1
|
Panahabadi R, Ahmadikhah A, Farrokhi N. Genetic dissection of monosaccharides contents in rice whole grain using genome-wide association study. THE PLANT GENOME 2023; 16:e20292. [PMID: 36691363 DOI: 10.1002/tpg2.20292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
The simplest form of carbohydrates are monosaccharides which are the building blocks for the synthesis of polymers or complex carbohydrates. Monosaccharide contents of 197 rice accessions were quantified by HPAEC-PAD in rice (Oryza sativa L.) whole grain (RWG). A genome-wide association study (GWAS) was carried out using 33,812 single nucleotide polymorphisms (SNPs) to identify corresponding genomic regions influencing neutral monosaccharides contents. In total, 49 GWAS signals contained in 17 genomic regions (quantitative trait loci [QTLs]) on seven chromosomes of rice were determined to be associated with monosaccharides contents of whole grain. The QTLs were found for fucose (1), mannose (1), xylose (2), arabinose (2), galactose (4), and rhamnose (7) contents, all of which are novel. Based on co-location of annotated rice genes in the vicinity of GWAS signals, the constituents of the whole grain were associated with the following candidate genes: arabinose content with α-N-arabinofuranosidase, pectinesterase inhibitor, and glucosamine-fructose-6-phosphate aminotransferase 1; xylose content with ZOS1-10 (a C2H2 zinc finger transcription factor [TF]); mannose content with aldose 1-epimerase-like protein and a MYB family TF; galactose content with a GT8 family member (galacturonosyltransferase-like 3), a GRAS family TF, and a GH16 family member (xyloglucan endotransglucosylase/hydrolase xyloglucan 23); fucose content with gibberellin 20 oxidase and a lysine-rich arabinogalactan protein 19, and finally rhamnose content with myo-inositol-1-phosphate synthase, UDP-arabinopyranose mutase, and COBRA-like protein precursor. The results of this study should improve our understanding of the genetic basis of the factors that might be involved in the biosynthesis, regulation, and turnover of monosaccharides in RWG, aiming to enhance the nutritional value of rice grain and impact the related industries.
Collapse
Affiliation(s)
- Rahele Panahabadi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti Univ., Tehran, Iran
| | | | - Naser Farrokhi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti Univ., Tehran, Iran
| |
Collapse
|
2
|
Li F, Chen G, Xie Q, Zhou S, Hu Z. Down-regulation of SlGT-26 gene confers dwarf plants and enhances drought and salt stress resistance in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108053. [PMID: 37769452 DOI: 10.1016/j.plaphy.2023.108053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
Plant architecture, an important agronomic trait closely associated with yield, is governed by a highly intricate molecular network. Despite extensive research, many mysteries surrounding this regulation remain unresolved. Trihelix transcription factor family plays a crucial role in the development of plant morphology and abiotic stresses. Here, we identified a novel trihelix transcription factor named SlGT-26, and its down-regulation led to significant alterations in plant architecture, including dwarfing, reduced internode length, smaller leaves, and shorter petioles. The dwarf phenotype of SlGT-26 silenced transgenic plants could be recovered after spraying exogenous GA3, and the GA3 content were decreased in the RNAi plants. Additionally, the expression levels of gibberellin-related genes were affected in the RNAi lines. These results indicate that the dwarf of SlGT-26-RNAi plants may be a kind of GA3-sensitive dwarf. SlGT-26 was response to drought and salt stress treatments. SlGT-26-RNAi transgenic plants demonstrated significantly enhanced drought resistance and salt tolerance in comparison to their wild-type tomato counterparts. SlGT-26-RNAi transgenic plants grew better, had higher relative water content and lower MDA and H2O2 contents. The expression of multiple stress-related genes was also up-regulated. In summary, we have discovered a novel gene, SlGT-26, which plays a crucial role in regulating plant architecture and in respond to drought and salt stress.
Collapse
Affiliation(s)
- Fenfen Li
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, 400030, China.
| | - Guoping Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, 400030, China.
| | - Qiaoli Xie
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, 400030, China.
| | - Shengen Zhou
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, 400030, China.
| | - Zongli Hu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
3
|
Song P, Li G, Xu J, Ma Q, Qi B, Zhang Y. Genome-Wide Analysis of Genes Involved in the GA Signal Transduction Pathway in ' duli' Pear ( Pyrus betulifolia Bunge). Int J Mol Sci 2022; 23:6570. [PMID: 35743013 PMCID: PMC9224306 DOI: 10.3390/ijms23126570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Gibberellic acid (GA) is an important phytohormone that regulates every aspect of plant growth and development. While elements involved in GA signaling have been identified and, hence, their functions have been well studied in model plants, such as Arabidopsis and rice, very little is known in pear. We, therefore, analyzed the genes related to GA signaling from the recently sequenced genome of the wildtype 'duli' pear (Pyrus betulifolia Bunge), a widely used rootstock for grafting in pear cultivation in China due to its vigorous growth and resistance to abiotic and biotic stress. In total, 15 genes were identified, including five GA receptors PbGID1s (GA-INSENSTIVE DWARF 1), six GA negative regulators, PbDELLAs, and four GA positive regulators, PbSLYs. Exogenous application of GA could promote the expression of PbGID1s but inhibit that of PbDELLAs and PbSLYs in tissue culture 'duli' pear seedlings. The expression profiles of these genes in field-grown trees under normal growth conditions, as well as in tissue-cultured seedlings treated with auxin (IAA), GA, paclobutrazol (PAC), abscisic acid (ABA), and sodium chloride (NaCl), were also studied, providing further evidence of the involvement of these genes in GA signaling in 'duli' pear plants. The preliminary results obtained in this report lay a good foundation for future research into GA signaling pathways in pear. Importantly, the identification and preliminary functional verification of these genes could guide molecular breeding in order to obtain the highly desired dwarf pear rootstocks for high-density plantation to aid easy orchard management and high yielding of pear fruits.
Collapse
Affiliation(s)
- Pingli Song
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (P.S.); (G.L.); (J.X.); (Q.M.)
| | - Gang Li
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (P.S.); (G.L.); (J.X.); (Q.M.)
| | - Jianfeng Xu
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (P.S.); (G.L.); (J.X.); (Q.M.)
| | - Qingcui Ma
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (P.S.); (G.L.); (J.X.); (Q.M.)
| | - Baoxiu Qi
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (P.S.); (G.L.); (J.X.); (Q.M.)
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Yuxing Zhang
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (P.S.); (G.L.); (J.X.); (Q.M.)
| |
Collapse
|
4
|
Mogal CS, Solanki VH, Kansara RV, Jha S, Singh S, Parekh VB, Rajkumar BK. UHPLC-MS/MS and QRT-PCR profiling of PGP agents and Rhizobium spp . of induced phytohormones for growth promotion in mungbean ( var. Co4 ). Heliyon 2022; 8:e09532. [PMID: 35663748 PMCID: PMC9160038 DOI: 10.1016/j.heliyon.2022.e09532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 05/20/2022] [Indexed: 12/03/2022] Open
Abstract
In present study, five potential strains with different plant growth promotion (PGP) characteristics were used. By considering various PGP properties of different bacterial strains, several treatments based on various combinations were developed and studied on mungbean (var. Co4). The quantification of the phytohormones was performed on ultrahigh-performance liquid chromatograph coupled to heated electrospray ionization tandem mass spectrometry (UHPLC/HESI-MS/MS). Indole 3-acetic acid (IAA) and Indole 3-butyric acid (IBA) were quantified in positive ionization mode while Gibberellic acid (GA3) and salicylic acid (SA) were quantified in negative ionization mode. Among all the treatments two penta combinations of consortia 1 (Rhizobium + Azospirillum + Pseudomonas + Bacillus spp. + Bacillus licheniformis) and consortia 2 (Rhizobium + Azotobacter + Pseudomonas + Bacillus spp. + Bacillus licheniformis) were found most effective. Higher amount of IAA (1.043 μg g−1), IBA (0.036 μg g−1), GA3 (1.999 μg g−1) and SA (0.098 μg g−1) Fresh weight (FW) were found in treated adolescent root tissues of consortia 2 as compared to consortia 1. Moreover, transcriptional level of the plant hormones were 2–4 fold higher in the relative gene expression study of three genes: ARF (Auxin responsive factors), ERF-IF (Ethylene-responsive Initiation Factors) and GAI (Gibberellic-Acid Insensitive) in consortia 2, on the 15th, 30th and 45th day using quantitative real time-Polymerase chain reaction (qRT-PCR). Furthermore, Yield attributing characters like, the number of nodules plant−1, number of pods plant−1, weight of nodule and seed yield plant−1 were also increased as compared to the control. As a result, the current research elucidated that penta combinations consortium of Rhizobium sp. and rhizobacteria can be developed as a single delivery system biofertilizer for enhancing mungbean productivity.
