1
|
Yao X, Sui X, Zhang Y. Amino Acid Metabolism and Transporters in Plant-Pathogen Interactions: Mechanisms and Implications. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40304541 DOI: 10.1111/pce.15594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
In the intricate landscape of plant-pathogen interactions, amino acids and their dedicated transporters emerge as pivotal players underpinning immune signalling and metabolic reprogramming. Amino acid metabolism serves as a linchpin in orchestrating systemic defence responses, with transporter-mediated amino acid homoeostasis intricately intertwined with immune pathways. This review synthesizes the dual roles of amino acids, including glutamate, proline, γ-aminobutyric acid, β-aminobutyric acid and pipecolic acid, as metabolic intermediates and signalling molecules that modulate defence responses. Complementing this metabolic framework, amino acid transporters, including LHT1 and members of the AAP and UMAMIT family, participate in plant defence against pathogens or provide nutrients to pathogens by regulating the transmembrane transport of amino acids. Their disease resistance or susceptibility functions are closely related to plant tissue-specificity and substrate-specificity. Additionally, this review explores the potential coordinated regulation between amino acid and sugar transporters in the context of plant-pathogen interactions. Looking ahead, future research should focus on resolving transporter mechanisms in resistance, dissecting regulatory hubs linking metabolism and transport, mapping nutrient fluxes at the host-pathogen interface and exploring the subcellular localization and transport direction of transporters to inform precision crop protection strategies.
Collapse
Affiliation(s)
- Xuehui Yao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Yangyong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Mi QL, Lv HT, Huang FF, Xu L, Huang ZY, Yang WW, Zou MY, Huang HT, Zeng WL, Zhao JY, Chen QX, Si-Tu YE, Xiang HY, Jiang YQ, Mai ZT, Ding SY, Liu ZY, Hu BK, Li LH, Li XM, Yu M, Wu FH, Gao Q. A Gln alteration influences leaf morphogenesis by mediating gibberellin levels in tobacco. JOURNAL OF PLANT PHYSIOLOGY 2025; 306:154437. [PMID: 39908707 DOI: 10.1016/j.jplph.2025.154437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
Nitrogen is a critical nutrient for plant growth and development. While numerous studies have investigated the mechanisms by which nitrate and/or ammonium regulate plant growth, little is known about whether and how amino acids regulate plant leaf development. This study demonstrates that tobacco plants with altered expression levels of an amino acid transporter (LYSINE HISTIDINE TRANSPORTER1, NtLHT1, Ntab0818090) exhibit significant differences in leaf morphology. Knock-out mutants exhibit elongated and narrower leaves compared to wild-type plants, whereas overexpression (OE) lines display orbicular leaves. Additionally, mutant plants exhibit decreased nitrogen use efficiency (NUE) under half MS medium and delayed development under nitrogen-depleted conditions. Moreover, overexpression lines demonstrate better performance. Although the mutant does not show significant lower level of nitrate or total amino acid content in the developing leaves, its amino acid profile, particularly glutamine (Gln), is significantly altered. Supplementation with Gln in the growth medium, rather than glutamate, can restore the morphological differences observed in mutant leaves, suggesting a pivotal role of Gln in regulating leaf shape. To further elucidate the mechanisms underlying leaf shape regulation, we analyzed endogenous hormone levels and applied exogenous hormones to these lines. Our findings suggest that amino acids transported from source organs, particularly glutamine (Gln), play a key role in controlling leaf development and morphology through the modulation of multiple phytohormones, such as gibberellic acid (GA).
Collapse
Affiliation(s)
- Qi-Li Mi
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Hong-Tao Lv
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Fei-Fei Huang
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Li Xu
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Zi-Ying Huang
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Wen-Wu Yang
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Mei-Yun Zou
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Hai-Tao Huang
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Wan-Li Zeng
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Jia-Yin Zhao
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Qing-Xian Chen
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Yong-En Si-Tu
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Hai-Ying Xiang
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Yuan-Qi Jiang
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Zhi-Tong Mai
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Shu-Yuan Ding
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Zhan-Yu Liu
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Bo-Keng Hu
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Liu-Hong Li
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Xue-Mei Li
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China
| | - Fei-Hua Wu
- International Research Centre for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000, China.
| | - Qian Gao
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd., No. 41 Keyi Road, Kunming, 650106, China.
| |
Collapse
|
3
|
Guo L, Wang X, Ayhan DH, Rhaman MS, Yan M, Jiang J, Wang D, Zheng W, Mei J, Ji W, Jiao J, Chen S, Sun J, Yi S, Meng D, Wang J, Bhuiyan MN, Qin G, Guo L, Yang Q, Zhang X, Sun H, Liu C, Deng XW, Ye W. Super pangenome of Vitis empowers identification of downy mildew resistance genes for grapevine improvement. Nat Genet 2025; 57:741-753. [PMID: 40011682 DOI: 10.1038/s41588-025-02111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025]
Abstract
Grapevine (Vitis) is one of the oldest domesticated fruit crops with great cultural and economic importance. Here we assembled and annotated haplotype-resolved genomes of 72 global Vitis accessions including 25 wild and 47 cultivated grapevines, among which genomes for 60 grapevines are newly released. Haplotype-aware phylogenomics disentangled the mysterious hybridization history of grapevines, revealing the enormous genetic diversity of the Vitis genus. Pangenomic analysis reveals that European cultivars, more susceptible to the destructive disease downy mildew (DM), have a smaller repertoire of resistance genes in the NLR family encoding the TIR-NBARC-LRR domain. Through extensive structural variation (SV) characterization, phenotyping, DM-infection transcriptome profiling of 113 Vitis accessions, and SV-expression quantitative trait loci analysis, we have identified over 63 SVs and their relevant genes significantly associated with DM resistance, exemplified by a lysine histidine transporter, VvLHT8. This haplotype-resolved super pangenome of the Vitis genus will accelerate breeding and enrich our understanding of the evolution and biology of grapevines.
Collapse
Affiliation(s)
- Li Guo
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
| | - Xiangfeng Wang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Dilay Hazal Ayhan
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Mohammad Saidur Rhaman
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Ming Yan
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jianfu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Dongyue Wang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Wei Zheng
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- College of Horticulture, Shanxi Agricultural University, Taigu, China
| | - Junjie Mei
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- College of Horticulture, Shanxi Agricultural University, Taigu, China
| | - Wei Ji
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- College of Horticulture, Shanxi Agricultural University, Taigu, China
| | - Jian Jiao
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Shaoying Chen
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jie Sun
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Shu Yi
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Dian Meng
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jing Wang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Mohammad Nasim Bhuiyan
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Guochen Qin
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Linling Guo
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Qingxian Yang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Xuenan Zhang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Haisheng Sun
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xing Wang Deng
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
| | - Wenxiu Ye
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
| |
Collapse
|
4
|
Zhang Q, Wang Z, Gao R, Jiang Y. Sugars, Lipids and More: New Insights Into Plant Carbon Sources During Plant-Microbe Interactions. PLANT, CELL & ENVIRONMENT 2025; 48:1656-1673. [PMID: 39465686 PMCID: PMC11695786 DOI: 10.1111/pce.15242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/14/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Heterotrophic microbes rely on host-derived carbon sources for their growth and survival. Depriving pathogens of plant carbon is therefore a promising strategy for protecting plants from disease and reducing yield losses. Importantly, this carbon starvation-mediated resistance is expected to be more broad-spectrum and durable than race-specific R-gene-mediated resistance. Although sugars are well characterized as major carbon sources for bacteria, emerging evidence suggests that plant-derived lipids are likely to be an essential carbon source for some fungal microbes, particularly biotrophs. Here, we comprehensively discuss the dual roles of carbon sources (mainly sugars and lipids) and their transport processes in immune signalling and microbial nutrition. We summarize recent findings revealing the crucial roles of lipids as susceptibility factors at all stages of pathogen infection. In particular, we discuss the potential pathways by which lipids and other plant carbon sources are delivered to biotrophs, including protein-mediated transport, vesicle trafficking and autophagy. Finally, we highlight knowledge gaps and offer suggestions for clarifying the mechanisms that underlie nutrient uptake by biotrophs, providing guidance for future research on the application of carbon starvation-mediated resistance.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Zongqi Wang
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Runjie Gao
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Yina Jiang
- School of Life SciencesEast China Normal UniversityShanghaiChina
| |
Collapse
|
5
|
Jiang T, Hao T, Chen W, Li C, Pang S, Fu C, Cheng J, Zhang C, Ghorbanpour M, Miao S. Reprogrammed Plant Metabolism During Viral Infections: Mechanisms, Pathways and Implications. MOLECULAR PLANT PATHOLOGY 2025; 26:e70066. [PMID: 39972520 PMCID: PMC11839395 DOI: 10.1111/mpp.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/21/2025]
Abstract
Plant viruses pose a significant threat to global agriculture, leading to substantial crop losses that jeopardise food security and disrupt ecosystem stability. These viral infections often reprogramme plant metabolism, compromising key pathways critical for growth and defence. For instance, infections by cucumber mosaic virus alter amino acid and secondary metabolite biosynthesis, including flavonoid and phenylpropanoid pathways, thereby weakening plant defences. Similarly, tomato bushy stunt virus disrupts lipid metabolism by altering the synthesis and accumulation of sterols and phospholipids, which are essential for viral replication and compromise membrane integrity. Recent advancements in gene-editing technologies, such as CRISPR/Cas9, and metabolomics offer innovative strategies to mitigate these impacts. Precise genetic modifications can restore or optimise disrupted metabolic pathways, enhancing crop resilience to viral infections. Metabolomics further aids in identifying metabolic biomarkers linked to viral resistance, guiding breeding programmes aimed at developing virus-resistant plants. By reducing the susceptibility of crops to viral infections, these approaches hold significant potential to reduce dependence on chemical pesticides, increase crop yields and promote sustainable agricultural practices. Future research should focus on expanding our understanding of virus-host interactions at the molecular level while exploring the long-term ecological impacts of viral infections. Interdisciplinary approaches integrating multi-omics technologies and sustainable management strategies will be critical in addressing the challenges posed by plant viruses and ensuring global agricultural stability.
Collapse
Affiliation(s)
- Tong Jiang
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Tianwen Hao
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Wenjing Chen
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Chengliang Li
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Shuqi Pang
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Chenglong Fu
- Shandong Meng'en Modern Agriculture Development Co. Ltd.LiaochengChina
| | - Jie Cheng
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Chaobo Zhang
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural ResourcesArak UniversityArakIran
| | - Shuo Miao
- North China Forestry Experiment CenterChinese Academy of ForestryBeijingChina
| |
Collapse
|
6
|
Chen H, Chen X, Li X, Lin X, Yue L, Liu C, Li Y. Growth and physiological response of Yulu Hippophae rhamnoides to drought stress and its omics analysis. PLANT SIGNALING & BEHAVIOR 2024; 19:2439256. [PMID: 39653502 PMCID: PMC11633206 DOI: 10.1080/15592324.2024.2439256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Hippophae rhamnoides (H. rhamnoides) is the primary tree species known for its ecological and economic benefits in arid and semi-arid regions. Understanding the response of H. rhamnoides roots to drought stress is essential for promoting the development of varieties. One-year-old Yulu H. rhamnoides was utilized as the experimental material, and three water gradients were established: control (CK), moderate (T1) and severe (T2), over a period of 120 days. The phenotypic traits and physiological indies were assessed and analyzed, while the roots were subjected by RNA-Seq transcriptome and Tandem Mass Tags (TMT) proteome analysis. Drought stress significantly reduced the plant height, ground diameter, root biomass and superoxide dismutase activity; however, the main root length increased. In comparison with CK, a total of 5789 and 5594 differential genes, as well as 63 and 1012 differential proteins, were identified in T1 and T2, respectively. The combined analysis of transcriptome and proteome showed that the number of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) associated with T1, T2 and CK was 28 and 126, respectively, with 7 and 36 genes achieving effective KEGG annotation. In T1 and T2, the differential genes were significantly enriched in the plant hormone signal transduction pathway, but there was no significant enrichment in the protein expression profile. In T2, 38 plant hormone signal transduction function genes and 10 peroxisome related genes were identified. With the increase of drought stress, the combined expression of DEGs and DEPs increased. Yulu H. rhamnoides may allocate more resources toward CAT while simultaneously decreasing SOD and POD to mitigate the oxidative stress induced by drought. Furthermore, the molecular mechanisms underlying plant hormone signal transduction and peroxisome-related genes in the roots of H. rhamnoides were discussed in greater detail.
