
41
|
de Vries S, de Vries J, Rose LE. The Elaboration of miRNA Regulation and Gene Regulatory Networks in Plant⁻Microbe Interactions. Genes (Basel) 2019; 10:genes10040310. [PMID: 31010062 PMCID: PMC6523410 DOI: 10.3390/genes10040310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Plants are exposed to diverse abiotic and biotic stimuli. These require fast and specific integrated responses. Such responses are coordinated at the protein and transcript levels and are incorporated into larger regulatory networks. Here, we focus on the evolution of transcriptional regulatory networks involved in plant–pathogen interactions. We discuss the evolution of regulatory networks and their role in fine-tuning plant defense responses. Based on the observation that many of the cornerstones of immune signaling in angiosperms are also present in streptophyte algae, it is likely that some regulatory components also predate the origin of land plants. The degree of functional conservation of many of these ancient components has not been elucidated. However, ongoing functional analyses in bryophytes show that some components are conserved. Hence, some of these regulatory components and how they are wired may also trace back to the last common ancestor of land plants or earlier. Of course, an understanding of the similarities and differences during the evolution of plant defense networks cannot ignore the lineage-specific coevolution between plants and their pathogens. In this review, we specifically focus on the small RNA regulatory networks involved in fine-tuning of the strength and timing of defense responses and highlight examples of pathogen exploitation of the host RNA silencing system. These examples illustrate well how pathogens frequently target gene regulation and thereby alter immune responses on a larger scale. That this is effective is demonstrated by the diversity of pathogens from distinct kingdoms capable of manipulating the same gene regulatory networks, such as the RNA silencing machinery.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, 38106 Braunschweig, Germany.
| | - Laura E Rose
- Institute of Population Genetics, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
- CEPLAS-Cluster of Excellence in Plant Sciences, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany.
| |
Collapse
|
42
|
Stoyneva-Gärtner M, Uzunov B, Gärtner G, Radkova M, Atanassov I, Atanasova R, Borisova C, Draganova P, Stoykova P. Review on the biotechnological and nanotechnological potential of the streptophyte genus Klebsormidium with pilot data on its phycoprospecting and polyphasic identification in Bulgaria. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1593887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Maya Stoyneva-Gärtner
- Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Blagoy Uzunov
- Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Georg Gärtner
- Institut für Botanik, Fakultät für Biologie, Universität Innsbruck, Innsbruck, Austria
| | - Mariana Radkova
- Functional Genetics Legumes Group, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| | - Ivan Atanassov
- Molecular Genetics Group, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| | - Ralitsa Atanasova
- Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Cvetanka Borisova
- Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Petya Draganova
- Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Petya Stoykova
- Functional Genetics Legumes Group, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| |
Collapse
|
43
|
Bowman JL, Briginshaw LN, Fisher TJ, Flores-Sandoval E. Something ancient and something neofunctionalized-evolution of land plant hormone signaling pathways. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:64-72. [PMID: 30339930 DOI: 10.1016/j.pbi.2018.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/13/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
The evolution of land plants from a charophycean algal ancestor was accompanied by an increased diversity of regulatory networks, including signaling pathways mediating cellular communication within plants and between plants and the environment. Canonical land plant hormone signaling pathways were originally identified in angiosperms, and comparative studies in basal taxa show that they have been assembled from both ancient and newly evolved components, both before and during land plant evolution. In this review we present our current understanding, and highlight several uncertainties, of the evolution of hormone signaling pathways, focusing on the biosynthetic pathways generating putative ligands and the downstream perception and signaling pathways often leading to transcriptional responses.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| | - Liam N Briginshaw