Collapse
Affiliation(s)
- Chaitanya S Mogal
- Department of Plant Molecular Biology and Biotechnology, Navsari Agricultural University, Navsari, 396450, Gujarat, India
| | - Vanrajsinh H Solanki
- Food Quality Testing Laboratory, N. M. College of Agriculture, Navsari Agricultural University, Navsari, 396450, Gujarat, India
| | - Rohan V Kansara
- Food Quality Testing Laboratory, N. M. College of Agriculture, Navsari Agricultural University, Navsari, 396450, Gujarat, India
| | - Sanjay Jha
- ASPEE Shakilam Biotechnology Institute, Navsari Agricultural University, Surat, 395007, Gujarat, India
| | - Susheel Singh
- Food Quality Testing Laboratory, N. M. College of Agriculture, Navsari Agricultural University, Navsari, 396450, Gujarat, India
| | - Vipulkumar B Parekh
- Department of Basic Science and Humanities, ACHF, Navsari Agricultural University, Navsari, 396450, Gujarat, India
| | - B K Rajkumar
- Main Cotton Research Station, Navsari Agricultural University, Surat, 395007, Gujarat, India
| |
Collapse
|
5
|
Liu Q, Wu K, Song W, Zhong N, Wu Y, Fu X. Improving Crop Nitrogen Use Efficiency Toward Sustainable Green Revolution. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:523-551. [PMID: 35595292 DOI: 10.1146/annurev-arplant-070121-015752] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Green Revolution of the 1960s improved crop yields in part through the widespread cultivation of semidwarf plant varieties, which resist lodging but require a high-nitrogen (N) fertilizer input. Because environmentally degrading synthetic fertilizer use underlies current worldwide cereal yields, future agricultural sustainability demands enhanced N use efficiency (NUE). Here, we summarize the current understanding of how plants sense, uptake, and respond to N availability in the model plants that can be used to improve sustainable productivity in agriculture. Recent progress in unlocking the genetic basis of NUE within the broader context of plant systems biology has provided insights into the coordination of plant growth and nutrient assimilation and inspired the implementation of a new breeding strategy to cut fertilizer use in high-yield cereal crops. We conclude that identifying fresh targets for N sensing and response in crops would simultaneously enable improved grain productivity and NUE to launch a new Green Revolution and promote future food security.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Kun Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Wenzhen Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Nan Zhong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Yunzhe Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China;
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Transcriptomic Analysis of Sex-Associated DEGs in Female and Male Flowers of Kiwifruit (Actinidia deliciosa [A. Chev] C. F. Liang & A. R. Ferguson). HORTICULTURAE 2021. [DOI: 10.3390/horticulturae8010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Kiwifruit (Actinidia deliciosa [A. Chev.], C.V. Liang & A. R. Ferguson, 1984) is a perennial plant, with morphologically hermaphroditic and functionally dioecious flowers. Fruits of this species are berries of great commercial and nutritional importance. Nevertheless, few studies have analyzed the molecular mechanisms involved in sexual differentiation in this species. To determine these mechanisms, we performed RNA-seq in floral tissue at stage 60 on the BBCH scale in cultivar ‘Hayward’ (H, female) and a seedling from ‘Green Light’ × ‘Tomuri’ (G × T, male). From these analyses, we obtained expression profiles of 24,888 (H) and 27,027 (G × T) genes, of which 6413 showed differential transcript abundance. Genetic ontology (GO) and KEGG analysis revealed activation of pathways associated with the translation of hormonal signals, plant-pathogen interaction, metabolism of hormones, sugars, and nucleotides. The analysis of the protein-protein interaction network showed that the genes ERL1, AG, AGL8, LFY, WUS, AP2, WRKY, and CO, are crucial elements in the regulation of the hormonal response for the formation and development of anatomical reproductive structures and gametophytes. On the other hand, genes encoding four Putative S-adenosyl-L-methionine-dependent methyltransferases (Achn201401, Achn281971, Achn047771 and Achn231981) were identified, which were up-regulated mainly in the male flowers. Moreover, the expression profiles of 15 selected genes through RT-qPCR were consistent with the results of RNA-seq. Finally, this work provides gene expression-based interactions between transcription factors and effector genes from hormonal signaling pathways, development of floral organs, biological and metabolic processes or even epigenetic mechanisms which could be involved in the kiwi sex-determination. Thus, in order to decode the nature of these interactions, it could be helpful to propose new models of flower development and sex determination in the Actinidia genus.
Collapse
|
7
|
Li M, Li J, Wei J, Paré PW. Transcriptional Controls for Early Bolting and Flowering in Angelica sinensis. PLANTS 2021; 10:plants10091931. [PMID: 34579463 PMCID: PMC8468642 DOI: 10.3390/plants10091931] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
The root of the perennial herb Angelica sinensis is a widely used source for traditional Chinese medicines. While the plant thrives in cool-moist regions of western China, early bolting and flowering (EBF) for young plants significantly reduces root quality and yield. Approaches to inhibit EBF by changes in physiology during the vernalization process have been investigated; however, the mechanism for activating EBF is still limited. Here, transcript profiles for bolted and unbolted plants (BP and UBP, respectively) were compared by transcriptomic analysis, expression levels of candidate genes were validated by qRT-PCR, and the accumulations of gibberellins (GA1, GA4, GA8, GA9 and GA20) were also monitored by HPLC-MS/MS. A total of over 72,000 unigenes were detected with ca. 2600 differentially expressed genes (DEGs) observed in the BP compared with UBP. While various signaling pathways participate in flower induction, it is genes associated with floral development and the sucrose pathway that are observed to be coordinated in EBF plants, coherently up- and down-regulating flowering genes that activate and inhibit flowering, respectively. The signature transcripts pattern for the developmental pathways that drive flowering provides insight into the molecular signals that activate plant EBF.
Collapse
Affiliation(s)
- Mengfei Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: (M.L.); (J.W.)
| | - Jie Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: (M.L.); (J.W.)
| | - Paul W. Paré
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
8
|
Liu Q, Wu K, Harberd NP, Fu X. Green Revolution DELLAs: From translational reinitiation to future sustainable agriculture. MOLECULAR PLANT 2021; 14:547-549. [PMID: 33753307 DOI: 10.1016/j.molp.2021.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Kun Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Nicholas P Harberd
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
López-Marqués RL, Nørrevang AF, Ache P, Moog M, Visintainer D, Wendt T, Østerberg JT, Dockter C, Jørgensen ME, Salvador AT, Hedrich R, Gao C, Jacobsen SE, Shabala S, Palmgren M. Prospects for the accelerated improvement of the resilient crop quinoa. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5333-5347. [PMID: 32643753 PMCID: PMC7501820 DOI: 10.1093/jxb/eraa285] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/11/2020] [Indexed: 05/04/2023]
Abstract
Crops tolerant to drought and salt stress may be developed by two approaches. First, major crops may be improved by introducing genes from tolerant plants. For example, many major crops have wild relatives that are more tolerant to drought and high salinity than the cultivated crops, and, once deciphered, the underlying resilience mechanisms could be genetically manipulated to produce crops with improved tolerance. Secondly, some minor (orphan) crops cultivated in marginal areas are already drought and salt tolerant. Improving the agronomic performance of these crops may be an effective way to increase crop and food diversity, and an alternative to engineering tolerance in major crops. Quinoa (Chenopodium quinoa Willd.), a nutritious minor crop that tolerates drought and salinity better than most other crops, is an ideal candidate for both of these approaches. Although quinoa has yet to reach its potential as a fully domesticated crop, breeding efforts to improve the plant have been limited. Molecular and genetic techniques combined with traditional breeding are likely to change this picture. Here we analyse protein-coding sequences in the quinoa genome that are orthologous to domestication genes in established crops. Mutating only a limited number of such genes by targeted mutagenesis appears to be a promising route for accelerating the improvement of quinoa and generating a nutritious high-yielding crop that can meet the future demand for food production in a changing climate.
