1
|
Zhao YL, Li Y, Guo DD, Chen XJ, Cao K, Wu JL, Fang WC, Chen CW, Wang XW, Wang LR. Spatiotemporally transcriptomic analyses of floral buds reveal the high-resolution landscape of flower development and dormancy regulation in peach. HORTICULTURE RESEARCH 2025; 12:uhaf029. [PMID: 40224326 PMCID: PMC11986580 DOI: 10.1093/hr/uhaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/17/2025] [Indexed: 04/15/2025]
Abstract
The spatiotemporal transcriptome dataset reported here provides the peach flower bud's gene expression atlas at spatiotemporal resolution level using the 10x Genomics Visium platform. This dataset can be used to define transcript accumulation for any interesting genes across several flower bud cells. It was generated using three peach flower bud samples during the activity-dormancy period, providing valuable insight into gene expression profiling and developmental stages under different environmental contexts or conditions. Importantly, we found that different cell types are related to specific regulatory programs, including signal transduction, environment and stress responses, and flower development. Our research provides insight into the transcriptomic landscape of the key cell types for flower buds and opens new avenues to study cell-type specification, function, and differentiation in Rosaceae fruit trees. A series of pivotal genes (e.g. AMS, MS188, MS1) for flower bud development were identified. These results provide a valuable reference for the activity-dormancy transition in perennial deciduous fruit trees.
Collapse
Affiliation(s)
- Ya-lin Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji, Xinjiang 831100, China
| | - Dan-dan Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Xue-jia Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Jin-long Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Wei-chao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Chang-wen Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
| | - Xin-wei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji, Xinjiang 831100, China
| | - Li-rong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji, Xinjiang 831100, China
| |
Collapse
|
2
|
Liu H, Muro K, Chishima R, Takano J, Tominaga M. Myosin XI is required for boron transport under boron limitation via maintenance of endocytosis and polar localization of the boric acid channel AtNIP5;1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109938. [PMID: 40262396 DOI: 10.1016/j.plaphy.2025.109938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
Myosin XI plays a major role in cytoplasmic streaming and is essential for intracellular transport. Here, we investigated the physiological roles of myosin XI in nutrient transport using double (2ko) and triple (3ko) myosin XI knockout mutants of Arabidopsis thaliana. The results revealed that the mutants exhibited more severe boron deficiency phenotypes under boron-limiting conditions, and the boron concentration in the aerial parts of mutant plants was lower than that in the wild-type. Microscopic analysis demonstrated a reduction in general endocytosis and abolishment of NIP5; 1's polar localization in 2ko and 3ko plants. Overall, these results indicate that myosin XI is necessary for proper boron transport via the maintenance of the endocytic pathway and NIP5; 1's polar localization.
Collapse
Affiliation(s)
- Haiyang Liu
- Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-0056, Japan
| | - Keita Muro
- Graduate School of Agriculture, Osaka Metropolitan University, Gakuen-cho 1-1, Naka-ku, Sakai, 599-8531, Japan
| | - Riku Chishima
- Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-0056, Japan
| | - Junpei Takano
- Graduate School of Agriculture, Osaka Metropolitan University, Gakuen-cho 1-1, Naka-ku, Sakai, 599-8531, Japan
| | - Motoki Tominaga
- Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-0056, Japan; Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-0056, Japan.
| |
Collapse
|
3
|
Muro K, Yamasaki A, Matsumoto M, Tanaka YK, Ogra Y, Fujiwara T, Yoshinari A, Takano J. The polar-localized borate exporter BOR1 facilitates boron transport in tapetal cells to the developing pollen grains. PLANT PHYSIOLOGY 2025; 197:kiaf100. [PMID: 40106664 PMCID: PMC11953027 DOI: 10.1093/plphys/kiaf100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 03/22/2025]
Abstract
Boron is an essential micronutrient required for plant cell wall integrity, as it is necessary for crosslinking the pectic polysaccharide rhamnogalacturonan II. Reproductive organs require a greater amount of boron for development and growth compared with vegetative organs. However, the mechanism by which plants distribute boron to specific organs is not fully understood. Under boron-limited conditions, the borate exporter BOR1 plays a central role in transporting boron from the roots to the shoots in Arabidopsis (Arabidopsis thaliana). Here, we found that BOR1 is expressed in the tapetal cells of young anthers in unopened buds, showing polar localization toward the locule where microspores develop. Tapetum-localized BOR1 undergoes endocytosis and is subsequently degraded during anther development. BOR1 degradation occurs independently of the lysine residue at Position 590 of BOR1, which is responsible for high boron-induced ubiquitination and degradation. Loss-of-function bor1 mutants exhibit disrupted pollen structure, causing reduced fertility under boron-sufficient conditions in the wild type. These phenotypes were rescued by supplementing with high boron concentrations. Furthermore, inflorescence stem grafting experiments suggested that BOR1-dependent boron transport in the flower is necessary for pollen development and subsequent fertilization under boron-sufficient conditions. Our findings suggest the borate exporter BOR1, together with the previously described boric acid channel NIP7;1, facilitates boron transport in tapetal cells toward the locule, thereby supporting pollen development in young anthers under boron-limited conditions.
Collapse
Affiliation(s)
- Keita Muro
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Arisa Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Maki Matsumoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Yu-Ki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Akira Yoshinari
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Junpei Takano
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka 599-8531, Japan
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan
| |
Collapse
|
4
|
Sharma Y, Hemmings AM, Deshmukh R, Pareek A. Metalloid transporters in plants: bridging the gap in molecular structure and physiological exaptation. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1370-1389. [PMID: 38847578 DOI: 10.1093/jxb/erae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/06/2024] [Indexed: 03/15/2025]
Abstract
The rhizosphere contains both essential nutrients and potentially harmful substances for plant growth. Plants, as sessile organisms, must efficiently absorb the necessary nutrients while actively avoiding the uptake of toxic compounds. Metalloids, elements that exhibit properties of both metals and non-metals, can have different effects on plant growth, from being essential and beneficial to being toxic. This toxicity arises due to either the dosage of exposure or the specific elemental type. To utilize or detoxify these elements, plants have developed various transporters regulating their uptake and distribution in plants. Genomic sequence analysis suggests that such transporter families exist throughout the plant kingdom, from chlorophytes to higher plants. These transporters form defined families with related transport preferences. The isoforms within these families have evolved with specialized functions regulated by defined selectivity. Hence, understanding the chemistry of transporters to atomic detail is important to achieve the desired genetic modifications for crop improvement. We outline various adaptations in plant transport systems to deal with metalloids, including their uptake, distribution, detoxification, and homeostasis in plant tissues. Structural parallels are drawn to other nutrient transporter systems to support emerging themes of functional diversity of active sites of transporters, elucidating plant adaptations to utilize and extrude metalloid concentrations. Considering the observed physiological importance of metalloids, this review highlights the shared and disparate features in metalloid transport systems and their corresponding nutrient transporters.
Collapse
Affiliation(s)
- Yogesh Sharma
- National Agri-Food Biotechnology Institute, Mohali 140306, India
| | - Andrew M Hemmings
- School of Biological Sciences, University of East Anglia, Norwich, Norwich NR4 7TJ, UK
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali 140306, India
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
5
|
Jiang Z, Liu L, Wang S, Ye X, Liu Z, Xu F. Transcriptional Analysis Reveals the Differences in Response of Floral Buds to Boron Deficiency Between Two Contrasting Brassica napus Varieties. PLANTS (BASEL, SWITZERLAND) 2025; 14:859. [PMID: 40265801 PMCID: PMC11944869 DOI: 10.3390/plants14060859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025]
Abstract
Boron (B) is an essential micronutrient for the development of crops, and its reproductive stage is particularly sensitive to B deficiency. Brassica napus L., as an important oil-crop species, is extremely vulnerable to B deficiency. The typical B-deficient symptom of "flowering without seed setting" usually results in severe yield loss. However, few studies have focused on the response of the reproductive organs to B deficiency. In this study, the B-efficient variety "Zhongshuang 11" (ZS11) and the B-inefficient variety "Westar 10" (W10) of Brassica napus were selected to be cultivated at the developmental stage (BBCH15) in a pot experiment, both with and without B supply. Clear phenotype differences in B deficiency between the two varieties' flowers appeared only at the reproductive stage, and only W10 showed symptoms of delayed flower opening, stigma exsertion, and resulted in abortion. Transcriptome analysis for the early buds of both varieties between B supply (+B) and free (-B) treatments revealed that W10 had more differentially expressed genes (DEGs) corresponding to its greater susceptibility to -B. As two potential mechanisms to improve B-efficient utilization, we focused on analyzing the expression profiles of B transporter-related genes and phytohormone metabolism-related genes. BnaC05.NIP7;1, BnaC08.NIP3;1, and BnaBOR2s were identified as the key genes which could enhance the capacity of B translocation to buds of ZS11. Additionally, combined with a phytohormone concentration measurement, we showed that a significant increase in IAA and a drastic decrease in JA could predominantly lead to the abnormal development of W10's buds. BnaC02.NIT2 (Nitrilase 2) and BnaKAT5s (3-Ketoacyl-CoA Thiolase 5), which are IAA and JA biosynthesis genes, respectively, could be the key genes responsible for the changes in IAA and JA concentrations in W10's buds under -B. These candidate genes may regulate the genotype differences in the response of the rapeseed reproductive stage to -B between different B-efficient varieties. It also has potential to breed rapeseed varieties with B-efficient utilization in the reproductive stage, which would improve the seed yield under -B condition.