Collapse
Affiliation(s)
- Haipeng Chen
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaolin Chen
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaogang Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xin Lin
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Lihua Yue
- Technical Center, Chengde Astronaut Mountainous Plant Technology Co. Ltd. Chengde, Hebei, China
| | - Chunhai Liu
- Technical Center, Chengde Astronaut Mountainous Plant Technology Co. Ltd. Chengde, Hebei, China
| | - Yuling Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
7
|
Yao Y, Yuan H, Liu D, Cheng L. Response of soybean root exudates and related metabolic pathways to low phosphorus stress. PLoS One 2024; 19:e0314256. [PMID: 39636902 PMCID: PMC11620397 DOI: 10.1371/journal.pone.0314256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Phosphorus (P) is an essential elemental nutrient required in high abundance for robust soybean growth and development. Low P stress negatively impacts plant physiological and biochemical processes, such as photosynthesis, respiration, and energy transfer. Soybean roots play key roles in plant adaptive responses to P stress and other soil-related environmental stressors. Study the changes in soybean root exudates and differences in related metabolic pathways under low phosphorus stress, analyzing the response mechanism of soybean roots to phosphorus stress from the perspective of root exudates, which provide a theoretical basis for further analyzing the physiological mechanism of phosphorus stress on soybean. In this study, soybean roots were exposed to three phosphate levels: 1 mg/L (P stress), 11 mg/L (P stress) and 31 mg/L (Normal P) for 10 days and 20 days, then root exudates were analyzed via ultra-high-performance liquid chromatography-mass spectrometry to identify effects of P stress on root metabolite profiles and associated metabolic pathways. Our results revealed that with increasing P stress severity and/or duration, soybean roots produced altered types, quantities, and increased numbers of exudate metabolites (DMs in the P1 group were primarily upregulated, whereas those in the P11 group were predominately downregulated) caused by changes in regulation of activities of numerous metabolic pathways. These pathways had functions related to environmental adaptation, energy metabolism, and scavenging of reactive oxygen species and primarily included amino acid, flavonoid, and nicotinate and nicotinamide metabolic pathways and pathways related to isoquinoline alkaloid biosynthesis, sugar catabolism, and phospholipid metabolism. These metabolites and metabolic pathways lay a foundation to support further investigations of physiological mechanisms underlying the soybean root response to P deficiency.
Collapse
Affiliation(s)
- Yubo Yao
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Hongmei Yuan
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Dandan Liu
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Lili Cheng
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
8
|
Jiang T, Huang N, Wang Z, Li J, Ma L, Wang X, Shen L, Zhang Y, Yu Y, Wang W, Fan Y, Liu K, Zhao Z, Xiong Z, Song Q, Tang H, Zhang H, Bao Y. MEMBRANE PROTEIN 1 encoding an amino acid transporter confers resistance to blast fungus and leaf-blight bacterium in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7284-7299. [PMID: 39171750 DOI: 10.1093/jxb/erae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Amino acid transporters (AATs) have been shown to be involved in immune responses during plant-pathogen interactions; however, the molecular mechanism by which they function in this process remains unclear. Here, we used a joint analysis of a genome-wide association study and quantitative trait locus (QTL) mapping to identify MEMBRANE PROTEIN 1, which acts as a QTL in rice against blast fungus. Heterogeneous expression of OsMP1 in yeast supported its function in transporting a wide range of amino acids, including Thr, Ser, Phe, His, and Glu. OsMP1 could also mediate 15N-Glu efflux and influx in Xenopus oocyte cells. The expression of OsMP1 was significantly induced by Magnaporthe oryzae in the resistant rice landrace Heikezijing, whereas no such induction was observed in the susceptible landrace Suyunuo. Overexpressing OsMP1 in Suyunuo enhanced disease resistance to blast fungus and leaf blight bacterium without resulting in a yield penalty. In addition, the overexpression of OsMP1 led to increased accumulation of Thr, Ser, Phe, and His in the leaves and this contributed to the reduced disease susceptibility, which was associated with up-regulation of the jasmonic acid pathway. Our results demonstrate the important role of OsMP1 in disease resistance in rice and provide a potential target for breeding more resistant cultivars without reducing yield.
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhixue Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiawen Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinying Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingtong Shen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yao Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunxin Fan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kunquan Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziwei Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qisheng Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haijuan Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongmei Bao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Dong K, Ye Z, Hu F, Shan C, Wen D, Cao J. Improvement of plant quality by amino acid transporters: A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109084. [PMID: 39217823 DOI: 10.1016/j.plaphy.2024.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Amino acids serve as the primary means of transport and organic nitrogen carrier in plants, playing an essential role in plant growth and development. Amino acid transporters (AATs) facilitate the movement of amino acids within plants and have been identified and characterised in a number of species. It has been demonstrated that these amino acid transporters exert an influence on the quality attributes of plants, in addition to their primary function of transporting amino acid transport. This paper presents a summary of the role of AATs in plant quality improvement. This encompasses the enhancement of nitrogen utilization efficiency, root development, tiller number and fruit yield. Concurrently, AATs can bolster the resilience of plants to pests, diseases and abiotic stresses, thereby further enhancing the yield and quality of fruit. AATs exhibit a wide range of substrate specificity, which greatly optimizes the use of pesticides and significantly reduces pesticide residues, and reduces the risk of environmental pollution while increasing the safety of fruit. The discovery of AATs function provides new ideas and ways to cultivate high-quality crop and promote changes in agricultural development, and has great potential in the application of plant quality improvement.
Collapse
Affiliation(s)
- Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Dongyu Wen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
10
|
Rogan CJ, Pang YY, Mathews SD, Turner SE, Weisberg AJ, Lehmann S, Rentsch D, Anderson JC. Transporter-mediated depletion of extracellular proline directly contributes to plant pattern-triggered immunity against a bacterial pathogen. Nat Commun 2024; 15:7048. [PMID: 39147739 PMCID: PMC11327374 DOI: 10.1038/s41467-024-51244-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
Plants possess cell surface-localized immune receptors that detect microbe-associated molecular patterns (MAMPs) and initiate defenses that provide effective resistance against microbial pathogens. Many MAMP-induced signaling pathways and cellular responses are known, yet how pattern-triggered immunity (PTI) limits pathogen growth in plants is poorly understood. Through a combined metabolomics and genetics approach, we discovered that plant-exuded proline is a virulence-inducing signal and nutrient for the bacterial pathogen Pseudomonas syringae, and that MAMP-induced depletion of proline from the extracellular spaces of Arabidopsis leaves directly contributes to PTI against P. syringae. We further show that MAMP-induced depletion of extracellular proline requires the amino acid transporter Lysine Histidine Transporter 1 (LHT1). This study demonstrates that depletion of a single extracellular metabolite is an effective component of plant induced immunity. Given the important role for amino acids as nutrients for microbial growth, their depletion at sites of infection may be a broadly effective means for defense against many pathogens.
Collapse
Affiliation(s)
- Conner J Rogan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Yin-Yuin Pang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sophie D Mathews
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sydney E Turner
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Silke Lehmann
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Jeffrey C Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
11
|
Liao HS, Lee KT, Chung YH, Chen SZ, Hung YJ, Hsieh MH. Glutamine induces lateral root initiation, stress responses, and disease resistance in Arabidopsis. PLANT PHYSIOLOGY 2024; 195:2289-2308. [PMID: 38466723 DOI: 10.1093/plphys/kiae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024]
Abstract
The production of glutamine (Gln) from NO3- and NH4+ requires ATP, reducing power, and carbon skeletons. Plants may redirect these resources to other physiological processes using Gln directly. However, feeding Gln as the sole nitrogen (N) source has complex effects on plants. Under optimal concentrations, Arabidopsis (Arabidopsis thaliana) seedlings grown on Gln have similar primary root lengths, more lateral roots, smaller leaves, and higher amounts of amino acids and proteins compared to those grown on NH4NO3. While high levels of Gln accumulate in Arabidopsis seedlings grown on Gln, the expression of GLUTAMINE SYNTHETASE1;1 (GLN1;1), GLN1;2, and GLN1;3 encoding cytosolic GS1 increases and expression of GLN2 encoding chloroplastic GS2 decreases. These results suggest that Gln has distinct effects on regulating GLN1 and GLN2 gene expression. Notably, Arabidopsis seedlings grown on Gln have an unexpected gene expression profile. Compared with NH4NO3, which activates growth-promoting genes, Gln preferentially induces stress- and defense-responsive genes. Consistent with the gene expression data, exogenous treatment with Gln enhances disease resistance in Arabidopsis. The induction of Gln-responsive genes, including PATHOGENESIS-RELATED1, SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1, WRKY54, and WALL ASSOCIATED KINASE1, is compromised in salicylic acid (SA) biosynthetic and signaling mutants under Gln treatments. Together, these results suggest that Gln may partly interact with the SA pathway to trigger plant immunity.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Soon-Ziet Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Jie Hung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
12
|
Seong GU, Yun DY, Shin DH, Cho JS, Lee G, Choi JH, Park KJ, Ku KH, Lim JH. Comparative 1H NMR-Based Metabolomics of Traditional Landrace and Disease-Resistant Chili Peppers ( Capsicum annuum L.). Foods 2024; 13:1966. [PMID: 38998472 PMCID: PMC11241277 DOI: 10.3390/foods13131966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Chili peppers (Capsicum annuum L.) are economically valuable crops belonging to the Solanaceae family and are popular worldwide because of their unique spiciness and flavor. In this study, differences in the metabolomes of landrace (Subicho) and disease-resistant pepper cultivars (Bulkala and Kaltanbaksa) widely grown in Korea are investigated using a 1H NMR-based metabolomics approach. Specific metabolites were abundant in the pericarp (GABA, fructose, and glutamine) and placenta (glucose, asparagine, arginine, and capsaicin), highlighting the distinct physiological and functional roles of these components. Both the pericarp and placenta of disease-resistant pepper cultivars contained higher levels of sucrose and hexoses and lower levels of alanine, proline, and threonine than the traditional landrace cultivar. These metabolic differences are linked to enhanced stress tolerance and the activation of defense pathways, imbuing these cultivars with improved resistance characteristics. The present study provides fundamental insights into the metabolic basis of disease resistance in chili peppers, emphasizing the importance of multi-resistant varieties to ensure sustainable agriculture and food security. These resistant varieties ensure a stable supply of high-quality peppers, contributing to safer and more sustainable food production systems.
Collapse
Affiliation(s)
- Gi-Un Seong
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (G.-U.S.); (D.-Y.Y.); (D.-H.S.); (J.-S.C.); (J.H.C.); (K.-J.P.); (K.-H.K.)
| | - Dae-Yong Yun
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (G.-U.S.); (D.-Y.Y.); (D.-H.S.); (J.-S.C.); (J.H.C.); (K.-J.P.); (K.-H.K.)
| | - Dong-Hyeok Shin
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (G.-U.S.); (D.-Y.Y.); (D.-H.S.); (J.-S.C.); (J.H.C.); (K.-J.P.); (K.-H.K.)
| | - Jeong-Seok Cho
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (G.-U.S.); (D.-Y.Y.); (D.-H.S.); (J.-S.C.); (J.H.C.); (K.-J.P.); (K.-H.K.)
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea;
| | - Gyuseok Lee
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea;
| | - Jeong Hee Choi
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (G.-U.S.); (D.-Y.Y.); (D.-H.S.); (J.-S.C.); (J.H.C.); (K.-J.P.); (K.-H.K.)
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea;
| | - Kee-Jai Park
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (G.-U.S.); (D.-Y.Y.); (D.-H.S.); (J.-S.C.); (J.H.C.); (K.-J.P.); (K.-H.K.)
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea;
| | - Kyung-Hyung Ku
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (G.-U.S.); (D.-Y.Y.); (D.-H.S.); (J.-S.C.); (J.H.C.); (K.-J.P.); (K.-H.K.)
| | - Jeong-Ho Lim
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (G.-U.S.); (D.-Y.Y.); (D.-H.S.); (J.-S.C.); (J.H.C.); (K.-J.P.); (K.-H.K.)
