1
|
Mo W, Zheng X, Shi Q, Zhao X, Chen X, Yang Z, Zuo Z. Unveiling the crucial roles of abscisic acid in plant physiology: implications for enhancing stress tolerance and productivity. FRONTIERS IN PLANT SCIENCE 2024; 15:1437184. [PMID: 39640997 PMCID: PMC11617201 DOI: 10.3389/fpls.2024.1437184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Abscisic acid (ABA), one of the six major plant hormones, plays an essential and irreplaceable role in numerous physiological and biochemical processes during normal plant growth and in response to abiotic stresses. It is a key factor in balancing endogenous hormones and regulating growth metabolism in plants. The level of ABA is intricately regulated through complex mechanisms involving biosynthesis, catabolism, and transport. The functionality of ABA is mediated through a series of signal transduction pathways, primarily involving core components such as the ABA receptors PYR/PYL/RCAR, PP2C, and SnRK2. Over the past 50 years since its discovery, most of the genes involved in ABA biosynthesis, catabolism, and transport have been characterized, and the network of signaling pathways has gradually become clearer. Extensive research indicates that externally increasing ABA levels and activating the ABA signaling pathway through molecular biology techniques significantly enhance plant tolerance to abiotic stresses and improve plant productivity under adverse environmental conditions. Therefore, elucidating the roles of ABA in various physiological processes of plants and deciphering the signaling regulatory network of ABA can provide a theoretical basis and guidance for addressing key issues such as improving crop quality, yield, and stress resistance.
Collapse
Affiliation(s)
- Weiliang Mo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xunan Zheng
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Qingchi Shi
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xuelai Zhao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xiaoyu Chen
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Zhenming Yang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Zecheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
2
|
Yoon HS, Fujino K, Liu S, Takano T, Tsugama D. Characterizing the role of PP2A B'' family subunits in mechanical stress response and plant development through calcium and ABA signaling in Arabidopsis thaliana. PLoS One 2024; 19:e0313590. [PMID: 39541304 PMCID: PMC11563394 DOI: 10.1371/journal.pone.0313590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Protein phosphatase 2AB'' (PP2A B'') family subunits have calcium-binding EF-hand motifs, facilitating interaction with PP2A substrates. In Arabidopsis thaliana, the PP2A B'' family subunits consist of six members, AtB''α-ε and FASS. These subunits can interact with a basic leucine zipper transcription factor, VIP1, and its close homologs. Mechanical stress triggers PP2A-mediated dephosphorylation of VIP1 and its close homologs, leading to nuclear localization and gene upregulation to alleviate touch-induced root bending and leaf damage. However, the physiological roles of PP2A B'' family subunits in the mechanical stress response in Arabidopsis remain unclear. This study aims to characterize such roles. A quadruple knockout mutant with T-DNA insertions in AtB''α, AtB''β, AtB''γ, and AtB''δ was generated. atb''αβγδ mutants exhibited no significant damage upon brushing or touch-induced root bending compared to the wild type. Transcriptome analysis showed a significant decrease in the expression of CYP707A3, a gene potentially targeted by VIP1 that regulates abscisic acid (ABA) catabolism, in the atb''αβγδ mutant compared to wild type leaves. However, other genes, including XTH23, EXLA1, and CYP707A1, also VIP1 targets, exhibited similar induction in both brushed atb''αβγδ mutants and wild type leaves. We observed an enrichment of the CAMTA motif, CGCG(C/T) in the promoters of genes showing downregulated expression levels in brushed atb''αβγδ leaves compared to brushed wild type leaves. These findings suggest that PP2A B'' family subunits exhibit functional redundancy in the VIP1-dependent pathway but influence CAMTA-dependent gene expression under mechanical stress. Under calcium-deficient and ABA-supplemented conditions, growth of atb''αβγδ seedlings was retarded when compared to wild type and single knockout mutants, atb''γ and atb''δ, indicating a crucial role in plant development by modulating calcium or ABA signaling.
Collapse
Affiliation(s)
- Hyuk Sung Yoon
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
- Waksman Institute of Microbiology, Rutgers the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo-shi, Hokkaido, Japan
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Hangzhou, China
| | - Tetsuo Takano
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| | - Daisuke Tsugama
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| |
Collapse
|
3
|
Chen Z, Zhang J, Wang L. ALA induces stomatal opening through regulation among PTPA, PP2AC, and SnRK2.6. FRONTIERS IN PLANT SCIENCE 2023; 14:1206728. [PMID: 37711306 PMCID: PMC10499497 DOI: 10.3389/fpls.2023.1206728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
5-Aminolevulinic acid (ALA), as a new natural plant growth regulator, has been proved to regulate protein phosphatase 2A (PP2A) activity to promote stomatal opening in apple (Malus domestica) leaves. However, the molecular mechanisms underlying remain unclear. Here, we cloned and transformed MdPTPA, MdPP2AC, and MdSnRK2.6 of apple into tobaccos (Nicotiana tabacum) and found that over-expression (OE)-MdPTPA or OE-MdPP2AC promoted stomatal aperture while OE-MdSnRK2.6 induced stomatal closure under normal or drought condition. The Ca2+ and H2O2 levels in the guard cells of OE-MdPTPA and OE-MdPP2AC was decreased but flavonols increased, and the results in OE-SnRK2.6 was contrary. Exogenous ALA stimulated PP2A activity but depressed SnRK2.6 activity in transgenic tobaccos, leading to less Ca2+, H2O2 and more flavonols in guard cells, and consequently stomatal opening. OE-MdPTPA improved stomatal opening and plant growth but impaired drought tolerance, while OE-MdSnRK2.6 improved drought tolerance but depressed the leaf P n. Only OE-MdPP2AC improved stomatal opening, leaf P n, plant growth, as well as drought tolerance. These suggest that the three genes involved in ALA-regulating stomatal movement have their respective unique biological functions. Yeast two-hybrid (Y2H) assays showed that MdPP2AC interacted with MdPTPA or MdSnRK2.6, respectively, but no interaction of MdPTPA with MdSnRK2.6 was found. Yeast three-hybrid (Y3H) assay showed that MdPTPA promoted the interactions between MdPP2AC and MdSnRK2.6. Therefore, we propose a regulatory module of PTPA-PP2AC-SnRK2.6 that may be involved in mediating the ALA-inducing stomatal aperture in green plants.
Collapse
Affiliation(s)
| | | | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Née G, Krüger T. Dry side of the core: a meta-analysis addressing the original nature of the ABA signalosome at the onset of seed imbibition. FRONTIERS IN PLANT SCIENCE 2023; 14:1192652. [PMID: 37476171 PMCID: PMC10354442 DOI: 10.3389/fpls.2023.1192652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
The timing of seedling emergence is a major agricultural and ecological fitness trait, and seed germination is controlled by a complex molecular network including phytohormone signalling. One such phytohormone, abscisic acid (ABA), controls a large array of stress and developmental processes, and researchers have long known it plays a crucial role in repressing germination. Although the main molecular components of the ABA signalling pathway have now been identified, the molecular mechanisms through which ABA elicits specific responses in distinct organs is still enigmatic. To address the fundamental characteristics of ABA signalling during germination, we performed a meta-analysis focusing on the Arabidopsis dry seed proteome as a reflexion basis. We combined cutting-edge proteome studies, comparative functional analyses, and protein interaction information with genetic and physiological data to redefine the singular composition and operation of the ABA core signalosome from the onset of seed imbibition. In addition, we performed a literature survey to integrate peripheral regulators present in seeds that directly regulate core component function. Although this may only be the tip of the iceberg, this extended model of ABA signalling in seeds already depicts a highly flexible system able to integrate a multitude of information to fine-tune the progression of germination.
Collapse
|
5
|
Ko KS, Yoo JY, Vu BN, Lee YE, Choi HN, Lee YN, Fanata WID, Harmoko R, Chung WS, Hong JC, Lee KO. The role of protein phosphatase 2A (PP2A) in the unfolded protein response (UPR) of plants. Biochem Biophys Res Commun 2023; 670:94-101. [PMID: 37290287 DOI: 10.1016/j.bbrc.2023.05.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Protein phosphatase 2A (PP2A) is a key regulator of plant growth and development, but its role in the endoplasmic reticulum (ER) stress response remains elusive. In this study, we investigated the function of PP2A under ER stress using loss-of-function mutants of ROOTS CURL of NAPHTHYLPHTHALAMIC ACID1 (RCN1), a regulatory A1 subunit isoform of Arabidopsis PP2A. RCN1 mutants (rcn1-1 and rcn1-2) exhibited reduced sensitivity to tunicamycin (TM), an inhibitor of N-linked glycosylation and inducer of unfolded protein response (UPR) gene expression, resulting in less severe effects compared to wild-type plants (Ws-2 and Col-0). TM negatively impacted PP2A activity in Col-0 plants but did not significantly affect rcn1-2 plants. Additionally, TM treatment did not influence the transcription levels of the PP2AA1(RCN1), 2, and 3 genes in Col-0 plants. Cantharidin, a PP2A inhibitor, exacerbated growth defects in rcn1 plants and alleviated TM-induced growth inhibition in Ws-2 and Col-0 plants. Furthermore, cantharidin treatment mitigated TM hypersensitivity in ire1a&b and bzip28&60 mutants. These findings suggest that PP2A activity is essential for an efficient UPR in Arabidopsis.
Collapse
Affiliation(s)
- Ki Seong Ko
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Jae Yong Yoo
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Bich Ngoc Vu
- Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Young Eun Lee
- Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Ha Na Choi
- Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Yoo Na Lee
- Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Wahyu Indra Duwi Fanata
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Department of Agrotechnology, Faculty of Agriculture, University of Jember, Jember, 68121, Indonesia
| | - Rikno Harmoko
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Research Center for Genetic Engineering, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor, Cibinong, Bogor, 16911, Indonesia
| | - Woo Sik Chung
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Jong Chan Hong
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Kyun Oh Lee
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea.
| |
Collapse
|
6
|
Chen L. Emerging roles of protein phosphorylation in regulation of stomatal development. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153882. [PMID: 36493667 DOI: 10.1016/j.jplph.2022.153882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Stomata, tiny epidermal spores, control gas exchange between plants and their external environment, thereby playing essential roles in plant development and physiology. Stomatal development requires rapid regulation of components in signaling pathways to respond flexibly to numerous intrinsic and extrinsic signals. In support of this, reversible phosphorylation, which is particularly suitable for rapid signal transduction, has been implicated in this process. This review highlights the current understanding of the essential roles of reversible phosphorylation in the regulation of stomatal development, most of which comes from the dicot Arabidopsis thaliana. Protein phosphorylation tightly controls the activity of SPEECHLESS (SPCH)-SCREAM (SCRM), the stomatal lineage switch, and the activity of several mitogen-activated protein kinases and receptor kinases upstream of SPCH-SCRM, thereby regulating stomatal cell differentiation and patterning. In addition, protein phosphorylation is involved in the establishment of cell polarity during stomatal asymmetric cell division. Finally, cyclin-dependent kinase-mediated protein phosphorylation plays essential roles in cell cycle control during stomatal development.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
7
|
Chen Z, Wang L. ALA Upregulates MdPTPA Expression to Increase the PP2A Activity and Promote Stomatal Opening in Apple Leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111490. [PMID: 36216297 DOI: 10.1016/j.plantsci.2022.111490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
5-Aminolevulinic acid (ALA) is a new natural plant growth regulator that inhibits abscisic acid (ABA)-induced stomatal closure. Studies have shown that protein phosphatase 2 A (PP2A) is involved in ALA-ABA antagonistically regulating stomatal movement; however, the molecular mechanisms underlying remain unclear. Here, we report that ALA promoted MdPP2A activity and the MdPP2AC expression in the epidermis of apple (Malus × domestica Borkh. cv. Fuji) leaves. Y2H (Yeast two hybrid), BiFC (Bimolecular fluorescence complement), and FLC (Firefly luciferase complementation imaging assay) analysis showed that MdPP2AC interacted with MdPTPA, a phosphortyrosyl phosphatase activator. Furthermore, the transient overexpression or interference-expression of MdPTPA transgenic apple leaves were developed. The results showed that overexpression of MdPTPA promoted stomatal opening by reducing Ca2+ and H2O2 but increasing flavonols in guard cells. Conversely, when the MdPTPA was silenced in transient transgenic apple leaves, the Ca2+, H2O2 and flavonols in guard cells and stomatal movement were completely conversed. In the transgenic apple leaves, exogenous ALA stimulated PP2A but repressed SnRK2.6 activity, while the responses are the same as that in the wild type. Therefore, we propose that MdPTPA, which increases the PP2A activity, mediates ALA signaling to promote stomatal opening in apple leaves.