Collapse
Affiliation(s)
- Zhexuan Jiang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; (Z.J.)
| | - Lan Liu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; (Z.J.)
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; (Z.J.)
| | - Xiangsheng Ye
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; (Z.J.)
| | - Zhaojun Liu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; (Z.J.)
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; (Z.J.)
| |
Collapse
|
6
|
Jiang Z, Yao J, Wang S, Liu L, Shi L, Xu F, Liu Z. Transcriptome and phytohormone profiling of stamen and pistil in Brassica napus under boron deficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109393. [PMID: 39721193 DOI: 10.1016/j.plaphy.2024.109393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Plant reproduction is a fundamental requirement for plants to sustain genetic inheritance. In the perspective of plant nutrition, such process is strongly influenced by boron deficiency (-B) and as documented about a century ago. To date, little is known about the mechanism of boron deficiency-induced fertility reduction. In this study, we successfully established a cultivation system for Brassica napus to precisely manipulate boron supply when the generative stage initiates. We dissected the stamen and pistil of early-developing Brassica napus flower buds for transcriptome and phytohormone analysis, and demonstrated pistil and stamen showed distinct responding processes to -B. In addition, we revealed that auxin (IAA)-related compounds and several IAA-biosynthesis genes may play important roles in reproductive organ responding to -B, suggesting the IAA metabolism pathway seems to play a crucial role in -B induced reproductive organ abortion process. Taken together, we created a reliable system to study boron deficiency induced fertility reduction, by which generated the first transcriptome result for dissected stamen and pistil under different boron regimes, and suggested IAA metabolism pathway deserves as important target for further study in such regimes.
Collapse
Affiliation(s)
- Zhexuan Jiang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinliang Yao
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lan Liu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhaojun Liu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| |
Collapse
|
7
|
Vendemiatti E, Moreira RO, Dos Reis GL, Hernandez-De Lira IO, Peña-Yewtukhiw E, Hippler FWR, Torres-Dorante LO, Pavuluri K, Valentine A, Nascimento VL, Benedito VA. Global transcriptional modulation and nutritional status of soybean plants following foliar application of zinc borate as a suspension concentrate fertilizer. Sci Rep 2025; 15:3309. [PMID: 39865117 PMCID: PMC11770081 DOI: 10.1038/s41598-025-87771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
The management of micronutrients, such as boron (B) and zinc (Zn), is critical for plant growth and crop yields. One method of rapid intervention crop management to mitigate nutritional deficiency is the foliar supply of B and Zn. Our study investigates the effect of foliar-supplied B and Zn availability on the global transcriptional modulation in soybean (Glycine max). The transcriptional response to B was more widespread compared to Zn. RNA-Seq of leaves under different B levels revealed modulated genes with potential roles in nutritional homeostasis and stress response that may be key to controlling B status in the plant. We also identified putative B transporters whose expression levels were significantly affected by B supplementation with foliar fertilization of plants growing under low B conditions. Furthermore, a gene lacking functional annotation (Glyma.03G180300) emerged as a novel potential marker of B status. Two genes (Glyma.16G118000, Glyma.16G199000) were consistently induced by Zn availability, highlighting their potential as biomarkers for assessing its status in soybean plants. This work advances our understanding of nutritional homeostasis in soybean plants and identifies target genes and potential molecular mechanisms involved in nutritional response. Our study informs fertilizer design targeting specific nutrient transporters, thereby enhancing nutrient efficiency in crops.
Collapse
Affiliation(s)
- Eloisa Vendemiatti
- Department of Biology, West Virginia State University, Institute, WV, United States
| | - Rafael Oliveira Moreira
- School of Agriculture and Food Systems, Davis College of Agriculture and Natural Resources, West Virginia University, Morgantown, WV, USA
| | - Gabriel Lasmar Dos Reis
- School of Agriculture and Food Systems, Davis College of Agriculture and Natural Resources, West Virginia University, Morgantown, WV, USA
| | - Inty Omar Hernandez-De Lira
- School of Agriculture and Food Systems, Davis College of Agriculture and Natural Resources, West Virginia University, Morgantown, WV, USA
| | - Eugenia Peña-Yewtukhiw
- School of Agriculture and Food Systems, Davis College of Agriculture and Natural Resources, West Virginia University, Morgantown, WV, USA
| | | | | | - Kiran Pavuluri
- International Fertilizer Development Center, Muscle Shoals, AL, USA
| | - Alex Valentine
- Yara Agronomy and R&D, Yara International S.A, Pocklington, York, UK
| | - Vitor L Nascimento
- Department of Biology, Institute of Natural Sciences, Universidade Federal de Lavras, Lavras, MG, Brazil
| | - Vagner Augusto Benedito
- School of Agriculture and Food Systems, Davis College of Agriculture and Natural Resources, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
8
|
Zhang Z, Nakamura S, Yamasaki A, Uehara M, Takemura S, Tsuchida K, Kamiya T, Shigenobu S, Yamaguchi K, Fujiwara T, Ishiguro S, Takano J. Arabidopsis KNS3 and its two homologs mediate endoplasmic reticulum-to-plasma membrane traffic of boric acid channels. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7046-7065. [PMID: 39474885 PMCID: PMC11629988 DOI: 10.1093/jxb/erae380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/10/2024] [Indexed: 12/11/2024]
Abstract
Membrane proteins targeted to the plasma membrane are first transported from the endoplasmic reticulum (ER) to the Golgi apparatus. This study explored the mechanisms controlling plasma membrane trafficking of the boric acid channel AtNIP5;1 from the ER. Imaging-based screening using transgenic Arabidopsis identified six mutants in which GFP-NIP5;1 was localized in the ER in addition to the plasma membrane. Genetic mapping and whole-genome resequencing identified the responsible gene in four among the six mutants as KAONASHI3 (KNS3)/SPOTTY1/IMPERFECTIVE EXINE FORMATION. Among the plasma membrane-localized proteins tested, NIP5;1 and its homolog NIP6;1 were retained in the ER of the kns3 mutants. Our genetic analysis further discovered that two homologs of KNS3, KNSTH1 and KNSTH2, were also involved in the ER exit of NIP5;1. In Arabidopsis protoplasts and tobacco leaves, mCherry-fused KNS3 localized to the ER and Golgi, whereas KNSTH2 localized to the ER. The cytosolic C-terminal tail of KNS3 contains amino acids important for Golgi-to-ER trafficking. Furthermore, the ER-to-Golgi trafficking of KNS3 depended on KNSTH1 and KNSTH2, and the accumulation of these three proteins in Arabidopsis roots depended on each other. We propose that KNS3, KNSTH1, and KNSTH2 function as a cargo-receptor complex mediating the ER exit of NIP5;1.
Collapse
Affiliation(s)
- Zhe Zhang
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Shunsuke Nakamura
- Graduate School of Agriculture, Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-0808, Japan
| | - Arisa Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Masataka Uehara
- Graduate School of Agriculture, Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-0808, Japan
| | - Shunsuke Takemura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Kohei Tsuchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shuji Shigenobu
- National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki, 444-8585, Japan
| | - Katsushi Yamaguchi
- National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki, 444-8585, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Sumie Ishiguro
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Junpei Takano
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
9
|
Liu W, Xu F, Ye X, Cai H, Shi L, Wang S. BnaC4.BOR2 mediates boron uptake and translocation in Brassica napus under boron deficiency. PLANT, CELL & ENVIRONMENT 2024; 47:3732-3748. [PMID: 38774965 DOI: 10.1111/pce.14959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 11/20/2024]
Abstract
Boron (B) is an essential microelement in plant growth and development. However, the molecular mechanisms underlying B uptake and translocation in Brassica napus are poorly understood. Herein, we identified a low-B (LB)-inducible gene, namely BnaC4.BOR2, with high transcriptional activity in root tips, stele cells, leaves, and floral organs. The green fluorescence protein labelled BnaC4.BOR2 protein was localised to the plasma membrane to demonstrate the B efflux activity in yeast and Arabidopsis. BnaC4.BOR2 knockout considerably reduced B concentration in the root and xylem sap, and altered B distribution in different organs at low B supply, exacerbating B sensitivity at the vegetative and reproductive stages. Additionally, the grafting experiment showed that BnaC4.BOR2 expression in the roots contributed more to B deficiency adaptability than that in the shoots. The pot experiments with LB-soil revealed B concentration in leaves and siliques of BnaC4.BOR2 mutants were markedly reduced, showing an obvious B-deficient phenotype of 'flowering without seed setting' and a considerable reduction in seed yield in B-deficient soil. Altogether, the findings of this study highlight the crucial role of BnaC4.BOR2 in B uptake and translocation during B. napus growth and seed yield under LB conditions.
