1
|
Yang J, Li N, Li M, Yi R, Qiu L, Wang K, Zhao S, Ma F, Mao K. The MdHB7L-MdICE1L-MdHOS1 Module Fine-Tunes Apple Cold Response via CBF-Dependent and CBF-Independent Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501524. [PMID: 40285577 DOI: 10.1002/advs.202501524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/23/2025] [Indexed: 04/29/2025]
Abstract
Cold stress is a major environmental factor limiting crop yield, quality, and geographical distribution worldwide. The homeodomain-leucine zipper (HD-Zip) transcription factor (TF) family plays a role in regulating plant abiotic stress responses, but the underlying mechanisms remain unclear. A HD-Zip TF, MdHB7L, is identified as promoting cold tolerance in apple. MdHB7L interacts with MdICE1L, enhancing its transcriptional activation of MdCBFs, and directly binds to MdCBF promoters to activate their expression. Conversely, MdICE1L inhibits the direct binding of MdHB7L on MdCBF promoters, revealing that MdHB7L acts as a cofactor rather than a TF when interacting with MdICE1L. Using ChIP-seq and RNA-seq, MdHB7L is found to directly regulate the expression of several key genes involved in ROS scavenging and biosynthesis of anthocyanins, soluble sugars, and proline, thereby enhancing apple cold tolerance. The E3 ubiquitin ligase MdHOS1 negatively regulates cold tolerance by interacting with and mediating the degradation of MdHB7L and MdICE1L, with a preference for MdICE1L over MdHB7L. This preference inhibits the MdHOS1-MdHB7L interaction and stabilizes MdHB7L, allowing it to sustain the plant's cold response as a TF after MdICE1L degradation. These findings provide new insights into the dynamic plant response to cold stress mediated by the MdHB7L-MdICE1-MdHOS1 module.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Na Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Ming Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Ran Yi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Lina Qiu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Kangning Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Shuang Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Ke Mao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
2
|
Jiao Z, Shi X, Xu R, Zhang M, Chong L, Zhu Y. HOS1 ubiquitinates SPL9 for degradation to modulate salinity-delayed flowering. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2600-2612. [PMID: 39412431 DOI: 10.1111/jipb.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 12/07/2024]
Abstract
Soil salinity is a serious environmental threat to plant growth and flowering. Flowering in the right place, at the right time, ensures maximal reproductive success for plants. Salinity-delayed flowering is considered a stress coping/survival strategy and the molecular mechanisms underlying this process require further studies to enhance the crop's salt tolerance ability. A nuclear pore complex (NPC) component, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 1 (HOS1), has been recognized as a negative regulator of plant cold responses and flowering. Here, we challenged the role of HOS1 in regulating flowering in response to salinity stress. Interestingly, we discovered that HOS1 can directly interact with and ubiquitinate transcription factor SPL9 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9) to promote its protein degradation in response to salinity stress. Moreover, we demonstrated that HOS1 and SPL9 antagonistically regulate plant flowering under both normal and salt stress conditions. HOS1 was further shown to negatively regulate the expression of SPLs and several key flowering genes in response to salinity stress. These results jointly revealed that HOS1 is an important integrator in the process of modulating salinity-delayed flowering, thus offering new perspectives on a salinity stress coping strategy of plants.
Collapse
Affiliation(s)
- Zhixin Jiao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Xiaoning Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Rui Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Mingxia Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
- Sanya Institute of Henan University, Sanya, 570203, China
| |
Collapse
|
3
|
Bulgakov VP, Fialko AV, Yugay YA. Involvement of epigenetic factors in flavonoid accumulation during plant cold adaptation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109096. [PMID: 39250844 DOI: 10.1016/j.plaphy.2024.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Plant responses to cold stress include either induction of flavonoid biosynthesis as part of defense responses or initially elevated levels of these substances to mitigate sudden temperature fluctuations. The role of chromatin modifying factors and, in general, epigenetic variability in these processes is not entirely clear. In this work, we review the literature to establish the relationship between flavonoids, cold and chromatin modifications. We demonstrate the relationship between cold acclimation and flavonoid accumulation, and then describe the cold adaptation signaling pathways and their relationship with chromatin modifying factors. Particular attention was paid to the cold signaling module OST1-HOS1-ICE1 and the novel function of the E3 ubiquitin protein ligase HOS1 (a protein involved in chromatin modification during cold stress) in flavonoid regulation.
