1
|
Nour M, Stiger-Pouvreau V, Guenneguez A, Meslet-Cladière L, Cérantola S, Ali A, Simon G, Daher A, Petek S. Eco-Friendly Extraction of Phlorotannins from Padina pavonica: Identification Related to Purification Methods Towards Innovative Cosmetic Applications. Mar Drugs 2024; 23:15. [PMID: 39852517 PMCID: PMC11766817 DOI: 10.3390/md23010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/26/2025] Open
Abstract
This study focuses on developing innovative and eco-friendly purification methods for the isolation of bioactive compounds derived from Padina pavonica, a brown abundant macroalga in Djibouti. Three distinct fractions, obtained via liquid-liquid extraction (LLE_FAE), solid-phase extraction (SPE_WE50), and flash chromatography (FC_EtOH20), were selected based on their high phenolic content and antioxidant activities. All fractions were also evaluated for their anti-ageing potential by assessing their ability to inhibit two vital skin-ageing enzymes, tyrosinase and elastase. Structural analysis by 1H-13C HMBC NMR and LC-MS revealed a selectivity of phlorotannins depending on the purification methods. The LLE_FAE fraction exhibited greater structural complexity, including compounds such as phloroglucinol, diphlorethol/difucol, fucophlorethol and bifuhalol, which likely contribute to its enhanced bioactivity compared to the fractions obtained by FC_EtOH20 and SPE_WE50, which were also active and enriched only in phloroglucinol and fucophlorethol. These findings highlight the impact of purification techniques on the selective enrichment of specific bioactive compounds and demonstrated the interest of FC or SPE in producing active phlorotannin-enriched fractions. These two purification methods hold strong potential for innovative cosmeceutical applications. Results are discussed regarding the use of P. pavonica as a promising marine resource in Djibouti to be used for the development of cosmetic industry.
Collapse
Affiliation(s)
- Moustapha Nour
- Univ Brest, Institut de Recherche pour le Développement (IRD), CNRS, Ifremer, LEMAR, IUEM, F-29280 Plouzane, France; (M.N.); (A.G.); (S.P.)
- Centre d’Études et de Recherche de Djibouti, Institut des Sciences de la Vie ISV, Route de l’Aéroport, Haramous BP 486, Djibouti; (A.A.); (A.D.)
| | - Valérie Stiger-Pouvreau
- Univ Brest, Institut de Recherche pour le Développement (IRD), CNRS, Ifremer, LEMAR, IUEM, F-29280 Plouzane, France; (M.N.); (A.G.); (S.P.)
| | - Alain Guenneguez
- Univ Brest, Institut de Recherche pour le Développement (IRD), CNRS, Ifremer, LEMAR, IUEM, F-29280 Plouzane, France; (M.N.); (A.G.); (S.P.)
| | - Laurence Meslet-Cladière
- Univ Brest, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzane, France;
| | - Stéphane Cérantola
- Univ Brest, Plateforme Résonance Magnétique Nucléaire-Résonance Paramagnétique Electronique (RMN-RPE), F-29238 Brest, France; (S.C.); (G.S.)
| | - Ahmed Ali
- Centre d’Études et de Recherche de Djibouti, Institut des Sciences de la Vie ISV, Route de l’Aéroport, Haramous BP 486, Djibouti; (A.A.); (A.D.)
| | - Gaelle Simon
- Univ Brest, Plateforme Résonance Magnétique Nucléaire-Résonance Paramagnétique Electronique (RMN-RPE), F-29238 Brest, France; (S.C.); (G.S.)
| | - Abdourahman Daher
- Centre d’Études et de Recherche de Djibouti, Institut des Sciences de la Vie ISV, Route de l’Aéroport, Haramous BP 486, Djibouti; (A.A.); (A.D.)
| | - Sylvain Petek
- Univ Brest, Institut de Recherche pour le Développement (IRD), CNRS, Ifremer, LEMAR, IUEM, F-29280 Plouzane, France; (M.N.); (A.G.); (S.P.)
| |
Collapse
|
2
|
Fuertes-Rabanal M, Rebaque D, Largo-Gosens A, Encina A, Mélida H. Cell walls, a comparative view of the composition of cell surfaces of plants, algae and microorganisms. JOURNAL OF EXPERIMENTAL BOTANY 2024:erae512. [PMID: 39705009 DOI: 10.1093/jxb/erae512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Indexed: 12/21/2024]
Abstract
While evolutionary studies indicate that the most ancient groups of organisms on Earth likely descended from a common wall-less ancestor, contemporary organisms lacking a carbohydrate-rich cell surface are exceedingly rare. By developing a cell wall to cover the plasma membrane, cells were able to withstand higher osmotic pressures, colonise new habitats and develop complex multicellular structures. This way, the cells of plants, algae and microorganisms are covered by a cell wall, which can generally be defined as a highly complex structure whose main framework is usually composed of carbohydrates. Rather than static structures, they are highly dynamic and serve a multitude of functions that modulate vital cellular processes, such as growth and interactions with neighbouring cells or the surrounding environment. Thus, despite its vital importance for many groups of life, it is striking that there are few comprehensive documents comparing the cell wall composition of these groups. Thus, the aim of this review was to compare the cell walls of plants with those of algae and microorganisms, paying particular attention to their polysaccharide components. It should be highlighted that, despite the important differences in composition, we have also found numerous common aspects and functionalities.
Collapse
Affiliation(s)
- María Fuertes-Rabanal
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Diego Rebaque
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
- Universidad Politécnica de Madrid, Madrid, Spain
| | - Asier Largo-Gosens
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Antonio Encina
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| |
Collapse
|
3
|
Denoeud F, Godfroy O, Cruaud C, Heesch S, Nehr Z, Tadrent N, Couloux A, Brillet-Guéguen L, Delage L, Mckeown D, Motomura T, Sussfeld D, Fan X, Mazéas L, Terrapon N, Barrera-Redondo J, Petroll R, Reynes L, Choi SW, Jo J, Uthanumallian K, Bogaert K, Duc C, Ratchinski P, Lipinska A, Noel B, Murphy EA, Lohr M, Khatei A, Hamon-Giraud P, Vieira C, Avia K, Akerfors SS, Akita S, Badis Y, Barbeyron T, Belcour A, Berrabah W, Blanquart S, Bouguerba-Collin A, Bringloe T, Cattolico RA, Cormier A, Cruz de Carvalho H, Dallet R, De Clerck O, Debit A, Denis E, Destombe C, Dinatale E, Dittami S, Drula E, Faugeron S, Got J, Graf L, Groisillier A, Guillemin ML, Harms L, Hatchett WJ, Henrissat B, Hoarau G, Jollivet C, Jueterbock A, Kayal E, Knoll AH, Kogame K, Le Bars A, Leblanc C, Le Gall L, Ley R, Liu X, LoDuca ST, Lopez PJ, Lopez P, Manirakiza E, Massau K, Mauger S, Mest L, Michel G, Monteiro C, Nagasato C, Nègre D, Pelletier E, Phillips N, Potin P, Rensing SA, Rousselot E, Rousvoal S, Schroeder D, Scornet D, Siegel A, Tirichine L, Tonon T, Valentin K, Verbruggen H, Weinberger F, Wheeler G, Kawai H, Peters AF, Yoon HS, et alDenoeud F, Godfroy O, Cruaud C, Heesch S, Nehr Z, Tadrent N, Couloux A, Brillet-Guéguen L, Delage L, Mckeown D, Motomura T, Sussfeld D, Fan X, Mazéas L, Terrapon N, Barrera-Redondo J, Petroll R, Reynes L, Choi SW, Jo J, Uthanumallian K, Bogaert K, Duc C, Ratchinski P, Lipinska A, Noel B, Murphy EA, Lohr M, Khatei A, Hamon-Giraud P, Vieira C, Avia K, Akerfors SS, Akita S, Badis Y, Barbeyron T, Belcour A, Berrabah W, Blanquart S, Bouguerba-Collin A, Bringloe T, Cattolico RA, Cormier A, Cruz de Carvalho H, Dallet R, De Clerck O, Debit A, Denis E, Destombe C, Dinatale E, Dittami S, Drula E, Faugeron S, Got J, Graf L, Groisillier A, Guillemin ML, Harms L, Hatchett WJ, Henrissat B, Hoarau G, Jollivet C, Jueterbock A, Kayal E, Knoll AH, Kogame K, Le Bars A, Leblanc C, Le Gall L, Ley R, Liu X, LoDuca ST, Lopez PJ, Lopez P, Manirakiza E, Massau K, Mauger S, Mest L, Michel G, Monteiro C, Nagasato C, Nègre D, Pelletier E, Phillips N, Potin P, Rensing SA, Rousselot E, Rousvoal S, Schroeder D, Scornet D, Siegel A, Tirichine L, Tonon T, Valentin K, Verbruggen H, Weinberger F, Wheeler G, Kawai H, Peters AF, Yoon HS, Hervé C, Ye N, Bapteste E, Valero M, Markov GV, Corre E, Coelho SM, Wincker P, Aury JM, Cock JM. Evolutionary genomics of the emergence of brown algae as key components of coastal ecosystems. Cell 2024; 187:6943-6965.e39. [PMID: 39571576 DOI: 10.1016/j.cell.2024.10.049] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/20/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024]
Abstract
Brown seaweeds are keystone species of coastal ecosystems, often forming extensive underwater forests, and are under considerable threat from climate change. In this study, analysis of multiple genomes has provided insights across the entire evolutionary history of this lineage, from initial emergence, through later diversification of the brown algal orders, down to microevolutionary events at the genus level. Emergence of the brown algal lineage was associated with a marked gain of new orthologous gene families, enhanced protein domain rearrangement, increased horizontal gene transfer events, and the acquisition of novel signaling molecules and key metabolic pathways, the latter notably related to biosynthesis of the alginate-based extracellular matrix, and halogen and phlorotannin biosynthesis. We show that brown algal genome diversification is tightly linked to phenotypic divergence, including changes in life cycle strategy and zoid flagellar structure. The study also showed that integration of large viral genomes has had a significant impact on brown algal genome content throughout the emergence of the lineage.
Collapse
Affiliation(s)
- France Denoeud
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France
| | - Olivier Godfroy
- Sorbonne Université, CNRS, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Svenja Heesch
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Zofia Nehr
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Nachida Tadrent
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France
| | - Arnaud Couloux
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France
| | - Loraine Brillet-Guéguen
- CNRS, UMR 8227, Laboratory of Integrative Biology of Marine Models, Sorbonne Université, Station Biologique de Roscoff, Roscoff, France; CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Ludovic Delage
- Sorbonne Université, CNRS, UMR 8227, ABIE Team, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Dean Mckeown
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Taizo Motomura
- Muroran Marine Station, Hokkaido University, Muroran, Japan
| | - Duncan Sussfeld
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France; Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Sorbonne Université, CNRS, Museum, Paris, France
| | - Xiao Fan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Lisa Mazéas
- Sorbonne Université, CNRS, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Nicolas Terrapon
- Aix Marseille University, CNRS, UMR 7257 AFMB, Marseille, France; INRAE, USC 1408 AFMB, Marseille, France
| | - Josué Barrera-Redondo
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Romy Petroll
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Lauric Reynes
- IRL 3614, UMR 7144, DISEEM, CNRS, Sorbonne Université, Station Biologique de Roscoff, Roscoff 29688, France
| | - Seok-Wan Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jihoon Jo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Kenny Bogaert
- Phycology Research Group, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium
| | - Céline Duc
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Pélagie Ratchinski
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Agnieszka Lipinska
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France; Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France
| | - Eleanor A Murphy
- University of Bristol, Bristol, UK; Marine Biological Association, Plymouth, UK
| | - Martin Lohr
- Johannes Gutenberg University, Mainz, Germany
| | - Ananya Khatei
- Algal and Microbial Biotechnology Division, Nord University, Bodø, Norway
| | | | - Christophe Vieira
- Research Institute for Basic Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Komlan Avia
- INRAE, Université de Strasbourg, UMR SVQV, 68000 Colmar, France
| | | | - Shingo Akita
- Faculty of Fisheries Sciences, Hokkaido University, Minato-cho 3-1-1, Hakodate, Hokkaido 041-8611, Japan
| | - Yacine Badis
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Tristan Barbeyron
- Sorbonne Université, CNRS, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Arnaud Belcour
- University of Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | - Wahiba Berrabah
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France
| | - Samuel Blanquart
- University of Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | - Ahlem Bouguerba-Collin
- Sorbonne Université, CNRS, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | | | | | - Alexandre Cormier
- Ifremer, IRSI, SeBiMER Service de Bioinformatique de l'Ifremer, 29280 Plouzané, France
| | - Helena Cruz de Carvalho
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Université Paris Est-Créteil (UPEC), Faculté des Sciences et Technologie, 61, Avenue du Général De Gaulle, 94000 Créteil, France
| | - Romain Dallet
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Olivier De Clerck
- Phycology Research Group, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium
| | - Ahmed Debit
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Erwan Denis
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France
| | - Christophe Destombe
- IRL 3614, UMR 7144, DISEEM, CNRS, Sorbonne Université, Station Biologique de Roscoff, Roscoff 29688, France
| | - Erica Dinatale
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Simon Dittami
- Sorbonne Université, CNRS, UMR 8227, ABIE Team, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Elodie Drula
- Aix Marseille University, CNRS, UMR 7257 AFMB, Marseille, France; INRAE, USC 1408 AFMB, Marseille, France
| | - Sylvain Faugeron
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jeanne Got
- University of Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | - Louis Graf
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Marie-Laure Guillemin
- IRL 3614, UMR 7144, DISEEM, CNRS, Sorbonne Université, Station Biologique de Roscoff, Roscoff 29688, France; Núcleo Milenio MASH, Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Lars Harms
- Alfred Wegener Institute (AWI), Bremenhaven, Germany
| | | | - Bernard Henrissat
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | - Chloé Jollivet
- Sorbonne Université, CNRS, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | | | - Ehsan Kayal
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kazuhiro Kogame
- Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Arthur Le Bars
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France; CNRS, Institut Français de Bioinformatique, IFB-core, Évry, France
| | - Catherine Leblanc
- Sorbonne Université, CNRS, UMR 8227, ABIE Team, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Line Le Gall
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Sorbonne Université, CNRS, Museum, Paris, France
| | - Ronja Ley
- Johannes Gutenberg University, Mainz, Germany
| | - Xi Liu
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Steven T LoDuca
- Department of Geography and Geology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Pascal Jean Lopez
- Centre National de la Recherche Scientifique, UMR BOREA MNHN/CNRS-8067/SU/IRD/Université de Caen Normandie/Université des Antilles, Plouzané, France
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Sorbonne Université, CNRS, Museum, Paris, France
| | - Eric Manirakiza
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Karine Massau
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Stéphane Mauger
- IRL 3614, UMR 7144, DISEEM, CNRS, Sorbonne Université, Station Biologique de Roscoff, Roscoff 29688, France
| | - Laetitia Mest
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Gurvan Michel
- Sorbonne Université, CNRS, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Catia Monteiro
- Sorbonne Université, CNRS, UMR 8227, ABIE Team, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | | | - Delphine Nègre
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France
| | - Naomi Phillips
- Biology Department, Arcadia University, Glenside, PA, USA
| | - Philippe Potin
- Sorbonne Université, CNRS, UMR 8227, ABIE Team, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | | | - Ellyn Rousselot
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Sylvie Rousvoal
- Sorbonne Université, CNRS, UMR 8227, ABIE Team, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | | | - Delphine Scornet
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Anne Siegel
- University of Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | - Leila Tirichine
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Thierry Tonon
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | | | | | | | | | - Hiroshi Kawai
- Kobe University Research Center for Inland Seas, Kobe, Japan.
| | | | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Cécile Hervé
- Sorbonne Université, CNRS, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France.
| | - Naihao Ye
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China.
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Sorbonne Université, CNRS, Museum, Paris, France.
| | - Myriam Valero
- IRL 3614, UMR 7144, DISEEM, CNRS, Sorbonne Université, Station Biologique de Roscoff, Roscoff 29688, France.
| | - Gabriel V Markov
- Sorbonne Université, CNRS, UMR 8227, ABIE Team, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France.
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France.
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany.
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France.
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France.
| | - J Mark Cock
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France.
| |
Collapse
|
4
|
Carpena M, Pereira CSGP, Silva A, Barciela P, Jorge AOS, Perez-Vazquez A, Pereira AG, Barreira JCM, Oliveira MBPP, Prieto MA. Metabolite Profiling of Macroalgae: Biosynthesis and Beneficial Biological Properties of Active Compounds. Mar Drugs 2024; 22:478. [PMID: 39452886 PMCID: PMC11509156 DOI: 10.3390/md22100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Macroalgae are known as abundant sources of phytochemicals, which offer a plethora of beneficial biological properties. Besides being the most notable classes of compounds found in macroalgae, phlorotannins, bromophenols, and terpenoids comprise some of the most relevant for their biological properties. Phlorotannins, mainly prevalent in brown algae and structurally characterized as complex polyphenolic compounds derived from phloroglucinol units, possess robust antioxidant, anti-inflammatory, antitumor, and cytotoxic activities, modulated by factors such as the degree of polymerization and environmental conditions. Bromophenols, halogenated compounds found in algae and other marine organisms, exhibit significant antioxidant and antiviral properties. Their diverse structures and bromination patterns contribute to their potential as therapeutic and chemical defense agents. Pigments (chemically described as primary terpenoids) play a critical role in light absorption and energy transfer in macroalgae and are divided into three main groups: (i) carotenoids, which are primarily found in brown algae and provide photoprotective and antioxidant benefits; (ii) chlorophylls, known for facilitating the conversion of light into biological energy; and (iii) phycobilins, which are mostly found in red algae and play important roles in light absorption and energy transfer, besides providing remarkable health benefits. Finally, secondary terpenoids, which are particularly abundant in red algae (e.g., the Rhodomelaceae family) are central to cellular interactions and exhibit significant antioxidant, antimicrobial, antidiabetic, and anti-inflammatory properties. This study represents a detailed analysis of the biosynthesis, structural diversity, and biological activities of these macroalgae metabolites, emphasizing their potential biological properties.
Collapse
Affiliation(s)
- Maria Carpena
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
| | - Cláudia S. G. P. Pereira
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.S.G.P.P.); (M.B.P.P.O.)
| | - Aurora Silva
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Paula Barciela
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
| | - A. Olivia S. Jorge
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.S.G.P.P.); (M.B.P.P.O.)
| | - Ana Perez-Vazquez
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
| | - Antia G. Pereira
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
- Investigaciones Agroalimentarias Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - João C. M. Barreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - M. Beatriz P. P. Oliveira
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.S.G.P.P.); (M.B.P.P.O.)
| | - Miguel A. Prieto
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, 36310 Vigo, Spain; (M.C.); (A.S.); (P.B.); (A.O.S.J.); (A.P.-V.); (A.G.P.)
| |
Collapse
|
5
|
Grabski M, Gawor J, Cegłowska M, Gromadka R, Mazur-Marzec H, Węgrzyn G. Genome Mining of Pseudanabaena galeata CCNP1313 Indicates a New Scope in the Search for Antiproliferative and Antiviral Agents. Microorganisms 2024; 12:1628. [PMID: 39203471 PMCID: PMC11356792 DOI: 10.3390/microorganisms12081628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Compounds derived from natural sources pave the way for novel drug development. Cyanobacteria is an ubiquitous phylum found in various habitats. The fitness of those microorganisms, within different biotopes, is partially dependent on secondary metabolite production. Their enhanced production under biotic/abiotic stress factors accounts for better survival rates of cells, and thereby cyanobacteria are as an enticing source of bioactive compounds. Previous studies have shown the potent activity of extracts and fractions from Pseudanabaena galeata (Böcher 1949) strain CCNP1313 against cancer cells and viruses. However, active agents remain unknown, as the selected peptides had no effect on the tested cell lines. Here, we present a bottom-up approach, pinpointing key structures involved in secondary metabolite production. Consisting of six replicons, a complete genome sequence of P. galeata strain CCNP1313 was found to carry genes for non-ribosomal peptide/polyketide synthetases embedded within chromosome spans (4.9 Mbp) and for a ribosomally synthesized peptide located on one of the plasmids (0.2 Mbp). Elucidation of metabolite synthesis pathways led to prediction of their structure. While none of the synthesis-predicted products were found in mass spectrometry analysis, unexplored synthetases are characterized by structural similarities to those producing potent bioactive compounds.
Collapse
Affiliation(s)
- Michał Grabski
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland;
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822 Gdańsk, Poland
| | - Jan Gawor
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.G.); (R.G.)
| | - Marta Cegłowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland;
| | - Robert Gromadka
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.G.); (R.G.)
| | - Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, University of Gdansk, Piłsudskiego 46, 81-378 Gdynia, Poland;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| |
Collapse
|
6
|
Milke L, Kabuu M, Zschoche R, Gätgens J, Krumbach K, Carlstedt KL, Wurzbacher CE, Balluff S, Beemelmanns C, Jogler C, Marienhagen J, Kallscheuer N. A type III polyketide synthase cluster in the phylum Planctomycetota is involved in alkylresorcinol biosynthesis. Appl Microbiol Biotechnol 2024; 108:239. [PMID: 38407604 PMCID: PMC10896814 DOI: 10.1007/s00253-024-13065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
Members of the bacterial phylum Planctomycetota have recently emerged as promising and for the most part untapped sources of novel bioactive compounds. The characterization of more than 100 novel species in the last decade stimulated recent bioprospection studies that start to unveil the chemical repertoire of the phylum. In this study, we performed systematic bioinformatic analyses based on the genomes of all 131 described members of the current phylum focusing on the identification of type III polyketide synthase (PKS) genes. Type III PKSs are versatile enzymes involved in the biosynthesis of a wide array of structurally diverse natural products with potent biological activities. We identified 96 putative type III PKS genes of which 58 are encoded in an operon with genes encoding a putative oxidoreductase and a methyltransferase. Sequence similarities on protein level and the genetic organization of the operon point towards a functional link to the structurally related hierridins recently discovered in picocyanobacteria. The heterologous expression of planctomycetal type III PKS genes from strains belonging to different families in an engineered Corynebacterium glutamicum strain led to the biosynthesis of pentadecyl- and heptadecylresorcinols. Phenotypic assays performed with the heterologous producer strains and a constructed type III PKS gene deletion mutant suggest that the natural function of the identified compounds differs from that confirmed in other bacterial alkylresorcinol producers. KEY POINTS: • Planctomycetal type III polyketide synthases synthesize long-chain alkylresorcinols. • Phylogenetic analyses suggest an ecological link to picocyanobacterial hierridins. • Engineered C. glutamicum is suitable for an expression of planctomycete-derived genes.
Collapse
Affiliation(s)
- Lars Milke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Moses Kabuu
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Renè Zschoche
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Jochem Gätgens
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Karin Krumbach
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Kim-Loreen Carlstedt
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Carmen E Wurzbacher
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Sven Balluff
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123, Saarbrücken, Germany
| | - Christine Beemelmanns
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123, Saarbrücken, Germany
- Saarland University, Saarbrücken, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany.
| |
Collapse
|
7
|
Duan X, Agar OT, Barrow CJ, Dunshea FR, Suleria HAR. Improving potential strategies for biological activities of phlorotannins derived from seaweeds. Crit Rev Food Sci Nutr 2023; 65:833-855. [PMID: 39889780 DOI: 10.1080/10408398.2023.2282669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Seaweeds have garnered considerable attention due to their capacity to serve as exceptional reservoirs of numerous bioactive metabolites possessing substantial chemical and biological significance. .Phlorotannins constitute a significant class of natural polyphenols originating from brown seaweeds, featuring a broad spectrum of bioactive attributes and demonstrating potential applicability across various sectors. The potential health advantages associated with phlorotannins, particularly concerning the prevention of conditions linked to oxidative stress, such as inflammation, diabetes, and allergies, have generated substantial interest within the food and pharmaceutical industries. Nevertheless, current research remains insufficient in providing a comprehensive understanding of their absorption, as comparisons drawn with their terrestrial counterparts remain speculative. It is commonly presumed that phenolic compounds, including phlorotannins, face challenges due to their limited solubility, instability, and extensive metabolism, all of which restrict their bioavailability. In order to circumvent these limitations and amplify their utility as components of medicinal formulations or healthcare products, researchers have explored various strategies, including the encapsulation or integration of phlorotannins into nano-/micro-particles or advanced drug delivery systems. This review offers a thorough exploration of the structural and biological attributes of phlorotannins and furnishes insights into potential strategies showing promise for their effective utilization in preclinical and clinical applications.
Collapse
Affiliation(s)
- Xinyu Duan
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Osman Tuncay Agar
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Deakin University, Victoria, Australia
| | - Frank R Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| | - Hafiz A R Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Deakin University, Victoria, Australia
| |
Collapse
|
8
|
Davison JR, Rajwani R, Zhao G, Bewley CA. The genome of antibiotic-producing colonies of the Pelagophyte alga Chrysophaeum taylorii reveals a diverse and non-canonical capacity for secondary metabolism. Sci Rep 2023; 13:11944. [PMID: 37488207 PMCID: PMC10366177 DOI: 10.1038/s41598-023-38042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/01/2023] [Indexed: 07/26/2023] Open
Abstract
Chrysophaeum taylorii is a member of an understudied clade of marine algae that can be responsible for harmful coastal blooms and is known to accumulate bioactive natural products including antibiotics of the chrysophaentin class. Whole genome sequencing of laboratory-cultivated samples revealed an extensive and diverse complement of secondary metabolite biosynthetic genes in C. taylorii, alongside a small microbiome with a more limited biosynthetic potential. 16S microbiome analysis of laboratory cultured alongside wild-collected samples revealed several common taxa; however, analysis of biosynthetic genes suggested an algal origin for the chrysophaentins, possibly via one of several non-canonical polyketide synthase genes encoded within the genome.
