1
|
Chen Y, Zhou Y, Chen J, Cai H, Yang R, Zhang D, Huang Y. Mechanisms of Chinese Hickory Resistance to Dry Rot Disease by Botryosphaeria dothidea: A Comprehensive Analysis from Gene Expression to Non-Coding RNAs. PLANTS (BASEL, SWITZERLAND) 2025; 14:793. [PMID: 40094748 PMCID: PMC11901809 DOI: 10.3390/plants14050793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Chinese hickory (Carya cathayensis) is an important tree species for agriculture, but dry rot disease, caused by Botryosphaeria dothidea, threatens its viability. To study the interactions between the tree and the pathogen, transcriptomic sequencing was conducted on infected and healthy tissues from field-grown hickory. Differential gene expression analysis identified key defense pathways and genes activated during infection. The study also explored the roles of non-coding RNAs, such as lncRNAs and circRNAs, in the tree's defense. The results showed that during the early and mid stages of infection, the tree defends itself through mechanisms like enhanced lignin synthesis and increased peroxidase activity. Non-coding RNAs contribute to disease resistance by reinforcing the cell wall, increasing oxidase activity, and promoting the synthesis of antibiotic-related secondary metabolites. Additionally, gene expression patterns at these stages differ significantly from those at the late stage of infection, when most disease resistance pathways are suppressed, and genes like PR1 and WRKY2 show a decline. These findings offer valuable insights into the pathogenesis of Chinese hickory dry rot disease and potential strategies for improving resistance.
Collapse
Affiliation(s)
- Yingshan Chen
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; (Y.C.); (Y.Z.); (J.C.); (H.C.); (R.Y.); (D.Z.)
- Provincial Key Laboratory for Non-Wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuke Zhou
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; (Y.C.); (Y.Z.); (J.C.); (H.C.); (R.Y.); (D.Z.)
- Provincial Key Laboratory for Non-Wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou 311300, China
| | - Jiahui Chen
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; (Y.C.); (Y.Z.); (J.C.); (H.C.); (R.Y.); (D.Z.)
- Provincial Key Laboratory for Non-Wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou 311300, China
| | - Haoming Cai
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; (Y.C.); (Y.Z.); (J.C.); (H.C.); (R.Y.); (D.Z.)
- Provincial Key Laboratory for Non-Wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou 311300, China
| | - Ruifeng Yang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; (Y.C.); (Y.Z.); (J.C.); (H.C.); (R.Y.); (D.Z.)
- Provincial Key Laboratory for Non-Wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou 311300, China
| | - Da Zhang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; (Y.C.); (Y.Z.); (J.C.); (H.C.); (R.Y.); (D.Z.)
- Provincial Key Laboratory for Non-Wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou 311300, China
| | - Youjun Huang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; (Y.C.); (Y.Z.); (J.C.); (H.C.); (R.Y.); (D.Z.)
- Provincial Key Laboratory for Non-Wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
2
|
Gao Z, Su Y, Jiao G, Lou Z, Chang L, Yu R, Xu C, Han X, Wang Z, Li J, Deng XW, He H. Cell-Type Specific miRNA Regulatory Network Responses to ABA Stress Revealed by Time Series Transcriptional Atlases in Arabidopsis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415083. [PMID: 39792694 PMCID: PMC11884551 DOI: 10.1002/advs.202415083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Indexed: 01/12/2025]
Abstract
In plants, microRNAs (miRNAs) participate in complex gene regulatory networks together with the transcription factors (TFs) in response to biotic and abiotic stresses. To date, analyses of miRNAs-induced transcriptome remodeling are at the whole plant or tissue levels. Here, Arabidopsis's ABA-induced single-cell RNA-seq (scRNA-seq) is performed at different stages of time points-early, middle, and late. Single-cell level primary miRNAs (pri-miRNAs) atlas supported the rapid, dynamic, and cell-type specific miRNA responses under ABA treatment. MiRNAs respond rapidly and prior to target gene expression dynamics, and these rapid response miRNAs are highly cell-type specific, especially in mesophyll and vascular cells. MiRNA-TF-mRNA regulation modules are identified by identifying miRNA-contained feed-forward loops (M-FFLs) in the regulatory network, and regulatory networks with M-FFLs have higher co-expression and clustering coefficient (CC) values than those without M-FFLs, suggesting the hub role of miRNAs in regulatory networks. The cell-type-specific M-FFLs are regulated by these hub miRNAs rather than TFs through sc-RNA-seq network analysis. MiR858a-FBH3-MYB module inhibited the expression of MYB63 and MYB20, which related to the formation of plant secondary wall and the production of lignin, through M-FFL specifically in vascular. These results can provide prominent insights into miRNAs' dynamic and cell-type-specific roles in plant development and stress responses.
Collapse
Affiliation(s)
- Zhaoxu Gao
- School of Advanced Agriculture Sciences and School of Life SciencesState Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
- Institute of Crop ScienceChinese Academy of Agricultural Sciences (CAAS)Beijing100081China
| | - Yanning Su
- School of Advanced Agriculture Sciences and School of Life SciencesState Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
| | - Guanzhong Jiao
- School of Advanced Agriculture Sciences and School of Life SciencesState Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
| | - Zhiying Lou
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Le Chang
- School of Advanced Agriculture Sciences and School of Life SciencesState Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
| | - Renbo Yu
- Tropical Crops Genetic Resources InstituteChinese Academy of Tropical Agricultural SciencesHaikou571101China
| | - Chao Xu
- School of Advanced Agriculture Sciences and School of Life SciencesState Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
| | - Xue Han
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Zejia Wang
- School of Advanced Agriculture Sciences and School of Life SciencesState Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
| | - Jian Li
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Xing Wang Deng
- School of Advanced Agriculture Sciences and School of Life SciencesState Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Hang He
- School of Advanced Agriculture Sciences and School of Life SciencesState Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| |
Collapse
|
3
|
Jardim-Messeder D, de Souza-Vieira Y, Sachetto-Martins G. Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought. PLANTS (BASEL, SWITZERLAND) 2025; 14:208. [PMID: 39861561 PMCID: PMC11768152 DOI: 10.3390/plants14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development. Hormonal signaling and the maintenance of ROS homeostasis are interconnected, playing indispensable roles in growth, development, and stress responses and orchestrating diverse molecular responses during environmental adversities. Nine principal classes of phytohormones have been categorized: auxins, brassinosteroids, cytokinins, and gibberellins primarily oversee developmental growth regulation, while abscisic acid, ethylene, jasmonic acid, salicylic acid, and strigolactones are the main orchestrators of environmental stress responses. Coordination between phytohormones and transcriptional regulation is crucial for effective plant responses, especially in drought stress. Understanding the interplay of ROS and phytohormones is pivotal for elucidating the molecular mechanisms involved in plant stress responses. This review provides an overview of the intricate relationship between ROS, redox metabolism, and the nine different phytohormones signaling in plants, shedding light on potential strategies for enhancing drought tolerance for sustainable crop production.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygor de Souza-Vieira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Gilberto Sachetto-Martins
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
4
|
Luo F, Yin M, Zhou J, Zhou X, Wang C, Zhang W, Chen L, Lee D. Integrative Transcriptomic and Small RNA Analysis Uncovers Key Genes for Cold Resistance in Rice. Genes (Basel) 2024; 16:38. [PMID: 39858585 PMCID: PMC11765247 DOI: 10.3390/genes16010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cold stress is the main environmental factor that affects the growth and development of rice, leading to a decrease in its yield and quality. However, the molecular mechanism of rice's low-temperature resistance remains incompletely understood. METHODS In this study, we conducted a joint analysis of miRNA and mRNA expression profiles in the cold-resistant material Yongning red rice and the cold-sensitive material B3 using high-throughput sequencing. RESULTS 194 differentially expressed miRNAs (DEMIs) and 14,671 differentially expressed mRNAs (DEMs) were identified. Among them, 19 DEMIs, including miR1437, miR1156, miR166, miR1861, and miR396_2 family members, showed opposite expression during the early or late stages of low-temperature treatment in two varieties, while 13 DEMIs were specifically expressed in Yongning red rice, indicating that these miRNAs are involved in rice's resistance to low temperature. In the transcriptome analysis, 218 DEMs exhibited opposite expressions during the early or late stages of low-temperature treatment in two varieties. GO enrichment analysis indicated that these DEMs were enriched in biological processes such as a defense response to fungi, a defense response to bacteria, a plant-type cell wall modification, single-organism cellular processes, a response to chitin, and the regulation of a plant-type hypersensitive response, as well as in cellular components such as the apoplast, nucleus, vacuole, plasma membrane, and plasmodesma. Twenty-one genes were further selected as potential candidates for low-temperature resistance. The joint analysis of miRNA and mRNA expression profiles showed that 38 miRNAs corresponding to 39 target genes were candidate miRNA-mRNA pairs for low-temperature resistance. CONCLUSIONS This study provides valuable resources for determining the changes in miRNA and mRNA expression profiles induced by low temperatures and enables the provision of valuable information for further investigating the molecular mechanisms of plant resistance to low temperatures and for the genetic improvement of cold-resistant varieties.
Collapse
Affiliation(s)
- Fan Luo
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (F.L.); (M.Y.); (X.Z.); (C.W.); (W.Z.)
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615013, China
| | - Mengmeng Yin
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (F.L.); (M.Y.); (X.Z.); (C.W.); (W.Z.)
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615013, China
| | - Jianping Zhou
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Xiaoli Zhou
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (F.L.); (M.Y.); (X.Z.); (C.W.); (W.Z.)
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615013, China
| | - Chunli Wang
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (F.L.); (M.Y.); (X.Z.); (C.W.); (W.Z.)
| | - Wenfeng Zhang
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (F.L.); (M.Y.); (X.Z.); (C.W.); (W.Z.)
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615013, China
| | - Lijuan Chen
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Dongsun Lee
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (F.L.); (M.Y.); (X.Z.); (C.W.); (W.Z.)
| |
Collapse
|
5
|
Pegler JL, Oultram JMJ, Grof CPL, Eamens AL. DRB1, DRB2 and DRB4 Are Required for an Appropriate miRNA-Mediated Molecular Response to Osmotic Stress in Arabidopsis thaliana. Int J Mol Sci 2024; 25:12562. [PMID: 39684274 DOI: 10.3390/ijms252312562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Arabidopsis thaliana (Arabidopsis) double-stranded RNA binding (DRB) proteins DRB1, DRB2 and DRB4 perform essential roles in microRNA (miRNA) production, with many of the produced miRNAs mediating aspects of the molecular response of Arabidopsis to abiotic stress. Exposure of the drb1, drb2 and drb4 mutants to mannitol stress showed drb2 to be the most sensitive to this form of osmotic stress. Profiling of the miRNA landscapes of mannitol-stressed drb1, drb2 and drb4 seedlings via small RNA sequencing, and comparison of these to the profile of mannitol-stressed wild-type Arabidopsis plants, revealed that the ability of the drb1 and drb2 mutants to mount an appropriate miRNA-mediated molecular response to mannitol stress was defective. RT-qPCR was next used to further characterize seven miRNA/target gene expression modules, with this analysis identifying DRB1 as the primary DRB protein required for miR160, miR164, miR167 and miR396 production. In addition, via its antagonism of DRB1 function, DRB2 was shown by RT-qPCR to play a secondary role in regulating the production of these four miRNAs. This analysis further showed that DRB1, DRB2 and DRB4 are all required to regulate the production of miR399 and miR408, and that DRB4 is the primary DRB protein required to produce the non-conserved miRNA, miR858. Finally, RT-qPCR was used to reveal that each of the seven characterized miRNA/target gene expression modules responded differently to mannitol-induced osmotic stress in each of the four assessed Arabidopsis lines. In summary, this research has identified mannitol-stress-responsive miRNA/target gene expression modules that can be molecularly manipulated in the future to generate novel Arabidopsis lines with increased tolerance to this form of osmotic stress.
