1
|
Huang S, Yamaji N, Konishi N, Mitani-Ueno N, Ma JF. Symplastic and apoplastic pathways for local distribution of silicon in rice leaves. THE NEW PHYTOLOGIST 2025. [PMID: 40165717 DOI: 10.1111/nph.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025]
Abstract
Silicon (Si) is highly accumulated in both the leaf blade and sheath of rice, but the transporter mediating the local distribution of Si between these two tissues remains unidentified. We investigated the role of an aquaporin, OsLsi6, in the local distribution of Si in rice leaves. We also examined the interrelations between vascular structure and OsLsi6 function in xylem unloading of Si for its local distribution. OsLsi6 is polarly localized at the xylem parenchyma cells of both the large and small vascular bundles of the leaf blade and sheath. OsLsi6 was downregulated by Si supply at the leaf sheath but not in the leaf blade. The knockout of OsLsi6 increased the distribution of Si and germanium (Ge) to the leaf blade while reducing their distribution to the leaf sheath. The mestome sheath surrounding the vascular bundle was suberized in leaf sheaths and in large vascular bundles of leaf blades, but not in small vascular bundles of leaf blades. Our results indicate that there are two pathways for xylem unloading of Si for its local distribution: the OsLsi6-dependent symplastic pathway in the leaf sheath and large vascular bundles of the leaf blade, and the apoplastic pathway in the small vascular bundle of the leaf blade.
Collapse
Affiliation(s)
- Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Noriyuki Konishi
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Namiki Mitani-Ueno
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| |
Collapse
|
2
|
Sharma Y, Hemmings AM, Deshmukh R, Pareek A. Metalloid transporters in plants: bridging the gap in molecular structure and physiological exaptation. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1370-1389. [PMID: 38847578 DOI: 10.1093/jxb/erae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/06/2024] [Indexed: 03/15/2025]
Abstract
The rhizosphere contains both essential nutrients and potentially harmful substances for plant growth. Plants, as sessile organisms, must efficiently absorb the necessary nutrients while actively avoiding the uptake of toxic compounds. Metalloids, elements that exhibit properties of both metals and non-metals, can have different effects on plant growth, from being essential and beneficial to being toxic. This toxicity arises due to either the dosage of exposure or the specific elemental type. To utilize or detoxify these elements, plants have developed various transporters regulating their uptake and distribution in plants. Genomic sequence analysis suggests that such transporter families exist throughout the plant kingdom, from chlorophytes to higher plants. These transporters form defined families with related transport preferences. The isoforms within these families have evolved with specialized functions regulated by defined selectivity. Hence, understanding the chemistry of transporters to atomic detail is important to achieve the desired genetic modifications for crop improvement. We outline various adaptations in plant transport systems to deal with metalloids, including their uptake, distribution, detoxification, and homeostasis in plant tissues. Structural parallels are drawn to other nutrient transporter systems to support emerging themes of functional diversity of active sites of transporters, elucidating plant adaptations to utilize and extrude metalloid concentrations. Considering the observed physiological importance of metalloids, this review highlights the shared and disparate features in metalloid transport systems and their corresponding nutrient transporters.
Collapse
Affiliation(s)
- Yogesh Sharma
- National Agri-Food Biotechnology Institute, Mohali 140306, India
| | - Andrew M Hemmings
- School of Biological Sciences, University of East Anglia, Norwich, Norwich NR4 7TJ, UK
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali 140306, India
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
3
|
Liu W, Xu F, Ye X, Cai H, Shi L, Wang S. BnaC4.BOR2 mediates boron uptake and translocation in Brassica napus under boron deficiency. PLANT, CELL & ENVIRONMENT 2024; 47:3732-3748. [PMID: 38774965 DOI: 10.1111/pce.14959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 11/20/2024]
Abstract
Boron (B) is an essential microelement in plant growth and development. However, the molecular mechanisms underlying B uptake and translocation in Brassica napus are poorly understood. Herein, we identified a low-B (LB)-inducible gene, namely BnaC4.BOR2, with high transcriptional activity in root tips, stele cells, leaves, and floral organs. The green fluorescence protein labelled BnaC4.BOR2 protein was localised to the plasma membrane to demonstrate the B efflux activity in yeast and Arabidopsis. BnaC4.BOR2 knockout considerably reduced B concentration in the root and xylem sap, and altered B distribution in different organs at low B supply, exacerbating B sensitivity at the vegetative and reproductive stages. Additionally, the grafting experiment showed that BnaC4.BOR2 expression in the roots contributed more to B deficiency adaptability than that in the shoots. The pot experiments with LB-soil revealed B concentration in leaves and siliques of BnaC4.BOR2 mutants were markedly reduced, showing an obvious B-deficient phenotype of 'flowering without seed setting' and a considerable reduction in seed yield in B-deficient soil. Altogether, the findings of this study highlight the crucial role of BnaC4.BOR2 in B uptake and translocation during B. napus growth and seed yield under LB conditions.
Collapse
Affiliation(s)
- Wei Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Xiangsheng Ye
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Cai
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Lin J, Zheng X, Xia J, Xie R, Gao J, Ye R, Liang T, Qu M, Luo Y, Wang Y, Ke Y, Li C, Guo J, Lu J, Tang W, Li W, Chen S. Integrative analysis of the transcriptome and proteome reveals the molecular responses of tobacco to boron deficiency. BMC PLANT BIOLOGY 2024; 24:689. [PMID: 39030471 PMCID: PMC11264865 DOI: 10.1186/s12870-024-05391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 07/05/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Boron (B) is an essential micronutrient for plants. Inappropriate B supply detrimentally affects the productivity of numerous crops. Understanding of the molecular responses of plants to different B supply levels would be of significance in crop improvement and cultivation practices to deal with the problem. RESULTS We conducted a comprehensive analysis of the transcriptome and proteome of tobacco seedlings to investigate the expression changes of genes/proteins in response to different B supply levels, with a particular focus on B deficiency. The global gene and protein expression profiles revealed the potential mechanisms involved in the responses of tobacco to B deficiency, including up-regulation of the NIP5;1-BORs module, complex regulation of genes/proteins related to cell wall metabolism, and up-regulation of the antioxidant machinery. CONCLUSION Our results demonstrated that B deficiency caused severe morphological and physiological disorders in tobacco seedlings, and revealed dynamic expression changes of tobacco genes/proteins in response to different B supply levels, especially to B deficiency, thus offering valuable insights into the molecular responses of tobacco to B deficiency.
Collapse
Affiliation(s)
- Jinbin Lin
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Xiangli Zheng
- Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Jing Xia
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongrong Xie
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
- International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingjuan Gao
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
- International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongrong Ye
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Tingmin Liang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengyu Qu
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yaxin Luo
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yuemin Wang
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
| | - Yuqin Ke
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chunying Li
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
| | - Jinping Guo
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
| | - Jianjun Lu
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Weiqi Tang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Wenqing Li
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China.
| | - Songbiao Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
5
|
Yamaji N, Yoshioka Y, Huang S, Miyaji T, Sasaki A, Ma JF. An oligo peptide transporter family member, OsOPT7, mediates xylem unloading of Fe for its preferential distribution in rice. THE NEW PHYTOLOGIST 2024; 242:2620-2634. [PMID: 38600023 DOI: 10.1111/nph.19756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
Iron (Fe) needs to be delivered to different organs and tissues of above-ground parts for playing its multiple physiological functions once it is taken up by the roots. However, the mechanisms underlying Fe distribution are poorly understood. We functionally characterized OsOPT7, a member of oligo peptide transporter family in terms of expression patterns, localization, transport activity and phenotypic analysis of knockdown lines. OsOPT7 was highly expressed in the nodes, especially in the uppermost node I, and its expression was upregulated by Fe-deficiency. OsOPT7 transports ferrous iron into the cells coupled with proton. Immunostaining revealed that OsOPT7 is mainly localized in the xylem parenchyma cells of the enlarged vascular bundles in the nodes and vascular tissues in the leaves. Knockdown of OsOPT7 did not affect the Fe uptake, but altered Fe distribution; less Fe was distributed to the new leaf, upper nodes and developing panicle, but more Fe was distributed to the old leaves. Furthermore, knockdown of OsOPT7 also resulted in less Fe distribution to the leaf sheath, but more Fe to the leaf blade. Taken together, OsOPT7 is involved in the xylem unloading of Fe for both long-distance distribution to the developing organs and local distribution within the leaf in rice.