Collapse
Affiliation(s)
- Victor P Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia; Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, 5 Radio Str., Vladivostok, 690041, Russia.
| | - Alexandra V Fialko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia; Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, 5 Radio Str., Vladivostok, 690041, Russia
| | - Yulia A Yugay
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia
| |
Collapse
|
4
|
Ding Y, Shi Y, Yang S. Regulatory Networks Underlying Plant Responses and Adaptation to Cold Stress. Annu Rev Genet 2024; 58:43-65. [PMID: 39018466 DOI: 10.1146/annurev-genet-111523-102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Cold is an important environmental factor limiting plant growth and development. Recent studies have revealed the complex regulatory networks associated with plant responses to cold and identified their interconnections with signaling pathways related to light, the circadian clock, plant hormones, and pathogen defense. In this article, we review recent advances in understanding the molecular basis of cold perception and signal transduction pathways. We also summarize recent developments in the study of cold-responsive growth and flowering. Finally, we propose future directions for the study of long-term cold sensing, RNA secondary structures in response to cold, and the development of cold-tolerant and high-yield crops.
Collapse
Affiliation(s)
- Yanglin Ding
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China; ,
| | - Yiting Shi
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China; ,
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China; ,
| |
Collapse
|
5
|
Zheng S, Zhao W, Liu Z, Geng Z, Li Q, Liu B, Li B, Bai J. Establishment and Maintenance of Heat-Stress Memory in Plants. Int J Mol Sci 2024; 25:8976. [PMID: 39201662 PMCID: PMC11354667 DOI: 10.3390/ijms25168976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Among the rich repertoire of strategies that allow plants to adapt to high-temperature stress is heat-stress memory. The mechanisms underlying the establishment and maintenance of heat-stress memory are poorly understood, although the chromatin opening state appears to be an important structural basis for maintaining heat-stress memory. The chromatin opening state is influenced by epigenetic modifications, making DNA and histone modifications important entry points for understanding heat-shock memory. Current research suggests that traditional heat-stress signaling pathway components might be involved in chromatin opening, thereby promoting the establishment of heat-stress memory in plants. In this review, we discuss the relationship between chromatin structure-based maintenance and the establishment of heat-stress memory. We also discuss the association between traditional heat-stress signals and epigenetic modifications. Finally, we discuss potential research ideas for exploring plant adaptation to high-temperature stress in the future.
Collapse
Affiliation(s)
- Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Weishuang Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zimeng Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ziyue Geng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qiang Li
- Dryland Farming Institute of Hebei Academy of Agricultural and Forestry Science, Key Laboratory of Crop Drought Tolerance Research of Hebei Province, Hengshui 053000, China
| | - Binhui Liu
- Dryland Farming Institute of Hebei Academy of Agricultural and Forestry Science, Key Laboratory of Crop Drought Tolerance Research of Hebei Province, Hengshui 053000, China
| | - Bing Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
6
|
Huang P, Zhang X, Cheng Z, Wang X, Miao Y, Huang G, Fu YF, Feng X. The nuclear pore Y-complex functions as a platform for transcriptional regulation of FLOWERING LOCUS C in Arabidopsis. THE PLANT CELL 2024; 36:346-366. [PMID: 37877462 PMCID: PMC10827314 DOI: 10.1093/plcell/koad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
Abstract
The nuclear pore complex (NPC) has multiple functions beyond the nucleo-cytoplasmic transport of large molecules. Subnuclear compartmentalization of chromatin is critical for gene expression in animals and yeast. However, the mechanism by which the NPC regulates gene expression is poorly understood in plants. Here we report that the Y-complex (Nup107-160 complex, a subcomplex of the NPC) self-maintains its nucleoporin homeostasis and modulates FLOWERING LOCUS C (FLC) transcription via changing histone modifications at this locus. We show that Y-complex nucleoporins are intimately associated with FLC chromatin through their interactions with histone H2A at the nuclear membrane. Fluorescence in situ hybridization assays revealed that Nup96, a Y-complex nucleoporin, enhances FLC positioning at the nuclear periphery. Nup96 interacted with HISTONE DEACETYLASE 6 (HDA6), a key repressor of FLC expression via histone modification, at the nuclear membrane to attenuate HDA6-catalyzed deposition at the FLC locus and change histone modifications. Moreover, we demonstrate that Y-complex nucleoporins interact with RNA polymerase II to increase its occupancy at the FLC locus, facilitating transcription. Collectively, our findings identify an attractive mechanism for the Y-complex in regulating FLC expression via tethering the locus at the nuclear periphery and altering its histone modification.