Collapse
Affiliation(s)
- Jack R Davison
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Mailstop 0820, Bethesda, MD, 20892, USA.
- LifeMine Therapeutics, 30 Acorn Park Dr., Cambridge, MA, 02140, USA.
| | - Rahim Rajwani
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Mailstop 0820, Bethesda, MD, 20892, USA
| | - Gengxiang Zhao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Mailstop 0820, Bethesda, MD, 20892, USA
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Mailstop 0820, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Pradhan B, Nayak R, Bhuyan PP, Patra S, Behera C, Sahoo S, Ki JS, Quarta A, Ragusa A, Jena M. Algal Phlorotannins as Novel Antibacterial Agents with Reference to the Antioxidant Modulation: Current Advances and Future Directions. Mar Drugs 2022; 20:403. [PMID: 35736206 PMCID: PMC9228090 DOI: 10.3390/md20060403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 01/27/2023] Open
Abstract
The increasing drug resistance of infectious microorganisms is considered a primary concern of global health care. The screening and identification of natural compounds with antibacterial properties have gained immense popularity in recent times. It has previously been shown that several bioactive compounds derived from marine algae exhibit antibacterial activity. Similarly, polyphenolic compounds are generally known to possess promising antibacterial capacity, among other capacities. Phlorotannins (PTs), an important group of algae-derived polyphenolic compounds, have been considered potent antibacterial agents both as single drug entities and in combination with commercially available antibacterial drugs. In this context, this article reviews the antibacterial properties of polyphenols in brown algae, with particular reference to PTs. Cell death through various molecular modes of action and the specific inhibition of biofilm formation by PTs were the key discussion of this review. The synergy between drugs was also discussed in light of the potential use of PTs as adjuvants in the pharmacological antibacterial treatment.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (B.P.); (R.N.); (C.B.)
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea;
| | - Rabindra Nayak
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (B.P.); (R.N.); (C.B.)
| | - Prajna Paramita Bhuyan
- Department of Botany, Maharaja Sriram Chandra Bhanja Deo University, Baripada 757003, Odisha, India;
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India;
| | - Chhandashree Behera
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (B.P.); (R.N.); (C.B.)
| | - Sthitaprajna Sahoo
- Department of Botany, Berhampur University, Berhampur 760007, Odisha, India;
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea;
| | - Alessandra Quarta
- CNR-Nanotec, Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy;
| | - Andrea Ragusa
- CNR-Nanotec, Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy;
- Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (B.P.); (R.N.); (C.B.)
| |
Collapse
|
10
|
Matulja D, Vranješević F, Kolympadi Markovic M, Pavelić SK, Marković D. Anticancer Activities of Marine-Derived Phenolic Compounds and Their Derivatives. Molecules 2022; 27:molecules27041449. [PMID: 35209235 PMCID: PMC8879422 DOI: 10.3390/molecules27041449] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/24/2022] Open
Abstract
Since the middle of the last century, marine organisms have been identified as producers of chemically and biologically diverse secondary metabolites which have exerted various biological activities including anticancer, anti-inflammatory, antioxidant, antimicrobial, antifouling and others. This review primarily focuses on the marine phenolic compounds and their derivatives with potent anticancer activity, isolated and/or modified in the last decade. Reports on the elucidation of their structures as well as biosynthetic studies and total synthesis are also covered. Presented phenolic compounds inhibited cancer cells proliferation or migration, at sub-micromolar or nanomolar concentrations (lamellarins D (37), M (38), K (39), aspergiolide B (41), fradimycin B (62), makulavamine J (66), mayamycin (69), N-acetyl-N-demethylmayamycin (70) or norhierridin B (75)). In addition, they exhibited anticancer properties by a diverse biological mechanism including induction of apoptosis or inhibition of cell migration and invasive potential. Finally, phlorotannins 1–7 and bromophenols 12–29 represent the most researched phenolic compounds, of which the former are recognized as protective agents against UVB or gamma radiation-induced skin damages. Finally, phenolic metabolites were assorted into six main classes: phlorotannins, bromophenols, flavonoids, coumarins, terpenophenolics, quinones and hydroquinones. The derivatives that could not be attributed to any of the above-mentioned classes were grouped in a separate class named miscellaneous compounds.
Collapse
Affiliation(s)
- Dario Matulja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Filip Vranješević
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Maria Kolympadi Markovic
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 5, 51000 Rijeka, Croatia
- Correspondence: (S.K.P.); (D.M.); Tel.: +385-51-688-266 (S.K.P.); +385-91-500-8676 (D.M.)
| | - Dean Marković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
- Correspondence: (S.K.P.); (D.M.); Tel.: +385-51-688-266 (S.K.P.); +385-91-500-8676 (D.M.)
| |
Collapse
|
11
|
Fernando IPS, Lee W, Ahn G. Marine algal flavonoids and phlorotannins; an intriguing frontier of biofunctional secondary metabolites. Crit Rev Biotechnol 2022; 42:23-45. [PMID: 34016003 DOI: 10.1080/07388551.2021.1922351] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/14/2020] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
Algae are the oldest representatives of the plant world with reserves exceeding hundreds of millions of tons in the world's oceans. Currently, a growing interest is placed toward the use of algae as feedstocks for obtaining numerous natural products. Algae are a rich source of polyphenols that possess intriguing structural diversity. Among the algal polyphenols, phlorotannins, which are unique to brown seaweeds, and have immense value as potent modulators of biochemical processes linked to chronic diseases. In algae, flavonoids remain under-explored compared to other categories of polyphenols. Both phlorotannins and flavonoids are inclusive of compounds indicating a wide structural diversity. The present paper reviews the literature on the ecological significance, biosynthesis, structural diversity, and bioactivity of seaweed phlorotannins and flavonoids. The potential implementation of these chemical entities in functional foods, cosmeceuticals, medicaments, and as templates in drug design are described in detail, and perspectives are provided to tackle what are perceived to be the most momentous challenges related to the utilization of phlorotannins and flavonoids. Moving beyond: industrial biotechnology applications, metabolic engineering, total synthesis, biomimetic synthesis, and chemical derivatization of phlorotannins and flavonoids could broaden the research perspectives contributing to the health and economic up-gradation.
Collapse
Affiliation(s)
| | - WonWoo Lee
- Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si, Jeollanam-do, Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| |
Collapse
|
12
|
Therapeutic Potential of Seaweed-Derived Bioactive Compounds for Cardiovascular Disease Treatment. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cardiovascular diseases are closely related to hypertension, type 2 diabetes mellitus, obesity, and hyperlipidemia. Many studies have reported that an unhealthy diet and sedentary lifestyle are critical factors that enhance these diseases. Recently, many bioactive compounds isolated from marine seaweeds have been studied for their benefits in improving human health. In particular, several unique bioactive metabolites such as polyphenols, polysaccharides, peptides, carotene, and sterol are the most effective components responsible for these activities. This review summarizes the current in vitro, in vivo, and clinical studies related to the protective effects of bioactive compounds isolated from seaweeds against cardiovascular disorders, including anti-diabetic, anti-hypertensive, anti-hyperlipidemia, and anti-obesity effects. Therefore, this present review summarizes these concepts and provides a basis for further in-depth research.
Collapse
|
13
|
Zhao DS, Hu ZW, Dong LL, Wan XJ, Wang S, Li N, Wang Y, Li SM, Zou HX, Yan X. A Type III Polyketide Synthase (SfuPKS1) Isolated from the Edible Seaweed Sargassum fusiforme Exhibits Broad Substrate and Catalysis Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14643-14649. [PMID: 34812623 DOI: 10.1021/acs.jafc.1c05868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A type III polyketide synthase (SfuPKS1) from the edible seaweed Sargassum fusiforme was molecularly cloned and biochemically characterized. The recombinant SfuPKS1 catalyzed the condensation of fatty acyl-CoA with two or three malonyl-CoA using lactone-type intramolecular cyclization to produce tri- and/or tetraketides. Moreover, it can also utilize phenylpropanoyl-CoA to synthesize phloroglucinol derivatives through Claisen-type cyclization, exhibiting broad substrate and catalysis specificity. Furthermore, the catalytic efficiency (kcat/KM) for acetyl-CoA was 11.8-fold higher than that for 4-coumaroyl-CoA. A pathway for the synthesis of naringenin involving SfuPKS1 was also constructed in Escherichia coli by recombinant means, resulting in 4.9 mg of naringenin per liter.
Collapse
Affiliation(s)
- Dong-Sheng Zhao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Zhi-Wei Hu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Ling-Li Dong
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Xiao-Jie Wan
- Women's Hospital, School of Medicine, Zhejiang University, Xue-Shi Street 1, 310006 Hangzhou, China
| | - Shengqin Wang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Nan Li
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Yao Wang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Strasse 4, 35037 Marburg, Germany
| | - Hui-Xi Zou
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Xiufeng Yan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| |
Collapse
|
14
|
Cross-Tolerance and Autoimmunity as Missing Links in Abiotic and Biotic Stress Responses in Plants: A Perspective toward Secondary Metabolic Engineering. Int J Mol Sci 2021; 22:ijms222111945. [PMID: 34769374 PMCID: PMC8584326 DOI: 10.3390/ijms222111945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 01/04/2023] Open
Abstract
Plants employ a diversified array of defense activities when they encounter stress. Continuous activation of defense pathways that were induced by mutation or altered expression of disease resistance genes and mRNA surveillance mechanisms develop abnormal phenotypes. These plants show continuous defense genes' expression, reduced growth, and also manifest tissue damage by apoptosis. These macroscopic abrasions appear even in the absence of the pathogen and can be attributed to a condition known as autoimmunity. The question is whether it is possible to develop an autoimmune mutant that does not fetch yield and growth penalty and provides enhanced protection against various biotic and abiotic stresses via secondary metabolic pathways' engineering. This review is a discussion about the common stress-fighting mechanisms, how the concept of cross-tolerance instigates propitious or protective autoimmunity, and how it can be achieved by engineering secondary metabolic pathways.
Collapse
|
15
|
Blaschek L, Pesquet E. Phenoloxidases in Plants-How Structural Diversity Enables Functional Specificity. FRONTIERS IN PLANT SCIENCE 2021; 12:754601. [PMID: 34659324 PMCID: PMC8517187 DOI: 10.3389/fpls.2021.754601] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 05/23/2023]
Abstract
The metabolism of polyphenolic polymers is essential to the development and response to environmental changes of organisms from all kingdoms of life, but shows particular diversity in plants. In contrast to other biopolymers, whose polymerisation is catalysed by homologous gene families, polyphenolic metabolism depends on phenoloxidases, a group of heterogeneous oxidases that share little beyond the eponymous common substrate. In this review, we provide an overview of the differences and similarities between phenoloxidases in their protein structure, reaction mechanism, substrate specificity, and functional roles. Using the example of laccases (LACs), we also performed a meta-analysis of enzyme kinetics, a comprehensive phylogenetic analysis and machine-learning based protein structure modelling to link functions, evolution, and structures in this group of phenoloxidases. With these approaches, we generated a framework to explain the reported functional differences between paralogs, while also hinting at the likely diversity of yet undescribed LAC functions. Altogether, this review provides a basis to better understand the functional overlaps and specificities between and within the three major families of phenoloxidases, their evolutionary trajectories, and their importance for plant primary and secondary metabolism.
Collapse
|
16
|
Jégou C, Connan S, Bihannic I, Cérantola S, Guérard F, Stiger-Pouvreau V. Phlorotannin and Pigment Content of Native Canopy-Forming Sargassaceae Species Living in Intertidal Rockpools in Brittany (France): Any Relationship with Their Vertical Distribution and Phenology? Mar Drugs 2021; 19:504. [PMID: 34564166 PMCID: PMC8469379 DOI: 10.3390/md19090504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Five native Sargassaceae species from Brittany (France) living in rockpools were surveyed over time to investigate photoprotective strategies according to their tidal position. We gave evidences for the existence of a species distribution between pools along the shore, with the most dense and smallest individuals in the highest pools. Pigment contents were higher in lower pools, suggesting a photo-adaptive process by which the decreasing light irradiance toward the low shore was compensated by a high production of pigments to ensure efficient photosynthesis. Conversely, no xanthophyll cycle-related photoprotective mechanism was highlighted because high levels of zeaxanthin rarely occurred in the upper shore. Phlorotannins were not involved in photoprotection either; only some lower-shore species exhibited a seasonal trend in phlorotannin levels. The structural complexity of phlorotannins appears more to be a taxonomic than an ecological feature: Ericaria produced simple phloroglucinol while Cystoseira and Gongolaria species exhibited polymers. Consequently, tide pools could be considered as light-protected areas on the intertidal zone, in comparison with the exposed emerged substrata where photoprotective mechanisms are essential.