Collapse
Affiliation(s)
- Joseph L Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jackson M J Oultram
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Christopher P L Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Andrew L Eamens
- Seaweed Research Group, School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
6
|
Salehin M. Emerging roles of auxin in plant abiotic stress tolerance. PHYSIOLOGIA PLANTARUM 2024; 176:e14601. [PMID: 39489540 DOI: 10.1111/ppl.14601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 11/05/2024]
Abstract
Plants are continuously attacked by several biotic and abiotic factors. Among abiotic factors, heat, cold, drought, and salinity are common stresses. Plants produce several hormones as their main weapon in fightback against these stresses. Among these hormones, the role of auxin is well established in regulating plant growth and development at various scales. However, in recent literature, the important role of auxin in abiotic stress tolerance has emerged. Several auxin signalling and transport mutants exhibit heat, drought, and salinity-related phenotypes. Among them, auxin-mediated hypocotyl elongation and root growth in response to increased heat are of importance due to the continuous rise in global temperature. Auxin is also involved in regulating and recruiting specialized metabolites like aliphatic glucosinolate to defend themselves from drought stress. Aliphatic glucosinolate (A-GLS) regulates guard cell closure using auxin, which is independent of the major abiotic stress hormone abscisic acid. This regulatory mechanism serves as an additional layer of guard cell movement to protect plants from drought. Transferring the aliphatic glucosinolate pathway into non-brassica plants such as rice and soybean holds the promise to improve drought tolerance. In addition to these, post-translational modification of auxin signalling components and redistribution of auxin efflux transporters are also playing important roles in drought and salt tolerance and, hence, may be exploited to breed drought-tolerant crops. Also, reactive oxygen species, along with peptide hormone and auxin signalling, are important in root growth under stress. In conclusion, we summarize recent discoveries that suggest auxin is involved in various abiotic stresses.
Collapse
Affiliation(s)
- Mohammad Salehin
- Department of Biology, North Carolina A&T State University, Greensboro, NC
| |
Collapse
|
7
|
Liang Y, Yang X, Wang C, Wang Y. miRNAs: Primary modulators of plant drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2024; 301:154313. [PMID: 38991233 DOI: 10.1016/j.jplph.2024.154313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Drought is a principal environmental factor that affects the growth and development of plants. Accordingly, plants have evolved adaptive mechanisms to cope with adverse environmental conditions. One of the mechanisms is gene regulation mediated by microRNAs (miRNAs). miRNAs are regarded as primary modulators of gene expression at the post-transcriptional level and have been shown to participate in drought stress response, including ABA response, auxin signaling, antioxidant defense, and osmotic regulation through downregulating the corresponding targets. miRNA-based genetic reconstructions have the potential to improve the tolerance of plants to drought. However, there are few precise classification and discussion of miRNAs in specific response behaviors to drought stress and their applications. This review summarized and discussed the specific response behaviors of miRNAs under drought stress and the role of miRNAs as regulators in the response of plants to drought and highlighted that the modification of miRNAs might effectively improve the tolerance of plants to drought.
Collapse
Affiliation(s)
- Yanting Liang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoqian Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
8
|
Yang Y, Liang Y, Wang C, Wang Y. MicroRNAs as potent regulators in nitrogen and phosphorus signaling transduction and their applications. STRESS BIOLOGY 2024; 4:38. [PMID: 39264517 PMCID: PMC11393275 DOI: 10.1007/s44154-024-00181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/18/2024] [Indexed: 09/13/2024]
Abstract
Nitrogen (N) and phosphorus (Pi) are essential macronutrients that affect plant growth and development by influencing the molecular, metabolic, biochemical, and physiological responses at the local and whole levels in plants. N and Pi stresses suppress the physiological activities of plants, resulting in agricultural productivity losses and severely threatening food security. Accordingly, plants have elaborated diverse strategies to cope with N and Pi stresses through maintaining N and Pi homeostasis. MicroRNAs (miRNAs) as potent regulators fine-tune N and Pi signaling transduction that are distinct and indivisible from each other. Specific signals, such as noncoding RNAs (ncRNAs), interact with miRNAs and add to the complexity of regulation. Elucidation of the mechanisms by which miRNAs regulate N and Pi signaling transduction aids in the breeding of plants with strong tolerance to N and Pi stresses and high N and Pi use efficiency by fine-tuning MIR genes or miRNAs. However, to date, there has been no detailed and systematic introduction and comparison of the functions of miRNAs in N and Pi signaling transduction from the perspective of miRNAs and their applications. Here, we summarized and discussed current advances in the involvement of miRNAs in N and Pi signaling transduction and highlighted that fine-tuning the MIR genes or miRNAs involved in maintaining N and Pi homeostasis might provide valuable sights for sustainable agriculture.
Collapse
Affiliation(s)
- Yuzhang Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanting Liang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
9
|
Liu L, Yahaya BS, Li J, Wu F. Enigmatic role of auxin response factors in plant growth and stress tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1398818. [PMID: 38903418 PMCID: PMC11188990 DOI: 10.3389/fpls.2024.1398818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Abiotic and biotic stresses globally constrain plant growth and impede the optimization of crop productivity. The phytohormone auxin is involved in nearly every aspect of plant development. Auxin acts as a chemical messenger that influences gene expression through a short nuclear pathway, mediated by a family of specific DNA-binding transcription factors known as Auxin Response Factors (ARFs). ARFs thus act as effectors of auxin response and translate chemical signals into the regulation of auxin responsive genes. Since the initial discovery of the first ARF in Arabidopsis, advancements in genetics, biochemistry, genomics, and structural biology have facilitated the development of models elucidating ARF action and their contributions to generating specific auxin responses. Yet, significant gaps persist in our understanding of ARF transcription factors despite these endeavors. Unraveling the functional roles of ARFs in regulating stress response, alongside elucidating their genetic and molecular mechanisms, is still in its nascent phase. Here, we review recent research outcomes on ARFs, detailing their involvement in regulating leaf, flower, and root organogenesis and development, as well as stress responses and their corresponding regulatory mechanisms: including gene expression patterns, functional characterization, transcriptional, post-transcriptional and post- translational regulation across diverse stress conditions. Furthermore, we delineate unresolved questions and forthcoming challenges in ARF research.
Collapse
Affiliation(s)
- Ling Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Baba Salifu Yahaya
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| |
Collapse
|
10
|
Luo H, Yang J, Liu S, Li S, Si H, Zhang N. Control of Plant Height and Lateral Root Development via Stu-miR156 Regulation of SPL9 Transcription Factor in Potato. PLANTS (BASEL, SWITZERLAND) 2024; 13:723. [PMID: 38475569 DOI: 10.3390/plants13050723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
MicroRNAs (miRNAs) are a class of endogenous, non-coding small-molecule RNAs that usually regulate the expression of target genes at the post-transcriptional level. miR156 is one of a class of evolutionarily highly conserved miRNA families. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor is one of the target genes that is regulated by miR156. SPL transcription factors are involved in regulating plant growth and development, hormone response, stress response, and photosynthesis. In the present study, transgenic potato plants with overexpressed miR156 were obtained via the Agrobacterium-mediated transformation method. The results showed that the expression levels of the target gene, StSPL9, were all downregulated in the transgenic plants with overexpressed Stu-miR156. Compared with those of the control plants, the plant height and root length of the transgenic plants were significantly decreased, while the number of lateral roots was significantly increased. These results revealed that the miR156/SPLs module was involved in regulating potato plant height and root growth.
Collapse
Affiliation(s)
- Hongyu Luo
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shengyan Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Shigui Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
11
|
Kalra A, Goel S, Elias AA. Understanding role of roots in plant response to drought: Way forward to climate-resilient crops. THE PLANT GENOME 2024; 17:e20395. [PMID: 37853948 DOI: 10.1002/tpg2.20395] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
Drought stress leads to a significant amount of agricultural crop loss. Thus, with changing climatic conditions, it is important to develop resilience measures in agricultural systems against drought stress. Roots play a crucial role in regulating plant development under drought stress. In this review, we have summarized the studies on the role of roots and root-mediated plant responses. We have also discussed the importance of root system architecture (RSA) and the various structural and anatomical changes that it undergoes to increase survival and productivity under drought. Various genes, transcription factors, and quantitative trait loci involved in regulating root growth and development are also discussed. A summarization of various instruments and software that can be used for high-throughput phenotyping in the field is also provided in this review. More comprehensive studies are required to help build a detailed understanding of RSA and associated traits for breeding drought-resilient cultivars.
Collapse
Affiliation(s)
- Anmol Kalra
- Department of Botany, University of Delhi, North Campus, Delhi, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, North Campus, Delhi, India
| | - Ani A Elias
- ICFRE - Institute of Forest Genetics and Tree Breeding (ICFRE - IFGTB), Coimbatore, India
| |
Collapse
|
12
|
Kaur G, Jain S, Bhushan S, Das N, Sharma M, Sharma D. Role of microRNAs and their putative mechanism in regulating potato (Solanum tuberosum L.) life cycle and response to various environmental stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108334. [PMID: 38219424 DOI: 10.1016/j.plaphy.2024.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/31/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
The exponentially increasing population and the demand for food is inextricably linked. This has shifted global attention to improving crop plant traits to meet global food demands. Potato (Solanum tuberosum L.) is a major non-grain food crop that is grown all over the world. Currently, some of the major global potato research work focuses on the significance of microRNAs (miRNAs) in potato. miRNAs are a type of non-coding RNAs that regulate the gene expression of their target mRNA genes by cleavage and/or their translational inhibition. This suggests an essential role of miRNAs in a multitude of plant biological processes, including maintenance of genome integrity, plant growth, development and maturation, and initiation of responses to various stress conditions. Therefore, engineering miRNAs to generate stress-resistant varieties of potato may result in high yield and improved nutritional qualities. In this review, we discuss the potato miRNAs specifically known to play an essential role in the various stages of the potato life cycle, conferring stress-resistant characteristics, and modifying gene expression. This review highlights the significance of the miRNA machinery in plants, especially potato, encouraging further research into engineering miRNAs to boost crop yields and tolerance towards stress.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| | - Sahil Jain
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Sakshi Bhushan
- Department of Botany, Central University of Jammu, Jammu and Kashmir (UT), India
| | - Niranjan Das
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| | - Munish Sharma
- Department of Plant Science, Central University of Himachal Pradesh, Shahpur Parisar, Kangra, Himachal Pradesh, India.
| | - Deepak Sharma
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
13
|
Kumar S, Sharma N, Sopory SK, Sanan-Mishra N. miRNAs and genes as molecular regulators of rice grain morphology and yield. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108363. [PMID: 38281341 DOI: 10.1016/j.plaphy.2024.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Rice is one of the most consumed crops worldwide and the genetic and molecular basis of its grain yield attributes are well understood. Various studies have identified different yield-related parameters in rice that are regulated by the microRNAs (miRNAs). MiRNAs are endogenous small non-coding RNAs that silence gene expression during or after transcription. They control a variety of biological or genetic activities in plants including growth, development and response to stress. In this review, we have summarized the available information on the genetic control of panicle architecture and grain yield (number and morphology) in rice. The miRNA nodes that are associated with their regulation are also described while focussing on the central role of miR156-SPL node to highlight the co-regulation of two master regulators that determine the fate of panicle development. Since abiotic stresses are known to negatively affect yield, the impact of abiotic stress induced alterations on the levels of these miRNAs are also discussed to highlight the potential of miRNAs for regulating crop yields.
