1
|
Hurrah IM, Mohammad, Kumar A, Abbas N. Synergistic interaction of AaMYC2 and AaMYC2-LIKE enhances artemisinin production in Artemisia annua L. J Biotechnol 2025; 402:69-78. [PMID: 40107365 DOI: 10.1016/j.jbiotec.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/07/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Artemisinin-based combination therapies recommended by WHO marks Artemisia annua as the only natural source of artemisinin fighting deadly disease, Malaria. In this study, we isolated two transcription factors, AaMYC2 and AaMYC2-LIKE, from A. annua and investigated their role in regulating artemisinin biosynthetic pathway. Our findings depict that both AaMYC2 and AaMYC2-LIKE are transcriptionally active and, when co-transformed in yeast cells, significantly enhance β-galactosidase activity in transactivation assays as compared to their individual transformations. Furthermore, Yeast two-hybrid (Y2H) and Biomolecular fluorescence complementation assays revealed AaMYC2 physically interacts with AaMYC2-LIKE in yeast cells and in the nucleus of onion epidermal cells respectively. Generation of transient transgenic over expression and co-expression lines of AaMYC2 and AaMYC2-LIKE resulted in elevated expression of artemisinin biosynthetic genes and trichome development genes in co-expression lines as compared to individual transgenic lines and wildtype. Importantly, the glandular trichome density and artemisinin content was also significantly higher in co-transformed transgenic lines compared to individual AaMYC2 and AMYC2-LIKE transgenic lines. Conversely, artemisinin content was markedly reduced in AaMYC2-RNAi lines, underscoring the critical role of functional AaMYC2 in synergistic regulation with AaMYC2-LIKE. Altogether the above studies provide valuable insights into the regulatory networks of MYC type bHLH transcription factors in controlling economically and medically important pathway in A. annua.
Collapse
Affiliation(s)
- Ishfaq Majid Hurrah
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, J&K 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Mohammad
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, J&K 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Amit Kumar
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, 180001, India
| | - Nazia Abbas
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, J&K 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India.
| |
Collapse
|
2
|
Xiang G, Fan Z, Lan S, Wei D, Gao Y, Kang H, Yao Y. Ethylene increases the NaHCO 3 stress tolerance of grapevines partially via the VvERF1B-VvMYC2-VvPMA10 pathway. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1076-1090. [PMID: 39777954 PMCID: PMC11933843 DOI: 10.1111/pbi.14565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
Here, we evaluated the role of ethylene in regulating the NaHCO3 stress tolerance of grapevines and clarified the mechanism by which VvERF1B regulates the response to NaHCO3 stress. The exogenous application of ACC and VvACS3 overexpression in grapevines and grape calli revealed that ethylene increased NaHCO3 stress tolerance, and this was accompanied by increased plasma membrane H+-ATPase (PMA) activity. The expression of VvERF1B was strongly induced by ACC, and overexpression of this gene in grapevines conferred increased NaHCO3 stress tolerance and enhanced PMA activity and H+ and oxalate secretion. Additionally, the function of VvERF1B was also verified using mutant transgenic grape calli and overexpression in Arabidopsis plants. The expression of VvPMA10 was strongly induced following the overexpression of VvERF1B in grapevine roots, and VvPMA10 was shown to regulate PMA activity, oxalate and H+ secretion, and NaHCO3 stress tolerance via its overexpression and mutation in grapevine roots, calli, and/or Arabidopsis. However, VvPMA10 was not a direct target gene of VvERF1B but was directly transactivated by VvMYC2. The function of VvMYC2 was shown to be similar to that of VvPMA10 via its overexpression and mutation in grape calli. Additional experiments revealed that the interaction of VvERF1B with VvMYC2 increased its ability to activate VvPMA10 expression and that VvMYC2 played a role in the VvERF1B-mediated pathway. Overall, the VvERF1B-VvMYC2-VvPMA pathway played a role in regulating ethylene-induced NaHCO3 stress tolerance in grapevines, and this process contributed to increases in PMA activity and H+ and oxalate secretion.
Collapse
Affiliation(s)
- Guangqing Xiang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang‐Huai Region, Ministry of AgricultureCollege of Horticulture Science and Engineering, Shandong Agricultural UniversityTai‐AnChina
| | - Zongbao Fan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang‐Huai Region, Ministry of AgricultureCollege of Horticulture Science and Engineering, Shandong Agricultural UniversityTai‐AnChina
| | - Shuxia Lan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang‐Huai Region, Ministry of AgricultureCollege of Horticulture Science and Engineering, Shandong Agricultural UniversityTai‐AnChina
| | - Dezheng Wei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang‐Huai Region, Ministry of AgricultureCollege of Horticulture Science and Engineering, Shandong Agricultural UniversityTai‐AnChina
| | - Yazhe Gao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang‐Huai Region, Ministry of AgricultureCollege of Horticulture Science and Engineering, Shandong Agricultural UniversityTai‐AnChina
| | - Hui Kang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang‐Huai Region, Ministry of AgricultureCollege of Horticulture Science and Engineering, Shandong Agricultural UniversityTai‐AnChina
| | - Yuxin Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang‐Huai Region, Ministry of AgricultureCollege of Horticulture Science and Engineering, Shandong Agricultural UniversityTai‐AnChina
- National Center of Technology Innovation for Comprehensive Utilization of Saline‐Alkali LandDongyingChina
| |
Collapse
|
3
|
Waite JM, Burchard E, Dardick C, Hollender CA. Peach ( Prunus persica ) TAC1 protein interaction with a LIGHT HARVESTING CHLOROPHYLL A/B BINDING (LHCB) homolog and transcriptomic analyses reveal connections to photosynthesis. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001371. [PMID: 40052140 PMCID: PMC11883482 DOI: 10.17912/micropub.biology.001371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/17/2025] [Accepted: 02/14/2025] [Indexed: 03/09/2025]
Abstract
Plants receive and interpret external light, gravity, and temperature cues to both set and change the angles of their lateral organs for optimal growth and development. In recent years, the roles of the IGT/LAZY protein family in integrating light and gravity cues have become increasingly apparent. Here we investigated protein-protein interactions for peach ( Prunus persica ) TAC1 (PpeTAC1). TAC1 is a light-regulated IGT/LAZY family member involved in maintaining outward growth of lateral branches in numerous plant species. Using a yeast-two-hybrid screen with a peach library, we identified three candidate protein interactors, including a LIGHT HARVESTING CHLOROPHYLL A/B BINDING (LHCB) family protein. We found that neither TAC1 silencing nor PpeTAC1 overexpression in plum ( P. domestica ) altered chlorophyll content, despite a recent finding that LAZY1 -silenced plum trees have chlorotic leaves due to reduced chlorophyll. However, we identified multiple differentially expressed chloroplast-, photosynthesis-, and light-related genes between tac1 mutant and standard peaches. Collectively, we identified connections between PpeTAC1 and chloroplasts, photosynthesis-related machinery, and light. This data supports a role for the TAC1 protein as an integrator of light perception into mechanisms controlling lateral organ orientation in concert with or in parallel to the LAZY/DRO gravitropic-response pathway.
Collapse
|
4
|
Dutta S, Chattopadhyay S, Maurya JP. The concerted function of a novel class of transcription factors, ZBFs, in light, jasmonate, and abscisic acid signaling pathways. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:746-768. [PMID: 39115948 DOI: 10.1093/jxb/erae323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
Several classes of transcription factors have been investigated in light signaling pathways that bind to the light-responsive elements (LREs) present in the promoters of light regulatory genes for transcriptional regulation. Some of these transcription factors have been shown to bind to numerous promoters through genome-wide ChIP-on-chip (ChIP-chip) studies. Furthermore, through the integration of ChIP-seq and RNA-seq techniques, it has been demonstrated that a transcription factor modifies the expression of numerous genes with which it interacts. However, the mode of action of these transcription factors and their dependency on other regulators in the pathway has just started to be unraveled. In this review, we focus on a particular class of transcription factors, ZBFs (Z-box-binding factors), and their associated partners within the same or other classes of transcription factors and regulatory proteins during photomorphogenesis. Moreover, we have further made an attempt to summarize the crosstalk of these transcription factors with jasmonic acid-, abscisic acid-, and salicylic acid-mediated defense signaling pathways. This review offers an in-depth insight into the manner in which ZBFs and their interactors reshape cellular functions and plant behavior. The underlying principles not only contribute to a comprehensive understanding but also establish a framework for analyzing the interplay between early developmental events and hormone signaling, a regulation orchestrated by the ZBF family.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Biotechnology, School of Health Science and Translational Research, Sister Nivedita University, Kolkata 700156, West Bengal, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal 713209, India
| | - Jay Prakash Maurya
- Plant Development and Molecular Biology Lab, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
5
|
Garhwal V, Das S, Gangappa S. Unequal Genetic Redundancies Among MYC bHLH Transcription Factors Underlie Seedling Photomorphogenesis in Arabidopsis. PLANT DIRECT 2025; 9:e700042. [PMID: 39950159 PMCID: PMC11825187 DOI: 10.1002/pld3.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/18/2024] [Accepted: 01/09/2025] [Indexed: 02/16/2025]
Abstract
Light is one of the most critical ecological cues controlling plant growth and development. Plants have evolved complex mechanisms to cope with fluctuating light signals. In Arabidopsis, bHLH transcription factors MYC2, MYC3, and MYC4 have been shown to play a vital role in protecting plants against herbivory and necrotrophic pathogens. While the role of MYC2 in light-mediated seedling development has been studied in some detail, the role of MYC3 and MYC4 still needs to be discovered. Here, we show that MYC4 negatively regulates seedling photomorphogenesis, while the MYC3 function seems redundant. However, the genetic analysis reveals that MYC3/MYC4 together act as positive regulators of seedling photomorphogenic growth as the myc3myc4 double mutants showed exaggerated hypocotyl growth compared to the myc3 and myc4 single mutants and Col-0. Intriguingly, the loss of MYC2 function in the myc3myc4 double mutant background (myc2myc3myc4) resulted in further enhancement in the hypocotyl growth than myc3myc4 double mutants in WL, BL and FRL, suggesting that MYC2/3/4 together play an essential and positive role in meditating optimal seedling photomorphogenesis. Besides, MYC3/MYC4 genetically and physically interact with HY5 to partially inhibit its function in controlling hypocotyl and photo-pigment accumulation. Moreover, our results suggest that COP1 physically interacts and degrades MYC3 and MYC4 through the 26S proteasomal pathway and controls their response to dark and light for fine-tuning HY5 function and seedling photomorphogenesis.
Collapse
Affiliation(s)
- Vikas Garhwal
- Department of Biological SciencesIndian Institute of Science Education and Research KolkataMohanpurIndia
| | - Sreya Das
- Department of Biological SciencesIndian Institute of Science Education and Research KolkataMohanpurIndia
| | - Sreeramaiah N. Gangappa
- Department of Biological SciencesIndian Institute of Science Education and Research KolkataMohanpurIndia
| |
Collapse
|
6
|
Wang P, Wu X, Li N, Nie H, Ma Y, Wu J, Zhang Z, Ma Y. The StbHLH47 transcription factor negatively regulates drought tolerance in potato (Solanum tuberosum L.). BMC PLANT BIOLOGY 2025; 25:14. [PMID: 39754033 PMCID: PMC11699788 DOI: 10.1186/s12870-024-06010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms. The bHLH transcription factors involved play crucial roles not only in plant development and growth but also in responsesresponse to abiotic stress. RESULTS In this study, the StbHLH47 gene, which is highly expressed in potato leaves, was cloned and isolated. Subcellular localization assays revealed that the gene StbHLH47 performs transcriptional functions in the nucleus, as evidenced by increased malondialdehyde (MDA) content and relative conductivity under drought stress. These findings indicate that overexpressing plants are more sensitive to drought stress. Differential gene expression analysis of wild-type plants (WT) and plants overexpressing StbHLH47 (OE-StbHLH47) under drought stress revealed that the significantly differentially expressed genes were enriched in metabolic pathways, biosynthesis of various plant secondary metabolites, biosynthesis of metabolites, plant hormone signal transduction, mitogen-activated protein kinase (MAPK) signalling pathway-plant, phenylpropanoid biosynthesis, and plant‒pathogen interactions. Among these pathways, the phenylalanine and abscisic acid (ABA) signal transduction pathways were enriched in a greater number of differentially expressed genes, and the expression trends of these differentially expressed genes (DEGs) were significantly different between WT and OE-StbHLH47. Therefore, it is speculated that StbHLH47 may regulate drought resistance mainly through these two pathways. Additionally, RT‒qPCR was used for fluorescence quantification of the expression of StNCED1 and StERD11, which are known for their drought resistance, and the results revealed that the expression levels were much lower in OE-StbHLH47 than in WT plants. CONCLUSION RNA-seq, RT‒qPCR, and physiological index analyses under drought conditions revealed that overexpression of the StbHLH47 gene increased the sensitivity of potato plants to drought stress, indicating that StbHLH47 negatively regulates drought tolerance in potato plants. In summary, our results indicate that StbHLH47 is a negative regulator of drought tolerance and provide a theoretical basis for further studies on the molecular mechanism involved.
