1
|
Ding X, Wang S, Luo J, Liu P, He Y, Li X, Luo X, Hu W. A 294 kb deletion causes reduced leaflet size and biomass in pigeonpea. PLANT CELL REPORTS 2025; 44:98. [PMID: 40237839 DOI: 10.1007/s00299-025-03488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
KEY MESSAGE BSA-seq and fine mapping revealed a 294 kb deletion on chromosome 9 regulating leaflet size and biomass in pigeonpea. Leaf size critically influences photosynthetic capacity, impacting organic matter production and biomass yield. This study reports the identification and characterization of a small leaflet mutant (sl1) in pigeonpea (Cajanus cajan) generated via aerial mutagenesis. Compared to the wild-type Qiongzhong, sl1 displayed significantly reduced leaf area, plant height, stem diameter, and biomass, characteristic of a dwarf phenotype. Genetic analysis confirmed a single recessive locus controlling the sl1 phenotype. Bulked segregant analysis sequencing (BSA-seq) and fine mapping identified the causal mutation as a 294 kb deletion encompassing 21 genes on chromosome 9. Transcriptomic analysis identified 1,039 differentially expressed genes (DEGs), indicating disruptions in, among others, plant hormone signaling pathways. Analysis of 28 target plant hormone metabolites revealed significant shifts in sl1 mutant compared to wild-type, including increased levels of strigolactone, methyl indole-3-acetate, and trans-zeatin-riboside, and decreases in gibberellin A3, N6-isopentenyladenine, and methyl jasmonate. Cytological analysis revealed a decreased cell number in sl1 leaves, contributing to the reduced leaflet size. Three candidate genes, CC09g01700, CC09g01705, and CC09g01707, within the deleted region were prioritized based on their altered expression patterns and their putative roles in leaf development. These findings elucidate the genetic regulation of leaf morphology and biomass in pigeonpea, offering potential targets for marker-assisted selection to enhance pigeonpea yield.
Collapse
Affiliation(s)
- Xipeng Ding
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, 571101, China
| | - Shangzhi Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jiajia Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, 571101, China
| | - Pandao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, 571101, China
| | - Yongwei He
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xinyong Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, 571101, China
| | - Xiaoyan Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China.
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, 571101, China.
| | - Wei Hu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China.
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, 571101, China.
| |
Collapse
|
2
|
Qi H, Shan L, Zhu Y, Shen T, Wu L, Xu M. A retinoblastoma-related protein promotes adventitious root development and secondary wall formation in Populus through the SHR/SCR network. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70187. [PMID: 40298459 DOI: 10.1111/tpj.70187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025]
Abstract
Retinoblastoma-Related (RBR) proteins, evolutionarily conserved homologs of animal RB tumor suppressor, are involved in cell cycle regulation, differentiation, and stress responses. This study systematically investigates the functional characterization of PeRBR in hybrid poplar (Populus deltoides × P. euramericana, clone "Nanlin 895") and its regulatory interactions with the SHR/SCR network governing adventitious root (AR) morphogenesis and secondary wall biogenesis. Transgenic poplar overexpressing PeRBR exhibited significant enhancement in AR system architecture and secondary xylem development, manifesting increased cambial cell layers (1.5-2.2 fold) and elevated lignin deposition (35% increase). Molecular analyses employing bimolecular fluorescence complementation (BiFC) and quantitative real-time PCR (qRT-PCR) revealed that PeRBR directly interacts with PeSCR in the nucleus while transcriptionally upregulating PeSHR, PeCYCD6;1, and PeWOX5 expression. Transcriptomic profiling identified 817 differentially expressed genes (DEGs) between WT plants and overexpression transgenic lines (OE_PeRBR), with notable enrichment in phenylpropanoid biosynthesis pathways. Key lignin biosynthesis genes (PAL, 4CL, CAD) and cellulose synthase (CesA) family members showed significant upregulation in OE_PeRBR lines compared to WT. These findings establish PeRBR as a central regulatory node within the SHR/SCR network, coordinating both AR development and secondary wall formation through transcriptional reprogramming of cell cycle regulators and cell wall biosynthesis machinery in woody species.
Collapse
Affiliation(s)
- Haoran Qi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Key Laboratory for Conservation and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Luyang Shan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yaoyao Zhu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Tengfei Shen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Ling Wu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Yanjiang Institute of Agricultural Science, Nantong, 226541, Jiangsu, China
| | - Meng Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
3
|
Frolova N, Gorbach D, Ihling C, Bilova T, Orlova A, Lukasheva E, Fedoseeva K, Dodueva I, Lutova LA, Frolov A. Proteome and Metabolome Alterations in Radish ( Raphanus sativus L.) Seedlings Induced by Inoculation with Agrobacterium tumefaciens. Biomolecules 2025; 15:290. [PMID: 40001593 PMCID: PMC11852571 DOI: 10.3390/biom15020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Infection of higher plants with agrobacteria (Agrobacterium tumefaciens) represents one of the most comprehensively characterized examples of plant-microbial interactions. Incorporation of the bacterial transfer DNA (T-DNA) in the plant genome results in highly efficient expression of the bacterial auxin, cytokinin and opine biosynthesis genes, as well as the host genes of hormone-mediated signaling. These transcriptional events trigger enhanced proliferation of plant cells and formation of crown gall tumors. Because of this, infection of plant tissues with A. tumefaciens provides a convenient model to address the dynamics of cell metabolism accompanying plant development. To date, both early and late plant responses to agrobacterial infection are well-characterized at the level of the transcriptome, whereas only little information on the accompanying changes in plant metabolism is available. Therefore, here we employ an integrated proteomics and metabolomics approach to address the metabolic shifts and molecular events accompanying plant responses to inoculation with the A. tumefaciens culture. Based on the acquired proteomics dataset complemented with the results of the metabolite profiling experiment, we succeeded in characterizing the metabolic shifts associated with agrobacterial infection. The observed dynamics of the seedling proteome and metabolome clearly indicated rearrangement of the energy metabolism on the 10th day after inoculation (d.a.i.). Specifically, redirection of the energy metabolism from the oxidative to the anaerobic pathway was observed. This might be a part of the plant's adaptation response to tumor-induced hypoxic stress, which most likely involved activation of sugar signaling.
Collapse
Affiliation(s)
- Nadezhda Frolova
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, 127276 Moscow, Russia; (N.F.); (D.G.); (T.B.); (A.O.)
| | - Daria Gorbach
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, 127276 Moscow, Russia; (N.F.); (D.G.); (T.B.); (A.O.)
| | - Christian Ihling
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany;
| | - Tatiana Bilova
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, 127276 Moscow, Russia; (N.F.); (D.G.); (T.B.); (A.O.)
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anastasia Orlova
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, 127276 Moscow, Russia; (N.F.); (D.G.); (T.B.); (A.O.)
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Ksenia Fedoseeva
- Resource Center “Molecular and Cell Technologies”, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Irina Dodueva
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.D.); (L.A.L.)
| | - Lyudmila A. Lutova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.D.); (L.A.L.)
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, 127276 Moscow, Russia; (N.F.); (D.G.); (T.B.); (A.O.)
| |
Collapse
|
4
|
Ritter EJ, Graham CDK, Niederhuth C, Weber MG. Small, but mitey: investigating the molecular genetic basis for mite domatia development and intraspecific variation in Vitis riparia using transcriptomics. THE NEW PHYTOLOGIST 2025; 245:215-231. [PMID: 39545644 PMCID: PMC11617649 DOI: 10.1111/nph.20226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/06/2024] [Indexed: 11/17/2024]
Abstract
Here, we investigated the molecular genetic basis of mite domatia, structures on the underside of leaves that house mutualistic mites, and intraspecific variation in domatia size in Vitis riparia (riverbank grape). Domatia and leaf traits were measured, and the transcriptomes of mite domatia from two genotypes of V. riparia with distinct domatia sizes were sequenced to investigate the molecular genetic pathways that regulate domatia development and intraspecific variation in domatia traits. Key trichome regulators as well as auxin and jasmonic acid are involved in domatia development. Genes involved in cell wall biosynthesis, biotic interactions, and molecule transport/metabolism are upregulated in domatia, consistent with their role in domatia development and function. This work is one of the first to date that provides insight into the molecular genetic bases of mite domatia. We identified key genetic pathways involved in domatia development and function, and uncovered unexpected pathways that provide an avenue for future investigation. We also found that intraspecific variation in domatia size in V. riparia seems to be driven by differences in overall leaf development between genotypes.
Collapse
Affiliation(s)
| | - Carolyn D. K. Graham
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMI48109USA
| | - Chad Niederhuth
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
| | - Marjorie Gail Weber
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
5
|
Zhang P, Wang Y, Wang Z, Di S, Zhang X, Ma D, Bao Z, Ma F. Chrysanthemum lavandulifolium homolog CYCLIN A2;1 modulates cell division in ray florets. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6423-6440. [PMID: 39127875 DOI: 10.1093/jxb/erae325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The morphology of ray florets in chrysanthemums is tightly associated with cell division and expansion, both of which require proper progression of the cell cycle. Here, we identified a Chrysanthemum lavandulifolium homolog, CYCLIN A2;1 (CYCA2;1), the expression of which in ray florets is negatively correlated with petal width. We found that CYC2a, a TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor in the CYCLOIDEA2 (CYC2) family, interacts with and stabilizes CYC2b, and the latter can bind to the promoter of CYCA2;1 to activate its transcription. Overexpression of CYCA2;1 in C. lavandulifolium reduced the size of capitula and ray florets. Cytological analysis revealed that CYCA2;1 overexpression inhibited both cell division and expansion via repression of the mitotic cell cycle in ray florets, the latitudinal development of which was more relatively negatively influenced, thereby leading to increased ratios of petal length to width at later developmental stages. Yeast two-hybrid library screening revealed multiple proteins that interacted with CYCA2;1 including ACTIN-RELATED PROTEIN7 (ARP7), and silencing ARP7 inhibited the development of ray florets. Co-immunoprecipitation assays confirmed that CYCA2;1 could induce the degradation of ARP7 to inhibit the development of ray florets. Taken together, our results indicate the presence of a regulatory network in ray floret development in chrysanthemum consisting of CYC2b-CYCA2;1-ARP7 that acts via governing mitosis. The identification of this network has the potential to facilitate breeding efforts targeted at producing novel ornamental traits in the flowers.
Collapse
Affiliation(s)
- Peng Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yahui Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Zhimin Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Shengqiang Di
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xinyi Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Ma
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Zhilong Bao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Fangfang Ma
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| |
Collapse
|
6
|
An ZS, Zuo CW, Mao J, Ma ZH, Li WF, Chen BH. Integration of mRNA-miRNA Reveals the Possible Role of PyCYCD3 in Increasing Branches Through Bud-Notching in Pear ( Pyrus bretschneideri Rehd.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2928. [PMID: 39458875 PMCID: PMC11511176 DOI: 10.3390/plants13202928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Bud-notching in pear varieties with weak-branches enhances branch development, hormone distribution, and germination, promoting healthier growth and improving early yield. To examine the regulatory mechanisms of endogenous hormones on lateral bud germination in Pyrus spp. (cv. 'Huangguan') (Pyrus bretschneideri Rehd.), juvenile buds were collected from 2-year-old pear trees. Then, a comprehensive study, including assessments of endogenous hormones, germination and branching rates, RNA-seq analysis, and gene function analysis in these lateral buds was conducted. The results showed that there was no significant difference in germination rate between the control and bud-notching pear trees, but the long branch rate was significantly increased in bud-notching pear trees compared to the control (p < 0.05). After bud-notching, there was a remarkable increase in IAA and BR levels in the pruned section of shoots, specifically by 141% and 93%, respectively. However, the content of ABA in the lateral buds after bud-notching was not significantly different from the control. Based on RNA-seq analysis, a notable proportion of the differentially expressed genes (DEGs) were linked to the plant hormone signal transduction pathway. Notably, the brassinosteroid signaling pathway seemed to have the closest connection with the branching ability of pear with the related genes encoding BRI1 and CYCD3, which showed significant differences between lateral buds. Finally, the heterologous expression of PyCYCD3 has a positive regulatory effect on the increased Arabidopsis growth and branching numbers. Therefore, the PyCYCD3 was identified as an up-regulated gene that is induced via brassinosteroid (BR) and could act as a conduit, transforming bud-notching cues into proliferative signals, thereby governing lateral branching mechanisms in pear trees.