Collapse
Affiliation(s)
- Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Yuma Yoshioka
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima Naka 1-1-1, Kita, Okayama, 700-8530, Japan
| | - Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Takaaki Miyaji
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima Naka 1-1-1, Kita, Okayama, 700-8530, Japan
- Department of Genomics & Proteomics, Advanced Science Research Center, Okayama University, Tsushima Naka 1-1-1, Kita, Okayama, 700-8530, Japan
| | - Akimasa Sasaki
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| |
Collapse
|
6
|
Zou R, Zhou J, Cheng B, Wang G, Fan J, Li X. Aquaporin LjNIP1;5 positively modulates drought tolerance by promoting arbuscular mycorrhizal symbiosis in Lotus japonicus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112036. [PMID: 38365002 DOI: 10.1016/j.plantsci.2024.112036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/21/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Drought stress often affects crop growth and even causes crop death, while aquaporins can maintain osmotic balance by transporting water across membranes, so it is important to study how to improve drought tolerance of crops by using aquaporins. In this work, we characterize a set of subfamily members named NIPs belonging to the family of aquaporins in Lotus japonicus, grouping 14 family members based on the sequence similarity in the aromatic/arginine (Ar/R) region. Among these members, LjNIP1;5 is one of the genes with the highest expression in roots which is induced by the AM fungus. In Lotus japonicus, LjNIP1;5 is highly expressed in symbiotic roots, and its promoter can be induced by drought stress and AM fungus. Root colonization analysis reveals that ljnip1:5 mutant exhibits lower mycorrhizal colonization than the wild type, with increasing the proportion of large arbuscule, and fewer arbuscule produced by symbiosis under drought stress. In the LjNIP1;5OE plant, we detected a strong antioxidant capacity compared to the control, and LjNIP1;5OE showed higher stem length under drought stress. Taken together, the current results facilitate our comprehensive understanding of the plant adaptive to drought stress with the coordination of the specific fungi.
Collapse
Affiliation(s)
- Ruifan Zou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Jing Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Beijiu Cheng
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Guoqing Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Jun Fan
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaoyu Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
7
|
Cui R, Kwak JI, An YJ. Understanding boron toxicity in aquatic plants (Salvinia natans and Lemna minor) in the presence and absence of EDTA. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 269:106886. [PMID: 38458065 DOI: 10.1016/j.aquatox.2024.106886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Even though boron is a widely used element in various industries and a contributor to water pollution worldwide, few studies have examined the toxicity of boron in aquatic plants. EDTA is used to maintain aquatic plants cultures, however it is possible to modify the toxicity of metals. The objective of this study is to assess the toxicity of boron in aquatic plants and explore the impact of EDTA presence on the resulting toxic responses. Floating watermoss Salvinia natans and duckweed Lemna minor were exposed to concentrations ranging from 5 to 100 mg/L for 7 days and 1 to 60 mg/L for 3 days, respectively. Growth and photosynthetic activity parameters were investigated in the presence and absence of EDTA. Growth inhibitions in both aquatic plants were observed in a concentration-dependent manner, irrespective of the presence or absence of EDTA. For instance, based on the specific growth rate (leaves coverage), EC10 values for S. natans were calculated as 12.7 (9.9-15.3) mg/L and 8.0 (5.8-10.3) mg/L with and without EDTA, respectively. In the case of L. minor, EC10 values were calculated as 1.3 (0.8-1.89) mg/L and 2.0 (0.4-4.3) mg/L with EDTA without EDTA, respectively. Significant effects were also observed on the photosynthetic capacity, however there was no change in the increase of boron concentration. Generally, negligible effects of EDTA to the toxicity of boron were observed in the present study. By comparing toxicity results based on the presence and absence of EDTA, which is an essential element in the test medium, the results of this study are expected to be utilized for the ecological risk assessment of boron in aquatic ecosystems.
Collapse
Affiliation(s)
- Rongxue Cui
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
8
|
Liu W, Wang S, Ye X, Xu F. BnaA4.BOR2 contributes the tolerance of rapeseed to boron deficiency by improving the transport of boron from root to shoot. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108508. [PMID: 38490152 DOI: 10.1016/j.plaphy.2024.108508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Boron (B) is essential for plant growth. However, the molecular mechanism of B transport in rapeseed (Brassica napus L.) is unknown well. Here, we report that B transporter BnaA4.BOR2 is involved in the transport of B from root to shoot and its distribution in shoot cell wall and flower in rapeseed. The results of GUS staining and in-situ PCR analysis showed that BnaA4.BOR2 is mainly expressed in cortex and endodermis of root tip meristem zone and endodermis of mature zone. BnaA4.BOR2 was mainly localized in plasma membrane and showed B transport activity in yeast. Overexpression of Bna4.BOR2 could rescue the phenotype of Arabidopsis mutant bor2-2 under low-B condition. Furthermore, knockout of BnaA4.BOR2 could significantly enhance the sensitivity of rapeseed mutants to B deficiency, including inhibition of root elongation and biomass decrease of roots and shoots. The B concentration in xylem sap of BnaA4.BOR2 mutants was significantly decreased under B deficiency, which resulted in significantly lower B concentrations in shoot cell wall at seedling stage and flower organ at reproductive stage compared to that of wild-type QY10. The growth of BnaA4.BOR2 mutants were severely inhibited, exhibiting a typical B-deficient phenotype of "flowering without seed setting", leading to a sharp decrease in seed yield in B deficient soil. Taken together, these results indicate that BnaA4.BOR2 is critical for rapeseed growth and seed yield production under low B level, which is mainly expressed in cortex and endodermis, and contributed to the transport of B from roots to shoots and its distribution in shoot.
Collapse
Affiliation(s)
- Wei Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheliang Wang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangsheng Ye
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Vera-Maldonado P, Aquea F, Reyes-Díaz M, Cárcamo-Fincheira P, Soto-Cerda B, Nunes-Nesi A, Inostroza-Blancheteau C. Role of boron and its interaction with other elements in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1332459. [PMID: 38410729 PMCID: PMC10895714 DOI: 10.3389/fpls.2024.1332459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024]
Abstract
Boron (B) is an essential microelement for plants, and its deficiency can lead to impaired development and function. Around 50% of arable land in the world is acidic, and low pH in the soil solution decreases availability of several essential mineral elements, including B, magnesium (Mg), calcium (Ca), and potassium (K). Plants take up soil B in the form of boric acid (H3BO3) in acidic soil or tetrahydroxy borate [B(OH)4]- at neutral or alkaline pH. Boron can participate directly or indirectly in plant metabolism, including in the synthesis of the cell wall and plasma membrane, in carbohydrate and protein metabolism, and in the formation of ribonucleic acid (RNA). In addition, B interacts with other nutrients such as Ca, nitrogen (N), phosphorus (P), K, and zinc (Zn). In this review, we discuss the mechanisms of B uptake, absorption, and accumulation and its interactions with other elements, and how it contributes to the adaptation of plants to different environmental conditions. We also discuss potential B-mediated networks at the physiological and molecular levels involved in plant growth and development.
Collapse
Affiliation(s)
- Peter Vera-Maldonado
- Programa de Doctorado en Ciencias Agropecuarias, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Felipe Aquea
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Marjorie Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Paz Cárcamo-Fincheira
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Braulio Soto-Cerda
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
- Nucleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Claudio Inostroza-Blancheteau
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
- Nucleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|
10
|
Sheng H, Lei Y, Wei J, Yang Z, Peng L, Li W, Liu Y. Analogy of silicon and boron in plant nutrition. FRONTIERS IN PLANT SCIENCE 2024; 15:1353706. [PMID: 38379945 PMCID: PMC10877001 DOI: 10.3389/fpls.2024.1353706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Silicon (Si) and boron (B) are a class of elements called metalloids, which have properties like metals and non-metals. Si is classified as a quasi-essential element, while B is a micronutrient element for plants. Nowadays, numerous discoveries have shown the analogy of silicon and boron in plant nutrition. In this minireview, the molecular mechanisms for the transport of these two metalloids are compared. We also discussed the chemical forms of Si and B and their functional similarity in response to environmental stresses in plants. In conclusion, it can be proposed that cell wall-bound silicon rather than silica might partially replace boron for plant growth, development, and stress responses, and the underlying mechanism is the Si contribution to B in its structural function.