Collapse
Affiliation(s)
- Rosa L López-Marqués
- NovoCrops Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Correspondence: or
| | - Anton F Nørrevang
- NovoCrops Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Max Moog
- NovoCrops Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Davide Visintainer
- NovoCrops Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Toni Wendt
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, Copenhagen V, Denmark
| | - Jeppe T Østerberg
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, Copenhagen V, Denmark
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, Copenhagen V, Denmark
| | - Morten E Jørgensen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, Copenhagen V, Denmark
| | - Andrés Torres Salvador
- The Quinoa Company, Wageningen, The Netherlands
- Plant Biotechnology Laboratory (COCIBA), Universidad San Francisco de Quito USFQ, Cumbayá, Ecuador
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | | | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Michael Palmgren
- NovoCrops Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Correspondence: or
| |
Collapse
|
10
|
Campos Mantello C, Boatwright L, da Silva CC, Scaloppi EJ, de Souza Goncalves P, Barbazuk WB, Pereira de Souza A. Deep expression analysis reveals distinct cold-response strategies in rubber tree (Hevea brasiliensis). BMC Genomics 2019; 20:455. [PMID: 31164105 PMCID: PMC6549365 DOI: 10.1186/s12864-019-5852-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/28/2019] [Indexed: 01/08/2023] Open
Abstract
Background Natural rubber, an indispensable commodity used in approximately 40,000 products, is fundamental to the tire industry. The rubber tree species Hevea brasiliensis (Willd. ex Adr. de Juss.) Muell-Arg., which is native the Amazon rainforest, is the major producer of latex worldwide. Rubber tree breeding is time consuming, expensive and requires large field areas. Thus, genetic studies could optimize field evaluations, thereby reducing the time and area required for these experiments. In this work, transcriptome sequencing was used to identify a full set of transcripts and to evaluate the gene expression involved in the different cold-response strategies of the RRIM600 (cold-resistant) and GT1 (cold-tolerant) genotypes. Results We built a comprehensive transcriptome using multiple database sources, which resulted in 104,738 transcripts clustered in 49,304 genes. The RNA-seq data from the leaf tissues sampled at four different times for each genotype were used to perform a gene-level expression analysis. Differentially expressed genes (DEGs) were identified through pairwise comparisons between the two genotypes for each time series of cold treatments. DEG annotation revealed that RRIM600 and GT1 exhibit different chilling tolerance strategies. To cope with cold stress, the RRIM600 clone upregulates genes promoting stomata closure, photosynthesis inhibition and a more efficient reactive oxygen species (ROS) scavenging system. The transcriptome was also searched for putative molecular markers (single nucleotide polymorphisms (SNPs) and microsatellites) in each genotype. and a total of 27,111 microsatellites and 202,949 (GT1) and 156,395 (RRIM600) SNPs were identified in GT1 and RRIM600. Furthermore, a search for alternative splicing (AS) events identified a total of 20,279 events. Conclusions The elucidation of genes involved in different chilling tolerance strategies associated with molecular markers and information regarding AS events provides a powerful tool for further genetic and genomic analyses of rubber tree breeding. Electronic supplementary material The online version of this article (10.1186/s12864-019-5852-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camila Campos Mantello
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil.,Department of Biology, University of Florida, Gainesville, FL, USA.,The John Bingham Laboratory, National Institute of Agricultural Botany, Cambridge, UK
| | - Lucas Boatwright
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Carla Cristina da Silva
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Erivaldo Jose Scaloppi
- Rubber Research Advanced Center (CAPSA), Agronomical Institute (IAC), Votuporanga, SP, Brazil
| | | | - W Brad Barbazuk
- Department of Biology, University of Florida, Gainesville, FL, USA.,Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Anete Pereira de Souza
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil. .,Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
11
|
Fan S, Zhang D, Gao C, Zhao M, Wu H, Li Y, Shen Y, Han M. Identification, Classification, and Expression Analysis of GRAS Gene Family in Malus domestica. Front Physiol 2017; 8:253. [PMID: 28503152 PMCID: PMC5408086 DOI: 10.3389/fphys.2017.00253] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/10/2017] [Indexed: 12/02/2022] Open
Abstract
GRAS genes encode plant-specific transcription factors that play important roles in plant growth and development. However, little is known about the GRAS gene family in apple. In this study, 127 GRAS genes were identified in the apple (Malus domestica Borkh.) genome and named MdGRAS1 to MdGRAS127 according to their chromosomal locations. The chemical characteristics, gene structures and evolutionary relationships of the MdGRAS genes were investigated. The 127 MdGRAS genes could be grouped into eight subfamilies based on their structural features and phylogenetic relationships. Further analysis of gene structures, segmental and tandem duplication, gene phylogeny and tissue-specific expression with ArrayExpress database indicated their diversification in quantity, structure and function. We further examined the expression pattern of MdGRAS genes during apple flower induction with transcriptome sequencing. Eight higher MdGRAS (MdGRAS6, 26, 28, 44, 53, 64, 107, and 122) genes were surfaced. Further quantitative reverse transcription PCR indicated that the candidate eight genes showed distinct expression patterns among different tissues (leaves, stems, flowers, buds, and fruits). The transcription levels of eight genes were also investigated with various flowering related treatments (GA3, 6-BA, and sucrose) and different flowering varieties (Yanfu No. 6 and Nagafu No. 2). They all were affected by flowering-related circumstance and showed different expression level. Changes in response to these hormone or sugar related treatments indicated their potential involvement during apple flower induction. Taken together, our results provide rich resources for studying GRAS genes and their potential clues in genetic improvement of apple flowering, which enriches biological theories of GRAS genes in apple and their involvement in flower induction of fruit trees.
Collapse
Affiliation(s)
- Sheng Fan
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Cai Gao
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Ming Zhao
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Haiqin Wu
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Youmei Li
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Yawen Shen
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F UniversityYangling, China
| |
Collapse
|
12
|
Hollender CA, Hadiarto T, Srinivasan C, Scorza R, Dardick C. A brachytic dwarfism trait (dw) in peach trees is caused by a nonsense mutation within the gibberellic acid receptor PpeGID1c. THE NEW PHYTOLOGIST 2016; 210:227-39. [PMID: 26639453 DOI: 10.1111/nph.13772] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/15/2015] [Indexed: 05/21/2023]
Abstract
Little is known about the genetic factors controlling tree size and shape. Here, we studied the genetic basis for a recessive brachytic dwarfism trait (dw) in peach (Prunus persica) that has little or no effect on fruit development. A sequencing-based mapping strategy positioned dw on the distal end of chromosome 6. Further sequence analysis and fine mapping identified a candidate gene for dw as a non-functional allele of the gibberellic acid receptor GID1c. Expression of the two GID1-like genes found in peach, PpeGID1c and PpeGID1b, was analyzed. GID1c was predominantly expressed in actively growing vegetative tissues, whereas GID1b was more highly expressed in reproductive tissues. Silencing of GID1c in plum via transgenic expression of a hairpin construct led to a dwarf phenotype similar to that of dw/dw peaches. In general, the degree of GID1c silencing corresponded to the degree of dwarfing. The results suggest that PpeGID1c serves a primary role in vegetative growth and elongation, whereas GID1b probably functions to regulate gibberellic acid perception in reproductive organs. Modification of GID1c expression could provide a rational approach to control tree size without impairing fruit development.
Collapse
Affiliation(s)
- Courtney A Hollender
- USDA-ARS Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| | | | - Chinnathambi Srinivasan
- USDA-ARS Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| | - Ralph Scorza
- USDA-ARS Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| | - Chris Dardick
- USDA-ARS Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| |
Collapse
|
13
|
Yuan Y, Fang L, Karungo SK, Zhang L, Gao Y, Li S, Xin H. Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis. PLANT CELL REPORTS 2016; 35:655-66. [PMID: 26687967 DOI: 10.1007/s00299-015-1910-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/20/2015] [Indexed: 05/18/2023]
Abstract
VaPAT1 functions as a stress-inducible GRAS gene and enhanced cold, drought and salt tolerance in transgenic Arabidopsis via modulation of the expression of a series of stress-related genes. The plant-specific GRAS transcription factor family regulates diverse processes involved in plant growth, development and stress responses. In this study, VaPAT1, a GRAS gene from Vitis amurensis was isolated and functionally characterized. Sequence alignment and phylogenetic analysis showed that VaPAT1 has a high sequence identity to CmsGRAS and OsCIGR1, which belong to PAT1 branch of GRAS family and function in stress resistance. The transcription of VaPAT1 was markedly induced by stress-related phytohormone abscisic acid (ABA) and various abiotic stress treatments such as cold, drought and high salinity, however, it was repressed by exogenous gibberellic acid (GA) application. Overexpression of VaPAT1 increased the cold, drought and high salinity tolerance in transgenic Arabidopsis. When compared with wild type (WT) seedlings, the VaPAT1-overexpression lines accumulated higher levels of proline and soluble sugar under these stress treatments. Moreover, stress-related genes such as AtSIZ1, AtCBF1, AtATR1/MYB34, AtMYC2, AtCOR15A, AtRD29A and AtRD29B showed higher expression levels in VaPAT1 transgenic lines than in WT Arabidopsis under normal growth conditions. Together, our results indicated that VaPAT1 functions as a positive transcriptional regulator involved in grapevine abiotic stress responses.
Collapse
Affiliation(s)
- Yangyang Yuan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, People's Republic of China
| | - Linchuan Fang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, People's Republic of China
| | - Sospeter Karanja Karungo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, People's Republic of China
| | - Langlang Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, People's Republic of China
| | - Yingying Gao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, People's Republic of China
| | - Shaohua Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- Beijing Key Laboratory of Grape Sciences and Enology and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.
