1
|
Iqbal A, Bao H, Wang J, Liu H, Liu J, Huang L, Li D. Role of jasmonates in plant response to temperature stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112477. [PMID: 40097048 DOI: 10.1016/j.plantsci.2025.112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
The ambient temperature exerts a significant influence on the growth and development of plants, which are sessile organisms. Exposure to extreme temperatures, both low and high, has a detrimental impact on plant growth and development, crop yields, and even geographical distribution. Jasmonates constitute a class of lipid hormones that regulate plant tolerance to biotic and abiotic stresses. Recent studies have revealed that jasmonate biosynthesis and signaling pathways are integral to plant responses to both high and low temperatures. Exogenous application of jasmonate improves cold and heat tolerance in plants and reduces cold injury in fruits and vegetables during cold storage. Jasmonate interacts with low and high temperature key response factors and engages in crosstalk with primary and secondary metabolic pathways, including hormones, under conditions of temperature stress. This review presents a comprehensive summary of the jasmonate synthesis and signal transduction pathway, as well as an overview of the functions and mechanisms of jasmonate in response to temperature stress.
Collapse
Affiliation(s)
- Aafia Iqbal
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Henan Bao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jian Wang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Huijie Liu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Jiangtao Liu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Liqun Huang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China.
| | - Dongping Li
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
2
|
Li C, Xia Y, Xiang F, Cao S, Zhou M, Wang K, Zou Y, Li M, Zheng Y. β-Aminobutyric acid activates SA-signalling systemic acquired resistance in peach fruit by suppressing the circadian clock associated protein1. Int J Biol Macromol 2025; 300:140040. [PMID: 39828166 DOI: 10.1016/j.ijbiomac.2025.140040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Circadian clock regulates plant development and physiology by anticipating daily environmental changes. Here we studied the core clock protein involved in β-aminobutyric acid (BABA)-inducible systemic acquired resistance (SAR) resistance to Rhizopus stolonifer in peach fruit. BABA elicitation barely primed the accumulation of jasmonate or ethylene, whose regulation was associated with morning-loop gene expression. Notably, BABA-induced resistance depended on the upregulation of salicylic acid (SA) signalling, accompanied by increased transcription of specific evening-loop genes. Through Y2H screening, pull-down and co-IP analyses, CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), a morning-expressed clock protein repressed by BABA, was identified as an interacting partner of NPR1 in regulating SA-dependent SAR. A CUT&Tag analysis indicated that the association of CCA1 with its target genes, which are enriched in EE or CBS motifs, was involved in SA pathway. Furthermore, EMSA, DLR, Y3H and Co-ip assays suggested that CCA1 did not directly affect the expression of SA-inducible genes but instead hindered the interaction between NPR1 and TGA1. Overexpression of PpCCA1 attenuated the transcription of SA-responsive PR genes, while mutation of PpCCA1 elevated these expressions. Collectively, PpCCA1 functions as a negative regulator of NPR1-dependent SA signalling through antagonistic crosstalk with the NPR1-TGA1 system, but BABA activates SAR by suppressing PpCCA1 in peach fruit.
Collapse
Affiliation(s)
- Chunhong Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, People's Republic of China
| | - Yijia Xia
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, People's Republic of China; Institute of Fruit Function and Disease Management, Department of Public Health and Management, Chongqing Three Gorges Medical College, Chongqing 404000, People's Republic of China
| | - Fei Xiang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, People's Republic of China
| | - Shifeng Cao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, People's Republic of China
| | - Minghua Zhou
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, People's Republic of China
| | - Kaituo Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, People's Republic of China; Institute of Fruit Function and Disease Management, Department of Public Health and Management, Chongqing Three Gorges Medical College, Chongqing 404000, People's Republic of China.
| | - Yanyu Zou
- Institute of Fruit Function and Disease Management, Department of Public Health and Management, Chongqing Three Gorges Medical College, Chongqing 404000, People's Republic of China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Meilin Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China; College of Food, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Wan Q, Yao R, Zhao Y, Xu L. JA and ABA signaling pathways converge to protect plant regeneration in stress conditions. Cell Rep 2025; 44:115423. [PMID: 40088448 DOI: 10.1016/j.celrep.2025.115423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/02/2025] [Accepted: 02/20/2025] [Indexed: 03/17/2025] Open
Abstract
In cuttings, detached leaves or stems are exposed to many stresses during the root regeneration process. Here, we show that the detached Arabidopsis thaliana leaf can tolerate mild osmotic stress and still regenerate roots. Under stress conditions, wounding and stress upregulate the jasmonate (JA) signaling pathway transcription factor gene MYC2 and the abscisic acid (ABA) signaling pathway transcription factor gene ABA INSENSITIVE5 (ABI5). The MYC2-ABI5 complex upregulates the expression of β-GLUCOSIDASE18 (BGLU18), which releases ABA from ABA glucose ester, resulting in ABA accumulation in the detached leaf. Mutations in MYC2, ABI5, and BGLU18 lead to the loss of stress tolerance and defects in root regeneration under osmotic stress. The successive application of JA and ABA can enhance the root regeneration ability in Arabidopsis and poplar cuttings. Overall, the JA-mediated wound signaling pathway and the ABA-mediated stress signaling pathway collaboratively amplify ABA signals to protect root regeneration under stress conditions.
Collapse
Affiliation(s)
- Qihui Wan
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo and Biosensing, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Research Center of the Basic Discipline for Cell Signaling, College of Biology, Hunan University, Changsha 410082, China
| | - Yang Zhao
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lin Xu
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
4
|
Deng XD, Wang M, Liu SH, Xu DL, Fei XW. Effects of the skp1 gene of the SCF complex on lipid metabolism and response to abiotic stress in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2025; 16:1527439. [PMID: 40166727 PMCID: PMC11955966 DOI: 10.3389/fpls.2025.1527439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
SKP1 (S-phase kinase-associated protein 1) is a key member of the SCF (SKP1-Cullin1-F-box) E3 ligase complex. The SCF complex is involved in regulating various levels of plant physiology, including regulation of cellular signaling and response to abiotic stresses. While the function of SKP1 in plants is well known, its function in algae remains poorly understood. In this study, we investigated the role of the Chlamydomonas reinhardtii skp1 gene using RNAi interference and overexpression approaches. Subcellular localization of SKP1 was performed by transient expression in onion epidermal cells. For abiotic stress assays, the growth of skp1 RNAi and overexpression recombinant strains was examined under conditions of high osmolality (sorbitol), high salinity (NaCl) and high temperature (37°C). Our results showed that skp1 silencing significantly reduced oil accumulation by 38%, whereas skp1 overexpressing led to a 37% increase in oil content, suggesting that skp1 plays a crucial role in regulating oil synthesis and may influence lipid accumulation by regulating photosynthetic carbon flux partitioning. Subcellular localization analysis revealed that skp1 was predominantly localized within the nucleus. Furthermore, our results showed that SKP1 responds to abiotic stresses. Under sorbol and NaCl stress conditions, RNAi interference strains exhibited better growth than controls; however, their growth was comparatively impaired under 37°C stress compared to controls. On the other hand, overexpression strains showed weaker growth under sorbol and NaCl stress but were more tolerant to 37°C heat stress. These results illustrate the functional diversity of SKP1 in Chlamydomonas. This study provides an important complement for lipid metabolism and abiotic stress regulation in microalgae.
Collapse
Affiliation(s)
- Xiao Dong Deng
- Key Laboratory of Tropical Transnational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, China
- Zhanjiang Experimental Station, CATAS, Zhanjiang, China
| | - Meng Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Si Hang Liu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Dian Long Xu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, China
| | - Xiao Wen Fei
- Key Laboratory of Tropical Transnational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| |
Collapse
|
5
|
Chen C, Zhang D, Niu X, Jin X, Xu H, Li W, Guo W. MYB30-INTERACTING E3 LIGASE 1 regulates LONELY GUY 5-mediated cytokinin metabolism to promote drought tolerance in cotton. PLANT PHYSIOLOGY 2025; 197:kiae580. [PMID: 39471489 DOI: 10.1093/plphys/kiae580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 11/01/2024]
Abstract
Ubiquitination plays important roles in modulating the abiotic stress tolerance of plants. Drought seriously restricts agricultural production, but how ubiquitination participates in regulating drought tolerance remains largely unknown. Here, we identified a drought-inducible gene, MYB30-INTERACTING E3 LIGASE 1 (GhMIEL1), which encodes a RING E3 ubiquitin ligase in cotton (Gossypium hirsutum). GhMIEL1 was strongly induced by polyethylene glycol (PEG-6000) and the phytohormone abscisic acid. Overexpression and knockdown of GhMIEL1 in cotton substantially enhanced and reduced drought tolerance, respectively. GhMIEL1 interacted with the MYB transcription factor GhMYB66 and could ubiquitinate and degrade it in vitro. GhMYB66 directly bound to the LONELY GUY 5 (GhLOG5) promoter, a gene encoding cytokinin riboside 5'-monophosphate phosphoribohydrolase, to repress its transcription. Overexpression of GhMIEL1 and silencing of GhMYB66 altered the homeostasis of cytokinin of plant roots, increased total root length and number of root tips, and enhanced plant drought tolerance. Conversely, silencing GhLOG5 decreased total root length and number of root tips and reduced plant drought tolerance. Our studies reveal that the GhMIEL1-GhMYB66-GhLOG5 module positively regulates drought tolerance in cotton, which deepens our understanding of plant ubiquitination-mediated drought tolerance and provides insights for improving drought tolerance.
Collapse
Affiliation(s)
- Chuan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Niu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuanxiang Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Huijuan Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Dutta S, Chattopadhyay S, Maurya JP. The concerted function of a novel class of transcription factors, ZBFs, in light, jasmonate, and abscisic acid signaling pathways. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:746-768. [PMID: 39115948 DOI: 10.1093/jxb/erae323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
Several classes of transcription factors have been investigated in light signaling pathways that bind to the light-responsive elements (LREs) present in the promoters of light regulatory genes for transcriptional regulation. Some of these transcription factors have been shown to bind to numerous promoters through genome-wide ChIP-on-chip (ChIP-chip) studies. Furthermore, through the integration of ChIP-seq and RNA-seq techniques, it has been demonstrated that a transcription factor modifies the expression of numerous genes with which it interacts. However, the mode of action of these transcription factors and their dependency on other regulators in the pathway has just started to be unraveled. In this review, we focus on a particular class of transcription factors, ZBFs (Z-box-binding factors), and their associated partners within the same or other classes of transcription factors and regulatory proteins during photomorphogenesis. Moreover, we have further made an attempt to summarize the crosstalk of these transcription factors with jasmonic acid-, abscisic acid-, and salicylic acid-mediated defense signaling pathways. This review offers an in-depth insight into the manner in which ZBFs and their interactors reshape cellular functions and plant behavior. The underlying principles not only contribute to a comprehensive understanding but also establish a framework for analyzing the interplay between early developmental events and hormone signaling, a regulation orchestrated by the ZBF family.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Biotechnology, School of Health Science and Translational Research, Sister Nivedita University, Kolkata 700156, West Bengal, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal 713209, India
| | - Jay Prakash Maurya
- Plant Development and Molecular Biology Lab, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
7
|
Joseph R, Odendaal JL, Ingle RA, Roden LC. The role of the jasmonate signalling transcription factors MYC2/3/4 in circadian clock-mediated regulation of immunity in Arabidopsis. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230338. [PMID: 39842487 PMCID: PMC11753874 DOI: 10.1098/rstb.2023.0338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 01/30/2025] Open
Abstract
Plants are exposed to pathogens at specific, yet predictable times of the day-night cycle. In Arabidopsis, the circadian clock influences temporal differences in susceptibility to the necrotrophic pathogen Botrytis cinerea. The jasmonic acid (JA) pathway regulates immune responses against B. cinerea. The paralogous basic helix-loop-helix transcription factors MYC2, MYC3 and MYC4 are primary regulators of the JA pathway, but their role in regulating temporal variation in immunity is untested. This study aimed to investigate the roles of the MYC transcription factors in the temporal defence response to B. cinerea. We inoculated leaves from wild-type, myc single-, double- and triple-knockout mutants, and lines overexpressing MYC2, MYC3 or MYC4, with B. cinerea at two times of day in constant light, and compared lesion sizes. The presence of MYC2, MYC3 or MYC4 alone was sufficient to maintain temporal variation in susceptibility, but this was abolished in the myc234 triple-knockout mutant. Constitutive expression of MYC2, MYC3 or MYC4 abolished time-of-day differences in susceptibility. The data suggest that MYC2, MYC3 and MYC4 function redundantly in regulating temporal defence responses against B. cinerea and are a point of convergence between the JA pathway and the circadian clock in Arabidopsis.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Rageema Joseph
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch7700, South Africa
- Department of Pathology, Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory7925, South Africa
| | - Jessica L. Odendaal
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch7700, South Africa
| | - Robert A. Ingle
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch7700, South Africa
| | - Laura C. Roden
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch7700, South Africa
- Centre for Health and Life Sciences, Coventry University, CoventryCV1 2DS, UK
| |
Collapse
|
8
|
Li J, Yu G, Wang X, Guo C, Wang Y, Wang X. Jasmonic acid plays an important role in mediating retrograde signaling under mitochondrial translational stress to balance plant growth and defense. PLANT COMMUNICATIONS 2025; 6:101133. [PMID: 39277791 PMCID: PMC11784291 DOI: 10.1016/j.xplc.2024.101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/25/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Proper mitochondrial function is crucial to plant growth and development. Inhibition of mitochondrial translation leads to mitochondrial proteotoxic stress, which triggers a protective transcriptional response that regulates nuclear gene expression, commonly referred to as the mitochondrial unfolded protein response (UPRmt). Although the UPRmt has been extensively studied in yeast and mammals, very little is known about the UPRmt in plants. Here, we show that mitochondrial translational stress inhibits plant growth and development by inducing jasmonic acid (JA) biosynthesis and signaling. The inhibitory effect of mitochondrial translational stress on plant growth was alleviated in the JA-signaling-defective mutants coi1-2, myc2, and myc234. Genetic analysis indicated that Arabidopsis mitochondrial ribosomal protein L1 (MRPL1), a key factor in the UPRmt, regulates plant growth in a CORONATINE-INSENSITIVE 1 (COI1)-dependent manner. Moreover, under mitochondrial translational stress, MYC2 shows direct binding to G boxes in the ETHYLENE RESPONSE FACTOR 109 (ERF109) promoter. The induction of ERF109 expression enhances hydrogen peroxide production, which acts as a feedback loop to inhibit root growth. In addition, mutation of MRPL1 increases JA accumulation, reduces plant growth, and enhances biotic stress resistance. Overall, our findings reveal that JA plays an important role in mediating retrograde signaling under mitochondrial translational stress to balance plant growth and defense.