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Tom J Fisher
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | | |
Collapse
|
44
|
Dipp-Álvarez M, Cruz-Ramírez A. A Phylogenetic Study of the ANT Family Points to a preANT Gene as the Ancestor of Basal and euANT Transcription Factors in Land Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:17. [PMID: 30761165 PMCID: PMC6361745 DOI: 10.3389/fpls.2019.00017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 01/08/2019] [Indexed: 05/18/2023]
Abstract
Comparative genomics has revealed that members of early divergent lineages of land plants share a set of highly conserved transcription factors (TFs) with flowering plants. While gene copy numbers have expanded through time, it has been predicted that diversification, co-option, and reassembly of gene regulatory networks implicated in development are directly related to morphological innovations that led to more complex land plant bodies. Examples of key networks have been deeply studied in Arabidopsis thaliana, such as those involving the AINTEGUMENTA (ANT) gene family that encodes AP2-type TFs. These TFs play significant roles in plant development such as the maintenance of stem cell niches, the correct development of the embryo and the formation of lateral organs, as well as fatty acid metabolism. Previously, it has been hypothesized that the common ancestor of mosses and vascular plants encoded two ANT genes that later diversified in seed plants. However, algae and bryophyte sequences have been underrepresented from such phylogenetic analyses. To understand the evolution of ANT in a complete manner, we performed phylogenetic analyses of ANT protein sequences of representative species from across the Streptophyta clade, including algae, liverworts, and hornworts, previously unrepresented. Moreover, protein domain architecture, selection analyses, and regulatory cis elements prediction, allowed us to propose a scenario of how the evolution of ANT genes occurred. In this study we show that a duplication of a preANT-like gene in the ancestor of embryophytes may have given rise to the land plant-exclusive basalANT and euANT lineages. We hypothesize that the absence of euANT-type and basalANT-type sequences in algae, and its presence in extant land plant species, suggests that the divergence of pre-ANT into basal and eu-ANT clades in embryophytes may have influenced the conquest of land by plants, as ANT TFs play important roles in tolerance to desiccation and the establishment, maintenance, and development of complex multicellular structures which either became more complex or appeared in land plants.
Collapse
|
45
|
Bogaert KA, Blommaert L, Ljung K, Beeckman T, De Clerck O. Auxin Function in the Brown Alga Dictyota dichotoma. PLANT PHYSIOLOGY 2019; 179:280-299. [PMID: 30420566 PMCID: PMC6324224 DOI: 10.1104/pp.18.01041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/30/2018] [Indexed: 05/14/2023]
Abstract
Auxin controls body plan patterning in land plants and has been proposed to play a similar role in the development of brown algae (Phaeophyta) despite their distant evolutionary relationship with land plants. The mechanism of auxin action in brown algae remains controversial because of contradicting conclusions derived from pharmacological studies on Fucus In this study, we used Dictyota dichotoma as a model system to show that auxin plays a role during the apical-basal patterning of the embryo of brown algae. Indole-3-acetic acid was detectable in D. dichotoma germlings and mature tissue. Although two-celled D. dichotoma zygotes normally develop a rhizoid from one pole and a thallus meristem from the other, addition of exogenous auxins to one-celled embryos affected polarization, and both poles of the spheroidal embryo developed into rhizoids instead. The effect was strongest at lower pH and when variable extrinsic informational cues were applied. 2-[4-(diethylamino)-2-hydroxybenzoyl]benzoic acid, an inhibitor of the ABC-B/multidrug resistance/P-glycoprotein subfamily of transporters in land plants, affected rhizoid formation by increasing rhizoid branching and inducing ectopic rhizoids. An in silico survey of auxin genes suggested that a diverse range of biosynthesis genes and transport genes, such as PIN-LIKES, and the ATP-binding cassette subfamily (ABC-B/multidrug resistance/P-glycoprotein) transporters from land plants have homologs in D. dichotoma and Ectocarpus siliculosus Together with reports on auxin function in basal lineages of green algae, these results suggest that auxin function predates the divergence between the green and brown lineage and the transition toward land plants.