Collapse
Affiliation(s)
- Zheng Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Muñiz García MN, Cortelezzi JI, Capiati DA. The protein phosphatase 2A catalytic subunit StPP2Ac2b is involved in the control of potato tuber sprouting and source-sink balance in tubers and sprouts. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6784-6799. [PMID: 35925650 DOI: 10.1093/jxb/erac326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Sprouting negatively affects the quality of stored potato tubers. Understanding the molecular mechanisms that control this process is important for the development of potato varieties with desired sprouting characteristics. Serine/threonine protein phosphatase type 2A (PP2A) has been implicated in several developmental programs and stress responses in plants. PP2A comprises a catalytic (PP2Ac), a scaffolding (A), and a regulatory (B) subunit. In cultivated potato, six PP2Ac isoforms were identified, named StPP2Ac1, 2a, 2b, 3, 4, and 5. In this study we evaluated the sprouting behavior of potato tubers overexpressing the catalytic subunit 2b (StPP2Ac2b-OE). The onset of sprouting and initial sprout elongation is significantly delayed in StPP2Ac2b-OE tubers; however, sprout growth is accelerated during the late stages of development, due to a high degree of branching. StPP2Ac2b-OE tubers also exhibit a pronounced loss of apical dominance. These developmental characteristics are accompanied by changes in carbohydrate metabolism and response to gibberellic acid, and a differential balance between abscisic acid, gibberellic acid, cytokinins, and auxin. Overexpression of StPP2Ac2b alters the source-sink balance, increasing the source capacity of the tuber, and the sink strength of the sprout to support its accelerated growth.
Collapse
Affiliation(s)
- María N Muñiz García
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular 'Dr. Héctor Torres', Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Vuelta de Obligado, Buenos Aires, Argentina
| | - Juan I Cortelezzi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular 'Dr. Héctor Torres', Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Vuelta de Obligado, Buenos Aires, Argentina
| | - Daniela A Capiati
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular 'Dr. Héctor Torres', Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Vuelta de Obligado, Buenos Aires, Argentina
| |
Collapse
|
9
|
Muñiz García MN, Grossi C, Ulloa RM, Capiati DA. The protein phosphatase 2A catalytic subunit StPP2Ac2b enhances susceptibility to Phytophthora infestans and senescence in potato. PLoS One 2022; 17:e0275844. [PMID: 36215282 PMCID: PMC9550054 DOI: 10.1371/journal.pone.0275844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/25/2022] [Indexed: 11/11/2022] Open
Abstract
The serine/threonine protein phosphatases type 2A (PP2A) are involved in several physiological responses in plants, playing important roles in developmental programs, stress responses and hormone signaling. Six PP2A catalytic subunits (StPP2Ac) were identified in cultivated potato. Transgenic potato plants constitutively overexpressing the catalytic subunit StPP2Ac2b (StPP2Ac2b-OE) were developed to determine its physiological roles. The response of StPP2Ac2b-OE plants to the oomycete Phytophthora infestans, the causal agent of late blight, was evaluated. We found that overexpression of StPP2Ac2b enhances susceptibility to the pathogen. Further bioinformatics, biochemical, and molecular analyses revealed that StPP2Ac2b positively regulates developmental and pathogen-induced senescence, and that P. infestans infection promotes senescence, most likely through induction of StPP2Ac2b expression.
Collapse
Affiliation(s)
- María N. Muñiz García
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cecilia Grossi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rita M. Ulloa
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daniela A. Capiati
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail: ,
| |
Collapse
|
10
|
Liu WC, Song RF, Zheng SQ, Li TT, Zhang BL, Gao X, Lu YT. Coordination of plant growth and abiotic stress responses by tryptophan synthase β subunit 1 through modulation of tryptophan and ABA homeostasis in Arabidopsis. MOLECULAR PLANT 2022; 15:973-990. [PMID: 35488429 DOI: 10.1016/j.molp.2022.04.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/12/2021] [Accepted: 04/25/2022] [Indexed: 05/12/2023]
Abstract
To adapt to changing environments, plants have evolved elaborate regulatory mechanisms balancing their growth with stress responses. It is currently unclear whether and how the tryptophan (Trp), the growth-related hormone auxin, and the stress hormone abscisic acid (ABA) are coordinated in this trade-off. Here, we show that tryptophan synthase β subunit 1 (TSB1) is involved in the coordination of Trp and ABA, thereby affecting plant growth and abiotic stress responses. Plants experiencing high salinity or drought display reduced TSB1 expression, resulting in decreased Trp and auxin accumulation and thus reduced growth. In comparison with the wild type, amiR-TSB1 lines and TSB1 mutants exhibited repressed growth under non-stress conditions but had enhanced ABA accumulation and stress tolerance when subjected to salt or drought stress. Furthermore, we found that TSB1 interacts with and inhibits β-glucosidase 1 (BG1), which hydrolyses glucose-conjugated ABA into active ABA. Mutation of BG1 in the amiR-TSB1 lines compromised their increased ABA accumulation and enhanced stress tolerance. Moreover, stress-induced H2O2 disrupted the interaction between TSB1 and BG1 by sulfenylating cysteine-308 of TSB1, relieving the TSB1-mediated inhibition of BG1 activity. Taken together, we revealed that TSB1 serves as a key coordinator of plant growth and stress responses by balancing Trp and ABA homeostasis.
Collapse
Affiliation(s)
- Wen-Cheng Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Ru-Feng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Si-Qiu Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Bing-Lei Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xiang Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
11
|
Zhu X, Shen G, Wijewardene I, Cai Y, Esmaeili N, Sun L, Zhang H. The B'ζ subunit of protein phosphatase 2A negatively regulates ethylene signaling in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:81-91. [PMID: 34773805 DOI: 10.1016/j.plaphy.2021.10.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/06/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Ethylene is a major plant hormone that regulates plant growth, development, and defense responses to biotic and abiotic stresses. The major pieces of the ethylene signaling pathway have been put together, although several details still need to be elucidated. For instance, the phosphorylation and dephosphorylation processes controlling the ethylene responses are poorly understood and need to be further explored. The type 2A protein phosphatase (PP2A) was suggested to play an important role in the regulation of ethylene biosynthesis, where the A1 subunit of PP2A was shown to be involved in the regulation of the rate-limiting enzyme of the ethylene biosynthetic pathway. However, whether other subunits of PP2A play roles in the ethylene signal transduction pathway is yet to be answered. In this study, we demonstrate that a B subunit, PP2A-B'ζ, positively regulates plant germination and seedling development, as a pp2a-b'ζ mutant is very sensitive to ethylene treatment. Furthermore, PP2A-B'ζ interacts with and stabilizes the kinase CTR1 (Constitutive Triple Response 1), a key enzyme in the ethylene signal transduction pathway, and like CTR1, PP2A-B'ζ negatively regulates ethylene signaling in plants.
Collapse
Affiliation(s)
- Xunlu Zhu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Inosha Wijewardene
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Yifan Cai
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Nardana Esmaeili
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Li Sun
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
12
|
Zhang Y, Xia G, Zhu Q. Conserved and Unique Roles of Chaperone-Dependent E3 Ubiquitin Ligase CHIP in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:699756. [PMID: 34305988 PMCID: PMC8299108 DOI: 10.3389/fpls.2021.699756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/17/2021] [Indexed: 05/09/2023]
Abstract
Protein quality control (PQC) is essential for maintaining cellular homeostasis by reducing protein misfolding and aggregation. Major PQC mechanisms include protein refolding assisted by molecular chaperones and the degradation of misfolded and aggregated proteins using the proteasome and autophagy. A C-terminus of heat shock protein (Hsp) 70-interacting protein [carboxy-terminal Hsp70-interacting protein (CHIP)] is a chaperone-dependent and U-box-containing E3 ligase. CHIP is a key molecule in PQC by recognizing misfolded proteins through its interacting chaperones and targeting their degradation. CHIP also ubiquitinates native proteins and plays a regulatory role in other cellular processes, including signaling, development, DNA repair, immunity, and aging in metazoans. As a highly conserved ubiquitin ligase, plant CHIP plays an important role in response to a broad spectrum of biotic and abiotic stresses. CHIP protects chloroplasts by coordinating chloroplast PQC both outside and inside the important photosynthetic organelle of plant cells. CHIP also modulates the activity of protein phosphatase 2A (PP2A), a crucial component in a network of plant signaling, including abscisic acid (ABA) signaling. In this review, we discuss the structure, cofactors, activities, and biological function of CHIP with an emphasis on both its conserved and unique roles in PQC, stress responses, and signaling in plants.
Collapse
Affiliation(s)
| | | | - Qianggen Zhu
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, China
| |
Collapse
|
13
|
Bheri M, Mahiwal S, Sanyal SK, Pandey GK. Plant protein phosphatases: What do we know about their mechanism of action? FEBS J 2020; 288:756-785. [PMID: 32542989 DOI: 10.1111/febs.15454] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Protein phosphorylation is a major reversible post-translational modification. Protein phosphatases function as 'critical regulators' in signaling networks through dephosphorylation of proteins, which have been phosphorylated by protein kinases. A large understanding of their working has been sourced from animal systems rather than the plant or the prokaryotic systems. The eukaryotic protein phosphatases include phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine(Ser)/threonine(Thr)-specific phosphatases (STPs), while PTP family is Tyr specific. Dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. PTPs lack sequence homology with STPs, indicating a difference in catalytic mechanisms, while the PPP and PPM families share a similar structural fold indicating a common catalytic mechanism. The catalytic cysteine (Cys) residue in the conserved HCX5 R active site motif of the PTPs acts as a nucleophile during hydrolysis. The PPP members require metal ions, which coordinate the phosphate group of the substrate, followed by a nucleophilic attack by a water molecule and hydrolysis. The variable holoenzyme assembly of protein phosphatase(s) and the overlap with other post-translational modifications like acetylation and ubiquitination add to their complexity. Though their functional characterization is extensively reported in plants, the mechanistic nature of their action is still being explored by researchers. In this review, we exclusively overview the plant protein phosphatases with an emphasis on their mechanistic action as well as structural characteristics.