Collapse
Affiliation(s)
- Camille Jégou
- Laboratoire de Biotechnologie et Chimie Marine (LBCM) EA 3884, Université de Brest, 6 Rue de l’université, F-29334 Quimper, France;
| | - Solène Connan
- Laboratoire des Sciences de l’Environnement (LEMAR) UMR 6539, Université de Brest, CNRS, IRD, Ifremer, F-29280 Plouzane, France; (S.C.); (I.B.); (F.G.)
| | - Isabelle Bihannic
- Laboratoire des Sciences de l’Environnement (LEMAR) UMR 6539, Université de Brest, CNRS, IRD, Ifremer, F-29280 Plouzane, France; (S.C.); (I.B.); (F.G.)
| | | | - Fabienne Guérard
- Laboratoire des Sciences de l’Environnement (LEMAR) UMR 6539, Université de Brest, CNRS, IRD, Ifremer, F-29280 Plouzane, France; (S.C.); (I.B.); (F.G.)
| | - Valérie Stiger-Pouvreau
- Laboratoire des Sciences de l’Environnement (LEMAR) UMR 6539, Université de Brest, CNRS, IRD, Ifremer, F-29280 Plouzane, France; (S.C.); (I.B.); (F.G.)
| |
Collapse
|
17
|
Hizikia fusiformis: Pharmacological and Nutritional Properties. Foods 2021; 10:foods10071660. [PMID: 34359532 PMCID: PMC8306711 DOI: 10.3390/foods10071660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
The brown seaweed Hizikia fusiformis (syn. Sargassum fusiforme), commonly known as “Hijiki”, has been utilized in traditional cuisine and medicine in East Asian countries for several centuries. H. fusiformis has attracted much attention owing to its rich nutritional and pharmacological properties. However, there has been no comprehensive review of the nutritional and pharmacological properties of H. fusiformis. The aim of this systematic review was to provide detailed information from the published literature on the nutritional and pharmacological properties of H. fusiformis. A comprehensive online search of the literature was conducted by accessing databases, such as PubMed, SpringerLink, ScienceDirect, and Google Scholar, for published studies on the nutritional and pharmacological properties of H. fusiformis between 2010 and 2021. A total of 916 articles were screened from all the databases using the preferred reporting items for systematic reviews and meta-analyses method. Screening based on the setdown criteria resulted in 59 articles, which were used for this review. In this review, we found that there has been an increase in the number of publications on the pharmacological and nutritional properties of H. fusiformis over the last 10 years. In the last 10 years, studies have focused on the proximate, mineral, polysaccharide, and bioactive compound composition, and pharmacological properties, such as antioxidant, anticancer, antitumor, anti-inflammatory, photoprotective, neuroprotective, antidiabetic, immunomodulatory, osteoprotective, and gastroprotective properties of H. fusiformis extracts. Overall, further studies and strategies are required to develop H. fusiformis as a promising resource for the nutrition and pharmacological industries.
Collapse
|
18
|
Role and Evolution of the Extracellular Matrix in the Acquisition of Complex Multicellularity in Eukaryotes: A Macroalgal Perspective. Genes (Basel) 2021; 12:genes12071059. [PMID: 34356075 PMCID: PMC8307928 DOI: 10.3390/genes12071059] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Multicellular eukaryotes are characterized by an expanded extracellular matrix (ECM) with a diversified composition. The ECM is involved in determining tissue texture, screening cells from the outside medium, development, and innate immunity, all of which are essential features in the biology of multicellular eukaryotes. This review addresses the origin and evolution of the ECM, with a focus on multicellular marine algae. We show that in these lineages the expansion of extracellular matrix played a major role in the acquisition of complex multicellularity through its capacity to connect, position, shield, and defend the cells. Multiple innovations were necessary during these evolutionary processes, leading to striking convergences in the structures and functions of the ECMs of algae, animals, and plants.
Collapse
|
19
|
Naake T, Maeda HA, Proost S, Tohge T, Fernie AR. Kingdom-wide analysis of the evolution of the plant type III polyketide synthase superfamily. PLANT PHYSIOLOGY 2021; 185:857-875. [PMID: 33793871 PMCID: PMC8133574 DOI: 10.1093/plphys/kiaa086] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/07/2020] [Indexed: 05/19/2023]
Abstract
The emergence of type III polyketide synthases (PKSs) was a prerequisite for the conquest of land by the green lineage. Within the PKS superfamily, chalcone synthases (CHSs) provide the entry point reaction to the flavonoid pathway, while LESS ADHESIVE POLLEN 5 and 6 (LAP5/6) provide constituents of the outer exine pollen wall. To study the deep evolutionary history of this key family, we conducted phylogenomic synteny network and phylogenetic analyses of whole-genome data from 126 species spanning the green lineage including Arabidopsis thaliana, tomato (Solanum lycopersicum), and maize (Zea mays). This study thereby combined study of genomic location and context with changes in gene sequences. We found that the two major clades, CHS and LAP5/6 homologs, evolved early by a segmental duplication event prior to the divergence of Bryophytes and Tracheophytes. We propose that the macroevolution of the type III PKS superfamily is governed by whole-genome duplications and triplications. The combined phylogenetic and synteny analyses in this study provide insights into changes in the genomic location and context that are retained for a longer time scale with more recent functional divergence captured by gene sequence alterations.
Collapse
Affiliation(s)
- Thomas Naake
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin–Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Sebastian Proost
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Herestraat, 3000 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Campus Gasthuisberg, Rega Instituut, Herestraat, 3000 Leuven, Belgium
| | - Takayuki Tohge
- Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- Author for communication:
| |
Collapse
|
20
|
Emeline CB, Ludovic D, Laurent V, Catherine L, Kruse I, Erwan AG, Florian W, Philippe P. Induction of Phlorotannins and Gene Expression in the Brown Macroalga Fucus vesiculosus in Response to the Herbivore Littorina littorea. Mar Drugs 2021; 19:185. [PMID: 33810577 PMCID: PMC8067260 DOI: 10.3390/md19040185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/05/2023] Open
Abstract
Mechanisms related to the induction of phlorotannin biosynthesis in marine brown algae remain poorly known. Several studies undertaken on fucoid species have shown that phlorotannins accumulate in the algae for several days or weeks after being exposed to grazing, and this is measured by direct quantification of soluble phenolic compounds. In order to investigate earlier inducible responses involved in phlorotannin metabolism, Fucus vesiculosus was studied between 6 and 72 h of grazing by the sea snail Littorina littorea. In this study, the quantification of soluble phenolic compounds was complemented by a Quantitative real-time PCR (qRT-PCR) approach applied on genes that are potentially involved in either the phlorotannin metabolism or stress responses. Soluble phlorotannin levels remained stable during the kinetics and increased significantly only after 12 h in the presence of grazers, compared to the control, before decreasing to the initial steady state for the rest of the kinetics. Under grazing conditions, the expression of vbpo, cyp450 and ast6 genes was upregulated, respectively, at 6 h, 12 h and 24 h, and cyp450 gene was downregulated after 72 h. Interestingly, the pksIII gene involved in the synthesis of phloroglucinol was overexpressed under grazing conditions after 24 h and 72 h. This study supports the hypothesis that phlorotannins are able to provide an inducible chemical defense under grazing activity, which is regulated at different stages of the stress response.
Collapse
Affiliation(s)
- Creis Bendelac Emeline
- Integrative Biology of Marine Models (LBI2M), CNRS, Sorbonne Université, UMR 8227, Station Biologique, Place Georges Teissier, 29680 Roscoff, Brittany, France; (C.B.E.); (D.L.); (V.L.); (L.C.)
- International Research Laboratory IRL 3614, CNRS, Sorbonne Université, PUC, UACH, Evolutionary Biology and Ecology of Algae, EBEA, Station Biologique, 29680 Roscoff, Brittany, France
| | - Delage Ludovic
- Integrative Biology of Marine Models (LBI2M), CNRS, Sorbonne Université, UMR 8227, Station Biologique, Place Georges Teissier, 29680 Roscoff, Brittany, France; (C.B.E.); (D.L.); (V.L.); (L.C.)
| | - Vallet Laurent
- Integrative Biology of Marine Models (LBI2M), CNRS, Sorbonne Université, UMR 8227, Station Biologique, Place Georges Teissier, 29680 Roscoff, Brittany, France; (C.B.E.); (D.L.); (V.L.); (L.C.)
| | - Leblanc Catherine
- Integrative Biology of Marine Models (LBI2M), CNRS, Sorbonne Université, UMR 8227, Station Biologique, Place Georges Teissier, 29680 Roscoff, Brittany, France; (C.B.E.); (D.L.); (V.L.); (L.C.)
| | - Inken Kruse
- Helmholtz Centre for Ocean Research (GEOMAR), Düsternbrooker Weg 20, 24105 Kiel, Germany; (I.K.); (W.F.)
| | - Ar Gall Erwan
- Laboratoire des Sciences de l’Environnement Marin, UBO European Institute for Marine Studies IUEM, University of Brest—Western Brittany, UMR 6539 LEMAR, Technopôle Brest Iroise, Rue Dumont d’Urville, 29280 Plouzané, Brittany, France
| | - Weinberger Florian
- Helmholtz Centre for Ocean Research (GEOMAR), Düsternbrooker Weg 20, 24105 Kiel, Germany; (I.K.); (W.F.)
| | - Potin Philippe
- Integrative Biology of Marine Models (LBI2M), CNRS, Sorbonne Université, UMR 8227, Station Biologique, Place Georges Teissier, 29680 Roscoff, Brittany, France; (C.B.E.); (D.L.); (V.L.); (L.C.)
| |
Collapse
|
21
|
Larsen JS, Pearson LA, Neilan BA. Genome Mining and Evolutionary Analysis Reveal Diverse Type III Polyketide Synthase Pathways in Cyanobacteria. Genome Biol Evol 2021; 13:6178795. [PMID: 33739400 PMCID: PMC8086630 DOI: 10.1093/gbe/evab056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 11/30/2022] Open
Abstract
Cyanobacteria are prolific producers of natural products, including polyketides and hybrid compounds thereof. Type III polyketide synthases (PKSs) are of particular interest, due to their wide substrate specificity and simple reaction mechanism, compared with both type I and type II PKSs. Surprisingly, only two type III PKS products, hierridins, and (7.7)paracyclophanes, have been isolated from cyanobacteria. Here, we report the mining of 517 cyanobacterial genomes for type III PKS biosynthesis gene clusters. Approximately 17% of the genomes analyzed encoded one or more type III PKSs. Together with already characterized type III PKSs, the phylogeny of this group of enzymes was investigated. Our analysis showed that type III PKSs in cyanobacteria evolved into three major lineages, including enzymes associated with 1) (7.7)paracyclophane-like biosynthesis gene clusters, 2) hierridin-like biosynthesis gene clusters, and 3) cytochrome b5 genes. The evolutionary history of these enzymes is complex, with some sequences partitioning primarily according to speciation and others putatively according to their reaction type. Protein modeling showed that cyanobacterial type III PKSs generally have a smaller active site cavity (mean = 109.035 Å3) compared with enzymes from other organisms. The size of the active site did not correlate well with substrate size, however, the “Gatekeeper” amino acid residues within the active site were strongly correlated to enzyme phylogeny. Our study provides unprecedented insight into the distribution, diversity, and molecular evolution of cyanobacterial type III PKSs, which could facilitate the discovery, characterization, and exploitation of novel enzymes, biochemical pathways, and specialized metabolites from this biosynthetically talented clade of microorganisms.
Collapse
Affiliation(s)
- Joachim Steen Larsen
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Leanne Andrea Pearson
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Brett Anthony Neilan
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
22
|
Optimization of Microwave-Assisted Extraction of Phlorotannin From Sargassum swartzii (Turn.) C. Ag. With Ethanol/Water. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21996184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sargassum is a genus of brown macroalgae in the class Phaeophyta, distributed widely in all oceans, including those of Vietnam. Species of this genus have been proven to possess diverse biological activities, such as antioxidant, anti-fungal, and anti-inflammatory, along with many benefits and applications for human health, including anti-diabetic, obesity, and thrombosis. These benefits arise from a diverse chemical composition, with compounds such as fucoidan, mannitol, and especially phlorotannin—a group of phenolic derivatives found predominantly in brown algae. In this study, we evaluated and optimized the factors that affected the extraction process of phlorotannins from Sargassum swartzii (Turn.) C. Ag., a common species of brown macroalgae in Vietnam. The process utilized ethanol and water as the solvent system, and the extraction process was assisted with the use of microwaves. To carry out optimization studies, Response Surface Methodology (RSM) was adopted according to a Central Composite Desisgn (CCD), taking four processing factors into consideration, ethanol concentration (%, v/v), extraction time (minutes), solvent/material ratio (v/w), and microwave output power (W) as independent variables. Phlorotannin concentration (mgPhE/g) and extract mass (mg) were regarded as optimization outcomes. Experimental conditions that produced the highest phlorotannin yield from 10 g of S. swartzii are as follows: Extraction time of 65 minutes, ethanol concentration of 52%, microwave output power of 613 W, and solvent/material ratio of 33/1 (v/w). These conditions corresponded to a phlorotannin concentration of 5.59 ± 0.11 mg PhE/g, and a total extract content of 27.88 ± 0.13 mg/g.
