1
|
Selvan TS, Seem K, Pandey R, Pandey R, Vinod KK, Kumar S, Mohapatra T. Physiological and molecular investigations on a high-yielding variety and near-isogenic line of rice under continuous phosphorus stress reveal major regulatory function of Pup1 QTL. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109577. [PMID: 39923421 DOI: 10.1016/j.plaphy.2025.109577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/06/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
Phosphorous (P) plays crucial roles in cellular functioning including respiration, photosynthesis, and membranes. P deficiency in the soil causes stunted growth, smaller/erect leaves, lesser tillers, and a considerable decrease in yield. To decipher the functions of Pup1 QTL and delineate the potential effects of continuous P stress on plant growth, yield/quality, physio-biochemical and molecular analyses of rice [Pusa-44 (P deficiency sensitive) and a near-isogenic line-23 (NIL-23), (harbouring Pup1 QTL, tolerant genotype)] were hydroponically grown under P continuous stress [deficiency (4 ppm) or extravagance (≥32 ppm)] till maturity. Decrease in the number of tillers and panicles under stress led to poor agronomic performance of rice. P concentration in roots, leaves, and seeds raised significantly with increasing concentration of P in hydroponic culture. Higher P concentration in the medium led to elevated phytate concentration in seeds; however, it was comparatively more in seeds of the tolerant (NIL-23) genotype. Comparative transcriptome analysis indicated differential expression of genes for P transporters and those implicated in P mobilization/homeostasis, carbohydrate/lipid metabolism, etc. on P deficiency. Moreover, the regulatory function of Pup1 in reprograming the gene expression involved in chromatin assembly, histone/DNA methylation, cell wall organization, etc. was detected in the panicle of tolerant genotype on P deficiency. This study confirms a major regulatory function of Pup1 and outlines the potential effects of excessive P on plant development, productivity, and quality of seeds. These findings would be useful in improving P uptake/use efficiency in rice and prudent/sustainable usage of phosphatic fertilizers.
Collapse
Affiliation(s)
- Tamil S Selvan
- Biochemistry Division, Indian Agricultural Research Institute, New Delhi, India
| | - Karishma Seem
- Biochemistry Division, Indian Agricultural Research Institute, New Delhi, India
| | - Renu Pandey
- Plant Physiology Division, Indian Agricultural Research Institute, New Delhi, India
| | - Rakesh Pandey
- Plant Physiology Division, Indian Agricultural Research Institute, New Delhi, India
| | - K K Vinod
- Genetics Division, Indian Agricultural Research Institute, New Delhi, India
| | - Suresh Kumar
- Biochemistry Division, Indian Agricultural Research Institute, New Delhi, India.
| | - Trilochan Mohapatra
- Protection of Plant Varieties and Farmers' Rights Authority, New Delhi, India.
| |
Collapse
|
2
|
Akhoon BA, Qiao Q, Stewart A, Chen J, Rodriguez Lopez CM, Corbin KR. Pangenomic analysis of the bacterial cellulose-producing genera Komagataeibacter and Novacetimonas. Int J Biol Macromol 2025; 298:139980. [PMID: 39826720 DOI: 10.1016/j.ijbiomac.2025.139980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/06/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Bacterial cellulose holds significant commercial potential due to its unique structural and chemical properties, making it suitable for applications in electronics, medicine, and pharmaceuticals. However, large-scale BC production remains limited by challenges related to bacterial performance. In this study, we compared 79 microbial genomes from three genera-Komagataeibacter, Novacetimonas, and Gluconacetobacter-to investigate their pangenomes, genetic diversity, and evolutionary relationships. Through comparative genomic and phylogenetic analyses, we identified distinct genome compositions and evolutionary patterns that differ from previous reports. The role of horizontal gene transfer in shaping the genetic diversity and adaptability of these bacteria was also explored. Key determinants in BC production, such as variations in the bacterial cellulose biosynthesis (bcs) operon, carbohydrate uptake genes, and carbohydrate-active enzymes, were examined. Additionally, several biosynthetic gene clusters, including Linocin M18 and sactipeptides, which encode for antimicrobial peptides known as bacteriocins, were identified. These findings reveal new aspects of the genetic diversity in cellulose-producing bacteria and present a comprehensive genomic toolkit that will support future efforts to optimize BC production and improve microbial performance for commercial applications.
Collapse
Affiliation(s)
- Bashir A Akhoon
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Qi Qiao
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA; College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Alexander Stewart
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Jin Chen
- Department of Internal Medicine and Department of Computer Science, Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, USA; The University of Alabama at Birmingham, School of Medicine - Nephrology, Birmingham, AL, USA
| | - Carlos M Rodriguez Lopez
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA; Environmental Epigenetics and Genetics Group, Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Kendall R Corbin
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
3
|
Hassan AS, O’Donovan LA, Cowley JM, Akomeah B, Phillips RJ, Pettolino F, Schultz CJ, Burton RA. In planta ectopic expression of two subtypes of tomato cellulose synthase-like M genes affects cell wall integrity and supports a role in arabinogalactan and/or rhamnogalacturonan-I biosynthesis. PLANT & CELL PHYSIOLOGY 2025; 66:101-119. [PMID: 39658008 PMCID: PMC11775392 DOI: 10.1093/pcp/pcae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024]
Abstract
Diversification of the cellulose synthase superfamily of glycosyltransferases has provided plants with the ability to synthesize varied cell wall polysaccharides such as xyloglucan, mannans, and the mixed-linkage glucans of cereals. Surprisingly, some but not all members of the cellulose synthase-like M (CslM) gene family have recently been shown to be involved in the glycosylation of the aglycone core of a range of triterpenoid saponins. However, no cell wall activity has yet been attributed to any of the CslM gene family members. Here, evolution of the CslM gene family in eudicots is explored to better understand the differences between the two metabolically distinct classes of CslMs (CslM1 and CslM2) and the very closely related CslGs. To achieve this, a robust tBLASTn approach was developed to identify CslM1, CslM2, and CslG sequences using diagnostic peptides, suitable for complex genomes using unannotated and short-read datasets. To ascertain whether both CslM1 and CslM2 proteins have cell wall functions, in addition to the 'saponin' role of CslM2, tomato CslM1 and CslM2 genes were ectopically expressed in Arabidopsis thaliana by stable transformation and in the transient Nicotiana benthamiana system. Transformed plants were analysed with immunofluorescence, immunogold transmission electron microscopy, and cell wall polysaccharides were extracted for monosaccharide linkage analysis. Our results support a role for both CslM1 and CslM2 in the biosynthesis of type II arabinogalactan linkages, generating new insight into how the diverse functions of CslMs can coexist and providing clear targets for future research.
Collapse
Affiliation(s)
- Ali S Hassan
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Lisa A O’Donovan
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - James M Cowley
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Belinda Akomeah
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Renee J Phillips
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Filomena Pettolino
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
| | - Carolyn J Schultz
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Rachel A Burton
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
4
|
Li Q, Pan Z, Zhang Z, Tang H, Cai J, Zeng X, Li Z. β-Glucan content increase in Waxy-mutated barley is closely associated with positive stress responses and is regulated by ASR1. Carbohydr Polym 2025; 347:122536. [PMID: 39486912 DOI: 10.1016/j.carbpol.2024.122536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/30/2024] [Accepted: 07/22/2024] [Indexed: 11/04/2024]
Abstract
Mixed-linkage (1,3; 1,4)-β-D-glucan (MLG) impacts the food and industrial end-uses of barley, but the molecular mechanism of variations in MLG content remains unclear. MLG content usually increases in Waxy-mutated barley. This study applied transcriptomic, proteomic, and metabolomic analyses to Waxy-mutated recombinant inbred lines with higher MLG content and wild-type lines with lower MLG content, and identified candidate genes and pathways regulating MLG content through combining preliminary gene function analysis. MLG biosynthesis differed significantly during late grain development in the Waxy-mutated and wild-type barley lines. The MLG increase was closely associated with strongly active sugar and starch metabolism and stress-responsive plant hormones, particularly abscisic acid (ABA) signaling process. Stress-responsive transcript factors ILR3, BTF3, RGGA, and PR13 protein bind to CslF6, which is critical for barley MLG biosynthesis, and the stress-responsive gene ASR1 also had a positive effect on MLG increase. Waxy mutation enhances barley stress responses by activating ABA- or other stress-responsive plant hormones signaling processes, which facilitates MLG biosynthesis. This study provides a new approach for elucidating the variations in MLG content of barley grains.
Collapse
Affiliation(s)
- Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China.
| | - Zhihui Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| | - Hongmei Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Jingchi Cai
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China; University of the Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100039, People's Republic of China
| | - Xingquan Zeng
- Tibet Academy of Agriculture and Animal Sciences, No. 130 Jinzhu West Road, Lhasa 850032, People's Republic of China
| | - Zhongyi Li
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
5
|
Boccia M, Kessler D, Seibt W, Grabe V, Rodríguez López CE, Grzech D, Heinicke S, O'Connor SE, Sonawane PD. A scaffold protein manages the biosynthesis of steroidal defense metabolites in plants. Science 2024; 386:1366-1372. [PMID: 39418343 DOI: 10.1126/science.ado3409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/03/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
Solanaceae plants produce two major classes of valuable sterol-derived natural products-steroidal glycoalkaloids and steroidal saponins-from a common cholesterol precursor. Attempts to heterologously produce these molecules have consistently failed, although the genes responsible for each biosynthetic step have been identified. Here we identify a cellulose synthase-like protein, an unexpected biosynthetic component that interacts with the early pathway enzymes, enabling steroidal scaffolds production in plants. Moreover, knockout of this gene in black nightshade, Solanum nigrum, resulted in plants lacking both steroidal alkaloids and saponins. Unexpectedly, these knockout plants also revealed that steroidal saponins deter serious agricultural insect pests. This discovery provides the missing link to engineer these high-value steroidal molecules and also pinpoints the ecological role for steroidal saponins.
Collapse
Affiliation(s)
- Marianna Boccia
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Danny Kessler
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Wibke Seibt
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Microscopy Imaging Service, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Carlos E Rodríguez López
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
- Integrative Biology Unit, The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | - Dagny Grzech
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Prashant D Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
6
|
Vastel M, Pau-Roblot C, Ferré S, Tocqueville V, Ambroset C, Marois-Créhan C, Gautier-Bouchardon AV, Tardy F, Gaurivaud P. Capsular Polysaccharide Production in Bacteria of the Mycoplasma Genus: A Huge Diversity of Pathways and Synthases for So-Called Minimal Bacteria. Mol Microbiol 2024; 122:866-878. [PMID: 39473362 DOI: 10.1111/mmi.15325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 12/21/2024]
Abstract
Mycoplasmas are wall-less bacteria with many species spread across various animal hosts in which they can be pathogenic. Despite their reduced anabolic capacity, some mycoplasmas are known to secrete hetero- and homopolysaccharides, which play a role in host colonization through biofilm formation or immune evasion, for instance. This study explores how widespread the phenomenon of capsular homopolysaccharide secretion is within mycoplasmas, and investigates the diversity of both the molecules produced and the synthase-type glycosyltransferases responsible for their production. Fourteen strains representing 14 (sub)species from four types of hosts were tested in vitro for their polysaccharide secretion using both specific (immunodetection) and nonspecific (sugar dosage) assays. We evidenced a new, atypical homopolymer of β-(1 → 6)-glucofuranose (named glucofuranan) in the human pathogen Mycoplasma (M.) fermentans, as well as a β-(1 → 6)-glucopyranose polymer for the turkey pathogen M. iowae and galactan (β-(1 → 6)-galactofuranose) and β-(1 → 2)-glucopyranose for M. bovigenitalium infecting ruminants. Sequence and phylogenetic analyses revealed a huge diversity of synthases from varied Mycoplasma species. The clustering of these membrane-embedded glycosyltransferases into three main groups was only partially correlated to the structure of the produced homopolysaccharides.