Collapse
Affiliation(s)
- Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
14
|
An Y, Xiong L, Hu S, Wang L. PP2A and microtubules function in 5-aminolevulinic acid-mediated H 2 O 2 signaling in Arabidopsis guard cells. PHYSIOLOGIA PLANTARUM 2020; 168:709-724. [PMID: 31381165 DOI: 10.1111/ppl.13016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
5-aminolevulinic acid (ALA), a plant growth regulator with great application potential in agriculture and horticulture, induces stomatal opening and inhibits stomatal closure by decreasing guard cell H2 O2 . However, the mechanisms behind ALA-decreased H2 O2 in guard cells are not fully understood. Here, using type 2A protein phosphatase (PP2A) inhibitors, microtubule-stabilizing/disrupting drugs and green fluorescent protein-tagged α-tubulin 6 transgenic Arabidopsis (GFP-TUA6), we find that PP2A and cortical microtubules (MTs) are involved in ALA-regulated stomatal movement. Then, we analyze stomatal responses of Arabidopsis overexpressing C2 catalytic subunit of PP2A (PP2A-C2) and pp2a-c2 mutant to ALA and abscisic acid (ABA) under both light and dark conditions, and show that PP2A-C2 participates in ALA-induced stomatal movement. Furthermore, using pharmacological methods and confocal studies, we reveal that PP2A and MTs function upstream and downstream, respectively, of H2 O2 in guard cell signaling. Finally, we demonstrate the role of H2 O2 -mediated microtubule arrangement in ALA inhibiting ABA-induced stomatal closure. Our findings indicate that MTs regulated by PP2A-mediated H2 O2 decreasing play an important role in ALA guard cell signaling, revealing new insights into stomatal movement regulation.
Collapse
Affiliation(s)
- Yuyan An
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijun Xiong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shu Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
15
|
Li Y, Wang Y, Tan S, Li Z, Yuan Z, Glanc M, Domjan D, Wang K, Xuan W, Guo Y, Gong Z, Friml J, Zhang J. Root Growth Adaptation is Mediated by PYLs ABA Receptor-PP2A Protein Phosphatase Complex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901455. [PMID: 32042554 PMCID: PMC7001640 DOI: 10.1002/advs.201901455] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/23/2019] [Indexed: 05/20/2023]
Abstract
Plant root architecture dynamically adapts to various environmental conditions, such as salt-containing soil. The phytohormone abscisic acid (ABA) is involved among others also in these developmental adaptations, but the underlying molecular mechanism remains elusive. Here, a novel branch of the ABA signaling pathway in Arabidopsis involving PYR/PYL/RCAR (abbreviated as PYLs) receptor-protein phosphatase 2A (PP2A) complex that acts in parallel to the canonical PYLs-protein phosphatase 2C (PP2C) mechanism is identified. The PYLs-PP2A signaling modulates root gravitropism and lateral root formation through regulating phytohormone auxin transport. In optimal conditions, PYLs ABA receptor interacts with the catalytic subunits of PP2A, increasing their phosphatase activity and thus counteracting PINOID (PID) kinase-mediated phosphorylation of PIN-FORMED (PIN) auxin transporters. By contrast, in salt and osmotic stress conditions, ABA binds to PYLs, inhibiting the PP2A activity, which leads to increased PIN phosphorylation and consequently modulated directional auxin transport leading to adapted root architecture. This work reveals an adaptive mechanism that may flexibly adjust plant root growth to withstand saline and osmotic stresses. It occurs via the cross-talk between the stress hormone ABA and the versatile developmental regulator auxin.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Yaping Wang
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Shutang Tan
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | - Zhen Li
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Zhi Yuan
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Matouš Glanc
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | - David Domjan
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | - Kai Wang
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower‐Middle Reaches of the Yangtze RiverNanjing Agricultural UniversityNanjing210095China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Jiří Friml
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | - Jing Zhang
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| |
Collapse
|
16
|
Zheng Q, Zhang L, Zhang Q, Pang Z, Sun Y, Yin Z, Lou Z. Discovery of Interacting Proteins of ABA Receptor PYL5 via Covalent Chemical Capture. ACS Chem Biol 2019; 14:2557-2563. [PMID: 31617999 DOI: 10.1021/acschembio.9b00806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abscisic acid (ABA) is a key phytohormone with diverse functions in plants, and its signal transduction is mainly mediated by ABA receptors termed PYR/PYL/RCARs (hereafter referred to as PYLs) through the PYLs-PP2Cs-SnRK2s regulatory systems. However, the model failed to account for the roles of some important known regulators of ABA physiology. Given the central role of PYLs in ABA signal transduction, we therefore speculated that ABA receptors PYLs might be involved in regulatory pathways other than PP2Cs. Thus, a comprehensive analysis of PYLs-interacting partners could greatly facilitate the identification of unknown regulatory pathways, advancing our knowledge of the ABA signaling mechanism. Herein, we present a strategy involving covalent chemical capture coupled with HPLC-MS/MS analysis, to profile PYL5-interacting partners in plant cell lysates. With this strategy, three new PYL5-interacting partners, ubiquitin receptor RAD23C, COP9 signalosome complex subunit 1 (CSN1), and cyclase-associated protein 1 (CAP1), along with their key binding sites with PYL5 were identified. Among these proteins, CAP1 was verified to interact with PYL5 both in vitro and in vivo. The discovery of a new PYL5 binding partner showed the versatility of covalent chemical cross-linking and laid the foundation for future efforts to further elucidate the ABA signaling mechanism.
Collapse
Affiliation(s)
- Qizhen Zheng
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liang Zhang
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qian Zhang
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhengyuan Pang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yang Sun
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zheng Yin
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhiyong Lou
- School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Máthé C, Garda T, Freytag C, M-Hamvas M. The Role of Serine-Threonine Protein Phosphatase PP2A in Plant Oxidative Stress Signaling-Facts and Hypotheses. Int J Mol Sci 2019; 20:ijms20123028. [PMID: 31234298 PMCID: PMC6628354 DOI: 10.3390/ijms20123028] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
Abiotic and biotic factors induce oxidative stress involving the production and scavenging of reactive oxygen species (ROS). This review is a survey of well-known and possible roles of serine-threonine protein phosphatases in plant oxidative stress signaling, with special emphasis on PP2A. ROS mediated signaling involves three interrelated pathways: (i) perception of extracellular ROS triggers signal transduction pathways, leading to DNA damage and/or the production of antioxidants; (ii) external signals induce intracellular ROS generation that triggers the relevant signaling pathways and (iii) external signals mediate protein phosphorylation dependent signaling pathway(s), leading to the expression of ROS producing enzymes like NADPH oxidases. All pathways involve inactivation of serine-threonine protein phosphatases. The metal dependent phosphatase PP2C has a negative regulatory function during ABA mediated ROS signaling. PP2A is the most abundant protein phosphatase in eukaryotic cells. Inhibitors of PP2A exert a ROS inducing activity as well and we suggest that there is a direct relationship between these two effects of drugs. We present current findings and hypotheses regarding PP2A-ROS signaling connections related to all three ROS signaling pathways and anticipate future research directions for this field. These mechanisms have implications in the understanding of stress tolerance of vascular plants, having applications regarding crop improvement.
Collapse
Affiliation(s)
- Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary.
| | - Tamás Garda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary.
| | - Csongor Freytag
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary.
| | - Márta M-Hamvas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary.
| |
Collapse
|
18
|
Bheri M, Pandey GK. PP2A Phosphatases Take a Giant Leap in the Post-Genomics Era. Curr Genomics 2019; 20:154-171. [PMID: 31929724 PMCID: PMC6935955 DOI: 10.2174/1389202920666190517110605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Protein phosphorylation is an important reversible post-translational modifica-tion, which regulates a number of critical cellular processes. Phosphatases and kinases work in a con-certed manner to act as a "molecular switch" that turns-on or - off the regulatory processes driving the growth and development under normal circumstances, as well as responses to multiple stresses in plant system. The era of functional genomics has ushered huge amounts of information to the framework of plant systems. The comprehension of who's who in the signaling pathways is becoming clearer and the investigations challenging the conventional functions of signaling components are on a rise. Protein phosphatases have emerged as key regulators in the signaling cascades. PP2A phosphatases due to their diverse holoenzyme compositions are difficult to comprehend. CONCLUSION In this review, we highlight the functional versatility of PP2A members, deciphered through the advances in the post-genomic era.
Collapse
Affiliation(s)
- Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| |
Collapse
|
19
|
Proteomic Analysis of Rapeseed Root Response to Waterlogging Stress. PLANTS 2018; 7:plants7030071. [PMID: 30205432 PMCID: PMC6160990 DOI: 10.3390/plants7030071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 01/03/2023]
Abstract
The overall health of a plant is constantly affected by the changing and hostile environment. Due to climate change and the farming pattern of rice (Oryza sativa) and rapeseed (Brassica napus L.), stress from waterlogging poses a serious threat to productivity assurance and the yield of rapeseed in China's Yangtze River basin. In order to improve our understanding of the complex mechanisms behind waterlogging stress and identify waterlogging-responsive proteins, we firstly conducted iTRAQ (isobaric tags for relative and absolute quantification)-based quantitative proteomic analysis of rapeseed roots under waterlogging treatments, for both a tolerant cultivar ZS9 and sensitive cultivar GH01. A total of 7736 proteins were identified by iTRAQ, of which several hundred showed different expression levels, including 233, 365, and 326 after waterlogging stress for 4H, 8H, and 12H in ZS9, respectively, and 143, 175, and 374 after waterlogging stress for 4H, 8H, and 12H in GH01, respectively. For proteins repeatedly identified at different time points, gene ontology (GO) cluster analysis suggested that the responsive proteins of the two cultivars were both enriched in the biological process of DNA-dependent transcription and the oxidation⁻reduction process, and response to various stress and hormone stimulus, while different distribution frequencies in the two cultivars was investigated. Moreover, overlap proteins with similar or opposite tendencies of fold change between ZS9 and GH01 were observed and clustered based on the different expression ratios, suggesting the two genotype cultivars exhibited diversiform molecular mechanisms or regulation pathways in their waterlogging stress response. The following qRT-PCR (quantitative real-time polymerase chain reaction) results verified the candidate proteins at transcription levels, which were prepared for further research. In conclusion, proteins detected in this study might perform different functions in waterlogging responses and would provide information conducive to better understanding adaptive mechanisms under environmental stresses.