Collapse
Affiliation(s)
- Wei Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Xiangsheng Ye
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Cai
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Lin J, Zheng X, Xia J, Xie R, Gao J, Ye R, Liang T, Qu M, Luo Y, Wang Y, Ke Y, Li C, Guo J, Lu J, Tang W, Li W, Chen S. Integrative analysis of the transcriptome and proteome reveals the molecular responses of tobacco to boron deficiency. BMC PLANT BIOLOGY 2024; 24:689. [PMID: 39030471 PMCID: PMC11264865 DOI: 10.1186/s12870-024-05391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 07/05/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Boron (B) is an essential micronutrient for plants. Inappropriate B supply detrimentally affects the productivity of numerous crops. Understanding of the molecular responses of plants to different B supply levels would be of significance in crop improvement and cultivation practices to deal with the problem. RESULTS We conducted a comprehensive analysis of the transcriptome and proteome of tobacco seedlings to investigate the expression changes of genes/proteins in response to different B supply levels, with a particular focus on B deficiency. The global gene and protein expression profiles revealed the potential mechanisms involved in the responses of tobacco to B deficiency, including up-regulation of the NIP5;1-BORs module, complex regulation of genes/proteins related to cell wall metabolism, and up-regulation of the antioxidant machinery. CONCLUSION Our results demonstrated that B deficiency caused severe morphological and physiological disorders in tobacco seedlings, and revealed dynamic expression changes of tobacco genes/proteins in response to different B supply levels, especially to B deficiency, thus offering valuable insights into the molecular responses of tobacco to B deficiency.
Collapse
Affiliation(s)
- Jinbin Lin
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Xiangli Zheng
- Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Jing Xia
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongrong Xie
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
- International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingjuan Gao
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
- International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongrong Ye
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Tingmin Liang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengyu Qu
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yaxin Luo
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yuemin Wang
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
| | - Yuqin Ke
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chunying Li
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
| | - Jinping Guo
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China
| | - Jianjun Lu
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Weiqi Tang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Wenqing Li
- Fujian Institute of Tobacco Sciences, Fuzhou, 350003, China.
| | - Songbiao Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
11
|
Liu W, Wang S, Ye X, Xu F. BnaA4.BOR2 contributes the tolerance of rapeseed to boron deficiency by improving the transport of boron from root to shoot. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108508. [PMID: 38490152 DOI: 10.1016/j.plaphy.2024.108508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Boron (B) is essential for plant growth. However, the molecular mechanism of B transport in rapeseed (Brassica napus L.) is unknown well. Here, we report that B transporter BnaA4.BOR2 is involved in the transport of B from root to shoot and its distribution in shoot cell wall and flower in rapeseed. The results of GUS staining and in-situ PCR analysis showed that BnaA4.BOR2 is mainly expressed in cortex and endodermis of root tip meristem zone and endodermis of mature zone. BnaA4.BOR2 was mainly localized in plasma membrane and showed B transport activity in yeast. Overexpression of Bna4.BOR2 could rescue the phenotype of Arabidopsis mutant bor2-2 under low-B condition. Furthermore, knockout of BnaA4.BOR2 could significantly enhance the sensitivity of rapeseed mutants to B deficiency, including inhibition of root elongation and biomass decrease of roots and shoots. The B concentration in xylem sap of BnaA4.BOR2 mutants was significantly decreased under B deficiency, which resulted in significantly lower B concentrations in shoot cell wall at seedling stage and flower organ at reproductive stage compared to that of wild-type QY10. The growth of BnaA4.BOR2 mutants were severely inhibited, exhibiting a typical B-deficient phenotype of "flowering without seed setting", leading to a sharp decrease in seed yield in B deficient soil. Taken together, these results indicate that BnaA4.BOR2 is critical for rapeseed growth and seed yield production under low B level, which is mainly expressed in cortex and endodermis, and contributed to the transport of B from roots to shoots and its distribution in shoot.
Collapse
Affiliation(s)
- Wei Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheliang Wang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangsheng Ye
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Sheng H, Lei Y, Wei J, Yang Z, Peng L, Li W, Liu Y. Analogy of silicon and boron in plant nutrition. FRONTIERS IN PLANT SCIENCE 2024; 15:1353706. [PMID: 38379945 PMCID: PMC10877001 DOI: 10.3389/fpls.2024.1353706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Silicon (Si) and boron (B) are a class of elements called metalloids, which have properties like metals and non-metals. Si is classified as a quasi-essential element, while B is a micronutrient element for plants. Nowadays, numerous discoveries have shown the analogy of silicon and boron in plant nutrition. In this minireview, the molecular mechanisms for the transport of these two metalloids are compared. We also discussed the chemical forms of Si and B and their functional similarity in response to environmental stresses in plants. In conclusion, it can be proposed that cell wall-bound silicon rather than silica might partially replace boron for plant growth, development, and stress responses, and the underlying mechanism is the Si contribution to B in its structural function.
Collapse
Affiliation(s)
- Huachun Sheng
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yuyan Lei
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jing Wei
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhengming Yang
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Wenbing Li
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yuan Liu
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Gabarayeva NI, Britski DA, Grigorjeva VV. Pollen wall development in Impatiens glandulifera: exine substructure and underlying mechanisms. PROTOPLASMA 2024; 261:111-124. [PMID: 37542569 DOI: 10.1007/s00709-023-01887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
The aim of this study was to investigate in detail the pollen wall ontogeny in Impatiens glandulifera, with emphasis on the substructure and the underlying mechanisms of development. Sporopollenin-containing pollen wall, the exine, consists of two parts, ectexine and endexine. By determining the sequence of developing substructures with TEM, we have in mind to understand in which way the exine substructure is connected with function. We have shown earlier that physical processes of self-assembly and phase separation are universally involved in ectexine development; currently, we try to clear up whether these processes participate in endexine development. The data received were compared with those on other species. The ectexine ontogeny of I. glandulifera followed the main stages observed in many other species, including the late tetrad stage named "Golden gates". It turned out that the same physico-chemical processes act in endexine development, especially expressed in aperture sites. Another peculiar phenomenon observed in exine development was the recurrency of micellar sequence at near-aperture and aperture sites where the periplasmic space is widened. It should be noted that, in the whole, the developmental substructures observed during the tetrad and early post-tetrad period are similar in species with columellate exines. Evidently, these basic physical processes proceed, reiterating again and again in different species, resulting in an enormous variety of exine structures on the base of a relatively modest number of genes. Granular and alveolar exines emerge on the base of the same basic processes but are arrested at spherical and cylindrical micelle mesophases correspondingly.
Collapse
|
14
|
Venkataraghavan A, Schwerdt JG, Tyerman SD, Hrmova M. Barley Nodulin 26-like intrinsic protein permeates water, metalloids, saccharides, and ion pairs due to structural plasticity and diversification. J Biol Chem 2023; 299:105410. [PMID: 37913906 PMCID: PMC10716587 DOI: 10.1016/j.jbc.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023] Open
Abstract
Aquaporins can facilitate the passive movement of water, small polar molecules, and some ions. Here, we examined solute selectivity for the barley Nodulin 26-like Intrinsic Protein (HvNIP2;1) embedded in liposomes and examined through stopped-flow light scattering spectrophotometry and Xenopus laevis oocyte swelling assays. We found that HvNIP2;1 permeates water, boric and germanic acids, sucrose, and lactose but not d-glucose or d-fructose. Other saccharides, such as neutral (d-mannose, d-galactose, d-xylose, d-mannoheptaose) and charged (N-acetyl d-glucosamine, d-glucosamine, d-glucuronic acid) aldoses, disaccharides (cellobiose, gentiobiose, trehalose), trisaccharide raffinose, and urea, glycerol, and acyclic polyols, were permeated to a much lower extent. We observed apparent permeation of hydrated KCl and MgSO4 ions, while CH3COONa and NaNO3 permeated at significantly lower rates. Our experiments with boric acid and sucrose revealed no apparent interaction between solutes when permeated together, and AgNO3 or H[AuCl4] blocked the permeation of all solutes. Docking of sucrose in HvNIP2;1 and spinach water-selective SoPIP2;1 aquaporins revealed the structural basis for sucrose permeation in HvNIP2;1 but not in SoPIP2;1, and defined key residues interacting with this permeant. In a biological context, sucrose transport could constitute a novel element of plant saccharide-transporting machinery. Phylogenomic analyses of 164 Viridiplantae and 2993 Archaean, bacterial, fungal, and Metazoan aquaporins rationalized solute poly-selectivity in NIP3 sub-clade entries and suggested that they diversified from other sub-clades to acquire a unique specificity of saccharide transporters. Solute specificity definition in NIP aquaporins could inspire developing plants for food production.