Collapse
Affiliation(s)
- Huachun Sheng
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yuyan Lei
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jing Wei
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhengming Yang
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Wenbing Li
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yuan Liu
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Huang S, Konishi N, Yamaji N, Ma JF. Local distribution of manganese to leaf sheath is mediated by OsNramp5 in rice. THE NEW PHYTOLOGIST 2024; 241:1708-1719. [PMID: 38084009 DOI: 10.1111/nph.19454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/15/2023] [Indexed: 01/26/2024]
Abstract
To play essential roles of manganese (Mn) in plant growth and development, it needs to be transported to different organs and tissues after uptake. However, the molecular mechanisms underlying Mn distribution between different tissues are poorly understood. We functionally characterized a member of rice natural resistance-associated macrophage protein (NRAMP) family, OsNramp5 in terms of its tissue specificity of gene expression, cell-specificity of protein localization, phenotypic analysis of leaf growth and response to Mn fluctuations. OsNramp5 is highly expressed in the leaf sheath. Immunostaining revealed that OsNramp5 is polarly localized at the proximal side of xylem parenchyma cells of the leaf sheath. Both the gene expression and protein abundance of OsNramp5 are unaffected by different Mn concentrations. Knockout of OsNramp5 decreased the distribution of Mn to the leaf sheath, but increased the distribution to the leaf blade at both low and high Mn supplies, resulting in reduced growth of leaf sheath. Furthermore, expression of OsNramp5 under the control of root-specific promoter in osnramp5 mutant complemented Mn uptake, but could not complement Mn distribution to the leaf sheath. These results indicate that OsNramp5 expressed in the leaf sheath plays an important role in unloading Mn from the xylem for the local distribution in rice.
Collapse
Affiliation(s)
- Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Noriyuki Konishi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| |
Collapse
|
12
|
Bolan S, Wijesekara H, Amarasiri D, Zhang T, Ragályi P, Brdar-Jokanović M, Rékási M, Lin JY, Padhye LP, Zhao H, Wang L, Rinklebe J, Wang H, Siddique KHM, Kirkham MB, Bolan N. Boron contamination and its risk management in terrestrial and aquatic environmental settings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164744. [PMID: 37315601 DOI: 10.1016/j.scitotenv.2023.164744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Boron (B) is released to terrestrial and aquatic environments through both natural and anthropogenic sources. This review describes the current knowledge on B contamination in soil and aquatic environments in relation to its geogenic and anthropogenic sources, biogeochemistry, environmental and human health impacts, remediation approaches, and regulatory practices. The common naturally occurring sources of B include borosilicate minerals, volcanic eruptions, geothermal and groundwater streams, and marine water. Boron is extensively used to manufacture fiberglass, thermal-resistant borosilicate glass and porcelain, cleaning detergents, vitreous enamels, weedicides, fertilizers, and B-based steel for nuclear shields. Anthropogenic sources of B released into the environment include wastewater for irrigation, B fertilizer application, and waste from mining and processing industries. Boron is an essential element for plant nutrition and is taken up mainly as boric acid molecules. Although B deficiency in agricultural soils has been observed, B toxicity can inhibit plant growth in soils under arid and semiarid regions. High B intake by humans can be detrimental to the stomach, liver, kidneys and brain, and eventually results in death. Amelioration of soils and water sources enriched with B can be achieved by immobilization, leaching, adsorption, phytoremediation, reverse osmosis, and nanofiltration. The development of cost-effective technologies for B removal from B-rich irrigation water including electrodialysis and electrocoagulation techniques is likely to help control the predominant anthropogenic input of B to the soil. Future research initiatives for the sustainable remediation of B contamination using advanced technologies in soil and water environments are also recommended.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Healthy Environments and Lives (HEAL) National Research Network, Australia
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya 70140, Sri Lanka
| | - Dhulmy Amarasiri
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya 70140, Sri Lanka
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Péter Ragályi
- Institute for Soil Sciences, Centre for Agricultural Research, Budapest 1022, Hungary
| | - Milka Brdar-Jokanović
- Department of Vegetable and Alternative Crops, Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad 21000, Republic of Serbia
| | - Márk Rékási
- Institute for Soil Sciences, Centre for Agricultural Research, Budapest 1022, Hungary
| | - Jui-Yen Lin
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 807, Taiwan
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Haochen Zhao
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Healthy Environments and Lives (HEAL) National Research Network, Australia.
| |
Collapse
|
13
|
Li S, Yan L, Venuste M, Xu F, Shi L, White PJ, Wang X, Ding G. A critical review of plant adaptation to environmental boron stress: Uptake, utilization, and interplay with other abiotic and biotic factors. CHEMOSPHERE 2023; 338:139474. [PMID: 37442392 DOI: 10.1016/j.chemosphere.2023.139474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Boron (B) is an indispensable mineral nutrient for plants and is primarily taken up by roots mainly in the form of boric acid (H3BO3). Recently, research shows that B has a significant impact on plant growth and productivity due to its narrow range between deficiency and toxicity. Fertilization and other procedures to address B stress (deficiency and toxicity) in soils are generally expensive and time-consuming. Over the past 20 years, substantial studies have been conducted to investigate the mechanisms underlying B acquisition and the molecular regulation of B stress in plants. In this review, we discuss the effects of B stress on plant growth, physiology, and biochemistry, and finding on enhancing plant tolerance from the perspective of plant B uptake, transport, and utilization. We also refer to recent results demonstrating the interactions among B and other biological and abiotic factors, including nitrogen, phosphorus, aluminum, and microorganisms. Finally, emerging trends in this field are discussed.
Collapse
Affiliation(s)
- Shuang Li
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
| | - Lei Yan
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China.
| | - Munyaneza Venuste
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
| | - Fangsen Xu
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
| | - Lei Shi
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
| | - Philip J White
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, China.
| | - Guangda Ding
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
14
|
Robe K, Barberon M. Nutrient carriers at the heart of plant nutrition and sensing. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102376. [PMID: 37182415 DOI: 10.1016/j.pbi.2023.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023]
Abstract
Plants require water and several essential nutrients for their development. The radial transport of nutrients from the soil to the root vasculature is achieved through a combination of three different pathways: apoplastic, symplastic, and transcellular. A common feature for these pathways is the requirement of carriers to transport nutrients across the plasma membrane. An efficient transport of nutrients across the root cell layers relies on a large number of carriers, each of them having their own substrate specificity, tissular and subcellular localization. Polarity is also emerging as a major feature allowing their function. Recent advances on radial transport of nutrients, especially carrier mediated nutrient transport will be discussed in this review, as well as the role of transporters as nutrient sensors.
Collapse
Affiliation(s)
- Kevin Robe
- Department of Plant Sciences, University of Geneva, 30 Quai Ernest Ansermet, 1211, Geneva, Switzerland
| | - Marie Barberon
- Department of Plant Sciences, University of Geneva, 30 Quai Ernest Ansermet, 1211, Geneva, Switzerland.
| |
Collapse
|
15
|
Konishi N, Mitani-Ueno N, Yamaji N, Ma JF. Polar localization of a rice silicon transporter requires isoleucine at both C- and N-termini as well as positively charged residues. THE PLANT CELL 2023; 35:2232-2250. [PMID: 36891818 PMCID: PMC10226592 DOI: 10.1093/plcell/koad073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/18/2023] [Accepted: 02/16/2023] [Indexed: 05/30/2023]
Abstract
Silicon (Si) is important for stable and high yields in rice (Oryza sativa), a typical Si hyperaccumulator. The high Si accumulation is achieved by the cooperation of 2 Si transporters, LOW SILICON 1 (OsLsi1) and OsLsi2, which are polarly localized in cells of the root exodermis and endodermis. However, the mechanism underlying their polar localization is unknown. Here, we identified amino acid residues critical for the polar localization of OsLsi1. Deletion of both N- and C-terminal regions resulted in the loss of its polar localization. Furthermore, the deletion of the C-terminus inhibited its trafficking from the endoplasmic reticulum to the plasma membrane. Detailed site-directed mutagenesis analysis showed that Ile18 at the N-terminal region and Ile285 at the C-terminal region were essential for the polar localization of OsLsi1. Moreover, a cluster of positively charged residues at the C-terminal region is also required for polar localization. Phosphorylation and Lys modifications of OsLsi1 are unlikely to be involved in its polar localization. Finally, we showed that the polar localization of OsLsi1 is required for the efficient uptake of Si. Our study not only identified critical residues required for the polar localization of OsLsi1, but also provided experimental evidence for the importance of transporter polarity for efficient nutrient uptake.