Collapse
Affiliation(s)
- Penghui Huang
- Zhejiang Lab, Research Institute of Intelligent Computing, Hangzhou 310012, China
- MARA Key Laboratory of Soybean Biology (Beijing), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaomei Zhang
- MARA Key Laboratory of Soybean Biology (Beijing), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Cheng
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xu Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261325, China
| | - Yuchen Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Guowen Huang
- Department of Biological Sciences and Chemical Engineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| | - Yong-Fu Fu
- MARA Key Laboratory of Soybean Biology (Beijing), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianzhong Feng
- Zhejiang Lab, Research Institute of Intelligent Computing, Hangzhou 310012, China
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
7
|
Lee K, Koo D, Park OS, Seo PJ. The HOS1-PIF4/5 module controls callus formation in Arabidopsis leaf explants. PLANT SIGNALING & BEHAVIOR 2023; 18:2261744. [PMID: 37747842 PMCID: PMC10761175 DOI: 10.1080/15592324.2023.2261744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
A two-step plant regeneration has been widely exploited to genetic manipulation and genome engineering in plants. Despite technical importance, understanding of molecular mechanism underlying in vitro plant regeneration remains to be fully elucidated. Here, we found that the HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1)-PHYTOCHROME INTERACTING FACTOR 4/5 (PIF4/5) module participates in callus formation. Consistent with the repressive role of HOS1 in PIF transcriptional activation activity, hos1-3 mutant leaf explants exhibited enhanced callus formation, whereas pif4-101 pif5-3 mutant leaf explants showed reduced callus size. The HOS1-PIF4/5 function would be largely dependent on auxin biosynthesis and signaling, which are essential for callus initiation and proliferation. Our findings suggest that the HOS1-PIF4/5 module plays a pivotal role in auxin-dependent callus formation in Arabidopsis.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
| | - Dohee Koo
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Ok-Sun Park
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
8
|
Yang X, Ji C, Liu X, Wei Z, Pang Q, Zhang A. Arabidopsis nucleoporin NUP96 mediates plant salt tolerance by modulating the transcription of salt-responsive genes. PLANTA 2023; 259:34. [PMID: 38160450 DOI: 10.1007/s00425-023-04312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
MAIN CONCLUSION Physiological and molecular tests show that NUP96 plays an important role in the plant response to salt stress, resulting from the reprogramming of transcriptomic profiles, which are likely to be mediated by the influence on the nuclear/cytosol shuttling of the key regulators of salt tolerance. As a key component of the nuclear pore complex (NPC), nucleoporin 96 (NUP96) is critical for modulating plant development and interactions with environmental factors, but whether NUP96 is involved in the salt response is still unknown. Here, we analyzed the role of Arabidopsis NUP96 under salt stress. The loss-of-function mutant nup96 exhibited salt sensitivity in terms of rosette growth and root elongation, and showed attenuated capacity in maintaining ion and ROS homeostasis, which could be compensated for by the overexpression of NUP96. RNA sequencing revealed that many salt-responsive genes were misregulated after NUP96 mutation, and especially NUP96 is required for the expression of a large portion of salt-induced genes. This is likely correlated with the activity in facilitating nuclear/cytosol transport of the underlying regulators in salt tolerance such as the transcription factor ATAP2, targeted by eight downregulated genes in nup96 under salt stress. Our results illustrate that NUP96 plays an important role in the salt response, probably by regulating the nucleocytoplasmic shuttling of key mRNAs or proteins associated with plant salt responsiveness.
Collapse
Affiliation(s)
- Xiaomin Yang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Chengcheng Ji
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Xinxin Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhaoxin Wei
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Qiuying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Aiqin Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
9
|
Zhou H, Ma J, Liu H, Zhao P. Genome-Wide Identification of the CBF Gene Family and ICE Transcription Factors in Walnuts and Expression Profiles under Cold Conditions. Int J Mol Sci 2023; 25:25. [PMID: 38203199 PMCID: PMC10778614 DOI: 10.3390/ijms25010025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Cold stress impacts woody tree growth and perennial production, especially when the temperature rapidly changes in late spring. To address this issue, we conducted the genome-wide identification of two important transcription factors (TFs), CBF (C-repeat binding factors) and ICE (inducers of CBF expression), in three walnut (Juglans) genomes. Although the CBF and ICE gene families have been identified in many crops, very little systematic analysis of these genes has been carried out in J. regia and J. sigillata. In this study, we identified a total of 16 CBF and 12 ICE genes in three Juglans genomes using bioinformatics analysis. Both CBF and ICE had conserved domains, motifs, and gene structures, which suggests that these two TFs were evolutionarily conserved. Most ICE genes are located at both ends of the chromosomes. The promoter cis-regulatory elements of CBF and ICE genes are largely involved in light and phytohormone responses. Based on 36 RNA sequencing of leaves from four walnut cultivars ('Zijing', 'Lvling', 'Hongren', and 'Liao1') under three temperature conditions (8 °C, 22 °C, and 5 °C) conditions in late spring, we found that the ICE genes were expressed more highly than CBFs. Both CBF and ICE proteins interacted with cold-related proteins, and many putative miRNAs had interactions with these two TFs. These results determined that CBF1 and ICE1 play important roles in the tolerance of walnut leaves to rapid temperature changes. Our results provide a useful resource on the function of the CBF and ICE genes related to cold tolerance in walnuts.