Collapse
Affiliation(s)
| | | | | | | | | | - Bai-Hong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China (Z.-H.M.)
| |
Collapse
|
7
|
Zhang R, Cui X, Zhao P. Rapidly Evolved Genes in Three Reaumuria Transcriptomes and Potential Roles of Pentatricopeptide Repeat Superfamily Proteins in Endangerment of R. trigyna. Int J Mol Sci 2024; 25:11065. [PMID: 39456846 PMCID: PMC11508020 DOI: 10.3390/ijms252011065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Reaumuria genus (Tamaricaceae) is widely distributed across the desert and semi-desert regions of Northern China, playing a crucial role in the restoration and protection of desert ecosystems. Previous studies mainly focused on the physiological responses to environmental stresses; however, due to the limited availability of genomic information, the underlying mechanism of morphological and ecological differences among the Reaumuria species remains poorly understood. In this study, we presented the first catalog of expressed transcripts for R. kaschgarica, a sympatric species of xerophyte R. soongorica. We further performed the pair-wise transcriptome comparison to determine the conserved and divergent genes among R. soongorica, R. kaschgarica, and the relict recretohalophyte R. trigyna. Annotation of the 600 relatively conserved genes revealed that some common genetic modules are employed by the Reaumuria species to confront with salt and drought stresses in arid environment. Among the 250 genes showing strong signs of positive selection, eight pentatricopeptide repeat (PPR) superfamily protein genes were specifically identified, including seven PPR genes in the R. soongorica vs. R. trigyna comparison and one PPR gene in the R. kaschgarica vs. R. trigyna comparison, while the cyclin D3 gene was found in the R. soongorica vs. R. trigyna comparison. These findings suggest that genetic variations in PPR genes may affect the fertility system or compromise the extent of organelle RNA editing in R. trigyna. The present study provides valuable genomic information for R. kaschgarica and preliminarily reveals the conserved genetic bases for the abiotic stress adaptation and interspecific divergent selection in the Reaumuria species. The rapidly evolved PPR and cyclin D3 genes provide new insights on the endangerment of R. trigyna and the leaf length difference among the Reaumuria species.
Collapse
Affiliation(s)
- Ruizhen Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaoyun Cui
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Pengshan Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
8
|
Zhang X, Chen K, Lv G, Wang W, Jiang J, Liu G. The association analysis of DNA methylation and transcriptomics identified BpCYCD3;2 as a participant in influencing cell division in autotetraploid birch (Betula pendula) leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112099. [PMID: 38640971 DOI: 10.1016/j.plantsci.2024.112099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Polyploidization plays a crucial role in plant breeding and genetic improvement. Although the phenomenon of polyploidization affecting the area and number of plant epidermal pavement cells is well described, the underlying mechanism behind this phenomenon is still largely unknown. In this study, we found that the leaves of autotetraploid birch (Betula pendula) stopped cell division earlier and had a larger cell area. In addition, compared to diploids, tetraploids have a smaller stomatal density and fewer stomatal numbers. Genome-wide DNA methylation analysis revealed no significant difference in global DNA methylation levels between diploids and tetraploids. A total of 9154 differential methylation regions (DMRs) were identified between diploids and tetraploids, with CHH-type DMRs accounting for 91.73% of all types of DMRs. Further research has found that there are a total of 2105 differentially methylated genes (DMEGs) with CHH-type DMRs in birch. The GO functional enrichment results of DMEGs showed that differentially methylated genes were mainly involved in terms such as cellular process and metabolic process. The analysis of differentially methylated genes and differentially expressed genes suggests that hyper-methylation in the promoter region may inhibit the gene expression level of BpCYCD3;2 in tetraploids. To investigate the function of BpCYCD3;2 in birch, we obtained overexpression and repressed expression lines of BpCYCD3;2 through genetic transformation. The morphogenesis of both BpCYCD3;2-OE and BpCYCD3;2-RE lines was not affected. However, low expression of BpCYCD3;2 can lead to inhibition of cell division in leaves, and this inhibition of cell proliferation can be compensated for by an increase in cell size. Additionally, we found that the number and density of stomata in the BpCYCD3;2-RE lines were significantly reduced, consistent with the tetraploid. These data indicate that changes in cell division ability and stomatal changes in tetraploid birch can be partially attributed to low expression of the BpCYCD3;2 gene, which may be related to hyper-methylation in its promoter region. These results will provide new insights into the mechanism by which polyploidization affects plant development.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Kun Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Guanbin Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Wei Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
9
|
Xu F, Dong H, Guo W, Le L, Jing Y, Fletcher JC, Sun J, Pu L. The trxG protein ULT1 regulates Arabidopsis organ size by interacting with TCP14/15 to antagonize the LIM peptidase DA1 for H3K4me3 on target genes. PLANT COMMUNICATIONS 2024; 5:100819. [PMID: 38217289 PMCID: PMC11009162 DOI: 10.1016/j.xplc.2024.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Plant organ size is an important agronomic trait that makes a significant contribution to plant yield. Despite its central importance, the genetic and molecular mechanisms underlying organ size control remain to be fully clarified. Here, we report that the trithorax group protein ULTRAPETALA1 (ULT1) interacts with the TEOSINTE BRANCHED1/CYCLOIDEA/PCF14/15 (TCP14/15) transcription factors by antagonizing the LIN-11, ISL-1, and MEC-3 (LIM) peptidase DA1, thereby regulating organ size in Arabidopsis. Loss of ULT1 function significantly increases rosette leaf, petal, silique, and seed size, whereas overexpression of ULT1 results in reduced organ size. ULT1 associates with TCP14 and TCP15 to co-regulate cell size by affecting cellular endoreduplication. Transcriptome analysis revealed that ULT1 and TCP14/15 regulate common target genes involved in endoreduplication and leaf development. ULT1 can be recruited by TCP14/15 to promote lysine 4 of histone H3 trimethylation at target genes, activating their expression to determine final cell size. Furthermore, we found that ULT1 influences the interaction of DA1 and TCP14/15 and antagonizes the effect of DA1 on TCP14/15 degradation. Collectively, our findings reveal a novel epigenetic mechanism underlying the regulation of organ size in Arabidopsis.
Collapse
Affiliation(s)
- Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huixue Dong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yexing Jing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jennifer C Fletcher
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Plant Gene Expression Center, United States Department of Agriculture - Agricultural Research Service, Albany, CA 94710, USA
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
10
|
Li H, Wang X, Qin N, Hu D, Jia Y, Sun G, He L, Zhang H, Dai P, Peng Z, Pang N, Pan Z, Zhang X, Dong Q, Chen B, Gui H, Pang B, Zhang X, He S, Song M, Du X. Genomic loci associated with leaf abscission contribute to machine picking and environmental adaptability in upland cotton (Gossypium hirsutum L.). J Adv Res 2024; 58:31-43. [PMID: 37236544 PMCID: PMC10982856 DOI: 10.1016/j.jare.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
INTRODUCTION Defoliation by applying defoliants before machine picking is an important agricultural practice that enhances harvesting efficiency and leads to increased raw cotton purity. However, the fundamental characteristics of leaf abscission and the underlying genetic basis in cotton are not clearly understood. OBJECTIVES In this study, we aimed to (1) reveal the phenotypic variations in cotton leaf abscission, (2) discover the whole-genome differentiation sweeps and genetic loci related to defoliation, (3) identify and verify the functions of key candidate genes associated with defoliation, and (4) explore the relationship between haplotype frequency of loci and environmental adaptability. METHODS Four defoliation-related traits of 383 re-sequenced Gossypium hirsutum accessions were investigated in four environments. The genome-wide association study (GWAS), linkage disequilibrium (LD) interval genotyping and functional identification were conducted. Finally, the haplotype variation related to environmental adaptability and defoliation traits was revealed. RESULTS Our findings revealed the fundamental phenotypic variations of defoliation traits in cotton. We showed that defoliant significantly increased the defoliation rate without incurring yield and fiber quality penalties. The strong correlations between defoliation traits and growth period traits were observed. A genome-wide association study of defoliation traits identified 174 significant SNPs. Two loci (RDR7 on A02 and RDR13 on A13) that significantly associated with the relative defoliation rate were described, and key candidate genes GhLRR and GhCYCD3;1, encoding a leucine-rich repeat (LRR) family protein and D3-type cell cyclin 1 protein respectively, were functional verified by expression pattern analysis and gene silencing. We found that combining of two favorable haplotypes (HapRDR7 and HapRDR13) improved sensitivity to defoliant. The favorable haplotype frequency generally increased in high latitudes in China, enabling adaptation to the local environment. CONCLUSION Our findings lay an important foundation for the potentially broad application of leveraging key genetic loci in breeding machine-pickable cotton.
Collapse
Affiliation(s)
- Hongge Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiangru Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Ning Qin
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; College of Agriculture, Tarim University, Alar 843300, China
| | - Daowu Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yinhua Jia
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Gaofei Sun
- Anyang Institute of Technology, Anyang 455000, China
| | - Liangrong He
- College of Agriculture, Tarim University, Alar 843300, China
| | - Hengheng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Panhong Dai
- Anyang Institute of Technology, Anyang 455000, China
| | - Zhen Peng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Nianchang Pang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhaoe Pan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaomeng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qiang Dong
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Baojun Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Huiping Gui
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Baoyin Pang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiling Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Meizhen Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiongming Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| |
Collapse
|
11
|
Kim JH, Kim MS, Seo YW. Overexpression of a TaATL1 encoding RING-type E3 ligase negatively regulates cell division and flowering time in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111966. [PMID: 38151074 DOI: 10.1016/j.plantsci.2023.111966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
The transition of food crops from the vegetative to reproductive stages is an important process that affects the final yield. Despite extensive characterization of E3 ligases in model plants, their roles in wheat development remain unknown. In this study, we elucidated the molecular function of wheat TaATL1 (Arabidopsis thaliana Toxicos EN Levadura), which acts as a negative regulator of flowering time and cell division. TaATL1 amino acid residues contain a RING domain and exist mainly in a beta-turn form. The expression level of TaATL1 was highly reduced during the transition from vegetative to reproductive stages. TaATL1 is localized in the nucleus and exhibits E3 ligase activity. Transgenic Arabidopsis plants, in which the TaATL1 gene is constitutively overexpressed under the control of the cauliflower mosaic virus 35 S promoter, exhibited regulation of cell numbers, thereby influencing both leaf and root growth. Moreover, TaATL1 overexpression plants showed a late-flowering phenotype compared to wild-type (WT) plants. Following transcriptome analysis, it was discovered that 1661 and 901 differentially expressed genes were down- or up- regulated, respectively, in seedling stages between WT and TaATL1 overexpression. TaATL1 transcripts are involved in cell division, flowering, and signaling. Overall, our findings demonstrated that the regulatory mechanism of wheat TaATL1 gene plays a significant role in cell division-mediated flowering in Arabidopsis.