Collapse
Affiliation(s)
- Noriyuki Konishi
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Namiki Mitani-Ueno
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | | |
Collapse
|
16
|
Gao YQ, Chao DY. Localization and circulation: vesicle trafficking in regulating plant nutrient homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1350-1363. [PMID: 36321185 DOI: 10.1111/tpj.16020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Nutrient homeostasis is essential for plant growth and reproduction. Plants, therefore, have evolved tightly regulated mechanisms for the uptake, translocation, distribution, and storage of mineral nutrients. Considering that inorganic nutrient transport relies on membrane-based transporters and channels, vesicle trafficking, one of the fundamental cell biological processes, has become a hotspot of plant nutrition studies. In this review, we summarize recent advances in the study of how vesicle trafficking regulates nutrient homeostasis to contribute to the adaptation of plants to heterogeneous environments. We also discuss new perspectives on future studies, which may inspire researchers to investigate new approaches to improve the human diet and health by changing the nutrient quality of crops.
Collapse
Affiliation(s)
- Yi-Qun Gao
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
17
|
Fei L, Zuo S, Zhang J, Wang Z. Phytoextraction by harvesting dead leaves: cadmium accumulation associated with the leaf senescence in Festuca arundinacea Schreb. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79214-79223. [PMID: 35710964 DOI: 10.1007/s11356-022-21104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Phytoextraction strategy by harvesting dead leaves provides continuous phytoremediation and a great saving in disposal cost of hazardous plant residues. This strategy is entirely dependent upon the amount of cadmium (Cd) accumulated in dead leaves. However, it is unknown that whether the leaf Cd accumulation is associated with its senescence and how to regulate its Cd accumulation. This study showed that Cd was preferentially and consistently distributed to and accumulated in the senescent leaves with the new leaf emergence and the old leaf dieback under 75 μM of Cd stress in tall fescue (Festuca arundinacea Schreb.). Individual leaf monitoring from its emergence to senescence showed that Cd concentration increased exponentially with the leaf life cycle, while leaf biomass decreased gradually after 14 days of leaf emergence. The total amount of Cd accumulated in the leaf showed an exponential increase during leaf senescence, regardless of the leaf biomass loss. Our results demonstrated that leaf Cd accumulation was significantly associated with its senescence and the highest Cd accumulated in dead leaves could be contributed from the continuous Cd input during the leaf senescent process, indicating that further regulatory studies should be focused on the leaf senescence process to achieve higher Cd accumulation and phytoextraction efficiency by harvesting dead leaves.
Collapse
Affiliation(s)
- Ling Fei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China
- Zhuhai College of Jilin University, Zhuhai, Guangdong, 519041, People's Republic of China
| | - ShaoFan Zuo
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - JiaXin Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - ZhaoLong Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
18
|
Saitoh Y, Suga M. Structure and function of a silicic acid channel Lsi1. FRONTIERS IN PLANT SCIENCE 2022; 13:982068. [PMID: 36172553 PMCID: PMC9510833 DOI: 10.3389/fpls.2022.982068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/24/2022] [Indexed: 05/26/2023]
Abstract
Silicon is a beneficial element for plant growth and production, especially in rice. Plant roots take up silicon in the form of silicic acid. Silicic acid channels, which belong to the NIP subfamily of aquaporins, are responsible for silicic acid uptake. Accumulated experimental results have deepened our understanding of the silicic acid channel for its uptake mechanism, physiological function, localization, and other aspects. However, how the silicic acid channel efficiently and selectively permeates silicic acid remains to be elucidated. Recently reported crystal structures of the silicic acid channel enabled us to discuss the mechanism of silicic acid uptake by plant roots at an atomic level. In this mini-review, we focus on the crystal structures of the silicic acid channel and provide a detailed description of the structural determinants of silicic acid permeation and its transport mechanism, which are crucial for the rational creation of secure and sustainable crops.
Collapse
Affiliation(s)
- Yasunori Saitoh
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
| | - Michihiro Suga
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
19
|
Zhang G, Wang A, Zhuang L, Wang X, Song Z, Liang R, Ren M, Long M, Jia X, Li Z, Su S, Wang J, Zhang N, Shen G, Wang B. Enrichment of boron element in follicular fluid and its potential effect on the immune function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119147. [PMID: 35314206 DOI: 10.1016/j.envpol.2022.119147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
The blood-follicle barrier (BFB) between the blood and follicular fluid (FF) can maintain the microenvironment balance of oocyte. Boron, an exogenous environmental trace element, has been found to possibly play an important role in oocyte maturation. This study aimed to examine the distribution characteristics of boron across the BFB and find the potential effect of boron on FF microenvironment. We analyzed the concentration of boron in paired FF and serum collected from 168 women undergoing in vitro fertilization and embryo transfer in Beijing City and Shandong Province, China. To explore the potential health impact of boron enrichment in oocyte maturation, a global proteomics analysis was conducted to tentatively correlate the protein levels with the boron enrichment. Interestingly, the results showed that the concentration of boron in FF (34.5 ng/mL) was significantly higher than that in serum (22.0 ng/mL), with a median concentration ratio of 1.52. Likewise, the concentrations of boron in FF and serum were positively correlated (r = 0.446), suggesting that boron concentration in serum can represent its concentration in follicular fluid to a large extent.. This is the first time to observe the enrichment of boron in the FF to our knowledge. It is interesting to observe a total of 13 proteins, which mainly belong to immunoglobulin class, were positively correlated with boron concentration in FF. We concluded that boron, as one environmental trace element, was enriched in FF from blood validated by two area in north china, which may be involved in an increased level of immune processes of immunoglobulins.
Collapse
Affiliation(s)
- Guohuan Zhang
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Anni Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Lili Zhuang
- Reproductive Medicine Centre, Yuhuangding Hospital of Yantai, Affiliated Hospital of Qingdao University, Yantai, 264000, China
| | - Xikai Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ziyi Song
- Reproductive Medical Center, Peking University People's Hospital, Beijing, 100044, China
| | - Rong Liang
- Reproductive Medical Center, Peking University People's Hospital, Beijing, 100044, China
| | - Mengyuan Ren
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Manman Long
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Xiaoqian Jia
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Shu Su
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Jiahao Wang
- China Center for Health Development Studies, School of Public Health, Peking University, Beijing, 100191, China
| | - Nan Zhang
- Gynecology Department, Peking University Cancer Hospital and Institute, Key Laboratory of Carcinogenesis and Translational Research, Beijing, 100871, China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Bin Wang
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| |
Collapse
|
20
|
Handa N, Gupta P, Khanna K, Kohli SK, Bhardwaj R, Alam P, Ahmad P. Aquaporin-mediated transport: Insights into metalloid trafficking. PHYSIOLOGIA PLANTARUM 2022; 174:e13687. [PMID: 35514154 DOI: 10.1111/ppl.13687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/23/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Metalloids in plants have diverse physiological effects. From being essential to beneficial to toxic, they have significant effects on many physiological processes, influencing crop yield and quality. Aquaporins are a group of membrane channels that have several physiological substrates along with water. Metalloids have emerged as one of their important substrates and they are found to have a substantial role in regulating plant metalloid homeostasis. The present review comprehensively details the multiple isoforms of aquaporins having specificity for metalloids and being responsible for their influx, distribution or efflux. In addition, it also highlights the usage of aquaporin-mediated transport as a selection marker in toxic screens and as tracer elements for closely related metalloids. Therefore, aquaporins, with their imperative contribution to the regulation of plant growth, development and physiological processes, need more research to unravel the metalloid trafficking mechanisms and their future applications.