Collapse
Affiliation(s)
- Huijuan Zhou
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an 710061, China;
| | - Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (J.M.); (H.L.)
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (J.M.); (H.L.)
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (J.M.); (H.L.)
| |
Collapse
|
10
|
Tang Y. Plant nuclear envelope as a hub connecting genome organization with regulation of gene expression. Nucleus 2023; 14:2178201. [PMID: 36794966 PMCID: PMC9980628 DOI: 10.1080/19491034.2023.2178201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Eukaryotic cells organize their genome within the nucleus with a double-layered membrane structure termed the nuclear envelope (NE) as the physical barrier. The NE not only shields the nuclear genome but also spatially separates transcription from translation. Proteins of the NE including nucleoskeleton proteins, inner nuclear membrane proteins, and nuclear pore complexes have been implicated in interacting with underlying genome and chromatin regulators to establish a higher-order chromatin architecture. Here, I summarize recent advances in the knowledge of NE proteins that are involved in chromatin organization, gene regulation, and coordination of transcription and mRNA export. These studies support an emerging view of plant NE as a central hub that contributes to chromatin organization and gene expression in response to various cellular and environmental cues.
Collapse
Affiliation(s)
- Yu Tang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| |
Collapse
|
11
|
Celayir T, Yeni O, Yeşildirek YV, Arıkan B, Kara NT. Molecular Effects of Silicon on Arabidopsis thaliana Seedlings under UV-B Stress. Photochem Photobiol 2023; 99:1393-1399. [PMID: 36719080 DOI: 10.1111/php.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Silicon-plant interaction studies have shown that silicon reduces the harmful effects of stress in plants. Ultraviolet-B (UV-B) radiation, one of the abiotic stress affecting plants, poses a severe problem due to global warming. In this context, it is crucial to examine silicon's effects on UV-B radiation stress at the molecular level. The experiments were carried out on 17 days old Arabidopsis seedlings that were treated with 800 μWatt cm-2 doses of UV-B for 60 min and harvested on the 28th day. 1 mM orthosilicic acid was applied to the in vitro plant tissue culture for experimental groups. According to the results of the osmolyte accumulation analyses, silicon has been shown to play a role in the osmotic stress response. Gene expression levels of DGK2, CHS, FLC, RAD51, and UVR8 were measured via qPCR, and it has been shown that silicon interacts with these genes under UV-B radiation stress. The result of genomic DNA methylation analysis demonstrated that silicon might affect DNA methylation levels by increasing the 5-mC percentage compared with the control group. This study focused on the molecular effects of silicon application. It supports silicon-plant interaction research by demonstrating that silicon might affect UV-B response at the molecular level.
Collapse
Affiliation(s)
- Tuğçe Celayir
- Institute of Science, Program of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Oğuzhan Yeni
- Institute of Science, Program of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Yağmur Vecide Yeşildirek
- Institute of Science, Program of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Burcu Arıkan
- Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Neslihan Turgut Kara
- Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| |
Collapse
|
12
|
Tian Y, Hou Y, Song Y. LncRNAs elevate plant adaptation under low temperature by maintaining local chromatin landscape. PLANT SIGNALING & BEHAVIOR 2022; 17:2014677. [PMID: 35352623 PMCID: PMC8973372 DOI: 10.1080/15592324.2021.2014677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Epigenetic regulation is one of the most precise and subtle ways of gene regulation, including DNA modification, histone modification, RNA modification, histone variants, chromatin remodeling, and long non-coding RNAs (lncRNAs). Chromatin modification is the most basic type of epigenetic regulation, which plays a key role in a myriad of developmental and physiological processes that have been thoroughly studied. These modifications are usually completed by a series of conserved chromatin modification complexes in eukaryotes. In recent years, a series of lncRNAs in organisms also have been described as having irreplaceable functions in biological environment adaptation, especially in biotic and abiotic stresses. Moreover, these molecules form a sophisticated regulatory network through mutual cross-regulation to achieve quantitative expression of key environmental response genes to external signals. For instance, the function of lncRNAs will directly or indirectly depend on the function of the chromatin modification complex. In this review, we mainly focus on chromatin modification, lncRNA, and their coordination mechanism to achieve the high adaptability of plants in low-temperature environments. We highlight recent findings and insights into lncRNA-mediated local chromatin environment changes during plant growth under low temperature via chromatin modification complexes, including target gene specificity for different lncRNA.