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea;
| |
Collapse
|
13
|
Tanaka T, Fujita M, Kusajima M, Narita F, Asami T, Maruyama-Nakashita A, Nakajima M, Nakashita H. Priming of Immune System in Tomato by Treatment with Low Concentration of L-Methionine. Int J Mol Sci 2024; 25:6315. [PMID: 38928022 PMCID: PMC11204331 DOI: 10.3390/ijms25126315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Various metabolites, including phytohormones, phytoalexins, and amino acids, take part in the plant immune system. Herein, we analyzed the effects of L-methionine (Met), a sulfur-containing amino acid, on the plant immune system in tomato. Treatment with low concentrations of Met enhanced the resistance of tomato to a broad range of diseases caused by the hemi-biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) and the necrotrophic fungal pathogen Botrytis cinerea (Bc), although it did not induce the production of any antimicrobial substances against these pathogens in tomato leaf tissues. Analyses of gene expression and phytohormone accumulation indicated that Met treatment alone did not activate the defense signals mediated by salicylic acid, jasmonic acid, and ethylene. However, the salicylic acid-responsive defense gene and the jasmonic acid-responsive gene were induced more rapidly in Met-treated plants after infection with Pst and Bc, respectively. These findings suggest that low concentrations of Met have a priming effect on the phytohormone-mediated immune system in tomato.
Collapse
Affiliation(s)
- Tomoya Tanaka
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.T.); (M.F.)
| | - Moeka Fujita
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.T.); (M.F.)
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan;
| | - Miyuki Kusajima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8567, Japan; (M.K.); (T.A.)
| | - Futo Narita
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.T.); (M.F.)
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8567, Japan; (M.K.); (T.A.)
| | - Akiko Maruyama-Nakashita
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan;
| | - Masami Nakajima
- Graduate School of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan;
| | - Hideo Nakashita
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.T.); (M.F.)
| |
Collapse
|
14
|
Inazu M, Nemoto T, Omata Y, Suzuki S, Ono S, Kanno Y, Seo M, Oikawa A, Masuda S. Complete Loss of RelA and SpoT Homologs in Arabidopsis Reveals the Importance of the Plastidial Stringent Response in the Interplay between Chloroplast Metabolism and Plant Defense Response. PLANT & CELL PHYSIOLOGY 2024; 65:631-643. [PMID: 37925598 DOI: 10.1093/pcp/pcad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
The highly phosphorylated nucleotide, guanosine tetraphosphate (ppGpp), functions as a secondary messenger in bacteria and chloroplasts. The accumulation of ppGpp alters plastidial gene expression and metabolism, which are required for proper photosynthetic regulation and robust plant growth. However, because four plastid-localized ppGpp synthases/hydrolases function redundantly, the impact of the loss of ppGpp-dependent stringent response on plant physiology remains unclear. We used CRISPR/Cas9 technology to generate an Arabidopsis thaliana mutant lacking all four ppGpp synthases/hydrolases and characterized its phenotype. The mutant showed over 20-fold less ppGpp levels than the wild type under normal growth conditions and exhibited leaf chlorosis and increased expression of defense-related genes as well as salicylic acid and jasmonate levels upon transition to nitrogen-starvation conditions. These results demonstrate that proper levels of ppGpp in plastids are required for controlling not only plastid metabolism but also phytohormone signaling, which is essential for plant defense.
Collapse
Affiliation(s)
- Masataka Inazu
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Takanari Nemoto
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Yuto Omata
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Sae Suzuki
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Sumire Ono
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | - Akira Oikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| |
Collapse
|
15
|
Svietlova N, Zhyr L, Reichelt M, Grabe V, Mithöfer A. Glutamine as sole nitrogen source prevents induction of nitrate transporter gene NRT2.4 and affects amino acid metabolism in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1369543. [PMID: 38633457 PMCID: PMC11022244 DOI: 10.3389/fpls.2024.1369543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Plants assimilate inorganic nitrogen (N) to glutamine. Glutamine is the most abundant amino acid in most plant species, the N-supplying precursor of all N-containing compounds in the cell and the first organic nitrogen molecule formed from inorganic nitrogen taken up by the roots. In addition to its role in plant nutrition, glutamine most likely also has a function as a signaling molecule in the regulation of nitrogen metabolism. We investigated whether glutamine influences the high-affinity transporter system for nitrate uptake. Therefore, we analyzed the expression of the nitrate transporter NRT2.4, which is inducible by N deficiency, in Arabidopsis thaliana grown under different nitrogen starvation scenarios, comparing nitrate or glutamine as the sole nitrogen source. Using the reporter line ProNRT2.4:GFP and two independent knockout lines, nrt2.4-1 and nrt2.4-2, we analyzed gene expression and amino acid profiles. We showed that the regulation of NRT2.4 expression depends on available nitrogen in general, for example on glutamine as a nitrogen source, and not specifically on nitrate. In contrast to high nitrate concentrations, amino acid profiles changed to an accumulation of amino acids containing more than one nitrogen during growth in high glutamine concentrations, indicating a switch to nitrogen storage metabolism. Furthermore, we demonstrated that the nrt2.4-2 line shows unexpected effects on NRT2.5 gene expression and the amino acids profile in shoots under high glutamine supply conditions compared to Arabidopsis wild type and nrt2.4-1, suggesting non-NRT2.4-related metabolic consequences in this knockout line.
Collapse
Affiliation(s)
- Nataliia Svietlova
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Liza Zhyr
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Microscopic Imaging Service Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
16
|
Cao YH, Zhao XW, Nie G, Wang ZY, Song X, Zhang MX, Hu JP, Zhao Q, Jiang Y, Zhang JL. The salt-tolerance of perennial ryegrass is linked with root exudate profiles and microflora recruitment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170205. [PMID: 38272075 DOI: 10.1016/j.scitotenv.2024.170205] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
Salinity poses a significant threat to plant growth and development. The root microbiota plays a key role in plant adaptation to saline environments. Nevertheless, it remains poorly understood whether and how perennial grass plants accumulate specific root-derived bacteria when exposed to salinity. Here, we systematically analyzed the composition and variation of rhizosphere and endophytic bacteria, as well as root exudates in perennial ryegrass differing in salt tolerance grown in unsterilized soils with and without salt. Both salt-sensitive (P1) and salt-tolerant (P2) perennial ryegrass genotypes grew better in unsterilized soils compared to sterilized soils under salt stress. The rhizosphere and endophytic bacteria of both P1 and P2 had lower alpha-diversity under salt treatment compared to control. The reduction of alpha-diversity was more pronounced for P1 than for P2. The specific root-derived bacteria, particularly the genus Pseudomonas, were enriched in rhizosphere and endophytic bacteria under salt stress. Changes in bacterial functionality induced by salt stress differed in P1 and P2. Additionally, more root exudates were altered under salt stress in P2 than in P1. The content of important root exudates, mainly including phenylpropanoids, benzenoids, organic acids, had a significantly positive correlation with the abundance of rhizosphere and endophytic bacteria under salt stress. The results indicate that the interactions between root-derived bacteria and root exudates are crucial for the salt tolerance of perennial ryegrass, which provides a potential strategy to manipulate root microbiome for improved stress tolerance of perennial grass species.
Collapse
Affiliation(s)
- Yan-Hua Cao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, PR China
| | - Xiong-Wei Zhao
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, PR China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhi-Yong Wang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agricultural and Forestry, Hainan University, Sanya 572025, PR China
| | - Xin Song
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, PR China
| | - Ming-Xu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, PR China
| | - Jin-Peng Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, PR China
| | - Qi Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, PR China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA.
| | - Jin-Lin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, PR China; Sanya Institute of Breeding and Multiplication, School of Tropical Agricultural and Forestry, Hainan University, Sanya 572025, PR China.
| |
Collapse
|
17
|
Cabre L, Jing L, Makechemu M, Heluin K, El Khamlichi S, Leprince J, Kiefer-Meyer MC, Pluchon S, Mollet JC, Zipfel C, Nguema-Ona E. Additive and Specific Effects of Elicitor Treatments on the Metabolic Profile of Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:112-126. [PMID: 37903461 DOI: 10.1094/mpmi-04-23-0051-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Several elicitors of plant defense have been identified and numerous efforts to use them in the field have been made. Exogenous elicitor treatments mimic the in planta activation of pattern-triggered immunity (PTI), which relies on the perception of pathogen-associated molecular patterns (PAMPs) such as bacterial flg22 or fungal chitins. Early transcriptional responses to distinct PAMPs are mostly overlapping, regardless of the elicitor being used. However, it remains poorly known if the same patterns are observed for metabolites and proteins produced later during PTI. In addition, little is known about the impact of a combination of elicitors on PTI and the level of induced resistance to pathogens. Here, we monitored Arabidopsis thaliana resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) following application of flg22 and chitosan elicitors, used individually or in combination. A slight, but not statistically significant increase in induced resistance was observed when the elicitors were applied together when compared with individual treatments. We investigated the effect of these treatments on the metabolome by using an untargeted analysis. We found that the combination of flg22 and chitosan impacted a higher number of metabolites and deregulated specific metabolic pathways compared with the elicitors individually. These results contribute to a better understanding of plant responses to elicitors, which might help better rationalize their use in the field. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Lisa Cabre
- Centre Mondial de l'Innovation-Groupe Roullier (CMI-Roullier), Laboratoire de Nutrition Végétale, Saint Malo, F-35400, France
| | - Lun Jing
- Centre Mondial de l'Innovation-Groupe Roullier (CMI-Roullier), Plateforme de Chimie et Bio-Analyse, Saint Malo, F-35400, France
| | - Moffat Makechemu
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zürich, CH-8008 Zürich, Switzerland
| | - Kylhan Heluin
- Université de Rouen Normandie, GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, RMT BESTIM, GDR Chémobiologie, IRIB, F-76000 Rouen, France
| | - Sarah El Khamlichi
- Université de Rouen Normandie, GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, RMT BESTIM, GDR Chémobiologie, IRIB, F-76000 Rouen, France
| | - Jérôme Leprince
- Université de Rouen Normandie, CNRS, INSERM, HERACLES US 51 UAR 2026, PRIMACEN, IRIB, F-76000 Rouen, France
| | - Marie Christine Kiefer-Meyer
- Université de Rouen Normandie, GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, RMT BESTIM, GDR Chémobiologie, IRIB, F-76000 Rouen, France
| | - Sylvain Pluchon
- Centre Mondial de l'Innovation-Groupe Roullier (CMI-Roullier), Laboratoire de Nutrition Végétale, Saint Malo, F-35400, France
| | - Jean-Claude Mollet
- Université de Rouen Normandie, GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, RMT BESTIM, GDR Chémobiologie, IRIB, F-76000 Rouen, France
| | - Cyril Zipfel
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zürich, CH-8008 Zürich, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, U.K
| | - Eric Nguema-Ona
- Centre Mondial de l'Innovation-Groupe Roullier (CMI-Roullier), Laboratoire de Nutrition Végétale, Saint Malo, F-35400, France
| |
Collapse
|
18
|
Lee KT, Liao HS, Hsieh MH. Glutamine Metabolism, Sensing and Signaling in Plants. PLANT & CELL PHYSIOLOGY 2023; 64:1466-1481. [PMID: 37243703 DOI: 10.1093/pcp/pcad054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Glutamine (Gln) is the first amino acid synthesized in nitrogen (N) assimilation in plants. Gln synthetase (GS), converting glutamate (Glu) and NH4+ into Gln at the expense of ATP, is one of the oldest enzymes in all life domains. Plants have multiple GS isoenzymes that work individually or cooperatively to ensure that the Gln supply is sufficient for plant growth and development under various conditions. Gln is a building block for protein synthesis and an N-donor for the biosynthesis of amino acids, nucleic acids, amino sugars and vitamin B coenzymes. Most reactions using Gln as an N-donor are catalyzed by Gln amidotransferase (GAT) that hydrolyzes Gln to Glu and transfers the amido group of Gln to an acceptor substrate. Several GAT domain-containing proteins of unknown function in the reference plant Arabidopsis thaliana suggest that some metabolic fates of Gln have yet to be identified in plants. In addition to metabolism, Gln signaling has emerged in recent years. The N regulatory protein PII senses Gln to regulate arginine biosynthesis in plants. Gln promotes somatic embryogenesis and shoot organogenesis with unknown mechanisms. Exogenous Gln has been implicated in activating stress and defense responses in plants. Likely, Gln signaling is responsible for some of the new Gln functions in plants.