Collapse
Affiliation(s)
- Jae Ho Kim
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea; Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Moon Seok Kim
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea; Institute of Life Science and Natural Resources, Korea University, Seoul, Republic of Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea; Ojeong Plant Breeding Research Center, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Jiang Z, Wang X, Zhou Z, Peng L, Lin X, Luo X, Song Y, Ning H, Gan C, He X, Zhu C, Ouyang L, Zhou D, Cai Y, Xu J, He H, Liu Y. Functional characterization of D-type cyclins involved in cell division in rice. BMC PLANT BIOLOGY 2024; 24:157. [PMID: 38424498 PMCID: PMC10905880 DOI: 10.1186/s12870-024-04828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND D-type cyclins (CYCD) regulate the cell cycle G1/S transition and are thus closely involved in cell cycle progression. However, little is known about their functions in rice. RESULTS We identified 14 CYCD genes in the rice genome and confirmed the presence of characteristic cyclin domains in each. The expression of the OsCYCD genes in different tissues was investigated. Most OsCYCD genes were expressed at least in one of the analyzed tissues, with varying degrees of expression. Ten OsCYCD proteins could interact with both retinoblastoma-related protein (RBR) and A-type cyclin-dependent kinases (CDKA) forming holistic complexes, while OsCYCD3;1, OsCYCD6;1, and OsCYCD7;1 bound only one component, and OsCYCD4;2 bound to neither protein. Interestingly, all OsCYCD genes except OsCYCD7;1, were able to induce tobacco pavement cells to re-enter mitosis with different efficiencies. Transgenic rice plants overexpressing OsCYCD2;2, OsCYCD6;1, and OsCYCD7;1 (which induced cell division in tobacco with high-, low-, and zero-efficiency, respectively) were created. Higher levels of cell division were observed in both the stomatal lineage and epidermal cells of the OsCYCD2;2- and OsCYCD6;1-overexpressing plants, with lower levels seen in OsCYCD7;1-overexpressing plants. CONCLUSIONS The distinct expression patterns and varying effects on the cell cycle suggest different functions for the various OsCYCD proteins. Our findings will enhance understanding of the CYCD family in rice and provide a preliminary foundation for the future functional verification of these genes.
Collapse
Affiliation(s)
- Zhishu Jiang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xin Wang
- Jiangxi Province Forest Resources Protection Center, Nanchang, 330008, Jiangxi, China
| | - Zhiwei Zhou
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Limei Peng
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoli Lin
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaowei Luo
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yongping Song
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huaying Ning
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Cong Gan
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaopeng He
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Linjuan Ouyang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dahu Zhou
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yicong Cai
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jie Xu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Yantong Liu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
13
|
Li XM, Jenke H, Strauss S, Bazakos C, Mosca G, Lymbouridou R, Kierzkowski D, Neumann U, Naik P, Huijser P, Laurent S, Smith RS, Runions A, Tsiantis M. Cell-cycle-linked growth reprogramming encodes developmental time into leaf morphogenesis. Curr Biol 2024; 34:541-556.e15. [PMID: 38244542 DOI: 10.1016/j.cub.2023.12.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024]
Abstract
How is time encoded into organ growth and morphogenesis? We address this question by investigating heteroblasty, where leaf development and form are modified with progressing plant age. By combining morphometric analyses, fate-mapping through live-imaging, computational analyses, and genetics, we identify age-dependent changes in cell-cycle-associated growth and histogenesis that underpin leaf heteroblasty. We show that in juvenile leaves, cell proliferation competence is rapidly released in a "proliferation burst" coupled with fast growth, whereas in adult leaves, proliferative growth is sustained for longer and at a slower rate. These effects are mediated by the SPL9 transcription factor in response to inputs from both shoot age and individual leaf maturation along the proximodistal axis. SPL9 acts by activating CyclinD3 family genes, which are sufficient to bypass the requirement for SPL9 in the control of leaf shape and in heteroblastic reprogramming of cellular growth. In conclusion, we have identified a mechanism that bridges across cell, tissue, and whole-organism scales by linking cell-cycle-associated growth control to age-dependent changes in organ geometry.
Collapse
Affiliation(s)
- Xin-Min Li
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Hannah Jenke
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Sören Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Christos Bazakos
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Gabriella Mosca
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Rena Lymbouridou
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Daniel Kierzkowski
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Ulla Neumann
- Central Microscopy (CeMic), Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Purva Naik
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Adam Runions
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
14
|
Helariutta Y. Plant biology: Managing age-related bursts during leaf development. Curr Biol 2024; 34:R100-R101. [PMID: 38320472 DOI: 10.1016/j.cub.2023.12.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Age-dependent control of the miR165-regulated SPL transcription factor circuitry is responsible for the variation in leaf morphology over time. A new study reveals the underlying morphogenetic dynamics.
Collapse
Affiliation(s)
- Ykä Helariutta
- Faculty of Biological and Environmental Sciences, Institute of Biotechnology, University of Helsinki, FIN-0014 Helsinki, Finland.
| |
Collapse
|
15
|
Krasauskas J, Ganie SA, Al-Husari A, Bindschedler L, Spanu P, Ito M, Devoto A. Jasmonates, gibberellins, and powdery mildew modify cell cycle progression and evoke differential spatiotemporal responses along the barley leaf. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:180-203. [PMID: 37611210 PMCID: PMC10735486 DOI: 10.1093/jxb/erad331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
Barley (Hordeum vulgare) is an important cereal crop, and its development, defence, and stress responses are modulated by different hormones including jasmonates (JAs) and the antagonistic gibberellins (GAs). Barley productivity is severely affected by the foliar biotrophic fungal pathogen Blumeria hordei. In this study, primary leaves were used to examine the molecular processes regulating responses to methyl-jasmonate (MeJA) and GA to B. hordei infection along the leaf axis. Flow cytometry, microscopy, and spatiotemporal expression patterns of genes associated with JA, GA, defence, and the cell cycle provided insights on cell cycle progression and on the gradient of susceptibility to B. hordei observed along the leaf. Notably, the combination of B. hordei with MeJA or GA pre-treatment had a different effect on the expression patterns of the analysed genes compared to individual treatments. MeJA reduced susceptibility to B. hordei in the proximal part of the leaf blade. Overall, distinctive spatiotemporal gene expression patterns correlated with different degrees of cell proliferation, growth capacity, responses to hormones, and B. hordei infection along the leaf. Our results highlight the need to further investigate differential spatial and temporal responses to pathogens at the organ, tissue, and cell levels in order to devise effective disease control strategies in crops.
Collapse
Affiliation(s)
- Jovaras Krasauskas
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Showkat Ahmad Ganie
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Aroub Al-Husari
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Laurence Bindschedler
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Pietro Spanu
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Masaki Ito
- School of Biological Science and Technology, Kanazawa University, Ishikawa 920-1192, Japan
| | - Alessandra Devoto
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
16
|
Zang Y, Pei Y, Cong X, Ran F, Liu L, Wang C, Wang D, Min Y. Single-cell RNA-sequencing profiles reveal the developmental landscape of the Manihot esculenta Crantz leaves. PLANT PHYSIOLOGY 2023; 194:456-474. [PMID: 37706525 PMCID: PMC10756766 DOI: 10.1093/plphys/kiad500] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 09/15/2023]
Abstract
Cassava (Manihot esculenta Crantz) is an important crop with a high photosynthetic rate and high yield. It is classified as a C3-C4 plant based on its photosynthetic and structural characteristics. To investigate the structural and photosynthetic characteristics of cassava leaves at the cellular level, we created a single-cell transcriptome atlas of cassava leaves. A total of 11,177 high-quality leaf cells were divided into 15 cell clusters. Based on leaf cell marker genes, we identified 3 major tissues of cassava leaves, which were mesophyll, epidermis, and vascular tissue, and analyzed their distinctive properties and metabolic activity. To supplement the genes for identifying the types of leaf cells, we screened 120 candidate marker genes. We constructed a leaf cell development trajectory map and discovered 6 genes related to cell differentiation fate. The structural and photosynthetic properties of cassava leaves analyzed at the single cellular level provide a theoretical foundation for further enhancing cassava yield and nutrition.
Collapse
Affiliation(s)
- Yuwei Zang
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Yechun Pei
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Xinli Cong
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Fangfang Ran
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Liangwang Liu
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Changyi Wang
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Dayong Wang
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Yi Min
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
17
|
Bahafid E, Bradtmöller I, Thies AM, Nguyen TTON, Gutierrez C, Desvoyes B, Stahl Y, Blilou I, Simon RGW. The Arabidopsis SHORTROOT network coordinates shoot apical meristem development with auxin-dependent lateral organ initiation. eLife 2023; 12:e83334. [PMID: 37862096 PMCID: PMC10642969 DOI: 10.7554/elife.83334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
Plants produce new organs post-embryonically throughout their entire life cycle. This is due to stem cells present in the shoot and root apical meristems, the SAM and RAM, respectively. In the SAM, stem cells are located in the central zone where they divide slowly. Stem cell daughters are displaced laterally and enter the peripheral zone, where their mitotic activity increases and lateral organ primordia are formed. How the spatial arrangement of these different domains is initiated and controlled during SAM growth and development, and how sites of lateral organ primordia are determined in the peripheral zone is not yet completely understood. We found that the SHORTROOT (SHR) transcription factor together with its target transcription factors SCARECROW (SCR), SCARECROW-LIKE23 (SCL23) and JACKDAW (JKD), promotes formation of lateral organs and controls shoot meristem size. SHR, SCR, SCL23, and JKD are expressed in distinct, but partially overlapping patterns in the SAM. They can physically interact and activate expression of key cell cycle regulators such as CYCLIND6;1 (CYCD6;1) to promote the formation of new cell layers. In the peripheral zone, auxin accumulates at sites of lateral organ primordia initiation and activates SHR expression via the auxin response factor MONOPTEROS (MP) and auxin response elements in the SHR promoter. In the central zone, the SHR-target SCL23 physically interacts with the key stem cell regulator WUSCHEL (WUS) to promote stem cell fate. Both SCL23 and WUS expression are subject to negative feedback regulation from stem cells through the CLAVATA signaling pathway. Together, our findings illustrate how SHR-dependent transcription factor complexes act in different domains of the shoot meristem to mediate cell division and auxin dependent organ initiation in the peripheral zone, and coordinate this activity with stem cell maintenance in the central zone of the SAM.
Collapse
Affiliation(s)
- Elmehdi Bahafid
- Institute for Developmental Genetics, Heinrich Heine UniversityDüsseldorfGermany
| | - Imke Bradtmöller
- Institute for Developmental Genetics, Heinrich Heine UniversityDüsseldorfGermany
| | - Ann M Thies
- Institute for Developmental Genetics, Heinrich Heine UniversityDüsseldorfGermany
| | - Thi TON Nguyen
- Institute for Developmental Genetics, Heinrich Heine UniversityDüsseldorfGermany
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, CantoblancoMadridSpain
| | - Bénédicte Desvoyes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, CantoblancoMadridSpain
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich Heine UniversityDüsseldorfGermany
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology, Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Rüdiger GW Simon
- Institute for Developmental Genetics, Heinrich Heine UniversityDüsseldorfGermany
| |
Collapse
|
18
|
Gombos M, Raynaud C, Nomoto Y, Molnár E, Brik-Chaouche R, Takatsuka H, Zaki A, Bernula D, Latrasse D, Mineta K, Nagy F, He X, Iwakawa H, Őszi E, An J, Suzuki T, Papdi C, Bergis C, Benhamed M, Bögre L, Ito M, Magyar Z. The canonical E2Fs together with RETINOBLASTOMA-RELATED are required to establish quiescence during plant development. Commun Biol 2023; 6:903. [PMID: 37666980 PMCID: PMC10477330 DOI: 10.1038/s42003-023-05259-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
Maintaining stable and transient quiescence in differentiated and stem cells, respectively, requires repression of the cell cycle. The plant RETINOBLASTOMA-RELATED (RBR) has been implicated in stem cell maintenance, presumably by forming repressor complexes with E2F transcription factors. Surprisingly we find that mutations in all three canonical E2Fs do not hinder the cell cycle, but similarly to RBR silencing, result in hyperplasia. Contrary to the growth arrest that occurs when exit from proliferation to differentiation is inhibited upon RBR silencing, the e2fabc mutant develops enlarged organs with supernumerary stem and differentiated cells as quiescence is compromised. While E2F, RBR and the M-phase regulatory MYB3Rs are part of the DREAM repressor complexes, and recruited to overlapping groups of targets, they regulate distinct sets of genes. Only the loss of E2Fs but not the MYB3Rs interferes with quiescence, which might be due to the ability of E2Fs to control both G1-S and some key G2-M targets. We conclude that collectively the three canonical E2Fs in complex with RBR have central roles in establishing cellular quiescence during organ development, leading to enhanced plant growth.