Collapse
Affiliation(s)
- Sudhir Kumar
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neha Sharma
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Sudhir K Sopory
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
14
|
Zhang S, Han Y, Zeng Q, Wang C, Wang H, Zhang J, Cai M, Lu J, Chen T. Whole-Transcriptome Sequencing Reveals the Global Molecular Responses and NAC Transcription Factors Involved in Drought Stress in Dendrobium catenatum. Antioxidants (Basel) 2024; 13:94. [PMID: 38247518 PMCID: PMC10812421 DOI: 10.3390/antiox13010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Dendrobium catenatum is a highly drought-tolerant herb, which usually grows on cliffs or in the branches of trees, yet the underlying molecular mechanisms for its tolerance remain poorly understood. We conducted a comprehensive study utilizing whole-transcriptome sequencing approaches to investigate the molecular response to extreme drought stress in D. catenatum. A large number of differentially expressed mRNAs, lncRNAs, and circRNAs have been identified, and the NAC transcription factor family was highly enriched. Meanwhile, 46 genes were significantly up-regulated in the ABA-activated signaling pathway. In addition to the 89 NAC family members accurately identified in this study, 32 members were found to have different expressions between the CK and extreme drought treatment. They may regulate drought stress through both ABA-dependent and ABA-independent pathways. Moreover, the 32 analyzed differentially expressed DcNACs were found to be predominantly expressed in the floral organs and roots. The ceRNA regulatory network showed that DcNAC87 is at the core of the ceRNA network and is regulated by miR169, miR393, and four lncRNAs. These investigations provided valuable information on the role of NAC transcription factors in D. catenatum's response to drought stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiangjie Lu
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China; (S.Z.); (Y.H.); (Q.Z.); (C.W.); (H.W.); (J.Z.); (M.C.)
| | - Tao Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China; (S.Z.); (Y.H.); (Q.Z.); (C.W.); (H.W.); (J.Z.); (M.C.)
| |
Collapse
|
15
|
Zhang Z, Wang L, Chen W, Fu Z, Zhao S, E Y, Zhang H, Zhang B, Sun M, Han P, Chang Y, Tang K, Gao Y, Zhang H, Li X, Zheng W. Integration of mRNA and miRNA analysis reveals the molecular mechanisms of sugar beet (Beta vulgaris L.) response to salt stress. Sci Rep 2023; 13:22074. [PMID: 38086906 PMCID: PMC10716384 DOI: 10.1038/s41598-023-49641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/10/2023] [Indexed: 12/18/2023] Open
Abstract
The continuous increase of saline-alkali areas worldwide has led to the emergence of saline-alkali conditions, which are the primary abiotic stress or hindering the growth of plants. Beet is among the main sources of sugar, and its yield and sugar content are notably affected by saline-alkali stress. Despite sugar beet being known as a salt-tolerant crop, there are few studies on the mechanisms underlying its salt tolerance, and previous studies have mainly delineated the crop's response to stress induced by NaCl. Recently, advancements in miRNA-mRNA network analysis have led to an increased understanding of how plants, including sugar beet, respond to stress. In this study, seedlings of beet variety "N98122" were grown in the laboratory using hydroponics culture and were exposed to salt stress at 40 days of growth. According to the phenotypic adaptation of the seedlings' leaves from a state of turgidity to wilting and then back to turgidity before and after exposure, 18 different time points were selected to collect samples for analysis. Subsequently, based on the data of real-time quantitative PCR (qRT-PCR) of salt-responsive genes, the samples collected at the 0, 2.5, 7.5, and 16 h time points were subjected to further analysis with experimental materials. Next, mRNA-seq data led to the identification of 8455 differentially expressed mRNAs (DEMs) under exposure to salt stress. In addition, miRNA-seq based investigation retrieved 3558 miRNAs under exposure to salt stress, encompassing 887 known miRNAs belonging to 783 families and 2,671 novel miRNAs. With the integrated analysis of miRNA-mRNA network, 57 miRNA-target gene pairs were obtained, consisting of 55 DEMIs and 57 DEMs. Afterwards, we determined the pivotal involvement of aldh2b7, thic, and δ-oat genes in the response of sugar beet to the effect of salt stress. Subsequently, we identified the miRNAs novel-m035-5p and novel-m0365-5p regulating the aldh gene and miRNA novel-m0979-3p regulating the thic gene. The findings of miRNA and mRNA expression were validated by qRT-PCR.
Collapse
Affiliation(s)
- Ziqiang Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Liang Wang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Wenjin Chen
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Zengjuan Fu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Shangmin Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yuanyuan E
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Hui Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Bizhou Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Mengyuan Sun
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Pingan Han
- Inner Mongolia Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yue Chang
- Inner Mongolia Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Kuangang Tang
- Inner Mongolia Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yanyan Gao
- Linxi County Agriculture and Animal Husbandry Bureau, Chifeng, 025250, China
| | - Huizhong Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Xiaodong Li
- Inner Mongolia Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China.
| | - Wenzhe Zheng
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China.
| |
Collapse
|
16
|
Jing H, Wilkinson EG, Sageman-Furnas K, Strader LC. Auxin and abiotic stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7000-7014. [PMID: 37591508 PMCID: PMC10690732 DOI: 10.1093/jxb/erad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Plants are exposed to a variety of abiotic stresses; these stresses have profound effects on plant growth, survival, and productivity. Tolerance and adaptation to stress require sophisticated stress sensing, signaling, and various regulatory mechanisms. The plant hormone auxin is a key regulator of plant growth and development, playing pivotal roles in the integration of abiotic stress signals and control of downstream stress responses. In this review, we summarize and discuss recent advances in understanding the intersection of auxin and abiotic stress in plants, with a focus on temperature, salt, and drought stresses. We also explore the roles of auxin in stress tolerance and opportunities arising for agricultural applications.
Collapse
Affiliation(s)
- Hongwei Jing
- Department of Biology, Duke University, Durham, NC 27008, USA
| | | | | | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
17
|
Azad MF, Dawar P, Esim N, Rock CD. Role of miRNAs in sucrose stress response, reactive oxygen species, and anthocyanin biosynthesis in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1278320. [PMID: 38023835 PMCID: PMC10656695 DOI: 10.3389/fpls.2023.1278320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
In plants, sucrose is the main transported disaccharide that is the primary product of photosynthesis and controls a multitude of aspects of the plant life cycle including structure, growth, development, and stress response. Sucrose is a signaling molecule facilitating various stress adaptations by crosstalk with other hormones, but the molecular mechanisms are not well understood. Accumulation of high sucrose concentrations is a hallmark of many abiotic and biotic stresses, resulting in the accumulation of reactive oxygen species and secondary metabolite anthocyanins that have antioxidant properties. Previous studies have shown that several MYeloBlastosis family/MYB transcription factors are positive and negative regulators of sucrose-induced anthocyanin accumulation and subject to microRNA (miRNA)-mediated post-transcriptional silencing, consistent with the notion that miRNAs may be "nodes" in crosstalk signaling by virtue of their sequence-guided targeting of different homologous family members. In this study, we endeavored to uncover by deep sequencing small RNA and mRNA transcriptomes the effects of exogenous high sucrose stress on miRNA abundances and their validated target transcripts in Arabidopsis. We focused on genotype-by-treatment effects of high sucrose stress in Production of Anthocyanin Pigment 1-Dominant/pap1-D, an activation-tagged dominant allele of MYB75 transcription factor, a positive effector of secondary metabolite anthocyanin pathway. In the process, we discovered links to reactive oxygen species signaling through miR158/161/173-targeted Pentatrico Peptide Repeat genes and two novel non-canonical targets of high sucrose-induced miR408 and miR398b*(star), relevant to carbon metabolic fluxes: Flavonoid 3'-Hydroxlase (F3'H), an important enzyme in determining the B-ring hydroxylation pattern of flavonoids, and ORANGE a post-translational regulator of Phytoene Synthase expression, respectively. Taken together, our results contribute to understanding the molecular mechanisms of carbon flux shifts from primary to secondary metabolites in response to high sugar stress.
Collapse
Affiliation(s)
- Md. Fakhrul Azad
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Nevzat Esim
- Department of Molecular Biology and Genetics, Bіngöl University, Bingöl, Türkiye
| | - Christopher D. Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
18
|
Sharma A, Gupta A, Ramakrishnan M, Ha CV, Zheng B, Bhardwaj M, Tran LSP. Roles of abscisic acid and auxin in plants during drought: A molecular point of view. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108129. [PMID: 37897894 DOI: 10.1016/j.plaphy.2023.108129] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Plant responses to drought are mediated by hormones like ABA (abscisic acid) and auxin. These hormones regulate plant drought responses by modulating various physiological and biological processes via cell signaling. ABA accumulation and signaling are central to plant drought responses. Auxin also regulates plant adaptive responses to drought, especially via signal transduction mediated by the interaction between ABA and auxin. In this review, we explored the interactive roles of ABA and auxin in the modulation of stomatal movement, root traits and accumulation of reactive oxygen species associated with drought tolerance.
Collapse
Affiliation(s)
- Anket Sharma
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Aarti Gupta
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Chien Van Ha
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Mamta Bhardwaj
- Department of Botany, Hindu Girls College, Maharshi Dayanand University, Sonipat, 131001, India
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
19
|
Liao R, Wei X, Zhao Y, Xie Z, Nath UK, Yang S, Su H, Wang Z, Li L, Tian B, Wei F, Yuan Y, Zhang X. bra-miR167a Targets ARF8 and Negatively Regulates Arabidopsis thaliana Immunity against Plasmodiophora brassicae. Int J Mol Sci 2023; 24:11850. [PMID: 37511608 PMCID: PMC10380745 DOI: 10.3390/ijms241411850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Clubroot is a soil-borne disease caused by Plasmodiophora brassicae, which can seriously affect the growth and production of cruciferous crops, especially Chinese cabbage crops, worldwide. At present, few studies have been conducted on the molecular mechanism of this disease's resistance response. In this experiment, we analyzed the bioinformation of bra-miR167a, constructed a silencing vector (STTM167a) and an overexpression vector (OE-miR167a), and transformed them to Arabidopsis to confirm the role of miR167a in the clubroot resistance mechanism of Arabidopsis. Afterwards, phenotype analysis and expression level analysis of key genes were conducted on transgenic plants. From the result, we found that the length and number of lateral roots of silence transgenic Arabidopsis STTM167a was higher than that of WT and OE-miR167a. In addition, the STTM167a transgenic Arabidopsis induced up-regulation of disease resistance-related genes (PR1, PR5, MPK3, and MPK6) at 3 days after inoculation. On the other hand, the auxin pathway genes (TIR1, AFB2, and AFB3), which are involved in maintaining the balance of auxin/IAA and auxin response factor (ARF), were down-regulated. These results indicate that bra-miR167a is negative to the development of lateral roots and auxins, but positive to the expression of resistance-related genes. This also means that the STTM167a can improve the resistance of clubroot by promoting lateral root development and the level of auxin, and can induce resistance-related genes by regulating its target genes. We found a positive correlation between miR167a and clubroot disease, which is a new clue for the prevention and treatment of clubroot disease.
Collapse
Affiliation(s)
- Rujiao Liao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| | - Ujjal Kumar Nath
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Henan Su
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Lin Li
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Baoming Tian
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| | - Fang Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| |
Collapse
|
20
|
Lee KW, Chen JJW, Wu CS, Chang HC, Chen HY, Kuo HH, Lee YS, Chang YL, Chang HC, Shiue SY, Wu YC, Ho YC, Chen PW. Auxin plays a role in the adaptation of rice to anaerobic germination and seedling establishment. PLANT, CELL & ENVIRONMENT 2023; 46:1157-1175. [PMID: 36071575 DOI: 10.1111/pce.14434] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Auxin is well known to stimulate coleoptile elongation and rapid seedling growth in the air. However, its role in regulating rice germination and seedling establishment under submergence is largely unknown. Previous studies revealed that excessive levels of indole-3-acetic acid(IAA) frequently cause the inhibition of plant growth and development. In this study, the high-level accumulation of endogenous IAA is observed under dark submergence, stimulating rice coleoptile elongation but limiting the root and primary leaf growth during anaerobic germination (AG). We found that oxygen and light can reduce IAA levels, promote the seedling establishment and enhance rice AG tolerance. miRNA microarray profiling and RNA gel blot analysis results show that the expression of miR167 is negatively regulated by submergence; it subsequently modulates the accumulation of free IAA through the miR167-ARF-GH3 pathway. The OsGH3-8 encodes an IAA-amido synthetase that functions to prevent free IAA accumulation. Reduced miR167 levels or overexpressing OsGH3-8 increase auxin metabolism, reduce endogenous levels of free IAA and enhance rice AG tolerance. Our studies reveal that poor seed germination and seedling growth inhibition resulting from excessive IAA accumulation would cause intolerance to submergence in rice, suggesting that a certain threshold level of auxin is essential for rice AG tolerance.
