1
|
Chien YC, Yoon GM. Phosphorylation at serine-260 of Toc33 is essential for chloroplast biogenesis. SCIENCE ADVANCES 2025; 11:eadu4054. [PMID: 40138409 PMCID: PMC11939048 DOI: 10.1126/sciadv.adu4054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025]
Abstract
Chloroplast biogenesis, essential for photosynthesis, depends on the import of nuclear-encoded proteins through the translocon at the outer envelope of chloroplasts (TOC) complexes. Despite its importance, the mechanisms regulating this process remain largely elusive. We identify serine-260 (S260) as a critical phosphorylation site in Toc33, a core TOC component. This phosphorylation stabilizes Toc33 by preventing its ubiquitination and degradation. Constitutive triple response 1 (CTR1), a negative regulator of ethylene signaling, and its paralog RAF-like kinase are involved in phosphorylating Toc33. Disruption of Toc33 phosphorylation impairs its stability and photosynthetic protein import, consequently affecting chloroplast structural integrity and biogenesis. Our findings underscore the essential role of TOC phosphorylation in chloroplast biogenesis and reveal an unexpected regulatory network involving RAF-like kinases in organelle development.
Collapse
Affiliation(s)
- Yuan-Chi Chien
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
- The Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Gyeong Mee Yoon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
- The Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Liu Y, Liu S, Jing Y, Li J, Lin R. Light regulates seed dormancy through FHY3-mediated activation of ACC OXIDASE 1 in Arabidopsis. PLANT MOLECULAR BIOLOGY 2025; 115:44. [PMID: 40082285 DOI: 10.1007/s11103-025-01559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/05/2025] [Indexed: 03/16/2025]
Abstract
Seed dormancy enables plants to delay germination until conditions are favorable for the survival of the next generation. Seed dormancy and germination are controlled by a combination of external and internal signals, in which light and ethylene act as critical regulators. However, how light and ethylene are interlinked to control these two processes remains to be investigated. Here, we show that ethylene and its precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), promote seed germination under light. Light facilitates the conversion of ACC to ethylene, in which phytochrome B (phyB) and FAR-RED ELONGATED HYPOCOTYL3 (FHY3) are functionally required. ACC oxidases (ACOs) catalyze the conversion of ACC to ethylene, among which ACO1 is specifically and predominantly expressed in imbibed seeds. Ethylene induces FHY3 protein accumulation in imbibed seeds, whereby FHY3 directly binds to ACO1 promoter and specifically mediates light-promoted ACO1 expression. Light promotes ACO1 protein accumulation. Overexpression of ACO1 significantly promotes seed germination, and almost completely restores the dormant defect of fhy3 loss-of-function mutants. In summary, this study reveals an ethylene-responsive regulatory cascade of phyB-FHY3-ACO1 that integrates external light input with internal factors to regulate seed dormancy and germination.
Collapse
Affiliation(s)
- Yitong Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuangrong Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanjun Jing
- Biotechnology Institute, Xianghu Laboratory, Hangzhou, 311231, China
| | - Jialong Li
- Biotechnology Institute, Xianghu Laboratory, Hangzhou, 311231, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- Biotechnology Institute, Xianghu Laboratory, Hangzhou, 311231, China.
| |
Collapse
|
3
|
Sabir IA, Hu X, Khan I, Qin Y. Regulatory Mechanisms of Bud Dormancy: Environmental, Hormonal, and Genetic Perspectives. Int J Mol Sci 2025; 26:2517. [PMID: 40141161 PMCID: PMC11942119 DOI: 10.3390/ijms26062517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Dormancy is a vital adaptive strategy in temperate and boreal plants, particularly fruit trees, enabling them to withstand harsh winter conditions and ensure survival and synchronized growth resumption in spring. This review comprehensively examines dormancy, focusing on its physiological, environmental, and molecular mechanisms. Dormancy is characterized by two distinct phases: endodormancy, which is regulated by internal plant signals and requires cold temperatures for release, and ecodormancy, which is influenced by external environmental factors. These stages are intricately linked to seasonal temperature fluctuations and the plant's ability to synchronize growth cycles, ensuring survival through harsh winters and optimal growth in warmer seasons. The review delves into the role of chilling requirements, temperature thresholds, and hormonal regulation in the dormancy process, highlighting how these factors influence critical growth events such as budbreak, flowering, and fruiting. Plant hormones, including abscisic acid, gibberellins, and cytokinins, regulate dormancy by modulating gene expression and growth activity. Additionally, we explore the historical development of dormancy research, from early observations of chilling requirements to the formulation of the chilling hours model. Considering ongoing climate change, the review examines how rising winter temperatures may disrupt dormancy cycles, potentially affecting the timing of flowering, fruiting, and overall crop productivity. This shift necessitates new strategies for managing dormancy, particularly in regions experiencing inconsistent or insufficient chilling. The review concludes by discussing practical approaches to enhance dormancy release and mitigate the impact of environmental stress on deciduous fruit tree growth, offering insights into improving agricultural practices amidst a changing climate.
Collapse
Affiliation(s)
- Irfan Ali Sabir
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xinglong Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Imran Khan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yonghua Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Wei YT, Bao QX, Shi YN, Mu XR, Wang YB, Jiang JH, Yu FH, Meng LS. Trichome development of systemic developing leaves is regulated by a nutrient sensor-relay mechanism within mature leaves. SCIENCE ADVANCES 2025; 11:eadq5820. [PMID: 39908362 DOI: 10.1126/sciadv.adq5820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025]
Abstract
Trichome initiation and development is regulated by a diverse range of environmental signals. However, how leaf carbohydrate status determines the trichome initiation and development of systemic developing leaves remains unclear. Here, we found that a specific organ (such as a mature leaf) could function as a nutrient sensor, subsequently promoting or suppressing nonautonomous regulation of trichome initiation and development in response to alternations in nutrient levels. This physical phenomenon was regulated by a sucrose ⟶ ACS7 ⟶ ethylene ⟶ EIN3 ⟶ SUC4 ⟶ sucrose pathway in mature leaves, with a remote control of trichome production in newly developing leaves via a sucrose ⟶ ACS7 ⟶ ethylene ⟶ EIN3 ⟶ TTG1 pathway. These data provide insights into how mature leaves function as nutrient sensors that control trichome formation within distant developing leaves through a nutrient sensor-relay mechanism. Our findings uncover both a previously unidentified, nutrient sensing-regulatory mechanism and the cognate underpinning molecular architecture.
Collapse
Affiliation(s)
- Yu-Ting Wei
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, Gansu 741600, People's Republic of China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Qin-Xin Bao
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, Gansu 741600, People's Republic of China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Ya-Na Shi
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650201, People's Republic of China
| | - Xin-Rong Mu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Yi-Bo Wang
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, Gansu 741600, People's Republic of China
| | - Ji-Hong Jiang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Fu-Huan Yu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Lai-Sheng Meng
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, Gansu 741600, People's Republic of China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| |
Collapse
|
5
|
Li T, Peng Z, Kangxi D, Inzé D, Dubois M. ETHYLENE RESPONSE FACTOR6, A Central Regulator of Plant Growth in Response to Stress. PLANT, CELL & ENVIRONMENT 2025; 48:882-892. [PMID: 39360583 DOI: 10.1111/pce.15181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
ETHYLENE RESPONSE FACTOR6 (ERF6) has emerged as a central player in stress-induced plant growth inhibition. It orchestrates complex pathways that enable plants to acclimate and thrive in challenging environments. In response to various abiotic and biotic stresses, ERF6 is promptly activated through both ethylene-dependent and -independent pathways, and contributes to enhanced stress tolerance mechanisms by activating a broad spectrum of genes at various developmental stages. Despite the crucial role of ERF6, there is currently a lack of published comprehensive insights into its function in plant growth and stress response. In this respect, based on the tight connection between ethylene and ERF6, we review the latest research findings on how ethylene regulates stress responses and the mechanisms involved. In addition, we summarize the trends and advances in ERF6-mediated plant performance under optimal and stressful conditions. Finally, we also highlight key questions and suggest potential paths to unravel the ERF6 regulon in future research.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Zhen Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Du Kangxi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| |
Collapse
|
6
|
Renziehausen T, Chaudhury R, Hartman S, Mustroph A, Schmidt-Schippers RR. A mechanistic integration of hypoxia signaling with energy, redox, and hormonal cues. PLANT PHYSIOLOGY 2024; 197:kiae596. [PMID: 39530170 DOI: 10.1093/plphys/kiae596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Oxygen deficiency (hypoxia) occurs naturally in many developing plant tissues but can become a major threat during acute flooding stress. Consequently, plants as aerobic organisms must rapidly acclimate to hypoxia and the associated energy crisis to ensure cellular and ultimately organismal survival. In plants, oxygen sensing is tightly linked with oxygen-controlled protein stability of group VII ETHYLENE-RESPONSE FACTORs (ERFVII), which, when stabilized under hypoxia, act as key transcriptional regulators of hypoxia-responsive genes (HRGs). Multiple signaling pathways feed into hypoxia signaling to fine-tune cellular decision-making under stress. First, ATP shortage upon hypoxia directly affects the energy status and adjusts anaerobic metabolism. Secondly, altered redox homeostasis leads to reactive oxygen and nitrogen species (ROS and RNS) accumulation, evoking signaling and oxidative stress acclimation. Finally, the phytohormone ethylene promotes hypoxia signaling to improve acute stress acclimation, while hypoxia signaling in turn can alter ethylene, auxin, abscisic acid, salicylic acid, and jasmonate signaling to guide development and stress responses. In this Update, we summarize the current knowledge on how energy, redox, and hormone signaling pathways are induced under hypoxia and subsequently integrated at the molecular level to ensure stress-tailored cellular responses. We show that some HRGs are responsive to changes in redox, energy, and ethylene independently of the oxygen status, and we propose an updated HRG list that is more representative for hypoxia marker gene expression. We discuss the synergistic effects of hypoxia, energy, redox, and hormone signaling and their phenotypic consequences in the context of both environmental and developmental hypoxia.
Collapse
Affiliation(s)
- Tilo Renziehausen
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany
| | - Rim Chaudhury
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Sjon Hartman
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Angelika Mustroph
- Department of Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Romy R Schmidt-Schippers
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany
| |
Collapse
|
7
|
Wu X, Hu X, Bao Q, Sun Q, Yu P, Qi J, Zhang Z, Luo C, Wang Y, Lu W, Wu X. Genome-Wide Identification and Expression Analysis of NAC Gene Family Members in Seashore Paspalum Under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3595. [PMID: 39771292 PMCID: PMC11678376 DOI: 10.3390/plants13243595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
The NAC gene family plays a crucial role in plant growth, development, and responses to biotic and abiotic stresses. Paspalum Vaginatum, a warm-season turfgrass with exceptional salt tolerance, can be irrigated with seawater. However, the NAC gene family in seashore paspalum remains poorly understood. In this study, genome-wide screening and identification were conducted based on the NAC (NAM) domain hidden Markov model in seashore paspalum, resulting in the identification of 168 PvNAC genes. A phylogenetic tree was constructed, and the genes were classified into 18 groups according to their topological structure. The physicochemical properties of the PvNAC gene family proteins, their conserved motifs and structural domains, cis-acting elements, intraspecific collinearity analysis, GO annotation analysis, and protein-protein interaction networks were analyzed. The results indicated that the majority of PvNAC proteins are hydrophilic and predominantly localized in the nucleus. The promoter regions of PvNACs are primarily enriched with light-responsive elements, ABRE motifs, MYB motifs, and others. Intraspecific collinearity analysis suggests that PvNACs may have experienced a large-scale gene duplication event. GO annotation indicated that PvNAC genes were essential for transcriptional regulation, organ development, and responses to environmental stimuli. Furthermore, the protein interaction network predicted that PvNAC73 interacts with proteins such as BZIP8 and DREB2A to form a major regulatory hub. The transcriptomic analysis investigates the expression patterns of NAC genes in both leaves and roots under varying durations of salt stress. The expression levels of 8 PvNACs in roots and leaves under salt stress were examined and increased to varying degrees under salt stress. The qRT-PCR results demonstrated that the expression levels of the selected genes were consistent with the FPKM value trends observed in the RNA-seq data. This study established a theoretical basis for understanding the molecular functions and regulatory mechanisms of the NAC gene family in seashore paspalum under salt stress.