Collapse
Affiliation(s)
- Akshayaa Venkataraghavan
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Julian G Schwerdt
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Stephen D Tyerman
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Maria Hrmova
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, Australia.
| |
Collapse
|
15
|
Verwaaijen B, Alcock TD, Spitzer C, Liu Z, Fiebig A, Bienert MD, Bräutigam A, Bienert GP. The Brassica napus boron deficient inflorescence transcriptome resembles a wounding and infection response. PHYSIOLOGIA PLANTARUM 2023; 175:e14088. [PMID: 38148205 DOI: 10.1111/ppl.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/28/2023]
Abstract
Oilseed rape and other crops of Brassica napus have a high demand for boron (B). Boron deficiencies result in the inhibition of root growth, and eventually premature flower abortion. Understanding the genetic mechanisms underlying flower abortion in B-limiting conditions could provide the basis to enhance B-efficiency and prevent B-deficiency-related yield losses. In this study, we assessed transcriptomic responses to B-deficiency in diverse inflorescence tissues at multiple time points of soil-grown plants that were phenotypically unaffected by B-deficiency until early flowering. Whilst transcript levels of known B transporters were higher in B-deficient samples, these remained remarkably stable as the duration of B-deficiency increased. Meanwhile, GO-term enrichment analysis indicated a growing response resembling that of a pathogen or pest attack, escalating to a huge transcriptome response in shoot heads at mid-flowering. Grouping differentially expressed genes within this tissue into MapMan functional bins indicated enrichment of genes related to wounding, jasmonic acid and WRKY transcription factors. Individual candidate genes for controlling the "flowering-without-seed-setting" phenotype from within MapMan biotic stress bins include those of the metacaspase family, which have been implicated in orchestrating programmed cell death. Overall temporal expression patterns observed here imply a dynamic response to B-deficiency, first increasing expression of B transporters before recruiting various biotic stress-related pathways to coordinate targeted cell death, likely in response to as yet unidentified B-deficiency induced damage-associated molecular patterns (DAMPs). This response indicates new pathways to target and dissect to control B-deficiency-induced flower abortion and to develop more B-efficient crops.
Collapse
Affiliation(s)
- Bart Verwaaijen
- Computational Biology, Faculty for Biology, Bielefeld University, Bielefeld, Germany
- Center of Biotechnology, Bielefeld University, Bielefeld, Germany
- Department of Genetics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas David Alcock
- Crop Physiology, School of Life Sciences, Technical University of Munich, Freising, Germany
- HEF World Agricultural Systems Center, Technical University of Munich, Freising, Germany
| | - Christoph Spitzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany
| | - Zhaojun Liu
- Crop Physiology, School of Life Sciences, Technical University of Munich, Freising, Germany
- HEF World Agricultural Systems Center, Technical University of Munich, Freising, Germany
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany
| | - Manuela Désirée Bienert
- HEF World Agricultural Systems Center, Technical University of Munich, Freising, Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany
| | - Andrea Bräutigam
- Computational Biology, Faculty for Biology, Bielefeld University, Bielefeld, Germany
- Center of Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Gerd Patrick Bienert
- Crop Physiology, School of Life Sciences, Technical University of Munich, Freising, Germany
- HEF World Agricultural Systems Center, Technical University of Munich, Freising, Germany
| |
Collapse
|
16
|
Jun SE, Shim JS, Park HJ. Beyond NPK: Mineral Nutrient-Mediated Modulation in Orchestrating Flowering Time. PLANTS (BASEL, SWITZERLAND) 2023; 12:3299. [PMID: 37765463 PMCID: PMC10535918 DOI: 10.3390/plants12183299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Flowering time in plants is a complex process regulated by environmental conditions such as photoperiod and temperature, as well as nutrient conditions. While the impact of major nutrients like nitrogen, phosphorus, and potassium on flowering time has been well recognized, the significance of micronutrient imbalances and their deficiencies should not be neglected because they affect the floral transition from the vegetative stage to the reproductive stage. The secondary major nutrients such as calcium, magnesium, and sulfur participate in various aspects of flowering. Micronutrients such as boron, zinc, iron, and copper play crucial roles in enzymatic reactions and hormone biosynthesis, affecting flower development and reproduction as well. The current review comprehensively explores the interplay between microelements and flowering time, and summarizes the underlying mechanism in plants. Consequently, a better understanding of the interplay between microelements and flowering time will provide clues to reveal the roles of microelements in regulating flowering time and to improve crop reproduction in plant industries.
Collapse
Affiliation(s)
- Sang Eun Jun
- Department of Molecular Genetics, Dong-A University, Busan 49315, Republic of Korea;
| | - Jae Sun Shim
- School of Biological Science and Technology, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hee Jin Park
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
17
|
Bolaños L, Abreu I, Bonilla I, Camacho-Cristóbal JJ, Reguera M. What Can Boron Deficiency Symptoms Tell Us about Its Function and Regulation? PLANTS (BASEL, SWITZERLAND) 2023; 12:777. [PMID: 36840125 PMCID: PMC9963425 DOI: 10.3390/plants12040777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
On the eve of the 100th anniversary of Dr. Warington's discovery of boron (B) as a nutrient essential for higher plants, "boronists" have struggled to demonstrate a role beyond its structural function in cell walls dimerizing pectin molecules of rhamnogalacturonan II (RGII). In this regard, B deficiency has been associated with a plethora of symptoms in plants that include macroscopic symptoms like growth arrest and cell death and biochemical or molecular symptoms that include changes in cell wall pore size, apoplast acidification, or a steep ROS production that leads to an oxidative burst. Aiming to shed light on B functions in plant biology, we proposed here a unifying model integrating the current knowledge about B function(s) in plants to explain why B deficiency can cause such remarkable effects on plant growth and development, impacting crop productivity. In addition, based on recent experimental evidence that suggests the existence of different B ligands other than RGII in plant cells, namely glycolipids, and glycoproteins, we proposed an experimental pipeline to identify putative missing ligands and to determine how they would integrate into the above-mentioned model.
Collapse
Affiliation(s)
- Luis Bolaños
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Isidro Abreu
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Ildefonso Bonilla
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Juan J. Camacho-Cristóbal
- Departamento de Fisiología, Anatomía y Biología Celular, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - María Reguera
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
18
|
Polevova SV, Grigorjeva VV, Gabarayeva NI. Pollen wall and tapetal development in Cymbalaria muralis: the role of physical processes, evidenced by in vitro modelling. PROTOPLASMA 2023; 260:281-298. [PMID: 35657502 DOI: 10.1007/s00709-022-01777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Our aim was to unravel the underlying mechanisms of pollen wall development in Cymbalaria muralis. By determining the sequence of developing substructures with TEM, we intended to compare it with that of other taxa and clarify whether physical processes of self-assembly and phase separation were involved. In parallel, we tried to simulate in vitro the substructures observed in Cymbalaria muralis exine development, using colloidal mixtures, to determine whether purely physical self-assembly processes could replicate them. Exine ontogeny followed the main stages observed in many other species and was initiated by phase separation, resulting in heterogeneity of the homogeneous contents of the periplasmic space around the microspore which is filled with genome-determined substances. At every stage, phase separation and self-assembly come into force, gradually driving the substances through the sequence of mesophases: spherical micelles, columns of spherical micelles, cylindrical micelles arranged in a layer, laminate micelles. The final two of these mesophases define the structure of the columellate ectexine and lamellate endexine respectively. Structures obtained in vitro from colloidal mixtures simulated the developing exine structures. Striking columella-like surface of some abnormal tapetal cells and lamella-like structures in the anther medium confirm the conclusion that pattern generation is a feature of colloidal materials, after genomic control on material contents. Simulation experiments show the high pattern-generating capacity of colloidal interactions.