Collapse
Affiliation(s)
- Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
19
|
Kang L, Wu Y, Jia Y, Chen Z, Kang D, Zhang L, Pan C. Nano-selenium enhances melon resistance to Podosphaera xanthii by enhancing the antioxidant capacity and promoting alterations in the polyamine, phenylpropanoid and hormone signaling pathways. J Nanobiotechnology 2023; 21:377. [PMID: 37845678 PMCID: PMC10577987 DOI: 10.1186/s12951-023-02148-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023] Open
Abstract
Powdery mildew is one of the main problematic diseases in melon production, requiring the use of chemical pesticides with disease-resistant cultivars for control. However, the often rapid acquisition of fungicidal resistance by mildew pathogens makes this practice unsustainable. The identification of crop treatments that can enhance resistance to powdery mildew resistance is therefore important to reduce melon crop attrition. This study indicates that the application of Nano-Se can reduce the powdery mildew disease index by 21-45%. The Nano-Se treatment reduced reactive oxygen species (ROS) and malondialdehyde (MDA) accumulation, with increases in glutathione (GSH), proline and 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH). Increases were also observed in the activities and transcriptional levels of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD). Assays with four different cultivars of melon with differing levels of mildew resistance demonstrated that relative to the control, the Nano-Se treatment resulted in larger responses to mildew infection, including increases in the levels of putrescine (PUT; 43-112%) and spermine (SPM; 36-118%), indoleacetic acid (IAA; 43-172%) and salicylic acid (SA; 24-73%), the activities of phenylalanine ammonium lyase (PAL), trans-cinnamate 4-hydroxylase (C4H) and 4-coumarate: Co A ligase (4CL) of the phenylpropanoid pathway (22-38%, 24-126% and 19-64%, respectively). Key genes in the polyamine and phenylpropanoid pathway were also upregulated. These results indicate that the foliar application of Nano-Se improved melon defenses against powdery mildew infection, with a significant reduction in mildew disease development.
Collapse
Affiliation(s)
- Lu Kang
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control & Innovation Center of Pesticide Research, College of Science, China Agricultural University, 2 Yuanmingyuan Western Road, Haidian District, Beijing, 100193, China
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Yangliu Wu
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control & Innovation Center of Pesticide Research, College of Science, China Agricultural University, 2 Yuanmingyuan Western Road, Haidian District, Beijing, 100193, China
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Yujiao Jia
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control & Innovation Center of Pesticide Research, College of Science, China Agricultural University, 2 Yuanmingyuan Western Road, Haidian District, Beijing, 100193, China
| | - Zhendong Chen
- Vegetable Research Institute, Guangxi Zhuang Autonomous Region Academy of Agricultural Sciences, Nanning, 530000, China
| | - Dexian Kang
- Vegetable Research Institute, Guangxi Zhuang Autonomous Region Academy of Agricultural Sciences, Nanning, 530000, China
| | - Li Zhang
- Vegetable Research Institute, Guangxi Zhuang Autonomous Region Academy of Agricultural Sciences, Nanning, 530000, China
| | - Canping Pan
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control & Innovation Center of Pesticide Research, College of Science, China Agricultural University, 2 Yuanmingyuan Western Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
20
|
Esmail SM, Jarquín D, Börner A, Sallam A. Genome-wide association mapping highlights candidate genes and immune genotypes for net blotch and powdery mildew resistance in barley. Comput Struct Biotechnol J 2023; 21:4923-4932. [PMID: 37867969 PMCID: PMC10585327 DOI: 10.1016/j.csbj.2023.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
Net blotch (NB) and powdery mildew (PM) are major barley diseases with the potential to cause a dramatic loss in grain yield. Breeding for resistant barley genotypes in combination with identifying candidate resistant genes will accelerate the genetic improvement for resistance to NB and PM. To address this challenge, a set of 122 highly diverse barley genotypes from 34 countries were evaluated for NB and PM resistance under natural infection for in two growing seasons. Moreover, four yield traits; plant height (Ph), spike length (SL), spike weight (SW), and the number of spikelets per spike (NOS) were recorded. High genetic variation was found among genotypes in all traits scored in this study. No significant phenotypic correlation was found in the resistance between PM and NB. Immune genotypes for NB and PM were identified. A total of 21 genotypes were immune to both diseases. Of the 21 genotypes, the German genotype HOR_9570 was selected as the most promising genotype that can be used for future breeding programs. Furthermore, a genome-wide association study (GWAS) was used to identify resistant alleles to PM and NB. The results of GWAS revealed a set of 14 and 25 significant SNPs that were associated with increased resistance to PM and NB, respectively. This study provided very important genetic resources that are highly resistant to the Egyptian PM and NB pathotypes and revealed SNP markers that can be utilized to genetically improve resistance to PM and NB.
Collapse
Affiliation(s)
- Samar M. Esmail
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Diego Jarquín
- Department of Agronomy, University of Florida, Gainesville, FL 32611, USA
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Ahmed Sallam
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Department of Genetics, Faculty of Agriculture, Assiut University, 71526 Assiut, Egypt
| |
Collapse
|
21
|
Zhang Z, Zhang J, Li X, Zhang J, Wang Y, Lu Y. The Plant Virus Tomato Spotted Wilt Orthotospovirus Benefits Its Vector Frankliniella occidentalis by Decreasing Plant Toxic Alkaloids in Host Plant Datura stramonium. Int J Mol Sci 2023; 24:14493. [PMID: 37833941 PMCID: PMC10572871 DOI: 10.3390/ijms241914493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The transmission of insect-borne viruses involves sophisticated interactions between viruses, host plants, and vectors. Chemical compounds play an important role in these interactions. Several studies reported that the plant virus tomato spotted wilt orthotospovirus (TSWV) increases host plant quality for its vector and benefits the vector thrips Frankliniella occidentalis. However, few studies have investigated the chemical ecology of thrips vectors, TSWV, and host plants. Here, we demonstrated that in TSWV-infected host plant Datura stramonium, (1) F. occidentalis were more attracted to feeding on TSWV-infected D. stramonium; (2) atropine and scopolamine, the main tropane alkaloids in D. stramonium, which are toxic to animals, were down-regulated by TSWV infection of the plant; and (3) F. occidentalis had better biological performance (prolonged adult longevity and increased fecundity, resulting in accelerated population growth) on TSWV-infected D. stramonium than on TSWV non-infected plants. These findings provide in-depth information about the physiological mechanisms responsible for the virus's benefits to its vector by virus infection of plant regulating alkaloid accumulation in the plant.
Collapse
Affiliation(s)
- Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (X.L.); (J.Z.)
| | - Jiahui Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (X.L.); (J.Z.)
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410125, China;
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (X.L.); (J.Z.)
| | - Jinming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (X.L.); (J.Z.)
| | - Yunsheng Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410125, China;
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (X.L.); (J.Z.)
| |
Collapse
|
22
|
Trémulot L, Macadré C, Gal J, Garmier M, Launay-Avon A, Paysant-Le Roux C, Ratet P, Noctor G, Dufresne M. Impact of high atmospheric carbon dioxide on the biotic stress response of the model cereal species Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2023; 14:1237054. [PMID: 37662181 PMCID: PMC10469009 DOI: 10.3389/fpls.2023.1237054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023]
Abstract
Losses due to disease and climate change are among the most important issues currently facing crop production. It is therefore important to establish the impact of climate change, and particularly of high carbon dioxide (hCO2), on plant immunity in cereals, which provide 60% of human calories. The aim of this study was to determine if hCO2 impacts Brachypodium distachyon immunity, a model plant for temperate cereals. Plants were grown in air (430 ppm CO2) and at two high CO2 conditions, one that is relevant to projections within the coming century (1000 ppm) and a concentration sufficient to saturate photosynthesis (3000 ppm). The following measurements were performed: phenotyping and growth, salicylic acid contents, pathogen resistance tests, and RNAseq analysis of the transcriptome. Improved shoot development was observed at both 1000 and 3000 ppm. A transcriptomic analysis pointed to an increase in primary metabolism capacity under hCO2. Alongside this effect, up-regulation of genes associated with secondary metabolism was also observed. This effect was especially evident for the terpenoid and phenylpropanoid pathways, and was accompanied by enhanced expression of immunity-related genes and accumulation of salicylic acid. Pathogen tests using the fungus Magnaporthe oryzae revealed that hCO2 had a complex effect, with enhanced susceptibility to infection but no increase in fungal development. The study reveals that immunity in B. distachyon is modulated by growth at hCO2 and allows identification of pathways that might play a role in this effect.
Collapse
Affiliation(s)
- Lug Trémulot
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Catherine Macadré
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Joséphine Gal
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Marie Garmier
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Alexandra Launay-Avon
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Christine Paysant-Le Roux
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Pascal Ratet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Graham Noctor
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Institut Universitaire de France (IUF), Paris, France
| | - Marie Dufresne
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| |
Collapse
|
23
|
Zhang X, Tubergen PJ, Agorsor IDK, Khadka P, Tembe C, Denbow C, Collakova E, Pilot G, Danna CH. Elicitor-induced plant immunity relies on amino acids accumulation to delay the onset of bacterial virulence. PLANT PHYSIOLOGY 2023; 192:601-615. [PMID: 36715647 PMCID: PMC10152640 DOI: 10.1093/plphys/kiad048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 05/03/2023]
Abstract
Plant immunity relies on the perception of microbe-associated molecular patterns (MAMPs) from invading microbes to induce defense responses that suppress attempted infections. It has been proposed that MAMP-triggered immunity (MTI) suppresses bacterial infections by suppressing the onset of bacterial virulence. However, the mechanisms by which plants exert this action are poorly understood. Here, we showed that MAMP perception in Arabidopsis (Arabidopsis thaliana) induces the accumulation of free amino acids in a salicylic acid (SA)-dependent manner. When co-infiltrated with Glutamine and Serine, two of the MAMP-induced highly accumulating amino acids, Pseudomonas syringae pv. tomato DC3000 expressed low levels of virulence genes and failed to produce robust infections in otherwise susceptible plants. When applied exogenously, Glutamine and Serine directly suppressed bacterial virulence and growth, bypassing MAMP perception and SA signaling. In addition, an increased level of endogenous Glutamine in the leaf apoplast of a gain-of-function mutant of Glutamine Dumper-1 rescued the partially compromised bacterial virulence- and growth-suppressing phenotype of the SA-induced deficient-2 (sid2) mutant. Our data suggest that MTI suppresses bacterial infections by delaying the onset of virulence with an excess of amino acids at the early stages of infection.
Collapse
Affiliation(s)
- Xiaomu Zhang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Philip J Tubergen
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Israel D K Agorsor
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Department of Molecular Biology & Biotechnology, School of Biological Sciences, College of Agriculture & Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Pramod Khadka
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Connor Tembe
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Cynthia Denbow
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Eva Collakova
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Guillaume Pilot
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Cristian H Danna
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
24
|
Jiu S, Chen B, Dong X, Lv Z, Wang Y, Yin C, Xu Y, Zhang S, Zhu J, Wang J, Liu X, Sun W, Yang G, Li M, Li S, Zhang Z, Liu R, Wang L, Manzoor MA, José QG, Wang S, Lei Y, Yang L, Dirlewanger E, Dong Y, Zhang C. Chromosome-scale genome assembly of Prunus pusilliflora provides novel insights into genome evolution, disease resistance, and dormancy release in Cerasus L. HORTICULTURE RESEARCH 2023; 10:uhad062. [PMID: 37220556 PMCID: PMC10200261 DOI: 10.1093/hr/uhad062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/02/2023] [Indexed: 05/25/2023]
Abstract
Prunus pusilliflora is a wild cherry germplasm resource distributed mainly in Southwest China. Despite its ornamental and economic value, a high-quality assembled P. pusilliflora genome is unavailable, hindering our understanding of its genetic background, population diversity, and evolutionary processes. Here, we de novo assembled a chromosome-scale P. pusilliflora genome using Oxford Nanopore, Illumina, and chromosome conformation capture sequencing. The assembled genome size was 309.62 Mb, with 76 scaffolds anchored to eight pseudochromosomes. We predicted 33 035 protein-coding genes, functionally annotated 98.27% of them, and identified repetitive sequences covering 49.08% of the genome. We found that P. pusilliflora is closely related to Prunus serrulata and Prunus yedoensis, having diverged from them ~41.8 million years ago. A comparative genomic analysis revealed that P. pusilliflora has 643 expanded and 1128 contracted gene families. Furthermore, we found that P. pusilliflora is more resistant to Colletotrichum viniferum, Phytophthora capsici, and Pseudomonas syringae pv. tomato (Pst) DC3000 infections than cultivated Prunus avium. P. pusilliflora also has considerably more nucleotide-binding site-type resistance gene analogs than P. avium, which explains its stronger disease resistance. The cytochrome P450 and WRKY families of 263 and 61 proteins were divided into 42 and 8 subfamilies respectively in P. pusilliflora. Furthermore, 81 MADS-box genes were identified in P. pusilliflora, accompanying expansions of the SVP and AGL15 subfamilies and loss of the TM3 subfamily. Our assembly of a high-quality P. pusilliflora genome will be valuable for further research on cherries and molecular breeding.