Collapse
Affiliation(s)
- Manon Vastel
- ANSES-Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses Animales, Université de Lyon, Lyon, France
- ANSES-Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, Ploufragan, France
| | - Corinne Pau-Roblot
- UMRT INRAE 1158 BioEcoAgro - Biologie des Plantes et Innovation, Université de Picardie Jules Verne, UFR des Sciences, Amiens, France
| | - Séverine Ferré
- ANSES-Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, Ploufragan, France
| | - Véronique Tocqueville
- ANSES-Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, Ploufragan, France
| | - Chloé Ambroset
- ANSES-Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses Animales, Université de Lyon, Lyon, France
| | - Corinne Marois-Créhan
- ANSES-Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, Ploufragan, France
| | - Anne V Gautier-Bouchardon
- ANSES-Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, Ploufragan, France
| | - Florence Tardy
- ANSES-Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses Animales, Université de Lyon, Lyon, France
- ANSES-Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, Ploufragan, France
| | - Patrice Gaurivaud
- ANSES-Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses Animales, Université de Lyon, Lyon, France
| |
Collapse
|
7
|
Yang J, Wang J, Yang D, Xia W, Wang L, Wang S, Zhao H, Chen L, Hu H. Genome-Wide Analysis of CSL Family Genes Involved in Petiole Elongation, Floral Petalization, and Response to Salinity Stress in Nelumbo nucifera. Int J Mol Sci 2024; 25:12531. [PMID: 39684243 DOI: 10.3390/ijms252312531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Lotus (Nelumbo nucifera), a perennial aquatic plant, endures various environmental stresses. Its diverse ornamental traits make it an ideal model for studying multigene family functional differentiation and abiotic stress responses. The cellulose synthase-like (CSL) gene family includes multiple subfamilies and holds potentially pivotal roles in plant growth, development, and stress responses. Thus, understanding this family is essential for uncovering the attributes of ancient dicotyledonous lotus species and offering new genetic resources for targeted genetic improvement. Herein, we conducted a genome-wide NnCSL gene identification study, integrating tissue-specific expression analysis, RNA-seq, and qRT-PCR validation. We identified candidate NnCSL genes linked to petiole elongation, floral petalization, salinity stress responses, and potential co-expressed TFs. 22 NnCSL genes were categorized into six subfamilies: NnCSLA, NnCSLB, NnCSLC, NnCSLD, NnCSLE, and NnCSLG. Promoter regions contain numerous cis-acting elements related to growth, development, stress responses, and hormone regulation. Nineteen NnCSL genes showed specific differential expression in LPA (large plant architecture) versus SPA (small plant architecture): petioles, petalized carpels (CP) and normal carpels (C), and petalized stamens (SP) and normal stamens (S). Notably, most NnCSLC, NnCSLA, and NnCSLB subfamily genes play diverse roles in various aspects of lotus growth and development, while NnCSLE and NnCSLG are specifically involved in carpel petalization and petiole elongation, respectively. Additionally, 11 candidate NnCSL genes responsive to salinity stress were identified, generally exhibiting antagonistic effects on growth and developmental processes. These findings provide an important theoretical foundation and novel insights for the functional study of NnCSL genes in growth, development, and stress resistance in lotus.
Collapse
Affiliation(s)
- Jie Yang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Juan Wang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Dongmei Yang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Wennian Xia
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Li Wang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Sha Wang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Hanqian Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Longqing Chen
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Huizhen Hu
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
8
|
Wang Z, Cao J, Lin N, Li J, Wang Y, Liu W, Yao W, Li Y. Origin, Evolution, and Diversification of the Expansin Family in Plants. Int J Mol Sci 2024; 25:11814. [PMID: 39519364 PMCID: PMC11547041 DOI: 10.3390/ijms252111814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The cell wall is a crucial feature that allows ancestral streptophyte green algae to colonize land. Expansin, an extracellular protein that mediates cell wall loosening in a pH-dependent manner, could be a powerful tool for studying cell wall evolution. However, the evolutionary trajectory of the expansin family remains largely unknown. Here, we conducted a comprehensive identification of 2461 expansins across 64 sequenced species, ranging from aquatic algae to terrestrial plants. Expansins originated in chlorophyte algae and may have conferred the ability to loosen cell walls. The four expansin subfamilies originated independently: α-expansin appeared first, followed by β-expansin, and then expansin-like A and expansin-like B, reflecting the evolutionary complexity of plant expansins. Whole genome duplication/segmental duplication and tandem duplication events greatly contributed to expanding the expansin family. Despite notable changes in sequence characteristics, the intron distribution pattern remained relatively conserved among different subfamilies. Phylogenetic analysis divided all the expansins into five clades, with genes from the same subfamily tending to cluster together. Transcriptome data from 16 species across ten lineages and qRT-PCR analysis revealed varying expression patterns of expansin genes, suggesting functional conservation and diversification during evolution. This study enhances our understanding of the evolutionary conservation and dynamics of the expansin family in plants, providing insight into their roles as cell wall-loosening factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yang Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
9
|
Chang SC, Karmakar Saldivar R, Kao MR, Xing X, Yeh CH, Shie JJ, Abbott DW, Harris PJ, Hsieh YSY. Two glycosyl transferase 2 genes from the gram-positive bacterium Clostridium ventriculi encode (1,3;1,4)-β-D-glucan synthases. Carbohydr Polym 2024; 342:122394. [PMID: 39048231 DOI: 10.1016/j.carbpol.2024.122394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/20/2024] [Accepted: 06/08/2024] [Indexed: 07/27/2024]
Abstract
The exopolysaccharides of the Gram-positive bacterium Romboutsia ilealis have recently been shown to include (1,3;1,4)-β-D-glucans. In the present study, we examined another Clostridia bacterium Clostridium ventriculi that has long been considered to contain abundant amounts of cellulose in its exopolysaccharides. We treated alcohol insoluble residues of C. ventriculi that include the exopolysaccharides with the enzyme lichenase that specifically hydrolyses (1,3;1,4)-β-D-glucans, and examined the oligosaccharides released. This showed the presence of (1,3;1,4)-β-D-glucans, which may have previously been mistaken for cellulose. Through genomic analysis, we identified the two family 2 glycosyltransferase genes CvGT2-1 and CvGT2-2 as possible genes encoding (1,3;1,4)-β-D-glucan synthases. Gain-of-function experiments in the yeast Saccharomyces cerevisiae demonstrated that both of these genes do indeed encode (1,3;1,4)-β-D-glucan synthases.
Collapse
Affiliation(s)
- Shu-Chieh Chang
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE10691, Sweden; School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Rebecka Karmakar Saldivar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE10691, Sweden; School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Mu-Rong Kao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada
| | - Chun-Hong Yeh
- Institute of Chemistry, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei, Taiwan
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, No. 128 Academia Road, Section 2, Nankang District, Taipei, Taiwan
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada
| | - Philip J Harris
- School of Biological Sciences, The University of Auckland, Auckland Mail Centre, Private Bag 92019, Auckland 1142, New Zealand
| | - Yves S Y Hsieh
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE10691, Sweden; School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan.
| |
Collapse
|
10
|
Samaniego LVB, Scandelau SL, Silva CR, Pratavieira S, de Oliveira Arnoldi Pellegrini V, Dabul ANG, Esmerino LA, de Oliveira Neto M, Hernandes RT, Segato F, Pileggi M, Polikarpov I. Thermothelomyces thermophilus exo- and endo-glucanases as tools for pathogenic E. coli biofilm degradation. Sci Rep 2024; 14:22576. [PMID: 39343957 PMCID: PMC11439960 DOI: 10.1038/s41598-024-70144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/13/2024] [Indexed: 10/01/2024] Open
Abstract
The escalating prevalence of drug-resistant pathogens not only jeopardizes the effectiveness of existing treatments but also increases the complexity and severity of infectious diseases. Escherichia coli is one the most common pathogens across all healthcare-associated infections. Enzymatic treatment of bacterial biofilms, targeting extracellular polymeric substances (EPS), can be used for EPS degradation and consequent increase in susceptibility of pathogenic bacteria to antibiotics. Here, we characterized three recombinant cellulases from Thermothelomyces thermophilus: a cellobiohydrolase I (TthCel7A), an endoglucanase (TthCel7B), and a cellobiohydrolase II (TthCel6A) as tools for hydrolysis of E. coli and Gluconacetobacter hansenii biofilms. Using a design mixture approach, we optimized the composition of cellulases, enhancing their synergistic activity to degrade the biofilms and significantly reducing the enzymatic dosage. In line with the crystalline and ordered structure of bacterial cellulose, the mixture of exo-glucanases (0.5 TthCel7A:0.5 TthCel6A) is effective in the hydrolysis of G. hansenii biofilm. Meanwhile, a mixture of exo- and endo-glucanases is required for the eradication of E. coli 042 and clinical E. coli biofilms with significantly different proportions of the enzymes (0.56 TthCel7B:0.44 TthCel6A and 0.6 TthCel7A:0.4 TthCel7B, respectively). X-ray diffraction pattern and crystallinity index of E. coli cellulose are comparable to those of carboxymethyl cellulose (CMC) substrate. Our results illustrate the complexity of E. coli biofilms and show that successful hydrolysis is achieved by a specific combination of cellulases, with consistent recurrence of TthCel7B endoglucanase.
Collapse
Affiliation(s)
| | - Samuel Luis Scandelau
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, São Carlos, SP, 13563-120, Brazil
| | - Caroline Rosa Silva
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Sebastião Pratavieira
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, São Carlos, SP, 13563-120, Brazil
| | | | - Andrei Nicoli Gebieluca Dabul
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, São Carlos, SP, 13563-120, Brazil
| | - Luís Antônio Esmerino
- Microbiology Laboratory, Clinical Analysis Department, Life Sciences and Health Institute, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Mario de Oliveira Neto
- Institute of Biosciences, Sao Paulo State University, District of Rubiao Jr., Botucatu, SP, 18618-970, Brazil
| | - Rodrigo Tavanelli Hernandes
- Institute of Biosciences, Sao Paulo State University, District of Rubiao Jr., Botucatu, SP, 18618-970, Brazil
| | - Fernando Segato
- Lorena School of Engineering, University of Sao Paulo, Estrada Municipal do Campinho, Lorena, SP, 12602-810, Brazil
| | - Marcos Pileggi
- Environmental Microbiology Laboratory, Structural and Molecular Biology, and Genetics Department, Life Sciences and Health Institute, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Igor Polikarpov
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, São Carlos, SP, 13563-120, Brazil.
| |
Collapse
|
11
|
Sipahi H, Haiden S, Berkowitz G. Genome-wide analysis of cellulose synthase (CesA) and cellulose synthase-like (Csl) proteins in Cannabis sativa L. PeerJ 2024; 12:e17821. [PMID: 39670088 PMCID: PMC11636989 DOI: 10.7717/peerj.17821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/06/2024] [Indexed: 12/14/2024] Open
Abstract
The cellulose and hemicellulose components of plant cell walls are synthesized by the cellulose synthase (CESA) and cellulose synthase-like (CSL) gene families and regulated in response to growth, development, and environmental stimuli. In this study, a total of 29 CESA/CSL family members were identified in Cannabis sativa and were grouped into seven subfamilies (CESA, CSLA, CSLB, CSLC, CSLD, CSLE and CSLG) according to phylogenetic relationships. The CESA/CESA proteins of C. sativa were closely related phylogenetically to the members of the subfamily of other species. The CESA/CSL subfamily members of C. sativa have unique gene structures. In addition, the expressions of four CESA and 10 CsCSL genes in flower, leaf, root, and stem organs of cannabis were detected using RT-qPCR. The results showed that CESA and CSL genes are expressed at varying levels in several organs. This detailed knowledge of the structural, evolutionary, and functional properties of cannabis CESA/CSL genes will provide a basis for designing advanced experiments for genetic manipulation of cell wall biogenesis to improve bast fibers and biofuel production.
Collapse
Affiliation(s)
- Hulya Sipahi
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Eskişehir Osmangazi, Eskişehir, Türkiye
| | - Samuel Haiden
- Agricultural Biotechnology Laboratory, Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States of America
| | - Gerald Berkowitz
- Agricultural Biotechnology Laboratory, Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States of America
| |
Collapse
|
12
|
Shi R, Cao Y, Yang T, Wang Y, Xiang Y, Chen F, Zhang W, Zhou X, Sun C, Fu S, Hu M, Zhang J, Wang X. Genome-Wide Association Study Reveals the Genetic Basis of Crude Fiber Components in Brassica napus L. Shoots at Stem Elongation Stage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16530-16540. [PMID: 39001851 DOI: 10.1021/acs.jafc.4c03032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Brassica napus is currently the principal field crop for producing materials for primary, secondary and tertiary industries. B. napus shoots at stem elongation stage are rich in anthocyanins, vitamin C and mineral elements such as selenium, calcium and zinc, and represent a new type of green vegetable. However, the high crude fiber (CF) content of B. napus shoots affects their taste, and few studies have focused on the quality traits of these vegetables. In this study, we investigated five traits related to the CF components, including neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), hemicellulose (Hem) and cellulose (Cel), of B. napus shoots. Whole-genome resequencing at a depth of ∼20× was utilized to genotype an association panel of 202 diverse accessions, which resulted in the identification of 6,093,649 single nucleotide polymorphisms (SNPs) and 996,252 indels, respectively. A genome-wide association study (GWAS) was performed for the five CF-related traits based on the phenotypic data observed in four environments. A total of 1,285 significant SNPs were detected at the threshold of -log10 (p) = 5.16, and 97 significant association regions were obtained. In addition, seven candidate genes located on chromosomes A2 (one gene), A8 (three genes), A9 (two genes) and C9 (one gene) related to CF traits were identified, and ten lines containing low CF contents were selected as excellent germplasm resources for breeding. Our results contributed new insights into the genetic basis of CF traits and suggested germplasm resources for the quality improvement of B. napus shoots.