Collapse
Affiliation(s)
- Yongke Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yukang Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yuan Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
13
|
Nunez-Vazquez R, Desvoyes B, Gutierrez C. Histone variants and modifications during abiotic stress response. FRONTIERS IN PLANT SCIENCE 2022; 13:984702. [PMID: 36589114 PMCID: PMC9797984 DOI: 10.3389/fpls.2022.984702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/28/2022] [Indexed: 06/17/2023]
Abstract
Plants have developed multiple mechanisms as an adaptive response to abiotic stresses, such as salinity, drought, heat, cold, and oxidative stress. Understanding these regulatory networks is critical for coping with the negative impact of abiotic stress on crop productivity worldwide and, eventually, for the rational design of strategies to improve plant performance. Plant alterations upon stress are driven by changes in transcriptional regulation, which rely on locus-specific changes in chromatin accessibility. This process encompasses post-translational modifications of histone proteins that alter the DNA-histones binding, the exchange of canonical histones by variants that modify chromatin conformation, and DNA methylation, which has an implication in the silencing and activation of hypervariable genes. Here, we review the current understanding of the role of the major epigenetic modifications during the abiotic stress response and discuss the intricate relationship among them.
Collapse
Affiliation(s)
| | - Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Programa de Dinámica y Función del Genoma, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Programa de Dinámica y Función del Genoma, Madrid, Spain
| |
Collapse
|
14
|
Shin SY, Choi Y, Kim SG, Park SJ, Park JS, Moon KB, Kim HS, Jeon JH, Cho HS, Lee HJ. Submergence promotes auxin-induced callus formation through ethylene-mediated post-transcriptional control of auxin receptors. MOLECULAR PLANT 2022; 15:1947-1961. [PMID: 36333910 DOI: 10.1016/j.molp.2022.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Plant cells in damaged tissue can be reprogrammed to acquire pluripotency and induce callus formation. However, in the aboveground organs of many species, somatic cells that are distal to the wound site become less sensitive to auxin-induced callus formation, suggesting the existence of repressive regulatory mechanisms that are largely unknown. Here we reveal that submergence-induced ethylene signals promote callus formation by releasing post-transcriptional silencing of auxin receptor transcripts in non-wounded regions. We determined that short-term submergence of intact seedlings induces auxin-mediated cell dedifferentiation across the entirety of Arabidopsis thaliana explants. The constitutive triple response 1-1 (ctr1-1) mutation induced callus formation in explants without submergence, suggesting that ethylene facilitates cell dedifferentiation. We show that ETHYLENE-INSENSITIVE 2 (EIN2) post-transcriptionally regulates the abundance of transcripts for auxin receptor genes by facilitating microRNA393 degradation. Submergence-induced calli in non-wounded regions were suitable for shoot regeneration, similar to those near the wound site. We also observed submergence-promoted callus formation in Chinese cabbage (Brassica rapa), indicating that this may be a conserved mechanism in other species. Our study identifies previously unknown regulatory mechanisms by which ethylene promotes cell dedifferentiation and provides a new approach for boosting callus induction efficiency in shoot explants.
Collapse
Affiliation(s)
- Seung Yong Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Yuri Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Su-Jin Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Ji-Sun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Ki-Beom Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Jae Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea; Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
15
|
Liu Y, Wang J, Liu B, Xu ZY. Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2252-2274. [PMID: 36149776 DOI: 10.1111/jipb.13368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation and histone modification are evolutionarily conserved epigenetic modifications that are crucial for the expression regulation of abiotic stress-responsive genes in plants. Dynamic changes in gene expression levels can result from changes in DNA methylation and histone modifications. In the last two decades, how epigenetic machinery regulates abiotic stress responses in plants has been extensively studied. Here, based on recent publications, we review how DNA methylation and histone modifications impact gene expression regulation in response to abiotic stresses such as drought, abscisic acid, high salt, extreme temperature, nutrient deficiency or toxicity, and ultraviolet B exposure. We also review the roles of epigenetic mechanisms in the formation of transgenerational stress memory. We posit that a better understanding of the epigenetic underpinnings of abiotic stress responses in plants may facilitate the design of more stress-resistant or -resilient crops, which is essential for coping with global warming and extreme environments.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
16
|
Parker MT, Soanes BK, Kusakina J, Larrieu A, Knop K, Joy N, Breidenbach F, Sherwood AV, Barton GJ, Fica SM, Davies BH, Simpson GG. m 6A modification of U6 snRNA modulates usage of two major classes of pre-mRNA 5' splice site. eLife 2022; 11:e78808. [PMID: 36409063 PMCID: PMC9803359 DOI: 10.7554/elife.78808] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Alternative splicing of messenger RNAs is associated with the evolution of developmentally complex eukaryotes. Splicing is mediated by the spliceosome, and docking of the pre-mRNA 5' splice site into the spliceosome active site depends upon pairing with the conserved ACAGA sequence of U6 snRNA. In some species, including humans, the central adenosine of the ACAGA box is modified by N6 methylation, but the role of this m6A modification is poorly understood. Here, we show that m6A modified U6 snRNA determines the accuracy and efficiency of splicing. We reveal that the conserved methyltransferase, FIONA1, is required for Arabidopsis U6 snRNA m6A modification. Arabidopsis fio1 mutants show disrupted patterns of splicing that can be explained by the sequence composition of 5' splice sites and cooperative roles for U5 and U6 snRNA in splice site selection. U6 snRNA m6A influences 3' splice site usage. We generalise these findings to reveal two major classes of 5' splice site in diverse eukaryotes, which display anti-correlated interaction potential with U5 snRNA loop 1 and the U6 snRNA ACAGA box. We conclude that U6 snRNA m6A modification contributes to the selection of degenerate 5' splice sites crucial to alternative splicing.