Collapse
|
23
|
Shrestha S, Zhang W, Smid S. Phlorotannins: A review on biosynthesis, chemistry and bioactivity. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100832] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Martinelli L, Redou V, Cochereau B, Delage L, Hymery N, Poirier E, Le Meur C, Le Foch G, Cladiere L, Mehiri M, Demont-Caulet N, Meslet-Cladiere L. Identification and Characterization of a New Type III Polyketide Synthase from a Marine Yeast, Naganishia uzbekistanensis. Mar Drugs 2020; 18:E637. [PMID: 33322429 PMCID: PMC7763939 DOI: 10.3390/md18120637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 01/22/2023] Open
Abstract
A putative Type III Polyketide synthase (PKSIII) encoding gene was identified from a marine yeast, Naganishia uzbekistanensis strain Mo29 (UBOCC-A-208024) (formerly named as Cryptococcus sp.) isolated from deep-sea hydrothermal vents. This gene is part of a distinct phylogenetic branch compared to all known terrestrial fungal sequences. This new gene encodes a C-terminus extension of 74 amino acids compared to other known PKSIII proteins like Neurospora crassa. Full-length and reduced versions of this PKSIII were successfully cloned and overexpressed in a bacterial host, Escherichia coli BL21 (DE3). Both proteins showed the same activity, suggesting that additional amino acid residues at the C-terminus are probably not required for biochemical functions. We demonstrated by LC-ESI-MS/MS that these two recombinant PKSIII proteins could only produce tri- and tetraketide pyrones and alkylresorcinols using only long fatty acid chain from C8 to C16 acyl-CoAs as starter units, in presence of malonyl-CoA. In addition, we showed that some of these molecules exhibit cytotoxic activities against several cancer cell lines.
Collapse
Affiliation(s)
- Laure Martinelli
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Vanessa Redou
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Bastien Cochereau
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Ludovic Delage
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR),CNRS, UMR8227, Sorbonne Université, 29680 Roscoff, France; (L.D.); (L.C.)
| | - Nolwenn Hymery
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Elisabeth Poirier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Christophe Le Meur
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Gaetan Le Foch
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Lionel Cladiere
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR),CNRS, UMR8227, Sorbonne Université, 29680 Roscoff, France; (L.D.); (L.C.)
| | - Mohamed Mehiri
- Marine Natural Products Team, CNRS, UMR 7272, Institut de Chimie de Nice, Université Côte d’Azur, 06108 Nice, France;
| | - Nathalie Demont-Caulet
- UMR ECOSYS, INRAE, INRAE, University of Paris, 78026 Versailles, France;
- AgroParisTech, Université Paris-Saclay, 78026 Versailles, France
| | - Laurence Meslet-Cladiere
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| |
Collapse
|
25
|
Birkemeyer C, Lemesheva V, Billig S, Tarakhovskaya E. Composition of Intracellular and Cell Wall-Bound Phlorotannin Fractions in Fucoid Algae Indicates Specific Functions of These Metabolites Dependent on the Chemical Structure. Metabolites 2020; 10:E369. [PMID: 32933101 PMCID: PMC7570113 DOI: 10.3390/metabo10090369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 01/03/2023] Open
Abstract
Accumulation of biologically active metabolites is a specific feature of plant biochemistry, directing the use of plants in numerous applications in the pharmaceutical and food industries. Among these substances, the plethora of phenolic compounds has attracted particular interest among researchers. Here, we report on new findings in phlorotannin research, a large group of multifunctional phenolic substances, produced in brown algae. Comprehensive LC-MS profiling of three algal species allowed us to depict the complex pattern of this structurally diverse compound group across different tissues and subcellular compartments. We compiled more than 30 different phlorotannin series in one sample and used accurate mass spectrometry to assign tentative structures to the observed ions based on the confirmed sum formulas. From that, we found that acetylation, hydroxylation, and oxidation are likely to be the most common in vivo modifications to phlorotannins. Using an alternative data mining strategy to cope with extensive coelution and structural isomers, we quantitatively compared the intensity of different phlorotannin series in species, tissues, and subcellular compartments to learn more about their physiological functions. The structure and intra-thallus profiles of cell wall-bound phlorotannins were studied here for the first time. We suggest that one of the major dibenzodioxin-type phlorotannin series may exclusively target integration into the cell wall of fucoid algae.
Collapse
Affiliation(s)
- Claudia Birkemeyer
- Faculty of Chemistry and Mineralogy, University of Leipzig, 04103 Leipzig, Germany;
| | - Valeriya Lemesheva
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Susan Billig
- Faculty of Chemistry and Mineralogy, University of Leipzig, 04103 Leipzig, Germany;
| | - Elena Tarakhovskaya
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia;
- Department of Scientific Information, Russian Academy of Sciences Library, 199034 St. Petersburg, Russia
| |
Collapse
|
26
|
Rosales-Mendoza S, García-Silva I, González-Ortega O, Sandoval-Vargas JM, Malla A, Vimolmangkang S. The Potential of Algal Biotechnology to Produce Antiviral Compounds and Biopharmaceuticals. Molecules 2020; 25:E4049. [PMID: 32899754 PMCID: PMC7571207 DOI: 10.3390/molecules25184049] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023] Open
Abstract
The emergence of the Coronavirus Disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has led to an unprecedented pandemic, which demands urgent development of antiviral drugs and antibodies; as well as prophylactic approaches, namely vaccines. Algae biotechnology has much to offer in this scenario given the diversity of such organisms, which are a valuable source of antiviral and anti-inflammatory compounds that can also be used to produce vaccines and antibodies. Antivirals with possible activity against SARS-CoV-2 are summarized, based on previously reported activity against Coronaviruses or other enveloped or respiratory viruses. Moreover, the potential of algae-derived anti-inflammatory compounds to treat severe cases of COVID-19 is contemplated. The scenario of producing biopharmaceuticals in recombinant algae is presented and the cases of algae-made vaccines targeting viral diseases is highlighted as valuable references for the development of anti-SARS-CoV-2 vaccines. Successful cases in the production of functional antibodies are described. Perspectives on how specific algae species and genetic engineering techniques can be applied for the production of anti-viral compounds antibodies and vaccines against SARS-CoV-2 are provided.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; (I.G.-S.); (O.G.-O.); (J.M.S.-V.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2. Sección, San Luis Potosí 78210, Mexico
| | - Ileana García-Silva
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; (I.G.-S.); (O.G.-O.); (J.M.S.-V.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2. Sección, San Luis Potosí 78210, Mexico
| | - Omar González-Ortega
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; (I.G.-S.); (O.G.-O.); (J.M.S.-V.)
| | - José M. Sandoval-Vargas
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; (I.G.-S.); (O.G.-O.); (J.M.S.-V.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2. Sección, San Luis Potosí 78210, Mexico
| | - Ashwini Malla
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
27
|
Allwood JW, Evans H, Austin C, McDougall GJ. Extraction, Enrichment, and LC-MS n-Based Characterization of Phlorotannins and Related Phenolics from the Brown Seaweed, Ascophyllum nodosum. Mar Drugs 2020; 18:E448. [PMID: 32867333 PMCID: PMC7551814 DOI: 10.3390/md18090448] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 01/06/2023] Open
Abstract
Phenolic components from the edible brown seaweed, Ascophyllum nodosum, have been associated with considerable antioxidant activity but also bioactivities related to human health. This study aims to select and identify the main phlorotannin components from this seaweed which have been previously associated with potential health benefits. Methods to enrich phenolic components then further select phlorotannin components from ethanolic extracts of Ascophyllum nodosum were applied. The composition and phenolic diversity of these extracts were defined using data dependent liquid chromatography mass spectroscopic (LC-MSn) techniques. A series of phlorotannin oligomers with apparent degree of polymerization (DP) from 10 to 31 were enriched by solid phase extraction and could be selected by fractionation on Sephadex LH-20. Evidence was also obtained for the presence of dibenzodioxin linked phlorotannins as well as sulphated phlorotannins and phenolic acids. As well as diversity in molecular size, there was evidence for potential isomers at each DP. MS2 fragmentation analyses strongly suggested that the phlorotannins contained ether linked phloroglucinol units and were most likely fucophlorethols and MS3 data suggested that the isomers may result from branching within the chain. Therefore, application of these LC-MSn techniques provided further information on the structural diversity of the phlorotannins from Ascophyllum, which could be correlated against their reported bioactivities and could be further applied to phlorotannins from different seaweed species.
Collapse
Affiliation(s)
- J. William Allwood
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences Department, The James Hutton Institute, Dundee DD2 5DA, UK; (J.W.A.); (C.A.)
| | - Huw Evans
- Byotrol Ltd., Thornton Science Park, Chester CH2 4NU, UK;
| | - Ceri Austin
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences Department, The James Hutton Institute, Dundee DD2 5DA, UK; (J.W.A.); (C.A.)
| | - Gordon J. McDougall
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences Department, The James Hutton Institute, Dundee DD2 5DA, UK; (J.W.A.); (C.A.)
| |
Collapse
|
28
|
Petti C. Phloroglucinol Mediated Plant Regeneration of Ornithogalum dubium as the Sole "Hormone-Like Supplement" in Plant Tissue Culture Long-Term Experiments. PLANTS (BASEL, SWITZERLAND) 2020; 9:E929. [PMID: 32717803 PMCID: PMC7464755 DOI: 10.3390/plants9080929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Tissue culture is an essential requirement in plant science to preserve genetic resources and to expand naturally occurring germplasm. A variety of naturally occurring and synthetic hormones are available to induce the processes of dedifferentiation and redifferentiation. Not all plant material is susceptible to tissue culture, and often complex media and hormone requirements are needed to achieve successful plant propagations. The availability of new hormones or chemicals acting as hormones are critical to the expansion of tissue culture potentials. Phloroglucinol has been shown to have certain hormone-like properties in a variety of studies. Ornithogalum dubium, an important geophyte species, was used to characterise the potential of phloroglucinol as the sole plant-like hormone in a tissue culture experiment. Tissue culture, plant regeneration, total phenolic and genetic variability were established by applying a variety of methods throughout long-term experiments. Phloroglucinol did induce callus formation and plant regeneration when used as the sole supplement in the media at a rate of 37%, thus demonstrating auxin/cytokines-like properties. Callus formation was of 3 types, friable and cellular, hard and compact, and a mixture of the two. The important finding was that direct somatogenesis did occur albeit more frequently on younger tissue, whereby rates of induction were up to 52%. It is concluded that phloroglucinol acts as a "hormone-like" molecule and can trigger direct embryogenesis without callus formation.
Collapse
Affiliation(s)
- Carloalberto Petti
- Institute of Technology Carlow, EnviroCORE, DSH, Kilkenny Road, R93 V960 Carlow, Ireland
| |
Collapse
|
29
|
Wang H, Kim H, Ki JS. Transcriptome survey and toxin measurements reveal evolutionary modification and loss of saxitoxin biosynthesis genes in the dinoflagellates Amphidinium carterae and Prorocentrum micans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110474. [PMID: 32200147 DOI: 10.1016/j.ecoenv.2020.110474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
In the present study, we characterized the potential toxin genes for polyketide synthase (PKS) and saxitoxin (STX) biosynthesis using the transcriptomes of two non-STX producing dinoflagellates Amphidinium carterae and Prorocentrum micans. RNA sequencing revealed 94 and 166 PKS contigs in A. carterae and P. micans, respectively. We first detected type III PKS, which was closely related to bacteria. In addition, dozens of homologs of 20 STX biosynthesis genes were identified. Interestingly, the core STX-synthesizing genes sxtA and sxtB were only found in P. micans, whereas sxtD was detected in A. carterae alone. Bioinformatic analysis showed that the first two core genes (sxtA and sxtG) had a low sequence similarity (37.0-67.6%) and different domain organization compared to those of other toxigenic dinoflagellates, such as Alexandrium pacificum. These might result in the breakdown of the initial reactions in STX production and ultimately the loss of the ability to synthesize the toxins in both dinoflagellates. Our findings suggest that toxin-related PKS and sxt genes are commonly found in non-STX producing dinoflagellates. In addition to their involvement in the synthesis of toxins, our result indicates that genes may also have other molecular metabolic functions.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Hansol Kim
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea.
| |
Collapse
|
30
|
De Luca D, Lauritano C. In Silico Identification of Type III PKS Chalcone and Stilbene Synthase Homologs in Marine Photosynthetic Organisms. BIOLOGY 2020; 9:E110. [PMID: 32456002 PMCID: PMC7284882 DOI: 10.3390/biology9050110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
Marine microalgae are photosynthetic microorganisms at the base of the marine food webs. They are characterized by huge taxonomic and metabolic diversity and several species have been shown to have bioactivities useful for the treatment of human pathologies. However, the compounds and the metabolic pathways responsible for bioactive compound synthesis are often still unknown. In this study, we aimed at analysing the microalgal transcriptomes available in the Marine Microbial Eukaryotic Transcriptome Sequencing Project (MMETSP) database for an in silico search of polyketide synthase type III homologs and, in particular, chalcone synthase (CHS) and stilbene synthase (STS), which are often referred to as the CHS/STS family. These enzymes were selected because they are known to produce compounds with biological properties useful for human health, such as cancer chemopreventive, anti-inflammatory, antioxidant, anti-angiogenic, anti-viral and anti-diabetic. In addition, we also searched for 4-Coumarate: CoA ligase, an upstream enzyme in the synthesis of chalcones and stilbenes. This study reports for the first time the occurrence of these enzymes in specific microalgal taxa, confirming the importance for microalgae of these pathways and giving new insights into microalgal physiology and possible biotechnological applications for the production of bioactive compounds.