Collapse
Affiliation(s)
- Rui Shi
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Yu Cao
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
- Yili Kazakh Autonmoous Prefecture Institure of Agricultural Science, Yining, Xinjiang 835000, PR China
| | - Tinghai Yang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
| | - Yaping Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
| | - Yanan Xiang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
| | - Feng Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
| | - Wei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
| | - Xiaoying Zhou
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
| | - Chengming Sun
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
| | - Sanxiong Fu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
- Yili Kazakh Autonmoous Prefecture Institure of Agricultural Science, Yining, Xinjiang 835000, PR China
| | - Maolong Hu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
- Yili Kazakh Autonmoous Prefecture Institure of Agricultural Science, Yining, Xinjiang 835000, PR China
| | - Jiefu Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
- Yili Kazakh Autonmoous Prefecture Institure of Agricultural Science, Yining, Xinjiang 835000, PR China
| | - Xiaodong Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Nanjing 210014, PR China
- Yili Kazakh Autonmoous Prefecture Institure of Agricultural Science, Yining, Xinjiang 835000, PR China
| |
Collapse
|
13
|
Lampugnani ER, Ford K, Ho YY, van de Meene A, Lahnstein J, Tan HT, Burton RA, Fincher GB, Shafee T, Bacic A, Zimmer J, Xing X, Bulone V, Doblin MS, Roberts EM. Glycosyl transferase GT2 genes mediate the biosynthesis of an unusual (1,3;1,4)-β-glucan exopolysaccharide in the bacterium Sarcina ventriculi. Mol Microbiol 2024; 121:1245-1261. [PMID: 38750617 DOI: 10.1111/mmi.15276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 06/14/2024]
Abstract
Linear, unbranched (1,3;1,4)-β-glucans (mixed-linkage glucans or MLGs) are commonly found in the cell walls of grasses, but have also been detected in basal land plants, algae, fungi and bacteria. Here we show that two family GT2 glycosyltransferases from the Gram-positive bacterium Sarcina ventriculi are capable of synthesizing MLGs. Immunotransmission electron microscopy demonstrates that MLG is secreted as an exopolysaccharide, where it may play a role in organizing individual cells into packets that are characteristic of Sarcina species. Heterologous expression of these two genes shows that they are capable of producing MLGs in planta, including an MLG that is chemically identical to the MLG secreted from S. ventriculi cells but which has regularly spaced (1,3)-β-linkages in a structure not reported previously for MLGs. The tandemly arranged, paralogous pair of genes are designated SvBmlgs1 and SvBmlgs2. The data indicate that MLG synthases have evolved different enzymic mechanisms for the incorporation of (1,3)-β- and (1,4)-β-glucosyl residues into a single polysaccharide chain. Amino acid variants associated with the evolutionary switch from (1,4)-β-glucan (cellulose) to MLG synthesis have been identified in the active site regions of the enzymes. The presence of MLG synthesis in bacteria could prove valuable for large-scale production of MLG for medical, food and beverage applications.
Collapse
Affiliation(s)
- Edwin R Lampugnani
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Kris Ford
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, Victoria, Australia
| | - Yin Ying Ho
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Allison van de Meene
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- Ian Holmes Imaging Centre, Bio21, The University of Melbourne, Parkville, Victoria, Australia
| | - Jelle Lahnstein
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Hwei-Ting Tan
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Rachel A Burton
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Geoffrey B Fincher
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Thomas Shafee
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, Victoria, Australia
| | - Antony Bacic
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, Victoria, Australia
| | - Jochen Zimmer
- Howard Hughes Medical Institute, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Xiaohui Xing
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden
| | - Vincent Bulone
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden
| | - Monika S Doblin
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, Victoria, Australia
| | - Eric M Roberts
- Department of Biology, Rhode Island College, Providence, Rhode Island, USA
| |
Collapse
|
14
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
15
|
Lv A, Su L, Fan N, Wen W, Gao L, Mo X, You X, Zhou P, An Y. The MsDHN1-MsPIP2;1-MsmMYB module orchestrates the trade-off between growth and survival of alfalfa in response to drought stress. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1132-1145. [PMID: 38048288 PMCID: PMC11022793 DOI: 10.1111/pbi.14251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/09/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023]
Abstract
Dehydrins and aquaporins play crucial roles in plant growth and stress responses by acting as protector and controlling water transport across membranes, respectively. MsDHN1 (dehydrin) and MsPIP2;1 (aquaporin) were demonstrated to interact with a membrane-anchored MYB protein, MsmMYB (as mMYB) in plasma membrane under normal condition. MsDHN1, MsPIP2;1 and MsDHN1-MsPIP2;1 positively regulated alfalfa tolerance to water deficiency. Water deficiency caused phosphorylation of MsPIP2;1 at Ser 272, which led to release C terminus of mMYB (mMYBΔ83) from plasma membrane and translocate to nucleus, where C terminus of MsDHN1 interacted with mMYBΔ83, and promoted mMYBΔ83 transcriptional activity in response to water deficiency. Overexpression of mMYB and mMYBΔ83 down-regulated the expression of MsCESA3, but up-regulated MsCESA7 expression by directly binding to their promoters, and resulted in high drought tolerance in transgenic hairy roots. These results indicate that the MsDHN1-MsPIP2;1-MsMYB module serves as a key regulator in alfalfa against drought stress.
Collapse
Affiliation(s)
- Aimin Lv
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina
| | - Liantai Su
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Nana Fan
- College of life scienceYulin UniversityYulinChina
| | - Wuwu Wen
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Li Gao
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xin Mo
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiangkai You
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Peng Zhou
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yuan An
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Urban AgricultureMinistry of AgricultureShanghaiChina
| |
Collapse
|
16
|
Michalak KM, Wojciechowska N, Marzec-Schmidt K, Bagniewska-Zadworna A. Conserved autophagy and diverse cell wall composition: unifying features of vascular tissues in evolutionarily distinct plants. ANNALS OF BOTANY 2024; 133:559-572. [PMID: 38324309 PMCID: PMC11037490 DOI: 10.1093/aob/mcae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND AND AIMS The formation of multifunctional vascular tissues represents a significant advancement in plant evolution. Differentiation of conductive cells is specific, involving two main pathways, namely protoplast clearance and cell wall modification. In xylogenesis, autophagy is a crucial process for complete protoplast elimination in tracheary elements, whose cell wall also undergoes strong changes. Knowledge pertaining to living sieve elements, which lose most of their protoplast during phloemogenesis, remains limited. We hypothesized that autophagy plays a crucial role, not only in complete cytoplasmic clearance in xylem but also in partial degradation in phloem. Cell wall elaborations of mature sieve elements are not so extensive. These analyses performed on evolutionarily diverse model species potentially make it possible to understand phloemogenesis to an equal extent to xylogenesis. METHODS We investigated the distribution of ATG8 protein, which is an autophagy marker, and cell wall components in the roots of ferns, gymnosperms and angiosperms (monocots, dicot herbaceous plants and trees). Furthermore, we conducted a bioinformatic analysis of complete data on ATG8 isoforms for Ceratopteris richardii. KEY RESULTS The presence of ATG8 protein was confirmed in both tracheary elements and sieve elements; however, the composition of cell wall components varied considerably among vascular tissues in the selected plants. Arabinogalactan proteins and β-1,4-galactan were detected in the roots of all studied species, suggesting their potential importance in phloem formation or function. In contrast, no evolutionary pattern was observed for xyloglucan, arabinan or homogalacturonan. CONCLUSIONS Our findings indicate that the involvement of autophagy in plants is universal during the development of tracheary elements that are dead at maturity and sieve elements that remain alive. Given the conserved nature of autophagy and its function in protoplast degradation for uninterrupted flow, autophagy might have played a vital role in the development of increasingly complex biological organizations, including the formation of vascular tissues. However, different cell wall compositions of xylem and phloem in different species might indicate diverse functionality and potential for substance transport, which is crucial in plant evolution.
Collapse
Affiliation(s)
- Kornel M Michalak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | | | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
17
|
Zhong R, Zhou D, Phillips DR, Adams ER, Chen L, Rose JP, Wang BC, Ye ZH. A rice GT61 glycosyltransferase possesses dual activities mediating 2-O-xylosyl and 2-O-arabinosyl substitutions of xylan. PLANTA 2024; 259:115. [PMID: 38589536 DOI: 10.1007/s00425-024-04396-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
MAIN CONCLUSION A member of the rice GT61 clade B is capable of transferring both 2-O-xylosyl and 2-O-arabinosyl residues onto xylan and another member specifically catalyses addition of 2-O-xylosyl residue onto xylan. Grass xylan is substituted predominantly with 3-O-arabinofuranose (Araf) as well as with some minor side chains, such as 2-O-Araf and 2-O-(methyl)glucuronic acid [(Me)GlcA]. 3-O-Arabinosylation of grass xylan has been shown to be catalysed by grass-expanded clade A members of the glycosyltransferase family 61. However, glycosyltransferases mediating 2-O-arabinosylation of grass xylan remain elusive. Here, we performed biochemical studies of two rice GT61 clade B members and found that one of them was capable of transferring both xylosyl (Xyl) and Araf residues from UDP-Xyl and UDP-Araf, respectively, onto xylooligomer acceptors, whereas the other specifically catalysed Xyl transfer onto xylooligomers, indicating that the former is a xylan xylosyl/arabinosyl transferase (named OsXXAT1 herein) and the latter is a xylan xylosyltransferase (named OsXYXT2). Structural analysis of the OsXXAT1- and OsXYXT2-catalysed reaction products revealed that the Xyl and Araf residues were transferred onto O-2 positions of xylooligomers. Furthermore, we demonstrated that OsXXAT1 and OsXYXT2 were able to substitute acetylated xylooligomers, but only OsXXAT1 could xylosylate GlcA-substituted xylooligomers. OsXXAT1 and OsXYXT2 were predicted to adopt a GT-B fold structure and molecular docking revealed candidate amino acid residues at the predicted active site involved in binding of the nucleotide sugar donor and the xylohexaose acceptor substrates. Together, our results establish that OsXXAT1 is a xylan 2-O-xylosyl/2-O-arabinosyl transferase and OsXYXT2 is a xylan 2-O-xylosyltransferase, which expands our knowledge of roles of the GT61 family in grass xylan synthesis.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Dayong Zhou
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Earle R Adams
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Lirong Chen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - John P Rose
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
18
|
Balakrishnan S, Bhasker R, Ramasamy Y, Dev SA. Genome-wide analysis of cellulose synthase gene superfamily in Tectona grandis L.f. 3 Biotech 2024; 14:86. [PMID: 38385141 PMCID: PMC10876501 DOI: 10.1007/s13205-024-03927-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/08/2024] [Indexed: 02/23/2024] Open
Abstract
This study aimed to explore Cellulose synthase gene superfamily of teak, and its evolutionary relationship with homologous genes of other woody species. The incidence of evolutionary events like gene duplication and gene loss, influence of the selection pressure, and consequent adaptive functional divergence of the duplicated TgCes gene were assessed alongside it's role in wood coloration. This study identified 39 full-length non-redundant proteins belonging to CesA and Csl gene families. TgCesA and TgCsl proteins with Cellulose synthase domain repeats indicated tandem gene duplication and probable genetic variability, enabling local adaptation. Further, multi-domain protein (MYB-like DNA-binding domain and CesA domain) with maximum introns was also identified indicating gene fusion and formation of complex protein with novel functions. Phylogenetic analysis grouped the genes into seven subfamilies (CesA, CslA, CslC, CslD, CslE, CslG, and CslM) with each undergoing gene duplication and loss along their evolutionary history. Post-species gene duplications and probable neofunctionalization were identified in TgCesA and TgCsl gene families. Each subfamily was found to be under strong purifying selection with a few or no sites under positive selection. Functional divergence analysis further revealed site-specific selective constraints in CesA and Csl genes of the teak Cellulose synthase gene family. Furthermore, protein-protein interaction network analysis identified co-expression of Cellulose synthase gene with flavonoid 3',5'-hydroxylase (F3'5'H, CYP75A), involved in the biosynthesis of xylem anthocyanin compounds, probably responsible for wood coloration. This study thus offers a foundation for future research in wood formation and wood property traits specific to teak and its provenances. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03927-6.