Collapse
Affiliation(s)
- Kenny A Bogaert
- Department of Biology, Ghent University, 9000 Ghent, Belgium
| | | | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Tom Beeckman
- VIB-UGent Center for Plant Systems Biology, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | | |
Collapse
|
46
|
Takano H, Tsunefuka T, Takio S, Ishikawa H, Takechi K. Visualization of Plastid Peptidoglycan in the Charophyte Alga Klebsormidium nitens Using a Metabolic Labeling Method. CYTOLOGIA 2018. [DOI: 10.1508/cytologia.83.375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hiroyoshi Takano
- Faculty of Advanced Science and Technology, Kumamoto University
- Institute of Pulsed Power Science, Kumamoto University
| | | | - Susumu Takio
- Faculty of Advanced Science and Technology, Kumamoto University
- Center for Water Cycle, Marine Environment and Disaster Management, Kumamoto University
| | - Hayato Ishikawa
- Faculty of Advanced Science and Technology, Kumamoto University
| | | |
Collapse
|
47
|
Furuya T, Hattori K, Kimori Y, Ishida S, Nishihama R, Kohchi T, Tsukaya H. ANGUSTIFOLIA contributes to the regulation of three-dimensional morphogenesis in the liverwort Marchantia polymorpha. Development 2018; 145:dev.161398. [PMID: 30126903 DOI: 10.1242/dev.161398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 08/06/2018] [Indexed: 01/04/2023]
Abstract
Arabidopsis thaliana mutants deficient in ANGUSTIFOLIA (AN) exhibit several phenotypes at the sporophyte stage, such as narrow and thicker leaves, trichomes with two branches, and twisted fruits. It is thought that these phenotypes are caused by abnormal arrangement of cortical microtubules (MTs). AN homologs are present in the genomes of diverse land plants, including the basal land plant Marchantia polymorpha, and their molecular functions have been shown to be evolutionarily conserved in terms of the ability to complement the A. thaliana an-1 mutation. However, the roles of ANs in bryophytes, the life cycle of which includes a dominant haploid gametophyte generation, remain unknown. Here, we have examined the roles of AN homologs in the model bryophyte M. polymorpha (MpAN). Mpan knockout mutants showed abnormal twisted thalli and suppressed thallus growth along the growth axis. Under weak blue light conditions, elongated thallus growth was observed in wild-type plants, whereas it was suppressed in the mutants. Moreover, disordered cortical MT orientations were observed. Our findings suggest that MpAN contributes to three-dimensional morphogenesis by regulating cortical MT arrangement in the gametophytes of bryophytes.
Collapse
Affiliation(s)
- Tomoyuki Furuya
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Koro Hattori
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshitaka Kimori
- Department of Imaging Science, Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan .,Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| |
Collapse
|
48
|
de Vries S, de Vries J, von Dahlen JK, Gould SB, Archibald JM, Rose LE, Slamovits CH. On plant defense signaling networks and early land plant evolution. Commun Integr Biol 2018; 11:1-14. [PMID: 30214675 PMCID: PMC6132428 DOI: 10.1080/19420889.2018.1486168] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/28/2018] [Indexed: 12/29/2022] Open
Abstract
All land plants must cope with phytopathogens. Algae face pathogens, too, and it is reasonable to assume that some of the strategies for dealing with pathogens evolved prior to the origin of embryophytes – plant terrestrialization simply changed the nature of the plant-pathogen interactions. Here we highlight that many potential components of the angiosperm defense toolkit are i) found in streptophyte algae and non-flowering embryophytes and ii) might be used in non-flowering plant defense as inferred from published experimental data. Nonetheless, the common signaling networks governing these defense responses appear to have become more intricate during embryophyte evolution. This includes the evolution of the antagonistic signaling pathways of jasmonic and salicylic acid, multiple independent expansions of resistance genes, and the evolution of resistance gene-regulating microRNAs. Future comparative studies will illuminate which modules of the streptophyte defense signaling network constitute the core and which constitute lineage- and/or environment-specific (peripheral) signaling circuits.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Janina K von Dahlen