Collapse
|
20
|
Razavizadeh R, Shojaie B, Komatsu S. Characterization of PP2A- A3 mRNA expression and growth patterns in Arabidopsis thaliana under drought stress and abscisic acid. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:563-575. [PMID: 30042613 PMCID: PMC6041231 DOI: 10.1007/s12298-018-0530-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/09/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Phosphoprotein phosphatase 2A (PP2A) plays a crucial role in cellular processes via reversible dephosphorylation of proteins. The activity of this enzyme depends on its subunits. There is little information about mRNA expression of each subunit and the relationship between these gene expressions and the growth patterns under stress conditions and hormones. Here, mRNA expression of subunit A3 of PP2A and its relationship with growth patterns under different levels of drought stress and abscisic acid (ABA) concentration were analyzed in Arabidopsis thaliana. The mRNA expression profiles showed different levels of the up- and down-regulation of PP2AA3 in roots and shoots of A. thaliana under drought conditions and ABA treatments. The results demonstrated that the regulation of PP2AA3 expression under the mentioned conditions could indirectly modulate growth patterns such that seedlings grown under severe drought stress and those grown under 4 µM ABA had the maximum number of lateral roots and the shortest primary roots. In contrast, the minimum number of lateral roots and the longest primary roots were observed under mild drought stress and 0.5 µM ABA. Differences in PP2AA3 mRNA expression showed that mechanisms involved in the regulation of this gene under drought conditions would probably be different from those that regulate the PP2AA3 expression under ABA. Co-expression of PP2AA3 with each of PIN1-4,7 (PP2A activity targets) depends on the organ type and different levels of drought stress and ABA concentration. Furthermore, fluctuations in the PP2AA3 expression proved that this gene cannot be suitable as a reference gene although PP2AA3 is widely used as a reference gene.
Collapse
Affiliation(s)
- Roya Razavizadeh
- Department of Biology, Payame Noor University, 19395-3697, Tehran, Iran
| | - Behrokh Shojaie
- Department of Biology, Faculty of Science, University of Isfahan, 81746-73441, Isfahan, Iran
| | - Setsuko Komatsu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| |
Collapse
|
21
|
Punzo P, Ruggiero A, Possenti M, Nurcato R, Costa A, Morelli G, Grillo S, Batelli G. The PP2A-interactor TIP41 modulates ABA responses in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:991-1009. [PMID: 29602224 DOI: 10.1111/tpj.13913] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 05/27/2023]
Abstract
Modulation of growth in response to environmental cues is a fundamental aspect of plant adaptation to abiotic stresses. TIP41 (TAP42 INTERACTING PROTEIN OF 41 kDa) is the Arabidopsis thaliana orthologue of proteins isolated in mammals and yeast that participate in the Target-of-Rapamycin (TOR) pathway, which modifies cell growth in response to nutrient status and environmental conditions. Here, we characterized the function of TIP41 in Arabidopsis. Expression analyses showed that TIP41 is constitutively expressed in vascular tissues, and is induced following long-term exposure to NaCl, polyethylene glycol and abscisic acid (ABA), suggesting a role of TIP41 in adaptation to abiotic stress. Visualization of a fusion protein with yellow fluorescent protein indicated that TIP41 is localized in the cytoplasm and the nucleus. Abolished expression of TIP41 results in smaller plants with a lower number of rosette leaves and lateral roots, and an increased sensitivity to treatments with chemical TOR inhibitors, indicating that TOR signalling is affected in these mutants. In addition, tip41 mutants are hypersensitive to ABA at germination and seedling stage, whereas over-expressing plants show higher tolerance. Several TOR- and ABA-responsive genes are differentially expressed in tip41, including iron homeostasis, senescence and ethylene-associated genes. In yeast and mammals, TIP41 provides a link between the TOR pathway and the protein phosphatase 2A (PP2A), which in plants participates in several ABA-mediated mechanisms. Here, we showed an interaction of TIP41 with the catalytic subunit of PP2A. Taken together, these results offer important insights into the function of Arabidopsis TIP41 in the modulation of plant growth and ABA responses.
Collapse
Affiliation(s)
- Paola Punzo
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| | - Alessandra Ruggiero
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| | - Marco Possenti
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics (CREA-GB), Via Ardeatina 546, 00178, Rome, Italy
| | - Roberta Nurcato
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| | - Antonello Costa
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| | - Giorgio Morelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics (CREA-GB), Via Ardeatina 546, 00178, Rome, Italy
| | - Stefania Grillo
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| | - Giorgia Batelli
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| |
Collapse
|
22
|
Creighton MT, Kolton A, Kataya ARA, Maple-Grødem J, Averkina IO, Heidari B, Lillo C. Methylation of protein phosphatase 2A-Influence of regulators and environmental stress factors. PLANT, CELL & ENVIRONMENT 2017; 40:2347-2358. [PMID: 28741704 DOI: 10.1111/pce.13038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 05/13/2023]
Abstract
Protein phosphatase 2A catalytic subunit (PP2A-C) has a terminal leucine subjected to methylation, a regulatory mechanism conserved from yeast to mammals and plants. Two enzymes, LCMT1 and PME1, methylate and demethylate PP2A-C, respectively. The physiological importance of these posttranslational modifications is still enigmatic. We investigated these processes in Arabidopsis thaliana by mutant phenotyping, by global expression analysis, and by monitoring methylation status of PP2A-C under different environmental conditions. The lcmt1 mutant, possessing essentially only unmethylated PP2A-C, had less dense rosettes, and earlier flowering than wild type (WT). The pme1 mutant, with 30% reduction in unmethylated PP2A-C, was phenotypically comparable with WT. Approximately 200 overlapping genes were twofold upregulated, and 200 overlapping genes were twofold downregulated in both lcmt1 and pme1 relative to WT. Differences between the 2 mutants were also striking; 97 genes were twofold upregulated in pme1 compared with lcmt1, indicating that PME1 acts as a negative regulator for these genes. Analysis of enriched GO terms revealed categories of both abiotic and biotic stress genes. Furthermore, methylation status of PP2A-C was influenced by environmental stress, especially by hypoxia and salt stress, which led to increased levels of unmethylated PP2A-C, and highlights the importance of PP2A-C methylation/demethylation in environmental responses.
Collapse
Affiliation(s)
- Maria T Creighton
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| | - Anna Kolton
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, 31-425 Kraków, Poland
| | - Amr R A Kataya
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| | - Jodi Maple-Grødem
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| | - Irina O Averkina
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| | - Behzad Heidari
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| | - Cathrine Lillo
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| |
Collapse
|
23
|
Albert R, Acharya BR, Jeon BW, Zañudo JGT, Zhu M, Osman K, Assmann SM. A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops. PLoS Biol 2017; 15:e2003451. [PMID: 28937978 PMCID: PMC5627951 DOI: 10.1371/journal.pbio.2003451] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/04/2017] [Accepted: 09/04/2017] [Indexed: 11/19/2022] Open
Abstract
Stomata, microscopic pores in leaf surfaces through which water loss and carbon dioxide uptake occur, are closed in response to drought by the phytohormone abscisic acid (ABA). This process is vital for drought tolerance and has been the topic of extensive experimental investigation in the last decades. Although a core signaling chain has been elucidated consisting of ABA binding to receptors, which alleviates negative regulation by protein phosphatases 2C (PP2Cs) of the protein kinase OPEN STOMATA 1 (OST1) and ultimately results in activation of anion channels, osmotic water loss, and stomatal closure, over 70 additional components have been identified, yet their relationships with each other and the core components are poorly elucidated. We integrated and processed hundreds of disparate observations regarding ABA signal transduction responses underlying stomatal closure into a network of 84 nodes and 156 edges and, as a result, established those relationships, including identification of a 36-node, strongly connected (feedback-rich) component as well as its in- and out-components. The network's domination by a feedback-rich component may reflect a general feature of rapid signaling events. We developed a discrete dynamic model of this network and elucidated the effects of ABA plus knockout or constitutive activity of 79 nodes on both the outcome of the system (closure) and the status of all internal nodes. The model, with more than 1024 system states, is far from fully determined by the available data, yet model results agree with existing experiments in 82 cases and disagree in only 17 cases, a validation rate of 75%. Our results reveal nodes that could be engineered to impact stomatal closure in a controlled fashion and also provide over 140 novel predictions for which experimental data are currently lacking. Noting the paucity of wet-bench data regarding combinatorial effects of ABA and internal node activation, we experimentally confirmed several predictions of the model with regard to reactive oxygen species, cytosolic Ca2+ (Ca2+c), and heterotrimeric G-protein signaling. We analyzed dynamics-determining positive and negative feedback loops, thereby elucidating the attractor (dynamic behavior) repertoire of the system and the groups of nodes that determine each attractor. Based on this analysis, we predict the likely presence of a previously unrecognized feedback mechanism dependent on Ca2+c. This mechanism would provide model agreement with 10 additional experimental observations, for a validation rate of 85%. Our research underscores the importance of feedback regulation in generating robust and adaptable biological responses. The high validation rate of our model illustrates the advantages of discrete dynamic modeling for complex, nonlinear systems common in biology.
Collapse
Affiliation(s)
- Réka Albert
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Biswa R. Acharya
- Biology Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Byeong Wook Jeon
- Biology Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jorge G. T. Zañudo
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Mengmeng Zhu
- Biology Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Karim Osman
- Biology Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sarah M. Assmann
- Biology Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
24
|
Née G, Kramer K, Nakabayashi K, Yuan B, Xiang Y, Miatton E, Finkemeier I, Soppe WJJ. DELAY OF GERMINATION1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy. Nat Commun 2017; 8:72. [PMID: 28706187 DOI: 10.1038/s41467-017-00113-116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/02/2017] [Indexed: 05/25/2023] Open
Abstract
The time of seed germination is a major decision point in the life of plants determining future growth and development. This timing is controlled by seed dormancy, which prevents germination under favourable conditions. The plant hormone abscisic acid (ABA) and the protein DELAY OF GERMINATION 1 (DOG1) are essential regulators of dormancy. The function of ABA in dormancy is rather well understood, but the role of DOG1 is still unknown. Here, we describe four phosphatases that interact with DOG1 in seeds. Two of them belong to clade A of type 2C protein phosphatases: ABA-HYPERSENSITIVE GERMINATION 1 (AHG1) and AHG3. These phosphatases have redundant but essential roles in the release of seed dormancy epistatic to DOG1. We propose that the ABA and DOG1 dormancy pathways converge at clade A of type 2C protein phosphatases.The DOG1 protein is a major regulator of seed dormancy in Arabidopsis. Here, Née et al. provide evidence that DOG1 can interact with the type 2C protein phosphatases AHG1 and AHG3 and that this represents the convergence point of the DOG1-regulated dormancy pathway and signalling by the plant hormone abscisic acid.
Collapse
Affiliation(s)
- Guillaume Née
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, Münster, 48149, Germany
| | - Katharina Kramer
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Kazumi Nakabayashi
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Bingjian Yuan
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Yong Xiang
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Emma Miatton
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, Münster, 48149, Germany
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Wim J J Soppe
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany.
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, 53115, Germany.