Collapse
Affiliation(s)
- Peijie Wang
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Xiaojuan Wu
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Nan Li
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Hushuai Nie
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Yu Ma
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Juan Wu
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Zhicheng Zhang
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
- Institute of Ulanqab Agricultural and Forestry Sciences, Ulanqab, 012000, China
| | - Yanhong Ma
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China.
| |
Collapse
|
7
|
Pan L, Huang C, Li R, Li Y. The bHLH Transcription Factor PhbHLH121 Regulates Response to Iron Deficiency in Petunia hybrida. PLANTS (BASEL, SWITZERLAND) 2024; 13:3429. [PMID: 39683222 DOI: 10.3390/plants13233429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Iron (Fe) is an essential micronutrient for plants. Due to the low Fe bioavailability in cultivated soils, Fe deficiency is a widespread agricultural problem. In this study, we present the functional characterization of a petunia (Petunia hybrida) basic-helix-loop-helix transcription factor PhbHLH121 in response to Fe shortage. Real-time PCR revealed that the expression of PhbHLH121 in petunia roots and shoots was downregulated under Fe-limited conditions. CRISPR/Cas9-edited phbhlh121 mutant plants were generated to investigate the functions of PhbHLH121 in petunia. Loss-of-function of PhbHLH121 enhanced petunia tolerance to Fe deficiency. Further investigations revealed that the expression level of several structural genes involved in Fe uptake in petunia, such as IRT1 and FRO2, was higher in phbhlh121 mutants compared to that in wild-type under Fe-limited conditions, and the expression level of several genes involved in Fe storage and Fe transport, such as VTL2, FERs and ZIF1, was lower in phbhlh121 mutants compared to that in wild-type under Fe-deficient conditions. Yeast one-hybrid assays revealed that PhbHLH121 binds to the G-box element in the promoter of genes involved in Fe homeostasis. Yeast two-hybrid assays revealed that PhbHLH121 interacts with petunia bHLH IVc proteins. Taken together, PhbHLH121 plays an important role in the Fe deficiency response in petunia.
Collapse
Affiliation(s)
- Liru Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengcheng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruiling Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanbang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Dutta S, Basu R, Pal A, Kunalika MH, Chattopadhyay S. The homeostasis of AtMYB4 is maintained by ARA4, HY5, and CAM7 during Arabidopsis seedling development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2515-2535. [PMID: 39526498 DOI: 10.1111/tpj.17126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/24/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Calmodulin7 (CAM7) is a key transcription factor of Arabidopsis seedling development. CAM7 works together with HY5 bZIP protein to promote photomorphogenesis at various wavelengths of light. In this study, we show that AtMYB4, identified from a yeast two-hybrid screen, physically interacts with CAM7 and works as a positive regulator of photomorphogenesis at various wavelengths of light. CAM7 and HY5 directly bind to the promoter of AtMYB4 to promote its expression for photomorphogenic growth. On the other hand, ARA4, identified from the same yeast two-hybrid screen, works as a negative regulator of photomorphogenic growth specifically in white light. The double mutant analysis reveals that the altered hypocotyl elongation of atmyb4 and ara4 is either partly or completely suppressed by additional loss of function of CAM7. Furthermore, ARA4 genetically interacts with AtMYB4 in an antagonistic manner to suppress the elongated hypocotyl phenotype of atmyb4. The transactivation studies reveal that while CAM7 activates the promoter of AtMYB4 in association with HY5, ARA4 negatively regulates AtMYB4 expression. Taken together, these results demonstrate that working as a negative regulator of photomorphogenesis, ARA4 plays a balancing act on CAM7 and HY5-mediated regulation of AtMYB4.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Riya Basu
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Abhideep Pal
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - M H Kunalika
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| |
Collapse
|
9
|
Cao L, Liu L, Zhang C, Ren W, Zheng J, Tao C, Zhu W, Xiang M, Wang L, Liu Y, Cao S, Zheng P. The MYC2 and MYB43 transcription factors cooperate to repress HMA2 and HMA4 expression, altering cadmium tolerance in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135703. [PMID: 39226685 DOI: 10.1016/j.jhazmat.2024.135703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Cadmium (Cd) represents a hazardous heavy metal, prevalent in agricultural soil due to industrial and agricultural expansion. Its propensity for being absorbed by edible plants, even at minimal concentrations, and subsequently transferred along the food chain poses significant risks to human health. Accordingly, it is imperative to investigate novel genes and mechanisms that govern Cd tolerance and detoxification in plants. Here, we discovered that the transcription factor MYC2 directly binds to the promoters of HMA2 and HMA4 to repress their expression, thereby altering the distribution of Cd in plant tissues and negatively regulating Cd stress tolerance. Additionally, molecular, biochemical, and genetic analyses revealed that MYC2 interacts and cooperates with MYB43 to negatively regulate the expression of HMA2 and HMA4 and Cd stress tolerance. Notably, under Cd stress conditions, MYC2 undergoes degradation, thereby alleviating its inhibitory effect on HMA2 and HMA4 expression and plant tolerance to Cd stress. Thus, our study highlights the dynamic regulatory role of MYC2, in concert with MYB43, in regulating the expression of HMA2 and HMA4 under both normal and Cd stress conditions. These findings present MYC2 as a promising target for directed breeding efforts aimed at mitigating Cd accumulation in edible plant roots.
Collapse
Affiliation(s)
- Lei Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Linyao Liu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Cheng Zhang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Wangmei Ren
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Jiale Zheng
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Cheng Tao
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Wenyan Zhu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Minghao Xiang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Lihuan Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yongsheng Liu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Pengpeng Zheng
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
10
|
Li Z, Huang Y, Shen Z, Wu M, Huang M, Hong SB, Xu L, Zang Y. Advances in functional studies of plant MYC transcription factors. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:195. [PMID: 39103657 DOI: 10.1007/s00122-024-04697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Myelocytomatosis (MYC) transcription factors (TFs) belong to the basic helix-loop-helix (bHLH) family in plants and play a central role in governing a wide range of physiological processes. These processes encompass plant growth, development, adaptation to biotic and abiotic stresses, as well as secondary metabolism. In recent decades, significant strides have been made in comprehending the multifaceted regulatory functions of MYCs. This advancement has been achieved through the cloning of MYCs and the characterization of plants with MYC deficiencies or overexpression, employing comprehensive genome-wide 'omics' and protein-protein interaction technologies. MYCs act as pivotal components in integrating signals from various phytohormones' transcriptional regulators to orchestrate genome-wide transcriptional reprogramming. In this review, we have compiled current research on the role of MYCs as molecular switches that modulate signal transduction pathways mediated by phytohormones and phytochromes. This comprehensive overview allows us to address lingering questions regarding the interplay of signals in response to environmental cues and developmental shift. It also sheds light on the potential implications for enhancing plant resistance to diverse biotic and abiotic stresses through genetic improvements achieved by plant breeding and synthetic biology efforts.
Collapse
Affiliation(s)
- Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yunshuai Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhiwei Shen
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Mujun Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX, 77058-1098, USA
| | - Liai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
11
|
Marciniak K, Przedniczek K, Kęsy J, Święcicki W, Kopcewicz J. The development of yellow lupin anthers depends on the relationship between jasmonic acid and indole-3-acetic acid. PHYSIOLOGIA PLANTARUM 2024; 176:e14385. [PMID: 38956782 DOI: 10.1111/ppl.14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
The main purpose of this study was to demonstrate that the course of anther development, including post-meiotic maturation, dehiscence and senescence, is ensured by the interdependencies between jasmonic acid (JA) and indole-3-acetic acid (IAA) in yellow lupin (Lupinus luteus L.). The concentration of JA peaked during anther dehiscence when IAA level was low, whereas the inverse relationship was specific to anther senescence. Cellular and tissue localization of JA and IAA, in conjunction with broad expression profile for genes involved in biosynthesis, signalling, response, and homeostasis under different conditions, allowed to complete and define the role of studied phytohormones during late anther development, as well as predict events triggered by them. The development/degeneration of septum and anther wall cells, dehydration of epidermis, and rupture of stomium may involve JA signalling, while the formation of secondary thickening in endothecial cell walls is rather JA independent. The IAA is involved in programmed cell death (PCD)-associated processes during anther senescence but does not exclude its participation in the anther dehiscence processes, mainly related to cell disintegration and degeneration. A detailed understanding of these multistage processes, especially at the level of phytohormonal interplay, can contribute to the effective control of male fertility, potentially revolutionizing the breeding of L. luteus.
Collapse
Affiliation(s)
- Katarzyna Marciniak
- Faculty of Biological and Veterinary Sciences, Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Przedniczek
- Faculty of Biological and Veterinary Sciences, Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Toruń, Poland
| | - Jacek Kęsy
- Faculty of Biological and Veterinary Sciences, Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Toruń, Poland
| | | | - Jan Kopcewicz
- Faculty of Biological and Veterinary Sciences, Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
12
|
Mansoor S, Tripathi P, Ghimire A, Hamid S, Abd El-Moniem D, Chung YS, Kim Y. Comparative transcriptomic analysis of the nodulation-competent zone and inference of transcription regulatory network in silicon applied Glycine max [L.]-Merr. Roots. PLANT CELL REPORTS 2024; 43:169. [PMID: 38864921 PMCID: PMC11169057 DOI: 10.1007/s00299-024-03250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
KEY MESSAGE The study unveils Si's regulatory influence by regulating DEGs, TFs, and TRs. Further bHLH subfamily and auxin transporter pathway elucidates the mechanisms enhancing root development and nodulation. Soybean is a globally important crop serving as a primary source of vegetable protein for millions of individuals. The roots of these plants harbour essential nitrogen fixing structures called nodules. This study investigates the multifaceted impact of silicon (Si) application on soybean, with a focus on root development, and nodulation employing comprehensive transcriptomic analyses and gene regulatory network. RNA sequence analysis was utilised to examine the change in gene expression and identify the noteworthy differentially expressed genes (DEGs) linked to the enhancement of soybean root nodulation and root development. A set of 316 genes involved in diverse biological and molecular pathways are identified, with emphasis on transcription factors (TFs) and transcriptional regulators (TRs). The study uncovers TF and TR genes, categorized into 68 distinct families, highlighting the intricate regulatory landscape influenced by Si in soybeans. Upregulated most important bHLH subfamily and the involvement of the auxin transporter pathway underscore the molecular mechanisms contributing to enhanced root development and nodulation. The study bridges insights from other research, reinforcing Si's impact on stress-response pathways and phenylpropanoid biosynthesis crucial for nodulation. The study reveals significant alterations in gene expression patterns associated with cellular component functions, root development, and nodulation in response to Si.
