1
|
Fujiwara MT, Yoshioka Y, Kazama Y, Hirano T, Niwa Y, Moriyama T, Sato N, Abe T, Yoshida S, Itoh RD. Principles of amyloplast replication in the ovule integuments of Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 196:137-152. [PMID: 38829834 PMCID: PMC11376375 DOI: 10.1093/plphys/kiae314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/05/2024]
Abstract
Plastids in vascular plants have various differentiated forms, among which amyloplasts are crucial for starch storage and plant productivity. Despite the vast knowledge of the binary-fission mode of chloroplast division, our understanding of the replication of non-photosynthetic plastids, including amyloplasts, remains limited. Recent studies have suggested the involvement of stromules (stroma-filled tubules) in plastid replication when the division apparatus is faulty. However, details of the underlying mechanism(s) and their relevance to normal processes have yet to be elucidated. Here, we developed a live analysis system for studying amyloplast replication using Arabidopsis (Arabidopsis thaliana) ovule integuments. We showed the full sequence of amyloplast development and demonstrated that wild-type amyloplasts adopt three modes of replication, binary fission, multiple fission, and stromule-mediated fission, via multi-way placement of the FtsZ ring. The minE mutant, with severely inhibited chloroplast division, showed marked heterogeneity in amyloplast size, caused by size-dependent but wild-type modes of plastid fission. The dynamic properties of stromules distinguish the wild-type and minE phenotypes. In minE cells, extended stromules from giant amyloplasts acquired stability, allowing FtsZ ring assembly and constriction, as well as the growth of starch grains therein. Despite hyper-stromule formation, amyloplasts did not proliferate in the ftsZ null mutant. These data clarify the differences between amyloplast and chloroplast replication and demonstrate that the structural plasticity of amyloplasts underlies the multiplicity of their replication processes. Furthermore, this study shows that stromules can generate daughter plastids via the assembly of the FtsZ ring.
Collapse
Affiliation(s)
- Makoto T Fujiwara
- Nishina Center and Plant Functions Laboratory (Disbanded in March 2004), RIKEN, Wako, Saitama 351-0198, Japan
- Department of Biology, Graduate School of Science and Technology, Sophia University, Kioicho, Chiyoda 102-8554, Japan
- College of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Yasushi Yoshioka
- Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8602, Japan
| | - Yusuke Kazama
- Nishina Center and Plant Functions Laboratory (Disbanded in March 2004), RIKEN, Wako, Saitama 351-0198, Japan
| | - Tomonari Hirano
- Nishina Center and Plant Functions Laboratory (Disbanded in March 2004), RIKEN, Wako, Saitama 351-0198, Japan
| | - Yasuo Niwa
- Laboratory of Plant Cell Technology, University of Shizuoka, Yada, Shizuoka 422-8526, Japan
| | - Takashi Moriyama
- College of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Naoki Sato
- College of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Tomoko Abe
- Nishina Center and Plant Functions Laboratory (Disbanded in March 2004), RIKEN, Wako, Saitama 351-0198, Japan
| | - Shigeo Yoshida
- Nishina Center and Plant Functions Laboratory (Disbanded in March 2004), RIKEN, Wako, Saitama 351-0198, Japan
| | - Ryuuichi D Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
2
|
Wannitikul P, Dachphun I, Sakulkoo J, Suttangkakul A, Wonnapinij P, Simister R, Gomez LD, Vuttipongchaikij S. In Vivo Proximity Cross-Linking and Immunoprecipitation of Cell Wall Epitopes Identify Proteins Associated with the Biosynthesis of Matrix Polysaccharides. ACS OMEGA 2024; 9:31438-31454. [PMID: 39072051 PMCID: PMC11270709 DOI: 10.1021/acsomega.4c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024]
Abstract
Identification of proteins involved in cell wall matrix polysaccharide biosynthesis is crucial to understand plant cell wall biology. We utilized in vivo cross-linking and immunoprecipitation with cell wall antibodies that recognized xyloglucan, xylan, mannan, and homogalacturonan to capture proteins associated with matrix polysaccharides in Arabidopsis protoplasts. The use of cross-linkers allowed us to capture proteins actively associated with cell wall polymers, including those directly interacting with glycans via glycan-protein (GP) cross-linkers and those associated with proteins linked to glycans via a protein-protein (PP) cross-linker. Immunoprecipitations led to the identification of 65 Arabidopsis protein IDs localized in the Golgi, ER, plasma membrane, and others without subcellular localization data. Among these, we found several glycosyltransferases directly involved in polysaccharide synthesis, along with proteins related to cell wall modification and vesicle trafficking. Protein interaction networks from DeepAraPPI and AtMAD databases showed interactions between various IDs, including those related to cell-wall-associated proteins and membrane/vesicle trafficking proteins. Gene expression and coexpression analyses supported the presence and relevance of the proteins to the cell wall processes. Reverse genetic studies using T-DNA insertion mutants of selected proteins revealed changes in cell wall composition and saccharification, further supporting their potential roles in cell wall biosynthesis. Overall, our approach represents a novel approach for studying cell wall polysaccharide biosynthesis and associated proteins, providing advantages over traditional immunoprecipitation techniques. This study provides a list of putative proteins associated with different matrix polysaccharides for further investigation and highlights the complexity of cell wall biosynthesis and trafficking within plant cells.
Collapse
Affiliation(s)
- Pitchaporn Wannitikul
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
| | - Issariya Dachphun
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
| | - Jenjira Sakulkoo
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
| | - Anongpat Suttangkakul
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Center
of Advanced Studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Omics
Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Passorn Wonnapinij
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Center
of Advanced Studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Omics
Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Rachael Simister
- CNAP,
Department of Biology, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Leonardo D. Gomez
- CNAP,
Department of Biology, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Supachai Vuttipongchaikij
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Center
of Advanced Studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Omics
Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
3
|
Costa ER, Demarco D. Development and Holocrine Secretion of Resin Ducts in Kielmeyera appariciana (Calophyllaceae). PLANTS (BASEL, SWITZERLAND) 2024; 13:1757. [PMID: 38999597 PMCID: PMC11243538 DOI: 10.3390/plants13131757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024]
Abstract
The modes of formation and release of secretion are complex processes that occur in secretory ducts and their description has great divergence in some species. The use of modern techniques to detect hydrolytic enzymes, cytoskeleton arrangement and indicators of programmed cell death may help clarify the processes involved during the ontogeny of that gland. The goal of our study was to analyze subcellular changes during schizogenous formation and secretion production and release into the lumen in resin ducts of Kielmeyera appariciana. Our results demonstrate the participation of pectinase through the loosening of the central cells of the rosette, which subsequently split from each other through polarized growth mediated by a rearrangement of the microtubules. The resin is mainly synthesized in plastids and endoplasmic reticulum and is observed inside vesicles and small vacuoles. The secretion release is holocrine and occurs through programmed cell death related to the release of reactive oxygen species, causing cytoplasm darkening, chromatin condensation, vacuole rupture and plastid and mitochondria degeneration. Cellulase activity was identified prior to the rupture of the cell wall, causing the release of secretion into the lumen of the duct. The participation of the cytoskeleton was observed for the first time during schizogeny of ducts as well as programmed cell death as part of the process of the release of holocrine secretion. This type of secretion release may be a key innovation in Kielmeyera since it has not been observed in ducts of any other plant thus far.
Collapse
Affiliation(s)
| | - Diego Demarco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, SP, Brazil;
| |
Collapse
|
4
|
Hoffmann N, Mohammad E, McFarlane HE. Disrupting cell wall integrity impacts endomembrane trafficking to promote secretion over endocytic trafficking. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3731-3747. [PMID: 38676707 PMCID: PMC11194303 DOI: 10.1093/jxb/erae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
The plant cell wall provides a strong yet flexible barrier to protect cells from the external environment. Modifications of the cell wall, either during development or under stress conditions, can induce cell wall integrity responses and ultimately lead to alterations in gene expression, hormone production, and cell wall composition. These changes in cell wall composition presumably require remodelling of the secretory pathway to facilitate synthesis and secretion of cell wall components and cell wall synthesis/remodelling enzymes from the Golgi apparatus. Here, we used a combination of live-cell confocal imaging and transmission electron microscopy to examine the short-term and constitutive impact of isoxaben, which reduces cellulose biosynthesis, and Driselase, a cocktail of cell-wall-degrading fungal enzymes, on cellular processes during cell wall integrity responses in Arabidopsis. We show that both treatments altered organelle morphology and triggered rebalancing of the secretory pathway to promote secretion while reducing endocytic trafficking. The actin cytoskeleton was less dynamic following cell wall modification, and organelle movement was reduced. These results demonstrate active remodelling of the endomembrane system and actin cytoskeleton following changes to the cell wall.
Collapse
Affiliation(s)
- Natalie Hoffmann
- Department of Cell & Systems Biology, University of Toronto, M5S 3B2Canada
| | - Eskandar Mohammad
- Department of Cell & Systems Biology, University of Toronto, M5S 3B2Canada
| | | |
Collapse
|
5
|
Płachno BJ, Kapusta M, Stolarczyk P, Feldo M, Świątek P. Cell Wall Microdomains in the External Glands of Utricularia dichotoma Traps. Int J Mol Sci 2024; 25:6089. [PMID: 38892273 PMCID: PMC11173196 DOI: 10.3390/ijms25116089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The genus Utricularia (bladderworts) species are carnivorous plants that prey on invertebrates using traps with a high-speed suction mechanism. The outer trap surface is lined by dome-shaped glands responsible for secreting water in active traps. In terminal cells of these glands, the outer wall is differentiated into several layers, and even cell wall ingrowths are covered by new cell wall layers. Due to changes in the cell wall, these glands are excellent models for studying the specialization of cell walls (microdomains). The main aim of this study was to check if different cell wall layers have a different composition. Antibodies against arabinogalactan proteins (AGPs) were used, including JIM8, JIM13, JIM14, MAC207, and JIM4. The localization of the examined compounds was determined using immunohistochemistry techniques and immunogold labeling. Differences in composition were found between the primary cell wall and the cell secondary wall in terminal gland cells. The outermost layer of the cell wall of the terminal cell, which was cuticularized, was devoid of AGPs (JIM8, JIM14). In contrast, the secondary cell wall in terminal cells was rich in AGPs. AGPs localized with the JIM13, JIM8, and JIM14 epitopes occurred in wall ingrowths of pedestal cells. Our research supports the hypothesis of water secretion by the external glands.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland
| | - Małgorzata Kapusta
- Bioimaging Laboratory, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdansk, Poland;
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Cracow, Poland;
| | - Marcin Feldo
- Department of Vascular Surgery and Angiology, Medical University of Lublin, 16 Staszica St., 20-081 Lublin, Poland;
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland;
| |
Collapse
|
6
|
Sanhueza D, Sepúlveda-Orellana P, Salazar-Carrasco A, Zúñiga S, Herrera R, Moya-León MA, Saez-Aguayo S. Mucilage extracted from Chilean papaya seeds is enriched with homogalacturonan domains. FRONTIERS IN PLANT SCIENCE 2024; 15:1380533. [PMID: 38872878 PMCID: PMC11169631 DOI: 10.3389/fpls.2024.1380533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024]
Abstract
Chilean papaya, also known as mountain papaya (Vasconcellea pubescens), is a fruit valued for its nutritional value and pleasant fragrance. The oblong fruit, featuring five ridges and a seed-filled mucilage cavity, is typically consumed cooked due to its high protease content. The mucilage and the seeds are usually discarded as byproducts. This study analyzed the biochemical composition of mountain papaya seed mucilage using methods such as HPAEC and immunolabeling. Results revealed that papaya seeds yield nearly 20% of their weight in mucilage polysaccharides, which can be separated into soluble and adherent layers. The mucilage exhibited a high proportion of acidic sugars, indicating that homogalacturonan (HG) is the predominant domain. It also contained other domains like rhamnogalacturonan-I (RG-I) and hemicelluloses, predominantly xyloglucan. The HG-rich mucilage, currently considered waste, emerges as a promising source of polysaccharides, indicating its multifaceted utility in various industrial applications.