Collapse
Affiliation(s)
- Xuanyang Wu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Xiaochen Hu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Qinyan Bao
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730050, China
| | - Qi Sun
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Pan Yu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Junxiang Qi
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Zixuan Zhang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Chunrong Luo
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Yuzhu Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Wenjie Lu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Xueli Wu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
- Shandong Key Laboratory for Germplasm Innovation of Saline-alkaline Tolerant Grasses and Trees, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
8
|
Chen Y, Zhang H, Chen W, Gao Y, Xu K, Sun X, Huo L. The role of ethylene in the regulation of plant response mechanisms to waterlogging stress. PLANT CELL REPORTS 2024; 43:278. [PMID: 39531178 DOI: 10.1007/s00299-024-03367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Waterlogging stands as a common environmental challenge, significantly affecting plant growth, yield, and, in severe cases, survival. In response to waterlogging stress, plants exhibit a series of intricate physiologic, metabolic, and morphologic adaptations. Notably, the gaseous phytohormone ethylene is rapidly accumulated in the plant submerged tissues, assuming an important regulatory factor in plant-waterlogging tolerance. In this review, we summarize recent advances in research on the mechanisms of ethylene in the regulation of plant responses to waterlogging stress. Recent advances found that both ethylene biosynthesis and signal transduction make indispensable contributions to modulating plant adaptation mechanisms to waterlogged condition. Ethylene was also discovered to play an important role in plant physiologic metabolic responses to waterlogging stress, including the energy mechanism, morphologic adaptation, ROS regulation and interactions with other phytohormones. The comprehensive exploration of ethylene and its associated genes provides valuable insights into the precise strategies to leverage ethylene metabolism for enhancing plant resistance to waterlogging stress.
Collapse
Affiliation(s)
- Yunyun Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Hao Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Wenxin Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yongbin Gao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Kai Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Liuqing Huo
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
9
|
Zheng S, Wang F, Liu Z, Zhang H, Zhang L, Chen D. The Role of Female and Male Genes in Regulating Pollen Tube Guidance in Flowering Plants. Genes (Basel) 2024; 15:1367. [PMID: 39596567 PMCID: PMC11593715 DOI: 10.3390/genes15111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
In flowering plants, fertilization is a complex process governed by precise communication between the male and female gametophytes. This review focuses on the roles of various female gametophyte cells-synergid, central, and egg cells-in facilitating pollen tube guidance and ensuring successful fertilization. Synergid cells play a crucial role in attracting the pollen tube, while the central cell influences the direction of pollen tube growth, and the egg cell is responsible for preventing polyspermy, ensuring correct fertilization. The review also examines the role of the pollen tube in this communication, highlighting the mechanisms involved in its growth regulation, including the importance of pollen tube receptors, signal transduction pathways, cell wall dynamics, and ion homeostasis. The Ca2+ concentration gradient is identified as a key factor in guiding pollen tube growth toward the ovule. Moreover, the review briefly compares these communication processes in angiosperms with those in non-flowering plants, such as mosses, ferns, and early gymnosperms, providing evolutionary insights into gametophytic signaling. Overall, this review synthesizes the current understanding of male-female gametophyte interactions and outlines future directions for research in plant reproductive biology.
Collapse
Affiliation(s)
- Siyuan Zheng
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Feng Wang
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Zehui Liu
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
| | - Hongbin Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China;
| | - Liangsheng Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Dan Chen
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
| |
Collapse
|
10
|
Depaepe T, Prinsen E, Hu Y, Sanchez-Munoz R, Denoo B, Buyst D, Darouez H, Werbrouck S, Hayashi KI, Martins J, Winne J, Van Der Straeten D. Arinole, a novel auxin-stimulating benzoxazole, affects root growth and promotes adventitious root formation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5681-5702. [PMID: 38920303 DOI: 10.1093/jxb/erae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
The triple response phenotype is characteristic for seedlings treated with the phytohormone ethylene or its direct precursor 1-aminocyclopropane-carboxylic acid, and is often employed to find novel chemical tools to probe ethylene responses. We identified a benzoxazole-urea derivative (B2) partially mimicking ethylene effects in a triple response bioassay. A phenotypic analysis demonstrated that B2 and its closest analogue arinole (ARI) induced phenotypic responses reminiscent of seedlings with elevated levels of auxin, including impaired hook development and inhibition of seedling growth. Specifically, ARI reduced longitudinal cell elongation in roots, while promoting cell division. In contrast to other natural or synthetic auxins, ARI mostly acts as an inducer of adventitious root development, with only limited effects on lateral root development. Quantification of free auxins and auxin biosynthetic precursors as well as auxin-related gene expression demonstrated that ARI boosts global auxin levels. In addition, analyses of auxin reporter lines and mutants, together with pharmacological assays with auxin-related inhibitors, confirmed that ARI effects are facilitated by TRYPTOPHAN AMINOTRANSFERASE1 (TAA1)-mediated auxin synthesis. ARI treatment in an array of species, including Arabidopsis, pea, tomato, poplar, and lavender, resulted in adventitious root formation, which is a desirable trait in both agriculture and horticulture.
Collapse
Affiliation(s)
- Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Els Prinsen
- Laboratory of Integrated Molecular Plant Physiological Research (IMPRES), Department of Biology, Faculty of Sciences, University of Antwerp, Antwerp, Belgium
| | - Yuming Hu
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Raul Sanchez-Munoz
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Bram Denoo
- Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Dieter Buyst
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Hajer Darouez
- Laboratory for Applied In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Stefaan Werbrouck
- Laboratory for Applied In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Ken-Ichiro Hayashi
- Natural Products Chemistry Lab, Department of Biochemistry, Okayama University of Science, Okayama, Japan
| | - José Martins
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Johan Winne
- Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Corbineau F. Ethylene, a Signaling Compound Involved in Seed Germination and Dormancy. PLANTS (BASEL, SWITZERLAND) 2024; 13:2674. [PMID: 39409543 PMCID: PMC11478528 DOI: 10.3390/plants13192674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024]
Abstract
The present review is focused on current findings on the involvement of ethylene in seed biology. The responsiveness of seeds to ethylene depends on the species and the dormancy status, improving concentrations ranging from 0.1 to 200 μL L-1. The signaling pathway of ethylene starts with its binding to five membrane-anchored receptors, which results in the deactivation of Constitutive Triple Response 1 (CTR1, a protein kinase) that does not exert its inhibitory effect on Ethylene Insensitive 2 (EIN2) by phosphorylating its cytosolic C-terminal domain. An analysis of germination in the presence of inhibitors of ethylene synthesis or action, and using seeds from mutant lines altered in terms of the genes involved in ethylene synthesis (acs) and the signaling pathway (etr1, ein2, ein4, ctr1 and erf1), demonstrates the involvement of ethylene in the regulation of seed dormancy. The promoting effect of ethylene is also regulated through crosstalk with abscisic acid (ABA) and gibberellins (GAs), essential hormones involved in seed germination and dormancy, and Reactive Oxygen Species (ROS). Using a mutant of the proteolytic N-degron pathway, Proteolysis (PRT6), the Ethylene Response Factors (ERFs) from group VII (HRE1, HRE2, RAP 2.2, RAP2.3 and RAP 2.12) have also been identified as being involved in seed insensitivity to ethylene. This review highlights the key roles of EIN2 and EIN3 in the ethylene signaling pathway and in interactions with different hormones and discusses the responsiveness of seeds to ethylene, depending on the species and the dormancy status.
Collapse
|
12
|
Tu M, Hua Y, Shao T, Zhang S, Xiang Z, Yu M, Wang G, Li Z, He Y, Yang L, Li Y. Characterization and Transcriptomic Analysis of Sorghum EIN/EIL Family and Identification of Their Roles in Internode Maturation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2615. [PMID: 39339591 PMCID: PMC11435218 DOI: 10.3390/plants13182615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Ethylene-insensitive 3/Ethylene-insensitive3-like proteins (EIN3/EIL) represent a group of transcription factors critical for the ethylene signaling transduction that manipulate downstream ethylene-responsive genes, thereby regulating plant growth, development, and stress responses. However, the identification, evolution, and divergence of the EIL family remain to be studied in Sorghum bicolor. Here, we identified eight SbEILs, which were expanded due to whole-genome-duplication (WGD) events. Characterization of the protein sequences and expression atlas demonstrates that the WGD-duplicated SbEILs could become divergent due to the differential expression patterns, rather than domain and motif architectures. Comparative expression analysis was performed between the RNA-seq data sets of internodes from several sorghum cultivars to understand the potential roles of SbEIL members in internode elongation and maturation. Our results identified SbEIL3 and 7 (the latter as a homolog of OsEIL7/OsEIL1) to be the highly expressed SbEIL genes in sorghum internodes and revealed a potential functional link between SbEIL7 and internode maturation. The co-expression analysis and comparative expression analysis with ethylene-regulated gene sets found that SbEIL7 was co-regulated with a set of ubiquitin-related protein degradation genes, suggesting possible involvement of SbEIL7 in protein degradation and processing during the post-anthesis stages. Altogether, our findings lay a foundation for future functional studies of ethylene signaling-mediated gene regulation and improvement of sorghum internode development.
Collapse
Affiliation(s)
- Min Tu
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuqing Hua
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ti Shao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siyu Zhang
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zihan Xiang
- School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Manting Yu
- School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guoli Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhuang Li
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yun He
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lin Yang
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
13
|
Liu Y, Xiao W, Liao L, Zheng B, Cao Y, Zhao Y, Zhang RX, Han Y. A PpEIL2/3-PpNAC1-PpWRKY14 module regulates fruit ripening by modulating ethylene production in peach. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39185667 DOI: 10.1111/jipb.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024]
Abstract
WRKY transcription factors play key roles in plant resistance to various stresses, but their roles in fruit ripening remain largely unknown. Here, we report a WRKY gene PpWRKY14 involved in the regulation of fruit ripening in peach. The expression of PpWRKY14 showed an increasing trend throughout fruit development. PpWRKY14 was a target gene of PpNAC1, a master regulator of peach fruit ripening. PpWRKY14 could directly bind to the promoters of PpACS1 and PpACO1 to induce their expression, and this induction was greatly enhanced when PpWRKY14 formed a dimer with PpNAC1. However, the transcription of PpNAC1 could be directly suppressed by two EIN3/EIL1 genes, PpEIL2 and PpEIL3. The PpEIL2/3 genes were highly expressed at the early stages of fruit development, but their expression was programmed to decrease significantly during the ripening stage, thus derepressing the expression of PpNAC1. These results suggested a PpEIL2/3-PpNAC1-PpWRKY14 module that regulates fruit ripening by modulating ethylene production in peach. Our results provided an insight into the regulatory roles of EIN3/EIL1 and WRKY genes in fruit ripening.
Collapse
Affiliation(s)
- Yudi Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Xiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Liao Liao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Beibei Zheng
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yunpeng Cao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yun Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ruo-Xi Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
14
|
Zou Y, Liu Y, Li W, Cao Q, Wang X, Hu Z, Cai Q, Lou L. Ethylene is the key phytohormone to enhance arsenic resistance in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116644. [PMID: 38944009 DOI: 10.1016/j.ecoenv.2024.116644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
The toxic metalloid arsenic is prevalent in the environment and poses a threat to nearly all organisms. However, the mechanism by which phytohormones modulate arsenic resistance is not well-understood. Therefore, we analyzed multiple phytohormones based on the results of transcriptome sequencing, content changes, and related mutant growth under arsenic stress. We found that ethylene was the key phytohormone in Arabidopsis thaliana response to arsenic. Further investigation showed the ethylene-overproducing mutant eto1-1 generated less malondialdehyde (MDA), H2O2, and O2•- under arsenic stress compared to wild-type, while the ethylene-insensitive mutant ein2-5 displayed opposite patterns. Compared to wild-type, eto1-1 accumulated a smaller amount of arsenic and a larger amount of non-protein thiols. Additionally, the immediate ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), enhanced resistance to arsenic in wide-type, but not in mutants with impaired detoxification capability (i.e., cad1-3, pad2-1, abcc1abcc2), which confirmed that ethylene regulated arsenic detoxification by enhancing arsenic chelation. ACC also upregulated the expression of gene(s) involved in arsenic detoxification, among which ABCC2 was directly transcriptionally activated by the ethylene master transcription factor ethylene-insensitive 3 (EIN3). Overall, our study shows that ethylene is the key phytohormone to enhance arsenic resistance by reducing arsenic accumulation and promoting arsenic detoxification at both physiological and molecular levels.