- Rijk Zwaan, De Lier, 2678 ZG, Netherlands.
| |
Collapse
|
25
|
Née G, Kramer K, Nakabayashi K, Yuan B, Xiang Y, Miatton E, Finkemeier I, Soppe WJJ. DELAY OF GERMINATION1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy. Nat Commun 2017; 8:72. [PMID: 28706187 PMCID: PMC5509711 DOI: 10.1038/s41467-017-00113-6] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/02/2017] [Indexed: 12/28/2022] Open
Abstract
The time of seed germination is a major decision point in the life of plants determining future growth and development. This timing is controlled by seed dormancy, which prevents germination under favourable conditions. The plant hormone abscisic acid (ABA) and the protein DELAY OF GERMINATION 1 (DOG1) are essential regulators of dormancy. The function of ABA in dormancy is rather well understood, but the role of DOG1 is still unknown. Here, we describe four phosphatases that interact with DOG1 in seeds. Two of them belong to clade A of type 2C protein phosphatases: ABA-HYPERSENSITIVE GERMINATION 1 (AHG1) and AHG3. These phosphatases have redundant but essential roles in the release of seed dormancy epistatic to DOG1. We propose that the ABA and DOG1 dormancy pathways converge at clade A of type 2C protein phosphatases.The DOG1 protein is a major regulator of seed dormancy in Arabidopsis. Here, Née et al. provide evidence that DOG1 can interact with the type 2C protein phosphatases AHG1 and AHG3 and that this represents the convergence point of the DOG1-regulated dormancy pathway and signalling by the plant hormone abscisic acid.
Collapse
Affiliation(s)
- Guillaume Née
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany.,Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, Münster, 48149, Germany
| | - Katharina Kramer
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Kazumi Nakabayashi
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany.,School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Bingjian Yuan
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Yong Xiang
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany.,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Emma Miatton
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, Münster, 48149, Germany.,Plant Proteomics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Wim J J Soppe
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany. .,Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, 53115, Germany. .,Rijk Zwaan, De Lier, 2678 ZG, Netherlands.
| |
Collapse
|
26
|
Han EH, Petrella DP, Blakeslee JJ. 'Bending' models of halotropism: incorporating protein phosphatase 2A, ABCB transporters, and auxin metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3071-3089. [PMID: 28899081 DOI: 10.1093/jxb/erx127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Salt stress causes worldwide reductions in agricultural yields, a problem that is exacerbated by the depletion of global freshwater reserves and the use of contaminated or recycled water (i.e. effluent water). Additionally, salt stress can occur as cultivated areas are subjected to frequent rounds of irrigation followed by periods of moderate to severe evapotranspiration, which can result in the heterogeneous aggregation of salts in agricultural soils. Our understanding of the later stages of salt stress and the mechanisms by which salt is transported out of cells and roots has greatly improved over the last decade. The precise mechanisms by which plant roots perceive salt stress and translate this perception into adaptive, directional growth away from increased salt concentrations (i.e. halotropism), however, are not well understood. Here, we provide a review of the current knowledge surrounding the early responses to salt stress and the initiation of halotropism, including lipid signaling, protein phosphorylation cascades, and changes in auxin metabolism and/or transport. Current models of halotropism have focused on the role of PIN2- and PIN1-mediated auxin efflux in initiating and controlling halotropism. Recent studies, however, suggest that additional factors such as ABCB transporters, protein phosphatase 2A activity, and auxin metabolism should be included in the model of halotropic growth.
Collapse
Affiliation(s)
- Eun Hyang Han
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
| | - Dominic P Petrella
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
| | - Joshua J Blakeslee
- Department of Horticulture and Crop Science, OARDC Metabolite Analysis Cluster (OMAC), The Ohio State University/OARDC, Wooster, OH, USA
| |
Collapse
|
27
|
Wang J, Pei L, Jin Z, Zhang K, Zhang J. Overexpression of the protein phosphatase 2A regulatory subunit a gene ZmPP2AA1 improves low phosphate tolerance by remodeling the root system architecture of maize. PLoS One 2017; 12:e0176538. [PMID: 28448624 PMCID: PMC5407761 DOI: 10.1371/journal.pone.0176538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/12/2017] [Indexed: 11/21/2022] Open
Abstract
Phosphate (Pi) limitation is a constraint for plant growth and development in many natural and agricultural ecosystems. In this study, a gene encoding Zea mays L. protein phosphatase 2A regulatory subunit A, designated ZmPP2AA1, was induced in roots by low Pi availability. The function of the ZmPP2AA1 gene in maize was analyzed using overexpression and RNA interference. ZmPP2AA1 modulated root gravitropism, negatively regulated primary root (PR) growth, and stimulated the development of lateral roots (LRs). A detailed characterization of the root system architecture (RSA) in response to different Pi concentrations with or without indole-3-acetic acid and 1-N-naphthylphthalamic acid revealed that auxin was involved in the RSA response to low Pi availability. Overexpression of ZmPP2AA1 enhanced tolerance to Pi starvation in transgenic maize in hydroponic and soil pot experiments. An increased dry weight (DW), root-to-shoot ratio, and total P content and concentration, along with a delayed and reduced accumulation of anthocyanin in overexpressing transgenic maize plants coincided with their highly branched root system and increased Pi uptake capability under low Pi conditions. Inflorescence development of the ZmPP2AA1 overexpressing line was less affected by low Pi stress, resulting in higher grain yield per plant under Pi deprivation. These data reveal the biological function of ZmPP2AA1, provide insights into a linkage between auxin and low Pi responses, and drive new strategies for the efficient utilization of Pi by maize.
Collapse
Affiliation(s)
- Jiemin Wang
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
| | - Laming Pei
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
- Department of Biotechnology, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Zhe Jin
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
| | - Kewei Zhang
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
| | - Juren Zhang
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
| |
Collapse
|
28
|
Booker MA, DeLong A. Atypical Protein Phosphatase 2A Gene Families Do Not Expand via Paleopolyploidization. PLANT PHYSIOLOGY 2017; 173:1283-1300. [PMID: 28034953 PMCID: PMC5291013 DOI: 10.1104/pp.16.01768] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 12/23/2016] [Indexed: 05/22/2023]
Abstract
Protein phosphatase 2A (PP2A) presents unique opportunities for analyzing molecular mechanisms of functional divergence between gene family members. The canonical PP2A holoenzyme regulates multiple eukaryotic signaling pathways by dephosphorylating target proteins and contains a catalytic (C) subunit, a structural/scaffolding (A) subunit, and a regulatory (B) subunit. Genes encoding PP2A subunits have expanded into multigene families in both flowering plants and mammals, and the extent to which different isoform functions may overlap is not clearly understood. To gain insight into the diversification of PP2A subunits, we used phylogenetic analyses to reconstruct the evolutionary histories of PP2A gene families in Arabidopsis (Arabidopsis thaliana). Genes encoding PP2A subunits in mammals represent ancient lineages that expanded early in vertebrate evolution, while flowering plant PP2A subunit lineages evolved much more recently. Despite this temporal difference, our data indicate that the expansion of PP2A subunit gene families in both flowering plants and animals was driven by whole-genome duplications followed by nonrandom gene loss. Selection analysis suggests that the expansion of one B subunit gene family (B56/PPP2R5) was driven by functional diversification rather than by the maintenance of gene dosage. We also observed reduced expansion rates in three distinct B subunit subclades. One of these subclades plays a highly conserved role in cell division, while the distribution of a second subclade suggests a specialized function in supporting beneficial microbial associations. Thus, while whole-genome duplications have driven the expansion and diversification of most PP2A gene families, members of functionally specialized subclades quickly revert to singleton status after duplication events.
Collapse
Affiliation(s)
- Matthew A Booker
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Alison DeLong
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
29
|
Muñiz García MN, Muro MC, Mazzocchi LC, País SM, Stritzler M, Schlesinger M, Capiati DA. The protein phosphatase 2A catalytic subunit StPP2Ac2b acts as a positive regulator of tuberization induction in Solanum tuberosum L. PLANT MOLECULAR BIOLOGY 2017; 93:227-245. [PMID: 27812910 DOI: 10.1007/s11103-016-0555-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/27/2016] [Indexed: 05/25/2023]
Abstract
This study provides the first genetic evidence for the role of PP2A in tuberization, demonstrating that the catalytic subunit StPP2Ac2b positively modulates tuber induction, and that its function is related to the regulation of gibberellic acid metabolism. The results contribute to a better understanding of the molecular mechanism controlling tuberization induction, which remains largely unknown. The serine/threonine protein phosphatases type 2A (PP2A) are implicated in several physiological processes in plants, playing important roles in hormone responses. In cultivated potato (Solanum tuberosum), six PP2A catalytic subunits (StPP2Ac) were identified. The PP2Ac of the subfamily I (StPP2Ac1, 2a and 2b) were suggested to be involved in the tuberization signaling in leaves, where the environmental and hormonal signals are perceived and integrated. The aim of this study was to investigate the role of PP2A in the tuberization induction in stolons. We selected one of the catalytic subunits of the subfamily I, StPP2Ac2b, to develop transgenic plants overexpressing this gene (StPP2Ac2b-OE). Stolons from StPP2Ac2b-OE plants show higher tuber induction rates in vitro, as compared to wild type stolons, with no differences in the number of tubers obtained at the end of the process. This effect is accompanied by higher expression levels of the gibberellic acid (GA) catabolic enzyme StGA2ox1. GA up-regulates StPP2Ac2b expression in stolons, possibly as part of the feedback system by which the hormone regulates its own level. Sucrose, a tuber-promoting factor in vitro, increases StPP2Ac2b expression. We conclude that StPP2Ac2b acts in stolons as a positive regulator tuber induction, integrating different tuberization-related signals mainly though the modulation of GA metabolism.
Collapse
Affiliation(s)
- María Noelia Muñiz García
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - María Catalina Muro
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Luciana Carla Mazzocchi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Silvia Marina País
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Margarita Stritzler
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Mariana Schlesinger
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Daniela Andrea Capiati
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
| |
Collapse
|
30
|
Hu R, Zhu Y, Wei J, Chen J, Shi H, Shen G, Zhang H. Overexpression of PP2A-C5 that encodes the catalytic subunit 5 of protein phosphatase 2A in Arabidopsis confers better root and shoot development under salt conditions. PLANT, CELL & ENVIRONMENT 2017; 40:150-164. [PMID: 27676158 DOI: 10.1111/pce.12837] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 09/05/2016] [Accepted: 09/19/2016] [Indexed: 05/18/2023]
Abstract
Protein phosphatase 2A (PP2A) is an enzyme consisting of three subunits: a scaffolding A subunit, a regulatory B subunit and a catalytic C subunit. PP2As were shown to play diverse roles in eukaryotes. In this study, the function of the Arabidopsis PP2A-C5 gene that encodes the catalytic subunit 5 of PP2A was studied using both loss-of-function and gain-of-function analyses. Loss-of-function mutant pp2a-c5-1 displayed more impaired growth during root and shoot development, whereas overexpression of PP2A-C5 conferred better root and shoot growth under different salt treatments, indicating that PP2A-C5 plays an important role in plant growth under salt conditions. Double knockout mutants of pp2a-c5-1 and salt overly sensitive (sos) mutants sos1-1, sos2-2 or sos3-1 showed additive sensitivity to NaCl, indicating that PP2A-C5 functions in a pathway different from the SOS signalling pathway. Using yeast two-hybrid analysis, four vacuolar membrane chloride channel (CLC) proteins, AtCLCa, AtCLCb, AtCLCc and AtCLCg, were found to interact with PP2A-C5. Moreover, overexpression of AtCLCc leads to increased salt tolerance and Cl- accumulation in transgenic Arabidopsis plants. These data indicate that PP2A-C5-mediated better growth under salt conditions might involve up-regulation of CLC activities on vacuolar membranes and that PP2A-C5 could be used for improving salt tolerance in crops.