Collapse
Affiliation(s)
- Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, Jeju, 63243, Republic of Korea
| | - Pooja Tripathi
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA
| | - Amit Ghimire
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Saira Hamid
- Watson Crick Centre for Molecular Medicine, Islamia University of Science and Technology, Awantipora, Pulwama, J&K, India
| | - Diaa Abd El-Moniem
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, 45511, Egypt
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Yoonha Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Department of Integrative Biology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
13
|
Kong D, Zhou Y, Wei Y, Wang X, Huang Q, Gao X, Wan H, Liu M, Kang L, Yu G, Yin J, Guan N, Ye H. Exploring plant-derived phytochrome chaperone proteins for light-switchable transcriptional regulation in mammals. Nat Commun 2024; 15:4894. [PMID: 38849338 PMCID: PMC11161646 DOI: 10.1038/s41467-024-49254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Synthetic biology applications require finely tuned gene expression, often mediated by synthetic transcription factors (sTFs) compatible with the human genome and transcriptional regulation mechanisms. While various DNA-binding and activation domains have been developed for different applications, advanced artificially controllable sTFs with improved regulatory capabilities are required for increasingly sophisticated applications. Here, in mammalian cells and mice, we validate the transactivator function and homo-/heterodimerization activity of the plant-derived phytochrome chaperone proteins, FHY1 and FHL. Our results demonstrate that FHY1/FHL form a photosensing transcriptional regulation complex (PTRC) through interaction with the phytochrome, ΔPhyA, that can toggle between active and inactive states through exposure to red or far-red light, respectively. Exploiting this capability, we develop a light-switchable platform that allows for orthogonal, modular, and tunable control of gene transcription, and incorporate it into a PTRC-controlled CRISPRa system (PTRCdcas) to modulate endogenous gene expression. We then integrate the PTRC with small molecule- or blue light-inducible regulatory modules to construct a variety of highly tunable systems that allow rapid and reversible control of transcriptional regulation in vitro and in vivo. Validation and deployment of these plant-derived phytochrome chaperone proteins in a PTRC platform have produced a versatile, powerful tool for advanced research and biomedical engineering applications.
Collapse
Affiliation(s)
- Deqiang Kong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yang Zhou
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
- Wuhu Hospital, Health Science Center, East China Normal University, Middle Jiuhua Road 263, Wuhu City, China
| | - Yu Wei
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Xinyi Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Qin Huang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Xianyun Gao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Hang Wan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Mengyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Liping Kang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Guiling Yu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Jianli Yin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| | - Ningzi Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.
| | - Haifeng Ye
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.
- Wuhu Hospital, Health Science Center, East China Normal University, Middle Jiuhua Road 263, Wuhu City, China.
| |
Collapse
|
14
|
Banerjee S, Agarwal P, Choudhury SR, Roy S. MYB4, a member of R2R3-subfamily of MYB transcription factor functions as a repressor of key genes involved in flavonoid biosynthesis and repair of UV-B induced DNA double strand breaks in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108698. [PMID: 38714132 DOI: 10.1016/j.plaphy.2024.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/31/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Plants accumulate flavonoids as part of UV-B acclimation, while a high level of UV-B irradiation induces DNA damage and leads to genome instability. Here, we show that MYB4, a member of the R2R3-subfamily of MYB transcription factor plays important role in regulating plant response to UV-B exposure through the direct repression of the key genes involved in flavonoids biosynthesis and repair of DNA double-strand breaks (DSBs). Our results demonstrate that MYB4 inhibits seed germination and seedling establishment in Arabidopsis following UV-B exposure. Phenotype analyses of atmyb4-1 single mutant line along with uvr8-6/atmyb4-1, cop1-6/atmyb4-1, and hy5-215/atmyb4-1 double mutants indicate that MYB4 functions downstream of UVR8 mediated signaling pathway and negatively affects UV-B acclimation and cotyledon expansion. Our results indicate that MYB4 acts as transcriptional repressor of two key flavonoid biosynthesis genes, including 4CL and FLS, via directly binding to their promoter, thus reducing flavonoid accumulation. On the other hand, AtMYB4 overexpression leads to higher accumulation level of DSBs along with repressed expression of several key DSB repair genes, including AtATM, AtKU70, AtLIG4, AtXRCC4, AtBRCA1, AtSOG1, AtRAD51, and AtRAD54, respectively. Our results further suggest that MYB4 protein represses the expression of two crucial DSB repair genes, AtKU70 and AtXRCC4 through direct binding with their promoters. Together, our results indicate that MYB4 functions as an important coordinator to regulate plant response to UV-B through transcriptional regulation of key genes involved in flavonoids biosynthesis and repair of UV-B induced DNA damage.
Collapse
Affiliation(s)
- Samrat Banerjee
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713104, India
| | - Puja Agarwal
- Constituent College in Purnea University, Purnia, 854301, Bihar, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
15
|
Makhoul M, Schlichtermann RH, Ugwuanyi S, Weber SE, Voss-Fels KP, Stahl A, Zetzsche H, Wittkop B, Snowdon RJ, Obermeier C. Novel PHOTOPERIOD-1 gene variants associate with yield-related and root-angle traits in European bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:125. [PMID: 38727862 PMCID: PMC11087350 DOI: 10.1007/s00122-024-04634-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
KEY MESSAGE PHOTOPERIOD-1 homoeologous gene copies play a pivotal role in regulation of flowering time in wheat. Here, we show that their influence also extends to spike and shoot architecture and even impacts root development. The sequence diversity of three homoeologous copies of the PHOTOPERIOD-1 gene in European winter wheat was analyzed by Oxford Nanopore amplicon-based multiplex sequencing and molecular markers in a panel of 194 cultivars representing breeding progress over the past 5 decades. A strong, consistent association with an average 8% increase in grain yield was observed for the PpdA1-Hap1 haplotype across multiple environments. This haplotype was found to be linked in 51% of cultivars to the 2NS/2AS translocation, originally introduced from Aegilops ventricosa, which leads to an overestimation of its effect. However, even in cultivars without the 2NS/2AS translocation, PpdA1-Hap1 was significantly associated with increased grain yield, kernel per spike and kernel per m2 under optimal growth conditions, conferring a 4% yield advantage compared to haplotype PpdA1-Hap4. In contrast to Ppd-B1 and Ppd-D1, the Ppd-A1 gene exhibits novel structural variations and a high number of SNPs, highlighting the evolutionary changes that have occurred in this region over the course of wheat breeding history. Additionally, cultivars carrying the photoperiod-insensitive Ppd-D1a allele not only exhibit earlier heading, but also deeper roots compared to those with photoperiod-sensitive alleles under German conditions. PCR and KASP assays have been developed that can be effectively employed in marker-assisted breeding programs to introduce these favorable haplotypes.
Collapse
Affiliation(s)
- Manar Makhoul
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | | | - Samson Ugwuanyi
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Sven E Weber
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Kai P Voss-Fels
- Institute for Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Andreas Stahl
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, Quedlinburg, Germany
| | - Holger Zetzsche
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, Quedlinburg, Germany
| | - Benjamin Wittkop
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Obermeier
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
16
|
Li N, Xu Y, Lu Y. A Regulatory Mechanism on Pathways: Modulating Roles of MYC2 and BBX21 in the Flavonoid Network. PLANTS (BASEL, SWITZERLAND) 2024; 13:1156. [PMID: 38674565 PMCID: PMC11054080 DOI: 10.3390/plants13081156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Genes of metabolic pathways are individually or collectively regulated, often via unclear mechanisms. The anthocyanin pathway, well known for its regulation by the MYB/bHLH/WDR (MBW) complex but less well understood in its connections to MYC2, BBX21, SPL9, PIF3, and HY5, is investigated here for its direct links to the regulators. We show that MYC2 can activate the structural genes of the anthocyanin pathway but also suppress them (except F3'H) in both Arabidopsis and Oryza when a local MBW complex is present. BBX21 or SPL9 can activate all or part of the structural genes, respectively, but the effects can be largely overwritten by the local MBW complex. HY5 primarily influences expressions of the early genes (CHS, CHI, and F3H). TF-TF relationships can be complex here: PIF3, BBX21, or SPL9 can mildly activate MYC2; MYC2 physically interacts with the bHLH (GL3) of the MBW complex and/or competes with strong actions of BBX21 to lessen a stimulus to the anthocyanin pathway. The dual role of MYC2 in regulating the anthocyanin pathway and a similar role of BBX21 in regulating BAN reveal a network-level mechanism, in which pathways are modulated locally and competing interactions between modulators may tone down strong environmental signals before they reach the network.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunzhang Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yingqing Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Mittal D, Gautam JK, Varma M, Laie A, Mishra S, Behera S, Vadassery J. External jasmonic acid isoleucine mediates amplification of plant elicitor peptide receptor (PEPR) and jasmonate-based immune signalling. PLANT, CELL & ENVIRONMENT 2024; 47:1397-1415. [PMID: 38229005 DOI: 10.1111/pce.14812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/21/2023] [Accepted: 12/31/2023] [Indexed: 01/18/2024]
Abstract
Jasmonic acid-isoleucine (JA-Ile) is a plant defence hormone whose cellular levels are elevated upon herbivory and regulate defence signalling. Despite their pivotal role, our understanding of the rapid cellular perception of bioactive JA-Ile is limited. This study identifies cell type-specific JA-Ile-induced Ca2+ signal and its role in self-amplification and plant elicitor peptide receptor (PEPR)-mediated signalling. Using the Ca2+ reporter, R-GECO1 in Arabidopsis, we have characterized a monophasic and sustained JA-Ile-dependent Ca2+ signature in leaf epidermal cells. The rapid Ca2+ signal is independent of positive feedback by the JA-Ile receptor, COI1 and the transporter, JAT1. Microarray analysis identified up-regulation of receptors, PEPR1 and PEPR2 upon JA-Ile treatment. The pepr1 pepr2 double mutant in R-GECO1 background exhibits impaired external JA-Ile induced Ca2+ cyt elevation and impacts the canonical JA-Ile responsive genes. JA responsive transcription factor, MYC2 binds to the G-Box motif of PEPR1 and PEPR2 promoter and activates their expression upon JA-Ile treatment and in myc2 mutant, this is reduced. External JA-Ile amplifies AtPep-PEPR pathway by increasing the AtPep precursor, PROPEP expression. Our work shows a previously unknown non-canonical PEPR-JA-Ile-Ca2+ -MYC2 signalling module through which plants sense JA-Ile rapidly to amplify both AtPep-PEPR and jasmonate signalling in undamaged cells.
Collapse
Affiliation(s)
- Deepika Mittal
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | | | - Mahendra Varma
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Amrutha Laie
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Shruti Mishra
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Smrutisanjita Behera
- CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | |
Collapse
|
18
|
Lv W, Jiang H, Cao Q, Ren H, Wang X, Wang Y. A tau class glutathione S-transferase in tea plant, CsGSTU45, facilitates tea plant susceptibility to Colletotrichum camelliae infection mediated by jasmonate signaling pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1356-1376. [PMID: 38059663 DOI: 10.1111/tpj.16567] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/10/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Tea plant [Camellia sinensis (L.) O. Kuntze], as one of the most important commercial crops, frequently suffers from anthracnose caused by Colletotrichum camelliae. The plant-specific tau (U) class of glutathione S-transferases (GSTU) participates in ROS homeostasis. Here, we identified a plant-specific GST tau class gene from tea plant, CsGSTU45, which is induced by various stresses, including C. camelliae infection, by analyzing multiple transcriptomes. CsGSTU45 plays a negative role in disease resistance against C. camelliae by accumulating H2 O2 . JA negatively regulates the resistance of tea plants against C. camelliae, which depends on CsGSTU45. CsMYC2.2, which is the key regulator in the JA signaling pathway, directly binds to and activates the promoter of CsGSTU45. Furthermore, silencing CsMYC2.2 increased disease resistance associated with reduced transcript and protein levels of CsGSTU45, and decreased contents of H2 O2 . Therefore, CsMYC2.2 suppresses disease resistance against C. camelliae by binding to the promoter of the CsGSTU45 gene and activating CsGSTU45. CsJAZ1 interacts with CsMYC2.2. Silencing CsJAZ1 attenuates disease resistance, upregulates the expression of CsMYC2.2 elevates the level of the CsGSTU45 protein, and promotes the accumulation of H2 O2 . As a result, CsJAZ1 interacts with CsMYC2.2 and acts as its repressor to suppress the level of CsGSTU45 protein, eventually enhancing disease resistance in tea plants. Taken together, the results show that the JA signaling pathway mediated by CsJAZ1-CsMYC2.2 modulates tea plant susceptibility to C. camelliae by regulating CsGSTU45 to accumulate H2 O2 .