Collapse
Affiliation(s)
- Matthew T Parker
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Beth K Soanes
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Jelena Kusakina
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Antoine Larrieu
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Katarzyna Knop
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Nisha Joy
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Friedrich Breidenbach
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld UniversityBielefeldGermany
| | - Anna V Sherwood
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | | | - Sebastian M Fica
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Brendan H Davies
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Gordon G Simpson
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
- Cell & Molecular Sciences, James Hutton InstituteInvergowrieUnited Kingdom
| |
Collapse
|
17
|
Zhang C, Zhang XI, Cheng B, Wu J, Zhang L, Xiao X, Zhang D, Zhao C, An N, Han M, Xing L. MdNup54 Interactions With MdHSP70 Involved in Flowering in Apple. FRONTIERS IN PLANT SCIENCE 2022; 13:903808. [PMID: 35865288 PMCID: PMC9296068 DOI: 10.3389/fpls.2022.903808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Flowering-related problems in "Fuji" apple have severely restricted the development of China's apple industry. Nuclear pore complexes (NPCs) control nucleoplasmic transport and play an important role in the regulation of plant growth and development. However, the effects of NPCs on apple flowering have not been reported. Here, we analysed the expression and function of MdNup54, a component of apple NPC. MdNup54 expression was the highest in flower buds and maintained during 30-70 days after flowering. MdNup54-overexpressing (OE) Arabidopsis lines displayed significantly earlier flowering than that of the wild type. We further confirmed that MdNup54 interacts with MdHSP70, MdMYB11, and MdKNAT4/6. Consistent with these observations, flowering time of MdHSP70-OE Arabidopsis lines was also significantly earlier. Therefore, our findings suggest a possible interaction of MdNup54 with MdHSP70 to mediate its nuclear and cytoplasmic transport and to regulate apple flowering. The results enhance the understanding of the flowering mechanism in apple and propose a novel strategy to study nucleoporins.
Collapse
Affiliation(s)
- Chenguang Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, China
| | - XIaoshuang Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, China
| | - Bo Cheng
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Junkai Wu
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, China
| | - Libin Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, China
| | - Xiao Xiao
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Technology, Hebei Normal University of Science and Technology, Changli, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Caiping Zhao
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Na An
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
Zhang C, An N, Jia P, Zhang W, Liang J, Zhou H, Zhang D, Ma J, Zhao C, Han M, Ren X, Xing L. MdNup62 interactions with MdHSFs involved in flowering and heat-stress tolerance in apple. BMC PLANT BIOLOGY 2022; 22:317. [PMID: 35786201 PMCID: PMC9251929 DOI: 10.1186/s12870-022-03698-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Because of global warming, the apple flowering period is occurring significantly earlier, increasing the probability and degree of freezing injury. Moreover, extreme hot weather has also seriously affected the development of apple industry. Nuclear pore complexes (NPCs) are main channels controlling nucleocytoplasmic transport, but their roles in regulating plant development and stress responses are still unknown. Here, we analysed the components of the apple NPC and found that MdNup62 interacts with MdNup54, forming the central NPC channel. MdNup62 was localized to the nuclear pore, and its expression was significantly up-regulated in 'Nagafu No. 2' tissue-cultured seedlings subjected to heat treatments. To determine MdNup62's function, we obtained MdNup62-overexpressed (OE) Arabidopsis and tomato lines that showed significantly reduced high-temperature resistance. Additionally, OE-MdNup62 Arabidopsis lines showed significantly earlier flowering compared with wild-type. Furthermore, we identified 62 putative MdNup62-interacting proteins and confirmed MdNup62 interactions with multiple MdHSFs. The OE-MdHSFA1d and OE-MdHSFA9b Arabidopsis lines also showed significantly earlier flowering phenotypes than wild-type, but had enhanced high-temperature resistance levels. Thus, MdNUP62 interacts with multiple MdHSFs during nucleocytoplasmic transport to regulate flowering and heat resistance in apple. The data provide a new theoretical reference for managing the impact of global warming on the apple industry.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Na An