Collapse
Affiliation(s)
- Daniele De Luca
- Department of Humanities, Università degli Studi Suor Orsola Benincasa, CAP80135 Naples, Italy
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, CAP80121 Naples, Italy
| |
Collapse
|
31
|
Wang H, Guo R, Lim WA, Allen AE, Ki JS. Comparative transcriptomics of toxin synthesis genes between the non-toxin producing dinoflagellate Cochlodinium polykrikoides and toxigenic Alexandrium pacificum. HARMFUL ALGAE 2020; 93:101777. [PMID: 32307068 DOI: 10.1016/j.hal.2020.101777] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
In the present study, we extensively characterized potential toxin-related genes, including polyketide synthase (PKS), saxitoxin (STX) and fatty acid synthase (FAS) from the non-toxin producing marine dinoflagellate Cochlodinium polykrikoides, comparing to those of a toxigenic dinoflagellate Alexandrium pacificum. RNA sequencing revealed 50 and 271 PKS contigs from C. polykrikoides and A. pacificum, respectively. According to domain constitute and amino acid alteration, we further classified the dinoflagellate type I PKS genes into 4 sub-groups. Type III PKS was first identified in C. polykrikoides. Interestingly, we detected a large number (242 and 288) of homologs of 18 sxt genes from two studied dinoflagellates. Most of the eight key genes (sxtA, sxtB, sxtD, sxtG, sxtH/T, sxtI, sxtS and sxtU) for STX synthesis were detected in both dinoflatellates, whereas a core STX biosynthesis gene sxtG was not detected in C. polykrikoides. This may partially explain the absence of saxitoxin production in C. polykrikoides. In addition, we identified several type I and type II FAS genes, including FabD, FabF, FabG, FabH, FabI, and FabZ, whereas FabB was not found in C. polykrikoides. Overall, the numbers of the toxin-related genes in C. polykrikoides were less than that of A. pacificum. Phylogenetic analyses showed that type I PKS/FASs of dinoflagellates had close relationships with apicomplexans and bacteria. These suggest that the toxin-related PKS and sxt genes are commonly present in toxigenic and non-toxin producing dinoflagellates, and may be involved not only in the toxin synthesis, but also in other related molecular metabolic functions.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea
| | - Ruoyu Guo
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea; Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, PR China
| | - Weol-Ae Lim
- Ocean Climate and Ecology Research Division, National Institute of Fisheries Science (NIFS), Busan 46083, South Korea
| | - Andrew E Allen
- Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA; Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
32
|
Davies KM, Jibran R, Zhou Y, Albert NW, Brummell DA, Jordan BR, Bowman JL, Schwinn KE. The Evolution of Flavonoid Biosynthesis: A Bryophyte Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:7. [PMID: 32117358 PMCID: PMC7010833 DOI: 10.3389/fpls.2020.00007] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/07/2020] [Indexed: 05/04/2023]
Abstract
The flavonoid pathway is one of the best characterized specialized metabolite pathways of plants. In angiosperms, the flavonoids have varied roles in assisting with tolerance to abiotic stress and are also key for signaling to pollinators and seed dispersal agents. The pathway is thought to be specific to land plants and to have arisen during the period of land colonization around 550-470 million years ago. In this review we consider current knowledge of the flavonoid pathway in the bryophytes, consisting of the liverworts, hornworts, and mosses. The pathway is less characterized for bryophytes than angiosperms, and the first genetic and molecular studies on bryophytes are finding both commonalities and significant differences in flavonoid biosynthesis and pathway regulation between angiosperms and bryophytes. This includes biosynthetic pathway branches specific to each plant group and the apparent complete absence of flavonoids from the hornworts.
Collapse
Affiliation(s)
- Kevin M. Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Rubina Jibran
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Yanfei Zhou
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - David A. Brummell
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Brian R. Jordan
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - John L. Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Kathy E. Schwinn
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
33
|
Mining Natural Product Biosynthesis in Eukaryotic Algae. Mar Drugs 2020; 18:md18020090. [PMID: 32019095 PMCID: PMC7073580 DOI: 10.3390/md18020090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic algae are an extremely diverse category of photosynthetic organisms and some species produce highly potent bioactive compounds poisonous to humans or other animals, most notably observed during harmful algal blooms. These natural products include some of the most poisonous small molecules known and unique cyclic polyethers. However, the diversity and complexity of algal genomes means that sequencing-based research has lagged behind research into more readily sequenced microbes, such as bacteria and fungi. Applying informatics techniques to the algal genomes that are now available reveals new natural product biosynthetic pathways, with different groups of algae containing different types of pathways. There is some evidence for gene clusters and the biosynthetic logic of polyketides enables some prediction of these final products. For other pathways, it is much more challenging to predict the products and there may be many gene clusters that are not identified with the automated tools. These results suggest that there is a great diversity of biosynthetic capacity for natural products encoded in the genomes of algae and suggest areas for future research focus.
Collapse
|
34
|
Rugiu L, Panova M, Pereyra RT, Jormalainen V. Gene regulatory response to hyposalinity in the brown seaweed Fucus vesiculosus. BMC Genomics 2020; 21:42. [PMID: 31931708 PMCID: PMC6958763 DOI: 10.1186/s12864-020-6470-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/08/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Rockweeds are among the most important foundation species of temperate rocky littoral shores. In the Baltic Sea, the rockweed Fucus vesiculosus is distributed along a decreasing salinity gradient from the North Atlantic entrance to the low-salinity regions in the north-eastern margins, thus, demonstrating a remarkable tolerance to hyposalinity. The underlying mechanisms for this tolerance are still poorly understood. Here, we exposed F. vesiculosus from two range-margin populations to the hyposaline (2.5 PSU - practical salinity unit) conditions that are projected to occur in the region by the end of this century as a result of climate change. We used transcriptome analysis (RNA-seq) to determine the gene expression patterns associated with hyposalinity acclimation, and examined the variation in these patterns between the sampled populations. RESULTS Hyposalinity induced different responses in the two populations: in one, only 26 genes were differentially expressed between salinity treatments, while the other population demonstrated up- or downregulation in 3072 genes. In the latter population, the projected future hyposalinity induced an acute response in terms of antioxidant production. Genes associated with membrane composition and structure were also heavily involved, with the upregulation of fatty acid and actin production, and the downregulation of ion channels and alginate pathways. Changes in gene expression patterns clearly indicated an inhibition of the photosynthetic machinery, with a consequent downregulation of carbohydrate production. Simultaneously, energy consumption increased, as revealed by the upregulation of genes associated with respiration and ATP synthesis. Overall, the genes that demonstrated the largest increase in expression were ribosomal proteins involved in translation pathways. The fixation rate of SNP:s was higher within genes responding to hyposalinity than elsewhere in the transcriptome. CONCLUSIONS The high fixation rate in the genes coding for salinity acclimation mechanisms implies strong selection for them. The among-population differentiation that we observed in the transcriptomic response to hyposalinity stress suggests that populations of F. vesiculosus may differ in their tolerance to future desalination, possibly as a result of local adaptation to salinity conditions within the Baltic Sea. These results emphasise the importance of considering interspecific genetic variation when evaluating the consequences of environmental change.
Collapse
Affiliation(s)
- Luca Rugiu
- Department of Marine Sciences –Tjärnö, University of Gothenburg, SE 452 96 Strömstad, Sweden
| | - Marina Panova
- Department of Marine Sciences –Tjärnö, University of Gothenburg, SE 452 96 Strömstad, Sweden
| | - Ricardo Tomás Pereyra
- Department of Marine Sciences –Tjärnö, University of Gothenburg, SE 452 96 Strömstad, Sweden
| | - Veijo Jormalainen
- Department of Biology, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
35
|
Rosa GP, Tavares WR, Sousa PMC, Pagès AK, Seca AML, Pinto DCGA. Seaweed Secondary Metabolites with Beneficial Health Effects: An Overview of Successes in In Vivo Studies and Clinical Trials. Mar Drugs 2019; 18:E8. [PMID: 31861879 PMCID: PMC7024274 DOI: 10.3390/md18010008] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
Macroalgae are increasingly viewed as a source of secondary metabolites with great potential for the development of new drugs. In this development, in vitro studies are only the first step in a long process, while in vivo studies and clinical trials are the most revealing stages of the true potential and limitations that a given metabolite may have as a new drug. This literature review aims to give a critical overview of the secondary metabolites that reveal the most interesting results in these two steps. Phlorotannins show great pharmaceutical potential in in vivo models and, among the several examples, the anti-dyslipidemia activity of dieckol must be highlighted because it was more effective than lovastatin in an in vivo model. The IRLIIVLMPILMA tridecapeptide that exhibits an in vivo level of activity similar to the hypotensive clinical drug captopril should still be stressed, as well as griffithsin which showed such stunning results over a variety of animal models and which will probably move onto clinical trials soon. Regarding clinical trials, studies with pure algal metabolites are scarce, limited to those carried out with kahalalide F and fucoxanthin. The majority of clinical trials currently aim to ascertain the effect of algae consumption, as extracts or fractions, on obesity and diabetes.
Collapse
Affiliation(s)
- Gonçalo P. Rosa
- cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Portugal;
| | - Wilson R. Tavares
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal; (W.R.T.); (P.M.C.S.); (A.K.P.)
| | - Pedro M. C. Sousa
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal; (W.R.T.); (P.M.C.S.); (A.K.P.)
| | - Aida K. Pagès
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal; (W.R.T.); (P.M.C.S.); (A.K.P.)
| | - Ana M. L. Seca
- cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Portugal;
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana C. G. A. Pinto
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
36
|
Transcriptional heterologous expression of two type III PKS from the lichen Cladonia uncialis. Mycol Prog 2019. [DOI: 10.1007/s11557-019-01539-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Parvez A, Giri S, Bisht R, Saxena P. New Insights on Cyclization Specificity of Fungal Type III Polyketide Synthase, PKSIII Nc in Neurospora crassa. Indian J Microbiol 2018; 58:268-277. [PMID: 30013270 PMCID: PMC6023819 DOI: 10.1007/s12088-018-0738-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022] Open
Abstract
Type III polyketide synthases (PKSs) biosynthesize varied classes of metabolites with diverse bio-functionalities. Inherent promiscuous substrate specificity, multiple elongations of reaction intermediates and several modes of ring-closure, confer the proteins with the ability to generate unique scaffolds from limited substrate pools. Structural studies have identified crucial amino acid residues that dictate type III PKS functioning, though cyclization specific residues need further investigation. PKSIIINc, a functionally and structurally characterized type III PKS from the fungus, Neurospora crassa, is known to biosynthesize alkyl-resorcinol, alkyl-triketide- and alkyl-tetraketide-α-pyrone products. In this study, we attempted to identify residue positions governing cyclization specificity in PKSIIINc through comparative structural analysis. Structural comparisons with other type III PKSs revealed a motif with conserved hydroxyl/thiol groups that could dictate PKSIIINc catalysis. Site-directed mutagenesis of Cys120 and Ser186 to Ser and Cys, respectively, altered product profiles of mutant proteins. While both C120S and S186C proteins retained wild-type PKSIIINc product activity, S186C favoured lactonization and yielded higher amounts of the α-pyrone products. Notably, C120S gained new cyclization capability and biosynthesized acyl-phloroglucinol in addition to wild-type PKSIIINc products. Generation of alkyl-resorcinol and acyl-phloroglucinol by a single protein is a unique observation in fungal type III PKS family. Mutation of Cys120 to bulky Phe side-chain abrogated formation of tetraketide products and adversely affected overall protein stability as revealed by molecular dynamics simulation studies. Our investigations identify residue positions governing cyclization programming in PKSIIINc protein and provide insights on how subtle variations in protein cores dictate product profiles in type III PKS family.