Collapse
Affiliation(s)
- Kuo-Wei Lee
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Shen Wu
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Ho-Chun Chang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Hong-Yue Chen
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Hsin-Hao Kuo
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Ya-Shan Lee
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Yan-Lun Chang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Hung-Chia Chang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Shiau-Yu Shiue
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Yi-Chen Wu
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Yi-Cheng Ho
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Peng-Wen Chen
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
21
|
Chen Y, Yang W, Gao R, Chen Y, Zhou Y, Xie J, Zhang F. Genome-Wide Analysis of microRNAs and Their Target Genes in Dongxiang Wild Rice ( Oryza rufipogon Griff.) Responding to Salt Stress. Int J Mol Sci 2023; 24:ijms24044069. [PMID: 36835475 PMCID: PMC9960954 DOI: 10.3390/ijms24044069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Rice (Oryza sativa) is a staple food for more than half of the world's population, and its production is critical for global food security. Moreover, rice yield decreases when exposed to abiotic stresses, such as salinity, which is one of the most detrimental factors for rice production. According to recent trends, as global temperatures continue to rise due to climate change, more rice fields may become saltier. Dongxiang wild rice (Oryza rufipogon Griff., DXWR) is a progenitor of cultivated rice and has a high tolerance to salt stress, making it useful for studying the regulatory mechanisms of salt stress tolerance. However, the regulatory mechanism of miRNA-mediated salt stress response in DXWR remains unclear. In this study, miRNA sequencing was performed to identify miRNAs and their putative target genes in response to salt stress in order to better understand the roles of miRNAs in DXWR salt stress tolerance. A total of 874 known and 476 novel miRNAs were identified, and the expression levels of 164 miRNAs were found to be significantly altered under salt stress. The stem-loop quantitative real-time PCR (qRT-PCR) expression levels of randomly selected miRNAs were largely consistent with the miRNA sequencing results, suggesting that the sequencing results were reliable. The gene ontology (GO) analysis indicated that the predicted target genes of salt-responsive miRNAs were involved in diverse biological pathways of stress tolerance. This study contributes to our understanding of DXWR salt tolerance mechanisms regulated by miRNAs and may ultimately improve salt tolerance in cultivated rice breeding using genetic methods in the future.
Collapse
Affiliation(s)
- Yong Chen
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Wanling Yang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Rifang Gao
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yaling Chen
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yi Zhou
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Jiankun Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- Correspondence: (J.X.); (F.Z.)
| | - Fantao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (J.X.); (F.Z.)
| |
Collapse
|
22
|
Singh D, Debnath P, Sane AP, Sane VA. Tomato (Solanum lycopersicum) WRKY23 enhances salt and osmotic stress tolerance by modulating the ethylene and auxin pathways in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:330-340. [PMID: 36669348 DOI: 10.1016/j.plaphy.2023.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Osmotic stress is one of the biggest problems in agriculture, which adversely affects crop productivity. Plants adopt several strategies to overcome osmotic stresses that include transcriptional reprogramming and activation of stress responses mediated by different transcription factors and phytohormones. We have identified a WRKY transcription factor from tomato, SlWRKY23, which is induced by mannitol and NaCl treatment. Over-expression of SlWRKY23 in transgenic Arabidopsis enhances osmotic stress tolerance to mannitol and NaCl and affects root growth and lateral root number. Transgenic Arabidopsis over-expressing SlWRKY23 showed reduced electrolyte leakage and higher relative water content than Col-0 plants upon mannitol and NaCl treatment. These lines also showed better membrane integrity with lower MDA content and higher proline content than Col-0. Responses to mannitol were governed by auxin as treatment with TIBA (auxin transport inhibitor) negatively affected the osmotic tolerance in transgenic lines by inhibiting lateral root growth. Similarly, responses to NaCl were controlled by ethylene as treatment with AgNO3 (ethylene perception inhibitor) inhibited the stress response to NaCl by suppressing primary and lateral root growth. The study shows that SlWRKY23, a osmotic stress inducible gene in tomato, imparts tolerance to mannitol and NaCl stress through interaction of the auxin and ethylene pathways.
Collapse
Affiliation(s)
- Deepika Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Pratima Debnath
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vidhu A Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
23
|
Ding Y, Zou LH, Wu J, Ramakrishnan M, Gao Y, Zhao L, Zhou M. The pattern of DNA methylation alteration, and its association with the expression changes of non-coding RNAs and mRNAs in Moso bamboo under abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111451. [PMID: 36075278 DOI: 10.1016/j.plantsci.2022.111451] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Epigenetic changes play an important role in plant growth and development and in stress response. However, DNA methylation pattern and its relationship with the expression changes of non-coding RNAs and mRNAs of Moso bamboo in response to abiotic stress is still largely unknown. In this work, we used whole-genome bisulfite sequencing in combination with whole-transcriptome sequencing to analyze the DNA methylation and transcription patterns of mRNAs and non-coding RNAs in Moso bamboo under abiotic stresses such as cold, heat, ultraviolet (UV) and salinity. We found that CHH methylation in the promoter region was positively correlated with gene expression, while CHG and CHH methylations in the gene body regions were negatively associated with gene expression. Moreover, CG and CHG methylations in the promoter regions were negatively correlated with the transcript abundance of long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs). Similarly, the methylation levels of three contexts in the genic regions were negatively correlated with the transcript abundance of lncRNAs and miRNAs but positively correlated with that of circRNAs. In addition, we suggested that the reduction of 21-nt and 24-nt small interfering RNA (siRNA) expression tended to increase methylation levels in the genic regions. We found that stress-responsive genes such as CRPK1, HSFB2A and CIPK were differentially methylated and expressed. Our results also proposed that DNA methylation may regulate the expression of the transcription factors (TFs) and plant hormone signalling genes such as IAA9, MYC2 and ERF110 in response to abiotic stress. This study firstly reports the abiotic stress-responsive DNA methylation pattern and its involvement of expression of coding RNAs and non-coding RNAs in Moso bamboo. The results expand the knowledge of epigenetic mechanisms in Moso bamboo under abiotic stress and support in-depth deciphering of the function of specific non-coding RNAs in future studies.
Collapse
Affiliation(s)
- Yiqian Ding
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Long-Hai Zou
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China.
| | - Jiajun Wu
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Muthusamy Ramakrishnan
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Yubang Gao
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Liangzhen Zhao
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China; Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingbing Zhou
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China.
| |
Collapse
|
24
|
Ma C, Yuan S, Xie B, Li Q, Wang Q, Shao M. IAA Plays an Important Role in Alkaline Stress Tolerance by Modulating Root Development and ROS Detoxifying Systems in Rice Plants. Int J Mol Sci 2022; 23:ijms232314817. [PMID: 36499144 PMCID: PMC9740826 DOI: 10.3390/ijms232314817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
Auxin regulates plant growth and development, as well as helps plants to survive abiotic stresses, but the effects of auxin on the growth of alkaline-stressed rice and the underlying molecular and physiological mechanisms remain unknown. Through exogenous application of IAA/TIBA, this study explored the physiological and molecular mechanisms of alkaline stress tolerance enhancement using two rice genotypes. Alkaline stress was observed to damage the plant growth, while exogenous application of IAA mitigates the alkaline-stress-induce inhibition of plant growth. After application of exogenous IAA to alkaline-stressed rice, dry shoot biomass, foliar chlorophyll content, photosynthetic rate in the two rice genotypes increased by 12.6-15.6%, 11.7-40.3%, 51.4-106.6%, respectively. The adventitious root number, root surface area, total root length and dry root biomass in the two rice genotypes increased by 29.3-33.3%, 26.4-27.2%, 42.5-35.5% and 12.8-33.1%, respectively. The accumulation of H2O2, MAD were significantly decreased with the application of IAA. The activities of CAT, POD, and SOD in rice plants were significantly increased by exogenous application of IAA. The expression levels of genes controlling IAA biosynthesis and transport were significantly increased, while there were no significant effects on the gene expression that controlled IAA catabolism. These results showed that exogenous application of IAA could mitigate the alkaline-stress-induced inhibition of plant growth by regulating the reactive oxygen species scavenging system, root development and expression of gene involved in IAA biosynthesis, transport and catabolism. These results provide a new direction and empirical basis for improving crop alkaline tolerance with exogenous application of IAA.
Collapse
Affiliation(s)
- Changkun Ma
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Correspondence: (C.M.); (Q.W.)
| | - Shuai Yuan
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
| | - Biao Xie
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
| | - Qian Li
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
| | - Quanjiu Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Correspondence: (C.M.); (Q.W.)
| | - Mingan Shao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
25
|
Zhang Y, Zhou Y, Zhu W, Liu J, Cheng F. Non-coding RNAs fine-tune the balance between plant growth and abiotic stress tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:965745. [PMID: 36311129 PMCID: PMC9597485 DOI: 10.3389/fpls.2022.965745] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/26/2022] [Indexed: 05/24/2023]
Abstract
To survive in adverse environmental conditions, plants have evolved sophisticated genetic and epigenetic regulatory mechanisms to balance their growth and abiotic stress tolerance. An increasing number of non-coding RNAs (ncRNAs), including small RNAs (sRNAs) and long non-coding RNAs (lncRNAs) have been identified as essential regulators which enable plants to coordinate multiple aspects of growth and responses to environmental stresses through modulating the expression of target genes at both the transcriptional and posttranscriptional levels. In this review, we summarize recent advances in understanding ncRNAs-mediated prioritization towards plant growth or tolerance to abiotic stresses, especially to cold, heat, drought and salt stresses. We highlight the diverse roles of evolutionally conserved microRNAs (miRNAs) and small interfering RNAs (siRNAs), and the underlying phytohormone-based signaling crosstalk in regulating the balance between plant growth and abiotic stress tolerance. We also review current discoveries regarding the potential roles of ncRNAs in stress memory in plants, which offer their descendants the potential for better fitness. Future ncRNAs-based breeding strategies are proposed to optimize the balance between growth and stress tolerance to maximize crop yield under the changing climate.