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Peng Jia
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Wei Zhang
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Jiayan Liang
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Hua Zhou
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Juanjuan Ma
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Caiping Zhao
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
19
|
Liu Z, Abou-Elwafa SF, Xie J, Liu Y, Li S, Aljabri M, Zhang D, Gao F, Zhang L, Wang Z, Sun C, Zhu B, Bao M, Hu X, Chen Y, Ku L, Ren Z, Wei L. A Nucleoporin NUP58 modulates responses to drought and salt stress in maize (Zea mays L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111296. [PMID: 35643613 DOI: 10.1016/j.plantsci.2022.111296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/09/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Nuclear pore complex (NUP) is the main transport channel between cytoplasm and nucleoplasm, which plays an important role in stress response. The function of NUPs was widely reported in yeast and vertebrate but rarely in plants. Here, we identified a nuclear pore complex (ZmNUP58), that is tightly associated with drought and salt tolerance phenotype accompanied with phenotypic and physiological changes under drought and salt stress. The overexpression of ZmNUP58 in maize (Zea mays L.) significantly promotes both chlorophyll content and activities of antioxidant enzymes under drought- and salt-stressed conditions. RNA-Seq analysis showed that ZmNUP58 could regulate the expression of genes related to phytohormone synthesis and signaling, osmotic adjustment substances, antioxidant enzyme system, cell wall biosynthesis, glucose metabolism and aquaporin. The results provide novel insights into the regulatory role of ZmNUP58 in improving drought and salt tolerance through regulating phytohormone and other stress response genes in maize.
Collapse
Affiliation(s)
- Zhixue Liu
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | | | - Jiarong Xie
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Yajing Liu
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Siyuan Li
- Corn Breeding and Research, China Seeds International Seeds Co., Ltd, Zhengzhou, Henan, 450046, China
| | - Maha Aljabri
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 21421, Saudi Arabia
| | - Dongling Zhang
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Fengran Gao
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Lili Zhang
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Zhiyong Wang
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Chongyu Sun
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Bingqi Zhu
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Miaomiao Bao
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Xiaomeng Hu
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Yanhui Chen
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Lixia Ku
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China
| | - Zhenzhen Ren
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| | - Li Wei
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
20
|
Meng J, Wen Z, Li M, Cheng T, Zhang Q, Sun L. HDACs Gene Family Analysis of Eight Rosaceae Genomes Reveals the Genomic Marker of Cold Stress in Prunus mume. Int J Mol Sci 2022; 23:5957. [PMID: 35682633 PMCID: PMC9180812 DOI: 10.3390/ijms23115957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Histone deacetylases (HDACs) play important roles in plant growth, development, and stress response. However, the pattern of how they are expressed in response to cold stress in the ornamental woody plant Prunus mume is poorly understood. Here, we identify 121 RoHDACs from eight Rosaceae plants of which 13 PmHDACs genes are from P. mume. A phylogenetic analysis suggests that the RoHDACs family is classified into three subfamilies, HDA1/RPD3, HD2, and SIR2. We identify 11 segmental duplication gene pairs of RoHDACs and find, via a sequence alignment, that the HDACs gene family, especially the plant-specific HD2 family, has experienced gene expansion and contraction at a recent genome evolution history. Each of the three HDACs subfamilies has its own conserved domains. The expression of PmHDACs in mei is found to be tissue-specific or tissue-wide. RNA-seq data and qRT-PCR experiments in cold treatments suggest that almost all PmHDACs genes-especially PmHDA1/6/14, PmHDT1, and PmSRT1/2-significantly respond to cold stress. Our analysis provides a fundamental insight into the phylogenetic relationship of the HDACs family in Rosaceae plants. Expression profiles of PmHDACs in response to cold stress could provide an important clue to improve the cold hardiness of mei.