Collapse
Affiliation(s)
- Swathi Balakrishnan
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala 680653 India
- Cochin University of Science and Technology, Kochi, Kerala India
| | - Reshma Bhasker
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala 680653 India
- Cochin University of Science and Technology, Kochi, Kerala India
| | - Yasodha Ramasamy
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002 India
| | - Suma Arun Dev
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala 680653 India
| |
Collapse
|
19
|
Gao W, Nie J, Yao J, Wang J, Wang S, Zhang X, Liu Y, Liu Y. Genomic survey and expression analysis of cellulose synthase superfamily and COBRA-like gene family in Zanthoxylum bungeanum stipule thorns. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:369-382. [PMID: 38633272 PMCID: PMC11018584 DOI: 10.1007/s12298-024-01432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/24/2023] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
The Cellulose Synthase gene (CS) superfamily and COBRA-like (COBL) gene family are essential for synthesizing cellulose and hemicellulose, which play a crucial role in cell wall biosynthesis and the hardening of plant tissues. Our study identified 126 ZbCS and 31 ZbCOBL genes from the Zanthoxylum bungeanum (Zb) genome. Phylogenetic analysis and conservative domain analysis unfolded that ZbCS and ZbCOBL genes were divided into seven and two subfamilies, respectively. Gene duplication data suggested that more than 75% of these genes had tandem and fragment duplications. Codon usage patterns analysis indicated that the ZbCS and ZbCOBL genes prefer ending with A/T base, with weak codon preference. Furthermore, seven key ZbCS and five key ZbCOBL genes were identified based on the content of cellulose and hemicellulose and the expression characteristics of ZbCS and ZbCOBL genes in various stages of stipule thorns. Altogether, these results improve the understanding of CS and COBL genes and provide valuable reference data for cultivating Zb with soft thorns. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01432-x.
Collapse
Affiliation(s)
- Weilong Gao
- College of Forestry, Northwest A&F University, Yangling, 712100 China
| | - Jiangbo Nie
- College of Forestry, Northwest A&F University, Yangling, 712100 China
| | - Jia Yao
- College of Forestry, Northwest A&F University, Yangling, 712100 China
| | - Jianxin Wang
- College of Forestry, Northwest A&F University, Yangling, 712100 China
| | - Shengshu Wang
- College of Forestry, Northwest A&F University, Yangling, 712100 China
| | - Xueli Zhang
- College of Forestry, Northwest A&F University, Yangling, 712100 China
| | - Yonghong Liu
- College of Forestry, Northwest A&F University, Yangling, 712100 China
| | - Yulin Liu
- College of Forestry, Northwest A&F University, Yangling, 712100 China
| |
Collapse
|
20
|
Wang H, Zhang Y, Feng X, Hong J, Aamir Manzoor M, Zhou X, Zhou Q, Cai Y. Transcription factor PbMYB80 regulates lignification of stone cells and undergoes RING finger protein PbRHY1-mediated degradation in pear fruit. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:883-900. [PMID: 37944017 DOI: 10.1093/jxb/erad434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The Chinese white pear (Pyrus bretschneideri) fruit carries a high proportion of stone cells, adversely affecting fruit quality. Lignin is a main component of stone cells in pear fruit. In this study, we discovered that a pear MYB transcription factor, PbMYB80, binds to the promoters of key lignin biosynthesis genes and inhibits their expression. Stable overexpression of PbMYB80 in Arabidopsis showed that lignin deposition and secondary wall thickening were inhibited, and the expression of the lignin biosynthesis genes in transgenic Arabidopsis was decreased. Transient overexpression of PbMYB80 in pear fruit inhibited lignin metabolism and stone cell development, and the expression of some genes in the lignin metabolism pathway was reduced. In contrast, silencing PbMYB80 with VIGS increased the lignin and stone cell content in pear fruit, and increased expression of genes in the lignin metabolism pathway. By screening a pear fruit cDNA library in yeast, we found that PbMYB80 binds to a RING finger (PbRHY1) protein. We also showed that PbRHY1 exhibits E3 ubiquitin ligase activity and degrades ubiquitinated PbMYB80 in vivo and in vitro. This investigation contributes to a better understanding of the regulation of lignin biosynthesis in pear fruit, and provides a theoretical foundation for increasing pear fruit quality at the molecular level.
Collapse
Affiliation(s)
- Han Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yingjie Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiaofeng Feng
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jiayi Hong
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Muhammad Aamir Manzoor
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xinyue Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qifang Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
21
|
Marcotuli I, Caranfa D, Colasuonno P, Giove SL, Gadaleta A. Exploring Aegilops caudata: A Comprehensive Study of the CslF6 Gene and β-Glucan. Genes (Basel) 2024; 15:168. [PMID: 38397157 PMCID: PMC10887849 DOI: 10.3390/genes15020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
In the quest for sustainable and nutritious food sources, exploration of ancient grains and wild relatives of cultivated cereals has gained attention. Aegilops caudata, a wild wheatgrass species, stands out as a promising genetic resource due to its potential for crop enhancement and intriguing nutritional properties. This manuscript investigates the CslF6 gene sequence and protein structure of Aegilops caudata, employing comparative analysis with other grass species to identify potential differences impacting β-glucan content. The study involves comprehensive isolation and characterization of the CslF6 gene in Ae. caudata, utilizing genomic sequence analysis, protein structure prediction, and comparative genomics. Comparisons with sequences from diverse monocots reveal evolutionary relationships, highlighting high identities with wheat genomes. Specific amino acid motifs in the CslF6 enzyme sequence, particularly those proximal to key catalytic motifs, exhibit variations among monocot species. These differences likely contribute to alterations in β-glucan composition, notably impacting the DP3:DP4 ratio, which is crucial for understanding and modulating the final β-glucan content. The study positions Ae. caudata uniquely within the evolutionary landscape of CslF6 among monocots, suggesting potential genetic divergence or unique functional adaptations within this species. Overall, this investigation enriches our understanding of β-glucan biosynthesis, shedding light on the role of specific amino acid residues in modulating enzymatic activity and polysaccharide composition.
Collapse
Affiliation(s)
- Ilaria Marcotuli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via G. Amendola 165/A, 70126 Bari, Italy; (D.C.); (P.C.); (S.L.G.); (A.G.)
| | | | | | | | | |
Collapse
|
22
|
Hrmova M, Zimmer J, Bulone V, Fincher GB. Enzymes in 3D: Synthesis, remodelling, and hydrolysis of cell wall (1,3;1,4)-β-glucans. PLANT PHYSIOLOGY 2023; 194:33-50. [PMID: 37594400 PMCID: PMC10762513 DOI: 10.1093/plphys/kiad415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/09/2023] [Indexed: 08/19/2023]
Abstract
Recent breakthroughs in structural biology have provided valuable new insights into enzymes involved in plant cell wall metabolism. More specifically, the molecular mechanism of synthesis of (1,3;1,4)-β-glucans, which are widespread in cell walls of commercially important cereals and grasses, has been the topic of debate and intense research activity for decades. However, an inability to purify these integral membrane enzymes or apply transgenic approaches without interpretative problems associated with pleiotropic effects has presented barriers to attempts to define their synthetic mechanisms. Following the demonstration that some members of the CslF sub-family of GT2 family enzymes mediate (1,3;1,4)-β-glucan synthesis, the expression of the corresponding genes in a heterologous system that is free of background complications has now been achieved. Biochemical analyses of the (1,3;1,4)-β-glucan synthesized in vitro, combined with 3-dimensional (3D) cryogenic-electron microscopy and AlphaFold protein structure predictions, have demonstrated how a single CslF6 enzyme, without exogenous primers, can incorporate both (1,3)- and (1,4)-β-linkages into the nascent polysaccharide chain. Similarly, 3D structures of xyloglucan endo-transglycosylases and (1,3;1,4)-β-glucan endo- and exohydrolases have allowed the mechanisms of (1,3;1,4)-β-glucan modification and degradation to be defined. X-ray crystallography and multi-scale modeling of a broad specificity GH3 β-glucan exohydrolase recently revealed a previously unknown and remarkable molecular mechanism with reactant trajectories through which a polysaccharide exohydrolase can act with a processive action pattern. The availability of high-quality protein 3D structural predictions should prove invaluable for defining structures, dynamics, and functions of other enzymes involved in plant cell wall metabolism in the immediate future.
Collapse
Affiliation(s)
- Maria Hrmova
- School of Agriculture, Food and Wine, and the Waite Research Institute, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Jochen Zimmer
- Howard Hughes Medical Institute and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Vincent Bulone
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, Alba Nova University Centre, 106 91 Stockholm, Sweden
| | - Geoffrey B Fincher
- School of Agriculture, Food and Wine, and the Waite Research Institute, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
23
|
Pancaldi F, Schranz ME, van Loo EN, Trindade LM. Highly differentiated genomic properties underpin the different cell walls of Poaceae and eudicots. PLANT PHYSIOLOGY 2023; 194:274-295. [PMID: 37141316 PMCID: PMC10762515 DOI: 10.1093/plphys/kiad267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023]
Abstract
Plant cell walls of Poaceae and eudicots differ substantially, both in the content and composition of their components. However, the genomic and genetic basis underlying these differences is not fully resolved. In this research, we analyzed multiple genomic properties of 150 cell wall gene families across 169 angiosperm genomes. The properties analyzed include gene presence/absence, copy number, synteny, occurrence of tandem gene clusters, and phylogenetic gene diversity. Results revealed a profound genomic differentiation of cell wall genes between Poaceae and eudicots, often associated with the cell wall diversity between these plant groups. For example, overall patterns of gene copy number variation and synteny were clearly divergent between Poaceae and eudicot species. Moreover, differential Poaceae-eudicot copy number and genomic contexts were observed for all the genes within the BEL1-like HOMEODOMAIN 6 regulatory pathway, which respectively induces and represses secondary cell wall synthesis in Poaceae and eudicots. Similarly, divergent synteny, copy number, and phylogenetic gene diversification were observed for the major biosynthetic genes of xyloglucans, mannans, and xylans, potentially contributing to the differences in content and types of hemicellulosic polysaccharides differences in Poaceae and eudicot cell walls. Additionally, the Poaceae-specific tandem clusters and/or higher copy number of PHENYLALANINE AMMONIA-LYASE, CAFFEIC ACID O-METHYLTRANSFERASE, or PEROXIDASE genes may underly the higher content and larger variety of phenylpropanoid compounds observed in Poaceae cell walls. All these patterns are discussed in detail in this study, along with their evolutionary and biological relevance for cell wall (genomic) diversification between Poaceae and eudicots.
Collapse
Affiliation(s)
- Francesco Pancaldi
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Michael Eric Schranz
- Biosystematics group, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Eibertus N van Loo
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Luisa M Trindade
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| |
Collapse
|
24
|
Nadiminti PP, Wilson SM, van de Meene A, Hao A, Humphries J, Ratcliffe J, Yi C, Peirats-Llobet M, Lewsey MG, Whelan J, Bacic A, Doblin MS. Spatiotemporal deposition of cell wall polysaccharides in oat endosperm during grain development. PLANT PHYSIOLOGY 2023; 194:168-189. [PMID: 37862163 PMCID: PMC10756759 DOI: 10.1093/plphys/kiad566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/11/2023] [Accepted: 09/24/2023] [Indexed: 10/22/2023]
Abstract
Oat (Avena sativa) is a cereal crop whose grains are rich in (1,3;1,4)-β-D-glucan (mixed-linkage glucan or MLG), a soluble dietary fiber. In our study, we analyzed oat endosperm development in 2 Canadian varieties with differing MLG content and nutritional value. We confirmed that oat undergoes a nuclear type of endosperm development but with a shorter cellularization phase than barley (Hordeum vulgare). Callose and cellulose were the first polysaccharides to be detected in the early anticlinal cell walls at 11 days postemergence (DPE) of the panicle. Other polysaccharides such as heteromannan and homogalacturonan were deposited early in cellularization around 12 DPE after the first periclinal walls are laid down. In contrast to barley, heteroxylan deposition coincided with completion of cellularization and was detected from 14 DPE but was only detectable after demasking. Notably, MLG was the last polysaccharide to be laid down at 18 DPE within the differentiation phase, rather than during cellularization. In addition, differences in the spatiotemporal patterning of MLG were also observed between the 2 varieties. The lower MLG-containing cultivar AC Morgan (3.5% w/w groats) was marked by the presence of a discontinuous pattern of MLG labeling, while labeling in the same walls in CDC Morrison (5.6% w/w groats) was mostly even and continuous. RNA-sequencing analysis revealed higher transcript levels of multiple MLG biosynthetic cellulose synthase-like F (CSLF) and CSLH genes during grain development in CDC Morrison compared with AC Morgan that likely contributes to the increased abundance of MLG at maturity in CDC Morrison. CDC Morrison was also observed to have smaller endosperm cells with thicker walls than AC Morgan from cellularization onwards, suggesting the processes controlling cell size and shape are established early in development. This study has highlighted that the molecular processes influencing MLG content and deposition are more complex than previously imagined.