Collapse
Affiliation(s)
- Wuyun Lv
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Hong Jiang
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Qinghai Cao
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Henze Ren
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Xinchao Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, Zhejiang, China
| | - Yuchun Wang
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, Zhejiang, China
| |
Collapse
|
19
|
Waite JM, Dardick C. IGT/LAZY genes are differentially influenced by light and required for light-induced change to organ angle. BMC Biol 2024; 22:8. [PMID: 38233837 PMCID: PMC10795295 DOI: 10.1186/s12915-024-01813-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Plants adjust their growth orientations primarily in response to light and gravity signals. Considering that the gravity vector is fixed and the angle of light incidence is constantly changing, plants must somehow integrate these signals to establish organ orientation, commonly referred to as gravitropic set-point angle (GSA). The IGT gene family contains known regulators of GSA, including the gene clades LAZY, DEEPER ROOTING (DRO), and TILLER ANGLE CONTROL (TAC). RESULTS Here, we investigated the influence of light on different aspects of GSA phenotypes in LAZY and DRO mutants, as well as the influence of known light signaling pathways on IGT gene expression. Phenotypic analysis revealed that LAZY and DRO genes are collectively required for changes in the angle of shoot branch tip and root growth in response to light. Single lazy1 mutant branch tips turn upward in the absence of light and in low light, similar to wild-type, and mimic triple and quadruple IGT mutants in constant light and high-light conditions, while triple and quadruple IGT/LAZY mutants show little to no response to changing light regimes. Further, the expression of IGT/LAZY genes is differentially influenced by daylength, circadian clock, and light signaling. CONCLUSIONS Collectively, the data show that differential expression of LAZY and DRO genes are required to enable plants to alter organ angles in response to light-mediated signals.
Collapse
Affiliation(s)
- Jessica Marie Waite
- United States Department of Agriculture (USDA) Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, USA.
- Present Address: USDA Tree Fruit Research Laboratory, 1104 N Western Avenue, Wenatchee, WA, USA.
| | - Christopher Dardick
- United States Department of Agriculture (USDA) Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, USA
| |
Collapse
|
20
|
Yeqing C, Jun L, Weinan W, Chunguo F, Guozhen Y, Jingjing S, Jinyi L, Changquan W. Rose long noncoding RNA lncWD83 promotes flowering by modulating ubiquitination of the floral repressor RcMYC2L. PLANT PHYSIOLOGY 2023; 193:2573-2591. [PMID: 37723122 PMCID: PMC10663112 DOI: 10.1093/plphys/kiad502] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Long noncoding RNAs (lncRNAs) play important roles in various signaling pathways in vascular plants. However, the crosstalk between lncRNAs and E3 ubiquitin ligases has been barely reported. In this study, we demonstrate that the lncRNA lncWD83 from rose (Rosa chinensis) 'Old blush' activates flowering by modulating the ubiquitination of the floral repressor MYC2 LIKE (RcMYC2L). Flowering was substantially delayed in rose by virus-induced gene silencing of lncWD83. In an in vitro pull-down assay, lncWD83 associated with PLANT U-BOX PROTEIN 11 (PUB11), a U-box-containing E3 ubiquitin ligase. Seedlings with knocked down RcPUB11 transcripts phenocopied the later-flowering phenotype of lncWD83-silenced seedlings. RcMYC2L physically interacted with RcPUB11 and was ubiquitinated in an RcPUB11-dependent manner in vitro. Accordingly, silencing RcMYC2L fully reversed the later-flowering phenotype resulting from RcPUB11 knockdown. Furthermore, RcMYC2L bound to G-box-related motifs in the FLOWERING LOCUS T (RcFT) promoter and repressed its transcription. However, RcPUB11 alleviated this repression of RcFT expression via proteasomal degradation of RcMYC2L, and lncWD83 enhanced this degradation by associating with RcPUB11. Therefore, lncWD83 promotes flowering by modulating the ubiquitination of the floral repressor RcMYC2L in rose plants. These findings reveal a distinct regulatory mechanism for an lncRNA in facilitating ubiquitin-mediated proteolysis to regulate rose flowering.
Collapse
Affiliation(s)
- Chen Yeqing
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Jun
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wang Weinan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Chunguo
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Guozhen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sun Jingjing
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liu Jinyi
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wang Changquan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
21
|
Kućko A, de Dios Alché J, Tranbarger TJ, Wilmowicz E. Abscisic acid- and ethylene-induced abscission of yellow lupine flowers is mediated by jasmonates. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154119. [PMID: 37879220 DOI: 10.1016/j.jplph.2023.154119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
The appropriate timing of organ abscission determines plant growth, development, reproductive success, and yield in relation to crop species. Among these, yellow lupine is an example of a crop species that loses many fully developed flowers, which limits the formation of pods with high-protein seeds and affects its economic value. Lupine flower abscission, similarly to the separation of other organs, depends on a complex regulatory network functioning in the cells of the abscission zone (AZ). In the present study, genetic, biochemical, and cellular methods were used to highlight the complexity of the interactions among strong hormonal stimulators of abscission, including abscisic acid (ABA), ethylene, and jasmonates (JAs) precisely in the AZ cells, with all results supporting that the JA-related pathway has an important role in the phytohormonal cross-talk leading to flower abscission in yellow lupine. Based on obtained results, we conclude that ABA and ET have positive influence on JAs biosynthesis and signaling pathway in time-dependent manner. Both phytohormones changes lipoxygenase (LOX) gene expression, affects LOX protein abundance, and JA accumulation in AZ cells. We have also shown that the signaling pathway of JA is highly sensitive to ABA and ET, given the accumulation of COI1 receptor and MYC2 transcription factor in response to these phytohormones. The results presented provide novel information about the JAs-dependent separation of organs and provide insight and details about the phytohormone-related mechanisms of lupine flower abscission.
Collapse
Affiliation(s)
- Agata Kućko
- Department of Plant Physiology, Institute of Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008, Granada, Spain.
| | - Timothy John Tranbarger
- UMR DIADE, IRD Centre de Montpellier, Institut de Recherche pour le Développement, Université de Montpellier, 911 Avenue Agropolis BP 64501, 34394 CEDEX 5, Montpellier, France.
| | - Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, 87-100, Toruń, Poland.
| |
Collapse
|
22
|
Gao J, Dou Y, Wang X, Zhang D, Wei M, Li Y. Transcriptome analysis reveals the mechanism for blue-light-induced biosynthesis of delphinidin derivatives in harvested purple pepper fruit. FRONTIERS IN PLANT SCIENCE 2023; 14:1289120. [PMID: 37965026 PMCID: PMC10640979 DOI: 10.3389/fpls.2023.1289120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023]
Abstract
Anthocyanins are the main pigments that affect the color and quality of purple-fruited sweet pepper (Capsicum annuum). Our previous study indicated that blue light can induce anthocyanin accumulation in purple pepper. In view of its underlying mechanism that is unclear, here, anthocyanin content was determined, and transcriptome analysis was performed on pepper fruits harvested from different light treatments. As a result, among the identified anthocyanin metabolites, the levels of delphinidin (Dp) glycosides, including Dp-3-O-rhamnoside, Dp-3-O-rutinoside, and Dp-3-O-glucoside, were highly accumulated in blue-light-treated fruit, which are mainly responsible for the appearance color of purple pepper. Correlation between anthocyanin content and transcriptomic analysis indicated a total of 1,619 upregulated genes were found, of which six structural and 12 transcription factor (TF) genes were involved in the anthocyanin biosynthetic pathway. Structural gene, for instance, CaUFGT as well as TFs such as CaMYC2-like and CaERF113, which were highly expressed under blue light and presented similar expression patterns consistent with Dp glycoside accumulation, may be candidate genes for anthocyanin synthesis in response to blue-light signal.
Collapse
Affiliation(s)
- Jinhui Gao
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yuwei Dou
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xiaotong Wang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Dalong Zhang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, Tai’an, Shandong, China
| | - Min Wei
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, Tai’an, Shandong, China
| | - Yan Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, Tai’an, Shandong, China
| |
Collapse
|
23
|
Kanojia A, Bhola D, Mudgil Y. Light signaling as cellular integrator of multiple environmental cues in plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1485-1503. [PMID: 38076763 PMCID: PMC10709290 DOI: 10.1007/s12298-023-01364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 12/17/2023]
Abstract
Plants being sessile need to rapidly adapt to the constantly changing environment through modifications in their internal clock, metabolism, and gene expression. They have evolved an intricate system to perceive and transfer the signals from the primary environmental factors namely light, temperature and water to regulate their growth development and survival. Over past few decades rigorous research using molecular genetics approaches, especially in model plant Arabidopsis, has resulted in substantial progress in discovering various photoreceptor systems and light signaling components. In parallel several molecular pathways operating in response to other environmental cues have also been elucidated. Interestingly, the studies have shown that expression profiles of genes involved in photomorphogenesis can undergo modulation in response to other cues from the environment. Recently, the photoreceptor, PHYB, has been shown to function as a thermosensor. Downstream components of light signaling pathway like COP1 and PIF have also emerged as integrating hubs for various kinds of signals. All these findings indicate that light signaling components may act as central integrator of various environmental cues to regulate plant growth and development processes. In this review, we present a perspective on cross talk of signaling mechanisms induced in response to myriad array of signals and their integration with the light signaling components. By putting light signals on the central stage, we propose the possibilities of enhancing plant resilience to the changing environment by fine-tuning the genetic manipulation of its signaling components in the future.
Collapse
Affiliation(s)
- Abhishek Kanojia
- Department of Botany, University of Delhi, New Delhi, 110007 India
| | - Diksha Bhola
- Department of Botany, University of Delhi, New Delhi, 110007 India
| | - Yashwanti Mudgil
- Department of Botany, University of Delhi, New Delhi, 110007 India
| |
Collapse
|
24
|
Chen TT, Liu H, Li YP, Yao XH, Qin W, Yan X, Wang XY, Peng BW, Zhang YJ, Shao J, Hu XY, Fu XQ, Li L, Wang YL, Tang KX. AaSEPALLATA1 integrates jasmonate and light-regulated glandular secretory trichome initiation in Artemisia annua. PLANT PHYSIOLOGY 2023; 192:1483-1497. [PMID: 36810650 PMCID: PMC10231397 DOI: 10.1093/plphys/kiad113] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/24/2023] [Accepted: 02/12/2023] [Indexed: 06/01/2023]
Abstract
Glandular secretory trichomes (GSTs) can secrete and store a variety of specific metabolites. By increasing GST density, valuable metabolites can be enhanced in terms of productivity. However, the comprehensive and detailed regulatory network of GST initiation still needs further investigation. By screening a complementary DNA library derived from young leaves of Artemisia annua, we identified a MADS-box transcription factor, AaSEPALLATA1 (AaSEP1), that positively regulates GST initiation. Overexpression of AaSEP1 in A. annua substantially increased GST density and artemisinin content. The HOMEODOMAIN PROTEIN 1 (AaHD1)-AaMYB16 regulatory network regulates GST initiation via the jasmonate (JA) signaling pathway. In this study, AaSEP1 enhanced the function of AaHD1 activation on downstream GST initiation gene GLANDULAR TRICHOME-SPECIFIC WRKY 2 (AaGSW2) through interaction with AaMYB16. Moreover, AaSEP1 interacted with the JA ZIM-domain 8 (AaJAZ8) and served as an important factor in JA-mediated GST initiation. We also found that AaSEP1 interacted with CONSTITUTIVE PHOTOMORPHOGENIC 1 (AaCOP1), a major repressor of light signaling. In this study, we identified a MADS-box transcription factor that is induced by JA and light signaling and that promotes the initiation of GST in A. annua.