Collapse
Affiliation(s)
- Yiping Zou
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaping Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingqing Cao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qingsheng Cai
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Laiqing Lou
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
15
|
Li XK, Huang YH, Zhao R, Cao WQ, Lu L, Han JQ, Zhou Y, Zhang X, Wu WA, Tao JJ, Wei W, Zhang WK, Chen SY, Ma B, Zhao H, Yin CC, Zhang JS. Membrane protein MHZ3 regulates the on-off switch of ethylene signaling in rice. Nat Commun 2024; 15:5987. [PMID: 39013913 PMCID: PMC11252128 DOI: 10.1038/s41467-024-50290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
Ethylene regulates plant growth, development, and stress adaptation. However, the early signaling events following ethylene perception, particularly in the regulation of ethylene receptor/CTRs (CONSTITUTIVE TRIPLE RESPONSE) complex, remains less understood. Here, utilizing the rapid phospho-shift of rice OsCTR2 in response to ethylene as a sensitive readout for signal activation, we revealed that MHZ3, previously identified as a stabilizer of ETHYLENE INSENSITIVE 2 (OsEIN2), is crucial for maintaining OsCTR2 phosphorylation. Genetically, both functional MHZ3 and ethylene receptors prove essential for OsCTR2 phosphorylation. MHZ3 physically interacts with both subfamily I and II ethylene receptors, e.g., OsERS2 and OsETR2 respectively, stabilizing their association with OsCTR2 and thereby maintaining OsCTR2 activity. Ethylene treatment disrupts the interactions within the protein complex MHZ3/receptors/OsCTR2, reducing OsCTR2 phosphorylation and initiating downstream signaling. Our study unveils the dual role of MHZ3 in fine-tuning ethylene signaling activation, providing insights into the initial stages of the ethylene signaling cascade.
Collapse
Affiliation(s)
- Xin-Kai Li
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Hua Huang
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rui Zhao
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wu-Qiang Cao
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jia-Qi Han
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Zhou
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xun Zhang
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Ai Wu
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Jun Tao
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wei
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan-Ke Zhang
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shou-Yi Chen
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - He Zhao
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK.
| | - Cui-Cui Yin
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jin-Song Zhang
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Li Y, Wang J, Gao Y, Pandey BK, Peralta Ogorek LL, Zhao Y, Quan R, Zhao Z, Jiang L, Huang R, Qin H. The OsEIL1-OsWOX11 transcription factor module controls rice crown root development in response to soil compaction. THE PLANT CELL 2024; 36:2393-2409. [PMID: 38489602 PMCID: PMC11132869 DOI: 10.1093/plcell/koae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Optimizing the root architecture of crops is an effective strategy for improving crop yields. Soil compaction is a serious global problem that limits crop productivity by restricting root growth, but the underlying molecular mechanisms are largely unclear. Here, we show that ethylene stimulates rice (Oryza sativa) crown root development in response to soil compaction. First, we demonstrate that compacted soil promotes ethylene production and the accumulation of ETHYLENE INSENSITIVE 3-LIKE 1 (OsEIL1) in rice roots, stimulating crown root primordia initiation and development, thereby increasing crown root number in lower stem nodes. Through transcriptome profiling and molecular analyses, we reveal that OsEIL1 directly activates the expression of WUSCHEL-RELATED HOMEOBOX 11 (OsWOX11), an activator of crown root emergence and growth, and that OsWOX11 mutations delay crown root development, thus impairing the plant's response to ethylene and soil compaction. Genetic analysis demonstrates that OsWOX11 functions downstream of OsEIL1. In summary, our results demonstrate that the OsEIL1-OsWOX11 module regulates ethylene action during crown root development in response to soil compaction, providing a strategy for the genetic modification of crop root architecture and grain agronomic traits.
Collapse
Affiliation(s)
- Yuxiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Yadi Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bipin K Pandey
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Lucas León Peralta Ogorek
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Zihan Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Hua Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| |
Collapse
|
17
|
Gong Q, Wang C, Fan W, Li S, Zhang H, Huang Z, Liu X, Ma Z, Wang Y, Zhang B. RsRbohD1 Plays a Significant Role in ROS Production during Radish Pithiness Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:1386. [PMID: 38794456 PMCID: PMC11125187 DOI: 10.3390/plants13101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Pithiness is one of the physiological diseases of radishes, which is accompanied by the accumulation of reactive oxygen species (ROS) during the sponging of parenchyma tissue in the fleshy roots. A respiratory burst oxidase homolog (Rboh, also known as NADPH oxidase) is a key enzyme that catalyzes the production of ROS in plants. To understand the role of Rboh genes in radish pithiness, herein, 10 RsRboh gene families were identified in the genome of Raphanus sativus using Blastp and Hmmer searching methods and were subjected to basic functional analyses such as phylogenetic tree construction, chromosomal localization, conserved structural domain analysis, and promoter element prediction. The expression profiles of RsRbohs in five stages (Pithiness grade = 0, 1, 2, 3, 4, respectively) of radish pithiness were analyzed. The results showed that 10 RsRbohs expressed different levels during the development of radish pithiness. Except for RsRbohB and RsRbohE, the expression of other members increased and reached the peak at the P2 (Pithiness grade = 2) stage, among which RsRbohD1 showed the highest transcripts. Then, the expression of 40 genes related to RsRbohD1 and pithiness were analyzed. These results can provide a theoretical basis for improving pithiness tolerance in radishes.
Collapse
Affiliation(s)
- Qiong Gong
- College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China; (Q.G.); (S.L.)
| | - Chaonan Wang
- Tianjin Academy of Agricultural Sciences, Vegetable Research Institute, Tianjin 300381, China; (C.W.); (Z.H.); (X.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
| | - Weiqiang Fan
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
- Tianjin Kernel Agricultural Science and Technology Co., Ltd., Vegetable Research Institute, Tianjin 300381, China
| | - Shuiling Li
- College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China; (Q.G.); (S.L.)
| | - Hong Zhang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
- Tianjin Kernel Agricultural Science and Technology Co., Ltd., Vegetable Research Institute, Tianjin 300381, China
| | - Zhiyin Huang
- Tianjin Academy of Agricultural Sciences, Vegetable Research Institute, Tianjin 300381, China; (C.W.); (Z.H.); (X.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
| | - Xiaohui Liu
- Tianjin Academy of Agricultural Sciences, Vegetable Research Institute, Tianjin 300381, China; (C.W.); (Z.H.); (X.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
| | - Ziyun Ma
- College of Life Sciences, Tianjin Normal University, Tianjin 300387, China;
| | - Yong Wang
- College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China; (Q.G.); (S.L.)
| | - Bin Zhang
- Tianjin Academy of Agricultural Sciences, Vegetable Research Institute, Tianjin 300381, China; (C.W.); (Z.H.); (X.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
| |
Collapse
|
18
|
Mohorović P, Geldhof B, Holsteens K, Rinia M, Daems S, Reijnders T, Ceusters J, Van den Ende W, Van de Poel B. Ethylene inhibits photosynthesis via temporally distinct responses in tomato plants. PLANT PHYSIOLOGY 2024; 195:762-784. [PMID: 38146839 DOI: 10.1093/plphys/kiad685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 12/27/2023]
Abstract
Ethylene is a volatile plant hormone that regulates many developmental processes and responses toward (a)biotic stress. Studies have shown that high levels of ethylene repress vegetative growth in many important crops, including tomato (Solanum lycopersicum), possibly by inhibiting photosynthesis. We investigated the temporal effects of ethylene on young tomato plants using an automated ethylene gassing system to monitor the physiological, biochemical, and molecular responses through time course RNA-seq of a photosynthetically active source leaf. We found that ethylene evokes a dose-dependent inhibition of photosynthesis, which can be characterized by 3 temporally distinct phases. The earliest ethylene responses that marked the first phase and occurred a few hours after the start of the treatment were leaf epinasty and a decline in stomatal conductance, which led to lower light perception and CO2 uptake, respectively, resulting in a rapid decline of soluble sugar levels (glucose, fructose). The second phase of the ethylene effect was marked by low carbohydrate availability, which modulated plant energy metabolism to adapt by using alternative substrates (lipids and proteins) to fuel the TCA cycle. Long-term continuous exposure to ethylene led to the third phase, characterized by starch and chlorophyll breakdown, which further inhibited photosynthesis, leading to premature leaf senescence. To reveal early (3 h) ethylene-dependent regulators of photosynthesis, we performed a ChIP-seq experiment using anti-ETHYLENE INSENSITIVE 3-like 1 (EIL1) antibodies and found several candidate transcriptional regulators. Collectively, our study revealed a temporal sequence of events that led to the inhibition of photosynthesis by ethylene and identified potential transcriptional regulators responsible for this regulation.
Collapse
Affiliation(s)
- Petar Mohorović
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Batist Geldhof
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Kristof Holsteens
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Marilien Rinia
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Stijn Daems
- Research Group for Sustainable Plant Production and Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Timmy Reijnders
- Molecular Biotechnology of Plants and Microorganisms Lab, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Johan Ceusters
- Research Group for Sustainable Plant Production and Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Wim Van den Ende
- Molecular Biotechnology of Plants and Microorganisms Lab, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| |
Collapse
|
19
|
Liu C, Fan E, Liu Y, Wang M, Wang Q, Wang S, Chen S, Yang C, You X, Qu G. Genome-Wide Identification and Analysis of the EIN3/EIL Transcription Factor Gene Family in Doubled Haploid (DH) Poplar. Int J Mol Sci 2024; 25:4116. [PMID: 38612925 PMCID: PMC11012330 DOI: 10.3390/ijms25074116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Ethylene (ET) is an important phytohormone that regulates plant growth, development and stress responses. The ethylene-insensitive3/ethylene-insensitive3-like (EIN3/EIL) transcription factor family, as a key regulator of the ET signal transduction pathway, plays an important role in regulating the expression of ET-responsive genes. Although studies of EIN3/EIL family members have been completed in many species, their role in doubled haploid (DH) poplar derived from another culture of diploid Populus simonii × P. nigra (donor tree, DT) remains ambiguous. In this study, a total of seven EIN3/EIL gene family members in the DH poplar genome were identified. Basic physical and chemical property analyses of these genes were performed, and these proteins were predicted to be localized to the nucleus. According to the phylogenetic relationship, EIN3/EIL genes were divided into two groups, and the genes in the same group had a similar gene structure and conserved motifs. The expression patterns of EIN3/EIL genes in the apical buds of different DH poplar plants were analyzed based on transcriptome data. At the same time, the expression patterns of PsnEIL1, PsnEIN3, PsnEIL4 and PsnEIL5 genes in different tissues of different DH plants were detected via RT-qPCR, including the apical buds, young leaves, functional leaves, xylem, cambium and roots. The findings presented above indicate notable variations in the expression levels of PsnEIL genes across various tissues of distinct DH plants. Finally, the PsnEIL1 gene was overexpressed in DT, and the transgenic plants showed a dwarf phenotype, indicating that the PsnEIL1 gene was involved in regulating the growth and development of poplar. In this study, the EIN3/EIL gene family of DH poplar was analyzed and functionally characterized, which provides a theoretical basis for the future exploration of the EIN3/EIL gene function.
Collapse
Affiliation(s)
- Caixia Liu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (C.L.); (X.Y.)
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (Y.L.); (M.W.); (Q.W.); (S.C.); (C.Y.)
| | - Erqin Fan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (Y.L.); (M.W.); (Q.W.); (S.C.); (C.Y.)
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa Bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yuhang Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (Y.L.); (M.W.); (Q.W.); (S.C.); (C.Y.)
| | - Meng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (Y.L.); (M.W.); (Q.W.); (S.C.); (C.Y.)
| | - Qiuyu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (Y.L.); (M.W.); (Q.W.); (S.C.); (C.Y.)
| | - Sui Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, China;
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (Y.L.); (M.W.); (Q.W.); (S.C.); (C.Y.)
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (Y.L.); (M.W.); (Q.W.); (S.C.); (C.Y.)
| | - Xiangling You
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (C.L.); (X.Y.)