Collapse
Affiliation(s)
- Neha Handa
- Plant Stress Physiology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pawan Gupta
- Department of Pharmacology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat, India
| | - Kanika Khanna
- Plant Stress Physiology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhmeen Kaur Kohli
- Plant Stress Physiology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Renu Bhardwaj
- Plant Stress Physiology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pravej Alam
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, GDC Pulwama, Pulwama, Jammu and Kashmir, India
| |
Collapse
|
21
|
Ma J, Zhou Y, Li J, Song Z, Han H. Novel approach to enhance Bradyrhizobium diazoefficiens nodulation through continuous induction of ROS by manganese ferrite nanomaterials in soybean. J Nanobiotechnology 2022; 20:168. [PMID: 35361201 PMCID: PMC8973989 DOI: 10.1186/s12951-022-01372-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/12/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The study of symbiotic nitrogen fixation between (SNF) legumes and rhizobia has always been a hot frontier in scientific research. Nanotechnology provides a new strategy for biological nitrogen fixation research. However, how to construct abiotic nano-structure-biological system, using the special properties of nanomaterials, to realize the self-enhancement of biological nitrogen fixation capacity is important. RESULTS In order to construct a more efficient SNF system, in this study, we applied manganese ferrite nanoparticles (MF-NPs) with sustainable diatomic catalysis to produce reactive oxygen species (ROS), thus regulating the nodulation pathway and increasing the number of nodules in soybean (Glycine max), eventually enhancing symbiotic nitrogen fixation. Symbiosis cultivation of MF-NPs and soybean plants resulted in 50.85% and 61.4% increase in nodule weight and number, respectively, thus inducing a 151.36% nitrogen fixation efficiency increase, finally leading to a 25.70% biomass accumulation increase despite no substantial effect on the nitrogenase activity per unit. Transcriptome sequencing analysis showed that of 36 differentially expressed genes (DEGs), 31 DEGs related to soybean nodulation were upregulated in late rhizobium inoculation stage (12 d), indicating that the increase of nodules was derived from nodule-related genes (Nod-R) continuous inductions by MF-NPs. CONCLUSIONS Our results indicated that the nodule number could be effectively increased by extending the nodulation period without threatening the vegetative growth of plants or triggering the autoregulation of nodulation (AON) pathway. This study provides an effective strategy for induction of super-conventional nodulation.
Collapse
Affiliation(s)
- Jun Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Yi Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Jiaying Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Zhiyong Song
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China.
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China.
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China.
| |
Collapse
|
22
|
Assunção AGL, Cakmak I, Clemens S, González-Guerrero M, Nawrocki A, Thomine S. Micronutrient homeostasis in plants for more sustainable agriculture and healthier human nutrition. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1789-1799. [PMID: 35134869 PMCID: PMC8921004 DOI: 10.1093/jxb/erac014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/28/2022] [Indexed: 05/03/2023]
Abstract
The provision of sustainable, sufficient, and nutritious food to the growing population is a major challenge for agriculture and the plant research community. In this respect, the mineral micronutrient content of food crops deserves particular attention. Micronutrient deficiencies in cultivated soils and plants are a global problem that adversely affects crop production and plant nutritional value, as well as human health and well-being. In this review, we call for awareness of the importance and relevance of micronutrients in crop production and quality. We stress the need for better micronutrient nutrition in human populations, not only in developing but also in developed nations, and describe strategies to identify and characterize new varieties with high micronutrient content. Furthermore, we explain how adequate nutrition of plants with micronutrients impacts metabolic functions and the capacity of plants to express tolerance mechanisms against abiotic and biotic constraints. Finally, we provide a brief overview and a critical discussion on current knowledge, future challenges, and specific technological needs for research on plant micronutrient homeostasis. Research in this area is expected to foster the sustainable development of nutritious and healthy food crops for human consumption.
Collapse
Affiliation(s)
- Ana G L Assunção
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, 4485-661 Vairão, Portugal
| | - Ismail Cakmak
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | - Stephan Clemens
- Department of Plant Physiology and Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95440 Bayreuth, Germany
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
| | | | | |
Collapse
|
23
|
Huang S, Konishi N, Yamaji N, Shao JF, Mitani-Ueno N, Ma JF. Boron uptake in rice is regulated post-translationally via a clathrin-independent pathway. PLANT PHYSIOLOGY 2022; 188:1649-1664. [PMID: 34893892 PMCID: PMC8896639 DOI: 10.1093/plphys/kiab575] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 05/15/2023]
Abstract
Uptake of boron (B) in rice (Oryza sativa) is mediated by the Low silicon rice 1 (OsLsi1) channel, belonging to the NOD26-like intrinsic protein III subgroup, and the efflux transporter B transporter 1 (OsBOR1). However, it is unknown how these transporters cooperate for B uptake and how they are regulated in response to B fluctuations. Here, we examined the response of these two transporters to environmental B changes at the transcriptional and posttranslational level. OsBOR1 showed polar localization at the proximal side of both the exodermis and endodermis of mature root region, forming an efficient uptake system with OsLsi1 polarly localized at the distal side of the same cell layers. Expression of OsBOR1 and OsLsi1 was unaffected by B deficiency and excess. However, although OsLsi1 protein did not respond to high B at the protein level, OsBOR1 was degraded in response to high B within hours, which was accompanied with a significant decrease of total B uptake. The high B-induced degradation of OsBOR1 was inhibited in the presence of MG-132, a proteasome inhibitor, without disturbance of the polar localization. In contrast, neither the high B-induced degradation of OsBOR1 nor its polarity was affected by induced expression of dominant-negative mutated dynamin-related protein 1A (OsDRP1AK47A) or knockout of the mu subunit (AP2M) of adaptor protein-2 complex, suggesting that clathrin-mediated endocytosis is not involved in OsBOR1 degradation and polar localization. These results indicate that, in contrast to Arabidopsis thaliana, rice has a distinct regulatory mechanism for B uptake through clathrin-independent degradation of OsBOR1 in response to high B.
Collapse
Affiliation(s)
- Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Noriyuki Konishi
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Ji Feng Shao
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang 311300, China
| | - Namiki Mitani-Ueno
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
- Author for communication:
| |
Collapse
|
24
|
Yamaji N, Ma JF. Metalloid transporters and their regulation in plants. PLANT PHYSIOLOGY 2021; 187:1929-1939. [PMID: 35235670 PMCID: PMC8644474 DOI: 10.1093/plphys/kiab326] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/21/2021] [Indexed: 05/27/2023]
Abstract
Transport of metalloids including B, Si, and As is mediated by a combination of channels and efflux transporters in plants, which are strictly regulated in response to environmental changes.
Collapse
Affiliation(s)
- Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
25
|
Ma JF, Tsay YF. Transport Systems of Mineral Elements in Plants: Transporters, Regulation and Utilization. PLANT & CELL PHYSIOLOGY 2021; 62:539-540. [PMID: 33576404 DOI: 10.1093/pcp/pcab026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046 Japan
| | - Yi-Fang Tsay
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
26
|
Onuh AF, Miwa K. Regulation, Diversity and Evolution of Boron Transporters in Plants. PLANT & CELL PHYSIOLOGY 2021; 62:590-599. [PMID: 33570563 DOI: 10.1093/pcp/pcab025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Boron (B) is an essential trace element in plants, and borate cross-linking of pectic polysaccharide rhamnogalacturonan-II (RG-II) in cell walls is required for normal cell growth. High concentrations of B are toxic to cells. Therefore, plants need to control B transport to respond to B conditions in the environment. Over the past two decades, genetic analyses of Arabidopsis thaliana have revealed that B transport is governed by two types of membrane transport molecules: NIPs (nodulin-26-like intrinsic proteins), which facilitate boric acid permeation, and BORs, which export borate from cells. In this article, we review recent findings on the (i) regulation at the cell level, (ii) diversity among plant species and (iii) evolution of these B transporters in plants. We first describe the systems regulating these B transporters at the cell level, focusing on the molecular mechanisms underlying the polar localization of proteins and B-dependent expression, as well as their physiological significance in A. thaliana. Then, we examine the presence of homologous genes and characterize the functions of NIPs and BORs in B homeostasis, in a wide range of plant species, including Brassica napus, Oryza sativa and Zea mays. Finally, we discuss the evolutionary aspects of NIPs and BORs as B transporters, and the possible relationship between the diversification of B transport and the occurrence of RG-II in plants. This review considers the sophisticated systems of B transport that are conserved among various plant species, which were established to meet mineral nutrient requirements.
Collapse
Affiliation(s)
- Amarachukwu Faith Onuh
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, North-10, West-5, Kita-ku, Sapporo, 060-0810 Japan
| | - Kyoko Miwa
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, North-10, West-5, Kita-ku, Sapporo, 060-0810 Japan
| |
Collapse
|
27
|
He M, Zhang C, Chu L, Wang S, Shi L, Xu F. Specific and multiple-target gene silencing reveals function diversity of BnaA2.NIP5;1 and BnaA3.NIP5;1 in Brassica napus. PLANT, CELL & ENVIRONMENT 2021; 44:3184-3194. [PMID: 33937996 DOI: 10.1111/pce.14077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Rapeseed (Brassica napus) is an economically important oilseed crop in the world, but its production is strongly dependent on boron (B) supplies. Major intrinsic protein NIP5;1 is essential for B uptake and plant development under B limitation. In this study, phylogenetic and expression analyses identified two NIP5;1 orthologue genes, BnaA2.NIP5;1 and BnaA3.NIP5;1, which are mainly expressed in roots of B. napus. Specific and multiple-target RNAi was used to suppress BnaA3.NIP5;1 or both BnaA2.NIP5;1 and BnaA3.NIP5;1 expression in B-efficient rapeseed Qingyou 10 (QY10), respectively, for revealing the roles of BnaA2.NIP5;1 and BnaA3.NIP5;1 in low-B tolerance in B. napus. We found that both BnaA2.NIP5;1 and BnaA3.NIP5;1 are important for B. napus normal growth under low-B conditions, while these two genes have distinct roles. BnaA2.NIP5;1 is mainly expressed in the epidermis cells, which is required for efficient B uptake into roots, hence for B translocation to the shoots. BnaA3.NIP5;1 is specifically localized in the distal part of lateral root cap cells to promoter root elongation under low-B conditions, which is important for seed production in the maturity stage of B. napus. Taken together, our specific and multiple-target RNAi strategy provides novel insights into the gene function diversification between BnaA2.NIP5;1 and BnaA3.NIP5;1, such an approach can be potentially applicable to other polyploid crops.