Collapse
Affiliation(s)
| | | | - Xiao Dong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, 650201, P. R. China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuxuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chunjin Yin
- Dali Bai Autonomous Prefecture Academy of Agricultural Sciences and Extension, Dali, Yunnan Province, 671600, P. R. China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Sen Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jijun Zhu
- Shanghai Botanical Garden, Shanghai, 200231, P. R. China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guoqian Yang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Meng Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu Province, 200037, P. R. China
| | - Shufeng Li
- Dali Bai Autonomous Prefecture Academy of Agricultural Sciences and Extension, Dali, Yunnan Province, 671600, P. R. China
| | - Zhuo Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Quero-García José
- INRAe, UMR 1332 de Biologie du Fruit et Pathologie, 33140 Villenave d'Ornon, France
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yahui Lei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, 650201, P. R. China
| | - Ling Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, 650201, P. R. China
| | | | | | | |
Collapse
|
25
|
Guo N, Qu H, Zhi Y, Zhang Y, Cheng S, Chu J, Zhang Z, Xu G. Knockout of amino acid transporter gene OsLHT1 accelerates leaf senescence and enhances resistance to rice blast fungus. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad125. [PMID: 37010326 DOI: 10.1093/jxb/erad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Indexed: 06/19/2023]
Abstract
Plant amino acid transporters (AATs) regulate not only long-distance transport and reallocation of nitrogen (N) from source to sink organs, but also amount of amino acids in leaves hijacked by invaded pathogens. However, the function of AATs in plant defense responses to pathogen infection remains unknown. In this study, we found that rice amino acid transporter gene OsLHT1 was expressed in leaves and up-regulated by maturing, N starvation and inoculation of blast fungus Magnaporthe oryzae. Knockout of OsLHT1 resulted in development stage- and N supply-dependent premature senescence of leaves at vegetative growth stage. In comparison to wild type, Oslht1 mutant lines showed sustained rusty red spots on fully mature leaf blades irrespective of N supply levels. Notably, no relationship between the severity of leaf rusty red spots and concentration of total N or amino acids was found in Oslht1 mutants at different developmental stages. Disruption of OsLHT1 altered transport and metabolism of amino acids and biosynthesis of flavones and flavonoids, enhanced expression of jasmonic acid- and salicylic acid-related defense genes and production of jasmonic acid and salicylic acid, accumulation of reactive oxygen species. OsLHT1 inactivation dramatically prevented the leaf invasion of M. oryzae, the hemi-biotrophic ascomycete fungus. Overall, these results establish a module connecting the activity of amino acid transporter with leaf metabolism and defense to rice blast fungus.
Collapse
Affiliation(s)
- Nan Guo
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Zhi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuyi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Shujing Cheng
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
26
|
Sarkar A, Kisiala A, Adhikary D, Basu U, Emery RJN, Rahman H, Kav NNV. Silicon ameliorates clubroot responses in canola (Brassica napus): A "multi-omics"-based investigation into possible mechanisms. PHYSIOLOGIA PLANTARUM 2023; 175:e13900. [PMID: 36992551 DOI: 10.1111/ppl.13900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Clubroot disease, caused by Plasmodiophora brassicae Woronin, results in severe yield losses in Brassica crops, including canola. Silicon (Si) mitigates several stresses and enhances plant resistance to phytopathogens. We investigated the effects of Si on clubroot disease symptoms in canola at two concentrations of Si, Si: soil in 1: 100 w/w (Si1.0) and Si: soil in 1:200 w/w (Si0.5) under greenhouse conditions. In addition, the effects of Si on P. brassicae-induced gene expression, endogenous levels of phytohormones and metabolites were studied using "omics" approaches. Si application reduced clubroot symptoms and improved plant growth parameters. Gene expression analysis revealed increased transcript-level responses in Si1.0 compared to Si0.5 plants at 7-, 14-, and 21-days post-inoculation (dpi). Pathogen-induced transcript-level changes were affected by Si treatment, with genes related to antioxidant activity (e.g., POD, CAT), phytohormone biosynthesis and signalling (e.g., PDF1.2, NPR1, JAZ, IPT, TAA), nitrogen metabolism (e.g., NRT, AAT), and secondary metabolism (e.g., PAL, BCAT4) exhibiting differential expression. Endogenous levels of phytohormones (e.g., auxin, cytokinin), a majority of the amino acids and secondary metabolites (e.g., glucosinolates) were increased at 7 dpi, followed by a decrease at 14- and 21-dpi due to Si-treatment. Stress hormones such as abscisic acid (ABA), salicylic acid (SA), and jasmonic acid (JA) also decreased at the later time points in Si0.5, and Si1.0 treated plants. Si appears to improve clubroot symptoms while enhancing plant growth and associated metabolic processes, including nitrogen metabolism and secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Ananya Sarkar
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Anna Kisiala
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | - Dinesh Adhikary
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Urmila Basu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - R J Neil Emery
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | - Habibur Rahman
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Nat N V Kav
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Fan T, Wu C, Yang W, Lv T, Zhou Y, Tian C. The LHT Gene Family in Rice: Molecular Characterization, Transport Functions and Expression Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:817. [PMID: 36840165 PMCID: PMC9958582 DOI: 10.3390/plants12040817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Amino acid transporters (AATs) are integral membrane proteins and play important roles in plant growth and development as well as environmental responses. In contrast to the amino acid permease (AAP) subfamily, functional studies of the lysine and histidine transporter (LHT) subfamily have not been made in rice. In the current study, six LHT genes were found in the rice genome. To further investigate the functions of these genes, analyses were performed regarding gene and protein structures, chromosomal locations, evolutionary relationships, cis-acting elements of promoters, gene expression, and yeast complementation. We found that the six OsLHT genes are distributed on 4 out of the 12 chromosomes and that the six OsLHT genes were grouped into two clusters based on the phylogenetic analysis. Protein structure analyses showed that each OsLHT protein has 11 helical transmembrane domains. Yeast complementation assays showed that these OsLHT genes have conserved transport substrates within each cluster. The four members from cluster 1 showed broad amino acid selectivity, while OsLHT5 and OsLHT6 may transport other substrates besides amino acids. Additionally, quantitative real-time PCR analysis of the six OsLHT genes revealed that they have different expression patterns at different developmental stages and in different tissues. It also revealed that some OsLHT genes were responsive to PEG, NaCl and cold treatments, indicating their critical roles in abiotic stress response. Our results will be useful for further characterizing the crucial biological functions of rice LHT genes.
Collapse
|
28
|
Zheng X, Liu F, Yang X, Li W, Chen S, Yue X, Jia Q, Sun X. The MAX2-KAI2 module promotes salicylic acid-mediated immune responses in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36738234 DOI: 10.1111/jipb.13463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Arabidopsis MORE AXILLARY GROWTH2 (MAX2) is a key component in the strigolactone (SL) and karrikin (KAR) signaling pathways and regulates the degradation of SUPPRESSOR OF MAX2 1/SMAX1-like (SMAX1/SMXL) proteins, which are transcriptional co-repressors that regulate plant architecture, as well as abiotic and biotic stress responses. The max2 mutation reduces resistance against Pseudomonas syringae pv. tomato (Pst). To uncover the mechanism of MAX2-mediated resistance, we evaluated the resistance of various SL and KAR signaling pathway mutants. The resistance of SL-deficient mutants and of dwarf 14 (d14) was similar to that of the wild-type, whereas the resistance of the karrikin insensitive 2 (kai2) mutant was compromised, demonstrating that the KAR signaling pathway, not the SL signaling pathway, positively regulates the immune response. We measured the resistance of smax1 and smxl mutants, as well as the double, triple, and quadruple mutants with max2, which revealed that both the smax1 mutant and smxl6/7/8 triple mutant rescue the low resistance phenotype of max2 and that SMAX1 accumulation diminishes resistance. The susceptibility of smax1D, containing a degradation-insensitive form of SMAX1, further confirmed the SMAX1 function in the resistance. The relationship between the accumulation of SMAX1/SMXLs and disease resistance suggested that the inhibitory activity of SMAX1 to resistance requires SMXL6/7/8. Moreover, the exogenous application of KAR2 enhanced resistance against Pst, but KAR-induced resistance depended on salicylic acid (SA) signaling. Inhibition of karrikin signaling delayed SA-mediated defense responses and inhibited pathogen-induced protein biosynthesis. Together, we propose that the MAX2-KAI2-SMAX1 complex regulates resistance with the assistance of SMXL6/7/8 and SA signaling and that SMAX1/SMXLs possibly form a multimeric complex with their target transcription factors to fine tune immune responses.
Collapse
Affiliation(s)
- Xiujuan Zheng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Fangqian Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Xianfeng Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Weiqiang Li
- Jilin Da'an Agro-ecosystem National Observation Research Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Sique Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Xinwu Yue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Qi Jia
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Xinli Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| |
Collapse
|
29
|
Marcianò D, Ricciardi V, Maddalena G, Massafra A, Marone Fassolo E, Masiero S, Bianco PA, Failla O, De Lorenzis G, Toffolatti SL. Influence of Nitrogen on Grapevine Susceptibility to Downy Mildew. PLANTS (BASEL, SWITZERLAND) 2023; 12:263. [PMID: 36678977 PMCID: PMC9867458 DOI: 10.3390/plants12020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Downy mildew, caused by the obligate parasite Plasmopara viticola, is one of the most important threats to viticulture. The exploitation of resistant and susceptibility traits of grapevine is one of the most promising ways to increase the sustainability of disease management. Nitrogen (N) fertilization is known for influencing disease severity in the open field, but no information is available on its effect on plant-pathogen interaction. A previous RNAseq study showed that several genes of N metabolism are differentially regulated in grapevine upon P. viticola inoculation, and could be involved in susceptibility or resistance to the pathogen. The aim of this study was to evaluate if N fertilization influences: (i) the foliar leaf content and photosynthetic activity of the plant, (ii) P. viticola infectivity, and (iii) the expression of the candidate susceptibility/resistance genes. Results showed that N level positively correlated with P. viticola infectivity, confirming that particular attention should be taken in vineyard to the fertilization, but did not influence the expression of the candidate genes. Therefore, these genes are manipulated by the pathogen and can be exploited for developing new, environmentally friendly disease management tools, such as dsRNAs, to silence the susceptibility genes or breeding for resistance.