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (Y.L.); (M.W.); (Q.W.); (S.C.); (C.Y.)
| |
Collapse
|
20
|
Nagle MF, Yuan J, Kaur D, Ma C, Peremyslova E, Jiang Y, Niño de Rivera A, Jawdy S, Chen JG, Feng K, Yates TB, Tuskan GA, Muchero W, Fuxin L, Strauss SH. GWAS supported by computer vision identifies large numbers of candidate regulators of in planta regeneration in Populus trichocarpa. G3 (BETHESDA, MD.) 2024; 14:jkae026. [PMID: 38325329 PMCID: PMC10989874 DOI: 10.1093/g3journal/jkae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
Plant regeneration is an important dimension of plant propagation and a key step in the production of transgenic plants. However, regeneration capacity varies widely among genotypes and species, the molecular basis of which is largely unknown. Association mapping methods such as genome-wide association studies (GWAS) have long demonstrated abilities to help uncover the genetic basis of trait variation in plants; however, the performance of these methods depends on the accuracy and scale of phenotyping. To enable a large-scale GWAS of in planta callus and shoot regeneration in the model tree Populus, we developed a phenomics workflow involving semantic segmentation to quantify regenerating plant tissues over time. We found that the resulting statistics were of highly non-normal distributions, and thus employed transformations or permutations to avoid violating assumptions of linear models used in GWAS. We report over 200 statistically supported quantitative trait loci (QTLs), with genes encompassing or near to top QTLs including regulators of cell adhesion, stress signaling, and hormone signaling pathways, as well as other diverse functions. Our results encourage models of hormonal signaling during plant regeneration to consider keystone roles of stress-related signaling (e.g. involving jasmonates and salicylic acid), in addition to the auxin and cytokinin pathways commonly considered. The putative regulatory genes and biological processes we identified provide new insights into the biological complexity of plant regeneration, and may serve as new reagents for improving regeneration and transformation of recalcitrant genotypes and species.
Collapse
Affiliation(s)
- Michael F Nagle
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97311, USA
| | - Jialin Yuan
- Department of Electrical Engineering and Computer Science, Oregon State University, 1148 Kelley Engineering Center, Corvallis, OR 97331, USA
| | - Damanpreet Kaur
- Department of Electrical Engineering and Computer Science, Oregon State University, 1148 Kelley Engineering Center, Corvallis, OR 97331, USA
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97311, USA
| | - Ekaterina Peremyslova
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97311, USA
| | - Yuan Jiang
- Statistics Department, Oregon State University, 239 Weniger Hall, Corvallis, OR 97331, USA
| | - Alexa Niño de Rivera
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97311, USA
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee-Knoxville, 310 Ferris Hall 1508 Middle Dr, Knoxville, TN 37996, USA
| | - Kai Feng
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - Timothy B Yates
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee-Knoxville, 310 Ferris Hall 1508 Middle Dr, Knoxville, TN 37996, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee-Knoxville, 310 Ferris Hall 1508 Middle Dr, Knoxville, TN 37996, USA
| | - Li Fuxin
- Department of Electrical Engineering and Computer Science, Oregon State University, 1148 Kelley Engineering Center, Corvallis, OR 97331, USA
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97311, USA
| |
Collapse
|
21
|
Chen X, Sun Y, Yang Y, Zhao Y, Zhang C, Fang X, Gao H, Zhao M, He S, Song B, Liu S, Wu J, Xu P, Zhang S. The EIN3 transcription factor GmEIL1 improves soybean resistance to Phytophthora sojae. MOLECULAR PLANT PATHOLOGY 2024; 25:e13452. [PMID: 38619823 PMCID: PMC11018115 DOI: 10.1111/mpp.13452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
Phytophthora root and stem rot of soybean (Glycine max), caused by the oomycete Phytophthora sojae, is an extremely destructive disease worldwide. In this study, we identified GmEIL1, which encodes an ethylene-insensitive3 (EIN3) transcription factor. GmEIL1 was significantly induced following P. sojae infection of soybean plants. Compared to wild-type soybean plants, transgenic soybean plants overexpressing GmEIL1 showed enhanced resistance to P. sojae and GmEIL1-silenced RNA-interference lines showed more severe symptoms when infected with P. sojae. We screened for target genes of GmEIL1 and confirmed that GmEIL1 bound directly to the GmERF113 promoter and regulated GmERF113 expression. Moreover, GmEIL1 positively regulated the expression of the pathogenesis-related gene GmPR1. The GmEIL1-regulated defence response to P. sojae involved both ethylene biosynthesis and the ethylene signalling pathway. These findings suggest that the GmEIL1-GmERF113 module plays an important role in P. sojae resistance via the ethylene signalling pathway.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
- Crop Stress Molecular Biology LaboratoryHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Yan Sun
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Yu Yang
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Yuxin Zhao
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Chuanzhong Zhang
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Xin Fang
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Hong Gao
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Ming Zhao
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Shengfu He
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Bo Song
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Shanshan Liu
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Junjiang Wu
- Key Laboratory of Soybean Cultivation of Ministry of AgricultureSoybean Research Institute of Heilongjiang Academy of Agricultural SciencesHarbinChina
| | - Pengfei Xu
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Shuzhen Zhang
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
- Plant Science Department, School of Agriculture and BiologyShanghai JiaoTong UniversityShanghaiChina
| |
Collapse
|
22
|
Qiao J, Quan R, Wang J, Li Y, Xiao D, Zhao Z, Huang R, Qin H. OsEIL1 and OsEIL2, two master regulators of rice ethylene signaling, promote the expression of ROS scavenging genes to facilitate coleoptile elongation and seedling emergence from soil. PLANT COMMUNICATIONS 2024; 5:100771. [PMID: 37994014 PMCID: PMC10943563 DOI: 10.1016/j.xplc.2023.100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/21/2023] [Accepted: 11/20/2023] [Indexed: 11/24/2023]
Abstract
Successful emergence from the soil is a prerequisite for survival of germinating seeds in their natural environment. In rice, coleoptile elongation facilitates seedling emergence and establishment, and ethylene plays an important role in this process. However, the underlying regulatory mechanism remains largely unclear. Here, we report that ethylene promotes cell elongation and inhibits cell expansion in rice coleoptiles, resulting in longer and thinner coleoptiles that facilitate seedlings emergence from the soil. Transcriptome analysis showed that genes related to reactive oxygen species (ROS) generation are upregulated and genes involved in ROS scavenging are downregulated in the coleoptiles of ethylene-signaling mutants. Further investigations showed that soil coverage promotes accumulation of ETHYLENE INSENSITIVE 3-LIKE 1 (OsEIL1) and OsEIL2 in the upper region of the coleoptile, and both OsEIL1 and OsEIL2 can bind directly to the promoters of the GDP-mannose pyrophosphorylase (VTC1) gene OsVTC1-3 and the peroxidase (PRX) genes OsPRX37, OsPRX81, OsPRX82, and OsPRX88 to activate their expression. This leads to increased ascorbic acid content, greater peroxidase activity, and decreased ROS accumulation in the upper region of the coleoptile. Disruption of ROS accumulation promotes coleoptile growth and seedling emergence from soil. These findings deepen our understanding of the roles of ethylene and ROS in controlling coleoptile growth, and this information can be used by breeders to produce rice varieties suitable for direct seeding.
Collapse
Affiliation(s)
- Jinzhu Qiao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Yuxiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dinglin Xiao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zihan Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China.
| | - Hua Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China.
| |
Collapse
|
23
|
Yang N, Ren J, Dai S, Wang K, Leung M, Lu Y, An Y, Burlingame A, Xu S, Wang Z, Yu W, Li N. The Quantitative Biotinylproteomics Studies Reveal a WInd-Related Kinase 1 (Raf-Like Kinase 36) Functioning as an Early Signaling Component in Wind-Induced Thigmomorphogenesis and Gravitropism. Mol Cell Proteomics 2024; 23:100738. [PMID: 38364992 PMCID: PMC10951710 DOI: 10.1016/j.mcpro.2024.100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Wind is one of the most prevalent environmental forces entraining plants to develop various mechano-responses, collectively called thigmomorphogenesis. Largely unknown is how plants transduce these versatile wind force signals downstream to nuclear events and to the development of thigmomorphogenic phenotype or anemotropic response. To identify molecular components at the early steps of the wind force signaling, two mechanical signaling-related phosphoproteins, identified from our previous phosphoproteomic study of Arabidopsis touch response, mitogen-activated protein kinase kinase 1 (MKK1) and 2 (MKK2), were selected for performing in planta TurboID (ID)-based quantitative proximity-labeling (PL) proteomics. This quantitative biotinylproteomics was separately performed on MKK1-ID and MKK2-ID transgenic plants, respectively, using the genetically engineered TurboID biotin ligase expression transgenics as a universal control. This unique PTM proteomics successfully identified 11 and 71 MKK1 and MKK2 putative interactors, respectively. Biotin occupancy ratio (BOR) was found to be an alternative parameter to measure the extent of proximity and specificity between the proximal target proteins and the bait fusion protein. Bioinformatics analysis of these biotinylprotein data also found that TurboID biotin ligase favorably labels the loop region of target proteins. A WInd-Related Kinase 1 (WIRK1), previously known as rapidly accelerated fibrosarcoma (Raf)-like kinase 36 (RAF36), was found to be a putative common interactor for both MKK1 and MKK2 and preferentially interacts with MKK2. Further molecular biology studies of the Arabidopsis RAF36 kinase found that it plays a role in wind regulation of the touch-responsive TCH3 and CML38 gene expression and the phosphorylation of a touch-regulated PATL3 phosphoprotein. Measurement of leaf morphology and shoot gravitropic response of wirk1 (raf36) mutant revealed that the WIRK1 gene is involved in both wind-triggered rosette thigmomorphogenesis and gravitropism of Arabidopsis stems, suggesting that the WIRK1 (RAF36) protein probably functioning upstream of both MKK1 and MKK2 and that it may serve as the crosstalk point among multiple mechano-signal transduction pathways mediating both wind mechano-response and gravitropism.
Collapse
Affiliation(s)
- Nan Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jia Ren
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shuaijian Dai
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kai Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Manhin Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yinglin Lu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yuxing An
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Al Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Shouling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Zhiyong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Weichuan Yu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China; Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
24
|
He W, Truong HA, Zhang L, Cao M, Arakawa N, Xiao Y, Zhong K, Hou Y, Busch W. Identification of mebendazole as an ethylene signaling activator reveals a role of ethylene signaling in the regulation of lateral root angles. Cell Rep 2024; 43:113763. [PMID: 38358890 PMCID: PMC10949360 DOI: 10.1016/j.celrep.2024.113763] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/31/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
The lateral root angle or gravitropic set-point angle (GSA) is an important trait for root system architecture (RSA) that determines the radial expansion of the root system. The GSA therefore plays a crucial role for the ability of plants to access nutrients and water in the soil. Only a few regulatory pathways and mechanisms that determine GSA are known. These mostly relate to auxin and cytokinin pathways. Here, we report the identification of a small molecule, mebendazole (MBZ), that modulates GSA in Arabidopsis thaliana roots and acts via the activation of ethylene signaling. MBZ directly acts on the serine/threonine protein kinase CTR1, which is a negative regulator of ethylene signaling. Our study not only shows that the ethylene signaling pathway is essential for GSA regulation but also identifies a small molecular modulator of RSA that acts downstream of ethylene receptors and that directly activates ethylene signaling.
Collapse
Affiliation(s)
- Wenrong He
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Hai An Truong
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ling Zhang
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Min Cao
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Neal Arakawa
- Environmental and Complex Analysis Laboratory (ECAL), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yao Xiao
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kaizhen Zhong
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yingnan Hou
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA 92521, USA; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
25
|
Palukaitis P, Yoon JY. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Adv Virus Res 2024; 118:77-212. [PMID: 38461031 DOI: 10.1016/bs.aivir.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
26
|
Yan Y, Guo H, Li W. Endoribonuclease DNE1 Promotes Ethylene Response by Modulating EBF1/2 mRNA Processing in Arabidopsis. Int J Mol Sci 2024; 25:2138. [PMID: 38396815 PMCID: PMC10888710 DOI: 10.3390/ijms25042138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The gaseous phytohormone ethylene plays a crucial role in plant growth, development, and stress responses. In the ethylene signal transduction cascade, the F-box proteins EIN3-BINDING F-BOX 1 (EBF1) and EBF2 are identified as key negative regulators governing ethylene sensitivity. The translation and processing of EBF1/2 mRNAs are tightly controlled, and their 3' untranslated regions (UTRs) are critical in these regulations. However, despite their significance, the exact mechanisms modulating the processing of EBF1/2 mRNAs remain poorly understood. In this work, we identified the gene DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1), which encodes an endoribonuclease and is induced by ethylene treatment, as a positive regulator of ethylene response. The loss of function mutant dne1-2 showed mild ethylene insensitivity, highlighting the importance of DNE1 in ethylene signaling. We also found that DNE1 colocalizes with ETHYLENE INSENSITIVE 2 (EIN2), the core factor manipulating the translation of EBF1/2, and targets the P-body in response to ethylene. Further analysis revealed that DNE1 negatively regulates the abundance of EBF1/2 mRNAs by recognizing and cleaving their 3'UTRs, and it also represses their translation. Moreover, the dne1 mutant displays hypersensitivity to 1,4-dithiothreitol (DTT)-induced ER stress and oxidative stress, indicating the function of DNE1 in stress responses. This study sheds light on the essential role of DNE1 as a modulator of ethylene signaling through regulation of EBF1/2 mRNA processing. Our findings contribute to the understanding of the intricate regulatory process of ethylene signaling and provide insights into the significance of ribonuclease in stress responses.