- Beijing Key Laboratory of Grape Sciences and Enology and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| |
Collapse
|
14
|
Liang YC, Reid MS, Jiang CZ. Controlling plant architecture by manipulation of gibberellic acid signalling in petunia. HORTICULTURE RESEARCH 2014; 1:14061. [PMID: 26504556 PMCID: PMC4596332 DOI: 10.1038/hortres.2014.61] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 05/24/2023]
Abstract
Since stem elongation is a gibberellic acid (GA) response, GA inhibitors are commonly used to control plant height in the production of potted ornamentals and bedding plants. In this study, we investigated interfering with GA signaling by using molecular techniques as an alternative approach. We isolated three putative GID1 genes (PhGID1A, PhGID1B and PhGID1C) encoding GA receptors from petunia. Virus-induced gene silencing (VIGS) of these genes results in stunted growth, dark-green leaves and late-flowering. We also isolated the gai mutant gene (gai-1) from Arabidopsis. We have generated transgenic petunia plants in which the gai mutant protein is over-expressed under the control of a dexamethasone-inducible promoter. This system permits induction of the dominant Arabidopsis gai mutant gene at a desired stage of plant development in petunia plants by the application of dexamethasone (Dex). The induction of gai in Dex-treated T1 petunia seedlings caused dramatic growth retardation with short internodes.
Collapse
Affiliation(s)
- Yin-Chih Liang
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Michael S Reid
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Cai-Zhong Jiang
- Crops Pathology & Genetics Research Unit, USDA-ARS, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
15
|
Xu H, Iwashiro R, Li T, Harada T. Long-distance transport of Gibberellic Acid Insensitive mRNA in Nicotiana benthamiana. BMC PLANT BIOLOGY 2013; 13:165. [PMID: 24144190 PMCID: PMC4015358 DOI: 10.1186/1471-2229-13-165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 10/10/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND The Gibberellic Acid (GA) signal is governed by the GAI (Gibberellic Acid Insensitive) repressor, which is characterized by a highly conserved N-terminal DELLA domain. Deletion of the DELLA domain results in constitutive suppression of GA signaling. As the GAI transcript is transportable in phloem elements, a Δ-DELLA GAI (gai) transgenic stock plant can reduce the stature of a scion through transport of gai mRNA from the stock. However, little is known about the characteristics of a scion on a gai stock. RESULTS Arabidopsis Δ-DELLA GAI (gai) was fused with a T7 epitope tag and expressed under the control of a companion cell-specific expression promoter, Commelina yellow mottle virus promoter (CoYMVp), to enhance transport in the phloem. The CoYMVp:Atgai-T7 (CgT) transgenic Nicotiana benthamiana exhibited a dwarf phenotype and lower sensitivity to GA enhancement of shoot stature. A wild-type (WT) scion on a CgT stock contained both Atgai-T7 mRNA and the translated product. Microarray analysis to clarify the effect of the CgT stock on the gene expression pattern in the scion clearly revealed that the WT scions on CgT stocks had fewer genes whose expression was altered in response to GA treatment. An apple rootstock variety, Malus prunifolia, integrating CoYMVp:Atgai moderately reduced the tree height of the apple cultivar scion. CONCLUSIONS Our results demonstrate that Atgai mRNA can move from companion cells to sieve tubes and that the translated product remains at the sites to which it is transported, resulting in attenuation of GA responses by reducing the expression of many genes. The induction of semi-dwarfism in an apple cultivar on root stock harbouring Atgai suggests that long-distance transport of mRNA from grafts would be applicable to horticulture crops.
Collapse
Affiliation(s)
- Haiyan Xu
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
- Present address: Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Reika Iwashiro
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agriculture University, Beijing 100193, China
| | - Takeo Harada
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
| |
Collapse
|
16
|
Hamama L, Naouar A, Gala R, Voisine L, Pierre S, Jeauffre J, Cesbron D, Leplat F, Foucher F, Dorion N, Hibrand-Saint Oyant L. Overexpression of RoDELLA impacts the height, branching, and flowering behaviour of Pelargonium × domesticum transgenic plants. PLANT CELL REPORTS 2012; 31:2015-29. [PMID: 22898902 DOI: 10.1007/s00299-012-1313-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/29/2012] [Accepted: 07/04/2012] [Indexed: 05/23/2023]
Abstract
KEY MESSAGE : We reported the cloning of a rose DELLA gene. We obtained transgenic Pelargonium lines overexpressing this gene which presented several phenotypes in plant growth, root growth, flowering time and number of inflorescences. Control of development is an important issue for production of ornamental plant. The plant growth regulator, gibberellins (GAs), plays a pivotal role in regulating plant growth and development. DELLA proteins are nuclear negative regulator of GA signalling. Our objective was to study the role of GA in the plant architecture and in the blooming of ornamentals. We cloned a rose DELLA homologous gene, RoDELLA, and studied its function by genetic transformation of pelargonium. Several transgenic pelargonium (Pelargonium × domesticum 'Autum Haze') lines were produced that ectopically expressed RoDELLA under the control of the 35S promoter. These transgenic plants exhibited a range of phenotypes which could be related to the reduction in GA response. Most of transgenic plants showed reduced growth associated to an increase of the node and branch number. Moreover, overexpression of RoDELLA blocked or delayed flowering in transgenic pelargonium and exhibited defects in the root formation. We demonstrated that pelargonium could be used to validate ornamental gene as the rose DELLA gene. RoDELLA overexpression modified many aspects of plant developmental pathways, as the plant growth, the transition of vegetative to floral stage and the ability of rooting.
Collapse
Affiliation(s)
- L Hamama
- Agrocampus Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, PRES UNAM, 49045, Angers, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Elias AA, Busov VB, Kosola KR, Ma C, Etherington E, Shevchenko O, Gandhi H, Pearce DW, Rood SB, Strauss SH. Green revolution trees: semidwarfism transgenes modify gibberellins, promote root growth, enhance morphological diversity, and reduce competitiveness in hybrid poplar. PLANT PHYSIOLOGY 2012; 160:1130-44. [PMID: 22904164 PMCID: PMC3461535 DOI: 10.1104/pp.112.200741] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula × Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA(20) and GA(8), in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations.
Collapse
|
18
|
Li Y, Xiao J, Wu J, Duan J, Liu Y, Ye X, Zhang X, Guo X, Gu Y, Zhang L, Jia J, Kong X. A tandem segmental duplication (TSD) in green revolution gene Rht-D1b region underlies plant height variation. THE NEW PHYTOLOGIST 2012; 196:282-291. [PMID: 22849513 DOI: 10.1111/j.1469-8137.2012.04243.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
• Rht-D1c (Rht10) carried by Chinese wheat (Triticum aestivum) line Aibian 1 is an allele at the Rht-D1 locus. Among the Rht-1 alleles, little is known about Rht-D1c although it determines an extreme dwarf phenotype in wheat. • Here, we cloned and functionally characterized Rht-D1c using a combination of Southern blotting, target region sequencing, gene expression analysis and transgenic experiments. • We found that the Rht-D1c allele was generated through a tandem segmental duplication (TSD) of a > 1 Mb region, resulting in two copies of the Rht-D1b. Two copies of Rht-D1b in the TSD were three-fold more effective in reducing plant height than a single copy, and transformation with a segment containing the tandemly duplicated copy of Rht-D1b resulted in the same level of reduction of plant height as the original copy in Aibian 1. • Our results suggest that changes in gene copy number are one of the important sources of genetic diversity and some of these changes could be directly associated with important traits in crops.
Collapse
Affiliation(s)
- Yiyuan Li
- College of Biology Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100094, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianhui Xiao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiajie Wu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jialei Duan
- College of Biology Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100094, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yue Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingguo Ye
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongqiang Gu
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | - Lichao Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jizeng Jia
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuying Kong
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
19
|
Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 2012; 44:950-4. [PMID: 22729225 DOI: 10.1038/ng.2327] [Citation(s) in RCA: 661] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/30/2012] [Indexed: 11/09/2022]
Abstract
Grain size and shape are important components of grain yield and quality and have been under selection since cereals were first domesticated. Here, we show that a quantitative trait locus GW8 is synonymous with OsSPL16, which encodes a protein that is a positive regulator of cell proliferation. Higher expression of this gene promotes cell division and grain filling, with positive consequences for grain width and yield in rice. Conversely, a loss-of-function mutation in Basmati rice is associated with the formation of a more slender grain and better quality of appearance. The correlation between grain size and allelic variation at the GW8 locus suggests that mutations within the promoter region were likely selected in rice breeding programs. We also show that a marker-assisted strategy targeted at elite alleles of GS3 and OsSPL16 underlying grain size and shape can be effectively used to simultaneously improve grain quality and yield.