Collapse
Affiliation(s)
- Jiahao Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guolong Yu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyuan Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chaocheng Guo
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yudong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
9
|
Geng Z, Liu J, Zhao G, Geng X, Liu X, Liu X, Zhang H, Wang Y. Genome-Wide Identification and Functional Characterization of SKP1-like Gene Family Reveal Its Involvement in Response to Stress in Cotton. Int J Mol Sci 2025; 26:418. [PMID: 39796275 PMCID: PMC11721809 DOI: 10.3390/ijms26010418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
SKP1 constitutes the Skp1-Cullin-F-box ubiquitin E3 ligase (SCF), which plays a role in plant growth and development and biotic and abiotic stress in ubiquitination. However, the response of the SKP1-like gene family to abiotic and biotic stresses in cotton has not been well characterized. In this study, a total of 72 SKP1-like genes with the conserved domain of SKP1 were identified in four Gossypium species. Synteny and collinearity analyses revealed that segmental duplication played a major role in the expansion of the cotton SKP1-like gene family. All SKP1-like proteins were classified into three different subfamilies via phylogenetic analysis. Furthermore, we focused on a comprehensive analysis of SKP1-like genes in G. hirsutum. The cis-acting elements in the promoter site of the GhSKP1-like genes predict their involvement in multiple hormonal and defense stress responses. The expression patterns results indicated that 16 GhSKP1-like genes were expressed in response to biotic or abiotic stresses. To further validate the role of the GhSKP1-like genes in salt stress, four GhSKP1-like genes were randomly selected for gene silencing via VIGS. The results showed that the silencing of GhSKP1-like_7A resulted in the inhibition of plant growth under salt stress, suggesting that GhSKP1-like_7A was involved in the response to salt stress. In addition, yeast two-hybrid results revealed that GhSKP1-like proteins have different abilities to interact with F-box proteins. These results provide valuable information for elucidating the evolutionary relationships of the SKP1-like gene family and aiding further studies on the function of SKP1-like genes in cotton.
Collapse
Affiliation(s)
- Zhao Geng
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China; (Z.G.); (J.L.); (G.Z.); (X.L.)
| | - Jianguang Liu
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China; (Z.G.); (J.L.); (G.Z.); (X.L.)
| | - Guiyuan Zhao
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China; (Z.G.); (J.L.); (G.Z.); (X.L.)
| | - Xiangli Geng
- Institute of Grain and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050000, China;
| | - Xu Liu
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China; (Z.G.); (J.L.); (G.Z.); (X.L.)
| | - Xingyu Liu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 051432, China;
| | - Hanshuang Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China; (Z.G.); (J.L.); (G.Z.); (X.L.)
| | - Yongqiang Wang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China; (Z.G.); (J.L.); (G.Z.); (X.L.)
| |
Collapse
|
10
|
Sia J, Zhang W, Cheng M, Bogdan P, Cook DE. Machine learning-based identification of general transcriptional predictors for plant disease. THE NEW PHYTOLOGIST 2025; 245:785-806. [PMID: 39573924 DOI: 10.1111/nph.20264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/10/2024] [Indexed: 12/20/2024]
Abstract
This study investigated the generalizability of Arabidopsis thaliana immune responses across diverse pathogens, including Botrytis cinerea, Sclerotinia sclerotiorum, and Pseudomonas syringae, using a data-driven, machine learning approach. Machine learning models were trained to predict disease development from early transcriptional responses. Feature selection techniques based on network science and topology were used to train models employing only a fraction of the transcriptome. Machine learning models trained on one pathosystem where then validated by predicting disease development in new pathosystems. The identified feature selection gene sets were enriched for pathways related to biotic, abiotic, and stress responses, though the specific genes involved differed between feature sets. This suggests common immune responses to diverse pathogens that operate via different gene sets. The study demonstrates that machine learning can uncover both established and novel components of the plant's immune response, offering insights into disease resistance mechanisms. These predictive models highlight the potential to advance our understanding of multigenic outcomes in plant immunity and can be further refined for applications in disease prediction.
Collapse
Affiliation(s)
- Jayson Sia
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Wei Zhang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Mingxi Cheng
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Paul Bogdan
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Center for Complex Particle Systems (COMPASS), University of Southern California, Los Angeles, USA
| | - David E Cook
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
11
|
Krivmane B, Ruņģis DE. Differential microRNA and Target Gene Expression in Scots Pine ( Pinus sylvestris L.) Needles in Response to Methyl Jasmonate Treatment. Genes (Basel) 2024; 16:26. [PMID: 39858573 PMCID: PMC11765084 DOI: 10.3390/genes16010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Background/objectives: Methyl jasmonate is a plant signaling molecule involved in a wide range of functions, including stress responses. This study investigates the relative differential expression of microRNAs and their target genes in response to methyl jasmonate treatment of Scots pine needles. Methods: A combined strategy of high-throughput sequencing and in silico prediction of potential target genes was implemented. Results: a total of 58 differentially expressed (DE) microRNAs (miRNAs) (43 up-regulated and 15 down-regulated), belonging to 29 miRNA families, were identified. The 41 DE miRNAs from 17 families were conifer-specific miRNA families-miR946, miR947, miR950, miR1312, miR1313, miR1314, miR3693, miR3107, miR11452, miR11466, miR11487, miR11490, miR11504, miR11511, miR11532, miR11544, and miR11551. The other DE miRNAs (miR159, miR164, miR169, miR396, miR397, miR398, miR408, miR535) were conserved miRNAs, which are also found in angiosperm species. Transcriptome analysis identified 389 gene transcripts with 562 miRNA-target sites targeted by 57 of the 58 DE miRNAs. Of these, 250 target genes with 138 different GO annotations were found for the 41 DE conifer-specific conserved miRNAs. Conclusions: The 26 DE miRNAs from 14 DE miRNA families, of which almost all (12 families, 24 miRNAs) are conifer specific, and were associated with 68 disease resistance and TMV resistance proteins, TIR-NBS-LRR, LRR receptor-like serine/threonine-protein kinase, putative CC-NBS-LRR protein, and putative NBS-LRR protein target transcripts with 29 target gene GO term descriptions. Some of the genes targeted by conifer-specific miRNAs have been previously reported to be targeted by other miRNAs in angiosperms, indicating that the miRNA-target gene regulation system can vary between species.
Collapse
Affiliation(s)
| | - Dainis Edgars Ruņģis
- Latvian State Forest Research Institute “Silava”, 111 Rigas St., LV-2169 Salaspils, Latvia;
| |
Collapse
|
12
|
Li LL, Xiao Y, Wang B, Zhuang Y, Chen Y, Lu J, Lou Y, Li R. A frameshift mutation in JAZ10 resolves the growth versus defense dilemma in rice. Proc Natl Acad Sci U S A 2024; 121:e2413564121. [PMID: 39693337 DOI: 10.1073/pnas.2413564121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
CRISPR-Cas9 genome editing systems have revolutionized plant gene functional studies by enabling the targeted introduction of insertion-deletions (INDELs) via the nonhomologous end-joining (NHEJ) pathway. Frameshift-inducing INDELs can introduce a premature termination codon and, in other instances, can lead to the appearance of new proteins. Here, we found that mutations in the rice jasmonate (JA) signaling gene OsJAZ10 by CRISPR-Cas9-based genome editing did not affect canonical JA signaling. However, a type of mutant with an INDEL that yielded a novel frameshift protein named FJ10 (Frameshift mutation of JAZ10), exhibited enhanced rice growth and increased resistance to brown planthopper attacks. Overexpression of FJ10 in wild-type plants phenocopies OsJAZ10 frameshift mutants. Further characterization revealed that FJ10 interacts with Slender Rice 1 (OsSLR1) and F-box/Kelch 16 (OsFBK16). These interactions disrupt the function of OsSLR1 in suppressing gibberellin-mediated growth and the function of OsFBK16 in repressing lignin-mediated defense responses, respectively. Field experiments with FJ10-expressing plants demonstrate that this protein uncouples the growth-defense tradeoff, opening broad avenues to obtain cultivars with enhanced yield without compromised defenses.
Collapse
Affiliation(s)
- Lei-Lei Li
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujie Xiao
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baohui Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yunqi Zhuang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yumeng Chen
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Lu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ran Li
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Wang J, Li Y, Hu Y, Zhu S. Jasmonate induces translation of the Arabidopsis transfer RNA-binding protein YUELAO1, which activates MYC2 in jasmonate signaling. THE PLANT CELL 2024; 37:koae294. [PMID: 39489485 DOI: 10.1093/plcell/koae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Jasmonate is ubiquitous in the plant kingdom and regulates multiple physiological processes. Although jasmonate signaling has been thoroughly investigated in Arabidopsis thaliana, most studies have focused on the transcriptional mechanisms underlying various jasmonate responses. It remains unclear whether (and how) translation-related pathways help improve transcription efficiency to modulate jasmonate signaling, which may enable plants to respond to stressful conditions effectively. Here, we demonstrate that jasmonate induces translation of the transfer RNA (tRNA)-binding protein YUELAO 1 (YL1) via a specific region in its 3' untranslated region (3' UTR). YL1 and its homolog YL2 redundantly stimulate jasmonate responses such as anthocyanin accumulation and root growth inhibition, with the YL1 3' UTR being critical for YL1-promoted jasmonate responses. Once translated, YL1 acts as an activator of the MYC2 transcription factor through direct interaction, and disrupting YL1 3' UTR impairs the YL1-mediated transcriptional activation of MYC2. YL1 enhances jasmonate responses mainly in a MYC2-dependent manner. Together, these findings reveal a translational mechanism involved in jasmonate signaling and advance our understanding of the transcriptional regulation of jasmonate signaling. The YL1 3' UTR acts as a crucial signal transducer that integrates translational and transcriptional regulation, allowing plants to respond to jasmonate in a timely fashion.