Collapse
Affiliation(s)
- Pavani P Nadiminti
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Sarah M Wilson
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Allison van de Meene
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alfie Hao
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria 3086, Australia
| | - John Humphries
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Julian Ratcliffe
- Latrobe University Bioimaging Platform, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Changyu Yi
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Marta Peirats-Llobet
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Mathew G Lewsey
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria 3086, Australia
| | - James Whelan
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Antony Bacic
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Monika S Doblin
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
25
|
Sakanishi M, Chung SY, Fujiwara K, Kojoma M, Muranaka T, Seki H. Disruption of a licorice cellulose synthase-derived glycosyltransferase gene demonstrates its in planta role in soyasaponin biosynthesis. PLANT CELL REPORTS 2023; 43:15. [PMID: 38135741 PMCID: PMC10746781 DOI: 10.1007/s00299-023-03095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023]
Abstract
KEY MESSAGE CRISPR-Cas9-mediated disruption of a licorice cellulose synthase-derived glycosyltransferase gene, GuCSyGT, demonstrated the in planta role of GuCSyGT as the enzyme catalyzing 3-O-glucuronosylation of triterpenoid aglycones in soyasaponin biosynthesis. Triterpenoid glycosides (saponins) are a large, structurally diverse group of specialized metabolites in plants, including the sweet saponin glycyrrhizin produced by licorice (Glycyrrhiza uralensis) and soyasaponins that occur widely in legumes, with various bioactivities. The triterpenoid saponin biosynthetic pathway involves the glycosylation of triterpenoid sapogenins (the non-sugar part of triterpenoid saponins) by glycosyltransferases (GTs), leading to diverse saponin structures. Previously, we identified a cellulose synthase-derived GT (CSyGT), as a newly discovered class of triterpenoid GT from G. uralensis. GuCSyGT expressed in yeast, which could transfer the sugar glucuronic acid to the C3 position of glycyrrhetinic acid and soyasapogenol B, which are the sapogenins of glycyrrhizin and soyasaponin I, respectively. This suggested that GuCSyGT is involved in the biosynthesis of glycyrrhizin and soyasaponin I. However, the in planta role of GuCSyGT in saponin biosynthesis remains unclear. In this study, we generated GuCSyGT-disrupted licorice hairy roots using CRISPR-Cas9-mediated genome editing and analyzed the saponin content. This revealed that soyasaponin I was completely absent in GuCSyGT-disrupted lines, demonstrating the in planta role of GuCSyGT in saponin biosynthesis.
Collapse
Affiliation(s)
- Manami Sakanishi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Soo Yeon Chung
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kentaro Fujiwara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mareshige Kojoma
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757, Kanazawa, Tobetsu, Hokkaido, 061-0293, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
26
|
Colbert JB, Coleman HD. Functional Diversification and the Plant Secondary Cell Wall. J Mol Evol 2023; 91:761-772. [PMID: 37979044 DOI: 10.1007/s00239-023-10145-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Much evidence exists suggesting the presence of genetic functional diversification in plants, though literature associated with the role of functional diversification in the evolution of the plant secondary cell wall (SCW) has sparsely been compiled and reviewed in a recent context. This review aims to elucidate, through the examination of gene phylogenies associated with its biosynthesis and maintenance, the role of functional diversification in shaping the critical, dynamic, and characteristic organelle, the secondary cell wall. It will be asserted that gene families resulting from gene duplication and subsequent functional divergence are present and are heavily involved in SCW biosynthesis and maintenance. Furthermore, diversification will be presented as a significant driver behind the evolution of the many functional characteristics of the SCW. The structure and function of the plant cell wall and its constituents will first be explored, followed by a discussion on the phenomenon of gene duplication and the resulting genetic functional divergence that can emerge. Finally, the major constituents of the SCW and their individual relationships with duplication and divergence will be reviewed to the extent of current knowledge on the subject.
Collapse
Affiliation(s)
- Joseph B Colbert
- Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Heather D Coleman
- Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| |
Collapse
|
27
|
Prins A, Kosik O. Genetic Approaches to Increase Arabinoxylan and β-Glucan Content in Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:3216. [PMID: 37765380 PMCID: PMC10534680 DOI: 10.3390/plants12183216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Wheat is one of the three staple crops feeding the world. The demand for wheat is ever increasing as a relatively good source of protein, energy, nutrients, and dietary fiber (DF) when consumed as wholemeal. Arabinoxylan and β-glucan are the major hemicelluloses in the cell walls and dietary fiber in wheat grains. The amount and structure of DF varies between grain tissues. Reducing post-prandial glycemic response as well as intestinal transit time and contribution to increased fecal bulk are only a few benefits of DF consumption. Dietary fiber is fermented in the colon and stimulates growth of beneficial bacteria producing SCFA, considered responsible for a wide range of health benefits, including reducing the risk of heart disease and colon cancer. The recommended daily intake of 25-30 g is met by only few individuals. Cereals cover nearly 40% of fiber in the Western diet. Therefore, wheat is a good target for improving dietary fiber content, as it would increase the fiber intake and simultaneously impact the health of many people. This review reflects the current status of the research on genetics of the two major dietary fiber components, as well as breeding approaches used to improve their quantity and quality in wheat grain.
Collapse
Affiliation(s)
- Anneke Prins
- Department of Sustainable Soils and Crops, Rothamsted Research, Harpenden AL5 2JQ, UK;
| | - Ondrej Kosik
- Department of Plant Sciences for the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
28
|
Chang SC, Kao MR, Saldivar RK, Díaz-Moreno SM, Xing X, Furlanetto V, Yayo J, Divne C, Vilaplana F, Abbott DW, Hsieh YSY. The Gram-positive bacterium Romboutsia ilealis harbors a polysaccharide synthase that can produce (1,3;1,4)-β-D-glucans. Nat Commun 2023; 14:4526. [PMID: 37500617 PMCID: PMC10374906 DOI: 10.1038/s41467-023-40214-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/16/2023] [Indexed: 07/29/2023] Open
Abstract
(1,3;1,4)-β-D-Glucans are widely distributed in the cell walls of grasses (family Poaceae) and closely related families, as well as some other vascular plants. Additionally, they have been found in other organisms, including fungi, lichens, brown algae, charophycean green algae, and the bacterium Sinorhizobium meliloti. Only three members of the Cellulose Synthase-Like (CSL) genes in the families CSLF, CSLH, and CSLJ are implicated in (1,3;1,4)-β-D-glucan biosynthesis in grasses. Little is known about the enzymes responsible for synthesizing (1,3;1,4)-β-D-glucans outside the grasses. In the present study, we report the presence of (1,3;1,4)-β-D-glucans in the exopolysaccharides of the Gram-positive bacterium Romboutsia ilealis CRIBT. We also report that RiGT2 is the candidate gene of R. ilealis that encodes (1,3;1,4)-β-D-glucan synthase. RiGT2 has conserved glycosyltransferase family 2 (GT2) motifs, including D, D, D, QXXRW, and a C-terminal PilZ domain that resembles the C-terminal domain of bacteria cellulose synthase, BcsA. Using a direct gain-of-function approach, we insert RiGT2 into Saccharomyces cerevisiae, and (1,3;1,4)-β-D-glucans are produced with structures similar to those of the (1,3;1,4)-β-D-glucans of the lichen Cetraria islandica. Phylogenetic analysis reveals that putative (1,3;1,4)-β-D-glucan synthase candidate genes in several other bacterial species support the finding of (1,3;1,4)-β-D-glucans in these species.
Collapse
Affiliation(s)
- Shu-Chieh Chang
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE10691, Sweden
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Mu-Rong Kao
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE10691, Sweden
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Rebecka Karmakar Saldivar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE10691, Sweden
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Sara M Díaz-Moreno
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE10691, Sweden
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| | - Valentina Furlanetto
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE10691, Sweden
| | - Johannes Yayo
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE10691, Sweden
| | - Christina Divne
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE10691, Sweden
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE10691, Sweden
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| | - Yves S Y Hsieh
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE10691, Sweden.
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
| |
Collapse
|
29
|
Xing L, Wang M, He Q, Zhang H, Liang H, Zhou Q, Liu Y, Liu Z, Wang Y, Du C, Xiao Y, Liu J, Li W, Liu G, Du H. Differential subgenome expression underlies biomass accumulation in allotetraploid Pennisetum giganteum. BMC Biol 2023; 21:161. [PMID: 37480118 PMCID: PMC10362693 DOI: 10.1186/s12915-023-01643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/06/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Pennisetum giganteum (AABB, 2n = 4x = 28) is a C4 plant in the genus Pennisetum with origin in Africa but currently also grown in Asia and America. It is a crucial forage and potential energy grass with significant advantages in yield, stress resistance, and environmental adaptation. However, the mechanisms underlying these advantageous traits remain largely unexplored. Here, we present a high-quality genome assembly of the allotetraploid P. giganteum aiming at providing insights into biomass accumulation. RESULTS Our assembly has a genome size 2.03 Gb and contig N50 of 88.47 Mb that was further divided into A and B subgenomes. Genome evolution analysis revealed the evolutionary relationships across the Panicoideae subfamily lineages and identified numerous genome rearrangements that had occurred in P. giganteum. Comparative genomic analysis showed functional differentiation between the subgenomes. Transcriptome analysis found no subgenome dominance at the overall gene expression level; however, differentially expressed homoeologous genes and homoeolog-specific expressed genes between the two subgenomes were identified, suggesting that complementary effects between the A and B subgenomes contributed to biomass accumulation of P. giganteum. Besides, C4 photosynthesis-related genes were significantly expanded in P. giganteum and their sequences and expression patterns were highly conserved between the two subgenomes, implying that both subgenomes contributed greatly and almost equally to the highly efficient C4 photosynthesis in P. giganteum. We also identified key candidate genes in the C4 photosynthesis pathway that showed sustained high expression across all developmental stages of P. giganteum. CONCLUSIONS Our study provides important genomic resources for elucidating the genetic basis of advantageous traits in polyploid species, and facilitates further functional genomics research and genetic improvement of P. giganteum.
Collapse
Affiliation(s)
- Longsheng Xing
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
- Hebei Basic Science Center for Biotic Interaction, Baoding, 071000, China
| | - Meijia Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Qiang He
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
- Hebei Basic Science Center for Biotic Interaction, Baoding, 071000, China
| | - Hongyu Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Hanfei Liang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Qinghong Zhou
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Yu Liu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Ze Liu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Yu Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Cailian Du
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Yao Xiao
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Jianan Liu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
| | - Wei Li
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China
- Hebei Basic Science Center for Biotic Interaction, Baoding, 071000, China
| | - Guixia Liu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China.
- Hebei Basic Science Center for Biotic Interaction, Baoding, 071000, China.
| | - Huilong Du
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071000, China.
- Hebei Basic Science Center for Biotic Interaction, Baoding, 071000, China.
| |
Collapse
|
30
|
Havrlentová M, Dvořáček V, Jurkaninová L, Gregusová V. Unraveling the Potential of β-D-Glucans in Poales: From Characterization to Biosynthesis and Factors Affecting the Content. Life (Basel) 2023; 13:1387. [PMID: 37374169 DOI: 10.3390/life13061387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
This review consolidates current knowledge on β-D-glucans in Poales and presents current findings and connections that expand our understanding of the characteristics, functions, and applications of this cell wall polysaccharide. By associating information from multiple disciplines, the review offers valuable insights for researchers, practitioners, and consumers interested in harnessing the benefits of β-D-glucans in various fields. The review can serve as a valuable resource for plant biology researchers, cereal breeders, and plant-based food producers, providing insights into the potential of β-D-glucans and opening new avenues for future research and innovation in the field of this bioactive and functional ingredient.
Collapse
Affiliation(s)
- Michaela Havrlentová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 917 01 Trnava, Slovakia
- National Agricultural and Food Center-Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piešťany, Slovakia
| | - Václav Dvořáček
- Crop Research Institute, Drnovská 507, 161 06 Prague, Czech Republic
| | - Lucie Jurkaninová
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00 Praha, Czech Republic
| | - Veronika Gregusová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 917 01 Trnava, Slovakia
| |
Collapse
|
31
|
Niu N, Zhang Y, Li S, Meng X, Liu M, Wang H, Zhao J. Genome-wide characterization of the cellulose synthase gene family in Ziziphus jujuba reveals its function in cellulose biosynthesis during fruit development. Int J Biol Macromol 2023; 239:124360. [PMID: 37030464 DOI: 10.1016/j.ijbiomac.2023.124360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/10/2023]
Abstract
The cellulose synthase (Ces/Csl) is a key enzyme in plant cellulose synthesis. Jujube fruits are rich in cellulose. 29 ZjCesA/Csl genes were identified in jujube genome and showed tissue-specific expression. 13 genes highly expressed in jujube fruit exhibited obviously sequential expressions during the fruit development, indicating that they might play distinct roles during the process. Meanwhile, the correlation analysis showed the expressions of ZjCesA1 and ZjCslA1 were significant positive related to the cellulose synthase activities. Furthermore, transient overexpressions of ZjCesA1 or ZjCslA1 in jujube fruits significantly increased cellulose synthase activities and contents, whereas silencing of ZjCesA1 or ZjCslA1 in jujube seedlings obviously reduced cellulose levels. Moreover, the Y2H assays verified that ZjCesA1 and ZjCslA1 may participate in cellulose synthesis by forming protein complexes. The study not only reveals the bioinformatics characteristics and functions of cellulose synthase genes in jujube, but also provides clues for studying cellulose synthesis in other fruits.