Collapse
Affiliation(s)
- Shaokui Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, National Centre for Plant Gene Research, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zawaski C, Kadmiel M, Pickens J, Ma C, Strauss S, Busov V. Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth, morphology, and flowering. PLANTA 2011; 234:1285-98. [PMID: 21792553 DOI: 10.1007/s00425-011-1485-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 07/07/2011] [Indexed: 05/02/2023]
Abstract
We modified gibberellin (GA) metabolism and signaling in transgenic poplars using dominant transgenes and studied their effects for 3 years under field conditions. The transgenes that we employed either reduced the bioactive GAs, or attenuated their signaling. The majority of transgenic trees had significant and in many cases dramatic changes in height, crown architecture, foliage morphology, flowering onset, floral structure, and vegetative phenology. Most transgenes elicited various levels of height reduction consistent with the roles of GA in elongation growth. Several other growth traits were proportionally reduced, including branch length, internode distance, and leaf length. In contrast to elongation growth, stem diameter growth was much less affected, suggesting that semi-dwarf trees in dense stands might provide high levels of biomass production and carbon sequestration. The severity of phenotypic effects was strongly correlated with transgene expression among independent transgenic events, but often in a non-linear manner, the form of which varied widely among constructs. The majority of semi-dwarfed, transgenic plants showed delayed bud flush and early bud set, and expression of a native GAI transgene accelerated first time flowering in the field. All of the phenotypic changes observed in multiple years were stable over the 3 years of field study. Our results suggest that transgenic modification of GA action may be useful for producing semi-dwarf trees with modified growth and morphology for horticulture and other uses.
Collapse
Affiliation(s)
- Christine Zawaski
- School of Forest Research and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | | | | | | | | | | |
Collapse
|
21
|
Yabuta Y, Osada R, Morishita T, Nishizawa-Yokoi A, Tamoi M, Maruta T, Shigeoka S. Involvement of Arabidopsis NAC transcription factor in the regulation of 20S and 26S proteasomes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:421-427. [PMID: 21889048 DOI: 10.1016/j.plantsci.2011.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/16/2011] [Accepted: 07/09/2011] [Indexed: 05/31/2023]
Abstract
We investigated the transcript levels of 13 proteasome subunit genes, the protein levels of proteasomes, and the activities of the 26S proteasome in ANAC078-overexpressing Arabidopsis plants (Ox-ANAC078) and knockout ANAC078 (KO-ANAC078) mutants. The transcript levels and the protein levels of proteasomes were increased in the Ox-ANAC078 plants compared with the wild-type plants and KO-ANAC078 mutants under normal conditions and high-light (HL) stress. Although the activities of the 26S proteasome were decreased in all the plants under HL stress, they were higher in the Ox-ANAC078 plants than wild-type plants and KO-ANAC078 mutants under normal conditions and HL stress. These findings suggest that ANAC078 regulates the levels of proteasomes. To explore the function of the increased levels of proteasomes to HL stress, we assessed the tolerance to HL stress of the Ox-ANAC078 plants and KO-ANAC078 mutants. The photosystem II activities of Ox-ANAC078 remained high compared with those of the wild-type plants and KO-ANAC078 mutants under HL stress, suggesting that ANAC078 may play an important role in the response and adaptation to HL stress.
Collapse
Affiliation(s)
- Yukinori Yabuta
- School of Agricultural, Biological, and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Harberd NP, Belfield E, Yasumura Y. The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an "inhibitor of an inhibitor" enables flexible response to fluctuating environments. THE PLANT CELL 2009; 21:1328-39. [PMID: 19470587 PMCID: PMC2700538 DOI: 10.1105/tpc.109.066969] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 04/30/2009] [Accepted: 05/03/2009] [Indexed: 05/18/2023]
Abstract
The phytohormone gibberellin (GA) has long been known to regulate the growth, development, and life cycle progression of flowering plants. However, the molecular GA-GID1-DELLA mechanism that enables plants to respond to GA has only recently been discovered. In addition, studies published in the last few years have highlighted previously unsuspected roles for the GA-GID1-DELLA mechanism in regulating growth response to environmental variables. Here, we review these advances within a general plant biology context and speculate on the answers to some remaining questions. We also discuss the hypothesis that the GA-GID1-DELLA mechanism enables flowering plants to maintain transient growth arrest, giving them the flexibility to survive periods of adversity.
Collapse
Affiliation(s)
- Nicholas P Harberd
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom.
| | | | | |
Collapse
|
23
|
Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 2009; 41:494-7. [PMID: 19305410 DOI: 10.1038/ng.352] [Citation(s) in RCA: 609] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 01/12/2009] [Indexed: 11/09/2022]
Abstract
Grain yield is controlled by quantitative trait loci (QTLs) derived from natural variations in many crop plants. Here we report the molecular characterization of a major rice grain yield QTL that acts through the determination of panicle architecture. The dominant allele at the DEP1 locus is a gain-of-function mutation causing truncation of a phosphatidylethanolamine-binding protein-like domain protein. The effect of this allele is to enhance meristematic activity, resulting in a reduced length of the inflorescence internode, an increased number of grains per panicle and a consequent increase in grain yield. This allele is common to many Chinese high-yielding rice varieties and likely represents a relatively recent introduction into the cultivated rice gene pool. We also show that a functionally equivalent allele is present in the temperate cereals and seems to have arisen before the divergence of the wheat and barley lineages.
Collapse
Affiliation(s)
- Xianzhong Huang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, National Centre for Plant Gene Research, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Isolation and characterization of dominant dwarf mutants, Slr1-d, in rice. Mol Genet Genomics 2008; 281:223-31. [PMID: 19066966 DOI: 10.1007/s00438-008-0406-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 11/14/2008] [Indexed: 10/21/2022]
Abstract
sd1 is known as the 'green revolution' gene in rice because its application in rice breeding has dramatically increased rice yield. Since the 'green revolution,' sd1 has been extensively used to produce modern semi-dwarf varieties. The extensive use of limited dwarfing sources may, however, cause a bottleneck effect in the genetic background of rice varieties. To circumvent this problem, novel and useful sources of dwarf genes must be identified. In this study, we identified three semi-dominant dwarf mutants. These mutants were categorized as dn-type dwarf mutants according to the elongation pattern of internodes. Gibberellin (GA) response tests showed that the mutants were still responsive to GA, although at a reduced rate. Map-based cloning revealed that the dwarf phenotype in these mutants was caused by gain-of-function mutations in the N-terminal region of SLR1. Degradation of the SLR1 protein in these mutants occurred later than in the wild type. Reduced interaction abilities of the SLR1 protein in these mutants with GID1 were also observed using the yeast two-hybrid system. Crossing experiments indicated that with the use of an appropriate genetic background, the semi-dominant dwarf alleles identified in this study could be used to alleviate the deficiency of dwarfing genes for breeding applications.
Collapse
|
25
|
Zhu LH, Li XY, Welander M. Overexpression of the Arabidopsis gai gene in apple significantly reduces plant size. PLANT CELL REPORTS 2008; 27:289-96. [PMID: 17932677 DOI: 10.1007/s00299-007-0462-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 09/13/2007] [Accepted: 09/21/2007] [Indexed: 05/07/2023]
Abstract
Genetic engineering is an attractive method to obtain dwarf plants in order to eliminate the extensive use of growth retardants in horticultural crop production. In this study, we evaluated the potential of using the Arabidopsis gai (gibberellic acid insensitive) gene to dwarf apple trees. The gai gene under 35S promoter was introduced in the apple rootstock A2 and the cultivars Gravenstein and McIntosh through Agrobacterium-mediated transformation. One transgenic clone was recovered for Gravenstein and McIntosh, and several transgenic clones for A2, confirmed by Southern blot analysis. Two weak bands were detected by Southern blot analysis in all the untransformed controls, possibly indicating the existence of the internal GAI gene in apple. Most of the transgenic plants showed reduced growth in vitro. Growth analyses in the greenhouse showed a clear reduction in stem length, internode length and node number for the dwarf clones. The normal phenotype of some transgenic clones appears to be associated with silencing of the introduced gai gene, confirmed by RT-PCR analysis. In general, transgenic clones showed reduced rooting ability, especially for the extremely compact ones.
Collapse
Affiliation(s)
- L H Zhu
- Department of Plant Breeding and Biotechnology, Swedish University of Agricultural Sciences, Box 44, 230-53 Alnarp, Sweden.
| | | | | |
Collapse
|
26
|
Abstract
Here we summarize progress in identification of three classes of genes useful for control of plant architecture: those affecting hormone metabolism and signaling; transcription and other regulatory factors; and the cell cycle. We focus on strong modifiers of stature and form that may be useful for directed modification of plant architecture, rather than the detailed mechanisms of gene action. Gibberellin (GA) metabolic and response genes are particularly attractive targets for manipulation because many act in a dose-dependent manner; similar phenotypic effects can be readily achieved in heterologous species; and induced pleiotropic effects--such as on nitrogen assimilation, photosynthesis, and lateral root production--are usually positive with respect to crop performance. Genes encoding transcription factors represent strong candidates for manipulation of plant architecture. For example, AINTEGUMENTA, ARGOS (auxin-regulated gene controlling organ size), and growth-regulating factors (GRFs) are strong modifiers of leaf and/or flower size. Plants overexpressing these genes had increased organ size and did not display negative pleiotropic effects in glasshouse environments. TCP-domain genes such as CINCINNATA, and the associated regulatory miRNAs such as miRJAW, may provide useful means to modulate leaf curvature and other foliage properties. There are considerable opportunities for comparative and translational genomics in nonmodel plant systems.