Collapse
Affiliation(s)
- Jiahui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Yuanyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Yanru Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| |
Collapse
|
14
|
Xue X, Li L, Wang D, Zhou W, Wang Z, Cao X. SmJAZ1/8 inhibits the stimulation of SmbHLH59, which limits the accumulation of salvianolic acids and tanshinones in Salvia miltiorrhiza. Int J Biol Macromol 2024; 285:138348. [PMID: 39638208 DOI: 10.1016/j.ijbiomac.2024.138348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Salvia miltiorrhiza is a model medicinal plant that is typically used to treat cardiovascular and cerebrovascular diseases. The primary active medicinal ingredients of S. miltiorrhiza are salvianolic acids and tanshinones. Jasmonate (JA) is a vital phytohormone that regulates secondary metabolism. The exogenous application of methyl jasmonate (MeJA) can promote the accumulation of active ingredients in S. miltiorrhiza. Here, we identified a MeJA-responsive SmbHLH59 gene that encodes for a bHLH IIIe family transcription factor. The overexpression of SmbHLH59 in S. miltiorrhiza increased the contents of salvianolic acids and tanshinones, while the opposite effect was observed when SmbHLH59 was knocked out via CRISPR. Meanwhile, SmbHLH59 was observed to activate the expressions of SmPAL1, SmC4H1, SmHPPR1, SmCPS1, and SmKSL1 genes by binding to the E/G-box elements of their promoters. Further investigations demonstrated that SmJAZ1 and SmJAZ8 interacted with SmbHLH59 to inhibit its activation of these five genes. In summary, a JA signaling pathway component (SmbHLH59) was identified that strongly enhanced the accumulation of salvianolic acids and tanshinones through the direct activation of multiple enzyme genes in their biosynthetic pathways. Consequently, this study enriches our knowledge toward further elucidating the molecular mechanisms behind the regulation of JA in the secondary metabolism of S. miltiorrhiza.
Collapse
Affiliation(s)
- Xiaoshan Xue
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Lin Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China; Taiyuan University, Taiyuan 030002, Shanxi Province, China
| | - Donghao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wen Zhou
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhezhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| | - Xiaoyan Cao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
15
|
Sun F, Hamada N, Montes C, Li Y, Meier ND, Walley JW, Dinesh‐Kumar SP, Shabek N. TurboID-based proteomic profiling reveals proxitome of ASK1 and CUL1 of the SCF ubiquitin ligase in plants. THE NEW PHYTOLOGIST 2024; 244:2127-2136. [PMID: 39081016 PMCID: PMC11579432 DOI: 10.1111/nph.20014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/14/2024] [Indexed: 11/22/2024]
Affiliation(s)
- Fuai Sun
- Department of Plant Biology, College of Biological SciencesUniversity of California, DavisDavisCA95616USA
| | - Natalie Hamada
- Department of Plant Biology, College of Biological SciencesUniversity of California, DavisDavisCA95616USA
| | - Christian Montes
- Department of Plant Pathology, Entomology, and MicrobiologyIowa State UniversityAmesIA50011USA
| | - Yuanyuan Li
- Department of Plant Biology, College of Biological SciencesUniversity of California, DavisDavisCA95616USA
| | - Nathan D. Meier
- Department of Plant Biology, College of Biological SciencesUniversity of California, DavisDavisCA95616USA
| | - Justin W. Walley
- Department of Plant Pathology, Entomology, and MicrobiologyIowa State UniversityAmesIA50011USA
| | - Savithramma P. Dinesh‐Kumar
- Department of Plant Biology, College of Biological SciencesUniversity of California, DavisDavisCA95616USA
- The Genome CenterUniversity of California, DavisDavisCA95616USA
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological SciencesUniversity of California, DavisDavisCA95616USA
| |
Collapse
|
16
|
Datta S, Mandal D, Mitra S, Chakraborty S, Nag Chaudhuri R. ABI3 regulates ABI1 function to control cell length in primary root elongation zone. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2437-2455. [PMID: 39495594 DOI: 10.1111/tpj.17121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 10/21/2024] [Indexed: 11/06/2024]
Abstract
Post-embryonic primary root growth is effectively an interplay of several hormone signalling pathways. Here, we show that the ABA-responsive transcription factor ABI3 controls primary root growth through the regulation of JA signalling molecule JAZ1 along with ABA-responsive factor ABI1. In the absence of ABI3, the primary root elongation zone is shortened with significantly reduced cell length. Expression analyses and ChIP-based assays indicate that ABI3 negatively regulates JAZ1 expression by occupying its upstream regulatory sequence and enriching repressive histone modification mark H3K27 trimethylation, thereby occluding RNAPII occupancy. Previous studies have shown that JAZ1 interacts with ABI1, the protein phosphatase 2C, that works during ABA signalling. Our results indicate that in the absence of ABI3, when JAZ1 expression levels are high, the ABI1 protein shows increased stability, compared to when JAZ1 is absent, or ABI3 is overexpressed. Consequently, in the abi3-6 mutant, due to the higher stability of ABI1, reduced phosphorylation of plasma membrane H+-ATPase (AHA2) occurs. HPTS staining further indicated that abi3-6 root cell apoplasts show reduced protonation, compared to wild-type and ABI3 overexpressing seedlings. Such impeded proton extrusion negatively affects cell length in the primary root elongation zone. ABI3 therefore controls cell elongation in the primary root by affecting the ABI1-dependent protonation of root cell apoplasts. In summary, ABI3 controls the expression of JAZ1 and in turn modulates the function of ABI1 to regulate cell length in the elongation zone during primary root growth.
Collapse
Affiliation(s)
- Saptarshi Datta
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Drishti Mandal
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Sicon Mitra
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Swarnavo Chakraborty
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| |
Collapse
|
17
|
Zhang Q, Du J, Han X, Hu Y. Transcription factor ABF3 modulates salinity stress-enhanced jasmonate signaling in Arabidopsis. PLANT DIVERSITY 2024; 46:791-803. [PMID: 39811815 PMCID: PMC11726054 DOI: 10.1016/j.pld.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 01/16/2025]
Abstract
Salinity is a severe abiotic stress that affects plant growth and yield. Salinity stress activates jasmonate (JA) signaling in Arabidopsis thaliana, but the underlying molecular mechanism remains to be elucidated. In this study, we confirmed the activation of JA signaling under saline conditions and demonstrated the importance of the CORONATINE INSENSITIVE1 (COI1)-mediated JA signaling for this process. Phenotypic analyses reflected the negative regulation of JASMONATE ZIM-DOMAIN (JAZ) repressors during salinity stress-enhanced JA signaling. Mechanistic analyses revealed that JAZ proteins physically interact with ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTOR1 (ABF1), AREB1/ABF2, ABF3, and AREB2/ABF4, which belong to the basic leucine zipper (bZIP) transcription factor family and respond to salinity stress. Analyses on the ABF3 overexpression plants and ABF mutants indicated the positive role of ABF3 in regulating JA signaling under saline condition. Furthermore, ABF3 overexpression partially recovered the JA-related phenotypes of JAZ1-Δ3A plants. Moreover, ABF3 was observed to indirectly activate ALLENE OXIDE SYNTHASE (AOS) transcription, but this activation was inhibited by JAZ1. In addition, ABF3 competitively bind to JAZ1, thereby decreasing the interaction between JAZ1 and MYC2, which is the master transcription factor controlling JA signaling. Collectively, our findings have clarified the regulatory effects of ABF3 on JA signaling and provide new insights into how JA signaling is enhanced following an exposure to salinity stress.
Collapse
Affiliation(s)
- Qi Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| |
Collapse
|
18
|
Cheaib M, Nguyen HT, Couderc M, Serret J, Soriano A, Larmande P, Richter C, Junker BH, Raorane ML, Petitot AS, Champion A. Transcriptomic and metabolomic reveal OsCOI2 as the jasmonate-receptor master switch in rice root. PLoS One 2024; 19:e0311136. [PMID: 39466751 PMCID: PMC11516173 DOI: 10.1371/journal.pone.0311136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/10/2024] [Indexed: 10/30/2024] Open
Abstract
Jasmonate is an essential phytohormone involved in plant development and stress responses. Its perception occurs through the CORONATINE INSENSITIVE (COI) nuclear receptor allowing to target the Jasmonate-ZIM domain (JAZ) repressors for degradation by the 26S proteasome. Consequently, repressed transcription factors are released and expression of jasmonate responsive genes is induced. In rice, three OsCOI genes have been identified, OsCOI1a and the closely related OsCOI1b homolog, and OsCOI2. While the roles of OsCOI1a and OsCOI1b in plant defense and leaf senescence are well-established, the significance of OsCOI2 in plant development and jasmonate signaling has only emerged recently. To unravel the role of OsCOI2 in regulating jasmonate signaling, we examined the transcriptomic and metabolomic responses of jasmonate-treated rice lines mutated in both the OsCOI1a and OsCOI1b genes or OsCOI2. RNA-seq data highlight OsCOI2 as the primary driver of the extensive transcriptional reprogramming observed after a jasmonate challenge in rice roots. A series of transcription factors exhibiting an OsCOI2-dependent expression were identified, including those involved in root development or stress responses. OsCOI2-dependent expression was also observed for genes involved in specific processes or pathways such as cell-growth and secondary metabolite biosynthesis (phenylpropanoids and diterpene phytoalexins). Although functional redundancy exists between OsCOI1a/b and OsCOI2 in regulating some genes, oscoi2 plants generally exhibit a weaker response compared to oscoi1ab plants. Metabolic data revealed a shift from the primary metabolism to the secondary metabolism primarily governed by OsCOI2. Additionally, differential accumulation of oryzalexins was also observed in oscoi1ab and oscoi2 lines. These findings underscore the pivotal role of OsCOI2 in jasmonate signaling and suggest its involvement in the control of the growth-defense trade-off in rice.
Collapse
Affiliation(s)
| | | | - Marie Couderc
- DIADE, IRD, University Montpellier, Montpellier, France
| | - Julien Serret
- DIADE, IRD, University Montpellier, Montpellier, France
| | - Alexandre Soriano
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University Montpellier, Montpellier, France
| | | | - Chris Richter
- Institute of Pharmacy, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | - Björn H. Junker
- Institute of Pharmacy, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | - Manish L. Raorane
- Institute of Pharmacy, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | | | | |
Collapse
|
19
|
Sachdev S, Biswas R, Roy A, Nandi A, Roy V, Basu S, Chaudhuri S. The Arabidopsis ARID-HMG DNA-BINDING PROTEIN 15 modulates jasmonic acid signaling by regulating MYC2 during pollen development. PLANT PHYSIOLOGY 2024; 196:996-1013. [PMID: 38922580 DOI: 10.1093/plphys/kiae355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/27/2024]
Abstract
The intricate process of male gametophyte development in flowering plants is regulated by jasmonic acid (JA) signaling. JA signaling initiates with the activation of the basic helix-loop-helix transcription factor (TF), MYC2, leading to the expression of numerous JA-responsive genes during stamen development and pollen maturation. However, the regulation of JA signaling during different stages of male gametophyte development remains less understood. This study focuses on the characterization of the plant ARID-HMG DNA-BINDING PROTEIN 15 (AtHMGB15) and its role in pollen development in Arabidopsis (Arabidopsis thaliana). Phenotypic characterization of a T-DNA insertion line (athmgb15-4) revealed delayed bolting, shorter siliques, and reduced seed set in mutant plants compared to the wild type. Additionally, AtHMGB15 deletion resulted in defective pollen morphology, delayed pollen germination, aberrant pollen tube growth, and a higher percentage of nonviable pollen grains. Molecular analysis indicated the downregulation of JA biosynthesis and signaling genes in the athmgb15-4 mutant. Quantitative analysis demonstrated that JA and its derivatives were ∼10-fold lower in athmgb15-4 flowers. Exogenous application of methyl jasmonate could restore pollen morphology and germination, suggesting that the low JA content in athmgb15-4 impaired JA signaling during pollen development. Furthermore, our study revealed that AtHMGB15 physically interacts with MYC2 to form a transcription activation complex. This complex promotes the transcription of key JA signaling genes, the R2R3-MYB TFs MYB21 and MYB24, during stamen and pollen development. Collectively, our findings highlight the role of AtHMGB15 as a positive regulator of the JA pathway, controlling the spatiotemporal expression of key regulators involved in Arabidopsis stamen and pollen development.