Collapse
Affiliation(s)
- Yan Yan
- Harbin Institute of Technology, Harbin 150001, China;
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory, Guangdong Higher Education Institute, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongwei Guo
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory, Guangdong Higher Education Institute, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenyang Li
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory, Guangdong Higher Education Institute, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
27
|
Zhang J, Li L, Zhang Z, Han L, Xu L. The Effect of Ethephon on Ethylene and Chlorophyll in Zoysia japonica Leaves. Int J Mol Sci 2024; 25:1663. [PMID: 38338942 PMCID: PMC10855035 DOI: 10.3390/ijms25031663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Zoysia japonica (Zoysia japonica Steud.) is a kind of warm-season turfgrass with many excellent characteristics. However, the shorter green period and longer dormancy caused by cold stress in late autumn and winter are the most limiting factors affecting its application. A previous transcriptome analysis revealed that ethephon regulated genes in chlorophyll metabolism in Zoysia japonica under cold stress. Further experimental data are necessary to understand the effect and underlying mechanism of ethephon in regulating the cold tolerance of Zoysia japonica. The aim of this study was to evaluate the effects of ethephon by measuring the enzyme activity, intermediates content, and gene expression related to ethylene biosynthesis, signaling, and chlorophyll metabolism. In addition, the ethylene production rate, chlorophyll content, and chlorophyll a/b ratio were analyzed. The results showed that ethephon application in a proper concentration inhibited endogenous ethylene biosynthesis, but eventually promoted the ethylene production rate due to its ethylene-releasing nature. Ethephon could promote chlorophyll content and improve plant growth in Zoysia japonica under cold-stressed conditions. In conclusion, ethephon plays a positive role in releasing ethylene and maintaining the chlorophyll content in Zoysia japonica both under non-stressed and cold-stressed conditions.
Collapse
Affiliation(s)
| | | | | | - Liebao Han
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (L.L.); (Z.Z.)
| | - Lixin Xu
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (L.L.); (Z.Z.)
| |
Collapse
|
28
|
Cheng H, Zhang H, Song J, Jiang J, Chen S, Chen F, Wang L. GERDH: an interactive multi-omics database for cross-species data mining in horticultural crops. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1018-1029. [PMID: 37310261 DOI: 10.1111/tpj.16350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/07/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Horticultural plants contribute immensely to the quality of human's life. The rapid development of omics studies on horticultural plants has resulted in large volumes of valuable growth- and development-related data. Genes that are essential for growth and development are highly conserved in evolution. Cross-species data mining reduces the impact of species heterogeneity and has been extensively used for conserved gene identification. Owing to the lack of a comprehensive database for cross-species data mining using multi-omics data from all horticultural plant species, the current resources in this field are far from satisfactory. Here, we introduce GERDH (https://dphdatabase.com), a database platform for cross-species data mining among horticultural plants, based on 12 961 uniformly processed publicly available omics libraries from more than 150 horticultural plant accessions, including fruits, vegetables and ornamental plants. Important and conserved genes that are essential for a specific biological process can be obtained by cross-species analysis module with interactive web-based data analysis and visualization. Moreover, GERDH is equipped with seven online analysis tools, including gene expression, in-species analysis, epigenetic regulation, gene co-expression, enrichment/pathway and phylogenetic analysis. By interactive cross-species analysis, we identified key genes contributing to postharvest storage. By gene expression analysis, we explored new functions of CmEIN3 in flower development, which was validated by transgenic chrysanthemum analysis. We believe that GERDH will be a useful resource for key gene identification and will allow for omics big data to be more available and accessible to horticultural plant community members.
Collapse
Affiliation(s)
- Hua Cheng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hua Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Song
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiafu Jiang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Likai Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
29
|
Sharma M, Negi S, Kumar P, Srivastava DK, Choudhary MK, Irfan M. Fruit ripening under heat stress: The intriguing role of ethylene-mediated signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111820. [PMID: 37549738 DOI: 10.1016/j.plantsci.2023.111820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023]
Abstract
Crop production is significantly influenced by climate, and even minor climate changes can have a substantial impact on crop yields. Rising temperature due to climate change can lead to heat stress (HS) in plants, which not only hinders plant growth and development but also result in significant losses in crop yields. To cope with the different stresses including HS, plants have evolved a variety of adaptive mechanisms. In response to these stresses, phytohormones play a crucial role by generating endogenous signals that regulate the plant's defensive response. Among these, Ethylene (ET), a key phytohormone, stands out as a major regulator of stress responses in plants and regulates many plant traits, which are critical for crop productivity and nutritional quality. ET is also known as a ripening hormone for decades in climacteric fruit and many studies are available deciphering the function of different ET biosynthesis and signaling components in the ripening process. Recent studies suggest that HS significantly affects fruit quality traits and perturbs fruit ripening by altering the regulation of many ethylene biosynthesis and signaling genes resulting in substantial loss of fruit yield, quality, and postharvest stability. Despite the significant progress in this field in recent years the interplay between ET, ripening, and HS is elusive. In this review, we summarized the recent advances and current understanding of ET in regulating the ripening process under HS and explored their crosstalk at physiological and molecular levels to shed light on intricate relationships.
Collapse
Affiliation(s)
- Megha Sharma
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Shivanti Negi
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Dinesh Kumar Srivastava
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Mani Kant Choudhary
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
30
|
Zhang Y, Zang Y, Chen J, Feng S, Zhang Z, Hu Y, Zhang T. A truncated ETHYLENE INSENSITIVE3-like protein, GhLYI, regulates senescence in cotton. PLANT PHYSIOLOGY 2023; 193:1177-1196. [PMID: 37430389 DOI: 10.1093/plphys/kiad395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023]
Abstract
Numerous endogenous and environmental signals regulate the intricate and highly orchestrated process of plant senescence. Ethylene (ET), which accumulates as senescence progresses, is a major promoter of leaf senescence. The master transcription activator ETHYLENE INSENSITIVE3 (EIN3) activates the expression of a wide range of downstream genes during leaf senescence. Here, we found that a unique EIN3-LIKE 1 (EIL1) gene, cotton LINT YIELD INCREASING (GhLYI), encodes a truncated EIN3 protein in upland cotton (Gossypium hirsutum L.) that functions as an ET signal response factor and a positive regulator of senescence. Ectopic expression or overexpression of GhLYI accelerated leaf senescence in both Arabidopsis (Arabidopsis thaliana) and cotton. Cleavage under targets and tagmentation (CUT&Tag) analyses revealed that SENESCENCE-ASSOCIATED GENE 20 (SAG20) was a target of GhLYI. Electrophoretic mobility shift assay (EMSA), yeast 1-hybrid (Y1H), and dual-luciferase transient expression assay confirmed that GhLYI directly bound the promoter of SAG20 to activate its expression. Transcriptome analysis revealed that transcript levels of a series of senescence-related genes, SAG12, NAC-LIKE, ACTIVATED by APETALA 3/PISTILLATA (NAP/ANAC029), and WRKY53, are substantially induced in GhLYI overexpression plants compared with wild-type (WT) plants. Virus-induced gene silencing (VIGS) preliminarily confirmed that knockdown of GhSAG20 delayed leaf senescence. Collectively, our findings provide a regulatory module involving GhLYI-GhSAG20 in controlling senescence in cotton.
Collapse
Affiliation(s)
- Yayao Zhang
- Advanced Seed Science Institute, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310012, China
| | - Yihao Zang
- Advanced Seed Science Institute, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310012, China
| | - Jinwen Chen
- Advanced Seed Science Institute, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310012, China
| | - Shouli Feng
- Advanced Seed Science Institute, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310012, China
| | - Zhiyuan Zhang
- Hainan Institute, Zhejiang University, Sanya 310012, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 310012, China
| | - Yan Hu
- Advanced Seed Science Institute, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310012, China
| | | |
Collapse
|
31
|
Guo R, Wen X, Zhang W, Huang L, Peng Y, Jin L, Han H, Zhang L, Li W, Guo H. Arabidopsis EIN2 represses ABA responses during germination and early seedling growth by inactivating HLS1 protein independently of the canonical ethylene pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1514-1527. [PMID: 37269223 DOI: 10.1111/tpj.16335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/30/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
The signaling pathways for the phytohormones ethylene and abscisic acid (ABA) have antagonistic effects on seed germination and early seedling establishment. However, the underlying molecular mechanisms remain unclear. In Arabidopsis thaliana, ETHYLENE INSENSITIVE 2 (EIN2) localizes to the endoplasmic reticulum (ER); although its biochemical function is unknown, it connects the ethylene signal with the key transcription factors EIN3 and EIN3-LIKE 1 (EIL1), leading to the transcriptional activation of ethylene-responsive genes. In this study, we uncovered an EIN3/EIL1-independent role for EIN2 in regulating the ABA response. Epistasis analysis demonstrated that this distinct role of EIN2 in the ABA response depends on HOOKLESS 1 (HLS1), the putative histone acetyltransferase acting as a positive regulator of ABA responses. Protein interaction assays supported a direct physical interaction between EIN2 and HLS1 in vitro and in vivo. Loss of EIN2 function resulted in an alteration of HLS1-mediated histone acetylation at the ABA-INSENSITIVE 3 (ABI3) and ABI5 loci, which promotes gene expression and the ABA response during seed germination and early seedling growth, indicating that the EIN2-HLS1 module contributes to ABA responses. Our study thus revealed that EIN2 modulates ABA responses by repressing HLS1 function, independently of the canonical ethylene pathway. These findings shed light on the intricate regulatory mechanisms underling the antagonistic interactions between ethylene and ABA signaling, with significant implications for our understanding of plant growth and development.
Collapse
Affiliation(s)
- Renkang Guo
- Harbin Institute of Technology, Harbin, 150001, China
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xing Wen
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Zhang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Huang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yang Peng
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lian Jin
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huihui Han
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Linlin Zhang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenyang Li
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
32
|
Wang J, Sun L, Zhang H, Jiao B, Wang H, Zhou S. Transcriptome analysis during vernalization in wheat (Triticum aestivum L.). BMC Genom Data 2023; 24:43. [PMID: 37563565 PMCID: PMC10416481 DOI: 10.1186/s12863-023-01144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Vernalization, as a vital process in the life cycle of winter cereal, has important effects on floral organ formation and flowering time. Many morphological changes together with molecular changes occur during the vernalization period. Here, we used transcriptome sequencing to analyze the transcriptomic changes in wheat leaves before, during and after vernalization using the winter wheat cultivar 'Shiluan02-1'. RESULTS A total of 16,370 differentially expressed genes were obtained across different vernalization periods. Gene Ontology enrichment analysis revealed that photoperiodism, photoprotection, photosynthesis, lipid transport and biosynthetic process, and chlorophyll metabolic process were closely related to vernalization. In addition, AP2/ERF, C2H2, bHLH, WRKY, MYB, MYB-related, and NAC transcription factors were significantly enriched during vernalization, and the transcription factor expression patterns suggested the intricate regulation of transcription factor modules in plant vernalization pathways. Analysis of gene expression patterns of the MADS-box transcription factor genes showed different expression patterns during vernalization phases, among which VERNALIZATION1 (VRN1) genes were found to gradually increase during vernalization periods from V0 to V35, while decline in the V42 phase, then increase after vernalization. The Tavrt-2 gene cooperated with Tavrn1 to regulate flowering induced by vernalization, and its expression level was rapidly increased by vernalization but declined in the V42 phase and then increased after vernalization. Some genes from the ICE-CBF-COR pathway were also identified, and additional analysis indicated that some key genes related to phytohormone biosynthesis and signal transduction were enriched during the vernalization period, such as gibberellic acid, ethylene, abscisic acid and jasmonic acid biosynthesis and signaling pathway genes. CONCLUSIONS Our study provides valuable molecular information for future studies on wheat vernalization regulation and also serves as an excellent reference for future wheat breeding.