Collapse
Affiliation(s)
- Magdolna Gombos
- Institute of Plant Biology, Biological Research Centre, H-6726, Szeged, Hungary
| | - Cécile Raynaud
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
- Université de Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
| | - Yuji Nomoto
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Eszter Molnár
- Institute of Plant Biology, Biological Research Centre, H-6726, Szeged, Hungary
| | - Rim Brik-Chaouche
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
- Université de Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
| | - Hirotomo Takatsuka
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Ahmad Zaki
- Royal Holloway, University of London, Department of Biological Sciences, Egham, Surrey, TW20 0EX, UK
| | - Dóra Bernula
- Institute of Plant Biology, Biological Research Centre, H-6726, Szeged, Hungary
| | - David Latrasse
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
- Université de Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
| | - Keito Mineta
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Fruzsina Nagy
- Institute of Plant Biology, Biological Research Centre, H-6726, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Hungary
| | - Xiaoning He
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
- Université de Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
| | - Hidekazu Iwakawa
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Erika Őszi
- Institute of Plant Biology, Biological Research Centre, H-6726, Szeged, Hungary
| | - Jing An
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
- Université de Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Csaba Papdi
- Royal Holloway, University of London, Department of Biological Sciences, Egham, Surrey, TW20 0EX, UK
| | - Clara Bergis
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
- Université de Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
- Université de Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
| | - László Bögre
- Royal Holloway, University of London, Department of Biological Sciences, Egham, Surrey, TW20 0EX, UK
| | - Masaki Ito
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Zoltán Magyar
- Institute of Plant Biology, Biological Research Centre, H-6726, Szeged, Hungary.
| |
Collapse
|
19
|
Mao Y, Zhou S, Yang J, Wen J, Wang D, Zhou X, Wu X, He L, Liu M, Wu H, Yang L, Zhao B, Tadege M, Liu Y, Liu C, Chen J. The MIO1-MtKIX8 module regulates the organ size in Medicago truncatula. PHYSIOLOGIA PLANTARUM 2023; 175:e14046. [PMID: 37882293 DOI: 10.1111/ppl.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
Plant organ size is an important agronomic trait tightly related to crop yield. However, the molecular mechanisms underlying organ size regulation remain largely unexplored in legumes. We previously characterized a key regulator F-box protein MINI ORGAN1 (MIO1)/SMALL LEAF AND BUSHY1 (SLB1), which controls plant organ size in the model legume Medicago truncatula. In order to further dissect the molecular mechanism, MIO1 was used as the bait to screen its interacting proteins from a yeast library. Subsequently, a KIX protein, designated MtKIX8, was identified from the candidate list. The interaction between MIO1 and MtKIX8 was confirmed further by Y2H, BiFC, split-luciferase complementation and pull-down assays. Phylogenetic analyses indicated that MtKIX8 is highly homologous to Arabidopsis KIX8, which negatively regulates organ size. Moreover, loss-of-function of MtKIX8 led to enlarged leaves and seeds, while ectopic expression of MtKIX8 in Arabidopsis resulted in decreased cotyledon area and seed weight. Quantitative reverse-transcription PCR and in situ hybridization showed that MtKIX8 is expressed in most developing organs. We also found that MtKIX8 serves as a crucial molecular adaptor, facilitating interactions with BIG SEEDS1 (BS1) and MtTOPLESS (MtTPL) proteins in M. truncatula. Overall, our results suggest that the MIO1-MtKIX8 module plays a significant and conserved role in the regulation of plant organ size. This module could be a good target for molecular breeding in legume crops and forages.
Collapse
Affiliation(s)
- Yawen Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaoli Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, USA
| | - Dongfa Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xuan Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyuan Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Mingli Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- Southwest Forestry University, Kunming, China
| | - Huan Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Liling Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Baolin Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Million Tadege
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, USA
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
20
|
Zhang Z, Huang Y, Dong Y, Ren Y, Du K, Wang J, Yang M. Effect of T-DNA Integration on Growth of Transgenic Populus × euramericana cv. Neva Underlying Field Stands. Int J Mol Sci 2023; 24:12952. [PMID: 37629133 PMCID: PMC10454723 DOI: 10.3390/ijms241612952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Multigene cotransformation has been widely used in the study of genetic improvement in crops and trees. However, little is known about the unintended effects and causes of multigene cotransformation in poplars. To gain insight into the unintended effects of T-DNA integration during multigene cotransformation in field stands, here, three lines (A1-A3) of Populus × euramericana cv. Neva (PEN) carrying Cry1Ac-Cry3A-BADH genes and three lines (B1-B3) of PEN carrying Cry1Ac-Cry3A-NTHK1 genes were used as research objects, with non-transgenic PEN as the control. Experimental stands were established at three common gardens in three locations and next generation sequencing (NGS) was used to identify the insertion sites of exogenous genes in six transgenic lines. We compared the growth data of the transgenic and control lines for four consecutive years. The results demonstrated that the tree height and diameter at breast height (DBH) of transgenic lines were significantly lower than those of the control, and the adaptability of transgenic lines in different locations varied significantly. The genotype and the experimental environment showed an interaction effect. A total of seven insertion sites were detected in the six transgenic lines, with B3 having a double-site insertion and the other lines having single copies. There are four insertion sites in the gene region and three insertion sites in the intergenic region. Analysis of the bases near the insertion sites showed that AT content was higher than the average chromosome content in four of the seven insertion sites within 1000 bp. Transcriptome analysis suggested that the differential expression of genes related to plant hormone transduction and lignin synthesis might be responsible for the slow development of plant height and DBH in transgenic lines. This study provides an integrated analysis of the unintended effects of transgenic poplar, which will benefit the safety assessment and reasonable application of genetically modified trees.
Collapse
Affiliation(s)
- Zijie Zhang
- Institute of Forest Biotechnology, Forestry College, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Yali Huang
- Institute of Forest Biotechnology, Forestry College, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Yan Dong
- Institute of Forest Biotechnology, Forestry College, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Yachao Ren
- Institute of Forest Biotechnology, Forestry College, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Kejiu Du
- Institute of Forest Biotechnology, Forestry College, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Jinmao Wang
- Institute of Forest Biotechnology, Forestry College, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Minsheng Yang
- Institute of Forest Biotechnology, Forestry College, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| |
Collapse
|
21
|
Liu Y, Liu Y, He Y, Yan Y, Yu X, Ali M, Pan C, Lu G. Cytokinin-inducible response regulator SlRR6 controls plant height through gibberellin and auxin pathways in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4471-4488. [PMID: 37115725 DOI: 10.1093/jxb/erad159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/27/2023] [Indexed: 06/19/2023]
Abstract
Plant height is a key agronomic trait regulated by several phytohormones such as gibberellins (GAs) and auxin. However, little is known about how cytokinin (CK) participates in this process. Here, we report that SlRR6, a type-A response regulator in the CK signaling pathway, positively regulates plant height in tomato. SlRR6 was induced by exogenous kinetin and GA3, but inhibited by indole-3-acetic acid (IAA). Knock out of SlRR6 reduced tomato plant height through shortening internode length, while overexpression of SlRR6 caused taller plants due to increased internode number. Cytological observation of longitudinal stems showed that both knock out and overexpression of SlRR6 generated larger cells, but significantly reduced cell numbers in each internode. Further studies demonstrated that overexpression of SlRR6 enhanced GA accumulation and lowered IAA content, along with expression changes in GA- and IAA-related genes. Exogenous paclobutrazol and IAA treatments restored the increased plant height phenotype in SlRR6-overexpressing lines. Yeast two-hybrid, bimolecular fluorescence complementation, and co-immunoprecipitation assays showed that SlRR6 interacts with a small auxin up RNA protein, SlSAUR58. Moreover, SlSAUR58-overexpressing plants were dwarf with decreased internode length. Overall, our findings establish SlRR6 as a vital component in the CK signaling, GA, and IAA regulatory network that controls plant height.
Collapse
Affiliation(s)
- Yue Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yichen Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yanjun He
- Institute of Vegetable Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310022, China
| | - Yanqiu Yan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaolin Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Ali
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Changtian Pan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Gang Lu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
22
|
Tang N, Wu P, Cao Z, Liu Y, Zhang X, Lou J, Liu X, Hu Y, Sun X, Wang Q, Si S, Chen Z. A NAC transcription factor ZaNAC93 confers floral initiation, fruit development, and prickle formation in Zanthoxylum armatum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107813. [PMID: 37290134 DOI: 10.1016/j.plaphy.2023.107813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Zanthoxylum armatum is a dioecious prickly plant which developed apomictic reproduction. The increases in male flowers and prickle density in female plants lead to low yield and picking efficiency. However, little is known concerning the mechanisms of floral development and prickle formation. NAC is a well-known transcription factor that participates in multiple aspects of plant growth and development. Herein, we characterize the functions and regulatory mechanisms of candidate NACs controlling both traits in Z. armatum. A total of 159 ZaNACs were identified, and 16 of these were male-biased, represented by the NAP subfamily members ZaNAC93 and ZaNAC34, orthologs of AtNAC025 and AtNARS1/NAC2 respectively. Overexpression of ZaNAC93 in tomato led to modifications in flower and fruit development, including earlier flowering, increased numbers of lateral shoots and flowers, accelerated plant senescence, and reduced size and weight of fruits and seeds. In addition, the trichome density in leaves and inflorescences was dramatically reduced in ZaNAC93-OX lines. Overexpression of ZaNAC93 resulted in the up-/downregulation of genes associated with GA, ABA and JA signaling pathways, such as GAI, PYL and JAZ, as well as several TFs, including bZIP2, AGL11, FBP24 and MYB52. Yeast two-hybrid analysis revealed that ZaNAC93 protein could interact with AP1, GAI, bZIP2 and AGL11 in Z. armatum, which might contribute to floral induction, fruit growth, and trichome initiation. This work provides new insights into the molecular mechanisms of ZaNAC93 in reproductive development and prickle formation in Z. armatum.
Collapse
Affiliation(s)
- Ning Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Peiyin Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China.
| | - Zhengyan Cao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China.
| | - Yanni Liu
- College of Biology and Food Engineering, Chongqing Three Georges University, Chongqing, 404100, China.
| | - Xian Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China.
| | - Juan Lou
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Xia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Yang Hu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Xiaofan Sun
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Qiyao Wang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Shuo Si
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Zexiong Chen
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
23
|
Jiang T, Zhou T. Unraveling the Mechanisms of Virus-Induced Symptom Development in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2830. [PMID: 37570983 PMCID: PMC10421249 DOI: 10.3390/plants12152830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Plant viruses, as obligate intracellular parasites, induce significant changes in the cellular physiology of host cells to facilitate their multiplication. These alterations often lead to the development of symptoms that interfere with normal growth and development, causing USD 60 billion worth of losses per year, worldwide, in both agricultural and horticultural crops. However, existing literature often lacks a clear and concise presentation of the key information regarding the mechanisms underlying plant virus-induced symptoms. To address this, we conducted a comprehensive review to highlight the crucial interactions between plant viruses and host factors, discussing key genes that increase viral virulence and their roles in influencing cellular processes such as dysfunction of chloroplast proteins, hormone manipulation, reactive oxidative species accumulation, and cell cycle control, which are critical for symptom development. Moreover, we explore the alterations in host metabolism and gene expression that are associated with virus-induced symptoms. In addition, the influence of environmental factors on virus-induced symptom development is discussed. By integrating these various aspects, this review provides valuable insights into the complex mechanisms underlying virus-induced symptoms in plants, and emphasizes the urgency of addressing viral diseases to ensure sustainable agriculture and food production.