Collapse
Affiliation(s)
- Sonal Sachdev
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Kolkata 700091, WB, India
| | - Ruby Biswas
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Kolkata 700091, WB, India
| | - Adrita Roy
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Kolkata 700091, WB, India
| | - Ayantika Nandi
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Kolkata 700091, WB, India
| | - Vishal Roy
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Kolkata 700091, WB, India
| | - Sabini Basu
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Kolkata 700091, WB, India
| | - Shubho Chaudhuri
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Kolkata 700091, WB, India
| |
Collapse
|
20
|
Kopertekh L. Improving transient expression in N. benthamiana by suppression of the Nb-SABP2 and Nb-COI1 plant defence response related genes. FRONTIERS IN PLANT SCIENCE 2024; 15:1453930. [PMID: 39315373 PMCID: PMC11416979 DOI: 10.3389/fpls.2024.1453930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024]
Abstract
Currently transient expression is one of the preferred plant-based technologies for recombinant protein manufacturing, particularly in respect to pharmaceutically relevant products. Modern hybrid transient expression systems combine the features of Agrobacterium tumefaciens and viral vectors. However, host plant reaction to Agrobacterium-mediated delivery of gene of interest can negatively affect foreign protein accumulation. In this study, we investigated whether the modulation of plant immune response through knockdown of the Nb-SABP2 and Nb-COI1 N. benthamiana genes could improve recombinant protein yield. In plants, the SABP2 and COI1 proteins are involved in the salicylic acid and jasmonic acid metabolism, respectively. We exemplified the utility of this approach with the green fluorescence (GFP) and β nerve growth factor (βNGF) proteins: compared to the tobacco mosaic virus (TMV)-based vector the Nb-SABP2 and Nb-COI1-suppressed plants provided an increased recombinant protein accumulation. We also show that this strategy is extendable to the expression systems utilizing potato virus X (PVX) as the vector backbone: the enhanced amounts of βNGF were detected in the Nb-SABP2 and Nb-COI1-depleted leaves co-infiltrated with the PVX-βNGF. These findings suggest that modulating host plant reaction to agrodelivery of expression vectors could be useful for improving transient foreign protein production in N. benthamiana.
Collapse
Affiliation(s)
- Lilya Kopertekh
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| |
Collapse
|
21
|
Feiz L, Shyu C, Wu S, Ahern KR, Gull I, Rong Y, Artymowicz CJ, Piñeros MA, Fei Z, Brutnell TP, Jander G. COI1 F-box proteins regulate DELLA protein levels, growth, and photosynthetic efficiency in maize. THE PLANT CELL 2024; 36:3237-3259. [PMID: 38801745 PMCID: PMC11371192 DOI: 10.1093/plcell/koae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
The F-box protein Coronatine Insensitive (COI) is a receptor for the jasmonic acid signaling pathway in plants. To investigate the functions of the 6 maize (Zea mays) COI proteins (COI1a, COI1b, COI1c, COI1d, COI2a, and COI2b), we generated single, double, and quadruple loss-of-function mutants. The pollen of the coi2a coi2b double mutant was inviable. The coi1 quadruple mutant (coi1-4x) exhibited shorter internodes, decreased photosynthesis, leaf discoloration, microelement deficiencies, and accumulation of DWARF8 and/or DWARF9, 2 DELLA family proteins that repress the gibberellic acid (GA) signaling pathway. Coexpression of COI and DELLA in Nicotiana benthamiana showed that the COI proteins trigger proteasome-dependent DELLA degradation. Many genes that are downregulated in the coi1-4x mutant are GA-inducible. In addition, most of the proteins encoded by the downregulated genes are predicted to be bundle sheath- or mesophyll-enriched, including those encoding C4-specific photosynthetic enzymes. Heterologous expression of maize Coi genes in N. benthamiana showed that COI2a is nucleus-localized and interacts with maize jasmonate zinc-finger inflorescence meristem domain (JAZ) proteins, the canonical COI repressor partners. However, maize COI1a and COI1c showed only partial nuclear localization and reduced binding efficiency to the tested JAZ proteins. Together, these results show the divergent functions of the 6 COI proteins in regulating maize growth and defense pathways.
Collapse
Affiliation(s)
- Leila Feiz
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Christine Shyu
- Crop Genome Editing, Regulatory Science, Bayer Crop Science, Chesterfield, MO 63017, USA
| | - Shan Wu
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Kevin R Ahern
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Iram Gull
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Ying Rong
- KWS Gateway Research Center, St. Louis, MO 63132, USA
| | | | - Miguel A Piñeros
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
22
|
Chen Y, Jin G, Liu M, Wang L, Lou Y, Baldwin I, Li R. Multiomic analyses reveal key sectors of jasmonate-mediated defense responses in rice. THE PLANT CELL 2024; 36:3362-3377. [PMID: 38801741 PMCID: PMC11371138 DOI: 10.1093/plcell/koae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
The phytohormone jasmonate (JA) plays a central role in plant defenses against biotic stressors. However, our knowledge of the JA signaling pathway in rice (Oryza sativa) remains incomplete. Here, we integrated multiomic data from three tissues to characterize the functional modules involved in organizing JA-responsive genes. In the core regulatory sector, MYC2 transcription factor transcriptional cascades are conserved in different species but with distinct regulators (e.g. bHLH6 in rice), in which genes are early expressed across all tissues. In the feedback sector, MYC2 also regulates the expression of JA repressor and catabolic genes, providing negative feedback that truncates the duration of JA responses. For example, the MYC2-regulated NAC (NAM, ATAF1/2, and CUC2) transcription factor genes NAC1, NAC3, and NAC4 encode proteins that repress JA signaling and herbivore resistance. In the tissue-specific sector, many late-expressed genes are associated with the biosynthesis of specialized metabolites that mediate particular defensive functions. For example, the terpene synthase gene TPS35 is specifically induced in the leaf sheath and TPS35 functions in defense against oviposition by brown planthoppers and the attraction of this herbivore's natural enemies. Thus, by characterizing core, tissue-specific, and feedback sectors of JA-elicited defense responses, this work provides a valuable resource for future discoveries of key JA components in this important crop.
Collapse
Affiliation(s)
- Yumeng Chen
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gaochen Jin
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengyu Liu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lanlan Wang
- Zhejiang Academy of Agricultural Sciences, Institute of Virology and Biotechnology, 310021 Hangzhou, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ian Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Ran Li
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
Li HL, Xu RR, Guo XL, Liu YJ, You CX, Han Y, An JP. The MdNAC72-MdABI5 module acts as an interface integrating jasmonic acid and gibberellin signals and undergoes ubiquitination-dependent degradation regulated by MdSINA2 in apple. THE NEW PHYTOLOGIST 2024; 243:997-1016. [PMID: 38849319 DOI: 10.1111/nph.19888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024]
Abstract
Jasmonic acid (JA) and gibberellin (GA) coordinately regulate plant developmental programs and environmental cue responses. However, the fine regulatory network of the cross-interaction between JA and GA remains largely elusive. In this study, we demonstrate that MdNAC72 together with MdABI5 positively regulates anthocyanin biosynthesis through an exquisite MdNAC72-MdABI5-MdbHLH3 transcriptional cascade in apple. MdNAC72 interacts with MdABI5 to promote the transcriptional activation of MdABI5 on its target gene MdbHLH3 and directly activates the transcription of MdABI5. The MdNAC72-MdABI5 module regulates the integration of JA and GA signals in anthocyanin biosynthesis by combining with JA repressor MdJAZ2 and GA repressor MdRGL2a. MdJAZ2 disrupts the MdNAC72-MdABI5 interaction and attenuates the transcriptional activation of MdABI5 by MdNAC72. MdRGL2a sequesters MdJAZ2 from the MdJAZ2-MdNAC72 protein complex, leading to the release of MdNAC72. The E3 ubiquitin ligase MdSINA2 is responsive to JA and GA signals and promotes ubiquitination-dependent degradation of MdNAC72. The MdNAC72-MdABI5 interface fine-regulates the integration of JA and GA signals at the transcriptional and posttranslational levels by combining MdJAZ2, MdRGL2a, and MdSINA2. In summary, our findings elucidate the fine regulatory network connecting JA and GA signals with MdNAC72-MdABI5 as the core in apple.
Collapse
Affiliation(s)
- Hong-Liang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Rui-Rui Xu
- College of Biology and Oceanography, Weifang University, Weifang, 261061, Shandong, China
| | - Xin-Long Guo
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ya-Jing Liu
- School of Horticulture, Anhui Agricultural University, He-Fei, 230036, Anhui, China
| | - Chun-Xiang You
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| |
Collapse
|
24
|
Dong K, Wu F, Cheng S, Li S, Zhang F, Xing X, Jin X, Luo S, Feng M, Miao R, Chang Y, Zhang S, You X, Wang P, Zhang X, Lei C, Ren Y, Zhu S, Guo X, Wu C, Yang DL, Lin Q, Cheng Z, Wan J. OsPRMT6a-mediated arginine methylation of OsJAZ1 regulates jasmonate signaling and spikelet development in rice. MOLECULAR PLANT 2024; 17:900-919. [PMID: 38704640 DOI: 10.1016/j.molp.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/04/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Although both protein arginine methylation (PRMT) and jasmonate (JA) signaling are crucial for regulating plant development, the relationship between these processes in the control of spikelet development remains unclear. In this study, we used the CRISPR/Cas9 technology to generate two OsPRMT6a loss-of-function mutants that exhibit various abnormal spikelet structures. Interestingly, we found that OsPRMT6a can methylate arginine residues in JA signal repressors OsJAZ1 and OsJAZ7. We showed that arginine methylation of OsJAZ1 enhances the binding affinity of OsJAZ1 with the JA receptors OsCOI1a and OsCOI1b in the presence of JAs, thereby promoting the ubiquitination of OsJAZ1 by the SCFOsCOI1a/OsCOI1b complex and degradation via the 26S proteasome. This process ultimately releases OsMYC2, a core transcriptional regulator in the JA signaling pathway, to activate or repress JA-responsive genes, thereby maintaining normal plant (spikelet) development. However, in the osprmt6a-1 mutant, reduced arginine methylation of OsJAZ1 impaires the interaction between OsJAZ1 and OsCOI1a/OsCOI1b in the presence of JAs. As a result, OsJAZ1 proteins become more stable, repressing JA responses, thus causing the formation of abnormal spikelet structures. Moreover, we discovered that JA signaling reduces the OsPRMT6a mRNA level in an OsMYC2-dependent manner, thereby establishing a negative feedback loop to balance JA signaling. We further found that OsPRMT6a-mediated arginine methylation of OsJAZ1 likely serves as a switch to tune JA signaling to maintain normal spikelet development under harsh environmental conditions such as high temperatures. Collectively, our study establishes a direct molecular link between arginine methylation and JA signaling in rice.
Collapse
Affiliation(s)
- Kun Dong
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fuqing Wu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Siqi Cheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Li
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Feng Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinxin Xing
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Jin
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sheng Luo
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miao Feng
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Miao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanqi Chang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuang Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoman You
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiran Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanyin Wu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dong-Lei Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qibing Lin
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
25
|
Huang H, Wang Y, Yang P, Zhao H, Jenks MA, Lü S, Yang X. The Arabidopsis cytochrome P450 enzyme CYP96A4 is involved in the wound-induced biosynthesis of cuticular wax and cutin monomers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1619-1634. [PMID: 38456566 DOI: 10.1111/tpj.16701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
The plant cuticle is composed of cuticular wax and cutin polymers and plays an essential role in plant tolerance to diverse abiotic and biotic stresses. Several stresses, including water deficit and salinity, regulate the synthesis of cuticular wax and cutin monomers. However, the effect of wounding on wax and cutin monomer production and the associated molecular mechanisms remain unclear. In this study, we determined that the accumulation of wax and cutin monomers in Arabidopsis leaves is positively regulated by wounding primarily through the jasmonic acid (JA) signaling pathway. Moreover, we observed that a wound- and JA-responsive gene (CYP96A4) encoding an ER-localized cytochrome P450 enzyme was highly expressed in leaves. Further analyses indicated that wound-induced wax and cutin monomer production was severely inhibited in the cyp96a4 mutant. Furthermore, CYP96A4 interacted with CER1 and CER3, the core enzymes in the alkane-forming pathway associated with wax biosynthesis, and modulated CER3 activity to influence aldehyde production in wax synthesis. In addition, transcripts of MYC2 and JAZ1, key genes in JA signaling pathway, were significantly reduced in cyp96a4 mutant. Collectively, these findings demonstrate that CYP96A4 functions as a cofactor of the alkane synthesis complex or participates in JA signaling pathway that contributes to cuticular wax biosynthesis and cutin monomer formation in response to wounding.