Collapse
Affiliation(s)
- Dayan Sanhueza
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
| | - Pablo Sepúlveda-Orellana
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
| | - Alejandra Salazar-Carrasco
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
| | - Sebastian Zúñiga
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
| | - Raúl Herrera
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - María Alejandra Moya-León
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| |
Collapse
|
7
|
Lathe RS, McFarlane HE, Kesten C, Wang L, Khan GA, Ebert B, Ramírez-Rodríguez EA, Zheng S, Noord N, Frandsen K, Bhalerao RP, Persson S. NKS1/ELMO4 is an integral protein of a pectin synthesis protein complex and maintains Golgi morphology and cell adhesion in Arabidopsis. Proc Natl Acad Sci U S A 2024; 121:e2321759121. [PMID: 38579009 PMCID: PMC11009649 DOI: 10.1073/pnas.2321759121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/07/2024] [Indexed: 04/07/2024] Open
Abstract
Adjacent plant cells are connected by specialized cell wall regions, called middle lamellae, which influence critical agricultural characteristics, including fruit ripening and organ abscission. Middle lamellae are enriched in pectin polysaccharides, specifically homogalacturonan (HG). Here, we identify a plant-specific Arabidopsis DUF1068 protein, called NKS1/ELMO4, that is required for middle lamellae integrity and cell adhesion. NKS1 localizes to the Golgi apparatus and loss of NKS1 results in changes to Golgi structure and function. The nks1 mutants also display HG deficient phenotypes, including reduced seedling growth, changes to cell wall composition, and tissue integrity defects. These phenotypes are comparable to qua1 and qua2 mutants, which are defective in HG biosynthesis. Notably, genetic interactions indicate that NKS1 and the QUAs work in a common pathway. Protein interaction analyses and modeling corroborate that they work together in a stable protein complex with other pectin-related proteins. We propose that NKS1 is an integral part of a large pectin synthesis protein complex and that proper function of this complex is important to support Golgi structure and function.
Collapse
Affiliation(s)
- Rahul S. Lathe
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C1871, Denmark
- Max-Planck Institute for Molecular Plant Physiology, Potsdam14476, Germany
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, UmeåSE-90187, Sweden
| | - Heather E. McFarlane
- Department of Cell & Systems Biology, University of Toronto, Toronto, ONM5S 3G5, Canada
- School of Biosciences, University of Melbourne, Parkville, VIC3010, Australia
| | - Christopher Kesten
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C1871, Denmark
| | - Liu Wang
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C1871, Denmark
- School of Biosciences, University of Melbourne, Parkville, VIC3010, Australia
| | - Ghazanfar Abbas Khan
- School of Biosciences, University of Melbourne, Parkville, VIC3010, Australia
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC3086, Australia
| | - Berit Ebert
- School of Biosciences, University of Melbourne, Parkville, VIC3010, Australia
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum44780, Germany
| | | | - Shuai Zheng
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C1871, Denmark
| | - Niels Noord
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, UmeåSE-90187, Sweden
| | - Kristian Frandsen
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C1871, Denmark
| | - Rishikesh P. Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, UmeåSE-90187, Sweden
| | - Staffan Persson
- Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C1871, Denmark
- Max-Planck Institute for Molecular Plant Physiology, Potsdam14476, Germany
- School of Biosciences, University of Melbourne, Parkville, VIC3010, Australia
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, University of AdelaideJoint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
8
|
Pukyšová V, Sans Sánchez A, Rudolf J, Nodzyński T, Zwiewka M. Arabidopsis flippase ALA3 is required for adjustment of early subcellular trafficking in plant response to osmotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4959-4977. [PMID: 37353222 PMCID: PMC10498020 DOI: 10.1093/jxb/erad234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/23/2023] [Indexed: 06/25/2023]
Abstract
To compensate for their sessile lifestyle, plants developed several responses to exogenous changes. One of the previously investigated and not yet fully understood adaptations occurs at the level of early subcellular trafficking, which needs to be rapidly adjusted to maintain cellular homeostasis and membrane integrity under osmotic stress conditions. To form a vesicle, the membrane needs to be deformed, which is ensured by multiple factors, including the activity of specific membrane proteins, such as flippases from the family of P4-ATPases. The membrane pumps actively translocate phospholipids from the exoplasmic/luminal to the cytoplasmic membrane leaflet to generate curvature, which might be coupled with recruitment of proteins involved in vesicle formation at specific sites of the donor membrane. We show that lack of the AMINOPHOSPHOLIPID ATPASE3 (ALA3) flippase activity caused defects at the plasma membrane and trans-Golgi network, resulting in altered endocytosis and secretion, processes relying on vesicle formation and movement. The mentioned cellular defects were translated into decreased intracellular trafficking flexibility failing to adjust the root growth on osmotic stress-eliciting media. In conclusion, we show that ALA3 cooperates with ARF-GEF BIG5/BEN1 and ARF1A1C/BEX1 in a similar regulatory pathway to vesicle formation, and together they are important for plant adaptation to osmotic stress.
Collapse
Affiliation(s)
- Vendula Pukyšová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Adrià Sans Sánchez
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Rudolf
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
| | - Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
| |
Collapse
|
9
|
Walton K, Nawara TJ, Angermeier AR, Rosengrant H, Lee E, Wynn B, Victorova E, Belov G, Sztul E. Site-specific phosphorylations of the Arf activator GBF1 differentially regulate GBF1 function in Golgi homeostasis and secretion versus cytokinesis. Sci Rep 2023; 13:13609. [PMID: 37604968 PMCID: PMC10442430 DOI: 10.1038/s41598-023-40705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
Diverse cellular processes, including membrane traffic, lipid homeostasis, cytokinesis, mitochondrial positioning, and cell motility are critically dependent on the Sec7 domain guanine nucleotide exchange factor GBF1. Yet, how the participation of GBF1 in a particular cellular function is regulated is unknown. Here, we show that the phosphorylation of specific highly conserved serine and tyrosine residues within the N-terminal domain of GBF1 differentially regulates its function in maintaining Golgi homeostasis and facilitating secretion versus its role in cytokinesis. Specifically, GBF1 mutants containing single amino acid substitutions that mimic a stably phosphorylated S233, S371, Y377, and Y515 or the S233A mutant that can't be phosphorylated are fully able to maintain Golgi architecture and support cargo traffic through the secretory pathway when assessed in multiple functional assays. However, the same mutants cause multi-nucleation when expressed in cells, and appear to inhibit the progression through mitosis and the resolution of cytokinetic bridges. Thus, GBF1 participates in distinct interactive networks when mediating Golgi homeostasis and secretion versus facilitating cytokinesis, and GBF1 integration into such networks is differentially regulated by the phosphorylation of specific GBF1 residues.
Collapse
Affiliation(s)
- Kendall Walton
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 668, Birmingham, AL, 35233-2008, USA.
| | - Tomasz J Nawara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 668, Birmingham, AL, 35233-2008, USA
| | - Allyson R Angermeier
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 668, Birmingham, AL, 35233-2008, USA
| | - Hadley Rosengrant
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 668, Birmingham, AL, 35233-2008, USA
| | - Eunjoo Lee
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 668, Birmingham, AL, 35233-2008, USA
| | - Bridge Wynn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 668, Birmingham, AL, 35233-2008, USA
| | - Ekaterina Victorova
- Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - George Belov
- Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Elizabeth Sztul
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 668, Birmingham, AL, 35233-2008, USA
| |
Collapse
|
10
|
Khatoon U, Prasad V, Sawant SV. Expression dynamics and a loss-of-function of Arabidopsis RabC1 GTPase unveil its role in plant growth and seed development. PLANTA 2023; 257:89. [PMID: 36988700 DOI: 10.1007/s00425-023-04122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Transcript isoform dynamics, spatiotemporal expression, and mutational analysis uncover that Arabidopsis RabC1 GTPase is required for root length, flowering time, seed size, and seed mucilage. Rab GTPases are crucial regulators for moving different molecules to their specific compartments according to the needs of the cell. In this work, we illustrate the role of RabC1 GTPase in Arabidopsis growth and seed development. We identify and analyze the expression pattern of three transcript isoforms of RabC1 in different development stages, along with their tissue-specific transcript abundance. The promoter activity of RabC1 using promoter-GUS fusion shows that it is widely expressed during the growth of Arabidopsis, particularly in seed tissues such as chalazal seed coat and chalazal endosperm. Lack of RabC1 function led to shorter roots, lesser biomass, delayed flowering, and sluggish plant development. The mutants had smaller seeds than the wildtype, less seed mass, and lower seed coat permeability. Developing seeds also revealed a smaller endosperm cavity and shorter integument cells. Additionally, we found that the knock-out mutant had downregulated expression of genes implicated in the transit of sugars and amino acids from maternal tissue to developing seed. The seeds of the loss-of-function mutant had reduced seed mucilage. All the observed mutant phenotypes were restored in the complemented lines confirming the function of RabC1 in seed development and plant growth.
Collapse
Affiliation(s)
- Uzma Khatoon
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Vivek Prasad
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Samir V Sawant
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| |
Collapse
|
11
|
McFarlane HE. Open questions in plant cell wall synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad110. [PMID: 36961357 DOI: 10.1093/jxb/erad110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Plant cells are surrounded by strong yet flexible polysaccharide-based cell walls that support the cell while also allowing growth by cell expansion. Plant cell wall research has advanced tremendously in recent years. Sequenced genomes of many model and crop plants have facilitated cataloging and characterization of many enzymes involved in cell wall synthesis. Structural information has been generated for several important cell wall synthesizing enzymes. Important tools have been developed including antibodies raised against a variety of cell wall polysaccharides and glycoproteins, collections of enzyme clones and synthetic glycan arrays for characterizing enzymes, herbicides that specifically affect cell wall synthesis, live-cell imaging probes to track cell wall synthesis, and an inducible secondary cell wall synthesis system. Despite these advances, and often because of the new information they provide, many open questions about plant cell wall polysaccharide synthesis persist. This article highlights some of the key questions that remain open, reviews the data supporting different hypotheses that address these questions, and discusses technological developments that may answer these questions in the future.
Collapse
Affiliation(s)
- Heather E McFarlane
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord St., Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
12
|
Parra-Rojas JP, Sepúlveda-Orellana P, Sanhueza D, Salinas-Grenet H, Temple H, Dupree P, Saez-Aguayo S, Orellana A. GoSAMTs are required for pectin methyl-esterification and mucilage release in seed coat epidermal cells. FRONTIERS IN PLANT SCIENCE 2023; 14:1099573. [PMID: 36844056 PMCID: PMC9946043 DOI: 10.3389/fpls.2023.1099573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION GoSAMTs play a role in the methylation of polysaccharides synthesized by the Golgi. Pectin homogalacturonan (HG) methyl-esterification is essential for the proper function of this polysaccharide in cell walls. In order to better understand the role of GoSAMTs in HG biosynthesis, we analyzed mucilage methyl-esterification in gosamt mutants. METHODS To determine the function of GoSAMT1 and GoSAMT2 in HG methyl-esterification we utilized epidermal cells of seed coats, as these structures produce mucilage, which is a pectic matrix. We evaluated differences in seed surface morphology and quantified mucilage release. We measured methanol release, and used antibodies and confocal microscopy to analyze HG methyl-esterification in mucilage. RESULTS We observed morphological differences on the seed surface and delayed, uneven mucilage release in gosamt1-1gosamt2-1 double mutants. We also found changes in the distal wall length indicating abnormal cell wall breakage in this double mutant. Using methanol release and immunolabeling, we confirmed that GoSAMT1 and GoSAMT2 are involved in HG methyl-esterification in mucilage. However, we did not find evidence of decreasing HG in the gosamt mutants. Confocal microscopy analyses detected different patterns in the adherent mucilage and a greater number of low-methyl-esterified domains near the seed coat surface, which correlates with a greater number of "egg-box" structures in this region. We also detected a shift in the partitioning between the Rhamnogalacturonan-I soluble and adherent layers of the double mutant, which correlated with increased amounts of arabinose and arabinogalactan-protein in the adherent mucilage. DISCUSSION The results show that the HG synthesized in gosamt mutant plants is less methyl esterified, resulting in more egg-box structures, which stiffen the cell walls in epidermal cells and change the rheological properties of the seed surface. The increased amounts of arabinose and arabinogalactan-protein in adherent mucilage, also suggests that compensation mechanisms were triggered in the gosamt mutants.
Collapse
Affiliation(s)
- Juan Pablo Parra-Rojas
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millenium Institute Center for Genome Regulation, Santiago, Chile
| | - Pablo Sepúlveda-Orellana
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Dayan Sanhueza
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Hernán Salinas-Grenet
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Henry Temple
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millenium Institute Center for Genome Regulation, Santiago, Chile
| |
Collapse
|
13
|
Metabolomic Changes as Key Factors of Green Plant Regeneration Efficiency of Triticale In Vitro Anther Culture. Cells 2022; 12:cells12010163. [PMID: 36611956 PMCID: PMC9818285 DOI: 10.3390/cells12010163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Green plant regeneration efficiency (GPRE) via in vitro anther culture results from biochemical pathways and cycle dysfunctions that may affect DNA and histone methylation, with gene expression influencing whole cell functioning. The reprogramming from gametophytic to sporophytic fate is part of the phenomenon. While DNA methylation and sequence changes related to the GPRE have been described, little attention was paid to the biochemical aspects of the phenomenon. Furthermore, only a few theoretical models that describe the complex relationships between biochemical aspects of GPRE and the role of Cu(II) ions in the induction medium and as cofactors of enzymatic reactions have been developed. Still, none of these models are devoted directly to the biochemical level. Fourier transform infrared (FTIR) spectroscopy was used in the current study to analyze triticale regenerants derived under various in vitro tissue culture conditions, including different Cu(II) and Ag(I) ion concentrations in the induction medium and anther culture times. The FTIR spectra of S-adenosyl-L-methionine (SAM), glutathione, and pectins in parallel with the Cu(II) ions, as well as the evaluated GPRE values, were put into the structural equation model (SEM). The data demonstrate the relationships between SAM, glutathione, pectins, and Cu(II) in the induction medium and how they affect GPRE. The SEM reflects the cell functioning under in vitro conditions and varying Cu(II) concentrations. In the presented model, the players are the Krebs and Yang cycles, the transsulfuration pathway controlled by Cu(II) ions acting as cofactors of enzymatic reactions, and the pectins of the primary cell wall.