Collapse
Affiliation(s)
- Mingliang He
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| | - Cheng Zhang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| | - Liuyang Chu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
28
|
Zhang C, He M, Wang S, Chu L, Wang C, Yang N, Ding G, Cai H, Shi L, Xu F. Boron deficiency-induced root growth inhibition is mediated by brassinosteroid signalling regulation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:564-578. [PMID: 33964043 DOI: 10.1111/tpj.15311] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 05/12/2023]
Abstract
Brassinosteroids (BRs) are pivotal phytohormones involved in the control of root development. Boron (B) is an essential micronutrient for plants, and root growth is rapidly inhibited under B deficiency conditions. However, the mechanisms underlying this inhibition are still unclear. Here, we identified BR-related processes underlying B deficiency at the physiological, genetic, molecular/cell biological and transcriptomic levels and found strong evidence that B deficiency can affect BR biosynthesis and signalling, thereby altering root growth. RNA sequencing analysis revealed strong co-regulation between BR-regulated genes and B deficiency-responsive genes. We found that the BR receptor mutants bri1-119 and bri1-301 were more insensitive to decreased B supply, and the gain-of-function mutants bes1-D and pBZR1-bzr1-D exhibited insensitivity to low-B stress. Under B deficiency conditions, exogenous 24-epibrassinolide rescued the inhibition of root growth, and application of the BR biosynthesis inhibitor brassinazole exacerbated this inhibitory effect. The nuclear-localised signal of BES1 was reduced under low-B conditions compared with B sufficiency conditions. We further found that B deficiency hindered the accumulation of brassinolide to downregulate BR signalling and modulate root elongation, which may occur through a reduction in BR6ox1 and BR6ox2 mRNA levels. Taken together, our results reveal a role of BR signalling in root elongation under B deficiency.
Collapse
Affiliation(s)
- Cheng Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Mingliang He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Liuyang Chu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chuang Wang
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ningmei Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guangda Ding
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hongmei Cai
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
29
|
He M, Wang S, Zhang C, Liu L, Zhang J, Qiu S, Wang H, Yang G, Xue S, Shi L, Xu F. Genetic variation of BnaA3.NIP5;1 expressing in the lateral root cap contributes to boron deficiency tolerance in Brassica napus. PLoS Genet 2021; 17:e1009661. [PMID: 34197459 PMCID: PMC8279314 DOI: 10.1371/journal.pgen.1009661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/14/2021] [Accepted: 06/10/2021] [Indexed: 11/27/2022] Open
Abstract
Boron (B) is essential for vascular plants. Rapeseed (Brassica napus) is the second leading crop source for vegetable oil worldwide, but its production is critically dependent on B supplies. BnaA3.NIP5;1 was identified as a B-efficient candidate gene in B. napus in our previous QTL fine mapping. However, the molecular mechanism through which this gene improves low-B tolerance remains elusive. Here, we report genetic variation in BnaA3.NIP5;1 gene, which encodes a boric acid channel, is a key determinant of low-B tolerance in B. napus. Transgenic lines with increased BnaA3.NIP5;1 expression exhibited improved low-B tolerance in both the seedling and maturity stages. BnaA3.NIP5;1 is preferentially polar-localized in the distal plasma membrane of lateral root cap (LRC) cells and transports B into the root tips to promote root growth under B-deficiency conditions. Further analysis revealed that a CTTTC tandem repeat in the 5'UTR of BnaA3.NIP5;1 altered the expression level of the gene, which is tightly associated with plant growth and seed yield. Field tests with natural populations and near-isogenic lines (NILs) confirmed that the varieties carried BnaA3.NIP5;1Q allele significantly improved seed yield. Taken together, our results provide novel insights into the low-B tolerance of B. napus, and the elite allele of BnaA3.NIP5;1 could serve as a direct target for breeding low-B-tolerant cultivars.
Collapse
Affiliation(s)
- Mingliang He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| | - Cheng Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| | - Liu Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinyao Zhang
- Institute of Agricultural Resource and Regional Planning, CAAS, Beijing, China
| | - Shou Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hong Wang
- Institute of Agricultural Resource and Regional Planning, CAAS, Beijing, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shaowu Xue
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
30
|
Deng F, Zeng F, Chen G, Feng X, Riaz A, Wu X, Gao W, Wu F, Holford P, Chen ZH. Metalloid hazards: From plant molecular evolution to mitigation strategies. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124495. [PMID: 33187800 DOI: 10.1016/j.jhazmat.2020.124495] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 05/25/2023]
Abstract
Metalloids such as boron and silicon are key elements for plant growth and crop productivity. However, toxic metalloids such as arsenic are increasing in the environment due to inputs from natural sources and human activities. These hazardous metalloids can cause serious health risks to humans and animals if they enter the food chain. Plants have developed highly regulated mechanisms to alleviate the toxicity of metalloids during their 500 million years of evolution. A better understanding the molecular mechanisms underlying the transport and detoxification of toxic metalloids in plants will shed light on developing mitigation strategies. Key transporters and regulatory proteins responsive to toxic metalloids have been identified through evolutionary and molecular analyses. Moreover, knowledge of the regulatory proteins and their pathways can be used in the breeding of crops with lower accumulation of metalloids. These findings can also assist phytoremediation by the exploration of plants such as fern species that hyperaccumulate metalloids from soils and water, and can be used to engineer plants with elevated uptake and storage capacity of toxic metalloids. In summary, there are solutions to remediate contamination due to toxic metalloids by combining the research advances and industrial technologies with agricultural and environmental practices.
Collapse
Affiliation(s)
- Fenglin Deng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fanrong Zeng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China; College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Guang Chen
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China; College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xue Feng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Adeel Riaz
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaojian Wu
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wei Gao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Feibo Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.
| |
Collapse
|
31
|
Shao JF, Yamaji N, Huang S, Ma JF. Fine regulation system for distribution of boron to different tissues in rice. THE NEW PHYTOLOGIST 2021; 230:656-668. [PMID: 33411959 DOI: 10.1111/nph.17169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
Boron (B) is essential for growth and development, with the B requirement differing depending on the particular organs and tissues, but the molecular mechanisms underlying the preferential distribution of B to different tissues are poorly understood. We investigated the role of a rice gene (OsBOR1) encoding a B efflux transporter in the distribution of B to different tissues under different B supplies. OsBOR1 was highly expressed in the nodes at all growth stages. The OsBOR1 protein shows polar localization at the distal side of bundle sheath cells in nodes and xylem parenchyma cells of elongating leaf sheath, but in the mature leaf sheath and blade at the proximal side of bundle sheath cells. Furthermore, the expression of OsBOR1 was not affected by external B fluctuations, but the OsBOR1 protein was gradually degraded in response to high B. Knockout of this gene altered B distribution, decreasing the distribution of B to new leaves and panicles but increasing B distribution to old leaves. These results indicate that OsBOR1 expressed in nodes and leaf sheath is involved in the preferential distribution of B to different tissues in rice. Furthermore, the OsBOR1 undergoes degradation in response to high B for fine regulation of B distribution to different tissues.