Collapse
Affiliation(s)
- Svetlana V Polevova
- Department of Biology, Moscow State University, Leninski Gory, 1, 119991, Moscow, Russia
| | - Valentina V Grigorjeva
- Komarov Botanical Institute of Russian Academy of Sciences, Popov st. 2, 197376, St. Petersburg, Russia
| | - Nina I Gabarayeva
- Komarov Botanical Institute of Russian Academy of Sciences, Popov st. 2, 197376, St. Petersburg, Russia.
| |
Collapse
|
19
|
Nicolas-Espinosa J, Carvajal M. Genome-wide identification and biological relevance of broccoli aquaporins. THE PLANT GENOME 2022; 15:e20262. [PMID: 36263901 DOI: 10.1002/tpg2.20262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
Broccoli (Brassica oleracea var. italica) is an important crop worldwide, and its regular consumption is associated with health benefits due to the presence of various bioactive compounds. An optimal water balance and homeostasis are needed for plant growth; in this sense, aquaporins play a crucial role. As a result of a genome-wide search, a total of 65 aquaporin genes were identified in broccoli. The aquaporins were classified according to their phylogenetic relationships with other Brassicas species and Arabidopsis thaliana, and evolutionary events of gene duplication were also assessed, highlighting the tendency of NIPs (Nodulin-26-like Intrinsic Proteins) to duplicate. Also, the chromosomal localization, gene duplication, the study of the conserved motifs, and the tertiary structure were determined in broccoli. Functional predictive analyses were also carried out, which, together with the expression analyses in different broccoli plant tissues, allowed the prediction of the biological role of each aquaporin isoform. BoiPIP1-2a and BoiPIP1-2b showed higher expression in all the plant tissues when compared with other aquaporins. BoiTIP1-2b also showed high expression levels and was associated with nitrogen compounds transport such as urea. However, NIPs, through their differential expression and the tandem duplications of the isoforms, were revealed as the putative main actors in the response of broccoli plants to abiotic stress responses. The results of this work pointed to the physiological significance of each aquaporin isoform of broccoli, opening a new field of knowledge and constituting the first step of further in vivo analyses.
Collapse
Affiliation(s)
- Juan Nicolas-Espinosa
- Aquaporins Group, Plant Nutrition Dep., Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Univ. de Espinardo, Edificio 25, Murcia, 30100, Spain
| | - Micaela Carvajal
- Aquaporins Group, Plant Nutrition Dep., Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Univ. de Espinardo, Edificio 25, Murcia, 30100, Spain
| |
Collapse
|
20
|
Tsednee M, Tanaka M, Giehl RF, von Wirén N, Fujiwara T. Involvement of NGATHA-Like 1 Transcription Factor in Boron Transport under Low and High Boron Conditions. PLANT & CELL PHYSIOLOGY 2022; 63:1242-1252. [PMID: 35876035 DOI: 10.1093/pcp/pcac099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/20/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
NGATHA-Like 1 (NGAL1) transcription factor has been identified as a gene regulated through AUG-stop-mediated boron (B)-dependent translation stall; however, its function in B response remains unknown. Here, we show that NGAL1 plays an important role in the maintenance of B transport under both low- and high-B conditions in Arabidopsis thaliana. NGAL1 mRNA is accumulated predominantly in shoots in response to B stress. Independent ngal1 mutants carrying transferred DNA (T-DNA) and Ds-transposon insertions exhibit reduced B concentrations in aerial tissues and produce shortened and reduced number of siliques when B supply is limited. Furthermore, the expression of B transporter genes including nodulin 26-like intrinsic protein 6; 1 (NIP6;1), NIP5;1, NIP7;1 and borate exporter 1 (BOR1) is significantly decreased in ngal1 mutants under low-B condition, suggesting that NGAL1 is required for the transcript accumulation of B transporter genes to facilitate B transport and distribution under B limitation. Under high-B condition, ngal1 mutants exhibit reduced growth and increased B concentration in their shoots. The accumulation of BOR4 mRNA, a B transporter required for B efflux to soil, is significantly reduced in roots of ngal1 plants under high-B condition, suggesting that NGAL1 is involved in the upregulation of BOR4 in response to excess B. Together, our results indicate that NGAL1 is involved in the transcriptional regulation of B transporter genes to facilitate B transport and distribution under both low- and high-B conditions.
Collapse
Affiliation(s)
- Munkhtsetseg Tsednee
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Mayuki Tanaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Ricardo Fh Giehl
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Stadt Seeland, Gatersleben, 06466, Germany
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Stadt Seeland, Gatersleben, 06466, Germany
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
21
|
Zhang Y, Fei S, Xu Y, He Y, Zhu Z, Liu Y. The structure, function and expression analysis of the nodulin 26-like intrinsic protein subfamily of plant aquaporins in tomato. Sci Rep 2022; 12:9180. [PMID: 35655083 PMCID: PMC9163140 DOI: 10.1038/s41598-022-13195-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
The nodulin 26-like intrinsic protein (NIP) family belonging to a group of aquaporin proteins is unique to plants. NIPs have a wide of transport activities and are involved in developmental processes and stress tolerance. The well reported Lsi1 and Lsi6 belonging to NIP III were characterized as Si transporters. However, except Lsi1 and Lsi6, most NIPs remain unknown. Here, we identified 43 putative aquaporins in tomato. We found there are 12 NIPs, including 8 NIP I proteins, 3 NIP II proteins, and 1 NIP III protein among the 43 aquaporins. Also, there are two Si efflux transporters SlLsi2-1 and SlLsi2-2 identified by using Lsi2 proteins from other species. By analysing the phylogenetic relationships, conserved residues and expression patterns, we propose that three NIP I members (SlNIP-2, SlNIP-3 and SlNIP-11) may transport water, ammonia, urea, and boric acid, and contribute to pollen development. Three NIP II proteins (SlNIP-7, SlNIP-9 and SlNIP-12) may be boric acid facilitators, and affect plant growth and anther development. Overall, the study provides valuable candidates of Si transporters and other NIP proteins to further explore their roles in uptake and transport for silicon, boron, and other substrates in tomato.
Collapse
Affiliation(s)
- Yuxiang Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Shihong Fei
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yunmin Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yong He
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhujun Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Yuanyuan Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
22
|
Guo Z, Ma D, Li J, Wei M, Zhang L, Zhou L, Zhou X, He S, Wang L, Shen Y, Li QQ, Zheng HL. Genome-wide identification and characterization of aquaporins in mangrove plant Kandelia obovata and its role in response to the intertidal environment. PLANT, CELL & ENVIRONMENT 2022; 45:1698-1718. [PMID: 35141923 DOI: 10.1111/pce.14286] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/30/2022] [Indexed: 05/26/2023]
Abstract
Aquaporins (AQPs) play important roles in plant growth, development and tolerance to environmental stresses. To understand the role of AQPs in the mangrove plant Kandelia obovata, which has the ability to acquire water from seawater, we identified 34 AQPs in the K. obovata genome and analysed their structural features. Phylogenetic analysis revealed that KoAQPs are homologous to AQPs of Populus and Arabidopsis, which are evolutionarily conserved. The key amino acid residues were used to assess water-transport ability. Analysis of cis-acting elements in the promoters indicated that KoAQPs may be stress- and hormone-responsive. Subcellular localization of KoAQPs in yeast showed most KoAQPs function in the membrane system. That transgenic yeast with increased cell volume showed that some KoAQPs have significant water-transport activity, and the substrate sensitivity assay indicates that some KoAQPs can transport H2 O2 . The transcriptome data were used to analyze the expression patterns of KoAQPs in different tissues and developing fruits of K. obovata. In addition, real-time quantitative PCR analyses combined transcriptome data showed that KoAQPs have complex responses to environmental factors, including salinity, flooding and cold. Collectively, the transport of water and solutes by KoAQPs contributed to the adaptation of K. obovata to the coastal intertidal environment.
Collapse
Affiliation(s)
- Zejun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Dongna Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Mingyue Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ludan Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lichun Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xiaoxuan Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Shanshan He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lin Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, USA
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
23
|
Yamaji N, Ma JF. Metalloid transporters and their regulation in plants. PLANT PHYSIOLOGY 2021; 187:1929-1939. [PMID: 35235670 PMCID: PMC8644474 DOI: 10.1093/plphys/kiab326] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/21/2021] [Indexed: 05/27/2023]
Abstract
Transport of metalloids including B, Si, and As is mediated by a combination of channels and efflux transporters in plants, which are strictly regulated in response to environmental changes.