Collapse
Affiliation(s)
- Victor B Busov
- Michigan Technological University, School of Forest Research and Environmental Science, 101 Noblet Hall, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Amy M Brunner
- Virginia Polytechnic Institute and State University, Department of Forestry, 304 Cheatham Hall (0324), Blacksburg, VA 24061, USA
| | - Steven H Strauss
- Oregon State University, Department of Forest Science, Corvallis, OR 97331-5752, USA
| |
Collapse
|
27
|
Sakamoto T. Phytohormones and rice crop yield: strategies and opportunities for genetic improvement. Transgenic Res 2007; 15:399-404. [PMID: 16906440 DOI: 10.1007/s11248-006-0024-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
To feed an estimated world population of 8.9 billion by 2050, strategies for increasing grain production must be developed. Several agronomically important traits for increasing yield, such as plant height, grain number, and leaf erectness, have recently been characterized in rice (Oryza sativa L.). These traits are regulated primarily by three phytohormones: gibberellins, cytokinins, and brassinosteroids. The control of biosynthesis and degradation of these key phytohormones is discussed in terms of its importance for normal plant growth. Genes involved in the biosynthesis and regulation of these phytohormones can be used to develop effective strategies to increase grain yield. Genetic manipulation of phytohormone-related gene expression is thus a practical strategy to generate high-yielding transgenic plants through the modification of levels and profile of endogenous phytohormones.
Collapse
Affiliation(s)
- Tomoaki Sakamoto
- Field Production Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishi-Tokyo, Tokyo 188-0002, Japan.
| |
Collapse
|
28
|
Kohli A, Melendi PG, Abranches R, Capell T, Stoger E, Christou P. The Quest to Understand the Basis and Mechanisms that Control Expression of Introduced Transgenes in Crop Plants. PLANT SIGNALING & BEHAVIOR 2006; 1:185-95. [PMID: 19521484 PMCID: PMC2634025 DOI: 10.4161/psb.1.4.3195] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 07/12/2006] [Indexed: 05/19/2023]
Abstract
We discuss mechanisms and factors that influence levels and stability of expressed heterologous proteins in crop plants. We have seen substantial progress in this field over the past two decades in model experimental organisms such as Arabidopsis and tobacco. There is no question such studies have resulted in furthering our understanding of key processes in the plant cell and the elaboration of sophisticated models to explain underlying mechanisms that might influence the fate, levels and stability of expression of recombinant heterologous proteins in plants. However, very often, such information is not applicable outside these laboratory experimental models. In order to generate a knowledge basis that can be used to achieve high levels and stability of heterologous proteins in relevant crop plants it is imperative to perform such studies on the target crops. With this in mind, we discuss key elements of the process at the DNA, RNA and protein levels. We believe it is essential to discuss recombinant protein production in crops in a holistic manner in order to develop a comprehensive knowledge base that will in turn serve plant biotechnology applications well.
Collapse
Affiliation(s)
- Ajay Kohli
- Institute for Research on Environment & Sustainability (IRES); University of Newcastle upon Tyne; Newcastle, UK
| | | | - Rita Abranches
- Instituto de Tecnologia Quimica e Biologica; Plant Cell Biology Laboratory; Oeiras, Portugal and Universidade Nova de Lisboa
| | | | - Eva Stoger
- Biology VII; RWTH Aachen; Aachen, Germany
| | - Paul Christou
- ICREA; Department de Produccio Vegetal I Ciencia Forestal; Lleida, Spain
| |
Collapse
|
29
|
Busov V, Meilan R, Pearce DW, Rood SB, Ma C, Tschaplinski TJ, Strauss SH. Transgenic modification of gai or rgl1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus. PLANTA 2006; 224:288-99. [PMID: 16404575 DOI: 10.1007/s00425-005-0213-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2005] [Accepted: 12/10/2005] [Indexed: 05/06/2023]
Abstract
In Arabidopsis and other plants, gibberellin (GA)-regulated responses are mediated by proteins including GAI, RGA and RGL1-3 that contain a functional DELLA domain. Through transgenic modification, we found that DELLA-less versions of GAI (gai) and RGL1 (rgl1) in a Populus tree have profound, dominant effects on phenotype, producing pleiotropic changes in morphology and metabolic profiles. Shoots were dwarfed, likely via constitutive repression of GA-induced elongation, whereas root growth was promoted two- to threefold in vitro. Applied GA(3 )inhibited adventitious root production in wild-type poplar, but gai/rgl1 poplars were unaffected by the inhibition. The concentrations of bioactive GA(1) and GA(4) in leaves of gai- and rgl1-expressing plants increased 12- to 64-fold, while the C(19) precursors of GA(1) (GA(53), GA(44) and GA(19)) decreased three- to ninefold, consistent with feedback regulation of GA 20-oxidase in the transgenic plants. The transgenic modifications elicited significant metabolic changes. In roots, metabolic profiling suggested increased respiration as a possible mechanism of the increased root growth. In leaves, we found metabolite changes suggesting reduced carbon flux through the lignin biosynthetic pathway and a shift towards allocation of secondary storage and defense metabolites, including various phenols, phenolic glucosides, and phenolic acid conjugates.
Collapse
Affiliation(s)
- Victor Busov
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, 49931-1295, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Ellerström M, Reidt W, Ivanov R, Tiedemann J, Melzer M, Tewes A, Moritz T, Mock HP, Sitbon F, Rask L, Bäumlein H. Ectopic expression of EFFECTOR OF TRANSCRIPTION perturbs gibberellin-mediated plant developmental processes. PLANT MOLECULAR BIOLOGY 2005; 59:663-81. [PMID: 16244914 DOI: 10.1007/s11103-005-0669-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 07/09/2005] [Indexed: 05/05/2023]
Abstract
The plant hormone gibberellin (GA) is known to modulate various aspects of plant cell differentiation and development. The current model of GA-mediated regulation is based on a de-repressible system and includes specific protein modification and degradation. HRT, a zinc finger protein from barley has been shown to have GA-dependent transcriptional repressing activity on the seed-specific alpha-amylase promoter [Raventos, D., Skriver, K., Schlein, M., Karnahl, K., Rogers, S.W., Rogers, J.C. and Mundy, J. 1998. J. Biol. Chem. 273: 23313-23320]. Here we report the characterization of a dicot homologue from Brassica napus (BnET) and provide evidence for its role in GA response modulation suggesting that this could be a conserved feature of this gene family. When BnET is ectopically expressed in either Arabidopsis or tobacco the phenotypes include dwarfism due to shorter internodes and late flowering, reduced germination rate, increased anthocyanin content and reduced xylem lignification as a marker for terminal cell differentiation. Transient expression in protoplasts supports the notion that this most likely is due to a transcriptional repression of GA controlled genes. Finally, histological analysis showed that in contrast to other GA deficient mutants the shorter internodes were due to fewer but not smaller cells, suggesting a function of BnET in GA-mediated cell division control.
Collapse
Affiliation(s)
- M Ellerström
- Botanical Institute, Gothenburg University, Box 461, SE- 405 30 Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sakamoto T, Matsuoka M. Generating high-yielding varieties by genetic manipulation of plant architecture. Curr Opin Biotechnol 2004; 15:144-7. [PMID: 15081053 DOI: 10.1016/j.copbio.2004.02.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Despite a huge population increase since the 1960s, the green revolution more than doubled world grain production and averted large-scale famine. Food crop productivity will have to be further raised, however, because the world population is still increasing rapidly. Among several parameters associated with the increase in yield potential, genes that control plant height and tiller number (in cereal crops) have recently been identified. In addition, a promising strategy to generate semi-dwarf varieties has been developed. Recent advances in plant genome analyses and plant biotechnology will realize a second green revolution through the genetic engineering of food crops.