Collapse
Affiliation(s)
- Tian-Tian Chen
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hang Liu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong-Peng Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xing-Hao Yao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Qin
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Yan
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiu-Yun Wang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo-Wen Peng
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yao-Jie Zhang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Shao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Yi Hu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue-Qing Fu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Liang Wang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ke-Xuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
25
|
Yang C, Bai Y, Halitschke R, Gase K, Baldwin G, Baldwin IT. Exploring the metabolic basis of growth/defense trade-offs in complex environments with Nicotiana attenuata plants cosilenced in NaMYC2a/b expression. THE NEW PHYTOLOGIST 2023; 238:349-366. [PMID: 36636784 DOI: 10.1111/nph.18732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
In response to challenges from herbivores and competitors, plants use fitness-limiting resources to produce (auto)toxic defenses. Jasmonate signaling, mediated by MYC2 transcription factors (TF), is thought to reconfigure metabolism to minimize these formal costs of defense and optimize fitness in complex environments. To study the context-dependence of this metabolic reconfiguration, we cosilenced NaMYC2a/b by RNAi in Nicotiana attenuata and phenotyped plants in the field and increasingly realistic glasshouse setups with competitors and mobile herbivores. NaMYC2a/b had normal phytohormonal responses, and higher growth and fitness in herbivore-reduced environments, but were devastated in high herbivore-load environments in the field due to diminished accumulations of specialized metabolites. In setups with competitors and mobile herbivores, irMYC2a/b plants had lower fitness than empty vector (EV) in single-genotype setups but increased fitness in mixed-genotype setups. Correlational analyses of metabolic, resistance, and growth traits revealed the expected defense/growth associations for most sectors of primary and specialized metabolism. Notable exceptions were some HGL-DTGs and phenolamides that differed between single-genotype and mixed-genotype setups, consistent with expectations of a blurred functional trichotomy of metabolites. MYC2 TFs mediate the reconfiguration of primary and specialized metabolic sectors to allow plants to optimize their fitness in complex environments.
Collapse
Affiliation(s)
- Caiqiong Yang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Yuechen Bai
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Gundega Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| |
Collapse
|
26
|
Ding K, Sun S, Luo Y, Long C, Zhai J, Zhai Y, Wang G. PlantCADB: A Comprehensive Plant Chromatin Accessibility Database. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:311-323. [PMID: 36328151 PMCID: PMC10626055 DOI: 10.1016/j.gpb.2022.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 09/25/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022]
Abstract
Chromatin accessibility landscapes are essential for detecting regulatory elements, illustrating the corresponding regulatory networks, and, ultimately, understanding the molecular basis underlying key biological processes. With the advancement of sequencing technologies, a large volume of chromatin accessibility data has been accumulated and integrated for humans and other mammals. These data have greatly advanced the study of disease pathogenesis, cancer survival prognosis, and tissue development. To advance the understanding of molecular mechanisms regulating plant key traits and biological processes, we developed a comprehensive plant chromatin accessibility database (PlantCADB) from 649 samples of 37 species. These samples are abiotic stress-related (such as heat, cold, drought, and salt; 159 samples), development-related (232 samples), and/or tissue-specific (376 samples). Overall, 18,339,426 accessible chromatin regions (ACRs) were compiled. These ACRs were annotated with genomic information, associated genes, transcription factor footprint, motif, and single-nucleotide polymorphisms (SNPs). Additionally, PlantCADB provides various tools to visualize ACRs and corresponding annotations. It thus forms an integrated, annotated, and analyzed plant-related chromatin accessibility resource, which can aid in better understanding genetic regulatory networks underlying development, important traits, stress adaptations, and evolution.PlantCADB is freely available at https://bioinfor.nefu.edu.cn/PlantCADB/.
Collapse
Affiliation(s)
- Ke Ding
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China
| | - Shanwen Sun
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yang Luo
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China
| | - Chaoyue Long
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China
| | - Jingwen Zhai
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China
| | - Yixiao Zhai
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China
| | - Guohua Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
27
|
Feng Z, Sun L, Dong M, Fan S, Shi K, Qu Y, Zhu L, Shi J, Wang W, Liu Y, Chen X, Weng Y, Liu X, Ren H. Identification and Functional Characterization of CsMYCs in Cucumber Glandular Trichome Development. Int J Mol Sci 2023; 24:ijms24076435. [PMID: 37047408 PMCID: PMC10094329 DOI: 10.3390/ijms24076435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Glandular trichomes (GTs), specialized structures formed by the differentiation of plant epidermal cells, are known to play important roles in the resistance of plants to external biotic and abiotic stresses. These structures are capable of storing and secreting secondary metabolites, which often have important agricultural and medicinal values. In order to better understand the molecular developmental mechanisms of GTs, studies have been conducted in a variety of crops, including tomato (Solanum lycopersicum), sweetworm (Artemisia annua), and cotton (Gossypium hirsutum). The MYC transcription factor of the basic helix-loop-helix (bHLH) transcription factor family has been found to play an important role in GT development. In this study, a total of 13 cucumber MYC transcription factors were identified in the cucumber (Cucumis sativus L.) genome. After performing phylogenetic analyses and conserved motifs on the 13 CsMYCs in comparison to previously reported MYC transcription factors that regulate trichome development, seven candidate MYC transcription factors were selected. Through virus-induced gene silencing (VIGS), CsMYC2 is found to negatively regulate GT formation while CsMYC4, CsMYC5, CsMYC6, CsMYC7, and CsMYC8 are found to positively regulate GT formation. Furthermore, the two master effector genes, CsMYC2 and CsMYC7, are observed to have similar expression patterns indicating that they co-regulate the balance of GT development in an antagonistic way.
Collapse
Affiliation(s)
- Zhongxuan Feng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lei Sun
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mingming Dong
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Shanshan Fan
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Kexin Shi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yixin Qu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Liyan Zhu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jinfeng Shi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Wujun Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yihan Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaofeng Chen
- Yantai Institute, China Agricultural University, Yantai 264670, China
| | - Yiqun Weng
- USDA-ARS, Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| | - Xingwang Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572019, China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Huazhong Ren
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572019, China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
28
|
Gao C, Sun Y, Li J, Zhou Z, Deng X, Wang Z, Wu S, Lin L, Huang Y, Zeng W, Lyu S, Chen J, Cao S, Yu S, Chen Z, Sun W, Xue Z. High Light Intensity Triggered Abscisic Acid Biosynthesis Mediates Anthocyanin Accumulation in Young Leaves of Tea Plant ( Camellia sinensis). Antioxidants (Basel) 2023; 12:antiox12020392. [PMID: 36829950 PMCID: PMC9952078 DOI: 10.3390/antiox12020392] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
There is increasing interest in the production and consumption of tea (Camellia sinensis L.) processed from purple-leaved cultivar due to their high anthocyanin content and health benefits. However, how and why seasonal changes affect anthocyanin accumulation in young tea leaves still remains obscured. In this study, anthocyanin and abscisic acid (ABA) contents in young leaves of Zifuxing 1 (ZFX1), a cultivar with new shoots turning to purple in Wuyi Mountain, a key tea production region in China, were monitored over four seasons. Young leaves produced in September were highly purplish, which was accompanied with higher anthocyanin and ABA contents. Among the environmental factors, the light intensity in particular was closely correlated with anthocyanin and ABA contents. A shade experiment also indicated that anthocyanin content significantly decreased after 168 h growth under 75% shade, but ABA treatment under the shade conditions sustained anthocyanin content. To confirm the involvement of ABA in the modulation of anthocyanin accumulation, anthocyanin, carotenoids, chlorophyll, ABA, jasmonic acid (JA), and salicylic acid (SA) in the young leaves of four cultivars, including ZFX1, Zijuan (ZJ), wherein leaves are completely purple, Rougui (RG) and Fudingdabaicha (FDDB) wherein leaves are green, were analyzed, and antioxidant activities of the leaf extracts were tested. Results showed that ABA, not other tested hormones, was significantly correlated with anthocyanin accumulation in the purple-leaved cultivars. Cultivars with higher anthocyanin contents exhibited higher antioxidant activities. Subsequently, ZFX1 plants were grown under full sun and treated with ABA and fluridone (Flu), an ABA inhibitor. ABA treatment elevated anthocyanin level but decreased chlorophyll contents. The reverse was true to those treated with Flu. To pursue a better understanding of ABA involvement in anthocyanin accumulation, RNA-Seq was used to analyze transcript differences among ABA- or Flu-treated and untreated ZFX1 plants. Results indicated that the differentially expressed genes in ABA or Flu treatment were mainly ABA signal sensing and metabolism-related genes, anthocyanin accumulation-related genes, light-responsive genes, and key regulatory MYB transcription factors. Taking all the results into account, a model for anthocyanin accumulation in ZFX1 cultivar was proposed: high light intensity caused reactive oxygen stress, which triggered the biosynthesis of ABA; ABA interactions with transcription factors, such as MYB-enhanced anthocyanin biosynthesis limited chlorophyll and carotenoid accumulation; and transport of anthocyanin to vacuoles resulting in the young leaves of ZFX1 with purplish coloration. Further research is warranted to test this model.
Collapse
Affiliation(s)
- Chenxi Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yue Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuming Deng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoling Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Lin
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362400, China
| | - Yan Huang
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362400, China
| | - Wen Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shiheng Lyu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL 32703, USA
| | - Shixian Cao
- Wuyixing Tea Industry Co., Ltd., Nanping 353000, China
| | - Shuntian Yu
- Wuyixing Tea Industry Co., Ltd., Nanping 353000, China
| | - Zhidan Chen
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362400, China
- Correspondence: (Z.C.); (W.S.); (Z.X.); Tel.: +86-158-0599-8677 (Z.C.); +86-137-0506-7139 (W.S.); +86-134-0591-6632 (Z.X.)
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (Z.C.); (W.S.); (Z.X.); Tel.: +86-158-0599-8677 (Z.C.); +86-137-0506-7139 (W.S.); +86-134-0591-6632 (Z.X.)
| | - Zhihui Xue
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362400, China
- Correspondence: (Z.C.); (W.S.); (Z.X.); Tel.: +86-158-0599-8677 (Z.C.); +86-137-0506-7139 (W.S.); +86-134-0591-6632 (Z.X.)
| |
Collapse
|
29
|
Yuan M, Shu G, Zhou J, He P, Xiang L, Yang C, Chen M, Liao Z, Zhang F. AabHLH113 integrates jasmonic acid and abscisic acid signaling to positively regulate artemisinin biosynthesis in Artemisia annua. THE NEW PHYTOLOGIST 2023; 237:885-899. [PMID: 36271612 DOI: 10.1111/nph.18567] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Artemisinin, a sesquiterpene lactone isolated from Artemisia annua, is in huge market demand due to its efficient antimalarial action, especially after the COVID-19 pandemic. Many researchers have elucidated that phytohormones jasmonic acid (JA) and abscisic acid (ABA) positively regulate artemisinin biosynthesis via types of transcription factors (TFs). However, the crosstalk between JA and ABA in regulating artemisinin biosynthesis remains unclear. Here, we identified a novel ABA- and JA-induced bHLH TF, AabHLH113, which positively regulated artemisinin biosynthesis by directly binding to the promoters of artemisinin biosynthetic genes, DBR2 and ALDH1. The contents of artemisinin and dihydroartemisinic acid increased by 1.71- to 2.06-fold and 1.47- to 2.23-fold, respectively, in AabHLH1113 overexpressed A. annua, whereas they decreased by 14-36% and 26-53%, respectively, in RNAi-AabHLH113 plants. Furthermore, we demonstrated that AabZIP1 and AabHLH112, which, respectively, participate in ABA and JA signaling pathway to regulate artemisinin biosynthesis, directly bind to and activate the promoter of AabHLH113. Collectively, we revealed a complex network in which AabHLH113 plays a key interrelational role to integrate ABA- and JA-mediated regulation of artemisinin biosynthesis.
Collapse
Affiliation(s)
- Mingyuan Yuan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Guoping Shu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiaheng Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ping He
- Chongqing Academy of Science and Technology, Chongqing, 401123, China
| | - Lien Xiang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Chunxian Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ming Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhihua Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Academy of Science and Technology, Chongqing, 401123, China
| | - Fangyuan Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
30
|
Ojha M, Verma D, Chakraborty N, Pal A, Bhagat PK, Singh A, Verma N, Sinha AK, Chattopadhyay S. MKKK20 works as an upstream triple-kinase of MKK3-MPK6-MYC2 module in Arabidopsis seedling development. iScience 2023; 26:106049. [PMID: 36818282 PMCID: PMC9929681 DOI: 10.1016/j.isci.2023.106049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/29/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascade is involved in several signal transduction processes in eukaryotes. Here, we report a mechanistic function of MAP kinase kinase kinase 20 (MKKK20) in light signal transduction pathways. We show that MKKK20 acts as a negative regulator of photomorphogenic growth at various wavelengths of light. MKKK20 not only regulates the expression of light signaling pathway regulatory genes but also gets regulated by the same pathway genes. The atmyc2 mkkk20 double mutant analysis shows that MYC2 works downstream to MKKK20 in the regulation of photomorphogenic growth. MYC2 directly binds to the promoter of MKKK20 to modulate its expression. The protein-protein interaction study indicates that MKKK20 physically interacts with MYC2, and this interaction likely suppresses the MYC2-mediated promotion of MKKK20 expression. Further, the protein phosphorylation studies demonstrate that MKKK20 works as the upstream kinase of MKK3-MPK6-MYC2 module in photomorphogenesis.