Collapse
Affiliation(s)
- Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yang Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Matthew A Jenks
- School of Plant Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
26
|
Zhang M, Luo X, He W, Zhang M, Peng Z, Deng H, Xing J. OsJAZ4 Fine-Tunes Rice Blast Resistance and Yield Traits. PLANTS (BASEL, SWITZERLAND) 2024; 13:348. [PMID: 38337880 PMCID: PMC10857531 DOI: 10.3390/plants13030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
JAZ proteins function as transcriptional regulators that form a jasmonic acid-isoleucine (JA-Ile) receptor complex with coronatine insensitive 1 (COI1) and regulate plant growth and development. These proteins also act as key mediators in signal transduction pathways that activate the defense-related genes. Herein, the role of OsJAZ4 in rice blast resistance, a severe disease, was examined. The mutation of OsJAZ4 revealed its significance in Magnaporthe oryzae (M. oryzae) resistance and the seed setting rate in rice. In addition, weaker M. oryzae-induced ROS production and expression of the defense genes OsO4g10010, OsWRKY45, OsNAC4, and OsPR3 was observed in osjaz4 compared to Nipponbare (NPB); also, the jasmonic acid (JA) and gibberellin4 (GA4) content was significantly lower in osjaz4 than in NPB. Moreover, osjaz4 exhibited a phenotype featuring a reduced seed setting rate. These observations highlight the involvement of OsJAZ4 in the regulation of JA and GA4 content, playing a positive role in regulating the rice blast resistance and seed setting rate.
Collapse
Affiliation(s)
- Mingfeng Zhang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; (M.Z.); (X.L.); (M.Z.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Xiao Luo
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; (M.Z.); (X.L.); (M.Z.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Wei He
- National Engineering Laboratory for Rice and By-Product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Min Zhang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; (M.Z.); (X.L.); (M.Z.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Zhirong Peng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Huafeng Deng
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; (M.Z.); (X.L.); (M.Z.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Junjie Xing
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; (M.Z.); (X.L.); (M.Z.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| |
Collapse
|
27
|
He S, Xu L, Wu W, Zhang J, Hao Z, Lu L, Shi J, Chen J. The Identification and Expression Analysis of the Liriodendron chinense F-Box Gene Family. PLANTS (BASEL, SWITZERLAND) 2024; 13:171. [PMID: 38256726 PMCID: PMC10819036 DOI: 10.3390/plants13020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
The F-box gene family is one of the largest gene families in plants, and it plays a crucial role in regulating plant development, reproduction, cellular protein degradation, and response to biotic and abiotic stresses. Despite their significance, a comprehensive analysis of the F-box gene family in Liriodendron chinense and other magnoliaceae species has not been reported. In this study, we report for the first time the identification of 144 full-length F-box genes in L. chinense. Based on specific domains and phylogenetic analyses, these genes were divided into 10 distinct subfamilies. We further analyzed their gene structure, conserved domain and chromosome distribution, genome-wide replication events, and collinearity. Additionally, based on GO analysis, we found that F-box genes exhibit functional specificity, with a significant proportion of them being involved in protein binding (GO:0005515), suggesting that F-box genes may play an important role in gene regulation in L. chinense. Transcriptome data and q-PCR results also showed that F-box genes are involved in the development of multiple tissues in L. chinense, regulate the somatic embryogenesis of Liriodendron hybrids, and play a pivotal role in abiotic stress. Altogether, these findings provide a foundation for understanding the biological function of F-box genes in L. chinense and other plant species.
Collapse
Affiliation(s)
- Shichan He
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
| | - Lin Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
| | - Weihuang Wu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaji Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaodong Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Lu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
| | - Jisen Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
28
|
Krasauskas J, Ganie SA, Al-Husari A, Bindschedler L, Spanu P, Ito M, Devoto A. Jasmonates, gibberellins, and powdery mildew modify cell cycle progression and evoke differential spatiotemporal responses along the barley leaf. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:180-203. [PMID: 37611210 PMCID: PMC10735486 DOI: 10.1093/jxb/erad331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
Barley (Hordeum vulgare) is an important cereal crop, and its development, defence, and stress responses are modulated by different hormones including jasmonates (JAs) and the antagonistic gibberellins (GAs). Barley productivity is severely affected by the foliar biotrophic fungal pathogen Blumeria hordei. In this study, primary leaves were used to examine the molecular processes regulating responses to methyl-jasmonate (MeJA) and GA to B. hordei infection along the leaf axis. Flow cytometry, microscopy, and spatiotemporal expression patterns of genes associated with JA, GA, defence, and the cell cycle provided insights on cell cycle progression and on the gradient of susceptibility to B. hordei observed along the leaf. Notably, the combination of B. hordei with MeJA or GA pre-treatment had a different effect on the expression patterns of the analysed genes compared to individual treatments. MeJA reduced susceptibility to B. hordei in the proximal part of the leaf blade. Overall, distinctive spatiotemporal gene expression patterns correlated with different degrees of cell proliferation, growth capacity, responses to hormones, and B. hordei infection along the leaf. Our results highlight the need to further investigate differential spatial and temporal responses to pathogens at the organ, tissue, and cell levels in order to devise effective disease control strategies in crops.
Collapse
Affiliation(s)
- Jovaras Krasauskas
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Showkat Ahmad Ganie
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Aroub Al-Husari
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Laurence Bindschedler
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Pietro Spanu
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Masaki Ito
- School of Biological Science and Technology, Kanazawa University, Ishikawa 920-1192, Japan
| | - Alessandra Devoto
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
29
|
Liu F, Cai S, Ma Z, Yue H, Xing L, Wang Y, Feng S, Wang L, Dai L, Wan H, Gao J, Chen M, Rahman M, Zhou B. RVE2, a new regulatory factor in jasmonic acid pathway, orchestrates resistance to Verticillium wilt. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2507-2524. [PMID: 37553251 PMCID: PMC10651145 DOI: 10.1111/pbi.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Verticillium dahliae, one of the most destructive fungal pathogens of several crops, challenges the sustainability of cotton productivity worldwide because very few widely-cultivated Upland cotton varieties are resistant to Verticillium wilt (VW). Here, we report that REVEILLE2 (RVE2), the Myb-like transcription factor, confers the novel function in resistance to VW by regulating the jasmonic acid (JA) pathway in cotton. RVE2 expression was essentially required for the activation of JA-mediated disease-resistance response. RVE2 physically interacted with TPL/TPRs and disturbed JAZ proteins to recruit TPL and TPR1 in NINJA-dependent manner, which regulated JA response by relieving inhibited-MYC2 activity. The MYC2 then bound to RVE2 promoter for the activation of its transcription, forming feedback loop. Interestingly, a unique truncated RVE2 widely existing in D-subgenome (GhRVE2D) of natural Upland cotton represses the ability of the MYC2 to activate GhRVE2A promoter but not GausRVE2 or GbRVE2. The result could partially explain why Gossypium barbadense popularly shows higher resistance than Gossypium hirsutum. Furthermore, disturbing the JA-signalling pathway resulted into the loss of RVE2-mediated disease-resistance in various plants (Arabidopsis, tobacco and cotton). RVE2 overexpression significantly enhanced the resistance to VW. Collectively, we conclude that RVE2, a new regulatory factor, plays a pivotal role in fine-tuning JA-signalling, which would improve our understanding the mechanisms underlying the resistance to VW.
Collapse
Affiliation(s)
- Fujie Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Sheng Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Zhifeng Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Haoran Yue
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Liangshuai Xing
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Yingying Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Shouli Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Liang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Lingjun Dai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Hui Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Jianbo Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Mengfei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Mehboob‐ur‐ Rahman
- Plant Genomics & Mol. Breeding LabNational Institute for Biotechnology & Genetic Engineering (NIBGE)FaisalabadPakistan
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| |
Collapse
|
30
|
Bai S, Long J, Cui Y, Wang Z, Liu C, Liu F, Wang Z, Li Q. Regulation of hormone pathways in wheat infested by Blumeria graminis f. sp. tritici. BMC PLANT BIOLOGY 2023; 23:554. [PMID: 37940874 PMCID: PMC10634187 DOI: 10.1186/s12870-023-04569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Wheat powdery mildew is an obligate biotrophic pathogen infecting wheat, which can pose a serious threat to wheat production. In this study, transcriptome sequencing was carried out on wheat leaves infected by Blumeria graminis f. sp. tritici from 0 h to 7 d. RESULTS KEGG and GO enrichment analysis revealed that the upstream biosynthetic pathways and downstream signal transduction pathways of salicylic acid, jasmonic acid, and ethylene were highly enriched at all infection periods. Trend analysis showed that the expressions of hormone-related genes were significantly expressed from 1 to 4 d, suggesting that 1 d-4 d is the main period in which hormones play a defensive role. During this period of time, the salicylic acid pathway was up-regulated, while the jasmonic acid and ethylene pathways were suppressed. Meanwhile, four key modules and 11 hub genes were identified, most of which were hormone related. CONCLUSION This study improves the understanding of the dynamical responses of wheat to Blumeria graminis f. sp. tritici infestation at the transcriptional level and provides a reference for screening core genes regulated by hormones.
Collapse
Affiliation(s)
- Shuangyu Bai
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Jiaohui Long
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Yuanyuan Cui
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Zhaoyi Wang
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Caixia Liu
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Fenglou Liu
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Zhangjun Wang
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Qingfeng Li
- School of Agriculture, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
31
|
Kućko A, de Dios Alché J, Tranbarger TJ, Wilmowicz E. Abscisic acid- and ethylene-induced abscission of yellow lupine flowers is mediated by jasmonates. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154119. [PMID: 37879220 DOI: 10.1016/j.jplph.2023.154119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
The appropriate timing of organ abscission determines plant growth, development, reproductive success, and yield in relation to crop species. Among these, yellow lupine is an example of a crop species that loses many fully developed flowers, which limits the formation of pods with high-protein seeds and affects its economic value. Lupine flower abscission, similarly to the separation of other organs, depends on a complex regulatory network functioning in the cells of the abscission zone (AZ). In the present study, genetic, biochemical, and cellular methods were used to highlight the complexity of the interactions among strong hormonal stimulators of abscission, including abscisic acid (ABA), ethylene, and jasmonates (JAs) precisely in the AZ cells, with all results supporting that the JA-related pathway has an important role in the phytohormonal cross-talk leading to flower abscission in yellow lupine. Based on obtained results, we conclude that ABA and ET have positive influence on JAs biosynthesis and signaling pathway in time-dependent manner. Both phytohormones changes lipoxygenase (LOX) gene expression, affects LOX protein abundance, and JA accumulation in AZ cells. We have also shown that the signaling pathway of JA is highly sensitive to ABA and ET, given the accumulation of COI1 receptor and MYC2 transcription factor in response to these phytohormones. The results presented provide novel information about the JAs-dependent separation of organs and provide insight and details about the phytohormone-related mechanisms of lupine flower abscission.