Collapse
Affiliation(s)
- Rongbin Hu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Yinfeng Zhu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jia Wei
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, 310027, China
| | - Jian Chen
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, 310027, China
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
31
|
Yang W, Zhang W, Wang X. Post-translational control of ABA signalling: the roles of protein phosphorylation and ubiquitination. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:4-14. [PMID: 27767245 PMCID: PMC5253474 DOI: 10.1111/pbi.12652] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 05/05/2023]
Abstract
The plant phytohormone abscisic acid (ABA) plays significant roles in integrating environmental signals with embryogenesis, germination, seedling establishment, the floral transition and the adaptation of plants to stressful environments by modulating stomatal movement and stress-responsive gene expression. ABA signalling consists of ABA perception, signal transduction and ABA-induced responses. ABA receptors such as members of the PYR/PYL family, group A type 2C protein phosphatases (as negative regulators), SnRK2 protein kinases (as positive regulators), bZIP transcription factors and ion channels are key components of ABA signalling. Post-translational modifications, including dephosphorylation, phosphorylation and ubiquitination, play important roles in regulating ABA signalling. In this review, we focus on the roles of post-translational modifications in ABA signalling. The studies presented provide a detailed picture of the ABA signalling network.
Collapse
Affiliation(s)
- Wenqi Yang
- Rice Research InstituteShenyang Agricultural UniversityShenyangChina
| | - Wei Zhang
- Rice Research InstituteShenyang Agricultural UniversityShenyangChina
| | - Xiaoxue Wang
- Rice Research InstituteShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
32
|
Krzywińska E, Bucholc M, Kulik A, Ciesielski A, Lichocka M, Dębski J, Ludwików A, Dadlez M, Rodriguez PL, Dobrowolska G. Phosphatase ABI1 and okadaic acid-sensitive phosphoprotein phosphatases inhibit salt stress-activated SnRK2.4 kinase. BMC PLANT BIOLOGY 2016; 16:136. [PMID: 27297076 PMCID: PMC4907068 DOI: 10.1186/s12870-016-0817-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/23/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND SNF1-related protein kinases 2 (SnRK2s) are key regulators of the plant response to osmotic stress. They are transiently activated in response to drought and salinity. Based on a phylogenetic analysis SnRK2s are divided into three groups. The classification correlates with their response to abscisic acid (ABA); group 1 consists SnRK2s non-activated in response to ABA, group 2, kinases non-activated or weakly activated (depending on the plant species) by ABA treatment, and group 3, ABA-activated kinases. The activity of all SnRK2s is regulated by phosphorylation. It is well established that clade A phosphoprotein phosphatases 2C (PP2Cs) are negative regulators of ABA-activated SnRK2s, whereas regulators of SnRK2s from group 1 remain unidentified. RESULTS Here, we show that ABI1, a PP2C clade A phosphatase, interacts with SnRK2.4, member of group 1 of the SnRK2 family, dephosphorylates Ser158, whose phosphorylation is needed for the kinase activity, and inhibits the kinase, both in vitro and in vivo. Our data indicate that ABI1 and the kinase regulate primary root growth in response to salinity; the phenotype of ABI1 knockout mutant (abi1td) exposed to salt stress is opposite to that of the snrk2.4 mutant. Moreover, we show that the activity of SnRK2s from group 1 is additionally regulated by okadaic acid-sensitive phosphatase(s) from the phosphoprotein phosphatase (PPP) family. CONCLUSIONS Phosphatase ABI1 and okadaic acid-sensitive phosphatases of the PPP family are negative regulators of salt stress-activated SnRK2.4. The results show that ABI1 inhibits not only the ABA-activated SnRK2s but also at least one ABA-non-activated SnRK2, suggesting that the phosphatase is involved in the cross talk between ABA-dependent and ABA-independent stress signaling pathways in plants.
Collapse
Affiliation(s)
- Ewa Krzywińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
- Present address: Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093, Warsaw, Poland
| | - Maria Bucholc
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Anna Kulik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Arkadiusz Ciesielski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
- Present address: Department of Chemistry, Warsaw University, Pasteur 1, 02-093, Warsaw, Poland
| | - Małgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Janusz Dębski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Agnieszka Ludwików
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
- Institute of Genetics and Biotechnology, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022, Valencia, Spain
| | - Grażyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
33
|
Laxalt AM, García-Mata C, Lamattina L. The Dual Role of Nitric Oxide in Guard Cells: Promoting and Attenuating the ABA and Phospholipid-Derived Signals Leading to the Stomatal Closure. FRONTIERS IN PLANT SCIENCE 2016; 7:476. [PMID: 27148304 PMCID: PMC4830826 DOI: 10.3389/fpls.2016.00476] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/24/2016] [Indexed: 05/21/2023]
Affiliation(s)
| | | | - Lorenzo Lamattina
- Molecular and Integrative Physiology, Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del PlataMar del Plata, Argentina
| |
Collapse
|
34
|
Yu F, Wu Y, Xie Q. Ubiquitin-Proteasome System in ABA Signaling: From Perception to Action. MOLECULAR PLANT 2016; 9:21-33. [PMID: 26455462 DOI: 10.1016/j.molp.2015.09.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 05/18/2023]
Abstract
Protein post-translational modification (PTM) by ubiquitination has been observed during many aspects of plant growth, development, and stress responses. The ubiquitin-proteasome system precisely regulates phytohormone signaling by affecting protein activity, localization, assembly, and interaction ability. Abscisic acid (ABA) is a major phytohormone, and plays important roles in plants under normal or stressed growth conditions. The ABA signaling pathway is composed of phosphatases, kinases, transcription factors, and membrane ion channels. It has been reported that multiple ABA signaling transducers are subjected to the regulations by ubiquitination. In particular, recent studies have identified different types of E3 ligases that mediate ubiquitination of ABA receptors in different cell compartments. This review focuses on modulation of these components by monoubiquitination or polyubiquitination that occurs in the plasma membrane, endomembranes, and from the cytosol to the nucleus; this implies the existence of retrograde and trafficking processes that are regulated by ubiquitination in ABA signaling. A number of single-unit E3 ligases, components of multi-subunit E3 ligases, E2s, and specific subunits of the 26S proteasome involved in ABA signal regulation are discussed. Dissecting the precise functions of ubiquitination in the ABA pathway may help us understand key factors in the signaling of other phytohormones regulated by ubiquitination and other types of PTMs.
Collapse
Affiliation(s)
- Feifei Yu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, P. R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, P. R. China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, P. R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| |
Collapse
|
35
|
Wei J, Qiu X, Chen L, Hu W, Hu R, Chen J, Sun L, Li L, Zhang H, Lv Z, Shen G. The E3 ligase AtCHIP positively regulates Clp proteolytic subunit homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5809-20. [PMID: 26085677 DOI: 10.1093/jxb/erv286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The caseinolytic peptidase (Clp) core proteins are essential for plant growth and development, especially for chloroplast function. Antisense or overexpression of ClpP4, which is one of the Clp core subunits, causes chlorotic phenotypes in Arabidopsis. An E3 ligase gene, AtCHIP, has previously been found to ubiquitylate ClpP4 in vitro. ClpP4 antisense and overexpressing plants that also overexpressed AtCHIP were constructed to explore the effect of AtCHIP on ClpP4. Overexpression of AtCHIP was found to rescue the chlorotic phenotypes of both ClpP4 antisense and overexpressing plants. The unbalanced levels of Clp core proteins in ClpP4 antisense and overexpressing plants with overexpression of AtCHIP were similar to wild-type levels, suggesting that AtCHIP regulates Clp core proteins. The results also show that AtCHIP can interact with ClpP3 and ClpP5 in yeast and ubiquitylate ClpP3 and ClpP5 in vitro. This suggests that AtCHIP is directly related to ClpP3 and ClpP5. Given these results, the inference is that through selective degradation of Clp subunits, AtCHIP could positively regulate homeostasis of Clp proteolytic subunits and maximize the production of functional chloroplasts. Similar results were obtained from transgenic tobacco plants, suggesting that regulation of the Clp protease by AtCHIP is conserved.
Collapse
Affiliation(s)
- Jia Wei
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Xiaoyun Qiu
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Lin Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Wenjun Hu
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Rongbin Hu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jian Chen
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Li Sun
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, New York 14853, USA and Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Zhiqiang Lv
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| |
Collapse
|
36
|
Waadt R, Manalansan B, Rauniyar N, Munemasa S, Booker MA, Brandt B, Waadt C, Nusinow DA, Kay SA, Kunz HH, Schumacher K, DeLong A, Yates JR, Schroeder JI. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses. PLANT PHYSIOLOGY 2015; 169:760-79. [PMID: 26175513 PMCID: PMC4577397 DOI: 10.1104/pp.15.00575] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/13/2015] [Indexed: 05/06/2023]
Abstract
The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases.
Collapse
Affiliation(s)
- Rainer Waadt
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Bianca Manalansan
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Navin Rauniyar
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Shintaro Munemasa
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Matthew A Booker
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Benjamin Brandt
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Christian Waadt
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Dmitri A Nusinow
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Steve A Kay
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Hans-Henning Kunz
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Karin Schumacher
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Alison DeLong
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - John R Yates
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| |
Collapse
|
37
|
Abstract
Reversible protein phosphorylation is an essential posttranslational modification mechanism executed by opposing actions of protein phosphatases and protein kinases. About 1,000 predicted kinases in Arabidopsis thaliana kinome predominate the number of protein phosphatases, of which there are only ~150 members in Arabidopsis. Protein phosphatases were often referred to as "housekeeping" enzymes, which act to keep eukaryotic systems in balance by counteracting the activity of protein kinases. However, recent investigations reveal the crucial and specific regulatory functions of phosphatases in cell signaling. Phosphatases operate in a coordinated manner with the protein kinases, to execute their important function in determining the cellular response to a physiological stimulus. Closer examination has established high specificity of phosphatases in substrate recognition and important roles in plant signaling pathways, such as pathogen defense and stress regulation, light and hormonal signaling, cell cycle and differentiation, metabolism, and plant growth. In this minireview we provide a compact overview about Arabidopsis protein phosphatase families, as well as members of phosphoglucan and lipid phosphatases, and highlight the recent discoveries in phosphatase research.