Collapse
Affiliation(s)
- Jiao Wang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Lei Sun
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Hongwei Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Bo Jiao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Haibo Wang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Shuo Zhou
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
33
|
Huang YH, Han JQ, Ma B, Cao WQ, Li XK, Xiong Q, Zhao H, Zhao R, Zhang X, Zhou Y, Wei W, Tao JJ, Zhang WK, Qian W, Chen SY, Yang C, Yin CC, Zhang JS. A translational regulator MHZ9 modulates ethylene signaling in rice. Nat Commun 2023; 14:4674. [PMID: 37542048 PMCID: PMC10403538 DOI: 10.1038/s41467-023-40429-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/27/2023] [Indexed: 08/06/2023] Open
Abstract
Ethylene plays essential roles in rice growth, development and stress adaptation. Translational control of ethylene signaling remains unclear in rice. Here, through analysis of an ethylene-response mutant mhz9, we identified a glycine-tyrosine-phenylalanine (GYF) domain protein MHZ9, which positively regulates ethylene signaling at translational level in rice. MHZ9 is localized in RNA processing bodies. The C-terminal domain of MHZ9 interacts with OsEIN2, a central regulator of rice ethylene signaling, and the N-terminal domain directly binds to the OsEBF1/2 mRNAs for translational inhibition, allowing accumulation of transcription factor OsEIL1 to activate the downstream signaling. RNA-IP seq and CLIP-seq analyses reveal that MHZ9 associates with hundreds of RNAs. Ribo-seq analysis indicates that MHZ9 is required for the regulation of ~ 90% of genes translationally affected by ethylene. Our study identifies a translational regulator MHZ9, which mediates translational regulation of genes in response to ethylene, facilitating stress adaptation and trait improvement in rice.
Collapse
Affiliation(s)
- Yi-Hua Huang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jia-Qi Han
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Biao Ma
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wu-Qiang Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Kai Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - He Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rui Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wei
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian-Jun Tao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan-Ke Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shou-Yi Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao Yang
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Cui-Cui Yin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jin-Song Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
34
|
Xu M, Li X, Xie W, Lin C, Wang Q, Tao Z. ETHYLENE INSENSITIVE3/EIN3-LIKE1 modulate FLOWERING LOCUS C expression via histone demethylase interaction. PLANT PHYSIOLOGY 2023; 192:2290-2300. [PMID: 36852894 PMCID: PMC10315263 DOI: 10.1093/plphys/kiad131] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Time to flowering (vegetative to reproductive phase) is tightly regulated by endogenous factors and environmental cues to ensure proper and successful reproduction. How endogenous factors coordinate with environmental signals to regulate flowering time in plants is unclear. Transcription factors ETHYLENE INSENSITIVE 3 (EIN3) and its homolog EIN3 LIKE 1 (EIL1) are the core downstream regulators in ethylene signal transduction, and their null mutants exhibit late flowering in Arabidopsis (Arabidopsis thaliana); however, the precise mechanism of floral transition remains unknown. Here, we reveal that FLOWERING LOCUS D (FLD), encoding a histone demethylase acting in the autonomous pathway of floral transition, physically associates with EIN3 and EIL1. Loss of EIN3 and EIL1 upregulated transcriptional expression of the floral repressor FLOWERING LOCUS C (FLC) and its homologs in Arabidopsis, and ethylene-insensitive mutants displayed inhibited flowering in an FLC-dependent manner. We further demonstrated that EIN3 and EIL1 directly bind to FLC loci, modulating their expression by recruiting FLD and thereafter removing di-methylation of lysine 4 on histone H3 (H3K4me2). In plants treated with 1-aminocyclopropane-1-carboxylic acid, decreased expression of FLD resulted in increased enrichment of H3K4me2 at FLC loci and transcriptional activation of FLC, leading to floral repression. Our study reveals the role of EIN3 and EIL1 in FLC-dependent and ethylene-induced floral repression and elucidates how phytohormone signals are transduced into chromatin-based transcriptional regulation.
Collapse
Affiliation(s)
- Mengting Xu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaoxiao Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wei Xie
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chuyu Lin
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qiannan Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zeng Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
35
|
Bao QX, Mu XR, Tong C, Li C, Tao WZ, Zhao ST, Liu YX, Wang WN, Wei YT, Yu FH, Wang JW, Sun ZL, Fan BL, Sun J, Wang C, Loake G, Meng LS. Sugar status in preexisting leaves determines systemic stomatal development within newly developing leaves. Proc Natl Acad Sci U S A 2023; 120:e2302854120. [PMID: 37276396 PMCID: PMC10268241 DOI: 10.1073/pnas.2302854120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/11/2023] [Indexed: 06/07/2023] Open
Abstract
Stomata are pores found in the epidermis of stems or leaves that modulate both plant gas exchange and water/nutrient uptake. The development and function of plant stomata are regulated by a diverse range of environmental cues. However, how carbohydrate status in preexisting leaves might determine systemic stomatal formation within newly developing leaves has remained obscure. The glucose (Glc) sensor HEXOKINASE1 (HXK1) has been reported to decrease the stability of an ethylene/Glc signaling transcriptional regulator, EIN3 (ETHYLENE INSENSITIVE3). EIN3 in turn directly represses the expression of SUC2 (sucrose transporter 2), encoding a master transporter of sucrose (Suc). Further, KIN10, a nuclear regulator involved in energy homeostasis, has been reported to repress the transcription factor SPCH (SPEECHLESS), a master regulator of stomatal development. Here, we demonstrate that the Glc status of preexisting leaves determines systemic stomatal development within newly developing leaves by the HXK1-¦EIN3-¦SUC2 module. Further, increasing Glc levels in preexisting leaves results in a HXK1-dependent decrease of EIN3 and increase of SUC2, triggering the perception, amplification and relay of HXK1-dependent Glc signaling and thereby triggering Suc transport from mature to newly developing leaves. The HXK1-¦EIN3-¦SUC2 molecular module thereby drives systemic Suc transport from preexisting leaves to newly developing leaves. Subsequently, increasing Suc levels within newly developing leaves promotes stomatal formation through the established KIN10⟶ SPCH module. Our findings thus show how a carbohydrate signal in preexisting leaves is sensed, amplified and relayed to determine the extent of systemic stomatal development within newly developing leaves.
Collapse
Affiliation(s)
- Qin-Xin Bao
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Xin-Rong Mu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Chen Tong
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Cong Li
- Public Technical Service Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, People’s Republic of China
| | - Wen-Zhe Tao
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Sheng-Ting Zhao
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Yu-xin Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Wan-Ni Wang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Yu-ting Wei
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Fu-Huan Yu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Jing-wen Wang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Zhi-Lan Sun
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Bing-Ling Fan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Jia Sun
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu221116, People’s Republic of China
| | - Chen Wang
- School of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu210095, People’s Republic of China
| | - Gary J. Loake
- Jiangsu Normal University–Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, Xuzhou, Jiangsu221116, People’s Republic of China
- Institute of Molecular Plant Sciences, School of Biological Sciences, Edinburgh University, EdinburghEH9 3BF, United Kingdom
| | - Lai-Sheng Meng
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu221116, People’s Republic of China
| |
Collapse
|
36
|
Shin SY, Lee CM, Kim HS, Kim C, Jeon JH, Lee HJ. Ethylene signals modulate the survival of Arabidopsis leaf explants. BMC PLANT BIOLOGY 2023; 23:281. [PMID: 37237253 DOI: 10.1186/s12870-023-04299-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Leaf explants are major materials in plant tissue cultures. Incubation of detached leaves on phytohormone-containing media, which is an important process for producing calli and regenerating plants, change their cell fate. Although hormone signaling pathways related to cell fate transition have been widely studied, other molecular and physiological events occurring in leaf explants during this process remain largely unexplored. RESULTS Here, we identified that ethylene signals modulate expression of pathogen resistance genes and anthocyanin accumulation in leaf explants, affecting their survival during culture. Anthocyanins accumulated in leaf explants, but were not observed near the wound site. Ethylene signaling mutant analysis revealed that ethylene signals are active and block anthocyanin accumulation in the wound site. Moreover, expression of defense-related genes increased, particularly near the wound site, implying that ethylene induces defense responses possibly by blocking pathogenesis via wounding. We also found that anthocyanin accumulation in non-wounded regions is required for drought resistance in leaf explants. CONCLUSIONS Our study revealed the key roles of ethylene in the regulation of defense gene expression and anthocyanin biosynthesis in leaf explants. Our results suggest a survival strategy of detached leaves, which can be applied to improve the longevity of explants during tissue culture.
Collapse
Affiliation(s)
- Seung Yong Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Korea
| | - Chae-Min Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
- Department of Crop Science, Chungnam National University, Daejeon, 34134, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Korea
| | - Changsoo Kim
- Department of Crop Science, Chungnam National University, Daejeon, 34134, Korea
| | - Jae-Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Korea.
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
37
|
Lu K, Zhang L, Qin L, Chen X, Wang X, Zhang M, Dong H. Importin β1 Mediates Nuclear Entry of EIN2C to Confer the Phloem-Based Defense against Aphids. Int J Mol Sci 2023; 24:ijms24108545. [PMID: 37239892 DOI: 10.3390/ijms24108545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Ethylene Insensitive 2 (EIN2) is an integral membrane protein that regulates ethylene signaling towards plant development and immunity by release of its carboxy-terminal functional portion (EIN2C) into the nucleus. The present study elucidates that the nuclear trafficking of EIN2C is induced by importin β1, which triggers the phloem-based defense (PBD) against aphid infestations in Arabidopsis. In plants, IMPβ1 interacts with EIN2C to facilitate EIN2C trafficking into the nucleus, either by ethylene treatment or by green peach aphid infestation, to confer EIN2-dependent PBD responses, which, in turn, impede the phloem-feeding activity and massive infestation by the aphid. In Arabidopsis, moreover, constitutively expressed EIN2C can complement the impβ1 mutant regarding EIN2C localization to the plant nucleus and the subsequent PBD development in the concomitant presence of IMPβ1 and ethylene. As a result, the phloem-feeding activity and massive infestation by green peach aphid were highly inhibited, indicating the potential value of EIN2C in protecting plants from insect attacks.
Collapse
Affiliation(s)
- Kai Lu
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Liyuan Zhang
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Lina Qin
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xiaochen Chen
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xiaobing Wang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710019, China
| | - Hansong Dong
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
38
|
Lu C, Wang Q, Jiang Y, Zhang M, Meng X, Li Y, Liu B, Yin Z, Liu H, Peng C, Li F, Yue Y, Hao M, Sui Y, Wang L, Cheng G, Liu J, Chu Z, Zhu C, Dong H, Ding X. Discovery of a novel nucleoside immune signaling molecule 2'-deoxyguanosine in microbes and plants. J Adv Res 2023; 46:1-15. [PMID: 35811061 PMCID: PMC10105077 DOI: 10.1016/j.jare.2022.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Beneficial microorganisms play essential roles in plant growth and induced systemic resistance (ISR) by releasing signaling molecules. Our previous study obtained the crude extract from beneficial endophyte Paecilomyces variotii, termed ZNC (ZhiNengCong), which significantly enhanced plant resistance to pathogen even at 100 ng/ml. However, the immunoreactive components of ZNC remain unclear. Here, we further identified one of the immunoreactive components of ZNC is a nucleoside 2'-deoxyguanosine (2-dG). OBJECTIVES This paper intends to reveal the molecular mechanism of microbial-derived 2'-deoxyguanosine (2-dG) in activating plant immunity, and the role of plant-derived 2-dG in plant immunity. METHODS The components of ZNC were separated using a high-performance liquid chromatography (HPLC), and 2-dG is identified using a HPLC-mass spectrometry system (LC-MS). Transcriptome analysis and genetic experiments were used to reveal the immune signaling pathway dependent on 2-dG activation of plant immunity. RESULTS This study identified 2'-deoxyguanosine (2-dG) as one of the immunoreactive components from ZNC. And 2-dG significantly enhanced plant pathogen resistance even at 10 ng/ml (37.42 nM). Furthermore, 2-dG-induced resistance depends on NPR1, pattern-recognition receptors/coreceptors, ATP receptor P2K1 (DORN1), ethylene signaling but not salicylic acid accumulation. In addition, we identified Arabidopsis VENOSA4 (VEN4) was involved in 2-dG biosynthesis and could convert dGTP to 2-dG, and vne4 mutant plants were more susceptible to pathogens. CONCLUSION In summary, microbial-derived 2-dG may act as a novel immune signaling molecule involved in plant-microorganism interactions, and VEN4 is 2-dG biosynthesis gene and plays a key role in plant immunity.