Collapse
Affiliation(s)
- Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
24
|
Tanaka M, Fujiwara T. Three regions of the NIP5;1 promoter are required for expression in different cell types in Arabidopsis thaliana root. PLANT SIGNALING & BEHAVIOR 2021; 16:1993654. [PMID: 34753382 PMCID: PMC9208793 DOI: 10.1080/15592324.2021.1993654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Arabidopsis thaliana NIP5;1, a boric acid diffusion facilitator, is involved in the acquisition of boron (B) from soil for growth under B limitation. AtNIP5;1 is expressed mainly in roots, where its expression is highest in the root cap and elongation zone. Here, we studied the role of the AtNIP5;1 promoter in the expression of this gene in roots. We fused a series of AtNIP5;1 promoter variants with deleted 5'-fragments to the GUS reporter gene and investigated the expression patterns by histochemical staining. We found that three regions of the AtNIP5;1 promoter are required for specific expression in the root cap and elongation zone (-880 to -863 bp from the translation start site), distal side of the differentiation zone (-747 to -722 bp), and basal side of the differentiation zone (-661 and -621 bp). The results suggest that at least three regions of the AtNIP5;1 promoter each confer different cell-type-specific expression.
Collapse
Affiliation(s)
- Mayuki Tanaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Signaling at Physical Barriers during Pollen-Pistil Interactions. Int J Mol Sci 2021; 22:ijms222212230. [PMID: 34830110 PMCID: PMC8622735 DOI: 10.3390/ijms222212230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023] Open
Abstract
In angiosperms, double fertilization requires pollen tubes to transport non-motile sperm to distant egg cells housed in a specialized female structure known as the pistil, mediating the ultimate fusion between male and female gametes. During this journey, the pollen tube encounters numerous physical barriers that must be mechanically circumvented, including the penetration of the stigmatic papillae, style, transmitting tract, and synergid cells as well as the ultimate fusion of sperm cells to the egg or central cell. Additionally, the pollen tube must maintain structural integrity in these compact environments, while responding to positional guidance cues that lead the pollen tube to its destination. Here, we discuss the nature of these physical barriers as well as efforts to genetically and cellularly identify the factors that allow pollen tubes to successfully, specifically, and quickly circumnavigate them.
Collapse
|
26
|
Onuh AF, Miwa K. Regulation, Diversity and Evolution of Boron Transporters in Plants. PLANT & CELL PHYSIOLOGY 2021; 62:590-599. [PMID: 33570563 DOI: 10.1093/pcp/pcab025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Boron (B) is an essential trace element in plants, and borate cross-linking of pectic polysaccharide rhamnogalacturonan-II (RG-II) in cell walls is required for normal cell growth. High concentrations of B are toxic to cells. Therefore, plants need to control B transport to respond to B conditions in the environment. Over the past two decades, genetic analyses of Arabidopsis thaliana have revealed that B transport is governed by two types of membrane transport molecules: NIPs (nodulin-26-like intrinsic proteins), which facilitate boric acid permeation, and BORs, which export borate from cells. In this article, we review recent findings on the (i) regulation at the cell level, (ii) diversity among plant species and (iii) evolution of these B transporters in plants. We first describe the systems regulating these B transporters at the cell level, focusing on the molecular mechanisms underlying the polar localization of proteins and B-dependent expression, as well as their physiological significance in A. thaliana. Then, we examine the presence of homologous genes and characterize the functions of NIPs and BORs in B homeostasis, in a wide range of plant species, including Brassica napus, Oryza sativa and Zea mays. Finally, we discuss the evolutionary aspects of NIPs and BORs as B transporters, and the possible relationship between the diversification of B transport and the occurrence of RG-II in plants. This review considers the sophisticated systems of B transport that are conserved among various plant species, which were established to meet mineral nutrient requirements.
Collapse
Affiliation(s)
- Amarachukwu Faith Onuh
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, North-10, West-5, Kita-ku, Sapporo, 060-0810 Japan
| | - Kyoko Miwa
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, North-10, West-5, Kita-ku, Sapporo, 060-0810 Japan
| |
Collapse
|
27
|
Feng Y, Cui R, Huang Y, Shi L, Wang S, Xu F. Repression of transcription factor AtWRKY47 confers tolerance to boron toxicity in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112406. [PMID: 34119927 DOI: 10.1016/j.ecoenv.2021.112406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Boron (B) excess gives rise to a serious agricultural problem. In this study, we identified a B toxicity responsive transcription factor AtWRKY47 in Arabidopsis thaliana. The T-DNA insertion mutants Atwrky47 showed enhanced tolerance to B toxicity with better growth parameters under high B conditions compared to wild-type Col-0 plants. Quantitative analysis of AtWRKY47 mRNA abundance indicated that it was down-regulated under B toxicity conditions. Fluorescently labeled AtWRKY47 protein was localized in nucleus. In contrast to the phenotype of Atwrky47 mutants, overexpression of AtWRKY47 in Col-0 background resulted in lower biomass, less chlorophyll content, and increased sensitivity to B toxicity. More importantly, the B concentration in shoots was higher in the overexpression lines and lower in the Atwrky47 mutants than in Col-0 plants, respectively. These results demonstrate that AtWRKY47 gene plays a key role in regulating plant tolerance to B toxicity.
Collapse
Affiliation(s)
- Yingna Feng
- National Key Laboratory of Crop Genetic Improvement, and Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| | - Rui Cui
- National Key Laboratory of Crop Genetic Improvement, and Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yupu Huang
- National Key Laboratory of Crop Genetic Improvement, and Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, and Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, and Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, and Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
28
|
Zhang M, Liu R, Liu H, Yang H, Li X, Wang P, Zhu F, Xu R, Xue S, Cheng Y. Citrus NIP5;1 aquaporin regulates cell membrane water permeability and alters PIPs plasma membrane localization. PLANT MOLECULAR BIOLOGY 2021; 106:449-462. [PMID: 34173150 DOI: 10.1007/s11103-021-01164-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/11/2021] [Indexed: 05/29/2023]
Abstract
The ER or donut-like structures localized aquaporin NIP5;1, which interacts with PIPs and alters their localization from plasma membrane to donut-like structures, regulates water permeability. NOD26-like intrinsic proteins (NIPs) play important roles in nutrient uptake and response to various stresses. However, there have been few studies of their functions in water transportation in citrus. Here, we demonstrate the functions of a novel citrus NIP aquaporin (CsNIP5;1) via multiple physiological and biochemical experiments. CsNIP5;1 showed high water permeability when expressed in Xenopus laevis oocytes and yeast. However, subcellular localization assays showed that this protein was localized in the endoplasmic reticulum (ER) or donut-like structures in citrus callus and tobacco leaf. Meanwhile, overexpression of CsNIP5;1 led to a reduction in the water permeability of citrus callus. Protein-protein interaction experiments and subcellular localization assays further revealed that CsNIP5;1 physically interacted with PIPs (CsPIP1;1 and AtPIP2;1), which altered their subcellular localization from the plasma membrane to donut-like structures. Together, CsNIP5;1 was identified as a good water channel when expressed in oocytes and yeast. Meanwhile, CsNIP5;1 participated in the regulation of water permeability of citrus callus, which may be associated with CsNIP5;1-induced re-localization of water channels PIPs. In summary, these results provide new insights into the regulatory mechanism of AQPs-mediated water diffusion.
Collapse
Affiliation(s)
- Mingfei Zhang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ruilian Liu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hai Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongbin Yang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xin Li
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ping Wang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Feng Zhu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Rangwei Xu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shaowu Xue
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
29
|
Prudencio ÁS, Hoeberichts FA, Dicenta F, Martínez-Gómez P, Sánchez-Pérez R. Identification of early and late flowering time candidate genes in endodormant and ecodormant almond flower buds. TREE PHYSIOLOGY 2021; 41:589-605. [PMID: 33200186 PMCID: PMC8033246 DOI: 10.1093/treephys/tpaa151] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/22/2020] [Accepted: 10/23/2020] [Indexed: 05/13/2023]
Abstract
Flower bud dormancy in temperate fruit tree species, such as almond [Prunus dulcis (Mill.) D.A. Webb], is a survival mechanism that ensures that flowering will occur under suitable weather conditions for successful flower development, pollination and fruit set. Dormancy is divided into three sequential phases: paradormancy, endodormancy and ecodormancy. During the winter, buds need cultivar-specific chilling requirements (CRs) to overcome endodormancy and heat requirements to activate the machinery to flower in the ecodormancy phase. One of the main factors that enables the transition from endodormancy to ecodormancy is transcriptome reprogramming. In this work, we therefore monitored three almond cultivars with different CRs and flowering times by RNA sequencing during the endodormancy release of flower buds and validated the data by quantitative real-time PCR in two consecutive seasons. We were thus able to identify early and late flowering time candidate genes in endodormant and ecodormant almond flower buds associated with metabolic switches, transmembrane transport, cell wall remodeling, phytohormone signaling and pollen development. These candidate genes were indeed involved in the overcoming of the endodormancy in almond. This information may be used for the development of dormancy molecular markers, increasing the efficiency of temperate fruit tree breeding programs in a climate-change context.