Collapse
Affiliation(s)
- Yingying Zhang
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ye Zhou
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Junzhong Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Fang Cheng
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
26
|
Peng X, Feng C, Wang YT, Zhang X, Wang YY, Sun YT, Xiao YQ, Zhai ZF, Zhou X, Du BY, Wang C, Liu Y, Li TH. miR164g- MsNAC022 acts as a novel module mediating drought response by transcriptional regulation of reactive oxygen species scavenging systems in apple. HORTICULTURE RESEARCH 2022; 9:uhac192. [PMID: 36338839 PMCID: PMC9630969 DOI: 10.1093/hr/uhac192] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 08/22/2022] [Indexed: 05/27/2023]
Abstract
Under drought stress, reactive oxygen species (ROS) overaccumulate as a secondary stress that impairs plant performance and thus severely reduces crop yields. The mitigation of ROS levels under drought stress is therefore crucial for drought tolerance. MicroRNAs (miRNAs) are critical regulators of plant development and stress responses. However, the complex molecular regulatory mechanism by which they function during drought stress, especially in drought-triggered ROS scavenging, is not fully understood. Here, we report a newly identified drought-responsive miRNA, miR164g, in the wild apple species Malus sieversii and elucidate its role in apple drought tolerance. Our results showed that expression of miR164g is significantly inhibited under drought stress and it can specifically cleave transcripts of the transcription factor MsNAC022 in M. sieversii. The heterologous accumulation of miR164g in Arabidopsis thaliana results in enhanced sensitivity to drought stress, while overexpression of MsNAC022 in Arabidopsis and the cultivated apple line 'GL-3' (Malus domestica Borkh.) lead to enhanced tolerance to drought stress by raising the ROS scavenging enzymes activity and related genes expression levels, particularly PEROXIDASE (MsPOD). Furthermore, we showed that expression of MsPOD is activated by MsNAC022 in transient assays. Interestingly, Part1 (P1) region is the key region for the positive regulation of MsPOD promoter by MsNAC022, and the different POD expression patterns in M. sieversii and M. domestica is attributed to the specific fragments inserted in P1 region of M. sieversii. Our findings reveal the function of the miR164g-MsNAC022 module in mediating the drought response of M. sieversii and lay a foundation for breeding drought-tolerant apple cultivars.
Collapse
Affiliation(s)
- Xiang Peng
- State Key Laboratories of Agrobiotechnology, Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chen Feng
- State Key Laboratories of Agrobiotechnology, Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yan-Tao Wang
- Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiang Zhang
- State Key Laboratories of Agrobiotechnology, Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yan-Yan Wang
- State Key Laboratories of Agrobiotechnology, Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yue-Ting Sun
- State Key Laboratories of Agrobiotechnology, Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yu-Qin Xiao
- State Key Laboratories of Agrobiotechnology, Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ze-Feng Zhai
- State Key Laboratories of Agrobiotechnology, Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xin Zhou
- State Key Laboratories of Agrobiotechnology, Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Bing-Yang Du
- State Key Laboratories of Agrobiotechnology, Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chao Wang
- State Key Laboratories of Agrobiotechnology, Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yang Liu
- Corresponding authors. E-mails: ,
| | | |
Collapse
|
27
|
Ali S, Khan N, Tang Y. Epigenetic marks for mitigating abiotic stresses in plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153740. [PMID: 35716656 DOI: 10.1016/j.jplph.2022.153740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/02/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stressors are one of the major factors affecting agricultural output. Plants have evolved adaptive systems to respond appropriately to various environmental cues. These responses can be accomplished by modulating or fine-tuning genetic and epigenetic regulatory mechanisms. Understanding the response of plants' molecular features to abiotic stress is a priority in the current period of continued environmental changes. Epigenetic modifications are necessary that control gene expression by changing chromatin status and recruiting various transcription regulators. The present study summarized the current knowledge on epigenetic modifications concerning plant responses to various environmental stressors. The functional relevance of epigenetic marks in regulating stress tolerance has been revealed, and epigenetic changes impact the effector genes. This study looks at the epigenetic mechanisms that govern plant abiotic stress responses, especially DNA methylation, histone methylation/acetylation, chromatin remodeling, and various metabolites. Plant breeders will benefit from a thorough understanding of these processes to create alternative crop improvement approaches. Genome editing with clustered regularly interspaced short palindromic repeat/CRISPR-associated proteins (CRISPR/Cas) provides genetic tools to make agricultural genetic engineering more sustainable and publicly acceptable.
Collapse
Affiliation(s)
- Shahid Ali
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, FL, 32611, USA
| | - Yulin Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
28
|
Key regulatory pathways, microRNAs, and target genes participate in adventitious root formation of Acer rubrum L. Sci Rep 2022; 12:12057. [PMID: 35835811 PMCID: PMC9283533 DOI: 10.1038/s41598-022-16255-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/07/2022] [Indexed: 12/27/2022] Open
Abstract
Red maple (Acer rubrum L.) is a type of colorful ornamental tree with great economic value. Because this tree is difficult to root under natural conditions and the seedling survival rate is low, vegetative propagation methods are often used. Because the formation of adventitious roots (ARs) is essential for the asexual propagation of A. rubrum, it is necessary to investigate the molecular regulatory mechanisms of AR formation in A. rubrum. To address this knowledge gap, we sequenced the transcriptome and small RNAs (sRNAs) of the A. rubrum variety ‘Autumn Fantasy’ using high-throughput sequencing and explored changes in gene and microRNA (miRNA) expression in response to exogenous auxin treatment. We identified 82,468 differentially expressed genes (DEGs) between the treated and untreated ARs, as well as 48 known and 95 novel miRNAs. We also identified 172 target genes of the known miRNAs using degradome sequencing. Two key regulatory pathways (ubiquitin mediated proteolysis and plant hormone signal transduction), Ar-miR160a and the target gene auxin response factor 10 (ArARF10) were selected based on KEGG pathway and cluster analyses. We further investigated the expression patterns and regulatory roles of ArARF10 through subcellular localization, transcriptional activation, plant transformation, qRT-PCR analysis, and GUS staining. Experiments overexpressing ArARF10 and Ar-miR160a, indicated that ArARF10 promoted AR formation, while Ar-miR160a inhibited AR formation. Transcription factors (TFs) and miRNAs related to auxin regulation that promote AR formation in A. rubrum were identified. Differential expression patterns indicated the Ar-miR160a-ArARF10 interaction might play a significant role in the regulation of AR formation in A. rubrum. Our study provided new insights into mechanisms underlying the regulation of AR formation in A. rubrum.
Collapse
|
29
|
Kim G, Ryu H, Sung J. Hormonal Crosstalk and Root Suberization for Drought Stress Tolerance in Plants. Biomolecules 2022; 12:811. [PMID: 35740936 PMCID: PMC9220869 DOI: 10.3390/biom12060811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022] Open
Abstract
Higher plants in terrestrial environments face to numerous unpredictable environmental challenges, which lead to a significant impact on plant growth and development. In particular, the climate change caused by global warming is causing drought stress and rapid desertification in agricultural fields. Many scientific advances have been achieved to solve these problems for agricultural and plant ecosystems. In this review, we handled recent advances in our understanding of the physiological changes and strategies for plants undergoing drought stress. The activation of ABA synthesis and signaling pathways by drought stress regulates root development via the formation of complicated signaling networks with auxin, cytokinin, and ethylene signaling. An abundance of intrinsic soluble sugar, especially trehalose-6-phosphate, promotes the SnRK-mediated stress-resistance mechanism. Suberin deposition in the root endodermis is a physical barrier that regulates the influx/efflux of water and nutrients through complex hormonal and metabolic networks, and suberization is essential for drought-stressed plants to survive. It is highly anticipated that this work will contribute to the reproduction and productivity improvements of drought-resistant crops in the future.
Collapse
Affiliation(s)
- Gaeun Kim
- Department of Crop Science, Chungbuk National University, Cheong-ju 28644, Korea;
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheong-ju 28644, Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheong-ju 28644, Korea
| | - Jwakyung Sung
- Department of Crop Science, Chungbuk National University, Cheong-ju 28644, Korea;
| |
Collapse
|
30
|
Liu X, Liu S, Chen X, Prasanna BM, Ni Z, Li X, He Y, Fan Z, Zhou T. Maize miR167-ARF3/30-polyamine oxidase 1 module-regulated H2O2 production confers resistance to maize chlorotic mottle virus. PLANT PHYSIOLOGY 2022; 189:1065-1082. [PMID: 35298645 PMCID: PMC9157100 DOI: 10.1093/plphys/kiac099] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/10/2022] [Indexed: 05/27/2023]
Abstract
Maize chlorotic mottle virus (MCMV) is the key pathogen causing maize lethal necrosis (MLN). Due to the sharply increased incidence of MLN in many countries, there is an urgent need to identify resistant lines and uncover the underlying resistance mechanism. Here, we showed that the abundance of maize (Zea mays) microR167 (Zma-miR167) positively modulates the degree of resistance to MCMV. Zma-miR167 directly targets Auxin Response Factor3 (ZmARF3) and ZmARF30, both of which negatively regulate resistance to MCMV. RNA-sequencing coupled with gene expression assays revealed that both ZmARF3 and ZmARF30 directly bind the promoter of Polyamine Oxidase 1 (ZmPAO1) and activate its expression. Knockdown or inhibition of enzymatic activity of ZmPAO1 suppressed MCMV infection. Nevertheless, MCMV-encoded p31 protein directly targets ZmPAO1 and enhances the enzyme activity to counteract Zma-miR167-mediated defense to some degree. We uncovered a role of the Zma-miR167-ZmARF3/30 module for restricting MCMV infection by regulating ZmPAO1 expression, while MCMV employs p31 to counteract this defense.
Collapse
Affiliation(s)
- Xuedong Liu
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Sijia Liu
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xi Chen
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Boddupalli M Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, Gigiri, Nairobi, Kenya
| | - Zhongfu Ni
- College of Agronomy, China Agricultural University, Beijing 100193, China
| | - Xiangdong Li
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Yueqiu He
- College of Agronomy, Yunnan Agricultural University, Kunming 650201, China
| | - Zaifeng Fan
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
31
|
Wang C, Wang X, Li J, Guan J, Tan Z, Zhang Z, Shi G. Genome-Wide Identification and Transcript Analysis Reveal Potential Roles of Oligopeptide Transporter Genes in Iron Deficiency Induced Cadmium Accumulation in Peanut. FRONTIERS IN PLANT SCIENCE 2022; 13:894848. [PMID: 35646039 PMCID: PMC9131082 DOI: 10.3389/fpls.2022.894848] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/05/2022] [Indexed: 05/31/2023]
Abstract
The oligopeptide transporter (OPT) family is a group of proton-coupled symporters that play diverse roles, including metal homeostasis. However, little is known about this family of peanuts. To reveal the potential roles of AhOPT genes in Fe/Cd interactions, peanut AhOPT genes were genome-widely identified, and the relationships between gene expression and Cd accumulation were detected in two contrasting peanut cultivars (Fenghua 1 and Silihong) under Fe-sufficient or Fe-deficient conditions. A total of 40 AhOPT genes were identified in peanuts, which were divided into two subfamilies (PT and YS). Most AhOPT genes underwent gene duplication events predominated by whole-genome duplication. Clustered members generally have similar protein structures. However, gene structural divergences occurred in most of the duplicated genes. Transcription analysis revealed that AhOPT3.2/3.4 and AhYSL3.1/3.2 might be responsible for Fe deficiency tolerance, while AhOPT3.1/3.4, AhOPT7.1/7.2, and AhYSL1.1 be involved in Fe/Cd interactions. These genes might be regulated by transcription factors, including ATHB-12, ATHB-6, DIVARICATA, MYB30, NAC02, DOF3.4, IDD7, and LUX. Reduced expressions of AhYSL3.1/3.2 and higher expressions of AhOPT3.4 might contribute to higher Fe-deficiency tolerance in Silihong. Higher expression of AhOPT7.3 and AhOPT6.1 might be responsible for low Cd accumulation in Fenghua 1. Our results confirmed that AhOPT3/6/7 and AhYSL1/3 might be involved in the transport of Fe and/or Cd in peanuts and provided new clues to understanding potential mechanisms of Fe/Cd interactions.
Collapse
|
32
|
Verma S, Negi NP, Pareek S, Mudgal G, Kumar D. Auxin response factors in plant adaptation to drought and salinity stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13714. [PMID: 35560231 DOI: 10.1111/ppl.13714] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Salinity and drought stresses affect plant growth worldwide and limit crop production. Auxin is crucial in regulating plants' salinity and drought stress adaptative response. As a chemical messenger, auxin influences gene expression through a family of functionally distinct transcription factors, the DNA-binding AUXIN RESPONSE FACTORS (ARFs). Various studies have revealed the important roles of ARFs in regulating drought and salinity stress responses in plants. Different ARFs regulate soluble sugar content, promote root development, and maintain chlorophyll content under drought and saline stress conditions to help plants adapt to these stresses. The functional characterization of ARFs pertaining to the regulation of drought and salinity stress responses is still in its infancy. Interestingly, the small RNA-mediated post-transcriptional regulation of ARF expression has been shown to influence plant responses to both stresses. The current knowledge on the diverse roles of ARFs in conferring specificity to auxin-mediated drought and salinity stress responses has not been reviewed to date. In this review, we summarize the recent research concerning the role of ARFs in response to drought and salinity stresses: gene expression patterns, functional characterization, and post-transcriptional regulation under drought and salinity stresses. We have also reviewed the modulation of ARF expression by other molecular regulators in the context of drought and salt stress signaling.