Collapse
Affiliation(s)
- Nazi Niu
- College of Life Science, Hebei Agricultural University, Baoding, China
| | - Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding, China
| | - Shijia Li
- College of Life Science, Hebei Agricultural University, Baoding, China
| | - Xiangrui Meng
- College of Life Science, Hebei Agricultural University, Baoding, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China; School of Horticulture, Hebei Agricultural University, Baoding, China
| | - Huibin Wang
- College of Life Science, Hebei Agricultural University, Baoding, China.
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
32
|
Francin-Allami M, Bouder A, Geairon A, Alvarado C, Le-Bot L, Daniel S, Shao M, Laudencia-Chingcuanco D, Vogel JP, Guillon F, Bonnin E, Saulnier L, Sibout R. Mixed-Linkage Glucan Is the Main Carbohydrate Source and Starch Is an Alternative Source during Brachypodium Grain Germination. Int J Mol Sci 2023; 24:ijms24076821. [PMID: 37047802 PMCID: PMC10095428 DOI: 10.3390/ijms24076821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Seeds of the model grass Brachypodium distachyon are unusual because they contain very little starch and high levels of mixed-linkage glucan (MLG) accumulated in thick cell walls. It was suggested that MLG might supplement starch as a storage carbohydrate and may be mobilised during germination. In this work, we observed massive degradation of MLG during germination in both endosperm and nucellar epidermis. The enzymes responsible for the MLG degradation were identified in germinated grains and characterized using heterologous expression. By using mutants targeting MLG biosynthesis genes, we showed that the expression level of genes coding for MLG and starch-degrading enzymes was modified in the germinated grains of knocked-out cslf6 mutants depleted in MLG but with higher starch content. Our results suggest a substrate-dependent regulation of the storage sugars during germination. These overall results demonstrated the function of MLG as the main carbohydrate source during germination of Brachypodium grain. More astonishingly, cslf6 Brachypodium mutants are able to adapt their metabolism to the lack of MLG by modifying the energy source for germination and the expression of genes dedicated for its use.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingqin Shao
- DOE Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - John P Vogel
- DOE Joint Genome Institute, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
33
|
McFarlane HE. Open questions in plant cell wall synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad110. [PMID: 36961357 DOI: 10.1093/jxb/erad110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Plant cells are surrounded by strong yet flexible polysaccharide-based cell walls that support the cell while also allowing growth by cell expansion. Plant cell wall research has advanced tremendously in recent years. Sequenced genomes of many model and crop plants have facilitated cataloging and characterization of many enzymes involved in cell wall synthesis. Structural information has been generated for several important cell wall synthesizing enzymes. Important tools have been developed including antibodies raised against a variety of cell wall polysaccharides and glycoproteins, collections of enzyme clones and synthetic glycan arrays for characterizing enzymes, herbicides that specifically affect cell wall synthesis, live-cell imaging probes to track cell wall synthesis, and an inducible secondary cell wall synthesis system. Despite these advances, and often because of the new information they provide, many open questions about plant cell wall polysaccharide synthesis persist. This article highlights some of the key questions that remain open, reviews the data supporting different hypotheses that address these questions, and discusses technological developments that may answer these questions in the future.
Collapse
Affiliation(s)
- Heather E McFarlane
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord St., Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
34
|
Pancaldi F, van Loo EN, Senio S, Al Hassan M, van der Cruijsen K, Paulo MJ, Dolstra O, Schranz ME, Trindade LM. Syntenic Cell Wall QTLs as Versatile Breeding Tools: Intraspecific Allelic Variability and Predictability of Biomass Quality Loci in Target Plant Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:779. [PMID: 36840127 PMCID: PMC9961111 DOI: 10.3390/plants12040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Syntenic cell wall QTLs (SQTLs) can identify genetic determinants of biomass traits in understudied species based on results from model crops. However, their effective use in plant breeding requires SQTLs to display intraspecific allelic variability and to predict causative loci in other populations/species than the ones used for SQTLs identification. In this study, genome assemblies from different accessions of Arabidopsis, rapeseed, tomato, rice, Brachypodium and maize were used to evaluate the intraspecific variability of SQTLs. In parallel, a genome-wide association study (GWAS) on cell wall quality traits was performed in miscanthus to verify the colocalization between GWAS loci and miscanthus SQTLs. Finally, an analogous approach was applied on a set of switchgrass cell wall QTLs retrieved from the literature. These analyses revealed large SQTLs intraspecific genetic variability, ranging from presence-absence gene variation to SNPs/INDELs and changes in coded proteins. Cell wall genes displaying gene dosage regulation, such as PAL and CAD, displayed presence-absence variation in Brachypodium and rapeseed, while protein INDELs were detected for the Brachypodium homologs of the rice brittle culm-like 8 locus, which may likely impact cell wall quality. Furthermore, SQTLs significantly colocalized with the miscanthus and switchgrass QTLs, with relevant cell wall genes being retained in colocalizing regions. Overall, SQTLs are useful tools to screen germplasm for relevant genes and alleles to improve biomass quality and can increase the efficiency of plant breeding in understudied biomass crops.
Collapse
Affiliation(s)
- Francesco Pancaldi
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Eibertus N. van Loo
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Sylwia Senio
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Mohamad Al Hassan
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Kasper van der Cruijsen
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Maria-João Paulo
- Biometris, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Oene Dolstra
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - M. Eric Schranz
- Biosystematics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Luisa M. Trindade
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
35
|
Pedersen GB, Blaschek L, Frandsen KEH, Noack LC, Persson S. Cellulose synthesis in land plants. MOLECULAR PLANT 2023; 16:206-231. [PMID: 36564945 DOI: 10.1016/j.molp.2022.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
All plant cells are surrounded by a cell wall that provides cohesion, protection, and a means of directional growth to plants. Cellulose microfibrils contribute the main biomechanical scaffold for most of these walls. The biosynthesis of cellulose, which typically is the most prominent constituent of the cell wall and therefore Earth's most abundant biopolymer, is finely attuned to developmental and environmental cues. Our understanding of the machinery that catalyzes and regulates cellulose biosynthesis has substantially improved due to recent technological advances in, for example, structural biology and microscopy. Here, we provide a comprehensive overview of the structure, function, and regulation of the cellulose synthesis machinery and its regulatory interactors. We aim to highlight important knowledge gaps in the field, and outline emerging approaches that promise a means to close those gaps.
Collapse
Affiliation(s)
- Gustav B Pedersen
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Leonard Blaschek
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Kristian E H Frandsen
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Lise C Noack
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Staffan Persson
- Copenhagen Plant Science Center (CPSC), Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark; Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
36
|
Tian Z, Zeng P, Lu X, Zhou T, Han Y, Peng Y, Xiao Y, Zhou B, Liu X, Zhang Y, Yu Y, Li Q, Zong H, Zhang F, Jiang H, He J, Cai J. Thirteen Dipterocarpoideae genomes provide insights into their evolution and borneol biosynthesis. PLANT COMMUNICATIONS 2022; 3:100464. [PMID: 36303430 PMCID: PMC9700207 DOI: 10.1016/j.xplc.2022.100464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/26/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Dipterocarpoideae, the largest subfamily of the Dipterocarpaceae, is a dominant component of Southeast Asian rainforests and is widely used as a source of wood, damar resin, medicine, and essential oil. However, many Dipterocarpoideae species are currently on the IUCN Red List owing to severe degradation of their habitats under global climate change and human disturbance. Genetic information regarding these taxa has only recently been reported with the sequencing of four Dipterocarp genomes, providing clues to the function and evolution of these species. Here, we report on 13 high-quality Dipterocarpoideae genome assemblies, ranging in size from 302.6 to 494.8 Mb and representing the five most species-rich genera in Dipterocarpoideae. Molecular dating analyses support the Western Gondwanaland origin of Dipterocarpaceae. Based on evolutionary analysis, we propose a three-step chromosome evolution scenario to describe the karyotypic evolution from an ancestor with six chromosomes to present-day species with 11 and 7 chromosomes. We discovered an expansion of genes encoding cellulose synthase (CesA), which is essential for cellulose biosynthesis and secondary cell-wall formation. We functionally identified five bornyl diphosphate synthase (BPPS) genes, which specifically catalyze the biosynthesis of borneol, a natural medicinal compound extracted from damar resin and oils, thus providing a basis for large-scale production of natural borneol in vitro.
Collapse
Affiliation(s)
- Zunzhe Tian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Peng Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiaoyun Lu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Tinggan Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuwei Han
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yingmei Peng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yunxue Xiao
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kuming 650223, China
| | - Botong Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xue Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yongting Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Yu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hang Zong
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Feining Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.
| | - Juan He
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Jing Cai
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
37
|
Purushotham P, Ho R, Yu L, Fincher GB, Bulone V, Zimmer J. Mechanism of mixed-linkage glucan biosynthesis by barley cellulose synthase-like CslF6 (1,3;1,4)-β-glucan synthase. SCIENCE ADVANCES 2022; 8:eadd1596. [PMID: 36367939 PMCID: PMC9651860 DOI: 10.1126/sciadv.add1596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Mixed-linkage (1,3;1,4)-β-glucans, which are widely distributed in cell walls of the grasses, are linear glucose polymers containing predominantly (1,4)-β-linked glucosyl units interspersed with single (1,3)-β-linked glucosyl units. Their distribution in cereal grains and unique structures are important determinants of dietary fibers that are beneficial to human health. We demonstrate that the barley cellulose synthase-like CslF6 enzyme is sufficient to synthesize a high-molecular weight (1,3;1,4)-β-glucan in vitro. Biochemical and cryo-electron microscopy analyses suggest that CslF6 functions as a monomer. A conserved "switch motif" at the entrance of the enzyme's transmembrane channel is critical to generate (1,3)-linkages. There, a single-point mutation markedly reduces (1,3)-linkage formation, resulting in the synthesis of cellulosic polysaccharides. Our results suggest that CslF6 monitors the orientation of the nascent polysaccharide's second or third glucosyl unit. Register-dependent interactions with these glucosyl residues reposition the polymer's terminal glucosyl unit to form either a (1,3)- or (1,4)-β-linkage.
Collapse
Affiliation(s)
- Pallinti Purushotham
- Howard Hughes Medical Institute, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Ruoya Ho
- Howard Hughes Medical Institute, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Long Yu
- Adelaide Glycomics, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Geoffrey B. Fincher
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Vincent Bulone
- Adelaide Glycomics, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, SE-10691, Sweden
| | - Jochen Zimmer
- Howard Hughes Medical Institute, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| |
Collapse
|
38
|
Huang H, Zhao S, Chen J, Li T, Guo G, Xu M, Liao S, Wang R, Lan J, Su Y, Liao X. Genome-wide identification and functional analysis of Cellulose synthase gene superfamily in Fragaria vesca. FRONTIERS IN PLANT SCIENCE 2022; 13:1044029. [PMID: 36407613 PMCID: PMC9669642 DOI: 10.3389/fpls.2022.1044029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 05/28/2023]
Abstract
The Cellulose synthase (CesA) and Cellulose synthase-like (Csl) gene superfamilies encode key enzymes involved in the synthesis of cellulose and hemicellulose, which are major components of plant cell walls, and play important roles in the regulation of fruit ripening. However, genome-wide identification and functional analysis of the CesA and Csl gene families in strawberry remain limited. In this study, eight CesA genes and 25 Csl genes were identified in the genome of diploid woodland strawberry (Fragaria vesca). The protein structures, evolutionary relationships, and cis-acting elements of the promoter for each gene were investigated. Transcriptome analysis and quantitative real-time PCR (qRT-PCR) results showed that the transcript levels of many FveCesA and FveCsl genes were significantly decreased during fruit ripening. Moreover, based on the transcriptome analysis, we found that the expression levels of many FveCesA/Csl genes were changed after nordihydroguaiaretic acid (NDGA) treatment. Transient overexpression of FveCesA4 in immature strawberry fruit increased fruit firmness and reduced fresh fruit weight, thereby delaying ripening. In contrast, transient expression of FveCesA4-RNAi resulted in the opposite phenotypes. These findings provide fundamental information on strawberry CesA and Csl genes and may contribute to the elucidation of the molecular mechanism by which FveCesA/Csl-mediated cell wall synthesis regulates fruit ripening. In addition, these results may be useful in strawberry breeding programs focused on the development of new cultivars with increased fruit shelf-life.