Collapse
Affiliation(s)
- Demetrio Marcianò
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| | - Valentina Ricciardi
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| | - Giuliana Maddalena
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
- Department of Biosciences, University of Milan, 20133 Milano, Italy
| | | | | | - Simona Masiero
- Department of Biosciences, University of Milan, 20133 Milano, Italy
| | - Piero Attilio Bianco
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| | - Osvaldo Failla
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| | - Silvia Laura Toffolatti
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy
| |
Collapse
|
30
|
Liu L, Qin L, Safdar LB, Zhao C, Cheng X, Xie M, Zhang Y, Gao F, Bai Z, Huang J, Bhalerao RP, Liu S, Wei Y. The plant trans-Golgi network component ECHIDNA regulates defense, cell death, and endoplasmic reticulum stress. PLANT PHYSIOLOGY 2023; 191:558-574. [PMID: 36018261 PMCID: PMC9806577 DOI: 10.1093/plphys/kiac400] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The trans-Golgi network (TGN) acts as a central platform for sorting and secreting various cargoes to the cell surface, thus being essential for the full execution of plant immunity. However, the fine-tuned regulation of TGN components in plant defense and stress response has been not fully elucidated. Our study revealed that despite largely compromising penetration resistance, the loss-of-function mutation of the TGN component protein ECHIDNA (ECH) induced enhanced postinvasion resistance to powdery mildew in Arabidopsis thaliana. Genetic and transcriptome analyses and hormone profiling demonstrated that ECH loss resulted in salicylic acid (SA) hyperaccumulation via the ISOCHORISMATE SYNTHASE 1 biosynthesis pathway, thereby constitutively activating SA-dependent innate immunity that was largely responsible for the enhanced postinvasion resistance. Furthermore, the ech mutant displayed accelerated SA-independent spontaneous cell death and constitutive POWDERY MILDEW RESISTANCE 4-mediated callose depositions. In addition, ECH loss led to a chronically prolonged endoplasmic reticulum stress in the ech mutant. These results provide insights into understanding the role of TGN components in the regulation of plant immunity and stress responses.
Collapse
Affiliation(s)
- Lijiang Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2, Canada
| | - Li Qin
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2, Canada
| | - Luqman Bin Safdar
- School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond 5064, Australia
| | - Chuanji Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xiaohui Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Meili Xie
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Feng Gao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zetao Bai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Junyan Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, S-901 83, Sweden
| | | | | |
Collapse
|
31
|
Wang H, Jiao X, Zhang X, Zhang M, Liu Y, Chen X, Fang R, Yan Y. Ammonium protects rice against rice stripe virus by activating HDA703/OsBZR1-mediated BR signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111504. [PMID: 36272547 DOI: 10.1016/j.plantsci.2022.111504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/30/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Ammonium (NH4+) is a major inorganic nitrogen source for plants and also as a signal regulates plant growth and defense. Brassinosteroids (BRs) are a class of steroid hormones that control plant developmental and physiological processes through its signaling pathway. Rice is a kind of NH4+-preferring plant which responds to virus infection involving in the regulation of BR biosynthesis and signaling. However, the BR-mediated regulatory mechanisms in rice-virus interactions are not fully understood. In addition, it remains unknown whether there is a direct link between NH4+ and BRs in regulating rice response to virus. HDA703, a histone deacetylase and OsBZR1, a transcription factor, are two positive regulator of BR signaling and interact with each other. In this study, we show that rice plants grown with NH4+ as the sole N source have enhanced resistance to rice stripe virus (RSV), one of the most devastating viruses of rice, than those grown with NO3- as the sole N source. We also show that in contrast to NO3-, NH4+ does not affect BR biosynthesis but promotes BR signaling by upregulating the expression of HDA703 and promoting the accumulation of OsBZR1 in rice shoots. We further show that BR biosynthesis and signaling is required for rice defense against RSV and BR-mediated resistance to RSV attributes to activating HDA703/OsBZR1 module, then decreasing the expression of Ghd7, a direct target of HDA703/OsBZR1. Consistently, increase of the expression of HDA703 or decrease of the expression of Ghd7 enhances rice resistance to RSV. Together, our study reveals that activation of HDA703/OsBZR1-Ghd7 signaling cascade is an undescribed mechanism conferring BR-mediated RSV resistance and NH4+ protects rice against RSV by activating HDA703/OsBZR1-Ghd7-mediated BR signaling in rice.
Collapse
Affiliation(s)
- Huacai Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoming Jiao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengting Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yawen Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoying Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; National Plant Gene Research Center, Beijing 100101, China.
| | - Yongsheng Yan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
32
|
Saini LK, Bheri M, Pandey GK. Protein phosphatases and their targets: Comprehending the interactions in plant signaling pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:307-370. [PMID: 36858740 DOI: 10.1016/bs.apcsb.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Protein phosphorylation is a vital reversible post-translational modification. This process is established by two classes of enzymes: protein kinases and protein phosphatases. Protein kinases phosphorylate proteins while protein phosphatases dephosphorylate phosphorylated proteins, thus, functioning as 'critical regulators' in signaling pathways. The eukaryotic protein phosphatases are classified as phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine (Ser)/threonine (Thr) specific phosphatases (STPs) that dephosphorylate Ser and Thr residues. The PTP family dephosphorylates Tyr residues while dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. The composition of these enzymes as well as their substrate specificity are important determinants of their functional significance in a number of cellular processes and stress responses. Their role in animal systems is well-understood and characterized. The functional characterization of protein phosphatases has been extensively covered in plants, although the comprehension of their mechanistic basis is an ongoing pursuit. The nature of their interactions with other key players in the signaling process is vital to our understanding. The substrates or targets determine their potential as well as magnitude of the impact they have on signaling pathways. In this article, we exclusively overview the various substrates of protein phosphatases in plant signaling pathways, which are a critical determinant of the outcome of various developmental and stress stimuli.
Collapse
Affiliation(s)
- Lokesh K Saini
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
33
|
Li J, Zhang J, Wu T, Liu P, Li P, Yao X, Liu H, Ciren Y. Multi Omics Analysis Revealed a Resistance Mechanism of Tibetan Barley ( Hordeum vulgare L., Qingke) Infected by Ustilago hordei. PLANTS (BASEL, SWITZERLAND) 2022; 12:157. [PMID: 36616285 PMCID: PMC9824760 DOI: 10.3390/plants12010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Tibetan barley (Hordeum vulgare L., qingke) is the principal cereal cultivated on Tibet. Ustilago hordei causing covered smut is a serious disease that limits the yield of qingke. Here, based on multi omics study including metabolome, proteome and transcriptome, we show that during infection, primary metabolisms such as carbohydrate, amino acid, and lipids were significantly changed. Jasmonic acid, which perform as a biotic stress signaler, was significantly repressed, and related genes or proteins also showed different expression in infected qingke. In addition, other defense-related compounds such as riboflavin, ascorbic acid, and protease inhibitors were also detected in omics data. Our results revealed a preliminary biological profile of qingke infected by U. hordei and provide a resource for further research.
Collapse
Affiliation(s)
- Juan Li
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610011, China
| | - Jixiang Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tao Wu
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610011, China
| | - Pei Liu
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610011, China
| | - Pu Li
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610011, China
| | - Xiaobo Yao
- Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850031, China
| | - Hechun Liu
- Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850031, China
| | - Yangla Ciren
- Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850031, China
| |
Collapse
|
34
|
Li D, Dierschke T, Roden S, Chen K, Bowman JL, Chang C, Van de Poel B. A transporter of 1-aminocyclopropane-1-carboxylic acid affects thallus growth and fertility in Marchantia polymorpha. THE NEW PHYTOLOGIST 2022; 236:2103-2114. [PMID: 36151927 DOI: 10.1111/nph.18510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
In seed plants, 1-aminocyclopropane-1-carboxylic acid (ACC) is the precursor of the plant hormone ethylene but also has ethylene-independent signaling roles. Nonseed plants produce ACC but do not efficiently convert it to ethylene. In Arabidopsis thaliana, ACC is transported by amino acid transporters, LYSINE HISTIDINE TRANSPORTER 1 (LHT1) and LHT2. In nonseed plants, LHT homologs have been uncharacterized. Here, we isolated an ACC-insensitive mutant (Mpain) that is defective in ACC uptake in the liverwort Marchantia polymorpha. Mpain contained a frameshift mutation (1 bp deletion) in the MpLHT1 coding sequence, and was complemented by expression of a wild-type MpLHT1 transgene. Additionally, ACC insensitivity was re-created in CRISPR/Cas9-Mplht1 knockout mutants. We found that MpLHT1 can also transport l-hydroxyproline and l-histidine. We examined the physiological functions of MpLHT1 in vegetative growth and reproduction based on mutant phenotypes. Mpain and Mplht1 plants were smaller and developed fewer gemmae cups compared to wild-type plants. Mplht1 mutants also had reduced fertility, and archegoniophores displayed early senescence. These findings reveal that MpLHT1 serves as an ACC and amino acid transporter in M. polymorpha and has diverse physiological functions. We propose that MpLHT1 contributes to homeostasis of ACC and other amino acids in M. polymorpha growth and reproduction.
Collapse
Affiliation(s)
- Dongdong Li
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, 3001, Leuven, Belgium
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, MD, 20742, USA
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, 310058, Hangzhou, China
| | - Tom Dierschke
- School of Biological Sciences, Monash University, 3800, Melbourne, Vic., Australia
| | - Stijn Roden
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, 3001, Leuven, Belgium
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, 310058, Hangzhou, China
| | - John L Bowman
- School of Biological Sciences, Monash University, 3800, Melbourne, Vic., Australia
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, MD, 20742, USA
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, 3001, Leuven, Belgium
- KU Leuven Plant Institute (LPI), University of Leuven, 3001, Leuven, Belgium
| |
Collapse
|
35
|
Tao CN, Buswell W, Zhang P, Walker H, Johnson I, Field K, Schwarzenbacher R, Ton J. A single amino acid transporter controls the uptake of priming-inducing beta-amino acids and the associated tradeoff between induced resistance and plant growth. THE PLANT CELL 2022; 34:4840-4856. [PMID: 36040205 PMCID: PMC9709968 DOI: 10.1093/plcell/koac271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Selected β-amino acids, such as β-aminobutyric acid (BABA) and R-β-homoserine (RBH), can prime plants for resistance against a broad spectrum of diseases. Here, we describe a genome-wide screen of fully annotated Arabidopsis thaliana T-DNA insertion lines for impaired in RBH-induced immunity (iri) mutants against the downy mildew pathogen Hyaloperonospora arabidopsidis, yielding 104 lines that were partially affected and four lines that were completely impaired in RBH-induced resistance (IR). We confirmed the iri1-1 mutant phenotype with an independent T-DNA insertion line in the same gene, encoding the high-affinity amino acid transporter LYSINE HISTIDINE TRANSPORTER 1 (LHT1). Uptake experiments with yeast cells expressing LHT1 and mass spectrometry-based quantification of RBH and BABA in leaves of lht1 mutant and LHT1 overexpression lines revealed that LHT1 acts as the main transporter for cellular uptake and systemic distribution of RBH and BABA. Subsequent characterization of lht1 mutant and LHT1 overexpression lines for IR and growth responses revealed that the levels of LHT1-mediated uptake determine the tradeoff between IR and plant growth by RBH and BABA.
Collapse
Affiliation(s)
- Chia-Nan Tao
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Will Buswell
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Peijun Zhang
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Heather Walker
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
- Department of Animal and Plant Sciences, biOMICS Facility, University of Sheffield, Sheffield, S10 2TN, UK
| | - Irene Johnson
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Katie Field
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Roland Schwarzenbacher
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Jurriaan Ton
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
36
|
Frontini M, Morel JB, Gravot A, Lafarge T, Ballini E. Increased Rice Susceptibility to Rice Blast Is Related to Post-Flowering Nitrogen Assimilation Efficiency. J Fungi (Basel) 2022; 8:1217. [PMID: 36422038 PMCID: PMC9694259 DOI: 10.3390/jof8111217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 09/10/2024] Open
Abstract
Reducing nitrogen leaching and nitrous oxide emissions with the goal of more sustainability in agriculture implies better identification and characterization of the different patterns in nitrogen use efficiency by crops. However, a change in the ability of varieties to use nitrogen resources could also change the access to nutrient resources for a foliar pathogen such as rice blast and lead to an increase in the susceptibility of these varieties. This study focuses on the pre- and post-floral biomass accumulation and nitrogen uptake and utilization of ten temperate japonica rice genotypes grown in controlled conditions, and the relationship of these traits with molecular markers and susceptibility to rice blast disease. After flowering, the ten varieties displayed diversity in nitrogen uptake and remobilization. Surprisingly, post-floral nitrogen uptake was correlated with higher susceptibility to rice blast, particularly in plants fertilized with nitrogen. This increase in susceptibility is associated with a particular metabolite profile in the upper leavers of these varieties.