Collapse
Affiliation(s)
- Swati Verma
- College of Horticulture and Forestry Thunag, Dr. Y. S. Parmar University of Horticulture and Forestry, Solan, India
| | - Neelam Prabha Negi
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Shalini Pareek
- School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Gaurav Mudgal
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
33
|
Wang X, Wang C, Zhang Z, Shi G. Genome-wide Identification of Metal Tolerance Protein Genes in Peanut: Differential Expression in the Root of Two Contrasting Cultivars Under Metal Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:791200. [PMID: 35432419 PMCID: PMC9011049 DOI: 10.3389/fpls.2022.791200] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/15/2022] [Indexed: 05/23/2023]
Abstract
Metal tolerance proteins (MTP) are Me2+/H+(K+) antiporters that play important roles in the transport of divalent cations in plants. However, their functions in peanut are unknown. In the present study, a total of 24 AhMTP genes were identified in peanut, which were divided into seven groups belonging to three substrate-specific clusters (Zn-CDFs, Zn/Fe-CDFs, and Mn-CDFs). All AhMTP genes underwent whole genome or segmental gene duplication events except AhMTP12. Most AhMTP members within the same subfamily or group generally have similar gene and protein structural characteristics. However, some genes, such as AhMTP1.3, AhMTP2.4, and AhMTP12, showed wide divergences. Most of AhMTP genes preferentially expressed in reproductive tissues, suggesting that these genes might play roles in metal transport during the pod and seed development stages. Excess metal exposure induced expressions for most of AhMTP genes in peanut roots depending on cultivars. By contrast, AhMTP genes in the root of Fenghua 1 were more sensitive to excess Fe, Cd, and Zn exposure than that of Silihong. Stepwise linear regression analysis showed that the percentage of Fe in shoots significantly and positively correlated with the expression of AhMTP4.1, AhMTP9.1, and AhMTPC4.1, but negatively correlated with that of AhMTPC2.1 and AhMTP12. The expression of AhMTP1.1 showed a significant and negative correlation with the percentage of Mn in shoots. The percentage of Zn in shoots was significantly and positively correlated with the expression of AhMTP2.1 but was negatively correlated with that of AhMTPC2.1. The differential responses of AhMTP genes to metal exposure might be, at least partially, responsible for the different metal translocation from roots to shoots between Fenghua 1 and Silihong.
Collapse
|
34
|
Transcriptome and Small RNA Profiling of Potato Virus Y Infected Potato Cultivars, Including Systemically Infected Russet Burbank. Viruses 2022; 14:v14030523. [PMID: 35336930 PMCID: PMC8952017 DOI: 10.3390/v14030523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Potatoes are the world’s most produced non-grain crops and an important food source for billions of people. Potatoes are susceptible to numerous pathogens that reduce yield, including Potato virus Y (PVY). Genetic resistance to PVY is a sustainable way to limit yield and quality losses due to PVY infection. Potato cultivars vary in their susceptibility to PVY and include susceptible varieties such as Russet Burbank, and resistant varieties such as Payette Russet. Although the loci and genes associated with PVY-resistance have been identified, the genes and mechanisms involved in limiting PVY during the development of systemic infections have yet to be fully elucidated. To increase our understanding of PVY infection, potato antiviral responses, and resistance, we utilized RNA sequencing to characterize the transcriptomes of two potato cultivars. Since transcriptional responses associated with the extreme resistance response occur soon after PVY contact, we analyzed the transcriptome and small RNA profile of both the PVY-resistant Payette Russet cultivar and PVY-susceptible Russet Burbank cultivar 24 h post-inoculation. While hundreds of genes, including terpene synthase and protein kinase encoding genes, exhibited increased expression, the majority, including numerous genes involved in plant pathogen interactions, were downregulated. To gain greater understanding of the transcriptional changes that occur during the development of systemic PVY-infection, we analyzed Russet Burbank leaf samples one week and four weeks post-inoculation and identified similarities and differences, including higher expression of genes involved in chloroplast function, photosynthesis, and secondary metabolite production, and lower expression of defense response genes at those time points. Small RNA sequencing identified different populations of 21- and 24-nucleotide RNAs and revealed that the miRNA profiles in PVY-infected Russet Burbank plants were similar to those observed in other PVY-tolerant cultivars and that during systemic infection ~32% of the NLR-type disease resistance genes were targeted by 21-nt small RNAs. Analysis of alternative splicing in PVY-infected potato plants identified splice variants of several hundred genes, including isoforms that were more dominant in PVY-infected plants. The description of the PVYN-Wi-associated transcriptome and small RNA profiles of two potato cultivars described herein adds to the body of knowledge regarding differential outcomes of infection for specific PVY strain and host cultivar pairs, which will help further understanding of the mechanisms governing genetic resistance and/or virus-limiting responses in potato plants.
Collapse
|
35
|
Ranjan A, Sinha R, Singla-Pareek SL, Pareek A, Singh AK. Shaping the root system architecture in plants for adaptation to drought stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13651. [PMID: 35174506 DOI: 10.1111/ppl.13651] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Root system architecture plays an important role in plant adaptation to drought stress. The root system architecture (RSA) consists of several structural features, which includes number and length of main and lateral roots along with the density and length of root hairs. These features exhibit plasticity under water-limited environments and could be critical to developing crops with efficient root systems for adaptation under drought. Recent advances in the omics approaches have significantly improved our understanding of the regulatory mechanisms of RSA remodeling under drought and the identification of genes and other regulatory elements. Plant response to drought stress at physiological, morphological, biochemical, and molecular levels in root cells is regulated by various phytohormones and their crosstalk. Stress-induced reactive oxygen species play a significant role in regulating root growth and development under drought stress. Several transcription factors responsible for the regulation of RSA under drought have proven to be beneficial for developing drought tolerant crops. Molecular breeding programs for developing drought-tolerant crops have been greatly benefitted by the availability of quantitative trait loci (QTLs) associated with the RSA regulation. In the present review, we have discussed the role of various QTLs, signaling components, transcription factors, microRNAs and crosstalk among various phytohormones in shaping RSA and present future research directions to better understand various factors involved in RSA remodeling for adaptation to drought stress. We believe that the information provided herein may be helpful in devising strategies to develop crops with better RSA for efficient uptake and utilization of water and nutrients under drought conditions.
Collapse
Affiliation(s)
- Alok Ranjan
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Ragini Sinha
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Anil Kumar Singh
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, India
| |
Collapse
|
36
|
Luo P, Di D, Wu L, Yang J, Lu Y, Shi W. MicroRNAs Are Involved in Regulating Plant Development and Stress Response through Fine-Tuning of TIR1/AFB-Dependent Auxin Signaling. Int J Mol Sci 2022; 23:ijms23010510. [PMID: 35008937 PMCID: PMC8745101 DOI: 10.3390/ijms23010510] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 11/30/2022] Open
Abstract
Auxin, primarily indole-3-acetic acid (IAA), is a versatile signal molecule that regulates many aspects of plant growth, development, and stress response. Recently, microRNAs (miRNAs), a type of short non-coding RNA, have emerged as master regulators of the auxin response pathways by affecting auxin homeostasis and perception in plants. The combination of these miRNAs and the autoregulation of the auxin signaling pathways, as well as the interaction with other hormones, creates a regulatory network that controls the level of auxin perception and signal transduction to maintain signaling homeostasis. In this review, we will detail the miRNAs involved in auxin signaling to illustrate its in planta complex regulation.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
- Correspondence: (P.L.); (D.D.)
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.L.); (W.S.)
- Correspondence: (P.L.); (D.D.)
| | - Lei Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Jiangwei Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yufang Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.L.); (W.S.)
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.L.); (W.S.)
| |
Collapse
|
37
|
Hajieghrari B, Farrokhi N. Plant RNA-mediated gene regulatory network. Genomics 2021; 114:409-442. [PMID: 34954000 DOI: 10.1016/j.ygeno.2021.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/21/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
Not all transcribed RNAs are protein-coding RNAs. Many of them are non-protein-coding RNAs in diverse eukaryotes. However, some of them seem to be non-functional and are resulted from spurious transcription. A lot of non-protein-coding transcripts have a significant function in the translation process. Gene expressions depend on complex networks of diverse gene regulatory pathways. Several non-protein-coding RNAs regulate gene expression in a sequence-specific system either at the transcriptional level or post-transcriptional level. They include a significant part of the gene expression regulatory network. RNA-mediated gene regulation machinery is evolutionarily ancient. They well-evolved during the evolutionary time and are becoming much more complex than had been expected. In this review, we are trying to summarizing the current knowledge in the field of RNA-mediated gene silencing.
Collapse
Affiliation(s)
- Behzad Hajieghrari
- Department of Agricultural Biotechnology, College of Agriculture, Jahrom University, Jahrom, Iran.
| | - Naser Farrokhi
- Department of Cell, Molecular Biology Faculty of Life Sciences, Biotechnology, Shahid Beheshti University, G. C Evin, Tehran, Iran.
| |
Collapse
|
38
|
miRNAomic Approach to Plant Nitrogen Starvation. Int J Genomics 2021; 2021:8560323. [PMID: 34796230 PMCID: PMC8595019 DOI: 10.1155/2021/8560323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
Nitrogen (N) is one of the indispensable nutrients required by plants for their growth, development, and survival. Being a limited nutrient, it is mostly supplied exogenously to the plants, to maintain quality and productivity. The increased use of N fertilizers is associated with high-cost inputs and negative environmental consequences, which necessitates the development of nitrogen-use-efficient plants for sustainable agriculture. Understanding the regulatory mechanisms underlying N metabolism in plants under low N is one of the prerequisites for the development of nitrogen-use-efficient plants. One of the important and recently discovered groups of regulatory molecules acting at the posttranscriptional and translational levels are microRNAs (miRNAs). miRNAs are known to play critical roles in the regulation of gene expression in plants under different stress conditions including N stress. Several classes of miRNAs associated with N metabolism have been identified so far. These nitrogen-responsive miRNAs may provide a platform for a better understanding of the regulation of N metabolism and pave a way for the development of genotypes for better N utilization. The current review presents a brief outline of miRNAs and their regulatory role in N metabolism.