Collapse
Affiliation(s)
- Hexin Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuai Zhao
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agriculture, Key Laboratory of Crop Biotechnology in Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junli Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianxiang Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ganggang Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ming Xu
- College of Agriculture, Key Laboratory of Crop Biotechnology in Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sufeng Liao
- College of Agriculture, Key Laboratory of Crop Biotechnology in Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruoting Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiayi Lan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yangxin Su
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiong Liao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
39
|
Qi L, Shi Y, Li C, Liu J, Chong SL, Lim KJ, Si J, Han Z, Chen D. Glucomannan in Dendrobium catenatum: Bioactivities, Biosynthesis and Perspective. Genes (Basel) 2022; 13:1957. [PMID: 36360194 PMCID: PMC9690530 DOI: 10.3390/genes13111957] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 07/13/2024] Open
Abstract
Dendrobium catenatum is a classical and precious dual-use plant for both medicine and food in China. It was first recorded in Shen Nong's Herbal Classic, and has the traditional functions of nourishing yin, antipyresis, tonifying the stomach, and promoting fluid production. The stem is its medicinal part and is rich in active polysaccharide glucomannan. As an excellent dietary fiber, glucomannan has been experimentally confirmed to be involved in anti-cancer, enhancing immunity, lowering blood sugar and blood lipids, etc. Here, the status quo of the D. catenatum industry, the structure, bioactivities, biosynthesis pathway and key genes of glucomannan are systematically described to provide a crucial foundation and theoretical basis for understanding the value of D. catenatum and the potential application of glucomannan in crop biofortification.
Collapse
Affiliation(s)
- Luyan Qi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Yan Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Cong Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Jingjing Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Sun-Li Chong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Zhigang Han
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| |
Collapse
|
40
|
Hasterok R, Catalan P, Hazen SP, Roulin AC, Vogel JP, Wang K, Mur LAJ. Brachypodium: 20 years as a grass biology model system; the way forward? TRENDS IN PLANT SCIENCE 2022; 27:1002-1016. [PMID: 35644781 DOI: 10.1016/j.tplants.2022.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
It has been 20 years since Brachypodium distachyon was suggested as a model grass species, but ongoing research now encompasses the entire genus. Extensive Brachypodium genome sequencing programmes have provided resources to explore the determinants and drivers of population diversity. This has been accompanied by cytomolecular studies to make Brachypodium a platform to investigate speciation, polyploidisation, perenniality, and various aspects of chromosome and interphase nucleus organisation. The value of Brachypodium as a functional genomic platform has been underscored by the identification of key genes for development, biotic and abiotic stress, and cell wall structure and function. While Brachypodium is relevant to the biofuel industry, its impact goes far beyond that as an intriguing model to study climate change and combinatorial stress.
Collapse
Affiliation(s)
- Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland.
| | - Pilar Catalan
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca 22071, Spain; Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza E-50059, Spain
| | - Samuel P Hazen
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Anne C Roulin
- Department of Plant and Microbial Biology, University of Zürich, Zürich 8008, Switzerland
| | - John P Vogel
- DOE Joint Genome Institute, Berkeley, CA 94720, USA; University California, Berkeley, Berkeley, CA 94720, USA
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, China
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Edward Llwyd Building, Aberystwyth SY23 3DA, UK; College of Agronomy, Shanxi Agricultural University, Taiyuan 030801, Shanxi, China.
| |
Collapse
|
41
|
Wang J, Li J, Lin W, Deng B, Lin L, Lv X, Hu Q, Liu K, Fatima M, He B, Qiu D, Ma X. Genome-wide identification and adaptive evolution of CesA/Csl superfamily among species with different life forms in Orchidaceae. FRONTIERS IN PLANT SCIENCE 2022; 13:994679. [PMID: 36247544 PMCID: PMC9559377 DOI: 10.3389/fpls.2022.994679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Orchidaceae, with more than 25,000 species, is one of the largest flowering plant families that can successfully colonize wide ecological niches, such as land, trees, or rocks, and its members are divided into epiphytic, terrestrial, and saprophytic types according to their life forms. Cellulose synthase (CesA) and cellulose synthase-like (Csl) genes are key regulators in the synthesis of plant cell wall polysaccharides, which play an important role in the adaptation of orchids to resist abiotic stresses, such as drought and cold. In this study, nine whole-genome sequenced orchid species with three types of life forms were selected; the CesA/Csl gene family was identified; the evolutionary roles and expression patterns of CesA/Csl genes adapted to different life forms and abiotic stresses were investigated. The CesA/Csl genes of nine orchid species were divided into eight subfamilies: CesA and CslA/B/C/D/E/G/H, among which the CslD subfamily had the highest number of genes, followed by CesA, whereas CslB subfamily had the least number of genes. Expansion of the CesA/Csl gene family in orchids mainly occurred in the CslD and CslF subfamilies. Conserved domain analysis revealed that eight subfamilies were conserved with variations in orchids. In total, 17 pairs of CesA/Csl homologous genes underwent positive selection, of which 86%, 14%, and none belonged to the epiphytic, terrestrial, and saprophytic orchids, respectively. The inter-species collinearity analysis showed that the CslD genes expanded in epiphytic orchids. Compared with terrestrial and saprophytic orchids, epiphytic orchids experienced greater strength of positive selection, with expansion events mostly related to the CslD subfamily, which might have resulted in strong adaptability to stress in epiphytes. Experiments on stem expression changes under abiotic stress showed that the CslA might be a key subfamily in response to drought stress for orchids with different life forms, whereas the CslD might be a key subfamily in epiphytic and saprophytic orchids to adapt to freezing stress. This study provides the basic knowledge for the further systematic study of the adaptive evolution of the CesA/Csl superfamily in angiosperms with different life forms, and research on orchid-specific functional genes related to life-history trait evolution.
Collapse
Affiliation(s)
- Jingjing Wang
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Li
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ban Deng
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lixian Lin
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuanrui Lv
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qilin Hu
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kunpeng Liu
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mahpara Fatima
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bizhu He
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongliang Qiu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaokai Ma
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
42
|
Yang ZY, Cao XY, Zheng XW, Wang TQ, Wang JN, Feng F, Ye CH. Biochemical, transcriptome and metabolome analysis of the pulp of Citrus sinensis (L.) Osbeck ‘Hong Jiang’ and its two variants reveal pathways regulating pulp taste, mastication, and color. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
43
|
Gregusová V, Kaňuková Š, Hudcovicová M, Bojnanská K, Ondreičková K, Piršelová B, Mészáros P, Lengyelová L, Galuščáková Ľ, Kubová V, Matušíková I, Mihálik D, Kraic J, Havrlentová M. The Cell-Wall β-d-Glucan in Leaves of Oat ( Avena sativa L.) Affected by Fungal Pathogen Blumeria graminis f. sp. avenae. Polymers (Basel) 2022; 14:3416. [PMID: 36015673 PMCID: PMC9415129 DOI: 10.3390/polym14163416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
In addition to the structural and storage functions of the (1,3; 1,4)-β-d-glucans (β-d-glucan), the possible protective role of this polymer under biotic stresses is still debated. The aim of this study was to contribute to this hypothesis by analyzing the β-d-glucans content, expression of related cellulose synthase-like (Csl) Cs1F6, CslF9, CslF3 genes, content of chlorophylls, and β-1,3-glucanase content in oat (Avena sativa L.) leaves infected with the commonly occurring oat fungal pathogen, Blumeria graminis f. sp. avenae (B. graminis). Its presence influenced all measured parameters. The content of β-d-glucans in infected leaves decreased in all used varieties, compared to the non-infected plants, but not significantly. Oats reacted differently, with Aragon and Vaclav responding with overexpression, and Bay Yan 2, Ivory, and Racoon responding with the underexpression of these genes. Pathogens changed the relative ratios regarding the expression of CslF6, CslF9, and CslF3 genes from neutral to negative correlations. However, changes in the expression of these genes did not statistically significantly affect the content of β-d-glucans. A very slight indication of positive correlation, but statistically insignificant, was observed between the contents of β-d-glucans and chlorophylls. Some isoforms of β-1,3-glucanases accumulated to a several-times higher level in the infected leaves of all varieties. New isoforms of β-1,3-glucanases were also detected in infected leaves after fungal infection.
Collapse
Affiliation(s)
- Veronika Gregusová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Šarlota Kaňuková
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Martina Hudcovicová
- National Agricultural and Food Centre, Research Institute of Plant Production, 921 01 Piešťany, Slovakia
| | - Katarína Bojnanská
- National Agricultural and Food Centre, Research Institute of Plant Production, 921 01 Piešťany, Slovakia
| | - Katarína Ondreičková
- National Agricultural and Food Centre, Research Institute of Plant Production, 921 01 Piešťany, Slovakia
| | - Beáta Piršelová
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University, 949 01 Nitra, Slovakia
| | - Patrik Mészáros
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University, 949 01 Nitra, Slovakia
| | - Libuša Lengyelová
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University, 949 01 Nitra, Slovakia
| | - Ľudmila Galuščáková
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University, 949 01 Nitra, Slovakia
| | - Veronika Kubová
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University, 949 01 Nitra, Slovakia
| | - Ildikó Matušíková
- Department of Ecochemistry and Radioecology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Daniel Mihálik
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
- National Agricultural and Food Centre, Research Institute of Plant Production, 921 01 Piešťany, Slovakia
| | - Ján Kraic
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
- National Agricultural and Food Centre, Research Institute of Plant Production, 921 01 Piešťany, Slovakia
| | - Michaela Havrlentová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
- National Agricultural and Food Centre, Research Institute of Plant Production, 921 01 Piešťany, Slovakia
| |
Collapse
|
44
|
Hozlár P, Gregusová V, Nemeček P, Šliková S, Havrlentová M. Study of Dynamic Accumulation in β-D-Glucan in Oat (Avena sativa L.) during Plant Development. Polymers (Basel) 2022; 14:polym14132668. [PMID: 35808713 PMCID: PMC9269010 DOI: 10.3390/polym14132668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Oat is an important natural source of β-D-glucan. This polysaccharide of the cell wall of selected cereals is known for a number of health-promoting effects, such as reducing the level of cholesterol in the blood serum, stabilizing the level of blood glucose, or enhancing immunity. β-D-glucan has positive effects in the plant itself. There is a lack of information available, but the storage capacity of the polysaccharide and its importance as a protective substance in the plant during mild forms of biotic and abiotic stress are described. The accumulation of β-D-glucan during the ontogenetic development of oats (Avena sativa L.) was determined in the present work. Two naked (Valentin, Vaclav) and two hulled (Hronec, Tatran) oat varieties were used. Samples of each plant (root, stem, leaf, panicle) were collected in four stages of the plant’s development (BBCH 13, 30, 55, 71). The average content of the biopolymer was 0.29 ± 0.14% in roots, 0.32 ± 0.11% in stems, 0.48 ± 0.13% in leaves and 1.28 ± 0.79% in panicles, respectively. For root and panicle, in both hulled and naked oat varieties, sampling date was the factor of variability in the content of β-D-glucan. In stems in hulled varieties and leaves in naked varieties, neither the sampling date nor variety influenced the polysaccharide content. The content of β-D-glucan in the leaves of hulled and naked varieties decreased during the first three stages of plant development, but in the stage of milk ripeness the amount increased. The decreasing trend during milk ripeness, was also observed in the roots of both hulled and naked oats. However, in the panicle of hulled and naked oat varieties, the content of β-D-glucan increased during plant growth. Due to practical applications of natural resources of β-D-glucan and isolated β-D-glucan is useful to know the factors influencing its content as well as to ascertain the behavior of the polysaccharide during plant development.
Collapse
Affiliation(s)
- Peter Hozlár
- National Agricultural and Food Center, Research Institute of Plant Production, Bratislavská Cesta 122, 92168 Piešťany, Slovakia; (P.H.); (S.Š.)
| | - Veronika Gregusová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Námestie Jozefa Herdu 2, 91701 Trnava, Slovakia;
| | - Peter Nemeček
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Námestie Jozefa Herdu 2, 91701 Trnava, Slovakia;
| | - Svetlana Šliková
- National Agricultural and Food Center, Research Institute of Plant Production, Bratislavská Cesta 122, 92168 Piešťany, Slovakia; (P.H.); (S.Š.)
| | - Michaela Havrlentová
- National Agricultural and Food Center, Research Institute of Plant Production, Bratislavská Cesta 122, 92168 Piešťany, Slovakia; (P.H.); (S.Š.)