Collapse
Affiliation(s)
- Amreesh Parvez
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
| | - Samir Giri
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
- Present Address: Department of Ecology, School of Biology, University of Osnabrück, Osnabrück, 49076 Germany
| | - Renu Bisht
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
| | - Priti Saxena
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
| |
Collapse
|
38
|
Mallika V, Sivakumar KC, Aiswarya G, Soniya EV. In silico approaches illustrate the evolutionary pattern and protein-small molecule interactions of quinolone synthase from Aegle marmelos Correa. J Biomol Struct Dyn 2018; 37:195-209. [PMID: 29308712 DOI: 10.1080/07391102.2017.1422991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Quinolone synthase from Aegle marmelos (AmQNS) is a Rutacean-specific plant type III polyketide synthase that synthesizes quinolone, acridone, and benzalacetone with therapeutic potential. Simple architecture and broad substrate affinity of AmQNS make it as one of the target enzymes to produce novel structural scaffolds. Another unique feature of AmQNS despite its high similarity to acridone forming type III polyketide synthase from Citrus microcarpa is the variation in the product formation. Hence, to explore the characteristic features of AmQNS, an in-depth sequence and structure-based bioinformatics analyses were performed. Our studies indicated that AmQNS and its nearest homologs have evolved by a series of gene duplication events and strong purifying selection pressure constrains them in the evolutionary process. Additionally, some amino acid alterations were identified in the functionally important region(s), which can contribute to the functional divergence of the enzyme. Prediction of favorable amino acid substitutions will be advantageous in the metabolic engineering of AmQNS for the production of novel compounds. Furthermore, comparative modeling and docking studies were utilized to investigate the structural behavior and small molecule interaction pattern of AmQNS. The observations and results reported here are crucial for advancing our understanding of AmQNS's phylogenetic position, selection pressure, evolvability, interaction pattern and thus providing the foundation for further studies on the structural and reaction mechanism.
Collapse
Affiliation(s)
- V Mallika
- a Plant Disease Biology & Biotechnology Division , Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , Kerala , India
| | - K C Sivakumar
- b Bioinformatics Facility , Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , Kerala , India
| | - G Aiswarya
- a Plant Disease Biology & Biotechnology Division , Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , Kerala , India
| | - E V Soniya
- a Plant Disease Biology & Biotechnology Division , Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , Kerala , India
| |
Collapse
|
39
|
Deniaud-Bouët E, Hardouin K, Potin P, Kloareg B, Hervé C. A review about brown algal cell walls and fucose-containing sulfated polysaccharides: Cell wall context, biomedical properties and key research challenges. Carbohydr Polym 2017; 175:395-408. [PMID: 28917882 DOI: 10.1016/j.carbpol.2017.07.082] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/04/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
Studies on brown algal cell walls have entered a new phase with the concomitant discovery of novel polysaccharides present in cell walls and the establishment of a comprehensive generic model for cell wall architecture. Brown algal cell walls are composites of structurally complex polysaccharides. In this review we discuss the most recent progress in the structural composition of brown algal cell walls, emphasizing the significance of extraction and screening techniques, and the biological activities of the corresponding polysaccharides, with a specific focus on the fucose-containing sulfated polysaccharides. They include valuable marine molecules that exert a broad range of pharmacological properties such as antioxidant and anti-inflammatory activities, functions in the regulation of immune responses and of haemostasis, anti-infectious and anticancer actions. We identify the key remaining challenges in this research field.
Collapse
Affiliation(s)
- Estelle Deniaud-Bouët
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| | - Kevin Hardouin
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| | - Philippe Potin
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| | - Bernard Kloareg
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| | - Cécile Hervé
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France.
| |
Collapse
|
40
|
Tarakhovskaya E, Lemesheva V, Bilova T, Birkemeyer C. Early Embryogenesis of Brown Alga Fucus vesiculosus L. is Characterized by Significant Changes in Carbon and Energy Metabolism. Molecules 2017; 22:E1509. [PMID: 28891948 PMCID: PMC6151410 DOI: 10.3390/molecules22091509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/03/2022] Open
Abstract
Brown algae have an important role in marine environments. With respect to their broad distribution and importance for the environment and human use, brown algae of the order Fucales in particular became a model system for physiological and ecological studies. Thus, several fucoids have been extensively studied for their composition on the molecular level. However, research of fucoid physiology and biochemistry so far mostly focused on the adult algae, so a holistic view on the development of these organisms, including the crucial first life stages, is still missing. Therefore, we employed non-targeted metabolite profiling by gas chromatography coupled to mass spectrometry to create a non-biased picture of the early development of the fucoid alga Fucus vesiculosus. We found that embryogenic physiology was mainly dominated by a tight regulation of carbon and energy metabolism. The first dramatic changes of zygote metabolism started within 1 h after fertilization, while metabolism of 6-9 days old embryos appeared already close to that of an adult alga, indicated by the intensive production of secondary metabolites and accumulation of mannitol and citric acid. Given the comprehensive description and analysis we obtained in our experiments, our results exhibit an invaluable resource for the design of further experiments related to physiology of early algal development.
Collapse
Affiliation(s)
- Elena Tarakhovskaya
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St.-Petersburg State University, 199034 St.-Petersburg, Russia.
| | - Valeriya Lemesheva
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St.-Petersburg State University, 199034 St.-Petersburg, Russia.
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St.-Petersburg State University, 199034 St.-Petersburg, Russia.
| | - Claudia Birkemeyer
- Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany.
| |
Collapse
|
41
|
Cormier A, Avia K, Sterck L, Derrien T, Wucher V, Andres G, Monsoor M, Godfroy O, Lipinska A, Perrineau MM, Van De Peer Y, Hitte C, Corre E, Coelho SM, Cock JM. Re-annotation, improved large-scale assembly and establishment of a catalogue of noncoding loci for the genome of the model brown alga Ectocarpus. THE NEW PHYTOLOGIST 2017; 214:219-232. [PMID: 27870061 DOI: 10.1111/nph.14321] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/08/2016] [Indexed: 05/28/2023]
Abstract
The genome of the filamentous brown alga Ectocarpus was the first to be completely sequenced from within the brown algal group and has served as a key reference genome both for this lineage and for the stramenopiles. We present a complete structural and functional reannotation of the Ectocarpus genome. The large-scale assembly of the Ectocarpus genome was significantly improved and genome-wide gene re-annotation using extensive RNA-seq data improved the structure of 11 108 existing protein-coding genes and added 2030 new loci. A genome-wide analysis of splicing isoforms identified an average of 1.6 transcripts per locus. A large number of previously undescribed noncoding genes were identified and annotated, including 717 loci that produce long noncoding RNAs. Conservation of lncRNAs between Ectocarpus and another brown alga, the kelp Saccharina japonica, suggests that at least a proportion of these loci serve a function. Finally, a large collection of single nucleotide polymorphism-based markers was developed for genetic analyses. These resources are available through an updated and improved genome database. This study significantly improves the utility of the Ectocarpus genome as a high-quality reference for the study of many important aspects of brown algal biology and as a reference for genomic analyses across the stramenopiles.
Collapse
Affiliation(s)
- Alexandre Cormier
- Algal Genetics Group, CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, UPMC Univ Paris 06, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Komlan Avia
- Algal Genetics Group, CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, UPMC Univ Paris 06, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Lieven Sterck
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9000, Ghent, Belgium
- Bioinformatics Institute Ghent, Technologiepark 927, 9052, Ghent, Belgium
| | | | | | - Gwendoline Andres
- Abims Platform, CNRS-UPMC, FR2424, Station Biologique de Roscoff, CS 90074, 29688, Roscoff, France
| | - Misharl Monsoor
- Abims Platform, CNRS-UPMC, FR2424, Station Biologique de Roscoff, CS 90074, 29688, Roscoff, France
| | - Olivier Godfroy
- Algal Genetics Group, CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, UPMC Univ Paris 06, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Agnieszka Lipinska
- Algal Genetics Group, CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, UPMC Univ Paris 06, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Marie-Mathilde Perrineau
- Algal Genetics Group, CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, UPMC Univ Paris 06, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Yves Van De Peer
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9000, Ghent, Belgium
- Bioinformatics Institute Ghent, Technologiepark 927, 9052, Ghent, Belgium
- Department of Genetics, Genomics Research Institute, University of Pretoria, 0028, Pretoria, South Africa
| | | | - Erwan Corre
- Abims Platform, CNRS-UPMC, FR2424, Station Biologique de Roscoff, CS 90074, 29688, Roscoff, France
| | - Susana M Coelho
- Algal Genetics Group, CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, UPMC Univ Paris 06, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - J Mark Cock
- Algal Genetics Group, CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, UPMC Univ Paris 06, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| |
Collapse
|
42
|
Li Y, Fu X, Duan D, Liu X, Xu J, Gao X. Extraction and Identification of Phlorotannins from the Brown Alga, Sargassum fusiforme (Harvey) Setchell. Mar Drugs 2017; 15:E49. [PMID: 28230766 PMCID: PMC5334629 DOI: 10.3390/md15020049] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 12/15/2022] Open
Abstract
Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene), which are unique compounds from marine brown algae. In our present study, a procedure for extraction and enrichment of phlorotannins from S. fusiforme with highly antioxidant potentials was established. After comparison of different extraction methods, the optimal extraction conditions were established as follows. The freeze-dried seaweed powder was extracted with 30% ethanol-water solvent with a solid/liquid ratio of 1:5 at temperature of 25 °C for 30 min. After extraction, the phlorotannins were fractioned by different solvents, among which the ethyl acetate fraction exhibited both the highest total phlorotannin content (88.48 ± 0.30 mg PGE/100 mg extract) and the highest antioxidant activities. The extracts obtained from these locations were further purified and characterized using a modified UHPLC-QQQ-MS method. Compounds with 42 different molecular weights were detected and tentatively identified, among which the fuhalol-type phlorotannins were the dominant compounds, followed by phlorethols and fucophlorethols with diverse degree of polymerization. Eckol-type phlorotannins including some newly discovered carmalol derivatives were detected in Sargassum species for the first time. Our study not only described the complex phlorotannins composition in S. fusiforme, but also highlighted the challenges involved in structural elucidation of these compounds.
Collapse
Affiliation(s)
- Yajing Li
- College of Food Science & Engineering, Ocean University of China, Qingdao 266000, China.
| | - Xiaoting Fu
- College of Food Science & Engineering, Ocean University of China, Qingdao 266000, China.
| | - Delin Duan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- State Key Lab of Seaweed Bioactive Substances, Qingdao 266000, China.
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Science and Technology Co., Ltd., Qingdao 266000, China.
| | - Jiachao Xu
- College of Food Science & Engineering, Ocean University of China, Qingdao 266000, China.
| | - Xin Gao
- College of Food Science & Engineering, Ocean University of China, Qingdao 266000, China.
| |
Collapse
|
43
|
Cruces E, Rautenberger R, Rojas-Lillo Y, Cubillos VM, Arancibia-Miranda N, Ramírez-Kushel E, Gómez I. Physiological acclimation of Lessonia spicata to diurnal changing PAR and UV radiation: differential regulation among down-regulation of photochemistry, ROS scavenging activity and phlorotannins as major photoprotective mechanisms. PHOTOSYNTHESIS RESEARCH 2017; 131:145-157. [PMID: 27620461 DOI: 10.1007/s11120-016-0304-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/02/2016] [Indexed: 05/05/2023]
Abstract
Intertidal macroalgae are constantly subjected to high variations in the quality and quantity of incident irradiance that can eventually generate detrimental effect on the photosynthetic apparatus. The success of these organisms to colonize the stressful coastal habitat is mainly associated with the complexity of their morphological structures and the efficiency of the anti-stress mechanisms to minimize the physiological stress. Lessonia spicata (Phaeophyceae), a brown macroalga, that inhabits the intertidal zone in central-southern Chile was studied in regard to their physiological (quantum yield, electron transport rate, pigments) and biochemical (phlorotannins content, antioxidant metabolism, oxidative stress) responses during a daily light cycle under natural solar radiation. Major findings were that F v/F m, photosynthetic parameters (ETRmax, alpha, E k) and pigments in L. spicata showed an inverse relationship to the diurnal changes in solar radiation. Phlorotannins levels and antioxidant activity showed their highest values in treatment that included UV radiation. There was an increase in SOD and APX in relation at light stress, with a peak in activity between 5.2 and 10.1 W m-2 of biologically effective dose. The increase in peroxidative damage was proportional to light dose. These results indicated that different light doses can trigger a series of complementary mechanisms of acclimation in L. spicata based on: (i) down-regulation of photochemistry activity and decrease in concentration of photosynthetic pigments; (ii) induction of phenolic compounds with specific UV-screening functions; and (iii) reactive oxygen species (ROS) scavenging activity via complementary repair of the oxidative damage through increased activity of antioxidant enzymes and potentially increased amounts of phenolic compounds.
Collapse
Affiliation(s)
- Edgardo Cruces
- Center for Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile.