Collapse
|
14
|
Sinclair R, Hsu G, Davis D, Chang M, Rosquete M, Iwasa JH, Drakakaki G. Plant cytokinesis and the construction of new cell wall. FEBS Lett 2022; 596:2243-2255. [PMID: 35695093 DOI: 10.1002/1873-3468.14426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022]
Abstract
Cytokinesis in plants is fundamentally different from that in animals and fungi. In plant cells, a cell plate forms through the fusion of cytokinetic vesicles and then develops into the new cell wall, partitioning the cytoplasm of the dividing cell. The formation of the cell plate entails multiple stages that involve highly orchestrated vesicle accumulation, fusion, and membrane maturation, which occur concurrently with the timely deposition of polysaccharides such as callose, cellulose, and cross-linking glycans. This review summarizes the major stages in cytokinesis, endomembrane components involved in cell plate assembly and its transition to a new cell wall. An animation that can be widely used for educational purposes further summarizes the process.
Collapse
Affiliation(s)
- Rosalie Sinclair
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| | - Grace Hsu
- Department of Biochemistry University of Utah, School of Medicine, Salt Lake City, UT, 84112, USA
| | - Destiny Davis
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA.,Current address: Lawrence Berkeley National Lab, Emeryville, CA, 94608, USA
| | - Mingqin Chang
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| | - Michel Rosquete
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA.,Current address: Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Janet H Iwasa
- Department of Biochemistry University of Utah, School of Medicine, Salt Lake City, UT, 84112, USA
| | - Georgia Drakakaki
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
15
|
Zhang Y, Yin Q, Qin W, Gao H, Du J, Chen J, Li H, Zhou G, Wu H, Wu AM. The Class II KNOX family members KNAT3 and KNAT7 redundantly participate in Arabidopsis seed coat mucilage biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3477-3495. [PMID: 35188965 DOI: 10.1093/jxb/erac066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The production of Arabidopsis seed mucilage involves complex polysaccharide biosynthetic pathways and developmental processes in seed epidermal cells. Although the polysaccharide components of Arabidopsis seed mucilage have been identified, their regulatory mechanism requires further investigation. Here, we show that Class II KNOX gene family members KNAT3 and KNAT7 play an essential role in regulating mucilage production in the early developmental stages of Arabidopsis seeds. Double mutant knat3knat7 resulted in defective seed mucilage production and columellae formation, whereas knat3 showed a normal phenotype compared with wild type, and the mucilage thickness in knat7 was slightly disturbed. Rhamnogalacturonan I (RG-I) and its biosynthetic substrates galacturonic acid and rhamnose were reduced in both the adherent and soluble mucilage of knat3knat7. Comparative transcriptome analysis on whole seeds suggested that polysaccharide, glucosinolate and anthocyanin biosynthetic pathways were specifically repressed in knat3knat7. Transient co-expression of KNAT3 and KNAT7 with promoter regions of candidate genes in Arabidopsis protoplasts revealed that both KNAT3 and KNAT7 act as positive regulators of the RG-I biosynthetic gene MUCILAGE-MODIFIED 4 (MUM4, AT1G53500). Collectively, our results demonstrate that KNAT3 and KNAT7 are multifunctional transcription factors in secondary cell wall development and redundantly modulate mucilage biosynthesis in Arabidopsis seeds.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University. Guangzhou, 510642, China
| | - Qi Yin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University. Guangzhou, 510642, China
| | - Wenqi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University. Guangzhou, 510642, China
| | - Han Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- College of life sciences, South China Agricultural University. Guangzhou, 510642, China
| | - Jinge Du
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Jiajun Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University. Guangzhou, 510642, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University. Guangzhou, 510642, China
| | - Gongke Zhou
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University. Guangzhou, 510642, China
- College of life sciences, South China Agricultural University. Guangzhou, 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University. Guangzhou, 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
16
|
Batystová K, Synek L, Klejchová M, Janková Drdová E, Sabol P, Potocký M, Žárský V, Hála M. Diversification of SEC15a and SEC15b isoforms of an exocyst subunit in seed plants is manifested in their specific roles in Arabidopsis sporophyte and male gametophyte. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1382-1396. [PMID: 35306706 DOI: 10.1111/tpj.15744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The exocyst complex is an octameric evolutionarily conserved tethering complex engaged in the regulation of polarized secretion in eukaryotic cells. Here, we focus on the systematic comparison of two isoforms of the SEC15 exocyst subunit, SEC15a and SEC15b. We infer that SEC15 gene duplication and diversification occurred in the common ancestor of seed plants (Spermatophytes). In Arabidopsis, SEC15a represents the main SEC15 isoform in the male gametophyte, and localizes to the pollen tube tip at the plasma membrane. Although pollen tubes of sec15a mutants are impaired, sporophytes show no phenotypic deviations. Conversely, SEC15b is the dominant isoform in the sporophyte and localizes to the plasma membrane in root and leaf cells. Loss-of-function sec15b mutants exhibit retarded elongation of hypocotyls and root hairs, a loss of apical dominance, dwarfed plant stature and reduced seed coat mucilage formation. Surprisingly, the sec15b mutants also exhibit compromised pollen tube elongation in vitro, despite its very low expression in pollen, suggesting a non-redundant role for the SEC15b isoform there. In pollen tubes, SEC15b localizes to distinct cytoplasmic structures. Reciprocally to this, SEC15a also functions in the sporophyte, where it accumulates at plasmodesmata. Importantly, although overexpressed SEC15a could fully complement the sec15b phenotypic deviations in the sporophyte, the pollen-specific overexpression of SEC15b was unable to fully compensate for the loss of SEC15a function in pollen. We conclude that the SEC15a and SEC15b isoforms evolved in seed plants, with SEC15a functioning mostly in pollen and SEC15b functioning mostly in the sporophyte.
Collapse
Affiliation(s)
- Klára Batystová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Vinicna 5, Charles University, Prague, CZ-12844, Czech Republic
| | - Lukáš Synek
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
| | - Martina Klejchová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
| | - Edita Janková Drdová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
| | - Peter Sabol
- Department of Experimental Plant Biology, Faculty of Science, Vinicna 5, Charles University, Prague, CZ-12844, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
| | - Viktor Žárský
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Vinicna 5, Charles University, Prague, CZ-12844, Czech Republic
| | - Michal Hála
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Vinicna 5, Charles University, Prague, CZ-12844, Czech Republic
| |
Collapse
|
17
|
Płachno BJ, Kapusta M, Stolarczyk P, Bogucka-Kocka A. Spatiotemporal Distribution of Homogalacturonans and Hemicelluloses in the Placentas, Ovules and Female Gametophytes of Utricularia nelumbifolia during Pollination. Cells 2022; 11:cells11030475. [PMID: 35159284 PMCID: PMC8834615 DOI: 10.3390/cells11030475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Utricularia nelumbifolia is a large carnivorous plant that is endemic to Brazil. It forms an extra-ovular female gametophyte, which surpasses the entire micropylar canal and extends beyond the limit of the integument and invades the placenta tissues. Due to the atypical behavior of the female gametophyte, it is interesting to determine the interaction between the gametophyte and sporophytic tissue. Therefore, the aim of this study was to evaluate the role of the placenta, the ovular tissues, the hypertrophied central cell and the integument in guiding the pollen tube in Utricularia nelumbifolia Gardner by studying the distribution of homogalacturonans and hemicelluloses. It was also determined whether the distribution of the homogalacturonans (HG) and hemicelluloses in Utricularia are dependent on pollination. The antibodies directed against the wall components (anti-pectin: JIM5, JIM7, LM19, LM20 and the anti-hemicelluloses: LM25, LM11, LM15, LM20, LM21) were used. Because both low- and high-esterified HG and xyloglucan were observed in the placenta, ovule (integument, chalaza) and female gametophyte of both pollinated and unpollinated flowers, the occurrence of these cell-wall components was not dependent on pollination. After fertilization, low methyl-esterified HGs were still observed in the cell walls of somatic cells and female gametophyte. However, in the case of high-esterified HG, the signal was weak and occurred only in the cell walls of the somatic cells. Because xyloglucans were observed in the cell walls of the synergids and egg cells, this suggests that they play a role in sexual reproduction. Utricularia nelumbifolia with an extra ovule-female gametophyte is presented as an attractive model for studying the male-female dialogue in plants.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
- Correspondence: ; Tel.: +48-12-664-6039
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdańsk, Poland;
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Kraków, Poland;
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
18
|
McGee R, Dean GH, Wu D, Zhang Y, Mansfield SD, Haughn GW. Pectin Modification in Seed Coat Mucilage by In Vivo Expression of Rhamnogalacturonan-I- and Homogalacturonan-Degrading Enzymes. PLANT & CELL PHYSIOLOGY 2021; 62:1912-1926. [PMID: 34059917 DOI: 10.1093/pcp/pcab077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/23/2021] [Accepted: 05/31/2021] [Indexed: 05/27/2023]
Abstract
The cell wall is essential for plant survival. Determining the relationship between cell wall structure and function using mutant analysis or overexpressing cell wall-modifying enzymes has been challenging due to the complexity of the cell wall and the appearance of secondary, compensatory effects when individual polymers are modified. In addition, viability of the plants can be severely impacted by wall modification. A useful model system for studying structure-function relationships among extracellular matrix components is the seed coat epidermal cells of Arabidopsis thaliana. These cells synthesize relatively simple, easily accessible, pectin-rich mucilage that is not essential for plant viability. In this study, we expressed enzymes predicted to modify polysaccharide components of mucilage in the apoplast of seed coat epidermal cells and explored their impacts on mucilage. The seed coat epidermal-specific promoter TESTA ABUNDANT2 (TBA2) was used to drive expression of these enzymes to avoid adverse effects in other parts of the plant. Mature transgenic seeds expressing Rhamnogalacturonate lyase A (RglA) or Rhamnogalacturonate lyase B (RglB) that degrade the pectin rhamnogalacturonan-I (RG-I), a major component of mucilage, had greatly reduced mucilage capsules surrounding the seeds and concomitant decreases in the monosaccharides that comprise the RG-I backbone. Degradation of the minor mucilage component homogalacturonan (HG) using the HG-degrading enzymes Pectin lyase A (PLA) or ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2 (ADPG2) resulted in developing seed coat epidermal cells with disrupted cell-cell adhesion and signs of early cell death. These results demonstrate the feasibility of manipulating the seed coat epidermal cell extracellular matrix using a targeted genetic engineering approach.
Collapse
Affiliation(s)
- Robert McGee
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
- L'Institut National de la Recherche Scientifique Centre Armand-Frappier Santé Biotechnologie (INRS-CAFSB), 531 des Prairies Blvd. Laval, QC, H7V 1B7, Canada
| | - Gillian H Dean
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| | - Di Wu
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
- Faculty of Land and Food Systems, University of British Columbia, 248-2357 Main Mall Vancouver, BC V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, 2900-2424 Main Mall Vancouver, BC V6T 1Z4, Canada
| | - George W Haughn
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
19
|
Lee Y, Dean GH, Gilchrist E, Tsai AY, Haughn GW. Asymmetric distribution of extracellular matrix proteins in seed coat epidermal cells of Arabidopsis is determined by polar secretion. PLANT DIRECT 2021; 5:e360. [PMID: 34877448 PMCID: PMC8628086 DOI: 10.1002/pld3.360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Although asymmetric deposition of the plant extracellular matrix is critical for the normal functioning of many cell types, the molecular mechanisms establishing this asymmetry are not well understood. During differentiation, Arabidopsis seed coat epidermal cells deposit large amounts of pectin-rich mucilage asymmetrically to form an extracellular pocket between the plasma membrane and the outer tangential primary cell wall. At maturity, the mucilage expands on contact with water, ruptures the primary cell wall, and extrudes to encapsulate the seed. In addition to polysaccharides, mucilage contains secreted proteins including the β-galactosidase MUCILAGE MODIFIED 2 (MUM2). A functional chimeric protein where MUM2 was fused translationally with Citrine yellow fluorescent protein (Citrine) indicated that MUM2-Citrine fluorescence preferentially accumulates in the mucilage pocket concomitant with mucilage deposition and rapidly disappears when mucilage synthesis ceases. A secreted form of Citrine, secCitrine, showed a similar pattern of localization when expressed in developing seed coat epidermal cells. This result suggested that both the asymmetric localization and rapid decrease of fluorescence is not unique to MUM2-Citrine and may represent the default pathway for secreted proteins in this cell type. v-SNARE proteins were localized only in the membrane adjacent to the mucilage pocket, supporting the hypothesis that the cellular secretory apparatus is redirected and targets secretion to the outer periclinal apoplast during mucilage synthesis. In addition, mutation of ECHIDNA, a gene encoding a TGN-localized protein involved in vesicle targeting, causes misdirection of mucilage, MUM2 and v-SNARE proteins from the apoplast/plasma membrane to the vacuole/tonoplast. Western blot analyses suggested that the disappearance of MUM2-Citrine fluorescence at the end of mucilage synthesis is due to protein degradation and because several proteases have been identified in extruded seed mucilage. However, as mutation of these genes did not result in a substantial delay in MUM2-Citrine degradation and the timing of their expression and/or their intracellular localization were not consistent with a role in MUM2-Citrine disappearance, the mechanism underlying the abrupt decrease of MUM2-Citrine remains unclear.