Collapse
Affiliation(s)
- Alois Schweighofer
- Institute of Biotechnology, University of Vilnius, V. Graičiūno 8, 02241, Vilnius, Lithuania,
| | | |
Collapse
|
38
|
Chen J, Zhu X, Shen G, Zhang H. Overexpression of AtPTPA in Arabidopsis increases protein phosphatase 2A activity by promoting holoenzyme formation and ABA negatively affects holoenzyme formation. PLANT SIGNALING & BEHAVIOR 2015; 10:e1052926. [PMID: 26633567 PMCID: PMC4883891 DOI: 10.1080/15592324.2015.1052926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 05/26/2023]
Abstract
AtPTPA is a critical regulator for the holoenzyme assembling of protein phosphatase 2A (PP2A) in Arabidopsis. Characterization of AtPTPA improves our understanding of the function and regulation of PP2A in eukaryotes. Further analysis of AtPTPA-overexpressing plants indicates that AtPTPA increases PP2A activity by promoting PP2A's AC dimer formation, thereby holoenzyme assembling. Plant hormone abscisic acid (ABA) reduces PP2A enzyme activity by negatively affects PP2A's AC dimer formation. Therefore, AtPTPA is a positive factor that promotes PP2A holoenzyme assembly, and ABA is a negative factor that prevents PP2A holoenzyme assembly.
Collapse
Affiliation(s)
- Jian Chen
- Department of Biological Sciences; Texas Tech University; Lubbock, TX USA
| | - Xunlu Zhu
- Department of Biological Sciences; Texas Tech University; Lubbock, TX USA
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences; Hangzhou, Zhejiang Province, China
| | - Hong Zhang
- Department of Biological Sciences; Texas Tech University; Lubbock, TX USA
| |
Collapse
|
39
|
Charpentier M, Sun J, Wen J, Mysore KS, Oldroyd GED. Abscisic acid promotion of arbuscular mycorrhizal colonization requires a component of the PROTEIN PHOSPHATASE 2A complex. PLANT PHYSIOLOGY 2014; 166:2077-90. [PMID: 25293963 PMCID: PMC4256847 DOI: 10.1104/pp.114.246371] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/02/2014] [Indexed: 05/20/2023]
Abstract
Legumes can establish intracellular interactions with symbiotic microbes to enhance their fitness, including the interaction with arbuscular mycorrhizal (AM) fungi. AM fungi colonize root epidermal cells to gain access to the root cortex, and this requires the recognition by the host plant of fungus-made mycorrhizal factors. Genetic dissection has revealed the symbiosis signaling pathway that allows the recognition of AM fungi, but the downstream processes that are required to promote fungal infection are poorly understood. Abscisic acid (ABA) has been shown to promote arbuscule formation in tomato (Solanum lycopersicum). Here, we show that ABA modulates the establishment of the AM symbiosis in Medicago truncatula by promoting fungal colonization at low concentrations and impairing it at high concentrations. We show that the positive regulation of AM colonization via ABA requires a PROTEIN PHOSPHATASE 2A (PP2A) holoenzyme subunit, PP2AB'1. Mutations in PP2AB'1 cause reduced levels of AM colonization that cannot be rescued with permissive ABA application. The action of PP2AB'1 in response to ABA is unlinked to the generation of calcium oscillations, as the pp2aB'1 mutant displays a normal calcium response. This contrasts with the application of high concentrations of ABA that impairs mycorrhizal factor-induced calcium oscillations, suggesting different modes of action of ABA on the AM symbiosis. Our work reveals that ABA functions at multiple levels to regulate the AM symbiosis and that a PP2A phosphatase is required for the ABA promotion of AM colonization.
Collapse
Affiliation(s)
- Myriam Charpentier
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.)
| | - Jongho Sun
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.)
| | - Jiangqi Wen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.)
| | - Kirankumar S Mysore
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.)
| | - Giles E D Oldroyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (M.C., J.S., G.E.D.O.); andSamuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.)
| |
Collapse
|
40
|
Lillo C, Kataya ARA, Heidari B, Creighton MT, Nemie-Feyissa D, Ginbot Z, Jonassen EM. Protein phosphatases PP2A, PP4 and PP6: mediators and regulators in development and responses to environmental cues. PLANT, CELL & ENVIRONMENT 2014; 37:2631-48. [PMID: 24810976 DOI: 10.1111/pce.12364] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 05/23/2023]
Abstract
The three closely related groups of serine/threonine protein phosphatases PP2A, PP4 and PP6 are conserved throughout eukaryotes. The catalytic subunits are present in trimeric and dimeric complexes with scaffolding and regulatory subunits that control activity and confer substrate specificity to the protein phosphatases. In Arabidopsis, three scaffolding (A subunits) and 17 regulatory (B subunits) proteins form complexes with five PP2A catalytic subunits giving up to 255 possible combinations. Three SAP-domain proteins act as regulatory subunits of PP6. Based on sequence similarities with proteins in yeast and mammals, two putative PP4 regulatory subunits are recognized in Arabidopsis. Recent breakthroughs have been made concerning the functions of some of the PP2A and PP6 regulatory subunits, for example the FASS/TON2 in regulation of the cellular skeleton, B' subunits in brassinosteroid signalling and SAL proteins in regulation of auxin transport. Reverse genetics is starting to reveal also many more physiological functions of other subunits. A system with key regulatory proteins (TAP46, TIP41, PTPA, LCMT1, PME-1) is present in all eukaryotes to stabilize, activate and inactivate the catalytic subunits. In this review, we present the status of knowledge concerning physiological functions of PP2A, PP4 and PP6 in Arabidopsis, and relate these to yeast and mammals.
Collapse
Affiliation(s)
- Cathrine Lillo
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| | | | | | | | | | | | | |
Collapse
|
41
|
Chen J, Hu R, Zhu Y, Shen G, Zhang H. Arabidopsis PHOSPHOTYROSYL PHOSPHATASE ACTIVATOR is essential for PROTEIN PHOSPHATASE 2A holoenzyme assembly and plays important roles in hormone signaling, salt stress response, and plant development. PLANT PHYSIOLOGY 2014; 166:1519-34. [PMID: 25281708 PMCID: PMC4226365 DOI: 10.1104/pp.114.250563] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/02/2014] [Indexed: 05/19/2023]
Abstract
PROTEIN PHOSPHATASE 2A (PP2A) is a major group of serine/threonine protein phosphatases in eukaryotes. It is composed of three subunits: scaffolding subunit A, regulatory subunit B, and catalytic subunit C. Assembly of the PP2A holoenzyme in Arabidopsis (Arabidopsis thaliana) depends on Arabidopsis PHOSPHOTYROSYL PHOSPHATASE ACTIVATOR (AtPTPA). Reduced expression of AtPTPA leads to severe defects in plant development, altered responses to abscisic acid, ethylene, and sodium chloride, and decreased PP2A activity. In particular, AtPTPA deficiency leads to decreased methylation in PP2A-C subunits (PP2Ac). Complete loss of PP2Ac methylation in the suppressor of brassinosteroid insensitive1 mutant leads to 30% reduction of PP2A activity, suggesting that PP2A with a methylated C subunit is more active than PP2A with an unmethylated C subunit. Like AtPTPA, PP2A-A subunits are also required for PP2Ac methylation. The interaction between AtPTPA and PP2Ac is A subunit dependent. In addition, AtPTPA deficiency leads to reduced interactions of B subunits with C subunits, resulting in reduced functional PP2A holoenzyme formation. Thus, AtPTPA is a critical factor for committing the subunit A/subunit C dimer toward PP2A heterotrimer formation.
Collapse
Affiliation(s)
- Jian Chen
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409 (J.C., R.H., Y.Z., G.S., H.Z.); andZhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, China (G.S.)
| | - Rongbin Hu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409 (J.C., R.H., Y.Z., G.S., H.Z.); andZhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, China (G.S.)
| | - Yinfeng Zhu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409 (J.C., R.H., Y.Z., G.S., H.Z.); andZhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, China (G.S.)
| | - Guoxin Shen
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409 (J.C., R.H., Y.Z., G.S., H.Z.); andZhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, China (G.S.)
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409 (J.C., R.H., Y.Z., G.S., H.Z.); andZhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, China (G.S.)
| |
Collapse
|
42
|
Hu R, Zhu Y, Shen G, Zhang H. TAP46 plays a positive role in the ABSCISIC ACID INSENSITIVE5-regulated gene expression in Arabidopsis. PLANT PHYSIOLOGY 2014; 164:721-34. [PMID: 24357600 PMCID: PMC3912101 DOI: 10.1104/pp.113.233684] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 12/17/2013] [Indexed: 05/19/2023]
Abstract
TAP46 is a protein phosphatase2A (PP2A)-associated protein that regulates PP2A activity in Arabidopsis (Arabidopsis thaliana). To study how PP2A is involved in abscisic acid (ABA) signaling in plants, we studied the function of TAP46 in ABA-regulated seed maturation and seedling development. Expression of TAP46 coincides with the action of ABA in developing seeds and during seed germination, and the TAP46 transcript reaches to the highest level in mature seeds. Real-time polymerase chain reaction analysis indicates that external ABA can increase TAP46 transcript level transiently during seed germination. Overexpression of TAP46 increases plant sensitivity to ABA, while tap46 knockdown mutants are less sensitive to ABA during seed germination, suggesting that TAP46 functions positively in ABA signaling. Overexpression of TAP46 also leads to lower PP2A activity, while tap46-1 knockdown mutant displays higher PP2A activity, suggesting that TAP46 negatively regulates PP2A activity in Arabidopsis. Both TAP46 and PP2A interact with the ABA-regulated transcription factor ABA INSENSITIVE5 (ABI5) in vivo, and TAP46's binding to ABI5 can stabilize ABI5. Furthermore, TAP46's binding to the phosphorylated ABI5 may prevent PP2A or PP2A-like protein phosphatases from removing the phosphate from ABI5, thereby maintaining ABI5 in its active form. Overexpression of TAP46 and inhibition of activities of PP2A or PP2A-like protein phosphatases can increase transcript levels of several ABI5-regulated genes, suggesting that TAP46 is a positive factor in the ABA-regulated gene expression in Arabidopsis.
Collapse
|
43
|
Verslues PE, Lasky JR, Juenger TE, Liu TW, Kumar MN. Genome-wide association mapping combined with reverse genetics identifies new effectors of low water potential-induced proline accumulation in Arabidopsis. PLANT PHYSIOLOGY 2014; 164:144-59. [PMID: 24218491 PMCID: PMC3875797 DOI: 10.1104/pp.113.224014] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/10/2013] [Indexed: 05/18/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) exhibits natural genetic variation in drought response, including varying levels of proline (Pro) accumulation under low water potential. As Pro accumulation is potentially important for stress tolerance and cellular redox control, we conducted a genome-wide association (GWAS) study of low water potential-induced Pro accumulation using a panel of natural accessions and publicly available single-nucleotide polymorphism (SNP) data sets. Candidate genomic regions were prioritized for subsequent study using metrics considering both the strength and spatial clustering of the association signal. These analyses found many candidate regions likely containing gene(s) influencing Pro accumulation. Reverse genetic analysis of several candidates identified new Pro effector genes, including thioredoxins and several genes encoding Universal Stress Protein A domain proteins. These new Pro effector genes further link Pro accumulation to cellular redox and energy status. Additional new Pro effector genes found include the mitochondrial protease LON1, ribosomal protein RPL24A, protein phosphatase 2A subunit A3, a MADS box protein, and a nucleoside triphosphate hydrolase. Several of these new Pro effector genes were from regions with multiple SNPs, each having moderate association with Pro accumulation. This pattern supports the use of summary approaches that incorporate clusters of SNP associations in addition to consideration of individual SNP probability values. Further GWAS-guided reverse genetics promises to find additional effectors of Pro accumulation. The combination of GWAS and reverse genetics to efficiently identify new effector genes may be especially applicable for traits difficult to analyze by other genetic screening methods.