Collapse
Affiliation(s)
- Ángela S Prudencio
- Department of Plant Breeding, Fruit Breeding Group, CEBAS-CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain
| | | | - Federico Dicenta
- Department of Plant Breeding, Fruit Breeding Group, CEBAS-CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain
| | - Pedro Martínez-Gómez
- Department of Plant Breeding, Fruit Breeding Group, CEBAS-CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain
| | | |
Collapse
|
30
|
Pereira GL, Siqueira JA, Batista-Silva W, Cardoso FB, Nunes-Nesi A, Araújo WL. Boron: More Than an Essential Element for Land Plants? FRONTIERS IN PLANT SCIENCE 2021; 11:610307. [PMID: 33519866 PMCID: PMC7840898 DOI: 10.3389/fpls.2020.610307] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/18/2020] [Indexed: 05/17/2023]
Abstract
Although boron (B) is an element that has long been assumed to be an essential plant micronutrient, this assumption has been recently questioned. Cumulative evidence has demonstrated that the players associated with B uptake and translocation by plant roots include a sophisticated set of proteins used to cope with B levels in the soil solution. Here, we summarize compelling evidence supporting the essential role of B in mediating plant developmental programs. Overall, most plant species studied to date have exhibited specific B transporters with tight genetic coordination in response to B levels in the soil. These transporters can uptake B from the soil, which is a highly uncommon occurrence for toxic elements. Moreover, the current tools available to determine B levels cannot precisely determine B translocation dynamics. We posit that B plays a key role in plant metabolic activities. Its importance in the regulation of development of the root and shoot meristem is associated with plant developmental phase transitions, which are crucial processes in the completion of their life cycle. We provide further evidence that plants need to acquire sufficient amounts of B while protecting themselves from its toxic effects. Thus, the development of in vitro and in vivo approaches is required to accurately determine B levels, and subsequently, to define unambiguously the function of B in terrestrial plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Wagner L. Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
31
|
Zhou D, Shen W, Cui Y, Liu Y, Zheng X, Li Y, Wu M, Fang S, Liu C, Tang M, Yi Y, Zhao M, Chen L. APICAL SPIKELET ABORTION (ASA) Controls Apical Panicle Development in Rice by Regulating Salicylic Acid Biosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:636877. [PMID: 33719311 PMCID: PMC7947001 DOI: 10.3389/fpls.2021.636877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/22/2021] [Indexed: 05/11/2023]
Abstract
Panicle degradation causes severe yield reduction in rice. There are two main types of panicle degradation: apical spikelet abortion and basal degeneration. In this study, we isolated and characterized the apical panicle abortion mutant apical spikelet abortion (asa), which exhibits degeneration and defects in the apical spikelets. This mutant had a pleiotropic phenotype, characterized by reduced plant height, increased tiller number, and decreased pollen fertility. Map-based cloning revealed that OsASA encodes a boric acid channel protein that showed the highest expression in the inflorescence, peduncle, and anther. RNA-seq analysis of the asa mutant vs wild-type (WT) plants revealed that biological processes related to reactive oxygen species (ROS) homeostasis and salicylic acid (SA) metabolism were significantly affected. Furthermore, the asa mutants had an increased SA level and H2O2 accumulation in the young panicles compared to the WT plants. Moreover, the SA level and the expression of OsPAL3, OsPAL4, and OsPAL6 genes (related to SA biosynthesis) were significantly increased under boron-deficient conditions in the asa mutant and in OsASA-knockout plants. Collectively, these results suggest that the boron distribution maintained by OsASA is required for normal panicle development in a process that involves modulating ROS homeostasis and SA biosynthesis.
Collapse
Affiliation(s)
- Dan Zhou
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Weifeng Shen
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Yuchao Cui
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuqin Liu
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Xijun Zheng
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yan Li
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Minliang Wu
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shanru Fang
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Chunhong Liu
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Ming Tang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwestern, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yin Yi
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwestern, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Mingfu Zhao
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
- *Correspondence: Mingfu Zhao,
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
- Liang Chen,
| |
Collapse
|
32
|
Krüger M, Abeyawardana OAJ, Krüger C, Juříček M, Štorchová H. Differentially Expressed Genes Shared by Two Distinct Cytoplasmic Male Sterility (CMS) Types of Silene vulgaris Suggest the Importance of Oxidative Stress in Pollen Abortion. Cells 2020; 9:cells9122700. [PMID: 33339225 PMCID: PMC7766179 DOI: 10.3390/cells9122700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Cytoplasmic male sterility (CMS), encoded by the interacting mitochondrial and nuclear genes, causes pollen abortion or non-viability. CMS is widely used in agriculture and extensively studied in crops. Much less is known about CMS in wild species. We performed a comparative transcriptomic analysis of male sterile and fertile individuals of Silene vulgaris, a model plant for the study of gynodioecy, to reveal the genes responsible for pollen abortion in this species. We used RNA-seq datasets previously employed for the analysis of mitochondrial and plastid transcriptomes of female and hermaphrodite flower buds, making it possible to compare the transcriptomes derived from three genomes in the same RNA specimen. We assembled de novo transcriptomes for two haplotypes of S. vulgaris and identified differentially expressed genes between the females and hermaphrodites, associated with stress response or pollen development. The gene for alternative oxidase was downregulated in females. The genetic pathways controlling CMS in S. vulgaris are similar to those in crops. The high number of the differentially expressed nuclear genes contrasts with the uniformity of organellar transcriptomes across genders, which suggests these pathways are evolutionarily conserved and that selective mechanisms may shield organellar transcription against changes in the cytoplasmic transcriptome.
Collapse
Affiliation(s)
- Manuela Krüger
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
| | - Oushadee A. J. Abeyawardana
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
- Department of Horticulture, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague 6-Suchdol, Czech Republic
| | - Claudia Krüger
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
| | - Miloslav Juříček
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
| | - Helena Štorchová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
- Correspondence: ; Tel.: +420-225-106-828
| |
Collapse
|
33
|
Radja A. Pollen wall patterns as a model for biological self-assembly. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:629-641. [PMID: 32991047 PMCID: PMC9292386 DOI: 10.1002/jez.b.23005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
Abstract
We are still far from being able to predict organisms' shapes purely from their genetic codes. While it is imperative to identify which encoded macromolecules contribute to a phenotype, determining how macromolecules self-assemble independently of the genetic code may be equally crucial for understanding shape development. Pollen grains are typically single-celled microgametophytes that have decorated walls of various shapes and patterns. The accumulation of morphological data and a comprehensive understanding of the wall development makes this system ripe for mathematical and physical modeling. Therefore, pollen walls are an excellent system for identifying both the genetic products and the physical processes that result in a huge diversity of extracellular morphologies. In this piece, I highlight the current understanding of pollen wall biology relevant for quantification studies and enumerate the modellable aspects of pollen wall patterning and specific approaches that one may take to elucidate how pollen grains build their beautifully patterned walls.
Collapse
Affiliation(s)
- Asja Radja
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
34
|
Feng Y, Cui R, Wang S, He M, Hua Y, Shi L, Ye X, Xu F. Transcription factor BnaA9.WRKY47 contributes to the adaptation of Brassica napus to low boron stress by up-regulating the boric acid channel gene BnaA3.NIP5;1. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1241-1254. [PMID: 31705705 PMCID: PMC7152615 DOI: 10.1111/pbi.13288] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 05/08/2023]
Abstract
Boron (B) deficiency is one of the major causes of growth inhibition and yield reduction in Brassica napus (B. napus). However, the molecular mechanisms of low B adaptation in B. napus are largely unknown. Here, fifty-one BnaWRKY transcription factors were identified as responsive to B deficiency in B. napus, in which BnaAn.WRKY26, BnaA9.WRKY47, BnaA1.WKRY53 and BnaCn.WRKY57 were tested in yeast one-hybrid assays and showed strong binding activity with conserved sequences containing a W box in the promoters of the B transport-related genes BnaNIP5;1s and BnaBOR1s. Green fluorescent protein fused to the target protein demonstrated the nuclear localization of BnaA9.WRKY47. CRISPR/Cas9-mediated knockout lines of BnaA9.WRKY47 in B. napus had increased sensitivity to low B and lower contents of B than wild-type plants. In contrast, overexpression of BnaA9.WRKY47 enhanced the adaptation to low B with higher B contents in tissues than in wild-type plants. Consistent with the phenotypic response and B accumulation in these transgenic lines, the transcription activity of BnaA3.NIP5;1, a B efficiency candidate gene, was decreased in the knockout lines but was significantly increased in the overexpressing lines under low B conditions. Electrophoretic mobility shift assays, transient expression experiments in tobacco and in situ hybridizations showed that BnaA9.WRKY47 directly activated BnaA3.NIP5;1 expression through binding to the specific cis-element. Taken together, our findings support BnaWRKYs as new participants in response to low B, and BnaA9.WRKY47 contributes to the adaptation of B. napus to B deficiency through up-regulating BnaA3.NIP5;1 expression to facilitate efficient B uptake.