Collapse
Affiliation(s)
- Yi‐Chen Lee
- Department of BotanyUniversity of British ColumbiaVancouverCanada
- Present address:
Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
| | - Gillian H. Dean
- Department of BotanyUniversity of British ColumbiaVancouverCanada
| | - Erin Gilchrist
- Department of BotanyUniversity of British ColumbiaVancouverCanada
- Present address:
Molecular DiagnosticsAnandia LaboratoriesVancouverCanada
| | - Allen Yi‐Lun Tsai
- Department of BotanyUniversity of British ColumbiaVancouverCanada
- Present address:
International Research Center for Agricultural & Environmental Biology, Faculty of Advanced Science and TechnologyKumamoto UniversityKumamotoJapan
| | - George W. Haughn
- Department of BotanyUniversity of British ColumbiaVancouverCanada
| |
Collapse
|
20
|
Peng JS, Zhang BC, Chen H, Wang MQ, Wang YT, Li HM, Cao SX, Yi HY, Wang H, Zhou YH, Gong JM. Galactosylation of rhamnogalacturonan-II for cell wall pectin biosynthesis is critical for root apoplastic iron reallocation in Arabidopsis. MOLECULAR PLANT 2021; 14:1640-1651. [PMID: 34171482 DOI: 10.1016/j.molp.2021.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/23/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Apoplastic iron (Fe) in roots represents an essential Fe storage pool. Reallocation of apoplastic Fe is of great importance to plants experiencing Fe deprivation, but how this reallocation process is regulated remains elusive, likely because of the highly complex cell wall structure and the limited knowledge about cell wall biosynthesis and modulation. Here, we present genetic and biochemical evidence to demonstrate that the Cdi-mediated galactosylation of rhamnogalacturonan-II (RG-II) is required for apoplastic Fe reallocation. Cdi is expressed in roots and up-regulated in response to Fe deficiency. It encodes a putative glycosyltransferase localized to the Golgi apparatus. Biochemical and mass spectrometry assays showed that Cdi catalyzes the transfer of GDP-L-galactose to the terminus of side chain A on RG-II. Disruption of Cdi essentially decreased RG-II dimerization and hence disrupted cell wall formation, as well as the reallocation of apoplastic Fe from roots to shoots. Further transcriptomic, Fourier transform infrared spectroscopy, and Fe desorption kinetic analyses coincidently suggested that Cdi mediates apoplastic Fe reallocation through extensive modulation of cell wall components and consequently the Fe adsorption capacity of the cell wall. Our study provides direct evidence demonstrating a link between cell wall biosynthesis and apoplastic Fe reallocation, thus indicating that the structure of the cell wall is important for efficient usage of the cell wall Fe pool.
Collapse
Affiliation(s)
- Jia-Shi Peng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Bao-Cai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Qi Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Ting Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Hong-Mei Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shao-Xue Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Ying Yi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hang Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Hua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ji-Ming Gong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China.
| |
Collapse
|
21
|
Ajayi OO, Held MA, Showalter AM. Two β-glucuronosyltransferases involved in the biosynthesis of type II arabinogalactans function in mucilage polysaccharide matrix organization in Arabidopsis thaliana. BMC PLANT BIOLOGY 2021; 21:245. [PMID: 34051740 PMCID: PMC8164333 DOI: 10.1186/s12870-021-03012-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/26/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Arabinogalactan-proteins (AGPs) are heavily glycosylated with type II arabinogalactan (AG) polysaccharides attached to hydroxyproline residues in their protein backbone. Type II AGs are necessary for plant growth and critically important for the establishment of normal cellular functions. Despite the importance of type II AGs in plant development, our understanding of the underlying role of these glycans/sugar residues in mucilage formation and seed coat epidermal cell development is poorly understood and far from complete. One such sugar residue is the glucuronic acid residues of AGPs that are transferred onto AGP glycans by the action of β-glucuronosyltransferase genes/enzymes. RESULTS Here, we have characterized two β-glucuronosyltransferase genes, GLCAT14A and GLCAT14C, that are involved in the transfer of β-glucuronic acid (GlcA) to type II AGs. Using a reverse genetics approach, we observed that glcat14a-1 mutants displayed subtle alterations in mucilage pectin homogalacturonan (HG) compared to wild type (WT), while glcat14a-1glcat14c-1 mutants displayed much more severe mucilage phenotypes, including loss of adherent mucilage and significant alterations in cellulose ray formation and seed coat morphology. Monosaccharide composition analysis showed significant alterations in the sugar amounts of glcat14a-1glcat14c-1 mutants relative to WT in the adherent and non-adherent seed mucilage. Also, a reduction in total mucilage content was observed in glcat14a-1glcat14c-1 mutants relative to WT. In addition, glcat14a-1glcat14c-1 mutants showed defects in pectin formation, calcium content and the degree of pectin methyl-esterification (DM) as well as reductions in crystalline cellulose content and seed size. CONCLUSIONS These results raise important questions regarding cell wall polymer interactions and organization during mucilage formation. We propose that the enzymatic activities of GLCAT14A and GLCAT14C play partially redundant roles and are required for the organization of the mucilage matrix and seed size in Arabidopsis thaliana. This work brings us a step closer towards identifying potential gene targets for engineering plant cell walls for industrial applications.
Collapse
Affiliation(s)
- Oyeyemi O. Ajayi
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701 USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701 USA
| | - Michael A. Held
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701 USA
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 USA
| | - Allan M. Showalter
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701 USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701 USA
| |
Collapse
|
22
|
Liu Y, Liu Z, Zhu X, Hu X, Zhang H, Guo Q, Yada RY, Cui SW. Seed coat mucilages: Structural, functional/bioactive properties, and genetic information. Compr Rev Food Sci Food Saf 2021; 20:2534-2559. [PMID: 33836113 DOI: 10.1111/1541-4337.12742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/04/2023]
Abstract
Seed coat mucilages are mainly polysaccharides covering the outer layer of the seeds to facilitate seed hydration and germination, thereby improving seedling emergence and reducing seedling mortality. Four types of polysaccharides are found in mucilages including xylan, pectin, glucomannan, and cellulose. Recently, mucilages from flaxseed, yellow mustard seed, chia seed, and so on, have been used extensively in the areas of food, pharmaceutical, and cosmetics contributing to stability, texture, and appearance. This review, for the first time, addresses the similarities and differences in physicochemical properties, molecular structure, and functional/bioactive properties of mucilages among different sources; highlights their structure and function relationships; and systematically summarizes the related genetic information, aiming with the intent to explore the potential functions thereby extending their future industrial applications.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhenfei Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Xuerui Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Xinzhong Hu
- College of Food Engineering & Nutrition Science, Shaanxi Normal University, Shaanxi, China
| | - Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Rickey Y Yada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steve W Cui
- Guelph Research and Development Centre, Agri- and Agri-food Canada, Guelph, Ontario, Canada
| |
Collapse
|
23
|
Subcellular coordination of plant cell wall synthesis. Dev Cell 2021; 56:933-948. [PMID: 33761322 DOI: 10.1016/j.devcel.2021.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/13/2021] [Accepted: 02/27/2021] [Indexed: 01/08/2023]
Abstract
Organelles of the plant cell cooperate to synthesize and secrete a strong yet flexible polysaccharide-based extracellular matrix: the cell wall. Cell wall composition varies among plant species, across cell types within a plant, within different regions of a single cell wall, and in response to intrinsic or extrinsic signals. This diversity in cell wall makeup is underpinned by common cellular mechanisms for cell wall production. Cellulose synthase complexes function at the plasma membrane and deposit their product into the cell wall. Matrix polysaccharides are synthesized by a multitude of glycosyltransferases in hundreds of mobile Golgi stacks, and an extensive set of vesicle trafficking proteins govern secretion to the cell wall. In this review, we discuss the different subcellular locations at which cell wall synthesis occurs, review the molecular mechanisms that control cell wall biosynthesis, and examine how these are regulated in response to different perturbations to maintain cell wall homeostasis.
Collapse
|
24
|
Płachno BJ, Kapusta M, Świątek P, Stolarczyk P, Kocki J. Immunodetection of Pectic Epitopes, Arabinogalactan Proteins, and Extensins in Mucilage Cells from the Ovules of Pilosella officinarum Vaill. and Taraxacum officinale Agg. (Asteraceae). Int J Mol Sci 2020; 21:E9642. [PMID: 33348898 PMCID: PMC7766254 DOI: 10.3390/ijms21249642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
The main aim of this study was to compare the cytological difference between ovular mucilage cells in two Asteraceae species-Pilosella officinarum and Taraxacum officinale-in order to determine whether pectic epitopes, arabinogalactan proteins, or extensins are present. The immunocytochemical technique was used. Both the Taracacum and Pilosella genera have been used recently as models for understanding the mechanisms of apomixis. Knowledge of the presence of signal molecules (pectic epitopes, arabinogalactan proteins, and extensins) can help better understand the developmental processes in these plants during seed growth. The results showed that in Pilosella officinarum, there was an accumulation of pectins in the mucilage, including both weakly and highly esterified pectins, which was in contrast to the mucilage of Taraxacum officinale, which had low amounts of these pectins. However, Taraxacum protoplasts of mucilage cells were rich in weakly methyl-esterified pectins. While the mucilage contained arabinogalactan proteins in both of the studied species, the types of arabinogalactan proteins were different. In both of the studied species, extensins were recorded in the transmitting tissues. Arabinogalactan proteins as well as weakly and highly esterified pectins and extensins occurred in close proximity to calcium oxalate crystals in both Taraxacum and Pilosella cells.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, University of Gdańsk, 59. Wita Stwosza St., 80-308 Gdańsk, Poland;
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland;
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Kraków, Poland;
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłowska St., 20-080 Lublin, Poland;
| |
Collapse
|
25
|
Neumann U, Hay A. Seed coat development in explosively dispersed seeds of Cardamine hirsuta. ANNALS OF BOTANY 2020; 126:39-59. [PMID: 31796954 PMCID: PMC7304473 DOI: 10.1093/aob/mcz190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/22/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS Seeds are dispersed by explosive coiling of the fruit valves in Cardamine hirsuta. This rapid coiling launches the small seeds on ballistic trajectories to spread over a 2 m radius around the parent plant. The seed surface interacts with both the coiling fruit valve during launch and subsequently with the air during flight. We aim to identify features of the seed surface that may contribute to these interactions by characterizing seed coat differentiation. METHODS Differentiation of the outermost seed coat layers from the outer integuments of the ovule involves dramatic cellular changes that we characterize in detail at the light and electron microscopical level including immunofluorescence and immunogold labelling. KEY RESULTS We found that the two outer integument (oi) layers of the seed coat contributed differently to the topography of the seed surface in the explosively dispersed seeds of C. hirsuta vs. the related species Arabidopsis thaliana where seed dispersal is non-explosive. The surface of A. thaliana seeds is shaped by the columella and the anticlinal cell walls of the epidermal oi2 layer. In contrast, the surface of C. hirsuta seeds is shaped by a network of prominent ridges formed by the anticlinal walls of asymmetrically thickened cells of the sub-epidermal oi1 layer, especially at the seed margin. Both the oi2 and oi1 cell layers in C. hirsuta seeds are characterized by specialized, pectin-rich cell walls that are deposited asymmetrically in the cell. CONCLUSIONS The two outermost seed coat layers in C. hirsuta have distinct properties: the sub-epidermal oi1 layer determines the topography of the seed surface, while the epidermal oi2 layer accumulates mucilage. These properties are influenced by polar deposition of distinct pectin polysaccharides in the cell wall. Although the ridged seed surface formed by oi1 cell walls is associated with ballistic dispersal in C. hirsuta, it is not restricted to explosively dispersed seeds in the Brassicaceae.