Collapse
Affiliation(s)
- Madhusmita Ojha
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Deepanjali Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nibedita Chakraborty
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Abhideep Pal
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Prakash Kumar Bhagat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anshuman Singh
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Neetu Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India,Corresponding author
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| |
Collapse
|
31
|
Liang J, Fang Y, An C, Yao Y, Wang X, Zhang W, Liu R, Wang L, Aslam M, Cheng Y, Qin Y, Zheng P. Genome-wide identification and expression analysis of the bHLH gene family in passion fruit (Passiflora edulis) and its response to abiotic stress. Int J Biol Macromol 2023; 225:389-403. [PMID: 36400210 DOI: 10.1016/j.ijbiomac.2022.11.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022]
Abstract
Passion fruit is a tropical fruit crop with significant agricultural, economic and ornamental values. The growth and development of passion fruit are greatly affected by climatic conditions. In plants, the basic helix-loop-helix (bHLH) gene family plays essential roles in the floral organ and fruit development, as well as stress response. However, the characteristics and functions of the bHLH genes of passion fruit remain unclear. Here, 138 passion fruit bHLH members were identified and classified into 20 subfamilies. The structural analysis illustrated that PebHLH proteins of the specific subfamily are relatively conserved. Collinearity analysis indicated that the expansion of the PebHLH gene family mainly took place by segmental duplication, and the structural diversity of duplicated genes might contribute to their functional diversity. PebHLHs, which potentially regulate different floral organ and fruit development, were further screened out, and many of these genes were differentially expressed under various stress treatments. The co-presence of different cis-regulatory elements involved in developmental regulation, hormone and stress responses in the promoter regions of PebHLHs might be closely related to their diverse regulatory roles. Overall, this study will be helpful for further functional investigation of PebHLHs and provides clues for improvement of the passion fruit breeding.
Collapse
Affiliation(s)
- Jianxiang Liang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunying Fang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang An
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yuanbin Yao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning 530004, China
| | - Wenbin Zhang
- Xinluo Breeding Center for Excellent Germplasms, Longyan 361000, China
| | - Ruoyu Liu
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lulu Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Mohammad Aslam
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Cheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
32
|
Yu D, Dong X, Zou K, Jiang XD, Sun YB, Min Z, Zhang LP, Cui H, Hu JY. A hidden mutation in the seventh WD40-repeat of COP1 determines the early flowering trait in a set of Arabidopsis myc mutants. THE PLANT CELL 2023; 35:345-350. [PMID: 36331342 PMCID: PMC9806556 DOI: 10.1093/plcell/koac319] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/11/2022] [Indexed: 05/19/2023]
Affiliation(s)
- Dongmei Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xue Dong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ke Zou
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao-Dong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yi-Bo Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhijie Min
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Li-Ping Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Haitao Cui
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
33
|
Hu Y, Zhang H, Gu B, Zhang J. The transcription factor VaMYC2 from Chinese wild Vitis amurensis enhances cold tolerance of grape (V. vinifera) by up-regulating VaCBF1 and VaP5CS. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:218-229. [PMID: 36272189 DOI: 10.1016/j.plaphy.2022.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/26/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Cultivated grapes, one of the most important fruit crops in the world, are sensitive to low temperature. Since Chinese wild grape Vitis amurensis is highly tolerant to cold, it is imperative to study and utilize its cold-tolerance genes for molecular breeding. Here, a VaMYC2 gene from V. amurensis was cloned, and its function was investigated by expressing VaMYC2 in the cold-sensitive V. vinifera cultivar 'Thompson Seedless'. The expression of VaMYC2 could be induced by cold stress, methyl jasmonate and ethylene treatment, but was inhibited by abscisic acid in leaves of V. amurensis. When transgenic grape lines expressing VaMYC2 were subjected to cold stress (-1 °C) for 41 h, the transgenic lines showed less freezing injury and lower electrolyte leakage and malondialdehyde content, but higher contents of soluble sugars, soluble proteins and proline, and antioxidant enzyme activities compared with wild-type. Moreover, the expression of some cold-tolerance related genes increased in transgenic lines. Besides, the interactions of VaMYC2 with VaJAZ1 and VaJAZ7B were confirmed by yeast two-hybrid and bimolecular fluorescence complementation assays. Yeast one-hybrid and dual luciferase assays showed that VaMYC2 can bind to the promoters of VaCBF1 and VaP5CS and activate their expressions. In conclusion, expression of VaMYC2 in V. vinifera enhances cold tolerance of transgenic grapes which is attributed to enhanced accumulation of osmotic regulatory substances, cell membrane stability, antioxidant enzyme activity, and expression of cold tolerance-related genes. Also, VaMYC2 interacts with VaJAZ1 and VaJAZ7, and activates the expression of VaCBF1 and VaP5CS to mediate cold tolerance in grapes.
Collapse
Affiliation(s)
- Yafan Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Hongjuan Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Bao Gu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
34
|
Luo F, Zhang Q, Xin H, Liu H, Yang H, Doblin MS, Bacic A, Li L. A Phytochrome B-PIF4-MYC2/MYC4 module inhibits secondary cell wall thickening in response to shaded light. PLANT COMMUNICATIONS 2022; 3:100416. [PMID: 35927944 PMCID: PMC9700123 DOI: 10.1016/j.xplc.2022.100416] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/21/2022] [Accepted: 07/25/2022] [Indexed: 06/01/2023]
Abstract
Secondary cell walls (SCWs) in stem cells provide mechanical strength and structural support for growth. SCW thickening varies under different light conditions. Our previous study revealed that blue light enhances SCW thickening through the redundant function of MYC2 and MYC4 directed by CRYPTOCHROME1 (CRY1) signaling in fiber cells of the Arabidopsis inflorescence stem. In this study, we find that the Arabidopsis PHYTOCHROME B mutant phyB displays thinner SCWs in stem fibers, but thicker SCWs are deposited in the PHYTOCHROME INTERACTING FACTOR (PIF) quadruple mutant pif1pif3pif4pif5 (pifq). The shaded light condition with a low ratio of red to far-red light inhibits stem SCW thickening. PIF4 interacts with MYC2 and MYC4 to affect their localization in nuclei, and this interaction results in inhibition of the MYCs' transactivation activity on the NST1 promoter. Genetic evidence shows that regulation of SCW thickening by PIFs is dependent on MYC2/MYC4 function. Together, the results of this study reveal a PHYB-PIF4-MYC2/MYC4 module that inhibits SCW thickening in fiber cells of the Arabidopsis stem.
Collapse
Affiliation(s)
- Fang Luo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Xin
- Key Laboratory of Biodiversity Conservation in Southwest, State Forestry Administration, Southwest Forestry University, Kunming 650224, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongquan Yang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Monika S Doblin
- La Trobe Institute for Agriculture and Food, School of Agriculture, Biomedicine and Environment, Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC 3086, Australia; Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Antony Bacic
- La Trobe Institute for Agriculture and Food, School of Agriculture, Biomedicine and Environment, Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC 3086, Australia; Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
35
|
Sohn SI, Pandian S, Rakkammal K, Largia MJV, Thamilarasan SK, Balaji S, Zoclanclounon YAB, Shilpha J, Ramesh M. Jasmonates in plant growth and development and elicitation of secondary metabolites: An updated overview. FRONTIERS IN PLANT SCIENCE 2022; 13:942789. [PMID: 36035665 PMCID: PMC9407636 DOI: 10.3389/fpls.2022.942789] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Secondary metabolites are incontestably key specialized molecules with proven health-promoting effects on human beings. Naturally synthesized secondary metabolites are considered an important source of pharmaceuticals, food additives, cosmetics, flavors, etc., Therefore, enhancing the biosynthesis of these relevant metabolites by maintaining natural authenticity is getting more attention. The application of exogenous jasmonates (JAs) is well recognized for its ability to trigger plant growth and development. JAs have a large spectrum of action that covers seed germination, hypocotyl growth regulation, root elongation, petal expansion, and apical hook growth. This hormone is considered as one of the key regulators of the plant's growth and development when the plant is under biotic or abiotic stress. The JAs regulate signal transduction through cross-talking with other genes in plants and thereby deploy an appropriate metabolism in the normal or stressed conditions. It has also been found to be an effective chemical elicitor for the synthesis of naturally occurring secondary metabolites. This review discusses the significance of JAs in the growth and development of plants and the successful outcomes of jasmonate-driven elicitation of secondary metabolites including flavonoids, anthraquinones, anthocyanin, xanthonoid, and more from various plant species. However, as the enhancement of these metabolites is essentially measured via in vitro cell culture or foliar spray, the large-scale production is significantly limited. Recent advancements in the plant cell culture technology lay the possibilities for the large-scale manufacturing of plant-derived secondary metabolites. With the insights about the genetic background of the metabolite biosynthetic pathway, synthetic biology also appears to be a potential avenue for accelerating their production. This review, therefore, also discussed the potential manoeuvres that can be deployed to synthesis plant secondary metabolites at the large-scale using plant cell, tissue, and organ cultures.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | | | | | - Senthil Kumar Thamilarasan
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | | | - Yedomon Ange Bovys Zoclanclounon
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Jayabalan Shilpha
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Manikandan Ramesh
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
36
|
Agrawal R, Sharma M, Dwivedi N, Maji S, Thakur P, Junaid A, Fajkus J, Laxmi A, Thakur JK. MEDIATOR SUBUNIT17 integrates jasmonate and auxin signaling pathways to regulate thermomorphogenesis. PLANT PHYSIOLOGY 2022; 189:2259-2280. [PMID: 35567489 PMCID: PMC9342970 DOI: 10.1093/plphys/kiac220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/20/2022] [Indexed: 05/16/2023]
Abstract
Plant adjustment to environmental changes involves complex crosstalk between extrinsic and intrinsic cues. In the past two decades, extensive research has elucidated the key roles of PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and the phytohormone auxin in thermomorphogenesis. In this study, we identified a previously unexplored role of jasmonate (JA) signaling components, the Mediator complex, and their integration with auxin signaling during thermomorphogenesis in Arabidopsis (Arabidopsis thaliana). Warm temperature induces expression of JA signaling genes including MYC2, but, surprisingly, this transcriptional activation is not JA dependent. Warm temperature also promotes accumulation of the JA signaling receptor CORONATINE INSENSITIVE1 (COI1) and degradation of the JA signaling repressor JASMONATE-ZIM-DOMAIN PROTEIN9, which probably leads to de-repression of MYC2, enabling it to contribute to the expression of MEDIATOR SUBUNIT17 (MED17). In response to warm temperature, MED17 occupies the promoters of thermosensory genes including PIF4, YUCCA8 (YUC8), INDOLE-3-ACETIC ACID INDUCIBLE19 (IAA19), and IAA29. Moreover, MED17 facilitates enrichment of H3K4me3 on the promoters of PIF4, YUC8, IAA19, and IAA29 genes. Interestingly, both occupancy of MED17 and enrichment of H3K4me3 on these thermomorphogenesis-related promoters are dependent on PIF4 (or PIFs). Altered accumulation of COI1 under warm temperature in the med17 mutant suggests the possibility of a feedback mechanism. Overall, this study reveals the role of the Mediator complex as an integrator of JA and auxin signaling pathways during thermomorphogenesis.