Collapse
Affiliation(s)
- Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Qingbin Wang
- Shandong Pengbo Biotechnology Co., LTD, Taian 271018, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Min Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xuanlin Meng
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Baoyou Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Chune Peng
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Yingzhe Yue
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Mingxia Hao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yurong Sui
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lulu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Guodong Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Hansong Dong
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
39
|
Masood J, Zhu W, Fu Y, Li Z, Zhou Y, Zhang D, Han H, Yan Y, Wen X, Guo H, Liang J. Scaffold protein RACK1A positively regulates leaf senescence by coordinating the EIN3-miR164-ORE1 transcriptional cascade in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36939002 DOI: 10.1111/jipb.13483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Plants have adopted versatile scaffold proteins to facilitate the crosstalk between multiple signaling pathways. Leaf senescence is a well-programmed developmental stage that is coordinated by various external and internal signals. However, the functions of plant scaffold proteins in response to senescence signals are not well understood. Here, we report that the scaffold protein RACK1A (RECEPTOR FOR ACTIVATED C KINASE 1A) participates in leaf senescence mediated by ethylene signaling via the coordination of the EIN3-miR164-ORE1 transcriptional regulatory cascade. RACK1A is a novel positive regulator of ethylene-mediated leaf senescence. The rack1a mutant exhibits delayed leaf senescence, while transgenic lines overexpressing RACK1A display early leaf senescence. Moreover, RACK1A promotes EIN3 (ETHYLENE INSENSITIVE 3) protein accumulation, and directly interacts with EIN3 to enhance its DNA-binding activity. Together, they then associate with the miR164 promoter to inhibit its transcription, leading to the release of the inhibition on downstream ORE1 (ORESARA 1) transcription and the promotion of leaf senescence. This study reveals a mechanistic framework by which RACK1A promotes leaf senescence via the EIN3-miR164-ORE1 transcriptional cascade, and provides a paradigm for how scaffold proteins finely tune phytohormone signaling to control plant development.
Collapse
Affiliation(s)
- Jan Masood
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Wei Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yajuan Fu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Zhiyong Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yeling Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Dong Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Huihui Han
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yan Yan
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xing Wen
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Jiansheng Liang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Sciences, Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| |
Collapse
|
40
|
Park HL, Seo DH, Lee HY, Bakshi A, Park C, Chien YC, Kieber JJ, Binder BM, Yoon GM. Ethylene-triggered subcellular trafficking of CTR1 enhances the response to ethylene gas. Nat Commun 2023; 14:365. [PMID: 36690618 PMCID: PMC9870993 DOI: 10.1038/s41467-023-35975-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
The phytohormone ethylene controls plant growth and stress responses. Ethylene-exposed dark-grown Arabidopsis seedlings exhibit dramatic growth reduction, yet the seedlings rapidly return to the basal growth rate when ethylene gas is removed. However, the underlying mechanism governing this acclimation of dark-grown seedlings to ethylene remains enigmatic. Here, we report that ethylene triggers the translocation of the Raf-like protein kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1), a negative regulator of ethylene signaling, from the endoplasmic reticulum to the nucleus. Nuclear-localized CTR1 stabilizes the ETHYLENE-INSENSITIVE3 (EIN3) transcription factor by interacting with and inhibiting EIN3-BINDING F-box (EBF) proteins, thus enhancing the ethylene response and delaying growth recovery. Furthermore, Arabidopsis plants with enhanced nuclear-localized CTR1 exhibited improved tolerance to drought and salinity stress. These findings uncover a mechanism of the ethylene signaling pathway that links the spatiotemporal dynamics of cellular signaling components to physiological responses.
Collapse
Affiliation(s)
- Hye Lin Park
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Dong Hye Seo
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
| | - Han Yong Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biology, Chosun University, Gwangju, 61452, Korea
| | - Arkadipta Bakshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Botany, UW-Madison, Madison, WI, USA
| | - Chanung Park
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Yuan-Chi Chien
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Brad M Binder
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Gyeong Mee Yoon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
41
|
Choi D, Choi JH, Park KJ, Kim C, Lim JH, Kim DH. Transcriptomic analysis of effects of 1-methylcyclopropene (1-MCP) and ethylene treatment on kiwifruit ( Actinidia chinensis) ripening. FRONTIERS IN PLANT SCIENCE 2023; 13:1084997. [PMID: 36684730 PMCID: PMC9849763 DOI: 10.3389/fpls.2022.1084997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Ethylene (ET) is a gaseous phytohormone with a crucial role in the ripening of many fruits, including kiwifruit (Actinidia spp.). Meanwhile, treatment with 1-methylcyclopropene (1-MCP), an artificial ET inhibitor delays the ripening of kiwifruit. The objective of this study was to determine the effect of ET and 1-MCP application during time-course storage of kiwifruit. In addition, we aimed to elucidate the molecular details underlying ET-mediated ripening process in kiwifruit. For this purpose, we conducted a time-course transcriptomic analysis to determine target genes of the ET-mediated maturation process in kiwifruit during storage. Thousands of genes were identified to be dynamically changed during storage and clustered into 20 groups based on the similarity of their expression patterns. Gene ontology analysis using the list of differentially expressed genes (DEGs) in 1-MCP-treated kiwifruit revealed that the identified DEGs were significantly enriched in the processes of photosynthesis metabolism and cell wall composition throughout the ripening process. Meanwhile, ET treatment rapidly triggered secondary metabolisms related to the ripening process, phenylpropanoid (e.g. lignin) metabolism, and the biosynthesis of amino acids (e.g. Phe, Cys) in kiwifruit. It was demonstrated that ET biosynthesis and signaling genes were oppositely affected by ET and 1-MCP treatment during ripening. Furthermore, we identified a ET transcription factor, AcEIL (Acc32482) which is oppositely responsive by ET and 1-MCP treatment during early ripening, potentially one of key signaling factor of ET- or 1-MCP-mediated physiological changes. Therefore, this transcriptomic study unveiled the molecular targets of ET and its antagonist, 1-MCP, in kiwifruit during ripening. Our results provide a useful foundation for understanding the molecular details underlying the ripening process in kiwifruit.
Collapse
Affiliation(s)
- Dasom Choi
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Jeong Hee Choi
- Food safety and Distribution Research Group, Korea Food Research Institute, Wanju, Republic of Korea
| | - Kee-Jai Park
- Food safety and Distribution Research Group, Korea Food Research Institute, Wanju, Republic of Korea
| | - Changhyun Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Jeong-Ho Lim
- Food safety and Distribution Research Group, Korea Food Research Institute, Wanju, Republic of Korea
| | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
42
|
Wang J, Sun N, Zheng L, Zhang F, Xiang M, Chen H, Deng XW, Wei N. Brassinosteroids promote etiolated apical structures in darkness by amplifying the ethylene response via the EBF-EIN3/PIF3 circuit. THE PLANT CELL 2023; 35:390-408. [PMID: 36321994 PMCID: PMC9806594 DOI: 10.1093/plcell/koac316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Germinated plants grow in darkness until they emerge above the soil. To help the seedling penetrate the soil, most dicot seedlings develop an etiolated apical structure consisting of an apical hook and folded, unexpanded cotyledons atop a rapidly elongating hypocotyl. Brassinosteroids (BRs) are necessary for etiolated apical development, but their precise role and mechanisms remain unclear. Arabidopsis thaliana SMALL AUXIN UP RNA17 (SAUR17) is an apical-organ-specific regulator that promotes production of an apical hook and closed cotyledons. In darkness, ethylene and BRs stimulate SAUR17 expression by transcription factor complexes containing PHYTOCHROME-INTERACTING FACTORs (PIFs), ETHYLENE INSENSITIVE 3 (EIN3), and its homolog EIN3-LIKE 1 (EIL1), and BRASSINAZOLE RESISTANT1 (BZR1). BZR1 requires EIN3 and PIFs for enhanced DNA-binding and transcriptional activation of the SAUR17 promoter; while EIN3, PIF3, and PIF4 stability depends on BR signaling. BZR1 transcriptionally downregulates EIN3-BINDING F-BOX 1 and 2 (EBF1 and EBF2), which encode ubiquitin ligases mediating EIN3 and PIF3 protein degradation. By modulating the EBF-EIN3/PIF protein-stability circuit, BRs induce EIN3 and PIF3 accumulation, which underlies BR-responsive expression of SAUR17 and HOOKLESS1 and ultimately apical hook development. We suggest that in the etiolated development of apical structures, BRs primarily modulate plant sensitivity to darkness and ethylene.
Collapse
Affiliation(s)
- Jiajun Wang
- School of Life Sciences, Southwest University, Chongqing 400715, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ning Sun
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Lidan Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fangfang Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Mengda Xiang
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Haodong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
43
|
Abdullah M, Ahmad F, Zang Y, Jin S, Ahmed S, Li J, Islam F, Ahmad M, Zhang Y, Hu Y, Guan X, Zhang T. HEAT-RESPONSIVE PROTEIN regulates heat stress via fine-tuning ethylene/auxin signaling pathways in cotton. PLANT PHYSIOLOGY 2023; 191:772-788. [PMID: 36342207 PMCID: PMC9806630 DOI: 10.1093/plphys/kiac511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Plants sense and respond to fluctuating temperature and light conditions during the circadian cycle; however, the molecular mechanism underlying plant adaptability during daytime warm conditions remains poorly understood. In this study, we reveal that the ectopic regulation of a HEAT RESPONSIVE PROTEIN (GhHRP) controls the adaptation and survival of cotton (Gossypium hirsutum) plants in response to warm conditions via modulating phytohormone signaling. Increased ambient temperature promptly enhanced the binding of the phytochrome interacting factor 4 (GhPIF4)/ethylene-insensitive 3 (GhEIN3) complex to the GhHRP promoter to increase its mRNA level. The ectopic expression of GhHRP promoted the temperature-dependent accumulation of GhPIF4 transcripts and hypocotyl elongation by triggering thermoresponsive growth-related genes. Notably, the upregulation of the GhHRP/GhPIF4 complex improved plant growth via modulating the abundance of Arabidopsis thaliana auxin biosynthetic gene YUCCA8 (AtYUC8)/1-aminocyclopropane-1-carboxylate synthase 8 (AtACS8) for fine-tuning the auxin/ethylene interplay, ultimately resulting in decreased ethylene biosynthesis. GhHRP thus protects chloroplasts from photo-oxidative bursts via repressing AtACS8 and AtACS7 and upregulating AtYUC8 and the heat shock transcription factors (HSFA2), heat shock proteins (HSP70 and HSP20). Strikingly, the Δhrp disruption mutant exhibited compromised production of HSP/YUC8 that resulted in an opposite phenotype with the loss of the ability to respond to warm conditions. Our results show that GhHRP is a heat-responsive signaling component that assists plants in confronting the dark phase and modulates auxin signaling to rescue growth under temperature fluctuations.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Furqan Ahmad
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Yihao Zang
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shangkun Jin
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sulaiman Ahmed
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jun Li
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Faisal Islam
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mudassar Ahmad
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yaoyao Zhang
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Hu
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueying Guan
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Tianzhen Zhang
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
Wang Y, Sun L, Wang R, Li H, Zhu Z. The AP2 transcription factors TOE1/TOE2 convey Arabidopsis age information to ethylene signaling in plant de novo root regeneration. PLANTA 2022; 257:1. [PMID: 36409377 DOI: 10.1007/s00425-022-04034-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
We reveal that transcription factors TOE1 and TOE2 directly inhibit the transcription of EIN3. Ethylene triggers leaf abscission and senescence during plant aging. Previous studies have shown that the transcription of ETHYLENE INSENSITIVE 3 (EIN3), which encodes a key transcription factor in ethylene signaling, is gradually upregulated during plant aging. However, it is still unknown how plants transmit their age information to achieve transcriptional control of EIN3. Here, we report that the EAR-like motif-containing transcription factors TARGET OF EAT 1 (TOE1) and its homolog TOE2 directly associated with the EIN3 promoter. The transcription of EIN3 is further enhanced in mutants of toe1 toe2 during plant aging. TOE1/TOE2 are tightly controlled by canonical microRNA 172 (miR172)-mediated plant aging signaling, which result in a decline in TOE1/TOE2 expression during aging. These results illustrate that during plant aging, the reduced expressions of TOE1/TOE2 trigger an upregulation of EIN3. Next, we took advantage of EIN3-regulated de novo root regeneration (DNRR) as an age-controlled phenotype to dissect the biological function of this regulatory circuit. The DNRR rates in toe1 toe2 are more severely decreased with plant aging; however, the simultaneous loss of ein3 and eil1 (toe1 toe2 ein3 eil1 quadruple mutants) almost completely rescued the DNRR defects. Taken together, our findings show that the plant age-regulated TOE transcription factors precisely integrate plant age information and developmental programs through direct protein-DNA interactions.