Collapse
Affiliation(s)
- Ulla Neumann
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
26
|
Xu Y, Wang Y, Wang X, Pei S, Kong Y, Hu R, Zhou G. Transcription Factors BLH2 and BLH4 Regulate Demethylesterification of Homogalacturonan in Seed Mucilage. PLANT PHYSIOLOGY 2020; 183:96-111. [PMID: 32111623 PMCID: PMC7210630 DOI: 10.1104/pp.20.00011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/19/2020] [Indexed: 05/22/2023]
Abstract
The polysaccharide pectin is a major component of the plant cell wall. The pectic glycan homogalacturonan (HG) is a proportionally small but important component of a specialized seed cell wall called mucilage. HG is synthesized in a highly methylesterified form, and, following secretion, is de-methylesterified by pectin methylesterases (PMEs). The degree of methylesterification of HG determines the structural and functional properties of pectin, but how methylesterification is regulated remains largely unknown. Here, we identified two BEL1-Like homeodomain (BLH) transcription factors, BLH2 and BLH4, as positive regulators of HG de-methylesterification in Arabidopsis (Arabidopsis thaliana) seed coat mucilage. BLH2 and BLH4 were significantly expressed in mucilage secretory cells during seed mucilage production. BLH2 and BLH4 single mutants exhibited no obvious mucilage phenotype, but the blh2 blh4 double mutant displayed significantly reduced mucilage adherence to the seed. Reduced mucilage adherence in blh2 blh4 was caused by decreased PME activity in the seed coat, which increased the degree of methylesterification of HG in mucilage. The expression of several PME metabolism-related genes, including PME58, PECTIN METHYLESTERASE INHIBITOR6, SEEDSTICK, and MYB52 was significantly altered in blh2 blh4 seeds. BLH2 and BLH4 directly activated PME58 expression by binding to its TGACAGGT cis-element. Moreover, pme58 mutants exhibited reduced mucilage adherence similar to that of blh2 blh4, and the blh2 blh4 pme58 triple mutant exhibited no additional mucilage adherence defects. Furthermore, overexpression of PME58 in blh2 blh4 rescued the mucilage adherence defect. Together, these results demonstrate that BLH2 and BLH4 redundantly regulate de-methylesterification of HG in seed mucilage by directly activating PME58.
Collapse
Affiliation(s)
- Yan Xu
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yiping Wang
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xiaoyu Wang
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Shengqiang Pei
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yingzhen Kong
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Ruibo Hu
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
27
|
Hurný A, Cuesta C, Cavallari N, Ötvös K, Duclercq J, Dokládal L, Montesinos JC, Gallemí M, Semerádová H, Rauter T, Stenzel I, Persiau G, Benade F, Bhalearo R, Sýkorová E, Gorzsás A, Sechet J, Mouille G, Heilmann I, De Jaeger G, Ludwig-Müller J, Benková E. SYNERGISTIC ON AUXIN AND CYTOKININ 1 positively regulates growth and attenuates soil pathogen resistance. Nat Commun 2020; 11:2170. [PMID: 32358503 PMCID: PMC7195429 DOI: 10.1038/s41467-020-15895-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/27/2020] [Indexed: 01/11/2023] Open
Abstract
Plants as non-mobile organisms constantly integrate varying environmental signals to flexibly adapt their growth and development. Local fluctuations in water and nutrient availability, sudden changes in temperature or other abiotic and biotic stresses can trigger changes in the growth of plant organs. Multiple mutually interconnected hormonal signaling cascades act as essential endogenous translators of these exogenous signals in the adaptive responses of plants. Although the molecular backbones of hormone transduction pathways have been identified, the mechanisms underlying their interactions are largely unknown. Here, using genome wide transcriptome profiling we identify an auxin and cytokinin cross-talk component; SYNERGISTIC ON AUXIN AND CYTOKININ 1 (SYAC1), whose expression in roots is strictly dependent on both of these hormonal pathways. We show that SYAC1 is a regulator of secretory pathway, whose enhanced activity interferes with deposition of cell wall components and can fine-tune organ growth and sensitivity to soil pathogens.
Collapse
Affiliation(s)
- Andrej Hurný
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Candela Cuesta
- Institute of Science and Technology, Klosterneuburg, Austria
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Oviedo, Spain
| | | | - Krisztina Ötvös
- Institute of Science and Technology, Klosterneuburg, Austria
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Jerome Duclercq
- Unité 'Ecologie et Dynamique des Systèmes Anthropisés' (EDYSAN UMR CNRS 7058 CNRS), Université du Picardie Jules Verne, UFR des Sciences, Amiens, France
| | - Ladislav Dokládal
- Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, Czech Republic
| | | | - Marçal Gallemí
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Hana Semerádová
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Thomas Rauter
- Institute of Science and Technology, Klosterneuburg, Austria
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Irene Stenzel
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Freia Benade
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Rishikesh Bhalearo
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83, Umeå, Sweden
| | - Eva Sýkorová
- Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| | - András Gorzsás
- Department of Chemistry, Umeå University, Linnaeus väg 6, SE-901 87, Umeå, Sweden
| | - Julien Sechet
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Gregory Mouille
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | | | - Eva Benková
- Institute of Science and Technology, Klosterneuburg, Austria.
| |
Collapse
|
28
|
Williams MAK, Cornuault V, Irani AH, Symonds VV, Malmström J, An Y, Sims IM, Carnachan SM, Sallé C, North HM. Polysaccharide Structures in the Outer Mucilage of Arabidopsis Seeds Visualized by AFM. Biomacromolecules 2020; 21:1450-1459. [PMID: 32058700 DOI: 10.1021/acs.biomac.9b01756] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Evidence is presented that the polysaccharide rhamnogalacturonan I (RGI) can be biosynthesized in remarkably organized branched configurations and surprisingly long versions and can self-assemble into a plethora of structures. AFM imaging has been applied to study the outer mucilage obtained from wild-type (WT) and mutant (bxl1-3 and cesa5-1) Arabidopsis thaliana seeds. For WT mucilage, ordered, multichain structures of the polysaccharide RGI were observed, with a helical twist visible in favorable circumstances. Molecular dynamics (MD) simulations demonstrated the stability of several possible multichain complexes and the possibility of twisted fibril formation. For bxl1-3 seeds, the imaged polymers clearly showed the presence of side chains. These were surprisingly regular and well organized with an average length of ∼100 nm and a spacing of ∼50 nm. The heights of the side chains imaged were suggestive of single polysaccharide chains, while the backbone was on average 4 times this height and showed regular height variations along its length consistent with models of multichain fibrils examined in MD. Finally, in mucilage extracts from cesa5-1 seeds, a minor population of chains in excess of 30 μm long was observed.
Collapse
Affiliation(s)
- Martin A K Williams
- School of Fundamental Sciences, Massey University, PN461, Private Bag 11222, Palmerston North 4442, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand.,The Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Valérie Cornuault
- School of Fundamental Sciences, Massey University, PN461, Private Bag 11222, Palmerston North 4442, New Zealand.,The Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Amir H Irani
- School of Fundamental Sciences, Massey University, PN461, Private Bag 11222, Palmerston North 4442, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - V Vaughan Symonds
- School of Fundamental Sciences, Massey University, PN461, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Jenny Malmström
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand.,Department of Chemical and Materials Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yiran An
- Department of Chemical and Materials Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ian M Sims
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33-436, Petone 5046, New Zealand
| | - Susan M Carnachan
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33-436, Petone 5046, New Zealand
| | - Christine Sallé
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Helen M North
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| |
Collapse
|
29
|
Kunieda T, Hara-Nishimura I, Demura T, Haughn GW. Arabidopsis FLYING SAUCER 2 Functions Redundantly with FLY1 to Establish Normal Seed Coat Mucilage. PLANT & CELL PHYSIOLOGY 2020; 61:308-317. [PMID: 31626281 DOI: 10.1093/pcp/pcz195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Following exposure to water, mature Arabidopsis seeds are surrounded by a gelatinous capsule, termed mucilage. The mucilage consists of pectin-rich polysaccharides, which are produced in epidermal cells of the seed coat. Although pectin is a major component of plant cell walls, its biosynthesis and biological functions are not fully understood. Previously, we reported that a transmembrane RING E3 ubiquitin ligase, FLYING SAUCER 1 (FLY1) regulates the degree of pectin methyl esterification for mucilage capsule formation. The Arabidopsis thaliana genome has a single FLY1 homolog, FLY2. In this study, we show that the FLY2 protein functions in mucilage modification together with FLY1. FLY2 was expressed in seed coat epidermal cells during mucilage synthesis, but its expression level was much lower than that of FLY1. While fly2 showed no obvious difference in mucilage capsule formation from wild type, the fly1 fly2 double mutants showed more severe defects in mucilage than fly1 alone. FLY2-EYFP that was expressed under the control of the FLY1 promoter rescued fly1 mucilage, showing that FLY2 has the same molecular function as FLY1. FLY2-EYFP colocalized with marker proteins of Golgi apparatus (sialyltransferase-mRFP) and late endosome (mRFP-ARA7), indicating that as FLY1, FLY2 controls pectin modification by functioning in these endomembrane organelles. Furthermore, phylogenetic analysis suggests that FLY1 and FLY2 originated from a common ancestral gene by gene duplication prior to the emergence of Brassicaceae. Taken together, our findings suggest that FLY2 functions in the Golgi apparatus and/or the late endosome of seed coat epidermal cells in a manner similar to FLY1.
Collapse
Affiliation(s)
- Tadashi Kunieda
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Faculty of Science and Engineering, Konan University, Kobe, 658-8501 Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | | | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - George W Haughn
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
30
|
Nano-indentation reveals a potential role for gradients of cell wall stiffness in directional movement of the resurrection plant Selaginella lepidophylla. Sci Rep 2020; 10:506. [PMID: 31949232 PMCID: PMC6965169 DOI: 10.1038/s41598-019-57365-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/27/2019] [Indexed: 12/01/2022] Open
Abstract
As a physical response to water loss during drought, inner Selaginella lepidophylla stems curl into a spiral shape to prevent photoirradiation damage to their photosynthetic surfaces. Curling is reversible and involves hierarchical deformation, making S. lepidophylla an attractive model with which to study water-responsive actuation. Investigation at the organ and tissue level has led to the understanding that the direction and extent of stem curling can be partially attributed to stiffness gradients between adaxial and abaxial stem sides at the nanoscale. Here, we examine cell wall elasticity to understand how it contributes to the overall stem curling. We compare the measured elastic moduli along the stem length and between adaxial and abaxial stem sides using atomic force microscopy nano-indentation testing. We show that changes in cortex secondary cell wall development lead to cell wall stiffness gradients from stem tip to base, and also between adaxial and abaxial stem sides. Changes in cortical cell wall morphology and secondary cell wall composition are suggested to contribute to the observed stiffness gradients.
Collapse
|
31
|
Souza MDJ, Mercadante-Simões MO, Ribeiro LM. Secondary-cell-wall release: a particular pattern of secretion in the mucilaginous seed coat of Magonia pubescens. AMERICAN JOURNAL OF BOTANY 2020; 107:31-44. [PMID: 31916253 DOI: 10.1002/ajb2.1415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Plant mucilages are composed of strongly hydrophilic polysaccharides and contribute to seed germination and seedling establishment. The myxospermic seeds of Magonia pubescens, a Cerrado (neotropical savanna) tree species, produces a voluminous mucilage capsule when hydrated. The development of the mucilaginous layer, the process of mucilage secretion and its role in seed germination was not previously studied so far. METHODS Morphological, anatomical, histochemical, and ultrastructural evaluations of the seed coat during seed development were undertaken. The formation of the mucilage capsule was followed using scanning electron microscopy, and the coat's effects on seed hydration and germination were evaluated after experimental manipulation of the seed coat. RESULTS The mucilaginous layer is contained in the outer coat of the seed. The mucilage-secreting cells accumulate proteins in the outer periclinal region and acidic polysaccharides in the inner periclinal region of the periplasmic space. Neutral polysaccharides, which form the loosely organized secondary wall, form a folding, basket-like structure surrounding the acidic polysaccharides. The protoplast collapses at maturity. With hydration, the mucilage expands, breaks the epidermal layer, and forms a mucilage capsule around the seed. The mucilaginous seed coat does not increase the germination rate. CONCLUSIONS Upon mucilage hydration, the secondary cell walls forming the network of neutral polysaccharides are released, along with proteins, and help retain the acidic polysaccharides-forming a peculiar architecture that imparts integrity and consistency to the mucilage capsule. As winged seeds are not usually buried, the mucilage capsule favors seedling hydration, contributing to its establishment on the soil surface.