Collapse
Affiliation(s)
- Yingna Feng
- National Key Laboratory of Crop Genetic ImprovementMicroelement Research CentreHuazhong Agricultural UniversityWuhanChina
| | - Rui Cui
- National Key Laboratory of Crop Genetic ImprovementMicroelement Research CentreHuazhong Agricultural UniversityWuhanChina
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic ImprovementMicroelement Research CentreHuazhong Agricultural UniversityWuhanChina
| | - Mingliang He
- National Key Laboratory of Crop Genetic ImprovementMicroelement Research CentreHuazhong Agricultural UniversityWuhanChina
| | - Yingpeng Hua
- National Key Laboratory of Crop Genetic ImprovementMicroelement Research CentreHuazhong Agricultural UniversityWuhanChina
| | - Lei Shi
- National Key Laboratory of Crop Genetic ImprovementMicroelement Research CentreHuazhong Agricultural UniversityWuhanChina
| | - Xiangsheng Ye
- National Key Laboratory of Crop Genetic ImprovementMicroelement Research CentreHuazhong Agricultural UniversityWuhanChina
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic ImprovementMicroelement Research CentreHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
35
|
Matthes MS, Robil JM, McSteen P. From element to development: the power of the essential micronutrient boron to shape morphological processes in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1681-1693. [PMID: 31985801 PMCID: PMC7067301 DOI: 10.1093/jxb/eraa042] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/25/2020] [Indexed: 05/27/2023]
Abstract
Deficiency of the essential nutrient boron (B) in the soil is one of the most widespread micronutrient deficiencies worldwide, leading to developmental defects in root and shoot tissues of plants, and severe yield reductions in many crops. Despite this agricultural importance, the underlying mechanisms of how B shapes plant developmental and morphological processes are still not unequivocally understood in detail. This review evaluates experimental approaches that address our current understanding of how B influences plant morphological processes by focusing on developmental defects observed under B deficiency. We assess what is known about mechanisms that control B homeostasis and specifically highlight: (i) limitations in the methodology that is used to induce B deficiency; (ii) differences between mutant phenotypes and normal plants grown under B deficiency; and (iii) recent research on analyzing interactions between B and phytohormones. Our analysis highlights the need for standardized methodology to evaluate the roles of B in the cell wall versus other parts of the cell.
Collapse
Affiliation(s)
- Michaela S Matthes
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, LSC, Columbia, MO, USA
| | - Janlo M Robil
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, LSC, Columbia, MO, USA
| | - Paula McSteen
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, LSC, Columbia, MO, USA
| |
Collapse
|
36
|
Diehn TA, Bienert MD, Pommerrenig B, Liu Z, Spitzer C, Bernhardt N, Fuge J, Bieber A, Richet N, Chaumont F, Bienert GP. Boron demanding tissues of Brassica napus express specific sets of functional Nodulin26-like Intrinsic Proteins and BOR1 transporters. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:68-82. [PMID: 31148338 PMCID: PMC6852077 DOI: 10.1111/tpj.14428] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/01/2019] [Accepted: 05/28/2019] [Indexed: 05/22/2023]
Abstract
The sophisticated uptake and translocation regulation of the essential element boron (B) in plants is ensured by two transmembrane transporter families: the Nodulin26-like Intrinsic Protein (NIP) and BOR transporter family. Though the agriculturally important crop Brassica napus is highly sensitive to B deficiency, and NIPs and BORs have been suggested to be responsible for B efficiency in this species, functional information of these transporter subfamilies is extremely rare. Here, we molecularly characterized the NIP and BOR1 transporter family in the European winter-type cv. Darmor-PBY018. Our transport assays in the heterologous oocyte and yeast expression systems as well as in growth complementation assays in planta demonstrated B transport activity of NIP5, NIP6, NIP7 and BOR1 isoforms. Moreover, we provided functional and quantitative evidence that also members of the NIP2, NIP3 and NIP4 groups facilitate the transport of B. A detailed B- and tissue-dependent B-transporter expression map was generated by quantitative polymerase chain reaction. We showed that NIP5 isoforms are highly upregulated under B-deficient conditions in roots, but also in shoot tissues. Moreover, we detected transcripts of several B-permeable NIPs from various groups in floral tissues that contribute to the B distribution within the highly B deficiency-sensitive flowers.
Collapse
Affiliation(s)
- Till Arvid Diehn
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| | - Manuela Désirée Bienert
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| | - Benjamin Pommerrenig
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
- Division of Plant PhysiologyUniversity KaiserslauternKaiserslautern67663Germany
| | - Zhaojun Liu
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| | - Christoph Spitzer
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| | - Nadine Bernhardt
- Experimental Taxonomy, Genebank DepartmentLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| | - Jacqueline Fuge
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| | - Annett Bieber
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| | - Nicolas Richet
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
| | - Gerd Patrick Bienert
- Metalloid Transport, Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466Germany
| |
Collapse
|
37
|
Zhou Y, Tao J, Ahammed GJ, Li J, Yang Y. Genome-wide identification and expression analysis of aquaporin gene family related to abiotic stress in watermelon. Genome 2019; 62:643-656. [PMID: 31418287 DOI: 10.1139/gen-2019-0061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The plant aquaporins (AQPs) are highly conserved integral membrane proteins that participate in multiple developmental processes and responses to various stresses. In this study, a total of 35 AQP genes were identified in the watermelon genome. The phylogenetic analysis showed that these AQPs can be divided into five types, including 16 plasma membrane intrinsic proteins (PIPs), eight tonoplast intrinsic proteins (TIPs), eight nodulin 26-like intrinsic proteins (NIPs), two small basic intrinsic proteins (SIPs), and one uncategorized X intrinsic protein (XIP). A number of cis-elements related to plant responses to hormones and stresses were detected in the promoter sequences of ClAQP genes. Chromosome distribution analysis revealed that the genes are unevenly distributed on eight chromosomes, with chromosomes 1 and 4 possessing the most genes. Expression analysis at different developmental stages in flesh and rind indicated that most of ClAQPs have tissue-specific expression. Meanwhile, some other AQP genes showed differential expression in response to cold, salt, and ABA treatments, which is consistent with the organization of the stress-responsive cis-elements detected in the promoter regions. Our results lay a foundation for understanding the specific functions of ClAQP genes to help the genetic improvement of watermelon.
Collapse
Affiliation(s)
- Yong Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Junjie Tao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China.,Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| | - Jingwen Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China.,Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Youxin Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China.,Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
38
|
Poschenrieder C, Busoms S, Barceló J. How Plants Handle Trivalent (+3) Elements. Int J Mol Sci 2019; 20:E3984. [PMID: 31426275 PMCID: PMC6719099 DOI: 10.3390/ijms20163984] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
Plant development and fitness largely depend on the adequate availability of mineral elements in the soil. Most essential nutrients are available and can be membrane transported either as mono or divalent cations or as mono- or divalent anions. Trivalent cations are highly toxic to membranes, and plants have evolved different mechanisms to handle +3 elements in a safe way. The essential functional role of a few metal ions, with the possibility to gain a trivalent state, mainly resides in the ion's redox activity; examples are iron (Fe) and manganese. Among the required nutrients, the only element with +3 as a unique oxidation state is the non-metal, boron. However, plants also can take up non-essential trivalent elements that occur in biologically relevant concentrations in soils. Examples are, among others, aluminum (Al), chromium (Cr), arsenic (As), and antimony (Sb). Plants have evolved different mechanisms to take up and tolerate these potentially toxic elements. This review considers recent studies describing the transporters, and specific and unspecific channels in different cell compartments and tissues, thereby providing a global vision of trivalent element homeostasis in plants.
Collapse
Affiliation(s)
- Charlotte Poschenrieder
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - Silvia Busoms
- Plant Sciences, Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Juan Barceló
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|