Collapse
Affiliation(s)
- Ji Feng Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'An, Zhejiang, 311300, China
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| |
Collapse
|
32
|
Jia Z, Bienert MD, von Wirén N, Bienert GP. Genome-wide association mapping identifies HvNIP2;2/HvLsi6 accounting for efficient boron transport in barley. PHYSIOLOGIA PLANTARUM 2021; 171:809-822. [PMID: 33481273 DOI: 10.1111/ppl.13340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/18/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Boron (B) is an essential mineral element for plant growth, and the seed B pool of crops can be crucial when seedlings need to establish on low-B soils. To date, it is poorly understood how B accumulation in grain crops is genetically controlled. Here, we assessed the genotypic variation of the B concentration in grains of a spring barley (Hordeum vulgare L.) association panel that represents broad genetic diversity. We found a large genetic variation of the grain B concentration and detected in total 23 quantitative trait loci (QTLs) using genome-wide association mapping. HvNIP2;2/HvLsi6, encoding a potential B-transporting membrane protein, mapped closely to a major-effect QTL accounting for the largest proportion of grain B variation. Based on transport studies using heterologous expression systems and gene expression analysis, we demonstrate that HvNIP2;2/HvLsi6 represents a functional B channel and that expression variation in its transcript level associates with root and shoot B concentrations as well as with root dry mass formation under B-deficient conditions.
Collapse
Affiliation(s)
- Zhongtao Jia
- Department of Physiology and Cell Biology, Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Manuela Désirée Bienert
- Department of Physiology and Cell Biology, Metalloid Transport, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Crop Physiology, Department of Molecular Life Sciences, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Gerd Patrick Bienert
- Department of Physiology and Cell Biology, Metalloid Transport, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Crop Physiology, Department of Molecular Life Sciences, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
33
|
Song G, Li X, Munir R, Khan AR, Azhar W, Khan S, Gan Y. BnaA02.NIP6;1a encodes a boron transporter required for plant development under boron deficiency in Brassica napus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:36-45. [PMID: 33561659 DOI: 10.1016/j.plaphy.2021.01.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Boron (B) is an essential micronutrient for the plant normal growth. In Arabidopsis, NIP6;1 is a boric acid channel required for the proper distribution of boric acid, especially in the nodal regions of shoots. BnaA02.NIP6;1a, a homologous gene of AtNIP6;1 in Brassica napus, was reported to play a key role in B transport activity. However, little is known about the other functions of BnaA02.NIP6;1a in Brassica napus. In this study, we found that BnaA02.NIP6; 1a was localized in both plasma membrane and cytoplasm, which was different from that in Arabidopsis. The transgenic Arabidopsis plant containing a BnaA02.NIP6;1a promoter driven GUS reporter gene displayed strong GUS activity in roots, stems, leaves, especially in buds and open flowers, which are different from the expression pattern from its homologous gene in Arabidopsis. Silencing BnaA02.NIP6;1a repressed vegetative growth under B-deficient condition in Brassica napus. More importantly, knockdown of BnaA02.NIP6;1a in rapeseed resulted in the reduction of boron accumulation in the flower under boron deficiency and lead to severe sterility, which has not yet been reported before. Furthermore, nip6;1 mutant in Arabidopsis only showed the loss of apical dominance phenotype under boron deficiency at reproductive stage, whereas BnaA02.NIP6;1 RNAi lines exhibited large amounts of abnormal development of the inflorescence as compared with the wild type under boron limitation. Taken together, our results demonstrate that BnaA02.NIP6;1a encodes a boron transporter required for plant development under boron deficiency in Brassica napus, which shows its novel and diverse function in rapeseed compared with model plant Arabidopsis.
Collapse
Affiliation(s)
- Ge Song
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xueping Li
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Raheel Munir
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Sulaiman Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan Province, 572025, China.
| |
Collapse
|
34
|
Pereira GL, Siqueira JA, Batista-Silva W, Cardoso FB, Nunes-Nesi A, Araújo WL. Boron: More Than an Essential Element for Land Plants? FRONTIERS IN PLANT SCIENCE 2021; 11:610307. [PMID: 33519866 PMCID: PMC7840898 DOI: 10.3389/fpls.2020.610307] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/18/2020] [Indexed: 05/17/2023]
Abstract
Although boron (B) is an element that has long been assumed to be an essential plant micronutrient, this assumption has been recently questioned. Cumulative evidence has demonstrated that the players associated with B uptake and translocation by plant roots include a sophisticated set of proteins used to cope with B levels in the soil solution. Here, we summarize compelling evidence supporting the essential role of B in mediating plant developmental programs. Overall, most plant species studied to date have exhibited specific B transporters with tight genetic coordination in response to B levels in the soil. These transporters can uptake B from the soil, which is a highly uncommon occurrence for toxic elements. Moreover, the current tools available to determine B levels cannot precisely determine B translocation dynamics. We posit that B plays a key role in plant metabolic activities. Its importance in the regulation of development of the root and shoot meristem is associated with plant developmental phase transitions, which are crucial processes in the completion of their life cycle. We provide further evidence that plants need to acquire sufficient amounts of B while protecting themselves from its toxic effects. Thus, the development of in vitro and in vivo approaches is required to accurately determine B levels, and subsequently, to define unambiguously the function of B in terrestrial plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Wagner L. Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
35
|
Zhou D, Shen W, Cui Y, Liu Y, Zheng X, Li Y, Wu M, Fang S, Liu C, Tang M, Yi Y, Zhao M, Chen L. APICAL SPIKELET ABORTION (ASA) Controls Apical Panicle Development in Rice by Regulating Salicylic Acid Biosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:636877. [PMID: 33719311 PMCID: PMC7947001 DOI: 10.3389/fpls.2021.636877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/22/2021] [Indexed: 05/11/2023]
Abstract
Panicle degradation causes severe yield reduction in rice. There are two main types of panicle degradation: apical spikelet abortion and basal degeneration. In this study, we isolated and characterized the apical panicle abortion mutant apical spikelet abortion (asa), which exhibits degeneration and defects in the apical spikelets. This mutant had a pleiotropic phenotype, characterized by reduced plant height, increased tiller number, and decreased pollen fertility. Map-based cloning revealed that OsASA encodes a boric acid channel protein that showed the highest expression in the inflorescence, peduncle, and anther. RNA-seq analysis of the asa mutant vs wild-type (WT) plants revealed that biological processes related to reactive oxygen species (ROS) homeostasis and salicylic acid (SA) metabolism were significantly affected. Furthermore, the asa mutants had an increased SA level and H2O2 accumulation in the young panicles compared to the WT plants. Moreover, the SA level and the expression of OsPAL3, OsPAL4, and OsPAL6 genes (related to SA biosynthesis) were significantly increased under boron-deficient conditions in the asa mutant and in OsASA-knockout plants. Collectively, these results suggest that the boron distribution maintained by OsASA is required for normal panicle development in a process that involves modulating ROS homeostasis and SA biosynthesis.
Collapse
Affiliation(s)
- Dan Zhou
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Weifeng Shen
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Yuchao Cui
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuqin Liu
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Xijun Zheng
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yan Li
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Minliang Wu
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shanru Fang
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Chunhong Liu
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Ming Tang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwestern, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yin Yi
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwestern, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Mingfu Zhao
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
- *Correspondence: Mingfu Zhao,
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
- Liang Chen,
| |
Collapse
|
36
|
Feng Y, Cui R, Wang S, He M, Hua Y, Shi L, Ye X, Xu F. Transcription factor BnaA9.WRKY47 contributes to the adaptation of Brassica napus to low boron stress by up-regulating the boric acid channel gene BnaA3.NIP5;1. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1241-1254. [PMID: 31705705 PMCID: PMC7152615 DOI: 10.1111/pbi.13288] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 05/08/2023]
Abstract
Boron (B) deficiency is one of the major causes of growth inhibition and yield reduction in Brassica napus (B. napus). However, the molecular mechanisms of low B adaptation in B. napus are largely unknown. Here, fifty-one BnaWRKY transcription factors were identified as responsive to B deficiency in B. napus, in which BnaAn.WRKY26, BnaA9.WRKY47, BnaA1.WKRY53 and BnaCn.WRKY57 were tested in yeast one-hybrid assays and showed strong binding activity with conserved sequences containing a W box in the promoters of the B transport-related genes BnaNIP5;1s and BnaBOR1s. Green fluorescent protein fused to the target protein demonstrated the nuclear localization of BnaA9.WRKY47. CRISPR/Cas9-mediated knockout lines of BnaA9.WRKY47 in B. napus had increased sensitivity to low B and lower contents of B than wild-type plants. In contrast, overexpression of BnaA9.WRKY47 enhanced the adaptation to low B with higher B contents in tissues than in wild-type plants. Consistent with the phenotypic response and B accumulation in these transgenic lines, the transcription activity of BnaA3.NIP5;1, a B efficiency candidate gene, was decreased in the knockout lines but was significantly increased in the overexpressing lines under low B conditions. Electrophoretic mobility shift assays, transient expression experiments in tobacco and in situ hybridizations showed that BnaA9.WRKY47 directly activated BnaA3.NIP5;1 expression through binding to the specific cis-element. Taken together, our findings support BnaWRKYs as new participants in response to low B, and BnaA9.WRKY47 contributes to the adaptation of B. napus to B deficiency through up-regulating BnaA3.NIP5;1 expression to facilitate efficient B uptake.