Collapse
Affiliation(s)
- Agata Kućko
- Department of Plant Physiology, Institute of Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008, Granada, Spain.
| | - Timothy John Tranbarger
- UMR DIADE, IRD Centre de Montpellier, Institut de Recherche pour le Développement, Université de Montpellier, 911 Avenue Agropolis BP 64501, 34394 CEDEX 5, Montpellier, France.
| | - Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, 87-100, Toruń, Poland.
| |
Collapse
|
32
|
Varshney V, Hazra A, Rao V, Ghosh S, Kamble NU, Achary RK, Gautam S, Majee M. The Arabidopsis F-box protein SKP1-INTERACTING PARTNER 31 modulates seed maturation and seed vigor by targeting JASMONATE ZIM DOMAIN proteins independently of jasmonic acid-isoleucine. THE PLANT CELL 2023; 35:3712-3738. [PMID: 37462265 PMCID: PMC10533341 DOI: 10.1093/plcell/koad199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/21/2023] [Indexed: 09/29/2023]
Abstract
F-box proteins have diverse functions in eukaryotic organisms, including plants, mainly targeting proteins for 26S proteasomal degradation. Here, we demonstrate the role of the F-box protein SKP1-INTERACTING PARTNER 31 (SKIP31) from Arabidopsis (Arabidopsis thaliana) in regulating late seed maturation events, seed vigor, and viability through biochemical and genetic studies using skip31 mutants and different transgenic lines. We show that SKIP31 is predominantly expressed in seeds and that SKIP31 interacts with JASMONATE ZIM DOMAIN (JAZ) proteins, key repressors in jasmonate (JA) signaling, directing their ubiquitination for proteasomal degradation independently of coronatine/jasmonic acid-isoleucine (JA-Ile), in contrast to CORONATINE INSENSITIVE 1, which sends JAZs for degradation in a coronatine/JA-Ile dependent manner. Moreover, JAZ proteins interact with the transcription factor ABSCISIC ACID-INSENSITIVE 5 (ABI5) and repress its transcriptional activity, which in turn directly or indirectly represses the expression of downstream genes involved in the accumulation of LATE EMBRYOGENESIS ABUNDANT proteins, protective metabolites, storage compounds, and abscisic acid biosynthesis. However, SKIP31 targets JAZ proteins, deregulates ABI5 activity, and positively regulates seed maturation and consequently seed vigor. Furthermore, ABI5 positively influences SKIP31 expression, while JAZ proteins repress ABI5-mediated transactivation of SKIP31 and exert feedback regulation. Taken together, our findings reveal the role of the SKIP31-JAZ-ABI5 module in seed maturation and consequently, establishment of seed vigor.
Collapse
Affiliation(s)
- Vishal Varshney
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Abhijit Hazra
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Venkateswara Rao
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Shraboni Ghosh
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Nitin Uttam Kamble
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Rakesh Kumar Achary
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Shikha Gautam
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Manoj Majee
- MM's Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| |
Collapse
|
33
|
Zhang J, Chen W, Li X, Shi H, Lv M, He L, Bai W, Cheng S, Chu J, He K, Gou X, Li J. Jasmonates regulate apical hook development by repressing brassinosteroid biosynthesis and signaling. PLANT PHYSIOLOGY 2023; 193:1561-1579. [PMID: 37467431 PMCID: PMC10517256 DOI: 10.1093/plphys/kiad399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/31/2023] [Indexed: 07/21/2023]
Abstract
An apical hook is a special structure formed during skotomorphogenesis in dicotyledonous plant species. It is critical for protecting the shoot apical meristem from mechanical damage during seed germination and hypocotyl elongation in soil. Brassinosteroid (BR) and jasmonate (JA) phytohormones antagonistically regulate apical hook formation. However, the interrelationship between BRs and JAs in this process has not been well elucidated. Here, we reveal that JAs repress BRs to regulate apical hook development in Arabidopsis (Arabidopsis thaliana). Exogenous application of methyl jasmonate (MeJA) repressed the expression of the rate-limiting BR biosynthetic gene DWARF4 (DWF4) in a process relying on 3 key JA-dependent transcription factors, MYC2, MYC3, and MYC4. We demonstrated that MYC2 interacts with the critical BR-activated transcription factor BRASSINAZOLE RESISTANT 1 (BZR1), disrupting the association of BZR1 with its partner transcription factors, such as those of the PHYTOCHROME INTERACTING FACTOR (PIF) family and downregulating the expression of their target genes, such as WAVY ROOT GROWTH 2 (WAG2), encoding a protein kinase essential for apical hook development. Our results indicate that JAs not only repress the expression of BR biosynthetic gene DWF4 but, more importantly, attenuate BR signaling by inhibiting the transcriptional activation of BZR1 by MYC2 during apical hook development.
Collapse
Affiliation(s)
- Jingjie Zhang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Weiyue Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xiaopeng Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hongyong Shi
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Minghui Lv
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Liming He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenhua Bai
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shujing Cheng
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
34
|
Pullagurla NJ, Shome S, Yadav R, Laha D. ITPK1 Regulates Jasmonate-Controlled Root Development in Arabidopsis thaliana. Biomolecules 2023; 13:1368. [PMID: 37759768 PMCID: PMC10526342 DOI: 10.3390/biom13091368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Jasmonic acid (JA) is a plant hormone that regulates a plethora of physiological processes including immunity and development and is perceived by the F-Box protein, Coronatine-insensitive protein 1 (COI1). The discovery of inositol phosphates (InsPs) in the COI1 receptor complex highlights their role in JAperception. InsPs are phosphate-rich signaling molecules that control many aspects of plant physiology. Inositol pyrophosphates (PP-InsPs) are diphosphate containing InsP species, of which InsP7 and InsP8 are the best characterized ones. Different InsP and PP-InsP species are linked with JA-related plant immunity. However, role of PP-InsP species in regulating JA-dependent developmental processes are poorly understood. Recent identification of ITPK1 kinase, responsible for the production of 5-InsP7 from InsP6in planta, provides a platform to investigate the possible involvement of ITPK-derived InsP species in JA-related plant development. Here, in this study, we report that ITPK1-defective plants exhibit increased root growth inhibition to bioactive JA treatment. The itpk1 plants also show increased lateral root density when treated with JA. Notably, JA treatment does not increase ITPK1 protein levels. Gene expression analyses revealed that JA-biosynthetic genes are not differentially expressed in ITPK1-deficient plants. We further demonstrate that genes encoding different JAZ repressor proteins are severely down-regulated in ITPK1-defective plants. Taken together, our study highlights the role of ITPK1 in regulating JA-dependent root architecture development through controlling the expression of different JAZ repressor proteins.
Collapse
Affiliation(s)
| | | | | | - Debabrata Laha
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru 560012, India; (N.J.P.); (S.S.); (R.Y.)
| |
Collapse
|
35
|
Lv G, Han R, Wang W, Yu Q, Liu G, Yang C, Jiang J. Functional study of BpCOI1 reveals its role in affecting disease resistance in birch. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107938. [PMID: 37579684 DOI: 10.1016/j.plaphy.2023.107938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Plants interact with biotic and abiotic environments. Some of these interactions are detrimental including herbivory consumption and infections by microbial pathogens. The COI1 (coronatine insensitive 1) protein is the master controller of JA-regulated plant responses and plays a regulatory role in the plant defense response. However, there is little information on COI1 function in birch (Betula platyphylla × Betula pendula). Herein, we studied the F-box protein BpCOI1 which is located in the nucleus. To validate the function of this protein, we developed transgenic birch plants with overexpression or repression of BpCOI1 gene. Growth traits, such as tree height, ground diameter, number of lateral branches, did not change significantly among transgenic lines. Alternaria alternata treatment experiments indicated that low expression of BpCOI1 reduced disease resistance in birch. Furthermore, our results showed that low expression of BpCOI1 significantly reduced the sensitivity of plants to exogenous MeJA. Co-expression analysis showed gene expression patterns with similar characteristics. These genes may be closely related in function, or members involved in the same signaling pathway or physiological process with BpCOI 1. The results of transcriptome sequencing and co-expression analysis showed that BpCOI1 affects plant defense against Alternaria alternata by regulating jasmonates. This study reveals the role of BpCOI1 in disease resistance and proposes the possibility of controlling diseases through molecular breeding in birch.
Collapse
Affiliation(s)
- Guanbin Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Rui Han
- College of Forestry and Grassland Science, Jilin Agricultural University, Jilin, China
| | - Wei Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Qibin Yu
- University of Florida, Lake Alfred, FL, USA
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China.
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China.
| |
Collapse
|
36
|
Sun Y, Zheng Y, Yao H, Ma Z, Xiao M, Wang H, Liu Y. Light and jasmonic acid coordinately regulate the phosphate responses under shade and phosphate starvation conditions in Arabidopsis. PLANT DIRECT 2023; 7:e504. [PMID: 37360842 PMCID: PMC10290274 DOI: 10.1002/pld3.504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
In the natural ecosystem, plants usually grow at high vegetation density for yield maximization. The high-density planting triggers a variety of strategies to avoid canopy shade and competes with their neighbors for light and nutrition, which are collected termed shade avoidance responses. The molecular mechanism underlying shade avoidance and nutrition has expanded largely in the past decade; however, how these two responses intersect remains poorly understood. Here, we show that simulated shade undermined Pi starvation response and the phytohormone JA is involved in this process. We found that the JA signaling repressor JAZ proteins directly interact with PHR1 to repress its transcriptional activity on downstream targets, including phosphate starvation induced genes. Furthermore, FHY3 and FAR1, the negative regulators of shade avoidance, directly bind to promoters of NIGT1.1 and NIGT1.2 to activate their expression, and this process is also antagonized by JAZ proteins. All these results finally result in attenuation of Pi starvation response under shade and Pi-depleted conditions. Our findings unveil a previously unrecognized molecular framework whereby plants integrate light and hormone signaling to modulate phosphate responses under plant competition.
Collapse
Affiliation(s)
- Yanzhao Sun
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Yanyan Zheng
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Heng Yao
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Zhaodong Ma
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Mengwei Xiao
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Haiyang Wang
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yang Liu
- College of HorticultureChina Agricultural UniversityBeijingChina
| |
Collapse
|
37
|
Dai Y, Liu D, Guo W, Liu Z, Zhang X, Shi L, Zhou D, Wang L, Kang K, Wang F, Zhao S, Tan Y, Hu T, Chen W, Li P, Zhou Q, Yuan L, Zhang Z, Chen Y, Zhang W, Li J, Yu L, Xiao S. Poaceae-specific β-1,3;1,4-d-glucans link jasmonate signalling to OsLecRK1-mediated defence response during rice-brown planthopper interactions. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1286-1300. [PMID: 36952539 PMCID: PMC10214751 DOI: 10.1111/pbi.14038] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/30/2023] [Accepted: 02/25/2023] [Indexed: 05/27/2023]
Abstract
Brown planthopper (BPH, Nilaparvata lugens), a highly destructive insect pest, poses a serious threat to rice (Oryza sativa) production worldwide. Jasmonates are key phytohormones that regulate plant defences against BPH; however, the molecular link between jasmonates and BPH responses in rice remains largely unknown. Here, we discovered a Poaceae-specific metabolite, mixed-linkage β-1,3;1,4-d-glucan (MLG), which contributes to jasmonate-mediated BPH resistance. MLG levels in rice significantly increased upon BPH attack. Overexpressing OsCslF6, which encodes a glucan synthase that catalyses MLG biosynthesis, significantly enhanced BPH resistance and cell wall thickness in vascular bundles, whereas knockout of OsCslF6 reduced BPH resistance and vascular wall thickness. OsMYC2, a master transcription factor of jasmonate signalling, directly controlled the upregulation of OsCslF6 in response to BPH feeding. The AT-rich domain of the OsCslF6 promoter varies in rice varieties from different locations and natural variants in this domain were associated with BPH resistance. MLG-derived oligosaccharides bound to the plasma membrane-anchored LECTIN RECEPTOR KINASE1 OsLecRK1 and modulated its activity. Thus, our findings suggest that the OsMYC2-OsCslF6 module regulates pest resistance by modulating MLG production to enhance vascular wall thickness and OsLecRK1-mediated defence signalling during rice-BPH interactions.