Collapse
Affiliation(s)
- Michely de Jesus Souza
- Laboratory of Plant Anatomy, Department of General Biology, State University of Montes Claros, 39401-089, Montes Claros, MG, Brazil
| | - Maria Olívia Mercadante-Simões
- Laboratory of Plant Anatomy, Department of General Biology, State University of Montes Claros, 39401-089, Montes Claros, MG, Brazil
| | - Leonardo Monteiro Ribeiro
- Laboratory of Micropropagation, Department of General Biology, State University of Montes Claros, 39401-089, Montes Claros, MG, Brazil
| |
Collapse
|
32
|
Brulé V, Rafsanjani A, Asgari M, Western TL, Pasini D. Three-dimensional functional gradients direct stem curling in the resurrection plant Selaginella lepidophylla. J R Soc Interface 2019; 16:20190454. [PMID: 31662070 PMCID: PMC6833318 DOI: 10.1098/rsif.2019.0454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/10/2019] [Indexed: 12/16/2022] Open
Abstract
Upon hydration and dehydration, the vegetative tissue of Selaginella lepidophylla can reversibly swell and shrink to generate complex morphological transformations. Here, we investigate how structural and compositional properties at tissue and cell wall levels in S. lepidophylla lead to different stem curling profiles between inner and outer stems. Our results show that directional bending in both stem types is associated with cross-sectional gradients of tissue density, cell orientation and secondary cell wall composition between adaxial and abaxial stem sides. In inner stems, longitudinal gradients of cell wall thickness and composition affect tip-to-base tissue swelling and shrinking, allowing for more complex curling as compared to outer stems. Together, these features yield three-dimensional functional gradients that allow the plant to reproducibly deform in predetermined patterns that vary depending on the stem type. This study is the first to demonstrate functional gradients at different hierarchical levels combining to operate in a three-dimensional context.
Collapse
Affiliation(s)
- Véronique Brulé
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, QC, CanadaH3A 1B1
| | - Ahmad Rafsanjani
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC, CanadaH3A 0C3
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Meisam Asgari
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC, CanadaH3A 0C3
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL 60208, USA
| | - Tamara L. Western
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, QC, CanadaH3A 1B1
| | - Damiano Pasini
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC, CanadaH3A 0C3
| |
Collapse
|
33
|
Parra-Rojas JP, Largo-Gosens A, Carrasco T, Celiz-Balboa J, Arenas-Morales V, Sepúlveda-Orellana P, Temple H, Sanhueza D, Reyes FC, Meneses C, Saez-Aguayo S, Orellana A. New steps in mucilage biosynthesis revealed by analysis of the transcriptome of the UDP-rhamnose/UDP-galactose transporter 2 mutant. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5071-5088. [PMID: 31145803 PMCID: PMC6793455 DOI: 10.1093/jxb/erz262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/05/2019] [Indexed: 05/04/2023]
Abstract
Upon imbibition, epidermal cells of Arabidopsis thaliana seeds release a mucilage formed mostly by pectic polysaccharides. The Arabidopsis mucilage is composed mainly of unbranched rhamnogalacturonan-I (RG-I), with low amounts of cellulose, homogalacturonan, and traces of xylan, xyloglucan, galactoglucomannan, and galactan. The pectin-rich composition of the mucilage and their simple extractability makes this structure a good candidate to study the biosynthesis of pectic polysaccharides and their modification. Here, we characterize the mucilage phenotype of a mutant in the UDP-rhamnose/galactose transporter 2 (URGT2), which exhibits a reduction in RG-I and also shows pleiotropic changes, suggesting the existence of compensation mechanisms triggered by the lack of URGT2. To gain an insight into the possible compensation mechanisms activated in the mutant, we performed a transcriptome analysis of developing seeds using RNA sequencing (RNA-seq). The results showed a significant misregulation of 3149 genes, 37 of them (out of the 75 genes described to date) encoding genes proposed to be involved in mucilage biosynthesis and/or its modification. The changes observed in urgt2 included the up-regulation of UAFT2, a UDP-arabinofuranose transporter, and UUAT3, a paralog of the UDP-uronic acid transporter UUAT1, suggesting that they play a role in mucilage biosynthesis. Mutants in both genes showed changes in mucilage composition and structure, confirming their participation in mucilage biosynthesis. Our results suggest that plants lacking a UDP-rhamnose/galactose transporter undergo important changes in gene expression, probably to compensate modifications in the plant cell wall due to the lack of a gene involved in its biosynthesis.
Collapse
Affiliation(s)
- Juan Pablo Parra-Rojas
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Asier Largo-Gosens
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Tomás Carrasco
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jonathan Celiz-Balboa
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Verónica Arenas-Morales
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo Sepúlveda-Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Henry Temple
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Dayan Sanhueza
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Francisca C Reyes
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
34
|
Meents MJ, Motani S, Mansfield SD, Samuels AL. Organization of Xylan Production in the Golgi During Secondary Cell Wall Biosynthesis. PLANT PHYSIOLOGY 2019; 181:527-546. [PMID: 31431513 PMCID: PMC6776863 DOI: 10.1104/pp.19.00715] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/02/2019] [Indexed: 05/16/2023]
Abstract
Secondary cell wall (SCW) production during xylem development requires massive up-regulation of hemicellulose (e.g. glucuronoxylan) biosynthesis in the Golgi. Although mutant studies have revealed much of the xylan biosynthetic machinery, the precise arrangement of these proteins and their products in the Golgi apparatus is largely unknown. We used a fluorescently tagged xylan backbone biosynthetic protein (IRREGULAR XYLEM9; IRX9) as a marker of xylan production in the Golgi of developing protoxylem tracheary elements in Arabidopsis (Arabidopsis thaliana). Both live-cell confocal and transmission electron microscopy (TEM) revealed SCW deposition is accompanied by a significant proliferation of Golgi stacks. Furthermore, although Golgi stacks were randomly distributed, the organization of the cytoplasm ensured their close proximity to developing SCWs. Quantitative immuno-TEM revealed IRX9 is present in a specific subdomain of the Golgi stack and was most abundant in the ring of the inner margins of medial cisternae where fenestrations are abundant. Conversely, the xylan product accumulated in swollen trans cisternal margins and the Trans-Golgi network (TGN). The irx9 mutant lacked this expansion for both the cisternal margins and the TGN, whereas Golgi stack proliferation was unaffected. Golgi in irx9 also displayed dramatic changes in their structure, with increases in cisternal fenestration and tubulation. Our data support a new model where xylan biosynthesis and packaging into secretory vesicles are localized in distinct structural and functional domains of the Golgi. Rather than polysaccharide biosynthesis occurring in the center of the cisternae, IRX9 and the xylan product are arranged in successive concentric rings in Golgi cisternae.
Collapse
Affiliation(s)
- Miranda J Meents
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4 British Columbia
- Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4 British Columbia
| | - Sanya Motani
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4 British Columbia
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4 British Columbia
| | - A Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4 British Columbia
| |
Collapse
|
35
|
Miart F, Fournet F, Dubrulle N, Petit E, Demailly H, Dupont L, Zabijak L, Marcelo P, Boudaoud A, Pineau C, Guénin S, Van Wuytswinkel O, Mesnard F, Pageau K. Cytological Approaches Combined With Chemical Analysis Reveals the Layered Nature of Flax Mucilage. FRONTIERS IN PLANT SCIENCE 2019; 10:684. [PMID: 31293601 PMCID: PMC6598216 DOI: 10.3389/fpls.2019.00684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 05/06/2019] [Indexed: 05/28/2023]
Abstract
The external seed coat cell layer of certain species is specialized in the production and extrusion of a polysaccharide matrix called mucilage. Variations in the content of the released mucilage have been mainly associated with genetically regulated physiological modifications. Understanding the mucilage extrusion process in crop species is of importance to gain deeper insight into the complex cell wall biosynthesis and dynamics. In this study, we took advantage of the varying polysaccharide composition and the size of the flax mucilage secretory cells (MSCs) to study mucilage composition and extrusion in this species of agricultural interest. We demonstrate herein that flax MSCs are structured in four superimposed layers and that rhamnogalacturonans I (RG I) are firstly synthesized, in the upper face, preceding arabinoxylan and glucan synthesis in MSC lower layers. Our results also reveal that the flax mucilage release originates from inside MSC, between the upper and deeper layers, the latter collaborating to trigger polysaccharide expansion, radial cell wall breaking and mucilage extrusion in a peeling fashion. Here, we provide evidence that the layer organization and polysaccharide composition of the MSCs regulate the mucilage release efficiency like a peeling mechanism. Finally, we propose that flax MSCs may represent an excellent model for further investigations of mucilage biosynthesis and its release.
Collapse
Affiliation(s)
- Fabien Miart
- Unité Biologie des Plantes et Innovation, EA-3900, Université de Picardie Jules Verne, UFR des Sciences, Amiens, France
| | - Françoise Fournet
- Unité Biologie des Plantes et Innovation, EA-3900, Université de Picardie Jules Verne, UFR des Sciences, Amiens, France
| | - Nelly Dubrulle
- Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Lyon, France
| | - Emmanuel Petit
- Unité Biologie des Plantes et Innovation, EA-3900, Université de Picardie Jules Verne, UFR des Sciences, Amiens, France
| | - Hervé Demailly
- Centre de Ressources Régionales en Biologie Moléculaire, UFR des Sciences, Amiens, France
| | - Loic Dupont
- Laboratoire de Réactivité et de Chimie des Solides, CNRS UMR 7314, Université de Picardie Jules Verne, UFR des Sciences, Amiens, France
| | - Luciane Zabijak
- Plateforme d’Ingénierie Cellulaire et d’Analyses des Protéines, Centre Universitaire de Recherche en Santé, Amiens, France
| | - Paulo Marcelo
- Plateforme d’Ingénierie Cellulaire et d’Analyses des Protéines, Centre Universitaire de Recherche en Santé, Amiens, France
| | - Arezki Boudaoud
- Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Lyon, France
| | - Christophe Pineau
- Unité Biologie des Plantes et Innovation, EA-3900, Université de Picardie Jules Verne, UFR des Sciences, Amiens, France
| | - Stéphanie Guénin
- Centre de Ressources Régionales en Biologie Moléculaire, UFR des Sciences, Amiens, France
| | - Olivier Van Wuytswinkel
- Unité Biologie des Plantes et Innovation, EA-3900, Université de Picardie Jules Verne, UFR des Sciences, Amiens, France
| | - François Mesnard
- Unité Biologie des Plantes et Innovation, EA-3900, Université de Picardie Jules Verne, UFR des Sciences, Amiens, France
| | - Karine Pageau
- Unité Biologie des Plantes et Innovation, EA-3900, Université de Picardie Jules Verne, UFR des Sciences, Amiens, France
| |
Collapse
|
36
|
Maeda K, Kunieda T, Tamura K, Hatano K, Hara-Nishimura I, Shimada T. Identification of Periplasmic Root-Cap Mucilage in Developing Columella Cells of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:1296-1303. [PMID: 30892660 DOI: 10.1093/pcp/pcz047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Plant roots secrete various substances with diverse functions against both plants and microbes in the rhizosphere. A major secretory substance is root-cap mucilage, whose functions have been well characterized, albeit mainly in crops. However, little is currently known about the developmental mechanisms of root-cap mucilage. Here, we show the accumulation and extrusion of root-cap mucilage in Arabidopsis. We found propidium iodide (PI) stainable structures between the plasma membrane and cell wall in the sixth layer of columella cells (c6) from the quiescent center. Ruthenium red staining and PI staining with calcium ions suggested that the structure comprises in part pectin polysaccharides. Electron microscopy revealed that the structure had a meshwork of electron-dense filaments that resembled periplasmic mucilage in other plants. In the c6 cells, we also observed many large vesicles with denser meshwork filaments to periplasmic mucilage, which likely mediate the transport of mucilage components. Extruded mucilage was observed outside a partially degraded cell wall in the c7 cells. Moreover, we found that the Class IIB NAC transcription factors BEARSKIN1 (BRN1) and BRN2, which are known to regulate the terminal differentiation of columella cells, were required for the efficient accumulation of root-cap mucilage in Arabidopsis. Taken together, our findings reveal the accumulation of and dynamic changes in periplasmic mucilage during columella cell development in Arabidopsis.
Collapse
Affiliation(s)
- Kazuki Maeda
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tadashi Kunieda
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Kentaro Tamura
- Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kyoko Hatano
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Ikuko Hara-Nishimura
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Tomoo Shimada
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
37
|
Wilkop T, Pattathil S, Ren G, Davis DJ, Bao W, Duan D, Peralta AG, Domozych DS, Hahn MG, Drakakaki G. A Hybrid Approach Enabling Large-Scale Glycomic Analysis of Post-Golgi Vesicles Reveals a Transport Route for Polysaccharides. THE PLANT CELL 2019; 31:627-644. [PMID: 30760563 PMCID: PMC6482635 DOI: 10.1105/tpc.18.00854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/22/2019] [Accepted: 02/12/2019] [Indexed: 05/10/2023]
Abstract
The plant endomembrane system facilitates the transport of polysaccharides, associated enzymes, and glycoproteins through its dynamic pathways. Although enzymes involved in cell wall biosynthesis have been identified, little is known about the endomembrane-based transport of glycan components. This is partially attributed to technical challenges in biochemically determining polysaccharide cargo in specific vesicles. Here, we introduce a hybrid approach addressing this limitation. By combining vesicle isolation with a large-scale carbohydrate antibody arraying technique, we charted an initial large-scale map describing the glycome profile of the SYNTAXIN OF PLANTS61 (SYP61) trans-Golgi network compartment in Arabidopsis (Arabidopsis thaliana). A library of antibodies recognizing specific noncellulosic carbohydrate epitopes allowed us to identify a range of diverse glycans, including pectins, xyloglucans (XyGs), and arabinogalactan proteins in isolated vesicles. Changes in XyG- and pectin-specific epitopes in the cell wall of an Arabidopsis SYP61 mutant corroborate our findings. Our data provide evidence that SYP61 vesicles are involved in the transport and deposition of structural polysaccharides and glycoproteins. Adaptation of our methodology can enable studies characterizing the glycome profiles of various vesicle populations in plant and animal systems and their respective roles in glycan transport defined by subcellular markers, developmental stages, or environmental stimuli.