Collapse
|
44
|
Bu Q, Lv T, Shen H, Luong P, Wang J, Wang Z, Huang Z, Xiao L, Engineer C, Kim TH, Schroeder JI, Huq E. Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. PLANT PHYSIOLOGY 2014; 164:424-39. [PMID: 24198318 PMCID: PMC3875819 DOI: 10.1104/pp.113.226837] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/05/2013] [Indexed: 05/18/2023]
Abstract
MAX2 (for MORE AXILLARY GROWTH2) has been shown to regulate diverse biological processes, including plant architecture, photomorphogenesis, senescence, and karrikin signaling. Although karrikin is a smoke-derived abiotic signal, a role for MAX2 in abiotic stress response pathways is least investigated. Here, we show that the max2 mutant is strongly hypersensitive to drought stress compared with wild-type Arabidopsis (Arabidopsis thaliana). Stomatal closure of max2 was less sensitive to abscisic acid (ABA) than that of the wild type. Cuticle thickness of max2 was significantly thinner than that of the wild type. Both of these phenotypes of max2 mutant plants correlate with the increased water loss and drought-sensitive phenotype. Quantitative real-time reverse transcription-polymerase chain reaction analyses showed that the expression of stress-responsive genes and ABA biosynthesis, catabolism, transport, and signaling genes was impaired in max2 compared with wild-type seedlings in response to drought stress. Double mutant analysis of max2 with the ABA-insensitive mutants abi3 and abi5 indicated that MAX2 may function upstream of these genes. The expression of ABA-regulated genes was enhanced in imbibed max2 seeds. In addition, max2 mutant seedlings were hypersensitive to ABA and osmotic stress, including NaCl, mannitol, and glucose. Interestingly, ABA, osmotic stress, and drought-sensitive phenotypes were restricted to max2, and the strigolactone biosynthetic pathway mutants max1, max3, and max4 did not display any defects in these responses. Taken together, these results uncover an important role for MAX2 in plant responses to abiotic stress conditions.
Collapse
|
45
|
Du H, Wu N, Chang Y, Li X, Xiao J, Xiong L. Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. PLANT MOLECULAR BIOLOGY 2013; 83:475-88. [PMID: 23846670 DOI: 10.1007/s11103-013-0103-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 07/03/2013] [Indexed: 05/24/2023]
|
46
|
Nanjo Y, Nakamura T, Komatsu S. Identification of indicator proteins associated with flooding injury in soybean seedlings using label-free quantitative proteomics. J Proteome Res 2013; 12:4785-98. [PMID: 23659366 DOI: 10.1021/pr4002349] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Flooding injury is one of the abiotic constraints on soybean growth. An experimental system established for evaluating flooding injury in soybean seedlings indicated that the degree of injury is dependent on seedling density in floodwater. Dissolved oxygen levels in the floodwater were decreased by the seedlings and correlated with the degree of injury. To understand the molecular mechanism responsible for the injury, proteomic alterations in soybean seedlings that correlated with severity of stress were analyzed using label-free quantitative proteomics. The analysis showed that the abundance of proteins involved in cell wall modification, such as polygalacturonase inhibitor-like and expansin-like B1-like proteins, which may be associated with the defense system, increased dependence on stress at both the protein and mRNA levels in all organs during flooding. The manner of alteration in abundance of these proteins was distinct from those of other responsive proteins. Furthermore, proteins also showing specific changes in abundance in the root tip included protein phosphatase 2A subunit-like proteins, which are possibly involved in flooding-induced root tip cell death. Additionally, decreases in abundance of cell wall synthesis-related proteins, such as cinnamyl-alcohol dehydrogenase and cellulose synthase-interactive protein-like proteins, were identified in hypocotyls of seedlings grown for 3 days after flooding, and these proteins may be associated with suppression of growth after flooding. These flooding injury-associated proteins can be defined as indicator proteins for severity of flooding stress in soybean.
Collapse
Affiliation(s)
- Yohei Nanjo
- NARO Institute of Crop Science , Tsukuba 305-8518, Japan
| | | | | |
Collapse
|
47
|
Spinner L, Gadeyne A, Belcram K, Goussot M, Moison M, Duroc Y, Eeckhout D, De Winne N, Schaefer E, Van De Slijke E, Persiau G, Witters E, Gevaert K, De Jaeger G, Bouchez D, Van Damme D, Pastuglia M. A protein phosphatase 2A complex spatially controls plant cell division. Nat Commun 2013; 4:1863. [DOI: 10.1038/ncomms2831] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 04/04/2013] [Indexed: 11/09/2022] Open
|
48
|
Daszkowska-Golec A, Szarejko I. Open or close the gate - stomata action under the control of phytohormones in drought stress conditions. FRONTIERS IN PLANT SCIENCE 2013; 4:138. [PMID: 23717320 PMCID: PMC3652521 DOI: 10.3389/fpls.2013.00138] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/23/2013] [Indexed: 05/18/2023]
Abstract
Two highly specialized cells, the guard cells that surround the stomatal pore, are able to integrate environmental and endogenous signals in order to control the stomatal aperture and thereby the gas exchange. The uptake of CO2 is associated with a loss of water by leaves. Control of the size of the stomatal aperture optimizes the efficiency of water use through dynamic changes in the turgor of the guard cells. The opening and closing of stomata is regulated by the integration of environmental signals and endogenous hormonal stimuli. The various different factors to which the guard cells respond translates into the complexity of the network of signaling pathways that control stomatal movements. The perception of an abiotic stress triggers the activation of signal transduction cascades that interact with or are activated by phytohormones. Among these, abscisic acid (ABA), is the best-known stress hormone that closes the stomata, although other phytohormones, such as jasmonic acid, brassinosteroids, cytokinins, or ethylene are also involved in the stomatal response to stresses. As a part of the drought response, ABA may interact with jasmonic acid and nitric oxide in order to stimulate stomatal closure. In addition, the regulation of gene expression in response to ABA involves genes that are related to ethylene, cytokinins, and auxin signaling. In this paper, recent findings on phytohormone crosstalk, changes in signaling pathways including the expression of specific genes and their impact on modulating stress response through the closing or opening of stomata, together with the highlights of gaps that need to be elucidated in the signaling network of stomatal regulation, are reviewed.
Collapse
Affiliation(s)
- Agata Daszkowska-Golec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| |
Collapse
|
49
|
Ballesteros I, Domínguez T, Sauer M, Paredes P, Duprat A, Rojo E, Sanmartín M, Sánchez-Serrano JJ. Specialized functions of the PP2A subfamily II catalytic subunits PP2A-C3 and PP2A-C4 in the distribution of auxin fluxes and development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:862-72. [PMID: 23167545 DOI: 10.1111/tpj.12078] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/12/2012] [Accepted: 11/16/2012] [Indexed: 05/09/2023]
Abstract
Protein phosphorylation is a key molecular switch used to transmit information in biological signalling networks. The output of these signalling circuits is governed by the counteracting activities of protein kinases and phosphatases that determine the direction of the switch. Whereas many kinases have been functionally characterized, it has been difficult to ascribe precise cellular roles to plant phosphatases, which are encoded by enlarged gene families that may provide a high degree of genetic redundancy. In this work we have analysed the role in planta of catalytic subunits of protein phosphatase 2A (PP2A), a family encoded by five genes in Arabidopsis. Our results indicate that the two members of subfamily II, PP2A-C3 and PP2A-C4, have redundant functions in controlling embryo patterning and root development, processes that depend on auxin fluxes. Moreover, polarity of the auxin efflux carrier PIN1 and auxin distribution, determined with the DR5(pro) :GFP proxy, are affected by mutations in PP2A-C3 and PP2A-C4. Previous characterization of mutants in putative PP2A regulatory subunits had established a link between this class of phosphatases and PIN dephosphorylation and subcellular distribution. Building on those findings, the results presented here suggest that PP2A-C3 and PP2A-C4 catalyse this reaction and contribute critically to the establishment of auxin gradients for proper plant development.
Collapse
Affiliation(s)
- Isabel Ballesteros
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma de Madrid, Cta. Colmenar Viejo km. 15,500, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Dai M, Xue Q, Mccray T, Margavage K, Chen F, Lee JH, Nezames CD, Guo L, Terzaghi W, Wan J, Deng XW, Wang H. The PP6 phosphatase regulates ABI5 phosphorylation and abscisic acid signaling in Arabidopsis. THE PLANT CELL 2013; 25:517-34. [PMID: 23404889 PMCID: PMC3608775 DOI: 10.1105/tpc.112.105767] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 12/18/2012] [Accepted: 01/24/2013] [Indexed: 05/19/2023]
Abstract
The basic Leucine zipper transcription factor ABSCISIC ACID INSENSITIVE5 (ABI5) is a key regulator of abscisic acid (ABA)-mediated seed germination and postgermination seedling growth. While a family of SUCROSE NONFERMENTING1-related protein kinase2s (SnRK2s) is responsible for ABA-induced phosphorylation and stabilization of ABI5, the phosphatase(s) responsible for dephosphorylating ABI5 is still unknown. Here, we demonstrate that mutations in FyPP1 (for Phytochrome-associated serine/threonine protein phosphatase1) and FyPP3, two homologous genes encoding the catalytic subunits of Ser/Thr PROTEIN PHOSPHATASE6 (PP6), cause an ABA hypersensitive phenotype in Arabidopsis thaliana, including ABA-mediated inhibition of seed germination and seedling growth. Conversely, overexpression of FyPP causes reduced sensitivity to ABA. The ABA hypersensitive phenotype of FyPP loss-of-function mutants is ABI5 dependent, and the amount of phosphorylated and total ABI5 proteins inversely correlates with the levels of FyPP proteins. Moreover, FyPP proteins physically interact with ABI5 in vitro and in vivo, and the strength of the interaction depends on the ABI5 phosphorylation status. In vitro phosphorylation assays show that FyPP proteins directly dephosphorylate ABI5. Furthermore, genetic and biochemical assays show that FyPP proteins act antagonistically with SnRK2 kinases to regulate ABI5 phosphorylation and ABA responses. Thus, Arabidopsis PP6 phosphatase regulates ABA signaling through dephosphorylation and destabilization of ABI5.
Collapse
Affiliation(s)
- Mingqiu Dai
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Qin Xue
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Tyra Mccray
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Kathryn Margavage
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania 18766
| | - Fang Chen
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Jae-Hoon Lee
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
- Department of Biology Education, Pusan National University, Busan 609-735, Korea
| | - Cynthia D. Nezames
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Liquan Guo
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130062, China
| | - William Terzaghi
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania 18766
| | - Jianmin Wan
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Xing Wang Deng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
- National Engineering Research Center for Crop Molecular Design, Beijing 100085, China
| | - Haiyang Wang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing 100081, China
- National Engineering Research Center for Crop Molecular Design, Beijing 100085, China
- College of Life Science, Capital Normal University, Beijing, 100048, China
- Address correspondence to
| |
Collapse
|