Collapse
Affiliation(s)
- Mathias Frontini
- PHIM, INRAE, CIRAD, Institut Agro, University Montpellier, 34060 Montpellier, France
| | - Jean-Benoit Morel
- PHIM, INRAE, CIRAD, Institut Agro, University Montpellier, 34060 Montpellier, France
| | - Antoine Gravot
- IGEPP, INRAE, Institut Agro, University Rennes, 35000 Rennes, France
| | - Tanguy Lafarge
- AGAP, INRAE, CIRAD, Institut Agro, University Montpellier, 34090 Montpellier, France
| | - Elsa Ballini
- PHIM, INRAE, CIRAD, Institut Agro, 34060 Montpellier, France
| |
Collapse
|
37
|
Li Z, Gao J, Wang S, Xie X, Wang Z, Peng Y, Yang X, Pu W, Wang Y, Fan X. Comprehensive analysis of the LHT gene family in tobacco and functional characterization of NtLHT22 involvement in amino acids homeostasis. FRONTIERS IN PLANT SCIENCE 2022; 13:927844. [PMID: 36176688 PMCID: PMC9513474 DOI: 10.3389/fpls.2022.927844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Amino acids are vital nitrogen (N) sources for plant growth, development, and yield. The uptake and translocation of amino acids are mediated by amino acid transporters (AATs). The AATs family including lysine-histidine transporters (LHTs), amino acid permeases (AAPs), and proline transporters (ProTs) subfamilies have been identified in various plants. However, little is known about these genes in tobacco. In this study, we identified 23 LHT genes, the important members of AATs, in the tobacco genome. The gene structure, phylogenetic tree, transmembrane helices, chromosomal distribution, cis-regulatory elements, and expression profiles of NtLHT genes were systematically analyzed. Phylogenetic analysis divided the 23 NtLHT genes into two conserved subgroups. Expression profiles confirmed that the NtLHT genes were differentially expressed in various tissues, indicating their potential roles in tobacco growth and development. Cis-elements analysis of promoters and expression patterns after stress treatments suggested that NtLHT genes probable participate in abiotic stress responses of tobacco. In addition, Knock out and overexpression of NtLHT22 changed the amino acids homeostasis in the transgenic plants, the contents of amino acids were significantly decreased in NtLHT22 overexpression plants than wild-type. The results from this study provide important information for further studies on the molecular functions of the NtLHT genes.
Collapse
Affiliation(s)
- Zhaowu Li
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Junping Gao
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Shuaibin Wang
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Zhangying Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Peng
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Xiaonian Yang
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Wenxuan Pu
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Yaofu Wang
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
38
|
Chen J. Bringing it in: a transporter of extracellular amino acids for regulation of plant immunity. PLANT PHYSIOLOGY 2022; 190:190-192. [PMID: 35751611 PMCID: PMC9434176 DOI: 10.1093/plphys/kiac310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
|
39
|
Zhang X, Khadka P, Puchalski P, Leehan JD, Rossi FR, Okumoto S, Pilot G, Danna CH. MAMP-elicited changes in amino acid transport activity contribute to restricting bacterial growth. PLANT PHYSIOLOGY 2022; 189:2315-2331. [PMID: 35579373 PMCID: PMC9342991 DOI: 10.1093/plphys/kiac217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/16/2022] [Indexed: 05/19/2023]
Abstract
Plants live under the constant challenge of microbes that probe the environment in search of potential hosts. Plant cells perceive microbe-associated molecular patterns (MAMPs) from incoming microbes and activate defense responses that suppress attempted infections. Despite the substantial progress made in understanding MAMP-triggered signaling pathways, the downstream mechanisms that suppress bacterial growth and disease remain poorly understood. Here, we uncover how MAMP perception in Arabidopsis (Arabidopsis thaliana) elicits dynamic changes in extracellular concentrations of free L-amino acids (AA). Within the first 3 h of MAMP perception, a fast and transient inhibition of AA uptake produces a transient increase in extracellular AA concentrations. Within 4 and 12 h of MAMP perception, a sustained enhanced uptake activity decreases the extracellular concentrations of AA. Gene expression analysis showed that salicylic acid-mediated signaling contributes to inducing the expression of AA/H+ symporters responsible for the MAMP-induced enhanced uptake. A screening of loss-of-function mutants identified the AA/H+ symporter lysin/histidine transporter-1 as an important contributor to MAMP-induced enhanced uptake of AA. Infection assays in lht1-1 seedlings revealed that high concentrations of extracellular AA promote bacterial growth in the absence of induced defense elicitation but contribute to suppressing bacterial growth upon MAMP perception. Overall, the data presented in this study reveal a mechanistic connection between MAMP-induced plant defense and suppression of bacterial growth through the modulation of AA transport activity.
Collapse
Affiliation(s)
- Xiaomu Zhang
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Pramod Khadka
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Patryk Puchalski
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Joss D Leehan
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Franco R Rossi
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
- Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Buenos Aires 7130, Argentina
| | | | - Guillaume Pilot
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
40
|
Moormann J, Heinemann B, Hildebrandt TM. News about amino acid metabolism in plant-microbe interactions. Trends Biochem Sci 2022; 47:839-850. [PMID: 35927139 DOI: 10.1016/j.tibs.2022.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/17/2022] [Accepted: 07/06/2022] [Indexed: 01/17/2023]
Abstract
Plants constantly come into contact with a diverse mix of pathogenic and beneficial microbes. The ability to distinguish between them and to respond appropriately is essential for plant health. Here we review recent progress in understanding the role of amino acid sensing, signaling, transport, and metabolism during plant-microbe interactions. Biochemical pathways converting individual amino acids into active compounds have recently been elucidated, and comprehensive large-scale approaches have brought amino acid sensors and transporters into focus. These findings show that plant central amino acid metabolism is closely interwoven with stress signaling and defense responses at various levels. The individual biochemical mechanisms and the interconnections between the different processes are just beginning to emerge and might serve as a foundation for new plant protection strategies.
Collapse
Affiliation(s)
- Jannis Moormann
- Institute for Plant Genetics, Department of Plant Proteomics, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Björn Heinemann
- Institute for Plant Genetics, Department of Plant Proteomics, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Tatjana M Hildebrandt
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany.
| |
Collapse
|
41
|
Tünnermann L, Colou J, Näsholm T, Gratz R. To have or not to have: expression of amino acid transporters during pathogen infection. PLANT MOLECULAR BIOLOGY 2022; 109:413-425. [PMID: 35103913 PMCID: PMC9213295 DOI: 10.1007/s11103-022-01244-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
The interaction between plants and plant pathogens can have significant effects on ecosystem performance. For their growth and development, both bionts rely on amino acids. While amino acids are key transport forms of nitrogen and can be directly absorbed from the soil through specific root amino acid transporters, various pathogenic microbes can invade plant tissues to feed on different plant amino acid pools. In parallel, plants may initiate an immune response program to restrict this invasion, employing various amino acid transporters to modify the amino acid pool at the site of pathogen attack. The interaction between pathogens and plants is sophisticated and responses are dynamic. Both avail themselves of multiple tools to increase their chance of survival. In this review, we highlight the role of amino acid transporters during pathogen infection. Having control over the expression of those transporters can be decisive for the fate of both bionts but the underlying mechanism that regulates the expression of amino acid transporters is not understood to date. We provide an overview of the regulation of a variety of amino acid transporters, depending on interaction with biotrophic, hemibiotrophic or necrotrophic pathogens. In addition, we aim to highlight the interplay of different physiological processes on amino acid transporter regulation during pathogen attack and chose the LYSINE HISTIDINE TRANSPORTER1 (LHT1) as an example.
Collapse
Affiliation(s)
- Laura Tünnermann
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Justine Colou
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Torgny Näsholm
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Regina Gratz
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden.
| |
Collapse
|
42
|
Yao S, Wang G, Wang X. Effects of Phospholipase Dε Overexpression on Soybean Response to Nitrogen and Nodulation. FRONTIERS IN PLANT SCIENCE 2022; 13:852923. [PMID: 35599864 PMCID: PMC9121066 DOI: 10.3389/fpls.2022.852923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen is a key macronutrient to plant growth. We found previously that increased expression of phospholipase Dε (PLDε), which hydrolyzes phospholipids into phosphatidic acid (PA), enhanced plant growth under nitrogen deficiency in Brassicaceae species Arabidopsis and canola. The present study investigated the effect of AtPLDε-overexpression (OE) on soybean (Glycine max), a species capable of symbiotic nitrogen fixation. AtPLDε-OE soybean plants displayed increased root length and leaf size, and the effect of AtPLDε-ΟΕ on leaf size was greater under nitrogen-deficient than -sufficient condition. Under nitrogen deficiency, AtPLDε-OE soybean plants had a higher chlorophyll content and activity of nitrogen assimilation-related enzymes than wild-type soybean plants. AtPLDε-OE led to a higher level of specific PA species in roots after rhizobium inoculation than wild type. AtPLDε-OE soybean plants also increased seed production under nitrogen deprivation with and without nodulation and decreased seed germination in response to high humidity storage and artificial aging. These results suggest that PLDε promotes nitrogen response and affects adversely seed viability during storage.
Collapse
Affiliation(s)
- Shuaibing Yao
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, United States
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Geliang Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, United States
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, United States
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| |
Collapse
|
43
|
Ku YS, Cheng SS, Ng MS, Chung G, Lam HM. The Tiny Companion Matters: The Important Role of Protons in Active Transports in Plants. Int J Mol Sci 2022; 23:ijms23052824. [PMID: 35269965 PMCID: PMC8911182 DOI: 10.3390/ijms23052824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/07/2022] Open
Abstract
In plants, the translocation of molecules, such as ions, metabolites, and hormones, between different subcellular compartments or different cells is achieved by transmembrane transporters, which play important roles in growth, development, and adaptation to the environment. To facilitate transport in a specific direction, active transporters that can translocate their substrates against the concentration gradient are needed. Examples of major active transporters in plants include ATP-binding cassette (ABC) transporters, multidrug and toxic compound extrusion (MATE) transporters, monosaccharide transporters (MSTs), sucrose transporters (SUTs), and amino acid transporters. Transport via ABC transporters is driven by ATP. The electrochemical gradient across the membrane energizes these secondary transporters. The pH in each cell and subcellular compartment is tightly regulated and yet highly dynamic, especially when under stress. Here, the effects of cellular and subcellular pH on the activities of ABC transporters, MATE transporters, MSTs, SUTs, and amino acid transporters will be discussed to enhance our understanding of their mechanics. The relation of the altered transporter activities to various biological processes of plants will also be addressed. Although most molecular transport research has focused on the substrate, the role of protons, the tiny counterparts of the substrate, should also not be ignored.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.-S.C.); (M.-S.N.)
- Correspondence: (Y.-S.K.); (H.-M.L.); Tel.: +852-3943-8132 (Y.-S.K.); +852-3943-6336 (H.-M.L.)
| | - Sau-Shan Cheng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.-S.C.); (M.-S.N.)
| | - Ming-Sin Ng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.-S.C.); (M.-S.N.)
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea;
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.-S.C.); (M.-S.N.)
- Correspondence: (Y.-S.K.); (H.-M.L.); Tel.: +852-3943-8132 (Y.-S.K.); +852-3943-6336 (H.-M.L.)
| |
Collapse
|
44
|
Forand AD, Finfrock YZ, Lavier M, Stobbs J, Qin L, Wang S, Karunakaran C, Wei Y, Ghosh S, Tanino KK. With a Little Help from My Cell Wall: Structural Modifications in Pectin May Play a Role to Overcome Both Dehydration Stress and Fungal Pathogens. PLANTS (BASEL, SWITZERLAND) 2022; 11:385. [PMID: 35161367 PMCID: PMC8838300 DOI: 10.3390/plants11030385] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/06/2023]
Abstract
Cell wall structural modifications through pectin cross-linkages between calcium ions and/or boric acid may be key to mitigating dehydration stress and fungal pathogens. Water loss was profiled in a pure pectin system and in vivo. While calcium and boron reduced water loss in pure pectin standards, the impact on Allium species was insignificant (p > 0.05). Nevertheless, synchrotron X-ray microscopy showed the localization of exogenously applied calcium to the apoplast in the epidermal cells of Allium fistulosum. Exogenous calcium application increased viscosity and resistance to shear force in Allium fistulosum, suggesting the formation of calcium cross-linkages ("egg-box" structures). Moreover, Allium fistulosum (freezing tolerant) was also more tolerant to dehydration stress compared to Allium cepa (freezing sensitive). Furthermore, the addition of boric acid (H3BO3) to pure pectin reduced water loss and increased viscosity, which indicates the formation of RG-II dimers. The Arabidopsis boron transport mutant, bor1, expressed greater water loss and, based on the lesion area of leaf tissue, a greater susceptibility to Colletotrichum higginsianum and Botrytis cinerea. While pectin modifications in the cell wall are likely not the sole solution to dehydration and biotic stress resistance, they appear to play an important role against multiple stresses.