Collapse
Affiliation(s)
- Tomoaki Sakamoto
- Field Production Science Center, The University of Tokyo, Nishi-Tokyo 188-0002, Japan
| | | |
Collapse
|
32
|
Fu X, Richards DE, Fleck B, Xie D, Burton N, Harberd NP. The Arabidopsis mutant sleepy1gar2-1 protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates. THE PLANT CELL 2004; 16:1406-18. [PMID: 15161962 PMCID: PMC490035 DOI: 10.1105/tpc.021386] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Accepted: 03/03/2004] [Indexed: 05/18/2023]
Abstract
DELLA proteins restrain the cell proliferation and enlargement that characterizes the growth of plant organs. Gibberellin stimulates growth via 26S proteasome-dependent destruction of DELLAs, thus relieving DELLA-mediated growth restraint. Here, we show that the Arabidopsis thaliana sleepy1gar2-1 (sly1gar2-1) mutant allele encodes a mutant subunit (sly1gar2-1) of an SCF(SLY1) E3 ubiquitin ligase complex. SLY1 (the wild-type form) and sly1gar2-1 both confer substrate specificity on this complex via specific binding to the DELLA proteins. However, sly1gar2-1 interacts more strongly with the DELLA target than does SLY1. In addition, the strength of the SCFSLY1-DELLA interaction is increased by target phosphorylation. Growth-promoting DELLA destruction is dependent on SLY1 availability, on the strength of the interaction between SLY1 and the DELLA target, and on promotion of the SCFSLY1-DELLA interaction by DELLA phosphorylation.
Collapse
Affiliation(s)
- Xiangdong Fu
- John Ines Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | |
Collapse
|
33
|
Hynes LW, Peng J, Richards DE, Harberd NP. Transgenic expression of the Arabidopsis DELLA proteins GAI and gai confers altered gibberellin response in tobacco. Transgenic Res 2003; 12:707-14. [PMID: 14713199 DOI: 10.1023/b:trag.0000005145.68017.6e] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bioactive gibberellin (GA) regulates the growth and development of a wide array of plant species. GA exerts its effects via members of the DELLA protein family of putative transcriptional regulators. The GAI gene encodes GAI, a DELLA protein from Arabidopsis thaliana (L.) Heyhn. A mutant allele, gai, encodes a mutant protein (gai) that has altered properties, and confers a dominant, reduced GA-response, dwarf phenotype. Here we describe experiments to investigate the effects of transgenic expression of GAI and gai in tobacco. Constructs permitting the expression of the GAI and gai open reading frames (ORFs) at higher (driven by the cauliflower mosaic virus 35S promoter) and lower (driven by the original Arabidopsis GAI promoter) levels in tobacco were made. We show that low-level expression of GAI has no detectable effect on tobacco GA-responses. In contrast, high-level expression of GAI clearly affects the growth of adult tobacco plants and the GA-responsiveness of tobacco hypocotyls. Both low- and high-level expression of gai have effects on tobacco GA responses. Thus, tobacco GA-responses are affected by transgenic expression of GAI/gai, and the degree to which these responses are affected is related to the level of transgene expression.
Collapse
|
34
|
Trung-Nghia P, Bassie L, Safwat G, Thu-Hang P, Lepri O, Rocha P, Christou P, Capell T. Reduction in the endogenous arginine decarboxylase transcript levels in rice leads to depletion of the putrescine and spermidine pools with no concomitant changes in the expression of downstream genes in the polyamine biosynthetic pathway. PLANTA 2003; 218:125-134. [PMID: 12898254 DOI: 10.1007/s00425-003-1079-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2003] [Accepted: 06/14/2003] [Indexed: 05/24/2023]
Abstract
We investigated whether down-regulation of arginine decarboxylase (ADC) activity and concomitant changes in polyamine levels result in changes in the expression of downstream genes in the polyamine pathway. We generated transgenic rice (Oryza sativa L.) plants in which the rice adc gene was down-regulated by expression of its antisense oat (Avena sativa L.) ortholog. Plants expressed the oat mRNA adc transcript at different levels. The endogenous transcript was down-regulated in five out of eight plant lineages we studied in detail. Reduction in the steady-state rice adc mRNA levels resulted in a concomitant decrease in ADC activity. The putrescine and spermidine pool was significantly reduced in plants with lower ADC activity. Expression of the rice ornithine decarboxylase (odc), S-adenosylmethionine decarboxylase (samdc) and spermidine synthase (spd syn) transcripts was not affected. We demonstrate that even though levels of the key metabolites in the pathway were compromised, this did not influence steady-state transcription levels of the other genes involved in the pathway. Our results provide an insight into the different regulatory mechanisms that control gene expression in the polyamine biosynthetic pathway in plants by demonstrating that the endogenous pathway is uncoupled from manipulations that modulate polyamine levels by expression of orthologous transgenes.
Collapse
Affiliation(s)
- Pham Trung-Nghia
- Department of Crop Genetics and Biotechnology, Fraunhofer IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Vriezen WH, Zhou Z, Van Der Straeten D. Regulation of submergence-induced enhanced shoot elongation in Oryza sativa L. ANNALS OF BOTANY 2003; 91 Spec No:263-70. [PMID: 12509346 PMCID: PMC4244991 DOI: 10.1093/aob/mcf121] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rice (Oryza sativa L.) is the only cereal that can be cultivated in the frequently flooded river deltas of South-East and South Asia. The survival strategies used by rice have been studied quite extensively and the role of several phytohormones in the elongation response has been established. Deep-water rice cultivars can diminish flooding stress by rapid elongation of their submerged tissues to keep up with the rising waters. Other rice cultivars may react by mechanisms of submergence tolerance. Aerenchyma and aerenchymatous adventitious roots are formed that facilitate oxygen diffusion to prevent anaerobic conditions in the submerged tissues. This paper discusses the molecular aspects of the mechanism that leads to shoot elongation (leaves of seedlings and internodes), the regulation of which involves metabolism of, and interactions between, ethylene, gibberellins and abscisic acid. Finally, the importance of new techniques in future research is assessed. Current molecular technology can reveal subtle differences in gene activity between tolerant and non-tolerant cultivars, and identify genes that are involved in the regulation of submergence avoidance and tolerance.
Collapse
Affiliation(s)
- Wim H Vriezen
- Department of Molecular Genetics, Ghent University (RUG-VIB), Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
36
|
Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JAD, Amasino RM. Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. THE PLANT CELL 2003; 15:151-63. [PMID: 12509528 PMCID: PMC143488 DOI: 10.1105/tpc.005975] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2002] [Accepted: 10/21/2002] [Indexed: 05/18/2023]
Abstract
Degradation of active C(19)-gibberellins (GAs) by dioxygenases through 2beta-hydroxylation yields inactive GA products. We identified two genes in Arabidopsis (AtGA2ox7 and AtGA2ox8), using an activation-tagging mutant screen, that encode 2beta-hydroxylases. GA levels in both activation-tagged lines were reduced significantly, and the lines displayed dwarf phenotypes typical of mutants with a GA deficiency. Increased expression of either AtGA2ox7 or AtGA2ox8 also caused a dwarf phenotype in tobacco, indicating that the substrates for these enzymes are conserved. AtGA2ox7 and AtGA2ox8 are more similar to each other than to other proteins encoded in the Arabidopsis genome, indicating that they may constitute a separate class of GA-modifying enzymes. Indeed, enzymatic assays demonstrated that AtGA2ox7 and AtGA2ox8 both perform the same GA modification: 2beta-hydroxylation of C(20)-GAs but not of C(19)-GAs. Lines containing increased expression of AtGA2ox8 exhibited a GA dose-response curve for stem elongation similar to that of the biosynthetic mutant ga1-11. Double loss-of-function Atga2ox7 Atga2ox8 mutants had twofold to fourfold higher levels of active GAs and displayed phenotypes associated with excess GAs, such as early bolting in short days, resistance to the GA biosynthesis inhibitor ancymidol, and decreased mRNA levels of AtGA20ox1, a gene in the GA biosynthetic pathway.
Collapse
Affiliation(s)
- Fritz M Schomburg
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
37
|
Fleck B, Harberd NP. Evidence that the Arabidopsis nuclear gibberellin signalling protein GAI is not destabilised by gibberellin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:935-47. [PMID: 12492836 DOI: 10.1046/j.1365-313x.2002.01478.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant growth is regulated by bioactive gibberellin (GA), although there is an unexplained diversity in the magnitude of the GA responses exhibited by different plant species. GA acts via a group of orthologous proteins known as the DELLA proteins. The Arabidopsis genome contains genes encoding five different DELLA proteins, the best known of which are GAI and RGA. The DELLA proteins are thought to act as repressors of GA-regulated processes, whilst GA is thought to act as a negative regulator of DELLA protein function. Recent experiments have shown that GA induces rapid disappearance of nuclear RGA, SLR1 and SLN1 (DELLA proteins from rice and barley), suggesting that GA signalling and degradation of DELLA proteins are coupled. However, RGL1, another Arabidopsis DELLA protein, does not disappear from the nucleus in response to GA treatment. Here, we present evidence suggesting that GAI, like RGL1, is stable in response to GA treatment, and show that transgenic Arabidopsis plants containing constructs that enable high-level expression of GAI exhibit a dwarf, GA non-responsive phenotype. Thus, GAI appears to be less affected by GA than RGA, SLR1 or SLN1. We also show that neither of the two putative nuclear localisation signals contained in DELLA proteins are individually necessary for nuclear localisation of GAI. The various DELLA proteins have different properties, and we suggest that this functional diversity may explain, at least in part, why plant species differ widely in their GA response magnitudes.