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
| | - Ralf Rautenberger
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Laboratorio de Ecosistemas de Macroalgas Antárticas y Subantárticas (LEMAS), Universidad de Magallanes, Casilla 113-D, Punta Arenas, Chile
| | - Yesenia Rojas-Lillo
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Victor Mauricio Cubillos
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Universidad Austral de Chile, Valdivia, Chile
| | - Nicolás Arancibia-Miranda
- Center for Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile
| | - Eduardo Ramírez-Kushel
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Iván Gómez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Santiago, Chile
| |
Collapse
|
44
|
Nishitsuji K, Arimoto A, Iwai K, Sudo Y, Hisata K, Fujie M, Arakaki N, Kushiro T, Konishi T, Shinzato C, Satoh N, Shoguchi E. A draft genome of the brown alga, Cladosiphon okamuranus, S-strain: a platform for future studies of 'mozuku' biology. DNA Res 2016; 23:561-570. [PMID: 27501718 PMCID: PMC5144679 DOI: 10.1093/dnares/dsw039] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/29/2016] [Indexed: 11/15/2022] Open
Abstract
The brown alga, Cladosiphon okamuranus (Okinawa mozuku), is economically one of the most important edible seaweeds, and is cultivated for market primarily in Okinawa, Japan. C. okamuranus constitutes a significant source of fucoidan, which has various physiological and biological activities. To facilitate studies of seaweed biology, we decoded the draft genome of C. okamuranus S-strain. The genome size of C. okamuranus was estimated as ∼140 Mbp, smaller than genomes of two other brown algae, Ectocarpus siliculosus and Saccharina japonica Sequencing with ∼100× coverage yielded an assembly of 541 scaffolds with N50 = 416 kbp. Together with transcriptomic data, we estimated that the C. okamuranus genome contains 13,640 protein-coding genes, approximately 94% of which have been confirmed with corresponding mRNAs. Comparisons with the E. siliculosus genome identified a set of C. okamuranus genes that encode enzymes involved in biosynthetic pathways for sulfated fucans and alginate biosynthesis. In addition, we identified C. okamuranus genes for enzymes involved in phlorotannin biosynthesis. The present decoding of the Cladosiphon okamuranus genome provides a platform for future studies of mozuku biology.
Collapse
Affiliation(s)
- Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Asuka Arimoto
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Kenji Iwai
- Okinawa Prefectural Fisheries Research and Extension Center, Itoman, Okinawa 901-0354, Japan
| | - Yusuke Sudo
- Okinawa Prefectural Fisheries Research and Extension Center, Itoman, Okinawa 901-0354, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Nana Arakaki
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Tetsuo Kushiro
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Teruko Konishi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
45
|
Shimizu Y, Ogata H, Goto S. Type III Polyketide Synthases: Functional Classification and Phylogenomics. Chembiochem 2016; 18:50-65. [DOI: 10.1002/cbic.201600522] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Yugo Shimizu
- Bioinformatics Center; Institute for Chemical Research; Kyoto University; Gokasho Uji Kyoto 611-0011 Japan
| | - Hiroyuki Ogata
- Bioinformatics Center; Institute for Chemical Research; Kyoto University; Gokasho Uji Kyoto 611-0011 Japan
| | - Susumu Goto
- Bioinformatics Center; Institute for Chemical Research; Kyoto University; Gokasho Uji Kyoto 611-0011 Japan
| |
Collapse
|
46
|
Exploiting the Biosynthetic Potential of Type III Polyketide Synthases. Molecules 2016; 21:molecules21060806. [PMID: 27338328 PMCID: PMC6274091 DOI: 10.3390/molecules21060806] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 11/17/2022] Open
Abstract
Polyketides are structurally and functionally diverse secondary metabolites that are biosynthesized by polyketide synthases (PKSs) using acyl-CoA precursors. Recent studies in the engineering and structural characterization of PKSs have facilitated the use of target enzymes as biocatalysts to produce novel functionally optimized polyketides. These compounds may serve as potential drug leads. This review summarizes the insights gained from research on type III PKSs, from the discovery of chalcone synthase in plants to novel PKSs in bacteria and fungi. To date, at least 15 families of type III PKSs have been characterized, highlighting the utility of PKSs in the development of natural product libraries for therapeutic development.
Collapse
|
47
|
Dittami SM, Duboscq-Bidot L, Perennou M, Gobet A, Corre E, Boyen C, Tonon T. Host-microbe interactions as a driver of acclimation to salinity gradients in brown algal cultures. THE ISME JOURNAL 2016; 10:51-63. [PMID: 26114888 PMCID: PMC4681850 DOI: 10.1038/ismej.2015.104] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 05/05/2015] [Accepted: 05/19/2015] [Indexed: 01/16/2023]
Abstract
Like most eukaryotes, brown algae live in association with bacterial communities that frequently have beneficial effects on their development. Ectocarpus is a genus of small filamentous brown algae, which comprises a strain that has recently colonized freshwater, a rare transition in this lineage. We generated an inventory of bacteria in Ectocarpus cultures and examined the effect they have on acclimation to an environmental change, that is, the transition from seawater to freshwater medium. Our results demonstrate that Ectocarpus depends on bacteria for this transition: cultures that have been deprived of their associated microbiome do not survive a transfer to freshwater, but restoring their microflora also restores the capacity to acclimate to this change. Furthermore, the transition between the two culture media strongly affects the bacterial community composition. Examining a range of other closely related algal strains, we observed that the presence of two bacterial operational taxonomic units correlated significantly with an increase in low salinity tolerance of the algal culture. Despite differences in the community composition, no indications were found for functional differences in the bacterial metagenomes predicted to be associated with algae in the salinities tested, suggesting functional redundancy in the associated bacterial community. Our study provides an example of how microbial communities may impact the acclimation and physiological response of algae to different environments, and thus possibly act as facilitators of speciation. It paves the way for functional examinations of the underlying host-microbe interactions, both in controlled laboratory and natural conditions.
Collapse
Affiliation(s)
- Simon M Dittami
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France
| | - Laëtitia Duboscq-Bidot
- Institut de Recherche Thérapeutique de l'Université de Nantes, UMR 1087, Plateforme Génomique, Nantes, France
| | - Morgan Perennou
- Plateforme de Séquençage-Génotypage, FR 2424 CNRS UPMC, Station Biologique, CS 90074, Roscoff, France
| | - Angélique Gobet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France
| | - Erwan Corre
- ABiMS platform, FR 2424 CNRS UPMC, Station Biologique, Roscoff, France
| | - Catherine Boyen
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France
| | - Thierry Tonon
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, France
| |
Collapse
|
48
|
Shelest E, Heimerl N, Fichtner M, Sasso S. Multimodular type I polyketide synthases in algae evolve by module duplications and displacement of AT domains in trans. BMC Genomics 2015; 16:1015. [PMID: 26611533 PMCID: PMC4661987 DOI: 10.1186/s12864-015-2222-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 11/16/2015] [Indexed: 11/16/2022] Open
Abstract
Background Polyketide synthase (PKS) catalyzes the biosynthesis of polyketides, which are structurally and functionally diverse natural products in microorganisms and plants. Here, we have analyzed available full genome sequences of microscopic and macroscopic algae for the presence of type I PKS genes. Results Type I PKS genes are present in 15 of 32 analyzed algal species. In chlorophytes, large proteins in the MDa range are predicted in most sequenced species, and PKSs with free-standing acyltransferase domains (trans-AT PKSs) predominate. In a phylogenetic tree, PKS sequences from different algal phyla form clades that are distinct from PKSs from other organisms such as non-photosynthetic protists or cyanobacteria. However, intermixing is observed in some cases, for example polyunsaturated fatty acid (PUFA) and glycolipid synthases of various origins. Close relationships between type I PKS modules from different species or between modules within the same multimodular enzyme were identified, suggesting module duplications during evolution of algal PKSs. In contrast to type I PKSs, nonribosomal peptide synthetases (NRPSs) are relatively rare in algae (occurrence in 7 of 32 species). Conclusions Our phylogenetic analysis of type I PKSs in algae supports an evolutionary scenario whereby integrated AT domains were displaced to yield trans-AT PKSs. Together with module duplications, the displacement of AT domains may constitute a major mechanism of PKS evolution in algae. This study advances our understanding of the diversity of eukaryotic PKSs and their evolutionary trajectories. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2222-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ekaterina Shelest
- Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany.
| | - Natalie Heimerl
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, Dornburger Str. 159, 07743, Jena, Germany.
| | - Maximilian Fichtner
- Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany.
| | - Severin Sasso
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, Dornburger Str. 159, 07743, Jena, Germany.
| |
Collapse
|
49
|
Creis E, Delage L, Charton S, Goulitquer S, Leblanc C, Potin P, Ar Gall E. Constitutive or Inducible Protective Mechanisms against UV-B Radiation in the Brown Alga Fucus vesiculosus? A Study of Gene Expression and Phlorotannin Content Responses. PLoS One 2015; 10:e0128003. [PMID: 26030665 PMCID: PMC4452539 DOI: 10.1371/journal.pone.0128003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/21/2015] [Indexed: 11/18/2022] Open
Abstract
A role as UV sunscreens has been suggested for phlorotannins, the phenolic compounds that accumulate in brown algae in response to a number of external stimuli and take part in cell wall structure. After exposure of the intertidal brown alga Fucus vesiculosus to artificial UV-B radiation, we examined its physiological responses by following the transcript level of the pksIII gene encoding a phloroglucinol synthase, likely to be involved in the first step of phlorotannins biosynthesis. We also monitored the expression of three targeted genes, encoding a heat shock protein (hsp70), which is involved in global stress responses, an aryl sulfotransferase (ast), which could be involved in the sulfation of phlorotannins, and a vanadium bromoperoxidase (vbpo), which can potentially participate in the scavenging of Reactive Oxygen Species (ROS) and in the cross-linking and condensation of phlorotannins. We investigated whether transcriptional regulation of these genes is correlated with an induction of phlorotannin accumulation by establishing metabolite profiling of purified fractions of low molecular weight phlorotannins. Our findings demonstrated that a high dose of UV-B radiation induced a significant overexpression of hsp70 after 12 and 24 hours following the exposure to the UV-B treatment, compared to control treatment. The physiological performance of algae quantified by the photosynthetic efficiency (Fv/Fm) was slightly reduced. However UV-B treatment did not induce the accumulation of soluble phlorotannins in F. vesiculosus during the kinetics of four weeks, a result that may be related to the lack of induction of the pksIII gene expression. Taken together these results suggest a constitutive accumulation of phlorotannins occurring during the development of F.vesiculosus, rather than inducible processes. Gene expression studies and phlorotannin profiling provide here complementary approaches to global quantifications currently used in studies of phenolic compounds in brown algae.
Collapse
Affiliation(s)
- Emeline Creis
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Ludovic Delage
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Sophie Charton
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Sophie Goulitquer
- Centre de Ressources de Biologie Marine, MetaboMer Mass Spectrometry Core Facility, CNRS FR2424, Station Biologique de Roscoff, 29688, Roscoff cedex, Brittany, France
| | - Catherine Leblanc
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Philippe Potin
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Erwan Ar Gall
- Université Européenne de Bretagne, Université de Bretagne Occidentale, Laboratoire des Sciences de l’Environnement Marin, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6539, Institut Européen d’Etudes Marines-IUEM, 29280, Plouzané, Brittany, France
| |
Collapse
|
50
|
Jégou C, Kervarec N, Cérantola S, Bihannic I, Stiger-Pouvreau V. NMR use to quantify phlorotannins: the case of Cystoseira tamariscifolia, a phloroglucinol-producing brown macroalga in Brittany (France). Talanta 2015; 135:1-6. [PMID: 25640118 DOI: 10.1016/j.talanta.2014.11.059] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/19/2014] [Accepted: 11/22/2014] [Indexed: 11/16/2022]
Abstract
Among the most renowned natural products from brown algae, phlorotannins are phloroglucinol polymers that have been extensively studied, both for their biotechnological potential and their interest in chemical ecology. The accurate quantification of these compounds is a key point to understand their role as mediators of chemical defense. In recent years, the Folin-Ciocalteu assay has remained a classic protocol for phlorotannin quantification, even though it frequently leads to over-estimations. Furthermore, the quantification of the whole pool of phlorotannins may not be relevant in ecological surveys. In this study, we propose a rapid (1)H qNMR method for the quantification of phlorotannins. We identified phloroglucinol as the main phenolic compound produced by the brown macroalga Cystoseira tamariscifolia. This monomer was detected in vivo using (1)H HR-MAS spectroscopy. We quantified this molecule through (1)H qNMR experiments using TSP as internal standard. The results are discussed by comparison with a standard Folin-Ciocalteu assay performed on purified extracts. The accuracy and simplicity of qNMR makes this method a good candidate as a standard phlorotannin assay.
Collapse
Affiliation(s)
- Camille Jégou
- Laboratoire Universitaire de Biodiversité et d׳Écologie Microbienne (EA 3882), IUT de Quimper, Université de Bretagne Occidentale, 6 rue de l׳Université, 29000 Quimper, France
| | - Nelly Kervarec
- Service commun de Résonance Magnétique Nucléaire, UFR Sciences, Université de Bretagne Occidentale, 6 avenue Victor Le Gorgeu-CS93837, 29238 Brest Cedex 3, France
| | - Stéphane Cérantola
- Service commun de Résonance Magnétique Nucléaire, UFR Sciences, Université de Bretagne Occidentale, 6 avenue Victor Le Gorgeu-CS93837, 29238 Brest Cedex 3, France
| | - Isabelle Bihannic
- Laboratoire des Sciences de l׳Environnement Marin (UMR 6539), Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, rue Dumont d׳Urville, 29280 Plouzané, France
| | - Valérie Stiger-Pouvreau
- Laboratoire des Sciences de l׳Environnement Marin (UMR 6539), Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, rue Dumont d׳Urville, 29280 Plouzané, France.
| |
Collapse
|