Collapse
Affiliation(s)
- Yingna Feng
- National Key Laboratory of Crop Genetic ImprovementMicroelement Research CentreHuazhong Agricultural UniversityWuhanChina
| | - Rui Cui
- National Key Laboratory of Crop Genetic ImprovementMicroelement Research CentreHuazhong Agricultural UniversityWuhanChina
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic ImprovementMicroelement Research CentreHuazhong Agricultural UniversityWuhanChina
| | - Mingliang He
- National Key Laboratory of Crop Genetic ImprovementMicroelement Research CentreHuazhong Agricultural UniversityWuhanChina
| | - Yingpeng Hua
- National Key Laboratory of Crop Genetic ImprovementMicroelement Research CentreHuazhong Agricultural UniversityWuhanChina
| | - Lei Shi
- National Key Laboratory of Crop Genetic ImprovementMicroelement Research CentreHuazhong Agricultural UniversityWuhanChina
| | - Xiangsheng Ye
- National Key Laboratory of Crop Genetic ImprovementMicroelement Research CentreHuazhong Agricultural UniversityWuhanChina
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic ImprovementMicroelement Research CentreHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
37
|
Matthes MS, Robil JM, McSteen P. From element to development: the power of the essential micronutrient boron to shape morphological processes in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1681-1693. [PMID: 31985801 PMCID: PMC7067301 DOI: 10.1093/jxb/eraa042] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/25/2020] [Indexed: 05/27/2023]
Abstract
Deficiency of the essential nutrient boron (B) in the soil is one of the most widespread micronutrient deficiencies worldwide, leading to developmental defects in root and shoot tissues of plants, and severe yield reductions in many crops. Despite this agricultural importance, the underlying mechanisms of how B shapes plant developmental and morphological processes are still not unequivocally understood in detail. This review evaluates experimental approaches that address our current understanding of how B influences plant morphological processes by focusing on developmental defects observed under B deficiency. We assess what is known about mechanisms that control B homeostasis and specifically highlight: (i) limitations in the methodology that is used to induce B deficiency; (ii) differences between mutant phenotypes and normal plants grown under B deficiency; and (iii) recent research on analyzing interactions between B and phytohormones. Our analysis highlights the need for standardized methodology to evaluate the roles of B in the cell wall versus other parts of the cell.
Collapse
Affiliation(s)
- Michaela S Matthes
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, LSC, Columbia, MO, USA
| | - Janlo M Robil
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, LSC, Columbia, MO, USA
| | - Paula McSteen
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, LSC, Columbia, MO, USA
| |
Collapse
|
38
|
Boron Toxicity and Deficiency in Agricultural Plants. Int J Mol Sci 2020; 21:ijms21041424. [PMID: 32093172 PMCID: PMC7073067 DOI: 10.3390/ijms21041424] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022] Open
Abstract
Boron is an essential plant micronutrient taken up via the roots mostly in the form of boric acid. Its important role in plant metabolism involves the stabilization of molecules with cis-diol groups. The element is involved in the cell wall and membrane structure and functioning; therefore, it participates in numerous ion, metabolite, and hormone transport reactions. Boron has an extremely narrow range between deficiency and toxicity, and inadequate boron supply exhibits a detrimental effect on the yield of agricultural plants. The deficiency problem can be solved by fertilization, whereas soil boron toxicity can be ameliorated using various procedures; however, these approaches are costly and time-consuming, and they often show temporary effects. Plant species, as well as the genotypes within the species, dramatically differ in terms of boron requirements; thus, the available soil boron which is deficient for one crop may exhibit toxic effects on another. The widely documented intraspecies genetic variability regarding boron utilization efficiency and toxicity tolerance, together with the knowledge of the physiology and genetics of boron, should result in the development of efficient and tolerant varieties that may represent a long-term sustainable solution for the problem of inadequate or excess boron supply.
Collapse
|
39
|
Ding G, Lei GJ, Yamaji N, Yokosho K, Mitani-Ueno N, Huang S, Ma JF. Vascular Cambium-Localized AtSPDT Mediates Xylem-to-Phloem Transfer of Phosphorus for Its Preferential Distribution in Arabidopsis. MOLECULAR PLANT 2020; 13:99-111. [PMID: 31610248 DOI: 10.1016/j.molp.2019.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
During plant growth and development mineral elements are preferentially delivered to different organs and tissues to meet the differential demand. It has been shown that the preferential distribution of mineral nutrients in gramineous plants is mediated by node-based transporters, but the mechanisms of preferential distribution in dicots are poorly understood. Here, we report a distinct mechanism for the preferential distribution of phosphorus (P) in Arabidopsis plants, revealed by detailed functional analysis of AtSPDT/AtSULTR3;4 (SULTR-like P Distribution Transporter), a homolog of rice OsSPDT. Like OsSPDT, AtSPDT is localized at the plasma membrane and showed proton-dependent transport activity for P. Interestingly, we found that AtSPDT is mainly expressed in the rosette basal region and leaf petiole, and its expression is up-regulated by P deficiency. Tissue-specific analysis showed that AtSPDT is mainly located in the vascular cambium of different organs, as well as in the parenchyma tissues of both xylem and phloem regions. Knockout of AtSPDT inhibited the growth of new leaves under low P due to decreased P distribution to those organs. The seed yields of the wild-type and atspdt mutant plants are similar, but the seeds of mutant plants contain - less P. These results indicate that AtSPDT localized in the vascular cambium is involved in preferential distribution of P to the developing tissues, through xylem-to-phloem transfer mainly at the rosette basal region and leaf petiole.
Collapse
Affiliation(s)
- Guangda Ding
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Gui Jie Lei
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
| | - Kengo Yokosho
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
| | - Namiki Mitani-Ueno
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
| | - Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan.
| |
Collapse
|
40
|
Diehn TA, Bienert MD, Pommerrenig B, Liu Z, Spitzer C, Bernhardt N, Fuge J, Bieber A, Richet N, Chaumont F, Bienert GP. Boron demanding tissues of Brassica napus express specific sets of functional Nodulin26-like Intrinsic Proteins and BOR1 transporters. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:68-82. [PMID: 31148338 PMCID: PMC6852077 DOI: 10.1111/tpj.14428] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/01/2019] [Accepted: 05/28/2019] [Indexed: 05/22/2023]
Abstract
The sophisticated uptake and translocation regulation of the essential element boron (B) in plants is ensured by two transmembrane transporter families: the Nodulin26-like Intrinsic Protein (NIP) and BOR transporter family. Though the agriculturally important crop Brassica napus is highly sensitive to B deficiency, and NIPs and BORs have been suggested to be responsible for B efficiency in this species, functional information of these transporter subfamilies is extremely rare. Here, we molecularly characterized the NIP and BOR1 transporter family in the European winter-type cv. Darmor-PBY018. Our transport assays in the heterologous oocyte and yeast expression systems as well as in growth complementation assays in planta demonstrated B transport activity of NIP5, NIP6, NIP7 and BOR1 isoforms. Moreover, we provided functional and quantitative evidence that also members of the NIP2, NIP3 and NIP4 groups facilitate the transport of B. A detailed B- and tissue-dependent B-transporter expression map was generated by quantitative polymerase chain reaction. We showed that NIP5 isoforms are highly upregulated under B-deficient conditions in roots, but also in shoot tissues. Moreover, we detected transcripts of several B-permeable NIPs from various groups in floral tissues that contribute to the B distribution within the highly B deficiency-sensitive flowers.
Collapse
Affiliation(s)
- Till Arvid Diehn
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| | - Manuela Désirée Bienert
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| | - Benjamin Pommerrenig
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
- Division of Plant PhysiologyUniversity KaiserslauternKaiserslautern67663Germany
| | - Zhaojun Liu
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| | - Christoph Spitzer
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| | - Nadine Bernhardt
- Experimental Taxonomy, Genebank DepartmentLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| | - Jacqueline Fuge
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| | - Annett Bieber
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| | - Nicolas Richet
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
| | - Gerd Patrick Bienert
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| |
Collapse
|