Collapse
Affiliation(s)
- Barbara Fleck
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UJ, UK
| | | |
Collapse
|
38
|
Fu X, Richards DE, Ait-Ali T, Hynes LW, Ougham H, Peng J, Harberd NP. Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor. THE PLANT CELL 2002; 14:3191-200. [PMID: 12468736 PMCID: PMC151211 DOI: 10.1105/tpc.006197] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2002] [Accepted: 09/13/2002] [Indexed: 05/18/2023]
Abstract
DELLA proteins are nuclear repressors of plant gibberellin (GA) responses. Here, we investigate the properties of SLN1, a DELLA protein from barley that is destabilized by GA treatment. Using specific inhibitors of proteasome function, we show that proteasome-mediated protein degradation is necessary for GA-mediated destabilization of SLN1. We also show that GA responses, such as the aleurone alpha-amylase response and seedling leaf extension growth, require proteasome-dependent GA-mediated SLN1 destabilization. In further experiments with protein kinase and protein phosphatase inhibitors, we identify two additional signaling steps that are necessary for GA response and for GA-mediated destabilization of SLN1. Thus, GA signaling involves protein phosphorylation and dephosphorylation steps and promotes the derepression of GA responses via proteasome-dependent destabilization of DELLA repressors.
Collapse
Affiliation(s)
- Xiangdong Fu
- John Innes Centre, Colney Lane, Norwich NR4 7UJ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
39
|
Chandler PM, Marion-Poll A, Ellis M, Gubler F. Mutants at the Slender1 locus of barley cv Himalaya. Molecular and physiological characterization. PLANT PHYSIOLOGY 2002; 129:181-90. [PMID: 12011349 PMCID: PMC155882 DOI: 10.1104/pp.010917] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2001] [Revised: 11/15/2001] [Accepted: 01/20/2002] [Indexed: 05/18/2023]
Abstract
A dominant dwarf mutant of barley (Hordeum vulgare) that resembles dominant gibberellin (GA) "-insensitive" or "-nonresponsive" mutants in other species is described. alpha-Amylase production by endosperm half-grains of the mutant required GA3 at concentrations about 100 times that of the WT. The mutant showed only a slight growth response to GA3, even at very high concentrations. However, when additionally dwarfed, growth rate responded to GA3 over the normal concentration range, although only back to the original (dwarf) elongation rate. Genetic studies indicated that the dominant dwarf locus was either closely linked or identical to the Sln1 (Slender1) locus. A barley sequence related to Arabidopsis GAI/RGA was isolated, and shown to represent the Sln1 locus by the analysis of sln1 mutants. The dominant dwarf mutant was also altered in this sequence, indicating that it too is an allele at Sln1. Thus, mutations at Sln1 generate plants of radically different phenotypes; either dwarfs that are largely dominant and GA "-insensitive/-nonresponsive," or the recessive slender types in which GA responses appear to be constitutive. Immunoblotting studies showed that in growing leaves, SLN1 protein localized almost exclusively to the leaf elongation zone. In mutants at the Sln1 locus, there were differences in both the abundance and distribution of SLN1 protein, and large changes in the amounts of bioactive GAs, and of their metabolic precursors and catabolites. These results suggest that there are dynamic interactions between SLN1 protein and GA content in determining leaf elongation rate.
Collapse
Affiliation(s)
- Peter Michael Chandler
- Commonwealth Scientific and Industrial Research Organization, Plant Industry, G.P.O. Box 1600, Canberra, Australian Capitol Territory 2601, Australia.
| | | | | | | |
Collapse
|
40
|
Lee S, Cheng H, King KE, Wang W, He Y, Hussain A, Lo J, Harberd NP, Peng J. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev 2002; 16:646-58. [PMID: 11877383 PMCID: PMC155355 DOI: 10.1101/gad.969002] [Citation(s) in RCA: 419] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The germination of Arabidopsis seeds is promoted by gibberellin (GA). Arabidopsis GAI, and RGA are genes encoding key GA signal-transduction components (GAI and RGA) that mediate GA regulation of stem elongation. The Arabidopsis genome contains two further genes, RGL1 and RGL2, that encode proteins (RGL1 and RGL2) that are closely related to GAI and RGA. Here, we show that RGL2 regulates seed germination in response to GA, and that RGL1, GAI, and RGA do not. In addition, we show that RGL2 transcript levels rise rapidly following seed imbibition, and then decline rapidly as germination proceeds. In situ GUS staining revealed that RGL2 expression in imbibed seeds is restricted to elongating regions of pre-emergent and recently emerged radicles. These observations indicate that RGL2 is a negative regulator of GA responses that acts specifically to control seed germination rather than stem elongation. Furthermore, as RGL2 expression is imbibition inducible, RGL2 may function as an integrator of environmental and endogenous cues to control seed germination.
Collapse
Affiliation(s)
- Sorcheng Lee
- Institute of Molecular Agrobiology, National University of Singapore, Singapore 117604
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Olszewski N, Sun TP, Gubler F. Gibberellin signaling: biosynthesis, catabolism, and response pathways. THE PLANT CELL 2002; 14 Suppl:S61-S80. [PMID: 12045270 DOI: 10.1105/tpc.010476.gas] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Neil Olszewski
- Department of Plant Biology and Plant Molecular Genetics Institute, University of Minnesota, St. Paul, MN 55108-1095, USA.
| | | | | |
Collapse
|
42
|
Wen CK, Chang C. Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. THE PLANT CELL 2002; 14:87-100. [PMID: 11826301 PMCID: PMC150553 DOI: 10.1105/tpc.010325] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2001] [Accepted: 10/11/2001] [Indexed: 05/18/2023]
Abstract
In Arabidopsis, the DELLA subfamily of GRAS regulatory genes consists of GAI, RGA, RGA-LIKE1 (RGL1), RGL2, and RGL3. GAI and RGA are known to be negative regulators of gibberellin (GA) responses. We found that RGL1 is a similar repressor of GA responses, as revealed by RGL1 gain-of-function and loss-of-function phenotypes. Repression of GA responses in Arabidopsis was conferred by a dominant 35S-rgl1 transgene carrying a DELLA domain deletion analogous to the GA-insensitive gai-1 mutation. As in GA-deficient Arabidopsis, the transgenic plants were dark green dwarfs with underdeveloped trichomes and flowers. Expression levels of GA4, a feedback-regulated GA biosynthetic gene, were increased correspondingly. Conversely, a loss-of-function rgl1 line had reduced GA4 expression and exhibited GA-independent activation of seed germination, leaf expansion, flowering, stem elongation, and floral development, as detected by resistance to the GA biosynthesis inhibitor paclobutrazol. RGL1 plays a greater role in seed germination than do GAI and RGA. The expression profile of RGL1 differed from those of the four other DELLA homologs. RGL1 message levels were predominant in flowers, with transcripts detected in developing ovules and anthers. As with RGA, green fluorescent protein (GFP)-tagged RGL1 protein was localized to the nucleus, but unlike GFP-RGA, there was no degradation after GA treatment. These findings indicate that RGL1 is a partially redundant, but distinct, negative regulator of GA responses and suggest that all DELLA subfamily members might possess separate as well as overlapping roles in GA signaling.
Collapse
Affiliation(s)
- Chi-Kuang Wen
- Department of Cell Biology and Molecular Genetics, Maryland Agricultural Experiment Station, H.J. Patterson Hall, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
43
|
Olszewski N, Sun TP, Gubler F. Gibberellin signaling: biosynthesis, catabolism, and response pathways. THE PLANT CELL 2002; 14 Suppl:S61-80. [PMID: 12045270 PMCID: PMC151248 DOI: 10.1105/tpc.010476] [Citation(s) in RCA: 594] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2001] [Accepted: 02/11/2002] [Indexed: 05/17/2023]
Affiliation(s)
- Neil Olszewski
- Department of Plant Biology and Plant Molecular Genetics Institute, University of Minnesota, St. Paul, MN 55108-1095, USA.
| | | | | |
Collapse
|
44
|
Olszewski N, Sun TP, Gubler F. Gibberellin signaling: biosynthesis, catabolism, and response pathways. THE PLANT CELL 2002. [PMID: 12045270 DOI: 10.2307/3871750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Neil Olszewski
- Department of Plant Biology and Plant Molecular Genetics Institute, University of Minnesota, St. Paul, MN 55108-1095, USA.
| | | | | |
Collapse
|