Collapse
Affiliation(s)
- Thomas Wilkop
- Department of Plant Sciences, University of California, Davis, California 95616
- Light Microscopy Core, University of Kentucky, Lexington, Kentucky 40536
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
| | - Guangxi Ren
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Destiny J Davis
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Wenlong Bao
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Dechao Duan
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Angelo G Peralta
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
| | - David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866
| | - Michael G Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602-7271
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, California 95616
| |
Collapse
|
38
|
Tsai AYL, Higaki T, Nguyen CN, Perfus-Barbeoch L, Favery B, Sawa S. Regulation of Root-Knot Nematode Behavior by Seed-Coat Mucilage-Derived Attractants. MOLECULAR PLANT 2019; 12:99-112. [PMID: 30503864 DOI: 10.1016/j.molp.2018.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/21/2018] [Accepted: 11/10/2018] [Indexed: 05/08/2023]
Abstract
Seed exudates influence the behavior of soil organisms, but how this occurs remains unclear, particularly for multicellular animals. Here we show that compounds associated with Arabidopsis seed-coat mucilage regulate the behavior of soil-borne animals, specifically root-knot nematodes (RKNs). Infective RKN J2 larvae actively travel toward Arabidopsis seeds through chemotaxis. Analysis of Arabidopsis mucilage mutants demonstrated that the attraction of RKNs to Arabidopsis seeds requires the synthesis and extrusion of seed-coat mucilage. Extracted mucilage alone is not sufficient to attract RKNs, but seed-surface carbohydrates and proteins are required for this process. These findings suggest that the RKN chemoattractant is synthesized de novo upon mucilage extrusion but may be highly unstable. RKNs attracted by this mucilage-dependent mechanism can infect the emerging seedling. However, the attraction signal from seedling roots likely acts independently of the seed-coat signal and may mask the attraction to seed-coat mucilage after germination. Multiple RKN species are attracted by Arabidopsis seeds, suggesting that this mechanism is conserved in RKNs. These findings indicate that seed exudate can regulate the behavior of multicellular animals and highlight the potential roles of seed-coat mucilage in biotic interactions with soil microorganisms.
Collapse
Affiliation(s)
- Allen Yi-Lun Tsai
- Graduate School of Science & Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Takumi Higaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Chinh-Nghia Nguyen
- INRA, Université Côte d'Azur, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
| | - Laetitia Perfus-Barbeoch
- INRA, Université Côte d'Azur, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
| | - Bruno Favery
- INRA, Université Côte d'Azur, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
| | - Shinichiro Sawa
- Graduate School of Science & Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
39
|
Gergely ZR, Martinez DE, Donohoe BS, Mogelsvang S, Herder R, Staehelin LA. 3D electron tomographic and biochemical analysis of ER, Golgi and trans Golgi network membrane systems in stimulated Venus flytrap ( Dionaea muscipula) glandular cells. JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2018; 25:15. [PMID: 30116723 PMCID: PMC6083566 DOI: 10.1186/s40709-018-0086-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/28/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND The insect-trapping leaves of Dionaea muscipula provide a model for studying the secretory pathway of an inducible plant secretory system. The leaf glands were induced with bovine serum albumin to secrete proteases that were characterized via zymogram activity gels over a 6-day period. The accompanying morphological changes of the endoplasmic reticulum (ER) and Golgi were analyzed using 3D electron tomography of glands preserved by high-pressure freezing/freeze substitution methods. RESULTS Secretion of multiple cysteine and aspartic proteases occurred biphasically. The majority of the Golgi was organized in clusters consisting of 3-6 stacks surrounded by a cage-like system of ER cisternae. In these clusters, all Golgi stacks were oriented with their cis-most C1 cisterna facing an ER export site. The C1 Golgi cisternae varied in size and shape consistent with the hypothesis that they form de novo. Following induction, the number of ER-bound polysomes doubled, but no increase in COPII vesicles was observed. Golgi changes included a reduction in the number of cisternae per stack and a doubling of cisternal volume without increased surface area. Polysaccharide molecules that form the sticky slime cause swelling of the trans and trans Golgi network (TGN) cisternae. Peeling of the trans-most cisternae gives rise to free TGN cisternae. One day after gland stimulation, the free TGNs were frequently associated with loose groups of oriented actin-like filaments which were not seen in any other samples. CONCLUSIONS These findings suggest that the secretory apparatus of resting gland cells is "overbuilt" to enable the cells to rapidly up-regulate lytic enzyme production and secretion in response to prey trapping.
Collapse
Affiliation(s)
- Zachary R. Gergely
- MCD Biology, University of Colorado at Boulder, Campus Box 347, Boulder, CO 80309 USA
| | - Dana E. Martinez
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata–CONICET CC 327, La Plata, Argentina
| | - Bryon S. Donohoe
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Soren Mogelsvang
- Exxel Pharma, Inc, 12635 E Montview Blvd, Suite 100, Aurora, CO 80045 USA
| | - Rachel Herder
- Wilson Sonsini Goodrich & Rosati, One Market Plaza, Spear Tower, Ste 3300, San Francisco, CA 94105 USA
| | - L. Andrew Staehelin
- MCD Biology, University of Colorado at Boulder, Campus Box 347, Boulder, CO 80309 USA
| |
Collapse
|
40
|
Shimada T, Kunieda T, Sumi S, Koumoto Y, Tamura K, Hatano K, Ueda H, Hara-Nishimura I. The AP-1 Complex is Required for Proper Mucilage Formation in Arabidopsis Seeds. PLANT & CELL PHYSIOLOGY 2018; 59:2331-2338. [PMID: 30099531 DOI: 10.1093/pcp/pcy158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
The adaptor protein (AP) complexes play crucial roles in vesicle formation in post-Golgi trafficking. Land plants have five types of AP complexes (AP-1 to AP-5), each of which consists of two large subunits, one medium subunit and one small subunit. Here, we show that the Arabidopsis AP-1 complex mediates the polarized secretion and accumulation of a pectic polysaccharide called mucilage in seed coat cells. Previously, a loss-of-function mutant of AP1M2, the medium subunit of AP-1, has been shown to display deleterious growth defects because of defective cytokinesis. To investigate the function of AP-1 in interphase, we generated transgenic Arabidopsis plants expressing AP1M2-GFP (green fluorescent protein) under the control of the cytokinesis-specific KNOLLE (KN) promoter in the ap1m2 background. These transgenic plants, designated pKN lines, successfully rescued the cytokinesis defect and dwarf phenotype of ap1m2. pKN lines showed reduced mucilage extrusion from the seed coat. Furthermore, abnormal accumulation of mucilage was found in the vacuoles of the outermost integument cells of pKN lines. During seed development, the accumulation of AP1M2-GFP was greatly reduced in the integument cells of pKN lines. These results suggest that trans-Golgi network (TGN)-localized AP-1 is involved in the trafficking of mucilage components to the outer surface of seed coat cells. Our study highlights an evolutionarily conserved function of AP-1 in polarized sorting in eukaryotic cells.
Collapse
Affiliation(s)
- Tomoo Shimada
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tadashi Kunieda
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Sakura Sumi
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yasuko Koumoto
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kentaro Tamura
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kyoko Hatano
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Haruko Ueda
- Department of Biology Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Ikuko Hara-Nishimura
- Department of Biology Faculty of Science and Engineering, Konan University, Kobe, Japan
| |
Collapse
|
41
|
Voiniciuc C, Engle KA, Günl M, Dieluweit S, Schmidt MHW, Yang JY, Moremen KW, Mohnen D, Usadel B. Identification of Key Enzymes for Pectin Synthesis in Seed Mucilage. PLANT PHYSIOLOGY 2018; 178:1045-1064. [PMID: 30228108 PMCID: PMC6236597 DOI: 10.1104/pp.18.00584] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/31/2018] [Indexed: 05/12/2023]
Abstract
Pectin is a vital component of the plant cell wall and provides the molecular glue that maintains cell-cell adhesion, among other functions. As the most complex wall polysaccharide, pectin is composed of several covalently linked domains, such as homogalacturonan (HG) and rhamnogalacturonan I (RG I). Pectin has widespread uses in the food industry and has emerging biomedical applications, but its synthesis remains poorly understood. For instance, the enzymes that catalyze RG I elongation remain unknown. Recently, a coexpression- and sequence-based MUCILAGE-RELATED (MUCI) reverse genetic screen uncovered hemicellulose biosynthetic enzymes in the Arabidopsis (Arabidopsis thaliana) seed coat. Here, we use an extension of this strategy to identify MUCI70 as the founding member of a glycosyltransferase family essential for the accumulation of seed mucilage, a gelatinous wall rich in unbranched RG I. Detailed biochemical and histological characterization of two muci70 mutants and two galacturonosyltransferase11 (gaut11) mutants identified MUCI70 and GAUT11 as required for two distinct RG I domains in seed mucilage. We demonstrate that, unlike MUCI70, GAUT11 catalyzes HG elongation in vitro and, thus, likely is required for the synthesis of an HG region important for RG I elongation. Analysis of a muci70 gaut11 double mutant confirmed that MUCI70 and GAUT11 are indispensable for the production and release of the bulk of mucilage RG I and for shaping the surface morphology of seeds. In addition, we uncover relationships between pectin and hemicelluloses and show that xylan is essential for the elongation of at least one RG I domain.
Collapse
Affiliation(s)
- Cătălin Voiniciuc
- Institute for Bio- and Geosciences (Plant Sciences), Forschungszentrum Jülich, 52425 Juelich, Germany
- Institute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany
| | - Kristen A Engle
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Markus Günl
- Institute for Bio- and Geosciences (Plant Sciences), Forschungszentrum Jülich, 52425 Juelich, Germany
| | - Sabine Dieluweit
- Institute of Complex Systems, Forschungszentrum Jülich, 52425 Juelich, Germany
| | - Maximilian Heinrich-Wilhelm Schmidt
- Institute for Bio- and Geosciences (Plant Sciences), Forschungszentrum Jülich, 52425 Juelich, Germany
- Institute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany
| | - Jeong-Yeh Yang
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Kelley W Moremen
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Debra Mohnen
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Björn Usadel
- Institute for Bio- and Geosciences (Plant Sciences), Forschungszentrum Jülich, 52425 Juelich, Germany
- Institute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
42
|
Aliscioni SS, Gotelli M, Torretta JP. Structure of the stigma and style of Callaeum psilophyllum (Malpighiaceae) and its relation with potential pollinators. PROTOPLASMA 2018; 255:1433-1442. [PMID: 29594351 DOI: 10.1007/s00709-018-1245-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
The family Malpighiaceae, particularly in the Neotropic, shows a similar floral morphology. Although floral attraction and rewards to pollinators are alike, stigmas and styles show more diversity. The stigmas were described covered with a thin and impermeable cuticle that needs to be ruptured by the mechanical action of the pollinators. However, this characteristic was only mentioned for a few species and the anatomy and ultrastructure of the stigmas were not explored. In this work, we analyze the morphology, anatomy, and ultrastructure of the stigma and style of Callaeum psilophyllum. Moreover, we identify the potential pollinators in order to evaluate how the disposition of the stigmas is related with their size and its role in the exposure of the receptive stigmatic surface. Our observations indicate that Centris flavifrons, C. fuscata, C. tarsata, and C. trigonoides are probably efficient pollinators of C. psilophyllum. The three stigmas are covered by a cuticle that remained intact in bagged flowers. The flowers exposed to visitors show the cuticle broken, more secretion in the intercellular spaces between sub-stigmatic cells and abundant electron-dense components inside vacuoles in stigmatic papillae. This indicates that the stigmas prepares in similar ways to receive pollen grains, but the pollinator action is required to break the cuticle, and once pollen tubes start growing, stigmatic and sub-stigmatic cells release more secretion by a granulocrine process.
Collapse
Affiliation(s)
- Sandra Silvina Aliscioni
- Instituto de Botánica Darwinion (IBODA), Casilla de Correo 22, B1642HYD, San Isidro, Buenos Aires, Argentina.