Collapse
Affiliation(s)
- Yang‐Shuo Dai
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Di Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Wuxiu Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhi‐Xuan Liu
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Xue Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Li‐Li Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - De‐Mian Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ling‐Na Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Kui Kang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Feng‐Zhu Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Shan‐Shan Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yi‐Fang Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Tian Hu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Wu Chen
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Peng Li
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Qing‐Ming Zhou
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Long‐Yu Yuan
- Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Zhenfei Zhang
- Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Yue‐Qin Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Wen‐Qing Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Juan Li
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Lu‐Jun Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
38
|
He K, Du J, Han X, Li H, Kui M, Zhang J, Huang Z, Fu Q, Jiang Y, Hu Y. PHOSPHATE STARVATION RESPONSE1 (PHR1) interacts with JASMONATE ZIM-DOMAIN (JAZ) and MYC2 to modulate phosphate deficiency-induced jasmonate signaling in Arabidopsis. THE PLANT CELL 2023; 35:2132-2156. [PMID: 36856677 PMCID: PMC10226604 DOI: 10.1093/plcell/koad057] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/21/2022] [Accepted: 02/03/2023] [Indexed: 05/30/2023]
Abstract
Phosphorus (P) is a macronutrient necessary for plant growth and development. Inorganic phosphate (Pi) deficiency modulates the signaling pathway of the phytohormone jasmonate in Arabidopsis thaliana, but the underlying molecular mechanism currently remains elusive. Here, we confirmed that jasmonate signaling was enhanced under low Pi conditions, and the CORONATINE INSENSITIVE1 (COI1)-mediated pathway is critical for this process. A mechanistic investigation revealed that several JASMONATE ZIM-DOMAIN (JAZ) repressors physically interacted with the Pi signaling-related core transcription factors PHOSPHATE STARVATION RESPONSE1 (PHR1), PHR1-LIKE2 (PHL2), and PHL3. Phenotypic analyses showed that PHR1 and its homologs positively regulated jasmonate-induced anthocyanin accumulation and root growth inhibition. PHR1 stimulated the expression of several jasmonate-responsive genes, whereas JAZ proteins interfered with its transcriptional function. Furthermore, PHR1 physically associated with the basic helix-loop-helix (bHLH) transcription factors MYC2, MYC3, and MYC4. Genetic analyses and biochemical assays indicated that PHR1 and MYC2 synergistically increased the transcription of downstream jasmonate-responsive genes and enhanced the responses to jasmonate. Collectively, our study reveals the crucial regulatory roles of PHR1 in modulating jasmonate responses and provides a mechanistic understanding of how PHR1 functions together with JAZ and MYC2 to maintain the appropriate level of jasmonate signaling under conditions of Pi deficiency.
Collapse
Affiliation(s)
- Kunrong He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Huiqiong Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Mengyi Kui
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juping Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichong Huang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Qiantang Fu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
39
|
Chaturvedi D, Pundir S, Singh VK, Kumar D, Sharma R, Röder MS, Sharma S, Sharma S. Identification of genomic regions associated with cereal cyst nematode (Heterodera avenae Woll.) resistance in spring and winter wheat. Sci Rep 2023; 13:5916. [PMID: 37041155 PMCID: PMC10090075 DOI: 10.1038/s41598-023-32737-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/31/2023] [Indexed: 04/13/2023] Open
Abstract
Cereal cyst nematode (CCN) is a major threat to cereal crop production globally including wheat (Triticum aestivum L.). In the present study, single-locus and multi-locus models of Genome-Wide Association Study (GWAS) were used to find marker trait associations (MTAs) against CCN (Heterodera avenae) in wheat. In total, 180 wheat accessions (100 spring and 80 winter types) were screened against H. avenae in two independent years (2018/2019 "Environment 1" and 2019/2020 "Environment 2") under controlled conditions. A set of 12,908 SNP markers were used to perform the GWAS. Altogether, 11 significant MTAs, with threshold value of -log10 (p-values) ≥ 3.0, were detected using 180 wheat accessions under combined environment (CE). A novel MTA (wsnp_Ex_c53387_56641291) was detected under all environments (E1, E2 and CE) and considered to be stable MTA. Among the identified 11 MTAs, eight were novel and three were co-localized with previously known genes/QTLs/MTAs. In total, 13 putative candidate genes showing differential expression in roots, and known to be involved in plant defense mechanisms were reported. These MTAs could help us to identify resistance alleles from new sources, which could be used to identify wheat varieties with enhanced CCN resistance.
Collapse
Affiliation(s)
- Deepti Chaturvedi
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, Uttar Pradesh, 250004, India
| | - Saksham Pundir
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, Uttar Pradesh, 250004, India
- Department of Botany, Chaudhary Charan Singh University (CCSU), Meerut, Uttar Pradesh, 250004, India
| | - Vikas Kumar Singh
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, Uttar Pradesh, 250004, India
| | - Deepak Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, Uttar Pradesh, 250004, India
- Department of Botany, Chaudhary Charan Singh University (CCSU), Meerut, Uttar Pradesh, 250004, India
| | - Rajiv Sharma
- Scotland's Rural College (SRUC), Peter Wilson Building, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Marion S Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, OT Gatersleben, 06466, Seeland, Germany
| | - Shiveta Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, Uttar Pradesh, 250004, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, Uttar Pradesh, 250004, India.
| |
Collapse
|
40
|
Macioszek VK, Jęcz T, Ciereszko I, Kononowicz AK. Jasmonic Acid as a Mediator in Plant Response to Necrotrophic Fungi. Cells 2023; 12:1027. [PMID: 37048100 PMCID: PMC10093439 DOI: 10.3390/cells12071027] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Jasmonic acid (JA) and its derivatives, all named jasmonates, are the simplest phytohormones which regulate multifarious plant physiological processes including development, growth and defense responses to various abiotic and biotic stress factors. Moreover, jasmonate plays an important mediator's role during plant interactions with necrotrophic oomycetes and fungi. Over the last 20 years of research on physiology and genetics of plant JA-dependent responses to pathogens and herbivorous insects, beginning from the discovery of the JA co-receptor CORONATINE INSENSITIVE1 (COI1), research has speeded up in gathering new knowledge on the complexity of plant innate immunity signaling. It has been observed that biosynthesis and accumulation of jasmonates are induced specifically in plants resistant to necrotrophic fungi (and also hemibiotrophs) such as mostly investigated model ones, i.e., Botrytis cinerea, Alternaria brassicicola or Sclerotinia sclerotiorum. However, it has to be emphasized that the activation of JA-dependent responses takes place also during susceptible interactions of plants with necrotrophic fungi. Nevertheless, many steps of JA function and signaling in plant resistance and susceptibility to necrotrophs still remain obscure. The purpose of this review is to highlight and summarize the main findings on selected steps of JA biosynthesis, perception and regulation in the context of plant defense responses to necrotrophic fungal pathogens.
Collapse
Affiliation(s)
- Violetta Katarzyna Macioszek
- Laboratory of Plant Physiology, Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Tomasz Jęcz
- Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Iwona Ciereszko
- Laboratory of Plant Physiology, Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Andrzej Kiejstut Kononowicz
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| |
Collapse
|
41
|
Lv G, Han R, Shi J, Chen K, Liu G, Yu Q, Yang C, Jiang J. Genome-wide identification of the TIFY family reveals JAZ subfamily function in response to hormone treatment in Betula platyphylla. BMC PLANT BIOLOGY 2023; 23:143. [PMID: 36922795 PMCID: PMC10015818 DOI: 10.1186/s12870-023-04138-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The TIFY family is a plant-specific gene family and plays an important role in plant growth and development. But few reports have been reported on the phylogenetic analysis and gene expression profiling of TIFY family genes in birch (Betula platyphylla). RESULTS In this study, we characterized TIFY family and identified 12 TIFY genes and using phylogeny and chromosome mapping analysis in birch. TIFY family members were divided into JAZ, ZML, PPD and TIFY subfamilies. Phylogenetic analysis revealed that 12 TIFY genes were clustered into six evolutionary branches. The chromosome distribution showed that 12 TIFY genes were unevenly distributed on 5 chromosomes. Some TIFY family members were derived from gene duplication in birch. We found that six JAZ genes from JAZ subfamily played essential roles in response to Methyl jasmonate (MeJA), the JAZ genes were correlated with COI1 under MeJA. Co-expression and GO enrichment analysis further revealed that JAZ genes were related to hormone. JAZ proteins involved in the ABA and SA pathways. Subcellular localization experiments confirmed that the JAZ proteins were localized in the nucleus. Yeast two-hybrid assay showed that the JAZ proteins may form homologous or heterodimers to regulate hormones. CONCLUSION Our results provided novel insights into biological function of TIFY family and JAZ subfamily in birch. It provides the theoretical reference for in-depth analysis of plant hormone and molecular breeding design for resistance.
Collapse
Affiliation(s)
- Guanbin Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Rui Han
- College of Forestry and Grassland Science, Jilin Agricultural University, Jilin, China
| | - Jingjing Shi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Kun Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Qibin Yu
- University of Florida, Lake Alfred, FL, USA
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China.
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China.
| |
Collapse
|
42
|
Han X, Kui M, Xu T, Ye J, Du J, Yang M, Jiang Y, Hu Y. CO interacts with JAZ repressors and bHLH subgroup IIId factors to negatively regulate jasmonate signaling in Arabidopsis seedlings. THE PLANT CELL 2023; 35:852-873. [PMID: 36427252 PMCID: PMC9940882 DOI: 10.1093/plcell/koac331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/17/2022] [Indexed: 06/01/2023]
Abstract
CONSTANS (CO) is a master flowering-time regulator that integrates photoperiodic and circadian signals in Arabidopsis thaliana. CO is expressed in multiple tissues, including young leaves and seedling roots, but little is known about the roles and underlying mechanisms of CO in mediating physiological responses other than flowering. Here, we show that CO expression is responsive to jasmonate. CO negatively modulated jasmonate-imposed root-growth inhibition and anthocyanin accumulation. Seedlings from co mutants were more sensitive to jasmonate, whereas overexpression of CO resulted in plants with reduced sensitivity to jasmonate. Moreover, CO mediated the diurnal gating of several jasmonate-responsive genes under long-day conditions. We demonstrate that CO interacts with JASMONATE ZIM-DOMAIN (JAZ) repressors of jasmonate signaling. Genetic analyses indicated that CO functions in a CORONATINE INSENSITIVE1 (COI1)-dependent manner to modulate jasmonate responses. Furthermore, CO physically associated with the basic helix-loop-helix (bHLH) subgroup IIId transcription factors bHLH3 and bHLH17. CO acted cooperatively with bHLH17 in suppressing jasmonate signaling, but JAZ proteins interfered with their transcriptional functions and physical interaction. Collectively, our results reveal the crucial regulatory effects of CO on mediating jasmonate responses and explain the mechanism by which CO works together with JAZ and bHLH subgroup IIId factors to fine-tune jasmonate signaling.
Collapse
Affiliation(s)
- Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Mengyi Kui
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwen Ye
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Milian Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
43
|
Sun L, Cao S, Zheng N, Kao TH. Analyses of Cullin1 homologs reveal functional redundancy in S-RNase-based self-incompatibility and evolutionary relationships in eudicots. THE PLANT CELL 2023; 35:673-699. [PMID: 36478090 PMCID: PMC9940881 DOI: 10.1093/plcell/koac357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
In Petunia (Solanaceae family), self-incompatibility (SI) is regulated by the polymorphic S-locus, which contains the pistil-specific S-RNase and multiple pollen-specific S-Locus F-box (SLF) genes. SLFs assemble into E3 ubiquitin ligase complexes known as Skp1-Cullin1-F-box complexes (SCFSLF). In pollen tubes, these complexes collectively mediate ubiquitination and degradation of all nonself S-RNases, but not self S-RNase, resulting in cross-compatible, but self-incompatible, pollination. Using Petunia inflata, we show that two pollen-expressed Cullin1 (CUL1) proteins, PiCUL1-P and PiCUL1-B, function redundantly in SI. This redundancy is lost in Petunia hybrida, not because of the inability of PhCUL1-B to interact with SSK1, but due to a reduction in the PhCUL1-B transcript level. This is possibly caused by the presence of a DNA transposon in the PhCUL1-B promoter region, which was inherited from Petunia axillaris, one of the parental species of Pe. hybrida. Phylogenetic and syntenic analyses of Cullin genes in various eudicots show that three Solanaceae-specific CUL1 genes share a common origin, with CUL1-P dedicated to S-RNase-related reproductive processes. However, CUL1-B is a dispersed duplicate of CUL1-P present only in Petunia, and not in the other species of the Solanaceae family examined. We suggest that the CUL1s involved (or potentially involved) in the SI response in eudicots share a common origin.