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany.,iGRAD-Plant Graduate School, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Sven B Gould
- Institute of Molecular Evolution, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Laura E Rose
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany.,iGRAD-Plant Graduate School, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany.,Ceplas, Cluster of Excellence in Plant Sciences, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| |
Collapse
|
49
|
Nishiyama T, Sakayama H, de Vries J, Buschmann H, Saint-Marcoux D, Ullrich KK, Haas FB, Vanderstraeten L, Becker D, Lang D, Vosolsobě S, Rombauts S, Wilhelmsson PK, Janitza P, Kern R, Heyl A, Rümpler F, Villalobos LIAC, Clay JM, Skokan R, Toyoda A, Suzuki Y, Kagoshima H, Schijlen E, Tajeshwar N, Catarino B, Hetherington AJ, Saltykova A, Bonnot C, Breuninger H, Symeonidi A, Radhakrishnan GV, Van Nieuwerburgh F, Deforce D, Chang C, Karol KG, Hedrich R, Ulvskov P, Glöckner G, Delwiche CF, Petrášek J, Van de Peer Y, Friml J, Beilby M, Dolan L, Kohara Y, Sugano S, Fujiyama A, Delaux PM, Quint M, Theißen G, Hagemann M, Harholt J, Dunand C, Zachgo S, Langdale J, Maumus F, Van Der Straeten D, Gould SB, Rensing SA. The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization. Cell 2018; 174:448-464.e24. [DOI: 10.1016/j.cell.2018.06.033] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/27/2018] [Accepted: 06/14/2018] [Indexed: 01/11/2023]
|
50
|
Murakami H, Nobusawa T, Hori K, Shimojima M, Ohta H. Betaine Lipid Is Crucial for Adapting to Low Temperature and Phosphate Deficiency in Nannochloropsis. PLANT PHYSIOLOGY 2018; 177:181-193. [PMID: 29555786 PMCID: PMC5933114 DOI: 10.1104/pp.17.01573] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/21/2018] [Indexed: 05/12/2023]
Abstract
Diacylglyceryl-N,N,N-trimethylhomo-Ser (DGTS) is a nonphosphorous, polar glycerolipid that is regarded as analogous to the phosphatidylcholine in bacteria, fungi, algae, and basal land plants. In some species of algae, including the stramenopile microalga Nannochloropsis oceanica, DGTS contains an abundance of eicosapentaenoic acid (EPA), which is relatively scarce in phosphatidylcholine, implying that DGTS has a unique physiological role. In this study, we addressed the role of DGTS in N. oceanica We identified two DGTS biosynthetic enzymes that have distinct domain configurations compared to previously identified DGTS synthases. Mutants lacking DGTS showed growth retardation under phosphate starvation, demonstrating a pivotal role for DGTS in the adaptation to this condition. Under normal conditions, DGTS deficiency led to an increase in the relative amount of monogalactosyldiacylglycerol, a major plastid membrane lipid with high EPA content, whereas excessive production of DGTS induced by gene overexpression led to a decrease in monogalactosyldiacylglycerol. Meanwhile, lipid analysis of partial phospholipid-deficient mutants revealed a role for phosphatidylcholine and phosphatidylethanolamine in EPA biosynthesis. These results suggest that DGTS and monogalactosyldiacylglycerol may constitute the two major pools of EPA in extraplastidic and plastidic membranes, partially competing to acquire EPA or its precursors derived from phospholipids. The mutant lacking DGTS also displayed impaired growth and a lower proportion of EPA in extraplastidic compartments at low temperatures. Our results indicate that DGTS is involved in the adaptation to low temperatures through a mechanism that is distinct from the DGTS-dependent adaptation to phosphate starvation in N. oceanica.
Collapse
Affiliation(s)
- Hiroki Murakami
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takashi Nobusawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Koichi Hori
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|