Collapse
Affiliation(s)
| | - Tao Zhou
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
24
|
Fung HF, Bergmann DC. Function follows form: How cell size is harnessed for developmental decisions. Eur J Cell Biol 2023; 102:151312. [PMID: 36989838 DOI: 10.1016/j.ejcb.2023.151312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Cell size has profound effects on biological function, influencing a wide range of processes, including biosynthetic capacity, metabolism, and nutrient uptake. As a result, size is typically maintained within a narrow, population-specific range through size control mechanisms, which are an active area of study. While the physiological consequences of cell size are relatively well-characterized, less is known about its developmental consequences, and specifically its effects on developmental transitions. In this review, we compare systems where cell size is linked to developmental transitions, paying particular attention to examples from plants. We conclude by proposing that size can offer a simple readout of complex inputs, enabling flexible decisions during plant development.
Collapse
|
25
|
Liu Y, Chen S, Chen J, Wang J, Wei M, Tian X, Chen L, Ma J. Comprehensive analysis and expression profiles of the AP2/ERF gene family during spring bud break in tea plant (Camellia sinensis). BMC PLANT BIOLOGY 2023; 23:206. [PMID: 37081399 PMCID: PMC10116778 DOI: 10.1186/s12870-023-04221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND AP2/ERF transcription factors (AP2/ERFs) are important regulators of plant physiological and biochemical metabolism. Evidence suggests that AP2/ERFs may be involved in the regulation of bud break in woody perennials. Green tea is economically vital in China, and its production value is significantly affected by the time of spring bud break of tea plant. However, the relationship between AP2/ERFs in tea plant and spring bud break remains largely unknown. RESULTS A total of 178 AP2/ERF genes (CsAP2/ERFs) were identified in the genome of tea plant. Based on the phylogenetic analysis, these genes could be classified into five subfamilies. The analysis of gene duplication events demonstrated that whole genome duplication (WGD) or segmental duplication was the primary way of CsAP2/ERFs amplification. According to the result of the Ka/Ks value calculation, purification selection dominated the evolution of CsAP2/ERFs. Furthermore, gene composition and structure analyses of CsAP2/ERFs indicated that different subfamilies contained a variety of gene structures and conserved motifs, potentially resulting in functional differences among five subfamilies. The promoters of CsAP2/ERFs also contained various signal-sensing elements, such as abscisic acid responsive elements, light responsive elements and low temperature responsive elements. The evidence presented here offers a theoretical foundation for the diverse functions of CsAP2/ERFs. Additionally, the expressions of CsAP2/ERFs during spring bud break of tea plant were analyzed by RNA-seq and grouped into clusters A-F according to their expression patterns. The gene expression changes in clusters A and B were more synchronized with the spring bud break of tea plant. Moreover, several potential correlation genes, such as D-type cyclin genes, were screened out through weighted correlation network analysis (WGCNA). Temperature and light treatment experiments individually identified nine candidate CsAP2/ERFs that may be related to the spring bud break of tea plant. CONCLUSIONS This study provides new evidence for role of the CsAP2/ERFs in the spring bud break of tea plant, establishes a theoretical foundation for analyzing the molecular mechanism of the spring bud break of tea plant, and contributes to the improvement of tea cultivars.
Collapse
Affiliation(s)
- Yujie Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Si Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Jiedan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Junyu Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Mengyuan Wei
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Xiaomiao Tian
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Liang Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Jianqiang Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| |
Collapse
|
26
|
Hussain Q, Zheng M, Hänninen H, Bhalerao RP, Riaz MW, Sajjad M, Zhang R, Wu J. Effect of the photoperiod on bud dormancy in Liriodendron chinense. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153835. [PMID: 36257086 DOI: 10.1016/j.jplph.2022.153835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Bud dormancy and its release are complex physiological phenomena in plants. The molecular mechanisms of bud dormancy in Liriodendron chinense are mainly unknown. Here, we studied bud dormancy and the related physiological and molecular phenomena in Liriodendron under long-day (LD) and short-day (SD). Bud burst was released faster under LD than under SD. Abscisic acid (ABA), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) activities were increased significantly under LD in Liriodendron buds. In contrast, the contents of gibberellic acid (GA3), ascorbic acid (AsA), glutathione (GSH), malondialdehyde (MDA), and ascorbate peroxidase (APX) activity decreased under LD but increased under SD. Differentially expressed genes (DEGs) were up-regulated under LD and down-regulated under SD and these changes correspondingly promoted (LD) or repressed (SD) cell division and the number and/or size of cells in the bud. Transcriptomic analysis of Liriodendron buds under different photoperiods identified 187 DEGs enriched in several pathways such as flavonoid biosynthesis and phenylpropanoid biosynthesis, plant hormone and signal transduction, etc. that are associated with antioxidant enzymes, non-enzymatic antioxidants, and subsequently promote the growth of the buds. Our findings provide novel insights into regulating bud dormancy via flavonoid and phenylpropanoid biosynthesis, plant hormone and signal transduction pathways, and ABA content. These physiological and biochemical traits would help detect bud dormancy in plants.
Collapse
Affiliation(s)
- Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou, 311300, China; Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Hangzhou, 311300, China
| | - Manjia Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou, 311300, China; Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Hangzhou, 311300, China
| | - Heikki Hänninen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou, 311300, China; Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Hangzhou, 311300, China
| | | | - Muhammad Waheed Riaz
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou, 311300, China
| | - Muhammad Sajjad
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou, 311300, China
| | - Rui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou, 311300, China; Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Hangzhou, 311300, China.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou, 311300, China; Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Hangzhou, 311300, China.
| |
Collapse
|
27
|
Wang X, Zhang J, Zhang J, Zhou C, Han L. Genome-wide characterization of AINTEGUMENTA-LIKE family in Medicago truncatula reveals the significant roles of AINTEGUMENTAs in leaf growth. FRONTIERS IN PLANT SCIENCE 2022; 13:1050462. [PMID: 36407624 PMCID: PMC9669440 DOI: 10.3389/fpls.2022.1050462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
AINTEGUMENTA-LIKE (AIL) transcription factors are widely studied and play crucial roles in plant growth and development. However, the functions of the AIL family in legume species are largely unknown. In this study, 11 MtAIL genes were identified in the model legume Medicago truncatula, of which four of them are MtANTs. In situ analysis showed that MtANT1 was highly expressed in the shoot apical meristem (SAM) and leaf primordium. Characterization of mtant1 mtant2 mtant3 mtant4 quadruple mutants and MtANT1-overexpressing plants revealed that MtANTs were not only necessary but also sufficient for the regulation of leaf size, and indicated that they mainly function in the regulation of cell proliferation during secondary morphogenesis of leaves in M. truncatula. This study systematically analyzed the MtAIL family at the genome-wide level and revealed the functions of MtANTs in leaf growth. Thus, these genes may provide a potential application for promoting the biomass of legume forages.
Collapse
|
28
|
Bossi F, Jin B, Lazarus E, Cartwright H, Dorone Y, Rhee SY. CHIQUITA1 maintains the temporal transition between proliferation and differentiation in Arabidopsis thaliana. Development 2022; 149:275423. [DOI: 10.1242/dev.200565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/29/2022] [Indexed: 01/17/2023]
Abstract
ABSTRACT
Body size varies widely among species, populations and individuals, depending on the environment. Transitioning between proliferation and differentiation is a crucial determinant of final organ size, but how the timing of this transition is established and maintained remains unknown. Using cell proliferation markers and genetic analysis, we show that CHIQUITA1 (CHIQ1) is required to maintain the timing of the transition from proliferation to differentiation in Arabidopsis thaliana. Combining kinematic and cell lineage-tracking studies, we found that the number of actively dividing cells in chiquita1-1 plants decreases prematurely compared with wild-type plants, suggesting CHIQ1 maintains the proliferative capacity in dividing cells and ensures that cells divide a specific number of times. CHIQ1 belongs to a plant-specific gene family of unknown molecular function and genetically interacts with three close members of its family to control the timing of proliferation exit. Our work reveals the interdependency between cellular and organ-level processes underlying final organ size determination.
Collapse
Affiliation(s)
- Flavia Bossi
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| | - Benjamin Jin
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| | - Elena Lazarus
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| | - Heather Cartwright
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| | - Yanniv Dorone
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
- Stanford University 2 Department of Biology , , Stanford, CA 94305, USA
| | - Seung Y. Rhee
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| |
Collapse
|
29
|
The B-Type Cyclin CYCB1-1 Regulates Embryonic Development and Seed Size in Maize. Int J Mol Sci 2022; 23:ijms23115907. [PMID: 35682593 PMCID: PMC9180882 DOI: 10.3390/ijms23115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
Progress through the cell cycle is a critical process during plant embryo and seed development and its progression is regulated by cyclins. Despite extensive study of cyclins in other systems, their role in embryo and seed development of maize is unclear. In this study, we demonstrate that ZmCYCB1-1 overexpression significantly accelerated embryo growth and increased seed size. In situ hybridization and toluidine blue staining indicated that ZmCYCB1-1 was highly expressed in the plumule of embryos, and the cells of the plumule were smaller, denser, and more regularly arranged in ZmCYCB1-1 overexpression plants. Overexpression of ZmCYCB1-1 in maize also resulted in an increased ear length and enhanced kernel weight by increasing kernel width. Transcriptome analysis indicated that the overexpression of ZmCYCB1-1 affected several different metabolic pathways, including photosynthesis in embryos and leaves, and lipid metabolism in leaves. Conversely, knocking out ZmCYCB1-1 resulted in plants with slow growth. Our results suggest that ZmCYCB1-1 regulates embryo growth and seed size, making it an ideal target for efforts aimed at maize yield improvement.
Collapse
|
30
|
Liu Z, Wang J, Qiu B, Ma Z, Lu T, Kang X, Yang J. Induction and Characterization of Tetraploid Through Zygotic Chromosome Doubling in Eucalyptus urophylla. FRONTIERS IN PLANT SCIENCE 2022; 13:870698. [PMID: 35574074 PMCID: PMC9094141 DOI: 10.3389/fpls.2022.870698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Improvements in plant growth can bring great benefits to the forest industry. Eucalyptus urophylla is an important plantation species worldwide, and given that ploidy increases are often associated with plant phenotype changes, it was reasoned that its polyploidization may have good prospects and great significance toward its cultivation. In this study, the zygotic development period of E. urophylla was observed through paraffin sections, and a correlation between the development time of flower buds after pollination and the zygotic development period was established. On this basis, it was determined that the 25th day after pollination was the appropriate time for a high temperature to induce zygotic chromosome doubling. Then tetraploid E. urophylla was successfully obtained for the first time through zygotic chromosome doubling induced by high temperature, and the appropriate conditions were treating flower branches at 44°C for 6 h. The characterization of tetraploid E. urophylla was performed. Chromosome duplication brought about slower growing trees with thicker leaves, larger cells, higher net photosynthetic rates, and a higher content of certain secondary metabolites. Additionally, the molecular mechanisms for the variation in the tetraploid's characteristics were studied. The qRT-PCR results showed that genes mediating the tetraploid characteristics showed the same change trend as those of the characteristics, which verified that tetraploid trait variation was mainly caused by gene expression changes. Furthermore, although the tetraploid had no growth advantage compared with the diploid, it can provide important germplasm resources for future breeding, especially for the creation of triploids.