Collapse
|
39
|
Gelaw TA, Sanan-Mishra N. Non-Coding RNAs in Response to Drought Stress. Int J Mol Sci 2021; 22:12519. [PMID: 34830399 PMCID: PMC8621352 DOI: 10.3390/ijms222212519] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Drought stress causes changes in the morphological, physiological, biochemical and molecular characteristics of plants. The response to drought in different plants may vary from avoidance, tolerance and escape to recovery from stress. This response is genetically programmed and regulated in a very complex yet synchronized manner. The crucial genetic regulations mediated by non-coding RNAs (ncRNAs) have emerged as game-changers in modulating the plant responses to drought and other abiotic stresses. The ncRNAs interact with their targets to form potentially subtle regulatory networks that control multiple genes to determine the overall response of plants. Many long and small drought-responsive ncRNAs have been identified and characterized in different plant varieties. The miRNA-based research is better documented, while lncRNA and transposon-derived RNAs are relatively new, and their cellular role is beginning to be understood. In this review, we have compiled the information on the categorization of non-coding RNAs based on their biogenesis and function. We also discuss the available literature on the role of long and small non-coding RNAs in mitigating drought stress in plants.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
- Department of Biotechnology, College of Natural and Computational Science, Debre Birhan University, Debre Birhan P.O. Box 445, Ethiopia
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| |
Collapse
|
40
|
Salamon S, Żok J, Gromadzka K, Błaszczyk L. Expression Patterns of miR398, miR167, and miR159 in the Interaction between Bread Wheat ( Triticum aestivum L.) and Pathogenic Fusarium culmorum and Beneficial Trichoderma Fungi. Pathogens 2021; 10:1461. [PMID: 34832616 PMCID: PMC8624912 DOI: 10.3390/pathogens10111461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Bread wheat (Triticum aestivum L.) is an agronomically significant cereal cultivated worldwide. Wheat breeding is limited by numerous abiotic and biotic stresses. One of the most deleterious factors is biotic stress provoked by the Fusarium culmorum fungus. This pathogen is a causative agent of Fusarium root rot and Fusarium head blight. Beneficial fungi Trichoderma atroviride and T. cremeum are strong antagonists of mycotoxigenic Fusarium spp. These fungi promote plant growth and enhance their tolerance of negative environmental conditions. The aim of the study was to determine and compare the spatial (in above- and underground organs) and temporal (early: 6 and 22 hpi; and late: 5 and 7 dpi reactions) expression profiles of three mature miRNAs (miR398, miR167, and miR159) in wheat plants inoculated with two strains of F. culmorum (KF846 and EW49). Moreover, the spatial expression patterns in wheat response between plants inoculated with beneficial T. atroviride (AN35) and T. cremeum (AN392) were assessed. Understanding the sophisticated role of miRNAs in wheat-fungal interactions may initiate a discussion concerning the use of this knowledge to protect wheat plants from the harmful effects of fungal pathogens. With the use of droplet digital PCR (ddPCR), the absolute quantification of the selected miRNAs in the tested material was carried out. The differential accumulation of miR398, miR167, and miR159 in the studied groups was observed. The abundance of all analyzed miRNAs in the roots demonstrated an increase in the early and reduction in late wheat response to F. culmorum inoculation, suggesting the role of these particles in the initial wheat reaction to the studied fungal pathogen. The diverse expression patterns of the studied miRNAs between Trichoderma-inoculated or F. culmorum-inoculated plants and control wheat, as well as between Trichoderma-inoculated and F. culmorum-inoculated plants, were noticed, indicating the need for further analysis.
Collapse
Affiliation(s)
- Sylwia Salamon
- Department of Plant Microbiomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (S.S.); (J.Ż.)
| | - Julia Żok
- Department of Plant Microbiomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (S.S.); (J.Ż.)
| | - Karolina Gromadzka
- Department of Chemistry, Poznan University of Life Sciences, 60-625 Poznan, Poland;
| | - Lidia Błaszczyk
- Department of Plant Microbiomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (S.S.); (J.Ż.)
| |
Collapse
|
41
|
Yuan TT, Xiang ZX, Li W, Gao X, Lu YT. Osmotic stress represses root growth by modulating the transcriptional regulation of PIN-FORMED3. THE NEW PHYTOLOGIST 2021; 232:1661-1673. [PMID: 34420215 DOI: 10.1111/nph.17687] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Osmotic stress influences root system architecture, and polar auxin transport (PAT) is well established to regulate root growth and development. However, how PAT responds to osmotic stress at the molecular level remains poorly understood. In this study, we explored whether and how the auxin efflux carrier PIN-FORMED3 (PIN3) participates in osmotic stress-induced root growth inhibition in Arabidopsis (Arabidopsis thaliana). We observed that osmotic stress induces a HD-ZIP II transcription factor-encoding gene HOMEODOMAIN ARABIDOPSIS THALIANA2 (HAT2) expression in roots. The hat2 loss-of-function mutant is less sensitive to osmotic stress in terms of root meristem growth. Consistent with this phenotype, whereas the auxin response is downregulated in wild-type roots under osmotic stress, the inhibition of auxin response by osmotic stress was alleviated in hat2 roots. Conversely, transgenic lines overexpressing HAT2 (Pro35S::HAT2) had shorter roots and reduced auxin accumulation compared with wild-type plants. PIN3 expression was significantly reduced in the Pro35S::HAT2 lines. We determined that osmotic stress-mediated repression of PIN3 was alleviated in the hat2 mutant because HAT2 normally binds to the promoter of PIN3 and inhibits its expression. Taken together, our data revealed that osmotic stress inhibits root growth via HAT2, which regulates auxin activity by directly repressing PIN3 transcription.
Collapse
Affiliation(s)
- Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Zhi-Xin Xiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Wen Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Xiang Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
42
|
Morcillo F, Serret J, Beckers A, Collin M, Tisné S, George S, Poveda R, Louise C, Tranbarger TJ. A Non-Shedding Fruit Elaeis oleifera Palm Reveals Perturbations to Hormone Signaling, ROS Homeostasis, and Hemicellulose Metabolism. Genes (Basel) 2021; 12:1724. [PMID: 34828330 PMCID: PMC8621672 DOI: 10.3390/genes12111724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
The developmentally programmed loss of a plant organ is called abscission. This process is characterized by the ultimate separation of adjacent cells in the abscission zone (AZ). The discovery of an American oil palm (Elaeis oleifera) variant that does not shed its has allowed for the study of the mechanisms of ripe fruit abscission in this species. A comparative transcriptome analysis was performed to compare the fruit AZs of the non-shedding E. oleifera variant to an individual of the same progeny that sheds its ripe fruit normally. The study provides evidence for widespread perturbation to gene expression in the AZ of the non-shedding variant, compared to the normal fruit-shedding control, and offers insight into abscission-related functions. Beyond the genes with known or suspected roles during organ abscission or indehiscence that were identified, a list of genes with hormone-related functions, including ethylene, jasmonic acid, abscisic acid, cytokinin and salicylic acid, in addition to reactive oxygen species (ROS) metabolism, transcriptional responses and signaling pathways, was compiled. The results also allowed a comparison between the ripe fruit abscission processes of the African and American oil palm species at the molecular level and revealed commonalities with environmental stress pathways.
Collapse
Affiliation(s)
- Fabienne Morcillo
- DIADE (Diversité, Adaptation, Développement des Plantes), University of Montpellier, CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), IRD (Institut de Recherche pour le Développement), 34393 Montpellier, France; (F.M.); (J.S.); (A.B.); (M.C.)
- CIRAD, UMR (Unité Mixte de Recherche) DIADE, 34398 Montpellier, France
| | - Julien Serret
- DIADE (Diversité, Adaptation, Développement des Plantes), University of Montpellier, CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), IRD (Institut de Recherche pour le Développement), 34393 Montpellier, France; (F.M.); (J.S.); (A.B.); (M.C.)
| | - Antoine Beckers
- DIADE (Diversité, Adaptation, Développement des Plantes), University of Montpellier, CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), IRD (Institut de Recherche pour le Développement), 34393 Montpellier, France; (F.M.); (J.S.); (A.B.); (M.C.)
| | - Myriam Collin
- DIADE (Diversité, Adaptation, Développement des Plantes), University of Montpellier, CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), IRD (Institut de Recherche pour le Développement), 34393 Montpellier, France; (F.M.); (J.S.); (A.B.); (M.C.)
| | - Sebastien Tisné
- CIRAD, UMR AGAP (Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales), 34398 Montpellier, France;
- AGAP, University of Montpellier, CIRAD, INRAE (Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement), Institut Agro, 34398 Montpellier, France
| | - Simon George
- MGX-Montpellier GenomiX, University of Montpellier, CNRS (Centre National de la Recherche Scientifique), INSERM (Institut National de la Santé et de la Recherche Médicale), 34094 Montpellier, France;
| | - Roberto Poveda
- DANEC, Sangolqui/Rumiñahui, Sangolquí, Pichincha 171102, Ecuador;
| | | | - Timothy John Tranbarger
- DIADE (Diversité, Adaptation, Développement des Plantes), University of Montpellier, CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), IRD (Institut de Recherche pour le Développement), 34393 Montpellier, France; (F.M.); (J.S.); (A.B.); (M.C.)
| |
Collapse
|
43
|
Cao L, Lu X, Wang G, Zhang P, Fu J, Wang Z, Wei L, Wang T. Transcriptional regulatory networks in response to drought stress and rewatering in maize (Zea mays L.). Mol Genet Genomics 2021; 296:1203-1219. [PMID: 34601650 DOI: 10.1007/s00438-021-01820-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/31/2021] [Indexed: 11/26/2022]
Abstract
Drought severely affects the growth and development of maize, but there is a certain degree of compensation effect after rewatering. This study intends to elaborate the response mechanism of maize at the physiological and molecular level as well as excavating potential genes with strong drought resistance and recovery ability. Physiological indexes analysis demonstrated that stomata conductance, transpiration rate, photosynthesis rate, antioxidant enzymes, and proline levels in maize were significantly altered in response to drought for 60 and 96 h and rewatering for 3 days. At 60 h, 96 h, and R3d, we detected 3095, 1941, and 5966 differentially expressed genes (DEGs) and 221, 226, and 215 differentially expressed miRNAs. Weighted correlation network analysis (WGCNA) showed that DEGs responded to maize drought and rewatering through participating in photosynthesis, proline metabolism, ABA signaling, and oxidative stress. Joint analysis of DEGs, miRNA, and target genes showed that zma-miR529, miR5072, zma-miR167e, zma-miR167f, zma-miR167j, miR397, and miR6214 were involved to regulate SBPs, MYBs, ARFs, laccases, and antioxidant enzymes, respectively. Hundreds of differentially expressed DNA methylation-related 24-nt siRNA clusters overlap with DEGs, indicating that DNA methylation is involved in responses under drought stress. These results provide new insights into the molecular mechanisms of drought tolerance, and may identify new targets for breeding drought-tolerant maize lines.
Collapse
Affiliation(s)
- Liru Cao
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Xiaomin Lu
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Guorui Wang
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Pengyu Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiaxu Fu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhenhua Wang
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
| | - Li Wei
- National Engineering Research Centre for Wheat, Zhengzhou, 450002, China.
| | - Tongchao Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
44
|
Xu P, Zhu Y, Zhang Y, Jiang J, Yang L, Mu J, Yu X, He Y. Global Analysis of the Genetic Variations in miRNA-Targeted Sites and Their Correlations With Agronomic Traits in Rapeseed. Front Genet 2021; 12:741858. [PMID: 34594365 PMCID: PMC8476912 DOI: 10.3389/fgene.2021.741858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) and their target genes play vital roles in crops. However, the genetic variations in miRNA-targeted sites that affect miRNA cleavage efficiency and their correlations with agronomic traits in crops remain unexplored. On the basis of a genome-wide DNA re-sequencing of 210 elite rapeseed (Brassica napus) accessions, we identified the single nucleotide polymorphisms (SNPs) and insertions/deletions (INDELs) in miRNA-targeted sites complementary to miRNAs. Variant calling revealed 7.14 million SNPs and 2.89 million INDELs throughout the genomes of 210 rapeseed accessions. Furthermore, we detected 330 SNPs and 79 INDELs in 357 miRNA target sites, of which 33.50% were rare variants. We also analyzed the correlation between the genetic variations in miRNA target sites and 12 rapeseed agronomic traits. Eleven SNPs in miRNA target sites were significantly correlated with phenotypes in three consecutive years. More specifically, three correlated SNPs within the miRNA-binding regions of BnSPL9-3, BnSPL13-2, and BnCUC1-2 were in the loci associated with the branch angle, seed weight, and silique number, respectively; expression profiling suggested that the variation at these 3 miRNA target sites significantly affected the expression level of the corresponding target genes. Taken together, the results of this study provide researchers and breeders with a global view of the genetic variations in miRNA-targeted sites in rapeseed and reveal the potential effects of these genetic variations on elite agronomic traits.