Collapse
Affiliation(s)
- Rekha Agrawal
- Plant Mediator Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Mohan Sharma
- Signalling Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Nidhi Dwivedi
- Plant Mediator Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Sourobh Maji
- Plant Mediator Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Pallabi Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Alim Junaid
- Plant Mediator Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ashverya Laxmi
- Signalling Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Jitendra K Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, New Delhi 110067, India
- Plant Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
37
|
Srivastava M, Srivastava AK, Roy D, Mansi M, Gough C, Bhagat PK, Zhang C, Sadanandom A. The conjugation of SUMO to the transcription factor MYC2 functions in blue light-mediated seedling development in Arabidopsis. THE PLANT CELL 2022; 34:2892-2906. [PMID: 35567527 PMCID: PMC9338799 DOI: 10.1093/plcell/koac142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 05/04/2022] [Indexed: 05/26/2023]
Abstract
A key function of photoreceptor signaling is the coordinated regulation of a large number of genes to optimize plant growth and development. The basic helix loop helix (bHLH) transcription factor MYC2 is crucial for regulating gene expression in Arabidopsis thaliana during development in blue light. Here we demonstrate that blue light induces the SUMOylation of MYC2. Non-SUMOylatable MYC2 is less effective in suppressing blue light-mediated photomorphogenesis than wild-type (WT) MYC2. MYC2 interacts physically with the SUMO proteases SUMO PROTEASE RELATED TO FERTILITY1 (SPF1) and SPF2. Blue light exposure promotes the degradation of SPF1 and SPF2 and enhances the SUMOylation of MYC2. Phenotypic analysis revealed that SPF1/SPF2 function redundantly as positive regulators of blue light-mediated photomorphogenesis. Our data demonstrate that SUMO conjugation does not affect the dimerization of MYC transcription factors but modulates the interaction of MYC2 with its cognate DNA cis-element and with the ubiquitin ligase Plant U-box 10 (PUB10). Finally, we show that non-SUMOylatable MYC2 is less stable and interacts more strongly with PUB10 than the WT. Taken together, we conclude that SUMO functions as a counterpoint to the ubiquitin-mediated degradation of MYC2, thereby enhancing its function in blue light signaling.
Collapse
Affiliation(s)
| | | | - Dipan Roy
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Mansi Mansi
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Catherine Gough
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | | - Cunjin Zhang
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | |
Collapse
|
38
|
Liu H, Wang Y, Liu L, Wei B, Wang X, Xiao Q, Li Y, Ajayo BS, Huang Y. Pleiotropic ZmICE1 Is an Important Transcriptional Regulator of Maize Endosperm Starch Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:895763. [PMID: 35937346 PMCID: PMC9355408 DOI: 10.3389/fpls.2022.895763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Starch, the major component of cereal grains, affects crop yield and quality and is widely used in food and industrial applications. The biosynthesis of maize starch is a complex process involving a series of functional enzymes. However, the sophisticated regulatory mechanisms of starch biosynthetic genes have not been fully elaborated. The basic/helix-loop-helix (bHLH) transcription factors are widely distributed in eukaryotes and participate in many physiological processes. In this study, 202 bHLH encoding genes were identified in the maize genome by Blast method. ZmICE1 gene, which belongs to the ICE subfamily of the bHLH family, was obtained and expressed mainly in maize filling endosperm and co-expressed with 14 starch biosynthesis genes. Based on the comparative analyses across different plant species, we revealed that the gene structures and protein domains of the ICE subfamily were conserved between monocots and dicots, suggesting their functional conservation feature. Yeast activation and subcellular localization assays suggested that ZmICE1 had transcriptional activation activity and localized in the nucleus. Yeast one-hybrid assays confirmed that ZmICE1 could directly bind to the promoters of ZmSSIIa and ZmGBSSI. Transient gene expression analysis in maize endosperm revealed that ZmICE1 positively regulated the expression of ZmSSIIa, but inhibited the expression of ZmGBSSI. Our results indicated that ZmICE1 could function as a regulator of maize starch biosynthesis.
Collapse
Affiliation(s)
- Hanmei Liu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yongbin Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Lijun Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Bin Wei
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xieqin Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Qianlin Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yangping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | | | - Yubi Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
39
|
Xu BQ, Wang JJ, Peng Y, Huang H, Sun LL, Yang R, Suo LN, Wang SH, Zhao WC. SlMYC2 mediates stomatal movement in response to drought stress by repressing SlCHS1 expression. FRONTIERS IN PLANT SCIENCE 2022; 13:952758. [PMID: 35937339 PMCID: PMC9354244 DOI: 10.3389/fpls.2022.952758] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/04/2022] [Indexed: 05/27/2023]
Abstract
Drought stress limits plant development and reproduction. Multiple mechanisms in plants are activated to respond to stress. The MYC2 transcription factor is a core regulator of the jasmonate (JA) pathway and plays a vital role in the crosstalk between abscisic acid (ABA) and JA. In this study, we found that SlMYC2 responded to drought stress and regulated stomatal aperture in tomato (Solanum lycopersicum). Overexpression of SlMYC2 repressed SlCHS1 expression and decreased the flavonol content, increased the reactive oxygen species (ROS) content in guard cells and promoted the accumulation of JA and ABA in leaves. Additionally, silencing the SlCHS1 gene produced a phenotype that was similar to that of the MYC2-overexpressing (MYC2-OE) strain, especially in terms of stomatal dynamics and ROS levels. Finally, we confirmed that SlMYC2 directly repressed the expression of SlCHS1. Our study revealed that SlMYC2 drove stomatal closure by modulating the accumulation of flavonol and the JA and ABA contents, helping us decipher the mechanism of stomatal movement under drought stress.
Collapse
Affiliation(s)
- Bing-Qin Xu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Bei Jing Bei Nong Enterprise Management Co., Ltd., Beijing, China
| | - Jing-Jing Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yi Peng
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Huang Huang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Lu-Lu Sun
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Rui Yang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Lin-Na Suo
- Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Shao-Hui Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Wen-Chao Zhao
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
40
|
Wieghaus A, Roelfs KU, Twyman RM, Prüfer D, Schulze Gronover C. Comparative Transcriptome Analysis in Taraxacum koksaghyz to Identify Genes that Determine Root Volume and Root Length. Front Genet 2022; 12:784883. [PMID: 35140739 PMCID: PMC8819189 DOI: 10.3389/fgene.2021.784883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
The Russian dandelion (Taraxacum koksaghyz, family Asteraceae) produces large amounts of natural rubber in the laticifers of its roots. This species has been proposed as an alternative source of natural rubber to augment or partly replace the rubber tree (Hevea brasiliensis) but domestication would require genetic improvement to increase rubber yields and agronomic optimization to facilitate harvesting and processing. Optimization has focused thus far on the size and shape of the roots, the primary storage organ for natural rubber and inulin. However, the corresponding genetic factors are poorly understood. Here we describe the comparative transcriptomic analysis of root tissues from T. koksaghyz plant sets featuring different root sizes and shapes, aiming to identify differentially expressed genes correlating with root length or root diameter in the upper root and root tip. The resulting datasets revealed multiple candidate genes for each trait and root part, including a glucan endo-1,3-β-d-glucosidase, an allene oxide synthase 3, and a TIFY10A/JAZ1 homolog. These three genes were tested by qRT-PCR in outdoor-grown plants with diverse root morphology, and the expression of two genes correlated with the appropriate root morphotype, confirming the effectiveness of our method. We evaluated the candidate genes to gain insight into their potential functions in root development. Such candidate genes could be suitable for marker-assisted breeding programs in the future.
Collapse
Affiliation(s)
- Annika Wieghaus
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Kai-Uwe Roelfs
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
| | | | - Dirk Prüfer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
| | - Christian Schulze Gronover
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
- *Correspondence: Christian Schulze Gronover,
| |
Collapse
|
41
|
Gautam JK, Giri MK, Singh D, Chattopadhyay S, Nandi AK. MYC2 influences salicylic acid biosynthesis and defense against bacterial pathogens in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2021; 173:2248-2261. [PMID: 34596247 DOI: 10.1111/ppl.13575] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 08/25/2021] [Accepted: 09/27/2021] [Indexed: 05/26/2023]
Abstract
Arabidopsis MYC2 is a basic helix-loop-helix transcription factor that works both as a negative and positive regulator of light and multiple hormonal signaling pathways, including jasmonic acid and abscisic acid. Recent studies have suggested the role of MYC2 as a negative regulator of salicylic acid (SA)-mediated defense against bacterial pathogens. By using myc2 mutant and constitutively MYC2-expressing plants, we further show that MYC2 also positively influences SA-mediated defense; whereas, myc2 mutant plants are resistant to virulent pathogens only, MYC2 over-expressing plants are hyper-resistant to multiple virulent and avirulent strains of bacterial pathogens. MYC2 promotes pathogen-induced callose deposition, SA biosynthesis, expression of PR1 gene, and SA-responsiveness. Using bacterially produced MYC2 protein in electrophoretic mobility shift assay (EMSA), we have shown that MYC2 binds to the promoter of several important defense regulators, including PEPR1, MKK4, RIN4, and the second intron of ICS1. MYC2 positively regulates the expression of RIN4, MKK4, and ICS1; however, it negatively regulates the expression of PEPR1. Pathogen inoculation enhances MYC2 association at ICS1 intron and RIN4 promoter. Mutations of MYC2 binding site at ICS1 intron or RIN4 promoter abolish the associated GUS reporter expression. Hyper-resistance of MYC2 over-expressing plants is largely light-dependent, which is in agreement with the role of MYC2 in SA biosynthesis. The results altogether demonstrate that MYC2 possesses dual regulatory roles in SA biosynthesis, SA signaling, pattern-triggered immunity (PTI), and effector-triggered immunity (ETI) in Arabidopsis.
Collapse
Affiliation(s)
| | - Mrunmay Kumar Giri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- School of Biotechnology, KIIT Deemed University, Bhubaneswar, Odisha, India
| | - Deepjyoti Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Biology, Syracuse University, Syracuse, USA
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, India
| | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
42
|
Samkumar A, Jones D, Karppinen K, Dare AP, Sipari N, Espley RV, Martinussen I, Jaakola L. Red and blue light treatments of ripening bilberry fruits reveal differences in signalling through abscisic acid-regulated anthocyanin biosynthesis. PLANT, CELL & ENVIRONMENT 2021; 44:3227-3245. [PMID: 34337774 DOI: 10.1111/pce.14158] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 05/28/2023]
Abstract
The biosynthesis of anthocyanins has been shown to be influenced by light quality. However, the molecular mechanisms underlying the light-mediated regulation of fruit anthocyanin biosynthesis are not well understood. In this study, we analysed the effects of supplemental red and blue light on the anthocyanin biosynthesis in non-climacteric bilberry (Vaccinium myrtillus L.). After 6 days of continuous irradiation during ripening, both red and blue light elevated concentration of anthocyanins, up to 12- and 4-folds, respectively, compared to the control. Transcriptomic analysis of ripening berries showed that both light treatments up-regulated all the major anthocyanin structural genes, the key regulatory MYB transcription factors and abscisic acid (ABA) biosynthetic genes. However, higher induction of specific genes of anthocyanin and delphinidin biosynthesis alongside ABA signal perception and metabolism were found in red light. The difference in red and blue light signalling was found in 9-cis-epoxycarotenoid dioxygenase (NCED), ABA receptor pyrabactin resistance-like (PYL) and catabolic ABA-8'hydroxylase gene expression. Red light also up-regulated expression of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) domain transporters, which may indicate involvement of these proteins in vesicular trafficking of anthocyanins during fruit ripening. Our results suggest differential signal transduction and transport mechanisms between red and blue light in ABA-regulated anthocyanin and delphinidin biosynthesis during bilberry fruit ripening.