Collapse
Affiliation(s)
- Zhao Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | | | - Bingfa Qiu
- Guangxi Dongmen Forest Farm, Chongzuo, China
| | - Zhongcai Ma
- Guangxi Dongmen Forest Farm, Chongzuo, China
| | - Te Lu
- Science and Technology Section, Chifeng Research Institute of Forestry Science, Chifeng, China
| | - Xiangyang Kang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Jun Yang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
31
|
Nomoto Y, Takatsuka H, Yamada K, Suzuki T, Suzuki T, Huang Y, Latrasse D, An J, Gombos M, Breuer C, Ishida T, Maeo K, Imamura M, Yamashino T, Sugimoto K, Magyar Z, Bögre L, Raynaud C, Benhamed M, Ito M. A hierarchical transcriptional network activates specific CDK inhibitors that regulate G2 to control cell size and number in Arabidopsis. Nat Commun 2022; 13:1660. [PMID: 35351906 PMCID: PMC8964727 DOI: 10.1038/s41467-022-29316-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
AbstractHow cell size and number are determined during organ development remains a fundamental question in cell biology. Here, we identified a GRAS family transcription factor, called SCARECROW-LIKE28 (SCL28), with a critical role in determining cell size in Arabidopsis. SCL28 is part of a transcriptional regulatory network downstream of the central MYB3Rs that regulate G2 to M phase cell cycle transition. We show that SCL28 forms a dimer with the AP2-type transcription factor, AtSMOS1, which defines the specificity for promoter binding and directly activates transcription of a specific set of SIAMESE-RELATED (SMR) family genes, encoding plant-specific inhibitors of cyclin-dependent kinases and thus inhibiting cell cycle progression at G2 and promoting the onset of endoreplication. Through this dose-dependent regulation of SMR transcription, SCL28 quantitatively sets the balance between cell size and number without dramatically changing final organ size. We propose that this hierarchical transcriptional network constitutes a cell cycle regulatory mechanism that allows to adjust cell size and number to attain robust organ growth.
Collapse
|
32
|
Maren NA, Duan H, Da K, Yencho GC, Ranney TG, Liu W. Genotype-independent plant transformation. HORTICULTURE RESEARCH 2022; 9:uhac047. [PMID: 35531314 PMCID: PMC9070643 DOI: 10.1093/hr/uhac047] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/11/2022] [Indexed: 05/26/2023]
Abstract
Plant transformation and regeneration remain highly species- and genotype-dependent. Conventional hormone-based plant regeneration via somatic embryogenesis or organogenesis is tedious, time-consuming, and requires specialized skills and experience. Over the last 40 years, significant advances have been made to elucidate the molecular mechanisms underlying embryogenesis and organogenesis. These pioneering studies have led to a better understanding of the key steps and factors involved in plant regeneration, resulting in the identification of crucial growth and developmental regulatory genes that can dramatically improve regeneration efficiency, shorten transformation time, and make transformation of recalcitrant genotypes possible. Co-opting these regulatory genes offers great potential to develop innovative genotype-independent genetic transformation methods for various plant species, including specialty crops. Further developing these approaches has the potential to result in plant transformation without the use of hormones, antibiotics, selectable marker genes, or tissue culture. As an enabling technology, the use of these regulatory genes has great potential to enable the application of advanced breeding technologies such as genetic engineering and gene editing for crop improvement in transformation-recalcitrant crops and cultivars. This review will discuss the recent advances in the use of regulatory genes in plant transformation and regeneration, and their potential to facilitate genotype-independent plant transformation and regeneration.
Collapse
Affiliation(s)
- Nathan A Maren
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| | - Hui Duan
- USDA-ARS, U.S. National Arboretum, Floral and Nursery Plants Research Unit, Beltsville Agricultural Research Center (BARC)-West, Beltsville, MD 20705, USA
| | - Kedong Da
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| | - G Craig Yencho
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| | - Thomas G Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC 28759, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27607, USA
| |
Collapse
|
33
|
Ji K, Song Q, Yu X, Tan C, Wang L, Chen L, Xiang X, Gong W, Yuan D. Hormone analysis and candidate genes identification associated with seed size in Camellia oleifera. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211138. [PMID: 35360359 PMCID: PMC8965419 DOI: 10.1098/rsos.211138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/02/2022] [Indexed: 05/02/2023]
Abstract
Camellia oleifera is an important woody oil species in China. Its seed oil has been widely used as a cooking oil. Seed size is a crucial factor influencing the yield of seed oil. In this study, the horizontal diameter, vertical diameter and volume of C. oleifera seeds showed a rapid growth tendency from 235 days after pollination (DAP) to 258 DAP but had a slight increase at seed maturity. During seed development, the expression of genes related to cell proliferation and expansion differ greatly. Auxin plays an important role in C. oleifera seeds; YUC4 and IAA17 were significantly downregulated. Weighted gene co-expression network analysis screened 21 hub transcription factors for C. oleifera seed horizontal diameter, vertical diameter and volume. Among them, SPL4 was significantly decreased and associated with all these three traits, while ABI4 and YAB1 were significantly increased and associated with horizontal diameter of C. oleifera seeds. Additionally, KLU significantly decreased (2040-fold). Collectively, our data advances the knowledge of factors related to seed size and provides a theoretical basis for improving the yield of C. oleifera seeds.
Collapse
Affiliation(s)
- Ke Ji
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Qiling Song
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Xinran Yu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Chuanbo Tan
- Hunan Great Sanxiang Camellia Oil Co., Ltd, Hengyang, Hunan 421000, People's Republic of China
| | - Linkai Wang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Le Chen
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Xiaofeng Xiang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Wenfang Gong
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| |
Collapse
|
34
|
Zhou Z, Zhu Y, Zhang H, Zhang R, Gao Q, Ding T, Wang H, Yan Z, Yao JL. Transcriptome analysis of transgenic apple fruit overexpressing microRNA172 reveals candidate transcription factors regulating apple fruit development at early stages. PeerJ 2022; 9:e12675. [PMID: 35036153 PMCID: PMC8710058 DOI: 10.7717/peerj.12675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Background MicroRNA172 (miR172) has been proven to be critical for fruit growth, since elevated miR172 activity blocks the growth of apple (Malus x domestica Borkh.) fruit. However, it is not clear how overexpression of miR172 affects apple fruit developmental processes. Methods To answer this question, the present study, analyzed global transcriptional changes in miR172-overexpressing (miR172OX) and nongenetically modified wild-type (WT) apple fruit at two developmental stages and in different fruit tissues via RNA-seq. In addition, two cultivars, ‘Hanfu’ and ‘M9’, which have naturally fruit size variation, were included to identify miR172-dependent DEGs. qRT–PCRwas used to verify the reliability of our RNA-seq data. Results Overexpression of miR172 altered the expression levels of many cell proliferation- and cell expansion-related genes. Twenty-four libraries were generated, and 10,338 differentially expressed genes (DEGs) were detected between miR172OX and WT fruit tissues. ‘Hanfu’ and ‘M9’ are two common cultivars that bear fruit of different sizes (250 g and 75 g, respectively). Six libraries were generated, and 3,627 DEGs were detected between ‘Hanfu’ and ‘M9’. After merging the two datasets, 6,888 candidate miR172-specific DEGs were identified. The potential networks associated with fruit size triggered traits were defined among genes belonging to the families of hormone synthesis, signaling pathways, and transcription factors. Our comparative transcriptome analysis provides insights into transcriptome responses to miR172 overexpression in apple fruit and a valuable database for future studies to validate functional genes and elucidate the fruit developmental mechanisms in apple.
Collapse
Affiliation(s)
- Zhe Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanmin Zhu
- Tree Fruit Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Wenatchee, WA, USA
| | - Hengtao Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ruiping Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiming Gao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Tiyu Ding
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Huan Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhenli Yan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jia-Long Yao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.,The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| |
Collapse
|
35
|
Plant CDKs-Driving the Cell Cycle through Climate Change. PLANTS 2021; 10:plants10091804. [PMID: 34579337 PMCID: PMC8468384 DOI: 10.3390/plants10091804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023]
Abstract
In a growing population, producing enough food has become a challenge in the face of the dramatic increase in climate change. Plants, during their evolution as sessile organisms, developed countless mechanisms to better adapt to the environment and its fluctuations. One important way is through the plasticity of their body and their forms, which are modulated during plant growth by accurate control of cell divisions. A family of serine/threonine kinases called cyclin-dependent kinases (CDK) is a key regulator of cell divisions by controlling cell cycle progression. In this review, we compile information on the primary response of plants in the regulation of the cell cycle in response to environmental stresses and show how the cell cycle proteins (mainly the cyclin-dependent kinases) involved in this regulation can act as components of environmental response signaling cascades, triggering adaptive responses to drive the cycle through climate fluctuations. Understanding the roles of CDKs and their regulators in the face of adversity may be crucial to meeting the challenge of increasing agricultural productivity in a new climate.
Collapse
|
36
|
Malovichko YV, Shikov AE, Nizhnikov AA, Antonets KS. Temporal Control of Seed Development in Dicots: Molecular Bases, Ecological Impact and Possible Evolutionary Ramifications. Int J Mol Sci 2021; 22:ijms22179252. [PMID: 34502157 PMCID: PMC8430901 DOI: 10.3390/ijms22179252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
In flowering plants, seeds serve as organs of both propagation and dispersal. The developing seed passes through several consecutive stages, following a conserved general outline. The overall time needed for a seed to develop, however, may vary both within and between plant species, and these temporal developmental properties remain poorly understood. In the present paper, we summarize the existing data for seed development alterations in dicot plants. For genetic mutations, the reported cases were grouped in respect of the key processes distorted in the mutant specimens. Similar phenotypes arising from the environmental influence, either biotic or abiotic, were also considered. Based on these data, we suggest several general trends of timing alterations and how respective mechanisms might add to the ecological plasticity of the families considered. We also propose that the developmental timing alterations may be perceived as an evolutionary substrate for heterochronic events. Given the current lack of plausible models describing timing control in plant seeds, the presented suggestions might provide certain insights for future studies in this field.
Collapse
Affiliation(s)
- Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
37
|
Zhao F, Zhang J, Weng L, Li M, Wang Q, Xiao H. Fruit size control by a zinc finger protein regulating pericarp cell size in tomato. MOLECULAR HORTICULTURE 2021; 1:6. [PMID: 37789485 PMCID: PMC10515234 DOI: 10.1186/s43897-021-00009-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/21/2021] [Indexed: 10/05/2023]
Abstract
Fruit size is largely defined by the number and size of cells in the fruit. Endoreduplication - a specialized cell cycle - is highly associated with cell expansion during tomato fruit growth. However, how endoreduplication coupled with cell size is regulated remains poorly understood. In this study, we identified a zinc finger gene SlPZF1 (Solanum lycopersicum PERICARP-ASSOCIATED ZINC FINGER PROTEIN 1) that was highly expressed in the pericarp of developing fruits. Plants with altered SlPZF1 expression produced smaller fruits due to the reduction in cell size associated with weakened endoreduplication. Overexpressing SlPZF1 delayed cell division phase by enhancing early expression of several key cell cycle regulators including SlCYCD3;1 and two plant specific mitotic cyclin-dependent protein kinase (SlCDKB1 and SlCDKB2) in the pericarp tissue. Furthermore, we identified 14 putative SlPZF1 interacting proteins (PZFIs) via yeast two hybrid screening. Several PZFIs, including Pre-mRNA-splicing factor (SlSMP1/PZFI4), PAPA-1-like conserved region family protein (PZFI6), Fanconi anemia complex components (PZFI3 and PZFI10) and bHLH transcription factor LONESOME HIGHWAY (SlLHW/PZFI14), are putatively involved in cell cycle regulation. Our results demonstrate that fruit growth in tomato requires balanced expression of the novel cell size regulator SlPZF1.