Collapse
Affiliation(s)
- Pengfei Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Yantao Zhu
- Hybrid Rape Research Center of Shaanxi Province, Yangling, China
| | - Yanfeng Zhang
- Hybrid Rape Research Center of Shaanxi Province, Yangling, China
| | - Jianxia Jiang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Liyong Yang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jianxin Mu
- Hybrid Rape Research Center of Shaanxi Province, Yangling, China
| | - Xiang Yu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Kinoshita N, Irving LJ, Lustig B, Furukawa J. Effects of nitrogen on caesium allocation in rice plants (Oryza sativa). PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:874-877. [PMID: 33915009 DOI: 10.1111/plb.13279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
After the nuclear accident in Fukushima Prefecture, Japan, in 2011, 137 Caesium (Cs) contaminated nearby agricultural regions. Studies in these rice fields found that low K and high N fertilizer application enhanced Cs uptake in rice shoots. However, the influence of root and soil physics on these findings, as well as precise nutrient levels, remain to be clarified. We sought to analyse these relationships utilizing hydroponically grown rice plants. The rice plants were subjected to various concentrations of K and N nutrient solutions. We measured Cs allocation within the plants and performed transcript analyses using root tissues. Under low-K conditions, low-N plants accumulated less Cs in shoots and more in roots when compared to control-N conditions, even though overall Cs uptake remained unchanged. Expression analyses of root mRNAs showed that low-N plants accumulated reduced levels of OsAKT1 mRNA, encoding a K transporter. We also found a negative relationship between shoot Cs and K status in control-N but not in low-N conditions. Our results suggest that the application of N shifts Cs from roots into the shoots and that OsAKT1 in root vascular tissues influences Cs allocation. In practice, fine tuning N/K application and targeted breeding of K transporters might mitigate Cs contamination in rice plants.
Collapse
Affiliation(s)
- N Kinoshita
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - L J Irving
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - B Lustig
- Cormorant Group K.K., Minato, Japan
| | - J Furukawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
46
|
Yang X, Kang Y, Liu Y, Shi M, Zhang W, Fan Y, Yao Y, Li H, Qin S. Integrated analysis of miRNA-mRNA regulatory networks of potato (Solanum tuberosum L.) in response to cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112682. [PMID: 34419646 DOI: 10.1016/j.ecoenv.2021.112682] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) stress is a ubiquitous abiotic stress affecting plant growth worldwide and negatively impacting crop yield and food safety. Potato is the most important non-grain crop globally, but there is limited research available on the response of this crop to Cd stress. This study explored the coping mechanism for Cd stress in potato through analyses of miRNA and mRNA. Tissue culture seedlings (20-day-old) of potato variety 'Atlantic' were cultured for up to 48 h in liquid medium containing 5 mmol/L CdCl2, and phenotypic, physiological, and transcriptomic changes were observed at specific times. With the extension of Cd stress time, the potato leaves gradually wilted and curled, and root salicylic acid (SA), glutathione (GSH), and lignin contents and peroxidase (POD) activity increased, while indole-3-acetic acid (IAA) and zeatin (ZT) contents decreased. Using miRNA-seq, 161 existing miRNAs, 383 known miRNAs, and 7361 novel miRNAs were identified, and, 18 miRNAs were differentially expressed in response to Cd stress. Based on mRNA-seq, 7340 differentially expressed mRNAs (DEGs) were found. Through mRNA-miRNA integrated analysis, miRNA-target gene pairs consisting of 23 DEGs and 33 miRNAs were identified. Furthermore, "glutathione metabolism" "plant hormone signal transduction" and "phenylpropanoid biosynthesis" were established as crucial pathways in the Cd stress response of potato. Novel miRNAs novel-m3483-5p and novel-m2893-5p participate in these pathways through targeted regulation of cinnamic alcohol dehydrogenase (CAD; PG0005359) and alanine aminotransferase (POP; PG0024281), respectively. This study provides information that will help elucidate the complex mechanism of the Cd stress response in potato. Moreover, candidate miRNAs and mRNAs could yield new strategies for the development of Cd-tolerant potato breeding.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yichen Kang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| | - Yuhui Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| | - Mingfu Shi
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Weina Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanling Fan
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanhong Yao
- Dingxi Academy of Agricultural Sciences, Dingxi 743000, China
| | - Hong Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuhao Qin
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| |
Collapse
|
47
|
Salvi P, Manna M, Kaur H, Thakur T, Gandass N, Bhatt D, Muthamilarasan M. Phytohormone signaling and crosstalk in regulating drought stress response in plants. PLANT CELL REPORTS 2021; 40:1305-1329. [PMID: 33751168 DOI: 10.1007/s00299-021-02683-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/15/2021] [Indexed: 05/23/2023]
Abstract
Phytohormones are ubiquitously involved in plant biological processes and regulate cellular signaling pertaining to unheralded environmental cues, such as salinity, drought, extreme temperature and nutrient deprivation. The association of phytohormones to nearly all the fundamental biological processes epitomizes the phytohormone syndicate as a candidate target for consideration during engineering stress endurance in agronomically important crops. The drought stress response is essentially driven by phytohormones and their intricate network of crosstalk, which leads to transcriptional reprogramming. This review is focused on the pivotal role of phytohormones in water deficit responses, including their manipulation for mitigating the effect of the stressor. We have also discussed the inherent complexity of existing crosstalk accrued among them during the progression of drought stress, which instigates the tolerance response. Therefore, in this review, we have highlighted the role and regulatory aspects of various phytohormones, namely abscisic acid, auxin, gibberellic acid, cytokinin, brassinosteroid, jasmonic acid, salicylic acid, ethylene and strigolactone, with emphasis on drought stress tolerance.
Collapse
Affiliation(s)
- Prafull Salvi
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Mohali, 140308, Punjab, India.
| | - Mrinalini Manna
- National Institute of Plant Genome Research, New Delhi, India
| | - Harmeet Kaur
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Tanika Thakur
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Mohali, 140308, Punjab, India
| | - Nishu Gandass
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Mohali, 140308, Punjab, India
| | - Deepesh Bhatt
- Department of Biotechnology, Shree Ramkrishna Institute of Computer Education and Applied Sciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
48
|
Smolko A, Bauer N, Pavlović I, Pěnčík A, Novák O, Salopek-Sondi B. Altered Root Growth, Auxin Metabolism and Distribution in Arabidopsis thaliana Exposed to Salt and Osmotic Stress. Int J Mol Sci 2021; 22:ijms22157993. [PMID: 34360759 PMCID: PMC8348202 DOI: 10.3390/ijms22157993] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022] Open
Abstract
Salt and osmotic stress are the main abiotic stress factors affecting plant root growth and architecture. We investigated the effect of salt (100 mM NaCl) and osmotic (200 mM mannitol) stress on the auxin metabolome by UHPLC-MS/MS, auxin distribution by confocal microscopy, and transcript levels of selected genes by qRT-PCR in Arabidopsis thaliana ecotype Columbia-0 (Col-0) and DR5rev::GFP (DR5) line. During long-term stress (13 days), a stability of the auxin metabolome and a tendency to increase indole-3-acetic acid (IAA) were observed, especially during salt stress. Short-term stress (3 h) caused significant changes in the auxin metabolome, especially NaCl treatment resulted in a significant reduction of IAA. The data derived from auxin profiling were consistent with gene expressions showing the most striking changes in the transcripts of YUC, GH3, and UGT transcripts, suggesting disruption of auxin biosynthesis, but especially in the processes of amide and ester conjugation. These data were consistent with the auxin distribution observed in the DR5 line. Moreover, NaCl treatment caused a redistribution of auxin signals from the quiescent center and the inner layers of the root cap to the epidermal and cortical cells of the root elongation zone. The distribution of PIN proteins was also disrupted by salt stress; in particular, PIN2 was suppressed, even after 5 min of treatment. Based on our results, the DR5 line was more sensitive to the applied stresses than Col-0, although both lines showed similar trends in root morphology, as well as transcriptome and metabolome parameters under stress conditions.
Collapse
Affiliation(s)
- Ana Smolko
- Department for Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (A.S.); (I.P.)
| | - Nataša Bauer
- Department for Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102, 10000 Zagreb, Croatia;
| | - Iva Pavlović
- Department for Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (A.S.); (I.P.)
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (A.P.); (O.N.)
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (A.P.); (O.N.)
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (A.P.); (O.N.)
| | - Branka Salopek-Sondi
- Department for Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (A.S.); (I.P.)
- Correspondence: ; Tel.: +385-1-4561-143
| |
Collapse
|
49
|
Mehdi SMM, Krishnamoorthy S, Szczesniak MW, Ludwików A. Identification of Novel miRNAs and Their Target Genes in the Response to Abscisic Acid in Arabidopsis. Int J Mol Sci 2021; 22:7153. [PMID: 34281207 PMCID: PMC8268864 DOI: 10.3390/ijms22137153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
miRNAs are involved in various biological processes, including adaptive responses to abiotic stress. To understand the role of miRNAs in the response to ABA, ABA-responsive miRNAs were identified by small RNA sequencing in wild-type Arabidopsis, as well as in abi1td, mkkk17, and mkkk18 mutants. We identified 10 novel miRNAs in WT after ABA treatment, while in abi1td, mkkk17, and mkkk18 mutants, three, seven, and nine known miRNAs, respectively, were differentially expressed after ABA treatment. One novel miRNA (miRn-8) was differentially expressed in the mkkk17 mutant. Potential target genes of the miRNA panel were identified using psRNATarget. Sequencing results were validated by quantitative RT-PCR of several known and novel miRNAs in all genotypes. Of the predicted targets of novel miRNAs, seven target genes of six novel miRNAs were further validated by 5' RLM-RACE. Gene ontology analyses showed the potential target genes of ABA-responsive known and novel miRNAs to be involved in diverse cellular processes in plants, including development and stomatal movement. These outcomes suggest that a number of the identified miRNAs have crucial roles in plant responses to environmental stress, as well as in plant development, and might have common regulatory roles in the core ABA signaling pathway.
Collapse
Affiliation(s)
- Syed Muhammad Muntazir Mehdi
- Laboratory of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (S.M.M.M.); (S.K.)
| | - Sivakumar Krishnamoorthy
- Laboratory of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (S.M.M.M.); (S.K.)
| | - Michal Wojciech Szczesniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland;
| | - Agnieszka Ludwików
- Laboratory of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (S.M.M.M.); (S.K.)
| |
Collapse
|
50
|
Song L, Fang Y, Chen L, Wang J, Chen X. Role of non-coding RNAs in plant immunity. PLANT COMMUNICATIONS 2021; 2:100180. [PMID: 34027394 PMCID: PMC8132121 DOI: 10.1016/j.xplc.2021.100180] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 05/06/2023]
Abstract
Crops are exposed to attacks by various pathogens that cause substantial yield losses and severely threaten food security. To cope with pathogenic infection, crops have elaborated strategies to enhance resistance against pathogens. In addition to the role of protein-coding genes as key regulators in plant immunity, accumulating evidence has demonstrated the importance of non-coding RNAs (ncRNAs) in the plant immune response. Here, we summarize the roles and molecular mechanisms of endogenous ncRNAs, especially microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in plant immunity. We discuss the coordination between miRNAs and small interfering RNAs (siRNAs), between lncRNAs and miRNAs or siRNAs, and between circRNAs and miRNAs in the regulation of plant immune responses. We also address the role of cross-kingdom mobile small RNAs in plant-pathogen interactions. These insights improve our understanding of the mechanisms by which ncRNAs regulate plant immunity and can promote the development of better approaches for breeding disease-resistant crops.
Collapse
Affiliation(s)
- Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Yu Fang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Lin Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
- Corresponding author
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
- Corresponding author
| |
Collapse
|