Collapse
Affiliation(s)
- Youyou Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Lili Sun
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ran Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Hong Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
45
|
Hussain MA, Luo D, Zeng L, Ding X, Cheng Y, Zou X, Lv Y, Lu G. Genome-wide transcriptome profiling revealed biological macromolecules respond to low temperature stress in Brassica napus L. FRONTIERS IN PLANT SCIENCE 2022; 13:1050995. [PMID: 36452101 PMCID: PMC9702069 DOI: 10.3389/fpls.2022.1050995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 06/12/2023]
Abstract
Brassica napus L. (B. napus) is a vital oilseed crop cultivated worldwide; low temperature (LT) is one of the major stress factors that limit its growth, development, distribution, and production. Even though processes have been developed to characterize LT-responsive genes, only limited studies have exploited the molecular response mechanisms in B. napus. Here the transcriptome data of an elite B. napus variety with LT adaptability was acquired and applied to investigate the gene expression profiles of B. napus in response to LT stress. The bioinformatics study revealed a total of 79,061 unigenes, of which 3,703 genes were differentially expressed genes (DEGs), with 2,129 upregulated and 1,574 downregulated. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis pinpointed that the DEGs were enriched in LT-stress-responsive biological functions and metabolic pathways, which included sugar metabolism, antioxidant defense system, plant hormone signal transduction, and photosynthesis. Moreover, a group of LT-stress-responsive transcription factors with divergent expression patterns under LT was summarized. A combined protein interaction suggested that a complex interconnected regulatory network existed in all detected pathways. RNA-seq data was verified using real-time quantitative polymerase chain reaction analysis. Based on these findings, we presented a hypothesis model illustrating valuable information for understanding the LT response mechanisms in B. napus.
Collapse
Affiliation(s)
- Muhammad Azhar Hussain
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Dan Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Liu Zeng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xiaoyu Ding
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Yong Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xiling Zou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Yan Lv
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Guangyuan Lu
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| |
Collapse
|
46
|
Kamiyoshihara Y, Achiha Y, Ishikawa S, Mizuno S, Mori H, Tateishi A, Huber DJ, Klee HJ. Heteromeric interactions of ripening-related ethylene receptors in tomato fruit. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6773-6783. [PMID: 35863309 DOI: 10.1093/jxb/erac314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Ripening of climacteric fruits is initiated when the gaseous plant hormone ethylene is perceived by the cell. Ethylene binding to membrane-associated ethylene receptors (ETRs) triggers a series of biochemical events through multiple components, resulting in the induction of numerous ripening-related genes. In tomato (Solanum lycopersicum L.), there are seven members of the ETR family, which each contribute to the regulation of fruit ripening. However, the relative contribution of each individual receptor to ethylene signaling remains unknown. Here, we demonstrated the formation of heteromeric receptor complexes across the two ETR subfamilies in tomato fruit. Immunoprecipitation of subfamily II SlETR4 resulted in co-purification of subfamily I (SlETR1, SlETR2, and SlETR3), but not subfamily II members (SlETR5, SlETR6, and SlETR7). Such biased interactions were verified in yeast two-hybrid assays, and in transgenic Arabidopsis plants, in which heterologous SlETR4 interacts with subfamily I ETRs. Our analysis also revealed that the receptor complexes engage the Raf-like protein kinases SlCTR1 and SlCTR3, which are potential regulators of signaling. Here, we suggest that tomato receptor members form heteromeric complexes to fine-tune signal output to the downstream pathway, which is similar to that of the Arabidopsis system but appears to be partially diverged.
Collapse
Affiliation(s)
- Yusuke Kamiyoshihara
- College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
- Graduate School of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Yuki Achiha
- Graduate School of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Shin Ishikawa
- College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Shinji Mizuno
- College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
- Graduate School of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Hitoshi Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Akira Tateishi
- College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
- Graduate School of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Donald J Huber
- Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Harry J Klee
- Horticultural Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
47
|
Yi N, Yang H, Zhang X, Pian R, Li H, Zeng W, Wu AM. The physiological and transcriptomic study of secondary growth in Neolamarckia cadamba stimulated by the ethylene precursor ACC. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:35-46. [PMID: 36096025 DOI: 10.1016/j.plaphy.2022.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/14/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Though many biological roles of ethylene have been investigated intensively, the molecular mechanism of ethylene's action in woody plants remains unclear. In this study, we investigated the effects of exogenous 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene, on the growth of Neolamarckia cadamba seedlings, a fast-growing tropical tree. After 14 days of ACC treatment, the plants showed a reduced physiological morphology while stem diameter increased; however, this did not occur after the addition of 1-MCP. Meanwhile, the lignin content of N. cadamba also increased. Transcriptome analysis revealed that the expression of the ethylene biosynthesis and signaling genes ACC oxidase (ACO) and ethylene insensitive 3 (EIN3) were up-regulated mainly at the 6th hour and the 3rd day of the ACC treatment, respectively. The transcription levels of transcription factors, mainly in the basic helix-loop-helix (bHLH), ethylene response factor (ERF), WRKY and v-myb avian myeloblastosis viral oncogene homolog (MYB) families, involved in the ethylene signaling and secondary growth also increased significantly. Furthermore, in accordance to the increased lignification of the stem, the transcriptional level of key enzymes in the phenylalanine pathway were elevated after the ACC treatment. Our results revealed the physiological and molecular mechanisms underlying the secondary growth stimulated by exogenous ACC treatment on N. cadamba seedlings.
Collapse
Affiliation(s)
- Na Yi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Haoqiang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xintong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ruiqi Pian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Zeng
- The State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
48
|
Zhou Y, Ma B, Tao JJ, Yin CC, Hu Y, Huang YH, Wei W, Xin PY, Chu JF, Zhang WK, Chen SY, Zhang JS. Rice EIL1 interacts with OsIAAs to regulate auxin biosynthesis mediated by the tryptophan aminotransferase MHZ10/OsTAR2 during root ethylene responses. THE PLANT CELL 2022; 34:4366-4387. [PMID: 35972379 PMCID: PMC9614475 DOI: 10.1093/plcell/koac250] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 05/11/2023]
Abstract
Ethylene plays essential roles in adaptive growth of rice (Oryza sativa). Understanding of the crosstalk between ethylene and auxin (Aux) is limited in rice. Here, from an analysis of the root-specific ethylene-insensitive rice mutant mao hu zi 10 (mhz10), we identified the tryptophan aminotransferase (TAR) MHZ10/OsTAR2, which catalyzes the key step in indole-3-pyruvic acid-dependent Aux biosynthesis. Genetically, OsTAR2 acts downstream of ethylene signaling in root ethylene responses. ETHYLENE INSENSITIVE3 like1 (OsEIL1) directly activated OsTAR2 expression. Surprisingly, ethylene induction of OsTAR2 expression still required the Aux pathway. We also show that Os indole-3-acetic acid (IAA)1/9 and OsIAA21/31 physically interact with OsEIL1 and show promotive and repressive effects on OsEIL1-activated OsTAR2 promoter activity, respectively. These effects likely depend on their EAR motif-mediated histone acetylation/deacetylation modification. The special promoting activity of OsIAA1/9 on OsEIL1 may require both the EAR motifs and the flanking sequences for recruitment of histone acetyltransferase. The repressors OsIAA21/31 exhibit earlier degradation upon ethylene treatment than the activators OsIAA1/9 in a TIR1/AFB-dependent manner, allowing OsEIL1 activation by activators OsIAA1/9 for OsTAR2 expression and signal amplification. This study reveals a positive feedback regulation of ethylene signaling by Aux biosynthesis and highlights the crosstalk between ethylene and Aux pathways at a previously underappreciated level for root growth regulation in rice.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biao Ma
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Hu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Hua Huang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Pei-Yong Xin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Fang Chu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Zhu BS, Zhu YX, Zhang YF, Zhong X, Pan KY, Jiang Y, Wen CK, Yang ZN, Yao X. Ethylene Activates the EIN2- EIN3/EIL1 Signaling Pathway in Tapetum and Disturbs Anther Development in Arabidopsis. Cells 2022; 11:cells11193177. [PMID: 36231139 PMCID: PMC9563277 DOI: 10.3390/cells11193177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
Ethylene was previously reported to repress stamen development in both cucumber and Arabidopsis. Here, we performed a detailed analysis of the effect of ethylene on anther development. After ethylene treatment, stamens but not pistils display obvious developmental defects which lead to sterility. Both tapetum and microspores (or microsporocytes) degenerated after ethylene treatment. In ein2-1 and ein3-1 eil1-1 mutants, ethylene treatment did not affect their fertility, indicating the effects of ethylene on anther development are mediated by EIN2 and EIN3/EIL1 in vivo. The transcription of EIN2 and EIN3 are activated by ethylene in the tapetum layer. However, ectopic expression of EIN3 in tapetum did not induce significant anther defects, implying that the expression of EIN3 are regulated post transcriptional level. Consistently, ethylene treatment induced the accumulation of EIN3 in the tapetal cells. Thus, ethylene not only activates the transcription of EIN2 and EIN3, but also stabilizes of EIN3 in the tapetum to disturb its development. The expression of several ethylene related genes was significantly increased, and the expression of the five key transcription factors required for tapetum development was decreased after ethylene treatment. Our results thus point out that ethylene inhibits anther development through the EIN2-EIN3/EIL1 signaling pathway. The activation of this signaling pathway in anther wall, especially in the tapetum, induces the degeneration of the tapetum and leads to pollen abortion.
Collapse
Affiliation(s)
- Ben-Shun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ying-Xiu Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yan-Fei Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiang Zhong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Keng-Yu Pan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yu Jiang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Correspondence: (Z.-N.Y.); (X.Y.)
| | - Xiaozhen Yao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Correspondence: (Z.-N.Y.); (X.Y.)
| |
Collapse
|
50
|
Thanomchit K, Imsabai W, Burns P, McAtee PA, Schaffer RJ, Allan AC, Ketsa S. Differential expression of ethylene biosynthetic and receptor genes in pollination-induced senescence of Dendrobium flowers. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 188:38-46. [PMID: 35981438 DOI: 10.1016/j.plaphy.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Following successful pollination, Dendrobium orchid flowers rapidly undergo senescence. In Dendrobium cv. Khao Chaimongkol, compatible pollination resulted in faster ethylene production and more rapid development of senescence symptoms, such as drooping, epinasty, venation and yellowing, compared with non-pollinated controls or pollination with incompatible pollinia. The DenACS1 and DenACO1 genes in the perianth of florets that had been pollinated with compatible pollinia were expressed more highly than those in non-pollinated open florets. Incompatible pollinia reduced the expression of DenACS1 and DenACO1 genes in the perianth. Transcript levels of the ethylene receptor gene DenERS1 and signaling genes DenEIL1 and DenERF1 showed differential spatial regulation with greater expression in the perianth than in the column plus ovary following compatible pollination. Compatible pollinia increased ethylene production concomitant with premature senescence and the increased expression of the DenACS1 and DenACO1 genes, and suppressed the ethylene receptor gene DenERS1, whereas incompatible pollinia did not stimulate ethylene production nor induce premature senescence but induced higher expression of DenERS1 both in the perianth and in the column plus ovary. These results suggest that the increased ethylene production in open florets pollinated with compatible pollen was partially due to an increase in the expression of DenACS1 and DenACO1 genes. The compatible pollinia induced a negative regulation of DenERS1 which may play an important role in ethylene perception and in modulating ethylene signaling transduction during pollinia-induced flower senescence.
Collapse
Affiliation(s)
- Kanokwan Thanomchit
- Department of Horticulture, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Wachiraya Imsabai
- Department of Horticulture, Faculty of Agriculture at Kamphaeng Saen Campus, Kasetsart University, Nakhon Pathom, 73140, Thailand
| | - Parichart Burns
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, PathumThani, 12120, Thailand
| | - Peter A McAtee
- Plant and Food Research Institute, Mt Albert Research Center, Private Bag 92019, Auckland, 1142, New Zealand
| | - Robert J Schaffer
- Plant and Food Research Institute, Mt Albert Research Center, Private Bag 92019, Auckland, 1142, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Andrew C Allan
- Plant and Food Research Institute, Mt Albert Research Center, Private Bag 92019, Auckland, 1142, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Saichol Ketsa
- Department of Horticulture, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand; Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10300, Thailand.
| |
Collapse
|