Collapse
Affiliation(s)
- Fangfang Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jiajing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Life and Environment Science College, Shanghai Normal University, No.100 Guilin Rd, Shanghai, 200234, China
| | - Lin Weng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Meng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Quanhua Wang
- Life and Environment Science College, Shanghai Normal University, No.100 Guilin Rd, Shanghai, 200234, China
| | - Han Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
38
|
Coke MC, Mantelin S, Thorpe P, Lilley CJ, Wright KM, Shaw DS, Chande A, Jones JT, Urwin PE. The GpIA7 effector from the potato cyst nematode Globodera pallida targets potato EBP1 and interferes with the plant cell cycle programme. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:erab353. [PMID: 34310681 PMCID: PMC8547150 DOI: 10.1093/jxb/erab353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
The potato cyst nematode Globodera pallida acquires all of its nutrients from an elaborate feeding site that it establishes in a host plant root. Normal development of the root cells is re-programmed in a process coordinated by secreted nematode effector proteins. The biological function of the G. pallida GpIA7 effector was investigated in this study. GpIA7 is specifically expressed in the subventral pharyngeal glands of pre-parasitic stage nematodes. Ectopic expression of GpIA7 in potato plants affected plant growth and development, suggesting a potential role for this effector in feeding site establishment. Potato plants overexpressing GpIA7 were shorter, with reduced tuber weight and delayed flowering. We provide evidence that GpIA7 associates with the plant growth regulator StEBP1 (ErbB-3 epidermal growth factor receptor-binding protein 1). GpIA7 modulates the regulatory function of StEBP1, altering the expression level of downstream target genes, including ribonucleotide reductase 2, cyclin D3;1 and retinoblastoma related 1, which are downregulated in plants overexpressing GpIA7. We provide an insight into the molecular mechanism used by the nematode to manipulate the host cell cycle and provide evidence that this may rely, at least in part, on hindering the function of host EBP1.
Collapse
Affiliation(s)
- Mirela C Coke
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sophie Mantelin
- The James Hutton Institute, Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, UK
| | - Peter Thorpe
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
- The James Hutton Institute, Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, UK
| | | | - Kathryn M Wright
- The James Hutton Institute, Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, UK
| | - Daniel S Shaw
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Adams Chande
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - John T Jones
- The James Hutton Institute, Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, UK
- School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9TZ, UK
| | - Peter E Urwin
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
39
|
Kronenberg L, Yates S, Ghiasi S, Roth L, Friedli M, Ruckle ME, Werner RA, Tschurr F, Binggeli M, Buchmann N, Studer B, Walter A. Rethinking temperature effects on leaf growth, gene expression and metabolism: Diel variation matters. PLANT, CELL & ENVIRONMENT 2021; 44:2262-2276. [PMID: 33230869 PMCID: PMC8359295 DOI: 10.1111/pce.13958] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Plants have evolved to grow under prominently fluctuating environmental conditions. In experiments under controlled conditions, temperature is often set to artificial, binary regimes with constant values at day and at night. This study investigated how such a diel (24 hr) temperature regime affects leaf growth, carbohydrate metabolism and gene expression, compared to a temperature regime with a field-like gradual increase and decline throughout 24 hr. Soybean (Glycine max) was grown under two contrasting diel temperature treatments. Leaf growth was measured in high temporal resolution. Periodical measurements were performed of carbohydrate concentrations, carbon isotopes as well as the transcriptome by RNA sequencing. Leaf growth activity peaked at different times under the two treatments, which cannot be explained intuitively. Under field-like temperature conditions, leaf growth followed temperature and peaked in the afternoon, whereas in the binary temperature regime, growth increased at night and decreased during daytime. Differential gene expression data suggest that a synchronization of cell division activity seems to be evoked in the binary temperature regime. Overall, the results show that the coordination of a wide range of metabolic processes is markedly affected by the diel variation of temperature, which emphasizes the importance of realistic environmental settings in controlled condition experiments.
Collapse
Affiliation(s)
- Lukas Kronenberg
- Crop ScienceInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
| | - Steven Yates
- Molecular Plant BreedingInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
| | - Shiva Ghiasi
- Grassland SciencesInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
| | - Lukas Roth
- Crop ScienceInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
| | - Michael Friedli
- Crop ScienceInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
| | - Michael E. Ruckle
- Molecular Plant BreedingInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
| | - Roland A. Werner
- Grassland SciencesInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
| | - Flavian Tschurr
- Crop ScienceInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
| | - Melanie Binggeli
- Crop ScienceInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
| | - Nina Buchmann
- Grassland SciencesInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
| | - Bruno Studer
- Molecular Plant BreedingInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
| | - Achim Walter
- Crop ScienceInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
| |
Collapse
|
40
|
Limits and Constraints on Mechanisms of Cell-Cycle Regulation Imposed by Cell Size-Homeostasis Measurements. Cell Rep 2021; 32:107992. [PMID: 32783950 DOI: 10.1016/j.celrep.2020.107992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 04/09/2020] [Accepted: 07/13/2020] [Indexed: 01/27/2023] Open
Abstract
High-throughput imaging has led to an explosion of observations about cell-size homeostasis across the kingdoms of life. Among bacteria, "adder" behavior-in which a constant size increment appears to be added during each cell cycle-is ubiquitous, while various eukaryotes show other size-homeostasis behaviors. Since interactions between cell-cycle progression and growth ultimately determine such behaviors, we developed a general model of cell-cycle regulation. Our analyses reveal a range of scenarios that are plausible but fail to regulate cell size, indicating that mechanisms of cell-cycle regulation are stringently limited by size-control requirements, and possibly why certain cell-cycle features are strongly conserved. Cell-cycle features can play unintuitive roles in altering size-homeostasis behaviors: noisy regulator production can enhance adder behavior, while Whi5-like inhibitor dilutors respond sensitively to perturbations to G2/M control and noisy G1/S checkpoints. Our model thus provides holistic insights into the mechanistic implications of size-homeostasis experimental measurements.
Collapse
|
41
|
Transcriptomic Analysis of Radish ( Raphanus sativus L.) Spontaneous Tumor. PLANTS 2021; 10:plants10050919. [PMID: 34063717 PMCID: PMC8147785 DOI: 10.3390/plants10050919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022]
Abstract
Spontaneous tumors can develop in different organs of various plant species without any pathogen infection and, as a rule, appear in plants with a certain genotype: Mutants, interspecific hybrids, etc. In particular, among the inbred lines of radish (Raphanus sativus L.), lines that form spontaneous tumors on the taproot during the flowering period were obtained many years ago. In this work, we analyzed the differential gene expression in the spontaneous tumors of radish versus the lateral roots using the RNA-seq method. Data were obtained indicating the increased expression of genes associated with cell division and growth (especially genes that regulate G2-M transition and cytokinesis) in the spontaneous tumor. Among genes downregulated in the tumor tissue, genes participating in the response to stress and wounding, mainly involved in the biosynthesis of jasmonic acid and glucosinolates, were enriched. Our data will help elucidate the mechanisms of spontaneous tumor development in higher plants.
Collapse
|
42
|
Wang L, Zhan L, Zhao Y, Huang Y, Wu C, Pan T, Qin Q, Xu Y, Deng Z, Li J, Hu H, Xue S, Yan S. The ATR-WEE1 kinase module inhibits the MAC complex to regulate replication stress response. Nucleic Acids Res 2021; 49:1411-1425. [PMID: 33450002 PMCID: PMC7897505 DOI: 10.1093/nar/gkaa1082] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/20/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
DNA damage response is a fundamental mechanism to maintain genome stability. The ATR-WEE1 kinase module plays a central role in response to replication stress. Although the ATR-WEE1 pathway has been well studied in yeasts and animals, how ATR-WEE1 functions in plants remains unclear. Through a genetic screen for suppressors of the Arabidopsis atr mutant, we found that loss of function of PRL1, a core subunit of the evolutionarily conserved MAC complex involved in alternative splicing, suppresses the hypersensitivity of atr and wee1 to replication stress. Biochemical studies revealed that WEE1 directly interacts with and phosphorylates PRL1 at Serine 145, which promotes PRL1 ubiquitination and subsequent degradation. In line with the genetic and biochemical data, replication stress induces intron retention of cell cycle genes including CYCD1;1 and CYCD3;1, which is abolished in wee1 but restored in wee1 prl1. Remarkably, co-expressing the coding sequences of CYCD1;1 and CYCD3;1 partially restores the root length and HU response in wee1 prl1. These data suggested that the ATR-WEE1 module inhibits the MAC complex to regulate replication stress responses. Our study discovered PRL1 or the MAC complex as a key downstream regulator of the ATR-WEE1 module and revealed a novel cell cycle control mechanism.
Collapse
Affiliation(s)
- Lili Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li Zhan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yan Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yongchi Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chong Wu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ting Pan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qi Qin
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yiren Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhiping Deng
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Jing Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Honghong Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shaowu Xue
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shunping Yan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
43
|
Heyduk K. The genetic control of succulent leaf development. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101978. [PMID: 33454545 DOI: 10.1016/j.pbi.2020.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2020] [Accepted: 11/14/2020] [Indexed: 05/25/2023]
Abstract
Succulent leaves have long intrigued biologists; much research has been done to define succulence, understand the evolutionary trajectory and implications of leaf succulence, and contextualize the ecological importance of water storage for plants inhabiting dry habitats, particularly those using CAM photosynthesis. Surprisingly little is understood about the molecular regulation of leaf succulence, despite advances in our understanding of the molecular foundation of leaf architecture in model systems. Moreover, leaf succulence is a drought avoidance trait, one that has yet to be fully used for crop improvement. Here, connections between disparate literatures are highlighted: research on the regulation of cell size, the determination of vascular patterning, and water transport between cells have direct implications for our understanding of leaf succulence. Connecting functional genomics of leaf patterning with knowledge of the evolution and ecology of succulent species will guide future research on the determination and maintenance of leaf succulence.
Collapse
Affiliation(s)
- Karolina Heyduk
- University of Hawai'i at Mānoa, 1800 East West Rd., Honolulu, HI 96822, USA.
| |
Collapse
|
44
|
Overexpression of PtoCYCD3;3 Promotes Growth and Causes Leaf Wrinkle and Branch Appearance in Populus. Int J Mol Sci 2021; 22:ijms22031288. [PMID: 33525476 PMCID: PMC7866192 DOI: 10.3390/ijms22031288] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
D-type cyclin (cyclin D, CYCD), combined with cyclin-dependent kinases (CDKs), participates in the regulation of cell cycle G1/S transition and plays an important role in cell division and proliferation. CYCD could affect the growth and development of herbaceous plants, such as Arabidopsis thaliana, by regulating the cell cycle process. However, its research in wood plants (e.g., poplar) is poor. Phylogenetic analysis showed that in Populus trichocarpa, CYCD3 genes expanded to six members, namely PtCYCD3;1–6. P. tomentosa CYCD3 genes were amplified based on the CDS region of P. trichocarpa CYCD3 genes. PtoCYCD3;3 showed the highest expression in the shoot tip, and the higher expression in young leaves among all members. Therefore, this gene was selected for further study. The overexpression of PtoCYCD3;3 in plants demonstrated obvious morphological changes during the observation period. The leaves became enlarged and wrinkled, the stems thickened and elongated, and multiple branches were formed by the plants. Anatomical study showed that in addition to promoting the differentiation of cambium tissues and the expansion of stem vessel cells, PtoCYCD3;3 facilitated the division of leaf adaxial epidermal cells and palisade tissue cells. Yeast two-hybrid experiment exhibited that 12 PtoCDK proteins could interact with PtoCYCD3;3, of which the strongest interaction strength was PtoCDKE;2, whereas the weakest was PtoCDKG;3. Molecular docking experiments further verified the force strength of PtoCDKE;2 and PtoCDKG;3 with PtoCYCD3;3. In summary, these results indicated that the overexpression of PtoCYCD3;3 significantly promoted the vegetative growth of Populus, and PtoCYCD3;3 may interact with different types of CDK proteins to regulate cell cycle processes.