Collapse
Affiliation(s)
- Linhan Sun
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Shiyun Cao
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | - Ning Zheng
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | - Teh-hui Kao
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
44
|
Han X, Kui M, He K, Yang M, Du J, Jiang Y, Hu Y. Jasmonate-regulated root growth inhibition and root hair elongation. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1176-1185. [PMID: 36346644 PMCID: PMC9923215 DOI: 10.1093/jxb/erac441] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/05/2022] [Indexed: 06/01/2023]
Abstract
The phytohormone jasmonate is an essential endogenous signal in the regulation of multiple plant processes for environmental adaptation, such as primary root growth inhibition and root hair elongation. Perception of environmental stresses promotes the accumulation of jasmonate, which is sensed by the CORONATINE INSENSITIVE1 (COI1)-JASMONATE ZIM-DOMAIN (JAZ) co-receptor, triggering the degradation of JAZ repressors and induction of transcriptional reprogramming. The basic helix-loop-helix (bHLH) subgroup IIIe transcription factors MYC2, MYC3, and MYC4 are the most extensively characterized JAZ-binding factors and together stimulate jasmonate-signaled primary root growth inhibition. Conversely, the bHLH subgroup IIId transcription factors (i.e. bHLH3 and bHLH17) physically associate with JAZ proteins and suppress jasmonate-induced root growth inhibition. For root hair development, JAZ proteins interact with and inhibit ROOT HAIR DEFECTIVE 6 (RHD6) and RHD6 LIKE1 (RSL1) transcription factors to modulate jasmonate-enhanced root hair elongation. Moreover, jasmonate also interacts with other signaling pathways (such as ethylene and auxin) to regulate primary root growth and/or root hair elongation. Here, we review recent progress into jasmonate-mediated primary root growth and root hair development.
Collapse
Affiliation(s)
- Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Mengyi Kui
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunrong He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Milian Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | | |
Collapse
|
45
|
Fu J, Wang L, Pei W, Yan J, He L, Ma B, Wang C, Zhu C, Chen G, Shen Q, Wang Q. ZmEREB92 interacts with ZmMYC2 to activate maize terpenoid phytoalexin biosynthesis upon Fusarium graminearum infection through jasmonic acid/ethylene signaling. THE NEW PHYTOLOGIST 2023; 237:1302-1319. [PMID: 36319608 DOI: 10.1111/nph.18590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Maize (Zea mays) terpenoid phytoalexins (MTPs) induced by multiple fungi display extensive antimicrobial activities, yet how maize precisely regulates MTP accumulation upon pathogen infection remains elusive. In this study, pretreatment with jasmonic acid (JA)/ethylene (ET)-related inhibitors significantly reduced Fusarium graminearum-induced MTP accumulation and resulted in enhanced susceptibility to F. graminearum, indicating the involvement of JA/ET in MTP regulatory network. ZmEREB92 positively regulated MTP biosynthetic gene (MBG) expression by correlation analysis. Knockout of ZmEREB92 significantly compromised maize resistance to F. graminearum with delayed induction of MBGs and attenuated MTP accumulation. The activation of ZmEREB92 on MBGs is dependent on the interaction with ZmMYC2, which directly binds to MBG promoters. ZmJAZ14 interacts both with ZmEREB92 and with ZmMYC2 in a competitive manner to negatively regulate MBG expression. Altogether, our findings illustrate the regulatory mechanism for JA/ET-mediated MTP accumulation upon F. graminearum infection with the involvement of ZmEREB92, ZmMYC2, and ZmJAZ14, which provides new insights into maize disease responses.
Collapse
Affiliation(s)
- Jingye Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenzheng Pei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linqian He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ben Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chenying Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Chen
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, 271-8510, Japan
| | - Qinqin Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
46
|
Guarneri N, Willig J, Sterken MG, Zhou W, Hasan MS, Sharon L, Grundler FMW, Willemsen V, Goverse A, Smant G, Lozano‐Torres JL. Root architecture plasticity in response to endoparasitic cyst nematodes is mediated by damage signaling. THE NEW PHYTOLOGIST 2023; 237:807-822. [PMID: 36285401 PMCID: PMC10108316 DOI: 10.1111/nph.18570] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Plant root architecture plasticity in response to biotic stresses has not been thoroughly investigated. Infection by endoparasitic cyst nematodes induces root architectural changes that involve the formation of secondary roots at infection sites. However, the molecular mechanisms regulating secondary root formation in response to cyst nematode infection remain largely unknown. We first assessed whether secondary roots form in a nematode density-dependent manner by challenging wild-type Arabidopsis plants with increasing numbers of cyst nematodes (Heterodera schachtii). Next, using jasmonate-related reporter lines and knockout mutants, we tested whether tissue damage by nematodes triggers jasmonate-dependent secondary root formation. Finally, we verified whether damage-induced secondary root formation depends on local auxin biosynthesis at nematode infection sites. Intracellular host invasion by H. schachtii triggers a transient local increase in jasmonates, which activates the expression of ERF109 in a COI1-dependent manner. Knockout mutations in COI1 and ERF109 disrupt the nematode density-dependent increase in secondary roots observed in wild-type plants. Furthermore, ERF109 regulates secondary root formation upon H. schachtii infection via local auxin biosynthesis. Host invasion by H. schachtii triggers secondary root formation via the damage-induced jasmonate-dependent ERF109 pathway. This points at a novel mechanism underlying plant root plasticity in response to biotic stress.
Collapse
Affiliation(s)
- Nina Guarneri
- Laboratory of NematologyWageningen University & Research6708 PBWageningenthe Netherlands
| | - Jaap‐Jan Willig
- Laboratory of NematologyWageningen University & Research6708 PBWageningenthe Netherlands
| | - Mark G. Sterken
- Laboratory of NematologyWageningen University & Research6708 PBWageningenthe Netherlands
| | - Wenkun Zhou
- Laboratory of Molecular Biology, Cluster of Plant Developmental BiologyWageningen University & Research6708 PBWageningenthe Netherlands
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological Sciences, China Agricultural UniversityBeijing100193China
| | - M. Shamim Hasan
- Institute of Crop Science and Resource Conservation (INRES), Molecular PhytomedicineUniversity of Bonn53115BonnGermany
| | - Letia Sharon
- Institute of Crop Science and Resource Conservation (INRES), Molecular PhytomedicineUniversity of Bonn53115BonnGermany
| | - Florian M. W. Grundler
- Institute of Crop Science and Resource Conservation (INRES), Molecular PhytomedicineUniversity of Bonn53115BonnGermany
| | - Viola Willemsen
- Laboratory of Molecular Biology, Cluster of Plant Developmental BiologyWageningen University & Research6708 PBWageningenthe Netherlands
| | - Aska Goverse
- Laboratory of NematologyWageningen University & Research6708 PBWageningenthe Netherlands
| | - Geert Smant
- Laboratory of NematologyWageningen University & Research6708 PBWageningenthe Netherlands
| | - Jose L. Lozano‐Torres
- Laboratory of NematologyWageningen University & Research6708 PBWageningenthe Netherlands
| |
Collapse
|
47
|
Yi R, Shan X. Post-translational modifications: emerging regulators manipulating jasmonate biosynthesis and signaling. PLANT CELL REPORTS 2023; 42:215-222. [PMID: 36436084 DOI: 10.1007/s00299-022-02948-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Jasmonate (JA) is one of the key phytohormones essential for plant development and defense processes. The core JA biosynthetic and signaling pathways have been well-characterized. Notably, post-translational modifications (PTMs), which affect the protein structures and functions, have emerged as critical mechanisms to modulate JA output at different spatiotemporal levels. Disruption of PTMs in JA biosynthesis and signaling would cause the dysfunction of vital biological processes. Here, we give an overview of the PTMs that have been identified in JA biosynthetic and signaling pathways, and provide insights into the mechanisms by which PTMs define JA responses.
Collapse
Affiliation(s)
- Rong Yi
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot, China
- Tsinghua-Peking Center for Life Science, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoyi Shan
- Tsinghua-Peking Center for Life Science, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
48
|
Hu S, Yu K, Yan J, Shan X, Xie D. Jasmonate perception: Ligand-receptor interaction, regulation, and evolution. MOLECULAR PLANT 2023; 16:23-42. [PMID: 36056561 DOI: 10.1016/j.molp.2022.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/10/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Phytohormones integrate external environmental and developmental signals with internal cellular responses for plant survival and multiplication in changing surroundings. Jasmonate (JA), which might originate from prokaryotes and benefit plant terrestrial adaptation, is a vital phytohormone that regulates diverse developmental processes and defense responses against various environmental stresses. In this review, we first provide an overview of ligand-receptor binding techniques used for the characterization of phytohormone-receptor interactions, then introduce the identification of the receptor COI1 and active JA molecules, and finally summarize recent advances on the regulation of JA perception and its evolution.
Collapse
Affiliation(s)
- Shuai Hu
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaiming Yu
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528200, China.
| | - Xiaoyi Shan
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
49
|
Zhang D, Yu Z, Hu S, Liu X, Zeng B, Gao W, Qin H, Ma X, He Y. Genome-wide identification of members of the Skp1 family in almond ( Prunus dulcis), cloning and expression characterization of PsdSSK1. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:35-49. [PMID: 36733834 PMCID: PMC9886703 DOI: 10.1007/s12298-023-01278-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/04/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Skp1 (S-phase kinase-associated protein 1) is the core gene of SCF ubiquitin ligase, which mediates protein degradation, thereby regulating biological processes such as cell cycle progression, transcriptional regulation, and signal transduction. A variety of plant Skp1 gene family studies have been reported. However, the almond Skp1 gene family has not yet been studied. In this study, we identified 18 members of the Prunus dulcis PdSkp1 family that were unevenly distributed across six chromosomes of the almond genome. Phylogenetic tree analysis revealed that the PdSkp1 members can be divided into three groups: I, II, and III. PdSkp1 members in each subfamily have relatively conserved motif types and exon/intron numbers. There were three pairs of fragment duplication genes and one pair of tandem repeat genes, and their functions were highly evolutionarily conserved. Transcriptome data showed that PdSkp1 is expressed in almond flower tissues, and that its expression shows significant change during cross-pollination. Fluorescence quantitative results showed that eight PdSkp1 genes had different expression levels in five tissues of almond, i.e., branches, leaves, flower buds, flesh, and cores. In addition, we cloned a PsdSSK1 gene based on PdSkp1. The cloned PsdSSK1 showed the same protein sequence as PdSkp1-12. Results of qPCR and western blot analysis showed high expression of PsdSSK1 in almond pollen. In conclusion, we report the first clone of the key gene SSK1 that controls self-incompatibility in almonds. Our research lays a foundation for future functional research on PdSkp1 members, especially for exploring the mechanism of almond self-incompatibility. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01278-9.
Collapse
Affiliation(s)
- Dongdong Zhang
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Zhenfan Yu
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Shaobo Hu
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Xingyue Liu
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
- GuangZhou Institute of Forestry and Landscape Architecture, GuangZhou, China
| | - Bin Zeng
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Wenwen Gao
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - HuanXue Qin
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Xintong Ma
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Yawen He
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| |
Collapse
|
50
|
Sun T, Zhou Q, Zhou Z, Song Y, Li Y, Wang HB, Liu B. SQUINT Positively Regulates Resistance to the Pathogen Botrytis cinerea via miR156-SPL9 Module in Arabidopsis. PLANT & CELL PHYSIOLOGY 2022; 63:1414-1432. [PMID: 35445272 DOI: 10.1093/pcp/pcac042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/23/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
SQUINT (SQN) regulates plant maturation by promoting the activity of miR156, which functions primarily in the miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE9 (SPL9) module regulating plant growth and development. Here, we show that SQN acts in the jasmonate (JA) pathway, a major signaling pathway regulating plant responses to insect herbivory and pathogen infection. Arabidopsis thaliana sqn mutants showed elevated sensitivity to the necrotrophic fungus Botrytis cinerea compared with wild type. However, SQN is not involved in the early pattern-triggered immunity response often triggered by fungal attack. Rather, SQN positively regulates the JA pathway, as sqn loss-of-function mutants treated with B. cinerea showed reduced JA accumulation, JA response and sensitivity to JA. Furthermore, the miR156-SPL9 module regulates plant resistance to B. cinerea: mir156 mutant, and SPL9 overexpression plants displayed elevated sensitivity to B. cinerea. Moreover, constitutively expressing miR156a or reducing SPL9 expression in the sqn-1 mutant restored the sensitivity of Arabidopsis to B. cinerea and JA responses. These results suggest that SQN positively modulates plant resistance to B. cinerea through the JA pathway, and the miR156-SPL9 module functions as a bridge between SQN and JA to mediate plant resistance to this pathogen.
Collapse
Affiliation(s)
- Ting Sun
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Qi Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Zhou Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Yuxiao Song
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - You Li
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Hong-Bin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|