Collapse
Affiliation(s)
- Amos Samkumar
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Dan Jones
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Katja Karppinen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Andrew P Dare
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Nina Sipari
- Viikki Metabolomics Unit, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | | | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
43
|
Basu R, Dutta S, Pal A, Sengupta M, Chattopadhyay S. Calmodulin7: recent insights into emerging roles in plant development and stress. PLANT MOLECULAR BIOLOGY 2021; 107:1-20. [PMID: 34398355 DOI: 10.1007/s11103-021-01177-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/27/2021] [Indexed: 05/25/2023]
Abstract
Analyses of the function of Arabidopsis Calmodulin7 (CAM7) in concert with multiple regulatory proteins involved in various signal transduction processes. Calmodulin (CaM) plays various regulatory roles in multiple signaling pathways in eukaryotes. Arabidopsis CALMODULIN 7 (CAM7) is a unique member of the CAM family that works as a transcription factor in light signaling pathways. CAM7 works in concert with CONSTITUTIVE PHOTOMORPHOGENIC 1 and ELONGATED HYPOCOTYL 5, and plays an important role in seedling development. Further, it is involved in the regulation of the activity of various Ca2+-gated channels such as cyclic nucleotide gated channel 6 (CNGC6), CNGC14 and auto-inhibited Ca2+ ATPase 8. Recent studies further indicate that CAM7 is also an integral part of multiple signaling pathways including hormone, immunity and stress. Here, we review the recent advances in understanding the multifaceted role of CAM7. We highlight the open-ended questions, and also discuss the diverse aspects of CAM7 characterization that need to be addressed for comprehensive understanding of its cellular functions.
Collapse
Affiliation(s)
- Riya Basu
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Siddhartha Dutta
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| | - Abhideep Pal
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Mandar Sengupta
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
44
|
Ghorbel M, Brini F, Sharma A, Landi M. Role of jasmonic acid in plants: the molecular point of view. PLANT CELL REPORTS 2021; 40:1471-1494. [PMID: 33821356 DOI: 10.1007/s00299-021-02687-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/23/2021] [Indexed: 05/12/2023]
Abstract
Recent updates in JA biosynthesis, signaling pathways and the crosstalk between JA and others phytohormones in relation with plant responses to different stresses. In plants, the roles of phytohormone jasmonic acid (JA), amino acid conjugate (e.g., JA-Ile) and their derivative emerged in last decades as crucial signaling compounds implicated in stress defense and development in plants. JA has raised a great interest, and the number of researches on JA has increased rapidly highlighting the importance of this phytohormone in plant life. First, JA was considered as a stress hormone implicated in plant response to biotic stress (pathogens and herbivores) which confers resistance to biotrophic and hemibiotrophic pathogens contrarily to salicylic acid (SA) which is implicated in plant response to necrotrophic pathogens. JA is also implicated in plant responses to abiotic stress (such as soil salinity, wounding and UV). Moreover, some researchers have recently revealed that JA controls several physiological processes like root growth, growth of reproductive organs and, finally, plant senescence. JA is also involved in the biosynthesis of various metabolites (e.g., phytoalexins and terpenoids). In plants, JA signaling pathways are well studied in few plants essentially Arabidopsis thaliana, Nicotiana benthamiana, and Oryza sativa L. confirming the crucial role of this hormone in plants. In this review, we highlight the last foundlings about JA biosynthesis, JA signaling pathways and its implication in plant maturation and response to environmental constraints.
Collapse
Affiliation(s)
- Mouna Ghorbel
- Biology Department, Faculty of Science, University of Ha'il, P.O. box, Ha'il, 2440, Saudi Arabia
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, B.P '1177', 3018, Sfax, Tunisia
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, B.P '1177', 3018, Sfax, Tunisia
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Marco Landi
- Department of Agriculture, Food and Environment - University of Pisa, 56124, Pisa, Italy.
| |
Collapse
|
45
|
Hao Y, Zong X, Ren P, Qian Y, Fu A. Basic Helix-Loop-Helix (bHLH) Transcription Factors Regulate a Wide Range of Functions in Arabidopsis. Int J Mol Sci 2021; 22:ijms22137152. [PMID: 34281206 PMCID: PMC8267941 DOI: 10.3390/ijms22137152] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/30/2023] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor family is one of the largest transcription factor gene families in Arabidopsis thaliana, and contains a bHLH motif that is highly conserved throughout eukaryotic organisms. Members of this family have two conserved motifs, a basic DNA binding region and a helix-loop-helix (HLH) region. These proteins containing bHLH domain usually act as homo- or heterodimers to regulate the expression of their target genes, which are involved in many physiological processes and have a broad range of functions in biosynthesis, metabolism and transduction of plant hormones. Although there are a number of articles on different aspects to provide detailed information on this family in plants, an overall summary is not available. In this review, we summarize various aspects of related studies that provide an overview of insights into the pleiotropic regulatory roles of these transcription factors in plant growth and development, stress response, biochemical functions and the web of signaling networks. We then provide an overview of the functional profile of the bHLH family and the regulatory mechanisms of other proteins.
Collapse
|
46
|
Liu R, Song J, Liu S, Chen C, Zhang S, Wang J, Xiao Y, Cao B, Lei J, Zhu Z. Genome-wide identification of the Capsicum bHLH transcription factor family: discovery of a candidate regulator involved in the regulation of species-specific bioactive metabolites. BMC PLANT BIOLOGY 2021; 21:262. [PMID: 34098881 PMCID: PMC8183072 DOI: 10.1186/s12870-021-03004-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/04/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND The basic helix-loop-helix (bHLH) transcription factors (TFs) serve crucial roles in regulating plant growth and development and typically participate in biological processes by interacting with other TFs. Capsorubin and capsaicinoids are found only in Capsicum, which has high nutritional and economic value. However, whether bHLH family genes regulate capsorubin and capsaicinoid biosynthesis and participate in these processes by interacting with other TFs remains unknown. RESULTS In this study, a total of 107 CabHLHs were identified from the Capsicum annuum genome. Phylogenetic tree analysis revealed that these CabHLH proteins were classified into 15 groups by comparing the CabHLH proteins with Arabidopsis thaliana bHLH proteins. The analysis showed that the expression profiles of CabHLH009, CabHLH032, CabHLH048, CabHLH095 and CabHLH100 found in clusters C1, C2, and C3 were similar to the profile of carotenoid biosynthesis in pericarp, including zeaxanthin, lutein and capsorubin, whereas the expression profiles of CabHLH007, CabHLH009, CabHLH026, CabHLH063 and CabHLH086 found in clusters L5, L6 and L9 were consistent with the profile of capsaicinoid accumulation in the placenta. Moreover, CabHLH007, CabHLH009, CabHLH026 and CabHLH086 also might be involved in temperature-mediated capsaicinoid biosynthesis. Yeast two-hybrid (Y2H) assays demonstrated that CabHLH007, CabHLH009, CabHLH026, CabHLH063 and CabHLH086 could interact with MYB31, a master regulator of capsaicinoid biosynthesis. CONCLUSIONS The comprehensive and systematic analysis of CabHLH TFs provides useful information that contributes to further investigation of CabHLHs in carotenoid and capsaicinoid biosynthesis.
Collapse
Affiliation(s)
- Renjian Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Jiali Song
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Shaoqun Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642 China
| | - Changming Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642 China
| | - Shuanglin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Juntao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Yanhui Xiao
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, 512005 China
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642 China
| | - Jianjun Lei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642 China
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, 512005 China
| | - Zhangsheng Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642 China
- Department of Biology, Peking University-Southern University of Science and Technology Joint Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055 China
| |
Collapse
|
47
|
Lazzarin M, Meisenburg M, Meijer D, van Ieperen W, Marcelis LFM, Kappers IF, van der Krol AR, van Loon JJA, Dicke M. LEDs Make It Resilient: Effects on Plant Growth and Defense. TRENDS IN PLANT SCIENCE 2021; 26:496-508. [PMID: 33358304 DOI: 10.1016/j.tplants.2020.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 05/22/2023]
Abstract
Light spectral composition influences plant growth and metabolism, and has important consequences for interactions with plant-feeding arthropods and their natural enemies. In greenhouse horticulture, light spectral composition can be precisely manipulated by light-emitting diodes (LEDs), and LEDs are already used to optimize crop production and quality. However, because light quality also modulates plant secondary metabolism and defense, it is important to understand the underlying mechanisms in the context of the growth-defense trade-off. We review the effects of the spectral composition of supplemental light currently used, or potentially used, in greenhouse horticulture on the mechanisms underlying plant growth and defense. This information is important for exploring opportunities to optimize crop performance and pest management, and thus for developing resilient crop-production systems.
Collapse
Affiliation(s)
- M Lazzarin
- Horticulture and Product Physiology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - M Meisenburg
- Laboratory of Plant Physiology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - D Meijer
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - W van Ieperen
- Horticulture and Product Physiology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - L F M Marcelis
- Horticulture and Product Physiology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - I F Kappers
- Laboratory of Plant Physiology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - A R van der Krol
- Laboratory of Plant Physiology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - J J A van Loon
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - M Dicke
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
48
|
Huang Y, Wang S, Wang C, Ding G, Cai H, Shi L, Xu F. Induction of jasmonic acid biosynthetic genes inhibits Arabidopsis growth in response to low boron. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:937-948. [PMID: 33289292 PMCID: PMC8252524 DOI: 10.1111/jipb.13048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/02/2020] [Indexed: 05/31/2023]
Abstract
The essential micronutrient boron (B) has key roles in cell wall integrity and B deficiency inhibits plant growth. The role of jasmonic acid (JA) in plant growth inhibition under B deficiency remains unclear. Here, we report that low B elevates JA biosynthesis in Arabidopsis thaliana by inducing the expression of JA biosynthesis genes. Treatment with JA inhibited plant growth and, a JA biosynthesis inhibitor enhanced plant growth, indicating that the JA induced by B deficiency affects plant growth. Furthermore, examination of the JA signaling mutants jasmonate resistant1, coronatine insensitive1-2, and myc2 showed that JA signaling negatively regulates plant growth under B deficiency. We identified a low-B responsive transcription factor, ERF018, and used yeast one-hybrid assays and transient activation assays in Nicotiana benthamiana leaf cells to demonstrate that ERF018 activates the expression of JA biosynthesis genes. ERF018 overexpression (OE) lines displayed stunted growth and up-regulation of JA biosynthesis genes under normal B conditions, compared to Col-0 and the difference between ERF018 OE lines and Col-0 diminished under low B. These results suggest that ERF018 enhances JA biosynthesis and thus negatively regulates plant growth. Taken together, our results highlight the importance of JA in the effect of low B on plant growth.
Collapse
Affiliation(s)
- Yupu Huang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Chuang Wang
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Hongmei Cai
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Lei Shi
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
49
|
Ming R, Zhang Y, Wang Y, Khan M, Dahro B, Liu JH. The JA-responsive MYC2-BADH-like transcriptional regulatory module in Poncirus trifoliata contributes to cold tolerance by modulation of glycine betaine biosynthesis. THE NEW PHYTOLOGIST 2021; 229:2730-2750. [PMID: 33131086 DOI: 10.1111/nph.17063] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/26/2020] [Indexed: 05/15/2023]
Abstract
Glycine betaine (GB) is known to accumulate in plants exposed to cold, but the underlying molecular mechanisms and associated regulatory network remain unclear. Here, we demonstrated that PtrMYC2 of Poncirus trifoliata integrates the jasmonic acid (JA) signal to modulate cold-induced GB accumulation by directly regulating PtrBADH-l, a betaine aldehyde dehydrogenase (BADH)-like gene. PtrBADH-l was identified based on transcriptome and expression analysis in P. trifoliata. Overexpression and VIGS (virus-induced gene silencing)-mediated knockdown showed that PtrBADH-l plays a positive role in cold tolerance and GB synthesis. Yeast one-hybrid library screening using PtrBADH-l promoter as baits unraveled PtrMYC2 as an interacting candidate. PtrMYC2 was confirmed to directly bind to two G-box cis-acting elements within PtrBADH-l promoter and acts as a transcriptional activator. In addition, PtrMYC2 functions positively in cold tolerance through modulation of GB synthesis by regulating PtrBADH-l expression. Interestingly, we found that GB accumulation under cold stress was JA-dependent and that PtrMYC2 orchestrates JA-mediated PtrBADH-l upregulation and GB accumulation. This study sheds new light on the roles of MYC2 homolog in modulating GB synthesis. In particular, we propose a transcriptional regulatory module PtrMYC2-PtrBADH-l to advance the understanding of molecular mechanisms underlying the GB accumulation under cold stress.
Collapse
Affiliation(s)
- Ruhong Ming
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Madiha Khan
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bachar Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
50
|
Kolupaev YE, Yastreb TO. Jasmonate Signaling and Plant Adaptation to Abiotic Stressors (Review). APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821010117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|