Collapse
|
45
|
Paolo D, Rotasperti L, Schnittger A, Masiero S, Colombo L, Mizzotti C. The Arabidopsis MADS-Domain Transcription Factor SEEDSTICK Controls Seed Size via Direct Activation of E2Fa. PLANTS 2021; 10:plants10020192. [PMID: 33498552 PMCID: PMC7909557 DOI: 10.3390/plants10020192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/08/2021] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
Seed size is the result of complex molecular networks controlling the development of the seed coat (of maternal origin) and the two fertilization products, the embryo and the endosperm. In this study we characterized the role of Arabidopsis thaliana MADS-domain transcription factor SEEDSTICK (STK) in seed size control. STK is known to regulate the differentiation of the seed coat as well as the structural and mechanical properties of cell walls in developing seeds. In particular, we further characterized stk mutant seeds. Genetic evidence (reciprocal crosses) of the inheritance of the small-seed phenotype, together with the provided analysis of cell division activity (flow cytometry), demonstrate that STK acts in the earlier phases of seed development as a maternal activator of growth. Moreover, we describe a molecular mechanism underlying this activity by reporting how STK positively regulates cell cycle progression via directly activating the expression of E2Fa, a key regulator of the cell cycle. Altogether, our results unveil a new genetic network active in the maternal control of seed size in Arabidopsis.
Collapse
Affiliation(s)
- Dario Paolo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (L.R.); (S.M.); (L.C.)
| | - Lisa Rotasperti
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (L.R.); (S.M.); (L.C.)
| | - Arp Schnittger
- Abteilung für Entwicklungsbiologie, Institut für Pflanzenforschung und Mikrobiologie, Universität Hamburg, 22609 Hamburg, Germany;
| | - Simona Masiero
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (L.R.); (S.M.); (L.C.)
| | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (L.R.); (S.M.); (L.C.)
| | - Chiara Mizzotti
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milano, Italy; (D.P.); (L.R.); (S.M.); (L.C.)
- Correspondence: ; Tel.: +39-02-503-14838
| |
Collapse
|
46
|
Kopertekh L, Reichardt S. At-CycD2 Enhances Accumulation of Above-Ground Biomass and Recombinant Proteins in Transgenic Nicotiana benthamiana Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:712438. [PMID: 34567027 PMCID: PMC8460762 DOI: 10.3389/fpls.2021.712438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/11/2021] [Indexed: 05/17/2023]
Abstract
Transient expression in Nicotiana benthamiana holds great potential for recombinant protein manufacturing due to its advantages in terms of speed and yield compared to stably transformed plants. To continue improving the quantity of recombinant proteins the plant host will need to be modified at both plant and cellular levels. In attempt to increase leaf mass fraction, we transformed N. benthamiana with the At-CycD2 gene, a positive regulator of the cell cycle. Phenotypic characterization of the T1 progeny plants revealed their accelerated above-ground biomass accumulation and enhanced rate of leaf initiation. In comparison to non-transgenic control the best performing line At-CycD2-15 provided 143 and 140% higher leaf and stem biomass fractions, respectively. The leaf area enlargement of the At-CycD2-15 genotype was associated with the increase of epidermal cell number compensated by slightly reduced cell size. The production capacity of the At-CycD2-15 transgenic line was superior to that of the non-transgenic N. benthamiana. The accumulation of transiently expressed GFP and scFv-TM43-E10 proteins per unit biomass was increased by 138.5 and 156.7%, respectively, compared to the wild type. With these results we demonstrate the potential of cell cycle regulator gene At-CycD2 to modulate both plant phenotype and intracellular environment of N. benthamiana for enhanced recombinant protein yield.
Collapse
|
47
|
Willems A, Heyman J, Eekhout T, Achon I, Pedroza-Garcia JA, Zhu T, Li L, Vercauteren I, Van den Daele H, van de Cotte B, De Smet I, De Veylder L. The Cyclin CYCA3;4 Is a Postprophase Target of the APC/C CCS52A2 E3-Ligase Controlling Formative Cell Divisions in Arabidopsis. THE PLANT CELL 2020; 32:2979-2996. [PMID: 32690720 PMCID: PMC7474283 DOI: 10.1105/tpc.20.00208] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/12/2020] [Accepted: 07/10/2020] [Indexed: 05/04/2023]
Abstract
The anaphase promoting complex/cyclosome (APC/C) controls unidirectional progression through the cell cycle by marking key cell cycle proteins for proteasomal turnover. Its activity is temporally regulated by the docking of different activating subunits, known in plants as CELL DIVISION PROTEIN20 (CDC20) and CELL CYCLE SWITCH52 (CCS52). Despite the importance of the APC/C during cell proliferation, the number of identified targets in the plant cell cycle is limited. Here, we used the growth and meristem phenotypes of Arabidopsis (Arabidopsis thaliana) CCS52A2-deficient plants in a suppressor mutagenesis screen to identify APC/CCCS52A2 substrates or regulators, resulting in the identification of a mutant cyclin CYCA3;4 allele. CYCA3;4 deficiency partially rescues the ccs52a2-1 phenotypes, whereas increased CYCA3;4 levels enhance the scored ccs52a2-1 phenotypes. Furthermore, whereas the CYCA3;4 protein is promptly broken down after prophase in wild-type plants, it remains present in later stages of mitosis in ccs52a2-1 mutant plants, marking it as a putative APC/CCCS52A2 substrate. Strikingly, increased CYCA3;4 levels result in aberrant root meristem and stomatal divisions, mimicking phenotypes of plants with reduced RETINOBLASTOMA-RELATED PROTEIN1 (RBR1) activity. Correspondingly, RBR1 hyperphosphorylation was observed in CYCA3;4 gain-of-function plants. Our data thus demonstrate that an inability to timely destroy CYCA3;4 contributes to disorganized formative divisions, possibly in part caused by the inactivation of RBR1.
Collapse
Affiliation(s)
- Alex Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ignacio Achon
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Jose Antonio Pedroza-Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Tingting Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Lei Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Hilde Van den Daele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Brigitte van de Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| |
Collapse
|
48
|
Investigation of genes associated with petal variations between diploid and autotetraploid in Chinese cabbage (Brassica rapa L. ssp. pekinensis) by RNA-seq and sRNA-seq. Mol Genet Genomics 2020; 295:1459-1476. [PMID: 32683543 DOI: 10.1007/s00438-020-01713-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/11/2020] [Indexed: 11/27/2022]
Abstract
Polyploidy promotes morphological, physiological, and reproductive diversity in plants. The imminent effect of chromosome doubling in plants is the enlargement of organs such as flowers and fruits, which increases the commercial value of crops. Flowering plays a vital role in the growth and development of angiosperms. Here, we prepared an isolated microspore culture of 'FT', a doubled haploid (DH) line of Chinese cabbage (Brassica rapa L. ssp. pekinensis), and obtained diploid and autotetraploid plants with the same genetic background. Compared with diploids, the autotetraploids were characterized by large floral organs, dark petals, delayed flowering, and reduced fertility. The indole-3-acetic acid (IAA) and jasmonic acid (JA) levels in autotetraploid petals were significantly higher and the abscisic acid (ABA) level was significantly lower than those in the diploid petals. The lutein level in autotetraploid petals was nearly two times higher than that in the diploid petals. A comparative transcriptome analysis revealed 14,412 differentially expressed genes (DEGs) between the diploids and autotetraploids, and they were enriched in 117 Gene Ontology terms and 110 Kyoto Encyclopedia of Genes and Genomes pathways. We detected 231 DEGs related to phytohormone signal transduction and 29 DEGs involved in carotenoid biosynthesis. An miRNA-target mRNA analysis showed that 32 DEGs regulated by 16 DEMs were associated with flowering timing (BraA03000336, BraA09004319, and BraA09000515), petal development (BraA05002408, BraA01004006, BraA09004069, and BraA04000966), flower opening (BraA07000350), and pollen development (BraA01000720, BraA09005727, and BraA01000253). This study provides information to help elucidate the molecular mechanisms underlying phenotypic variations induced by autopolyploidy in Chinese cabbage.
Collapse
|
49
|
Zhu Y, Luo X, Liu X, Wu W, Cui X, He Y, Huang J. Arabidopsis PEAPODs function with LIKE HETEROCHROMATIN PROTEIN1 to regulate lateral organ growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:812-831. [PMID: 31099089 DOI: 10.1111/jipb.12841] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
In higher plants, lateral organs are usually of determinate growth. It remains largely elusive how the determinate growth is achieved and maintained. Previous reports have shown that Arabidopsis PEAPOD (PPD) proteins suppress proliferation of dispersed meristematic cells partly through a TOPLESS corepressor complex. Here, we identified a new PPD-interacting partner, LIKE HETEROCHROMATIN PROTEIN1 (LHP1), using the yeast two-hybrid system, and their interaction is mediated by the chromo shadow domain and the Jas domain in LHP1 and PPD2, respectively. Our genetic data demonstrate that the phenotype of ppd2 lhp1 is more similar to lhp1 than to ppd2, indicating epistasis of lhp1 to ppd2. Microarray analysis reveals that PPD2 and LHP1 can regulate expression of a common set of genes directly or indirectly. Consistently, chromatin immunoprecipitation results confirm that PPD2 and LHP1 are coenriched at the promoter region of their targets such as D3-TYPE CYCLINS and HIGH MOBILITY GROUP A, which are upregulated in ppd2, lhp1 and ppd2 lhp1 mutants, and that PPDs mediate repressive histone 3 lysine-27 trimethylation at these loci. Taken together, our data provide evidence that PPD and LHP1 form a corepressor complex that regulates lateral organ growth.
Collapse
Affiliation(s)
- Ying Zhu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiao Luo
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Xuxin Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wenjuan Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences,, Shanghai Normal University,, Shanghai, 200234, China
| | - Xiaofeng Cui
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuehui He
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences,, Shanghai Normal University,, Shanghai, 200234, China
| |
Collapse
|
50
|
Dodueva IE, Lebedeva MA, Kuznetsova KA, Gancheva MS, Paponova SS, Lutova LL. Plant tumors: a hundred years of study. PLANTA 2020; 251:82. [PMID: 32189080 DOI: 10.1007/s00425-020-03375-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/11/2020] [Indexed: 05/21/2023]
Abstract
The review provides information on the mechanisms underlying the development of spontaneous and pathogen-induced tumors in higher plants. The activation of meristem-specific regulators in plant tumors of various origins suggests the meristem-like nature of abnormal plant hyperplasia. Plant tumor formation has more than a century of research history. The study of this phenomenon has led to a number of important discoveries, including the development of the Agrobacterium-mediated transformation technique and the discovery of horizontal gene transfer from bacteria to plants. There are two main groups of plant tumors: pathogen-induced tumors (e.g., tumors induced by bacteria, viruses, fungi, insects, etc.), and spontaneous ones, which are formed in the absence of any pathogen in plants with certain genotypes (e.g., interspecific hybrids, inbred lines, and mutants). The causes of the transition of plant cells to tumor growth are different from those in animals, and they include the disturbance of phytohormonal balance and the acquisition of meristematic characteristics by differentiated cells. The aim of this review is to discuss the mechanisms underlying the development of most known examples of plant tumors.
Collapse
Affiliation(s)
- Irina E Dodueva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia.
| | - Maria A Lebedeva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Kseniya A Kuznetsova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Maria S Gancheva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Svetlana S Paponova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Ludmila L Lutova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|