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Botánica General, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Marina Gotelli
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Botánica General, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Juan Pablo Torretta
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Botánica General, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
43
|
Meents MJ, Watanabe Y, Samuels AL. The cell biology of secondary cell wall biosynthesis. ANNALS OF BOTANY 2018; 121:1107-1125. [PMID: 29415210 PMCID: PMC5946954 DOI: 10.1093/aob/mcy005] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/16/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Secondary cell walls (SCWs) form the architecture of terrestrial plant biomass. They reinforce tracheary elements and strengthen fibres to permit upright growth and the formation of forest canopies. The cells that synthesize a strong, thick SCW around their protoplast must undergo a dramatic commitment to cellulose, hemicellulose and lignin production. SCOPE This review puts SCW biosynthesis in a cellular context, with the aim of integrating molecular biology and biochemistry with plant cell biology. While SCWs are deposited in diverse tissue and cellular contexts including in sclerenchyma (fibres and sclereids), phloem (fibres) and xylem (tracheids, fibres and vessels), the focus of this review reflects the fact that protoxylem tracheary elements have proven to be the most amenable experimental system in which to study the cell biology of SCWs. CONCLUSIONS SCW biosynthesis requires the co-ordination of plasma membrane cellulose synthases, hemicellulose production in the Golgi and lignin polymer deposition in the apoplast. At the plasma membrane where the SCW is deposited under the guidance of cortical microtubules, there is a high density of SCW cellulose synthase complexes producing cellulose microfibrils consisting of 18-24 glucan chains. These microfibrils are extruded into a cell wall matrix rich in SCW-specific hemicelluloses, typically xylan and mannan. The biosynthesis of eudicot SCW glucuronoxylan is taken as an example to illustrate the emerging importance of protein-protein complexes in the Golgi. From the trans-Golgi, trafficking of vesicles carrying hemicelluloses, cellulose synthases and oxidative enzymes is crucial for exocytosis of SCW components at the microtubule-rich cell membrane domains, producing characteristic SCW patterns. The final step of SCW biosynthesis is lignification, with monolignols secreted by the lignifying cell and, in some cases, by neighbouring cells as well. Oxidative enzymes such as laccases and peroxidases, embedded in the polysaccharide cell wall matrix, determine where lignin is deposited.
Collapse
Affiliation(s)
- Miranda J Meents
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Yoichiro Watanabe
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
44
|
Sinclair R, Rosquete MR, Drakakaki G. Post-Golgi Trafficking and Transport of Cell Wall Components. FRONTIERS IN PLANT SCIENCE 2018; 9:1784. [PMID: 30581448 PMCID: PMC6292943 DOI: 10.3389/fpls.2018.01784] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/16/2018] [Indexed: 05/13/2023]
Abstract
The cell wall, a complex macromolecular composite structure surrounding and protecting plant cells, is essential for development, signal transduction, and disease resistance. This structure is also integral to cell expansion, as its tensile resistance is the primary balancing mechanism against internal turgor pressure. Throughout these processes, the biosynthesis, transport, deposition, and assembly of cell wall polymers are tightly regulated. The plant endomembrane system facilitates transport of polysaccharides, polysaccharide biosynthetic and modifying enzymes and glycoproteins through vesicle trafficking pathways. Although a number of enzymes involved in cell wall biosynthesis have been identified, comparatively little is known about the transport of cell wall polysaccharides and glycoproteins by the endomembrane system. This review summarizes our current understanding of trafficking of cell wall components during cell growth and cell division. Emerging technologies, such as vesicle glycomics, are also discussed as promising avenues to gain insights into the trafficking of structural polysaccharides to the apoplast.
Collapse
|
45
|
Voiniciuc C. Whole-seed Immunolabeling of Arabidopsis Mucilage Polysaccharides. Bio Protoc 2017; 7:e2323. [PMID: 34541085 DOI: 10.21769/bioprotoc.2323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/27/2017] [Accepted: 05/07/2017] [Indexed: 11/02/2022] Open
Abstract
In addition to synthesizing and secreting copious amounts of pectic polymers ( Young et al., 2008 ), Arabidopsis thaliana seed coat epidermal cells produce small amounts of cellulose and hemicelluloses typical of secondary cell walls ( Voiniciuc et al., 2015c ). These components are intricately linked and are released as a large mucilage capsule upon hydration of mature seeds. Alterations in the structure of minor mucilage components can have dramatic effects on the architecture of this gelatinous cell wall. The immunolabeling protocol described here makes it possible to visualize the distribution of specific polysaccharides in the seed mucilage capsule.
Collapse
Affiliation(s)
- Cătălin Voiniciuc
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Jülich, Germany.,Present address: Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
46
|
The elaborate route for UDP-arabinose delivery into the Golgi of plants. Proc Natl Acad Sci U S A 2017; 114:4261-4266. [PMID: 28373556 DOI: 10.1073/pnas.1701894114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In plants, L-arabinose (Ara) is a key component of cell wall polymers, glycoproteins, as well as flavonoids, and signaling peptides. Whereas the majority of Ara found in plant glycans occurs as a furanose ring (Araf), the activated precursor has a pyranose ring configuration (UDP-Arap). The biosynthesis of UDP-Arap mainly occurs via the epimerization of UDP-xylose (UDP-Xyl) in the Golgi lumen. Given that the predominant Ara form found in plants is Araf, UDP-Arap must exit the Golgi to be interconverted into UDP-Araf by UDP-Ara mutases that are located outside on the cytosolic surface of the Golgi. Subsequently, UDP-Araf must be transported back into the lumen. This step is vital because glycosyltransferases, the enzymes mediating the glycosylation reactions, are located within the Golgi lumen, and UDP-Arap, synthesized within the Golgi, is not their preferred substrate. Thus, the transport of UDP-Araf into the Golgi is a prerequisite. Although this step is critical for cell wall biosynthesis and the glycosylation of proteins and signaling peptides, the identification of these transporters has remained elusive. In this study, we present data demonstrating the identification and characterization of a family of Golgi-localized UDP-Araf transporters in Arabidopsis The application of a proteoliposome-based transport assay revealed that four members of the nucleotide sugar transporter (NST) family can efficiently transport UDP-Araf in vitro. Subsequent analysis of mutant lines affected in the function of these NSTs confirmed their role as UDP-Araf transporters in vivo.
Collapse
|
47
|
Moro CF, Gaspar M, da Silva FR, Pattathil S, Hahn MG, Salgado I, Braga MR. S-nitrosoglutathione promotes cell wall remodelling, alters the transcriptional profile and induces root hair formation in the hairless root hair defective 6 (rhd6) mutant of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2017; 213:1771-1786. [PMID: 27880005 DOI: 10.1111/nph.14309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/26/2016] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) exerts pleiotropic effects on plant development; however, its involvement in cell wall modification during root hair formation (RHF) has not yet been addressed. Here, mutants of Arabidopsis thaliana with altered root hair phenotypes were used to assess the involvement of S-nitrosoglutathione (GSNO), the primary NO source, in cell wall dynamics and gene expression in roots induced to form hairs. GSNO and auxin restored the root hair phenotype of the hairless root hair defective 6 (rhd6) mutant. A positive correlation was observed between increased NO production and RHF induced by auxin in rhd6 and transparent testa glabra (ttg) mutants. Deposition of an epitope within rhamnogalacturonan-I recognized by the CCRC-M2 antibody was delayed in root hair cells (trichoblasts) compared with nonhair cells (atrichoblasts). GSNO, but not auxin, restored the wild-type root glycome and transcriptome profiles in rhd6, modulating the expression of a large number of genes related to cell wall composition and metabolism, as well as those encoding ribosomal proteins, DNA and histone-modifying enzymes and proteins involved in post-translational modification. Our results demonstrate that NO plays a key role in cell wall remodelling in trichoblasts and suggest that it also participates in chromatin modification in root cells of A. thaliana.
Collapse
Affiliation(s)
- Camila Fernandes Moro
- Programa de Pós-Graduação em Biologia Celular e Estrutural, Universidade Estadual de Campinas, Campinas, SP, 13083-865, Brazil
| | - Marilia Gaspar
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, São Paulo, SP, 04301-012, Brazil
| | | | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602-4712, USA
| | - Michael G Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602-4712, USA
| | - Ione Salgado
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, São Paulo, SP, 04301-012, Brazil
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, Campinas, SP, 13083-970, Brazil
| | - Marcia Regina Braga
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, São Paulo, SP, 04301-012, Brazil
| |
Collapse
|
48
|
Tsai AYL, Kunieda T, Rogalski J, Foster LJ, Ellis BE, Haughn GW. Identification and Characterization of Arabidopsis Seed Coat Mucilage Proteins. PLANT PHYSIOLOGY 2017; 173:1059-1074. [PMID: 28003327 PMCID: PMC5291037 DOI: 10.1104/pp.16.01600] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/15/2016] [Indexed: 05/08/2023]
Abstract
Plant cell wall proteins are important regulators of cell wall architecture and function. However, because cell wall proteins are difficult to extract and analyze, they are generally poorly understood. Here, we describe the identification and characterization of proteins integral to the Arabidopsis (Arabidopsis thaliana) seed coat mucilage, a specialized layer of the extracellular matrix composed of plant cell wall carbohydrates that is used as a model for cell wall research. The proteins identified in mucilage include those previously identified by genetic analysis, and several mucilage proteins are reduced in mucilage-deficient mutant seeds, suggesting that these proteins are genuinely associated with the mucilage. Arabidopsis mucilage has both nonadherent and adherent layers. Both layers have similar protein profiles except for proteins involved in lipid metabolism, which are present exclusively in the adherent mucilage. The most abundant mucilage proteins include a family of proteins named TESTA ABUNDANT1 (TBA1) to TBA3; a less abundant fourth homolog was named TBA-LIKE (TBAL). TBA and TBAL transcripts and promoter activities were detected in developing seed coats, and their expression requires seed coat differentiation regulators. TBA proteins are secreted to the mucilage pocket during differentiation. Although reverse genetics failed to identify a function for TBAs/TBAL, the TBA promoters are highly expressed and cell type specific and so should be very useful tools for targeting proteins to the seed coat epidermis. Altogether, these results highlight the mucilage proteome as a model for cell walls in general, as it shares similarities with other cell wall proteomes while also containing mucilage-specific features.
Collapse
Affiliation(s)
- Allen Yi-Lun Tsai
- Department of Botany (A.Y.-L.T., T.K., G.W.H.), Michael Smith Laboratories (A.Y.-L.T., J.R., L.J.F., B.E.E.), and Department of Biochemistry and Molecular Biology (L.J.F.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Tadashi Kunieda
- Department of Botany (A.Y.-L.T., T.K., G.W.H.), Michael Smith Laboratories (A.Y.-L.T., J.R., L.J.F., B.E.E.), and Department of Biochemistry and Molecular Biology (L.J.F.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Jason Rogalski
- Department of Botany (A.Y.-L.T., T.K., G.W.H.), Michael Smith Laboratories (A.Y.-L.T., J.R., L.J.F., B.E.E.), and Department of Biochemistry and Molecular Biology (L.J.F.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Leonard J Foster
- Department of Botany (A.Y.-L.T., T.K., G.W.H.), Michael Smith Laboratories (A.Y.-L.T., J.R., L.J.F., B.E.E.), and Department of Biochemistry and Molecular Biology (L.J.F.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Brian E Ellis
- Department of Botany (A.Y.-L.T., T.K., G.W.H.), Michael Smith Laboratories (A.Y.-L.T., J.R., L.J.F., B.E.E.), and Department of Biochemistry and Molecular Biology (L.J.F.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - George W Haughn
- Department of Botany (A.Y.-L.T., T.K., G.W.H.), Michael Smith Laboratories (A.Y.-L.T., J.R., L.J.F., B.E.E.), and Department of Biochemistry and Molecular Biology (L.J.F.), University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
49
|
Saez-Aguayo S, Rautengarten C, Temple H, Sanhueza D, Ejsmentewicz T, Sandoval-Ibañez O, Doñas D, Parra-Rojas JP, Ebert B, Lehner A, Mollet JC, Dupree P, Scheller HV, Heazlewood JL, Reyes FC, Orellana A. UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage. THE PLANT CELL 2017; 29:129-143. [PMID: 28062750 PMCID: PMC5304346 DOI: 10.1105/tpc.16.00465] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/14/2016] [Accepted: 12/31/2016] [Indexed: 05/17/2023]
Abstract
UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat of uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1 These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix.
Collapse
Affiliation(s)
- Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Carsten Rautengarten
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Henry Temple
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Dayan Sanhueza
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Troy Ejsmentewicz
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Omar Sandoval-Ibañez
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Daniela Doñas
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Juan Pablo Parra-Rojas
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Berit Ebert
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Arnaud Lehner
- Normandy University, UniRouen, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, VASI, France
| | - Jean-Claude Mollet
- Normandy University, UniRouen, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, VASI, France
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Henrik V Scheller
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Joshua L Heazlewood
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702
| | - Francisca C Reyes
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
50
|
Geitmann A, Nebenführ A. Navigating the plant cell: intracellular transport logistics in the green kingdom. Mol Biol Cell 2016; 26:3373-8. [PMID: 26416952 PMCID: PMC4591683 DOI: 10.1091/mbc.e14-10-1482] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin–myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions.
Collapse
Affiliation(s)
- Anja Geitmann
- Department of Biological Sciences, Institut de recherche en biologie végétale, University of Montreal, Montreal, QC H1X 2B2, Canada
| | - Andreas Nebenführ
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840
| |
Collapse
|