Collapse
Affiliation(s)
- Ariana D. Forand
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (A.D.F.); (S.W.)
| | - Y. Zou Finfrock
- Advanced Photo Source, Lemont, IL 60439, USA;
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada; (M.L.); (J.S.); (C.K.)
| | - Miranda Lavier
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada; (M.L.); (J.S.); (C.K.)
| | - Jarvis Stobbs
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada; (M.L.); (J.S.); (C.K.)
| | - Li Qin
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (L.Q.); (Y.W.)
| | - Sheng Wang
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (A.D.F.); (S.W.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Chithra Karunakaran
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada; (M.L.); (J.S.); (C.K.)
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (L.Q.); (Y.W.)
| | - Supratim Ghosh
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| | - Karen K. Tanino
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (A.D.F.); (S.W.)
| |
Collapse
|
45
|
Li Z, Gao L, Chang P, Chen Z, Zhang X, Yin W, Fan Y, Wang X. The Impact of Elsinoë ampelina Infection on Key Metabolic Properties in Vitis vinifera 'Red Globe' Berries via Multiomics Approaches. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:15-27. [PMID: 34533970 DOI: 10.1094/mpmi-09-21-0225-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Grape anthracnose caused by Elsinoë ampelina (Shear) is one of the most serious fungal diseases that lead to the quality reduction and yield losses of grape (Vitis vinifera 'Red Globe') berries. In the present study, metabolome and transcriptome analyses were conducted using grape berries in the field after infection with E. ampelina at 7, 10, and 13 days to identify the metabolic properties of berries. In total, 132 metabolites with significant differences and 6,877 differentially expressed genes were detected and shared by three comparisons. The analyses demonstrated that phenylpropanoid, flavonoid, stilbenoid, and nucleotide metabolisms were enriched in E. ampelina-infected grape berries but not amino acid metabolism. Phenolamide, terpene, and polyphenole contents also accumulated during E. ampelina infection. The results provided evidence of the enhancement of secondary metabolites such as resveratrol, α-viniferin, ε-viniferin, and lignins involved in plant defense. The results showed the plant defense-associated metabolic reprogramming caused by E. ampelina infection in grape berry and provided a global metabolic mechanism under E. ampelina stimulation.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linlin Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pingping Chang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziqiu Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiuming Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wuchen Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanchun Fan
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
46
|
Dhatterwal P, Mehrotra S, Miller AJ, Mehrotra R. Promoter profiling of Arabidopsis amino acid transporters: clues for improving crops. PLANT MOLECULAR BIOLOGY 2021; 107:451-475. [PMID: 34674117 DOI: 10.1007/s11103-021-01193-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The review describes the importance of amino acid transporters in plant growth, development, stress tolerance, and productivity. The promoter analysis provides valuable insights into their functionality leading to agricultural benefits. Arabidopsis thaliana genome is speculated to possess more than 100 amino acid transporter genes. This large number suggests the functional significance of amino acid transporters in plant growth and development. The current article summarizes the substrate specificity, cellular localization, tissue-specific expression, and expression of the amino acid transporter genes in response to environmental cues. However, till date functionality of a majority of amino acid transporter genes in plant development and stress tolerance is unexplored. Considering, that gene expression is mainly regulated by the regulatory motifs localized in their promoter regions at the transcriptional levels. The promoter regions ( ~ 1-kbp) of these amino acid transporter genes were analysed for the presence of cis-regulatory motifs responsive to developmental and external cues. This analysis can help predict the functionality of known and unexplored amino acid transporters in different tissues, organs, and various growth and development stages and responses to external stimuli. Furthermore, based on the promoter analysis and utilizing the microarray expression data we have attempted to identify plausible candidates (listed below) that might be targeted for agricultural benefits.
Collapse
Affiliation(s)
- Pinky Dhatterwal
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K.K. Birla Goa Campus, Goa, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K.K. Birla Goa Campus, Goa, India
| | - Anthony J Miller
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K.K. Birla Goa Campus, Goa, India.
| |
Collapse
|
47
|
Sow MD, Le Gac AL, Fichot R, Lanciano S, Delaunay A, Le Jan I, Lesage-Descauses MC, Citerne S, Caius J, Brunaud V, Soubigou-Taconnat L, Cochard H, Segura V, Chaparro C, Grunau C, Daviaud C, Tost J, Brignolas F, Strauss SH, Mirouze M, Maury S. RNAi suppression of DNA methylation affects the drought stress response and genome integrity in transgenic poplar. THE NEW PHYTOLOGIST 2021; 232:80-97. [PMID: 34128549 DOI: 10.1111/nph.17555] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/08/2021] [Indexed: 05/27/2023]
Abstract
Trees are long-lived organisms that continuously adapt to their environments, a process in which epigenetic mechanisms are likely to play a key role. Via downregulation of the chromatin remodeler DECREASED IN DNA METHYLATION 1 (DDM1) in poplar (Populus tremula × Populus alba) RNAi lines, we examined how DNA methylation coordinates genomic and physiological responses to moderate water deficit. We compared the growth and drought response of two RNAi-ddm1 lines to wild-type (WT) trees under well-watered and water deficit/rewatering conditions, and analyzed their methylomes, transcriptomes, mobilomes and phytohormone contents in the shoot apical meristem. The RNAi-ddm1 lines were more tolerant to drought-induced cavitation but did not differ in height or stem diameter growth. About 5000 differentially methylated regions were consistently detected in both RNAi-ddm1 lines, colocalizing with 910 genes and 89 active transposable elements. Under water deficit conditions, 136 differentially expressed genes were found, including many involved in phytohormone pathways; changes in phytohormone concentrations were also detected. Finally, the combination of hypomethylation and drought led to the mobility of two transposable elements. Our findings suggest major roles for DNA methylation in regulation of genes involved in hormone-related stress responses, and the maintenance of genome integrity through repression of transposable elements.
Collapse
Affiliation(s)
- Mamadou D Sow
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Anne-Laure Le Gac
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Régis Fichot
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Sophie Lanciano
- IRD, UMR 232 DIADE, Université de Montpellier, Montpellier, 34090, France
- Laboratory of Plant Genome and Development, Université de Perpignan, Perpignan, 66860, France
| | - Alain Delaunay
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Isabelle Le Jan
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | | | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Jose Caius
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Orsay, 91405, France
| | - Véronique Brunaud
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Orsay, 91405, France
| | - Ludivine Soubigou-Taconnat
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Orsay, 91405, France
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, 63000, France
| | - Vincent Segura
- BioForA, INRAE, ONF, UMR 0588, Orléans, 45075, France
- UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Montpellier SupAgro, UMR 1334, Montpellier, F-34398, France
| | | | - Christoph Grunau
- UMR 5244, IHPE, Université de Perpignan, Perpignan, 66100, France
| | - Christian Daviaud
- Laboratory for Epigenetics and Environment Centre National de Recherche en Génomique Humaine, CEA- Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, 91057, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment Centre National de Recherche en Génomique Humaine, CEA- Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, 91057, France
| | - Franck Brignolas
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331-5752, USA
| | - Marie Mirouze
- IRD, UMR 232 DIADE, Université de Montpellier, Montpellier, 34090, France
- Laboratory of Plant Genome and Development, Université de Perpignan, Perpignan, 66860, France
| | - Stéphane Maury
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| |
Collapse
|
48
|
Fu R, Zhang H, Zhao Y, Wang L, Wang S, Li J, Zhang J. Transcriptomic and metabolomic profiling revealed the role of succinoglycan Riclin octaose in eliciting the defense response of Solanum tuberosum. Appl Microbiol Biotechnol 2021; 105:7439-7450. [PMID: 34536104 DOI: 10.1007/s00253-021-11588-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022]
Abstract
Activating the defense response of plants by elicitors provides a promising method for biocontrol of pathogens. The homogeneous octaose (RiOc) which was depolymerized from the succinoglycan Riclin was investigated as a novel elicitor to activate the immune system of potato (Solanum tuberosum L.). After foliar spray, RiOc quickly induced accumulation of reactive oxygen species in potato leaves in a dose-dependent manner. Transcriptomic analysis revealed that 2712 out of 30,863 genes were differentially expressed at the early stage (24 h), while 367 of them were changed later (72 h). Results from the transcriptome and quantitative RT-PCR suggested that RiOc was probably perceived by the receptor LYK3 and it activated the MKK2/3/9/-MPK6/7 signaling cascade and promoted the salicylic acid-mediated defense response. Meanwhile, RiOc changed the metabolome profile of potato leaves over time as demonstrated by the 1H NMR-based metabolomic analysis. Homeostasis of amino acids was affected at the early stage while the secondary metabolism was strengthened later. More importantly, RiOc significantly reduced the severity of potato leaf lesions caused by the late blight pathogen Phytophthora infestans. In conclusion, RiOc effectively improved the resistance of potato to P. infestans by eliciting the salicylic acid-mediated defense response. RiOc becomes a promising carbohydrate-based elicitor for biocontrol of plant pathogens. KEY POINTS: • Homogeneous Riclin octaose was a novel elicitor for biocontrol of plant pathogens. • Riclin octaose primed the salicylic acid-mediated defense response of potato plants. • Riclin octaose changed the metabolome profile of potato leaves over time.
Collapse
Affiliation(s)
- Renjie Fu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Huijuan Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Yu Zhao
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Lei Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Shiming Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Jing Li
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China. .,School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| |
Collapse
|
49
|
Deletion of the Bcnrps1 Gene Increases the Pathogenicity of Botrytis cinerea and Reduces Its Tolerance to the Exogenous Toxic Substances Spermidine and Pyrimethanil. J Fungi (Basel) 2021; 7:jof7090721. [PMID: 34575759 PMCID: PMC8467525 DOI: 10.3390/jof7090721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
During the infection of grapevine (Vitis vinifera) by the fungus Botrytis cinerea, the concentration of polyamines, which are toxic substances for the phytopathogen, increases in the grape. Nine NRPS genes have been identified in the genome of B. cinerea, yet the function of five of them remains unknown. For this reason, we have studied the expression of the 9 NRPS genes by RT-qPCR in a medium supplemented with sublethal concentrations of three polyamines (1,3-diaminopropane (1,3-DAP), spermidine (SPD), and spermine (SPM)). Our results show that the presence of polyamines in the culture medium triggered the overexpression of the Bcnrps1 gene in the pathogen. Deleting Bcnrps1 did not affect mycelial growth or adaptation to osmotic stress, and we show that its expression is not essential for the cycle of infection of the B. cinerea. However, mutating the Bcnrps1 gene resulted in overexpression of the Bcnrps6 gene, which encodes for the excretion of siderophores of the coprogen family. Moreover, gene deletion has reduced the tolerance of B. cinerea B05.10 to toxic substances such as the polyamine SPD and the fungicide pyrimethanil, and its virulence has increased. Our findings provide new insights into the function of the Bcnrps1 gene and its involvement in the tolerance of B. cinerea against exogenous toxic compounds.
Collapse
|
50
|
McIntyre KE, Bush DR, Argueso CT. Cytokinin Regulation of Source-Sink Relationships in Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:677585. [PMID: 34504504 PMCID: PMC8421792 DOI: 10.3389/fpls.2021.677585] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/12/2021] [Indexed: 06/01/2023]
Abstract
Cytokinins are plant hormones known for their role in mediating plant growth. First discovered for their ability to promote cell division, this class of hormones is now associated with many other cellular and physiological functions. One of these functions is the regulation of source-sink relationships, a tightly controlled process that is essential for proper plant growth and development. As discovered more recently, cytokinins are also important for the interaction of plants with pathogens, beneficial microbes and insects. Here, we review the importance of cytokinins in source-sink relationships in plants, with relation to both carbohydrates and amino acids, and highlight a possible function for this regulation in the context of plant biotic interactions.
Collapse
Affiliation(s)
- Kathryn E. McIntyre
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Daniel R. Bush
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Cristiana T. Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|