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Námestie Jozefa Herdu 2, 91701 Trnava, Slovakia;
- Correspondence:
| |
Collapse
|
45
|
Lou H, Tucker MR, Shirley NJ, Lahnstein J, Yang X, Ma C, Schwerdt J, Fusi R, Burton RA, Band LR, Bennett MJ, Bulone V. The cellulose synthase-like F3 (CslF3) gene mediates cell wall polysaccharide synthesis and affects root growth and differentiation in barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1681-1699. [PMID: 35395116 PMCID: PMC9324092 DOI: 10.1111/tpj.15764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The barley cellulose synthase-like F (CslF) genes encode putative cell wall polysaccharide synthases. They are related to the cellulose synthase (CesA) genes involved in cellulose biosynthesis, and the CslD genes that influence root hair development. Although CslD genes are implicated in callose, mannan and cellulose biosynthesis, and are found in both monocots and eudicots, CslF genes are specific to the Poaceae. Recently the barley CslF3 (HvCslF3) gene was shown to be involved in the synthesis of a novel (1,4)-β-linked glucoxylan, but it remains unclear whether this gene contributes to plant growth and development. Here, expression profiling using qRT-PCR and mRNA in situ hybridization revealed that HvCslF3 accumulates in the root elongation zone. Silencing HvCslF3 by RNAi was accompanied by slower root growth, linked with a shorter elongation zone and a significant reduction in root system size. Polymer profiling of the RNAi lines revealed a significant reduction in (1,4)-β-linked glucoxylan levels. Remarkably, the heterologous expression of HvCslF3 in wild-type (Col-0) and root hair-deficient Arabidopsis mutants (csld3 and csld5) complemented the csld5 mutant phenotype, in addition to altering epidermal cell fate. Our results reveal a key role for HvCslF3 during barley root development and suggest that members of the CslD and CslF gene families have similar functions during root growth regulation.
Collapse
Affiliation(s)
- Haoyu Lou
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- Division of Plant and Crop Sciences, School of BioscienceUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - Matthew R. Tucker
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Neil J. Shirley
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Jelle Lahnstein
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- Adelaide Glycomics, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Xiujuan Yang
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Chao Ma
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Julian Schwerdt
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- Adelaide Glycomics, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Riccardo Fusi
- Division of Plant and Crop Sciences, School of BioscienceUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - Rachel A. Burton
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
| | - Leah R. Band
- Division of Plant and Crop Sciences, School of BioscienceUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
- School of Mathematical SciencesUniversity of NottinghamNottinghamNG7 2RDUK
| | - Malcolm J. Bennett
- Division of Plant and Crop Sciences, School of BioscienceUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - Vincent Bulone
- School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- Adelaide Glycomics, School of Agriculture, Food and WineUniversity of AdelaideWaite CampusUrrbraeSouth Australia5064Australia
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and HealthRoyal Institute of Technology (KTH), AlbaNova University CentreStockholmSweden
| |
Collapse
|
46
|
Tinker NA, Wight CP, Bekele WA, Yan W, Jellen EN, Renhuldt NT, Sirijovski N, Lux T, Spannagl M, Mascher M. Genome analysis in Avena sativa reveals hidden breeding barriers and opportunities for oat improvement. Commun Biol 2022; 5:474. [PMID: 35585176 PMCID: PMC9117302 DOI: 10.1038/s42003-022-03256-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/10/2022] [Indexed: 11/22/2022] Open
Abstract
Oat (Avena sativa L.) is an important and nutritious cereal crop, and there is a growing need to identify genes that contribute to improved oat varieties. Here we utilize a newly sequenced and annotated oat reference genome to locate and characterize quantitative trait loci (QTLs) affecting agronomic and grain-quality traits in five oat populations. We find strong and significant associations between the positions of candidate genes and QTL that affect heading date, as well as those that influence the concentrations of oil and β-glucan in the grain. We examine genome-wide recombination profiles to confirm the presence of a large, unbalanced translocation from chromosome 1 C to 1 A, and a possible inversion on chromosome 7D. Such chromosome rearrangements appear to be common in oat, where they cause pseudo-linkage and recombination suppression, affecting the segregation, localization, and deployment of QTLs in breeding programs. Tinker et al. identified the position and effects of major QTLs relative to a new fully annotated reference genome in five recombinant inbred line populations representing nine diverse oat (Avena sativa) varieties. They also characterized two major chromosome rearrangements that may impact breeding targets affected by QTL that are located in these regions.
Collapse
Affiliation(s)
- Nicholas A Tinker
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, K.W. Neatby Bldg., Central Experimental Farm, Ottawa, K1A 0C6, ON, Canada.
| | - Charlene P Wight
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, K.W. Neatby Bldg., Central Experimental Farm, Ottawa, K1A 0C6, ON, Canada
| | - Wubishet A Bekele
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, K.W. Neatby Bldg., Central Experimental Farm, Ottawa, K1A 0C6, ON, Canada
| | - Weikai Yan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, K.W. Neatby Bldg., Central Experimental Farm, Ottawa, K1A 0C6, ON, Canada
| | - Eric N Jellen
- Department of Plant and Wildlife Sciences, Brigham Young University, 4105 LSB, Provo, 84602, Utah, USA
| | - Nikos Tsardakas Renhuldt
- Lund University, Department of Chemistry, Division of Pure and Applied Biochemistry, Box 124, 221 00, Lund, Sweden
| | - Nick Sirijovski
- Lund University, Department of Chemistry, Division of Pure and Applied Biochemistry, Box 124, 221 00, Lund, Sweden.,CropTailor AB, c/o Lund University, Department of Chemistry, Division of Pure and Applied Biochemistry, Box 124, 221 00, Lund, Sweden.,Oatly AB, Food Science, Scheelevägen 19, 223 63, Lund, Sweden
| | - Thomas Lux
- Helmholtz Center Munich - Research Center for Environmental Health, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Manuel Spannagl
- Helmholtz Center Munich - Research Center for Environmental Health, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Domestication Genomics, Corrensstrasse 3, 06466, Seeland, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany
| |
Collapse
|
47
|
Dora S, Terrett OM, Sánchez-Rodríguez C. Plant-microbe interactions in the apoplast: Communication at the plant cell wall. THE PLANT CELL 2022; 34:1532-1550. [PMID: 35157079 PMCID: PMC9048882 DOI: 10.1093/plcell/koac040] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/29/2022] [Indexed: 05/20/2023]
Abstract
The apoplast is a continuous plant compartment that connects cells between tissues and organs and is one of the first sites of interaction between plants and microbes. The plant cell wall occupies most of the apoplast and is composed of polysaccharides and associated proteins and ions. This dynamic part of the cell constitutes an essential physical barrier and a source of nutrients for the microbe. At the same time, the plant cell wall serves important functions in the interkingdom detection, recognition, and response to other organisms. Thus, both plant and microbe modify the plant cell wall and its environment in versatile ways to benefit from the interaction. We discuss here crucial processes occurring at the plant cell wall during the contact and communication between microbe and plant. Finally, we argue that these local and dynamic changes need to be considered to fully understand plant-microbe interactions.
Collapse
|
48
|
Pancaldi F, van Loo EN, Schranz ME, Trindade LM. Genomic Architecture and Evolution of the Cellulose synthase Gene Superfamily as Revealed by Phylogenomic Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:870818. [PMID: 35519813 PMCID: PMC9062648 DOI: 10.3389/fpls.2022.870818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The Cellulose synthase superfamily synthesizes cellulose and different hemicellulosic polysaccharides in plant cell walls. While much has been discovered about the evolution and function of these genes, their genomic architecture and relationship with gene (sub-)functionalization and evolution remains unclear. By using 242 genomes covering plant evolution from green algae to eudicots, we performed a large-scale analysis of synteny, phylogenetic, and functional data of the CesA superfamily. Results revealed considerable gene copy number variation across species and gene families, and also two patterns - singletons vs. tandem arrays - in chromosomic gene arrangement. Synteny analysis revealed exceptional conservation of gene architecture across species, but also lineage-specific patterns across gene (sub-)families. Synteny patterns correlated with gene sub-functionalization into primary and secondary CesAs and distinct CslD functional isoforms. Furthermore, a genomic context shift of a group of cotton secondary CesAs was associated with peculiar properties of cotton fiber synthesis. Finally, phylogenetics suggested that primary CesA sequences appeared before the secondary CesAs, while phylogenomic analyses unveiled the genomic trace of the CslD duplication that initiated the CslF family. Our results describe in detail the genomic architecture of the CesA superfamily in plants, highlighting its crucial relevance for gene diversification and sub-functionalization, and for understanding their evolution.
Collapse
Affiliation(s)
- Francesco Pancaldi
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | | | - M. Eric Schranz
- Biosystematics group, Wageningen University & Research, Wageningen, Netherlands
| | - Luisa M. Trindade
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
49
|
Molecular studies of cellulose synthase supercomplex from cotton fiber reveal its unique biochemical properties. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1776-1793. [PMID: 35394636 DOI: 10.1007/s11427-022-2083-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/01/2022] [Indexed: 01/08/2023]
Abstract
Cotton fiber is a highly elongated and thickened single cell that produces large quantities of cellulose, which is synthesized and assembled into cell wall microfibrils by the cellulose synthase complex (CSC). In this study, we report that in cotton (Gossypium hirsutum) fibers harvested during secondary cell wall (SCW) synthesis, GhCesA 4, 7, and 8 assembled into heteromers in a previously uncharacterized 36-mer-like cellulose synthase supercomplex (CSS). This super CSC was observed in samples prepared using cotton fiber cells harvested during the SCW synthesis period but not from cotton stem tissue or any samples obtained from Arabidopsis. Knock-out of any of GhCesA 4, 7, and 8 resulted in the disappearance of the CSS and the production of fiber cells with no SCW thickening. Cotton fiber CSS showed significantly higher enzyme activity than samples prepared from knock-out cotton lines. We found that the microfibrils from the SCW of wild-type cotton fibers may contain 72 glucan chains in a bundle, unlike other plant materials studied. GhCesA4, 7, and 8 restored both the dwarf and reduced vascular bundle phenotypes of their orthologous Arabidopsis mutants, potentially by reforming the CSC hexamers. Genetic complementation was not observed when non-orthologous CesA genes were used, indicating that each of the three subunits is indispensable for CSC formation and for full cellulose synthase function. Characterization of cotton CSS will increase our understanding of the regulation of SCW biosynthesis.
Collapse
|
50
|
Zhang S, Xia Z, Li C, Wang X, Lu X, Zhang W, Ma H, Zhou X, Zhang W, Zhu T, Liu P, Liu G, Wang W, Xia T. Chromosome-Scale Genome Assembly Provides Insights into Speciation of Allotetraploid and Massive Biomass Accumulation of Elephant Grass (Pennisetum purpureum Schum.). Mol Ecol Resour 2022; 22:2363-2378. [PMID: 35347881 DOI: 10.1111/1755-0998.13612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
Abstract
Elephant grass (Pennisetum purpureum Schum) is an important forage, biofuels and industrial plant widely distributed in tropical and subtropical areas globally. It is characterized with robust growth and high biomass. We sequenced its allopolyploid genome and assembled 2.07 Gb into A' and B sub-genomes of 14 chromosomes with scaffold N50 of 8.47 Mb, yielding a total of 77,139 genes. The allotetraploid speciation occurred approximately 15 MYA after the divergence between Setaria italica and Pennisetum glaucum, according to a phylogenetic analysis of Pennisetum species. Double whole-genome duplication (WGD) and polyploidization events resulted in large scale gene expansion, especially in the key steps of growth and biomass accumulation. Integrated transcriptome profiling revealed the functional divergence between sub-genomes A' and B. A' sub-genome mainly contributed to plant growth, development and photosynthesis, whereas the B sub-genome was primarily responsible for effective transportation and resistance to stimulation. Some key gene families related to cellulose biosynthesis were expanded and highly expressed in stems, which could explain the high cellulose content in elephant grass. Our findings provide deep insights into genetic evolution of elephant grass and will aid future biological research and breeding, even for other grasses in the family Poaceae.
Collapse
Affiliation(s)
- Shengkui Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, 250353, Shandong, PR China.,School of Bioengineering, Qilu University of Technology, Jinan, 250353, Shandong, PR China
| | - Zhiqiang Xia
- College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, PR China
| | - Can Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, 250353, Shandong, PR China.,School of Bioengineering, Qilu University of Technology, Jinan, 250353, Shandong, PR China
| | - Xiaohan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, 250353, Shandong, PR China.,School of Bioengineering, Qilu University of Technology, Jinan, 250353, Shandong, PR China
| | - Xianqin Lu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, 250353, Shandong, PR China.,School of Bioengineering, Qilu University of Technology, Jinan, 250353, Shandong, PR China
| | - Wenqing Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, 250353, Shandong, PR China.,School of Bioengineering, Qilu University of Technology, Jinan, 250353, Shandong, PR China
| | - Haizhen Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, 250353, Shandong, PR China.,School of Bioengineering, Qilu University of Technology, Jinan, 250353, Shandong, PR China
| | - Xincheng Zhou
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haiko, 571101, Hainan, PR China
| | - Weixiong Zhang
- Department of Computer Science and Engineering, Department of Genetics, Washington University, St. Louis, MO, USA
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Pandao Liu
- Institute of Tropical Crops Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571700, Hainan, PR China
| | - Guodao Liu
- Institute of Tropical Crops Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571700, Hainan, PR China
| | - Wenquan Wang
- College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, PR China.,Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haiko, 571101, Hainan, PR China
| | - Tao Xia
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, 250353, Shandong, PR China.,School of Bioengineering, Qilu University of Technology, Jinan, 250353, Shandong, PR China
| |
Collapse
|