Collapse
Affiliation(s)
| | | | | | | | | | - Lidan Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (J.M.); (Z.W.); (M.L.); (T.C.); (Q.Z.)
| |
Collapse
|
21
|
Wu X, Han J, Guo C. Function of Nuclear Pore Complexes in Regulation of Plant Defense Signaling. Int J Mol Sci 2022; 23:3031. [PMID: 35328452 PMCID: PMC8953349 DOI: 10.3390/ijms23063031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
In eukaryotes, the nucleus is the regulatory center of cytogenetics and metabolism, and it is critical for fundamental biological processes, including DNA replication and transcription, protein synthesis, and biological macromolecule transportation. The eukaryotic nucleus is surrounded by a lipid bilayer called the nuclear envelope (NE), which creates a microenvironment for sophisticated cellular processes. The NE is perforated by the nuclear pore complex (NPC), which is the channel for biological macromolecule bi-directional transport between the nucleus and cytoplasm. It is well known that NPC is the spatial designer of the genome and the manager of genomic function. Moreover, the NPC is considered to be a platform for the continual adaptation and evolution of eukaryotes. So far, a number of nucleoporins required for plant-defense processes have been identified. Here, we first provide an overview of NPC organization in plants, and then discuss recent findings in the plant NPC to elaborate on and dissect the distinct defensive functions of different NPC subcomponents in plant immune defense, growth and development, hormone signaling, and temperature response. Nucleoporins located in different components of NPC have their unique functions, and the link between the NPC and nucleocytoplasmic trafficking promotes crosstalk of different defense signals in plants. It is necessary to explore appropriate components of the NPC as potential targets for the breeding of high-quality and broad spectrum resistance crop varieties.
Collapse
Affiliation(s)
- Xi Wu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
| | - Junyou Han
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
| | - Changkui Guo
- Laboratory of Plant Molecular and Developmental Biology, Zhejiang A & F University, Hangzhou 311300, China
| |
Collapse
|
22
|
Yang J, Gu D, Wu S, Zhou X, Chen J, Liao Y, Zeng L, Yang Z. Feasible strategies for studying the involvement of DNA methylation and histone acetylation in the stress-induced formation of quality-related metabolites in tea (Camellia sinensis). HORTICULTURE RESEARCH 2021; 8:253. [PMID: 34848699 PMCID: PMC8632975 DOI: 10.1038/s41438-021-00679-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/19/2021] [Accepted: 08/17/2021] [Indexed: 05/26/2023]
Abstract
Tea plants are subjected to multiple stresses during growth, development, and postharvest processing, which affects levels of secondary metabolites in leaves and influences tea functional properties and quality. Most studies on secondary metabolism in tea have focused on gene, protein, and metabolite levels, whereas upstream regulatory mechanisms remain unclear. In this review, we exemplify DNA methylation and histone acetylation, summarize the important regulatory effects that epigenetic modifications have on plant secondary metabolism, and discuss feasible research strategies to elucidate the underlying specific epigenetic mechanisms of secondary metabolism regulation in tea. This information will help researchers investigate the epigenetic regulation of secondary metabolism in tea, providing key epigenetic data that can be used for future tea genetic breeding.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Dachuan Gu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Shuhua Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xiaochen Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jiaming Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China.
| |
Collapse
|
23
|
Lu L, Wei W, Tao J, Lu X, Bian X, Hu Y, Cheng T, Yin C, Zhang W, Chen S, Zhang J. Nuclear factor Y subunit GmNFYA competes with GmHDA13 for interaction with GmFVE to positively regulate salt tolerance in soybean. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2362-2379. [PMID: 34265872 PMCID: PMC8541785 DOI: 10.1111/pbi.13668] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 05/07/2023]
Abstract
Soybean is an important crop worldwide, but its production is severely affected by salt stress. Understanding the regulatory mechanism of salt response is crucial for improving the salt tolerance of soybean. Here, we reveal a role for nuclear factor Y subunit GmNFYA in salt tolerance of soybean likely through the regulation of histone acetylation. GmNFYA is induced by salt stress. Overexpression of GmNFYA significantly enhances salt tolerance in stable transgenic soybean plants by inducing salt-responsive genes. Analysis in soybean plants with transgenic hairy roots also supports the conclusion. GmNFYA interacts with GmFVE, which functions with putative histone deacetylase GmHDA13 in a complex for transcriptional repression possibly by reducing H3K9 acetylation at target loci. Under salt stress, GmNFYA likely accumulates and competes with GmHDA13 for interaction with GmFVE, leading to the derepression and maintenance of histone acetylation for activation of salt-responsive genes and finally conferring salt tolerance in soybean plants. In addition, a haplotype I GmNFYA promoter is identified with the highest self-activated promoter activity and may be selected during future breeding for salt-tolerant cultivars. Our study uncovers the epigenetic regulatory mechanism of GmNFYA in salt-stress response, and all the factors/elements identified may be potential targets for genetic manipulation of salt tolerance in soybean and other crops.
Collapse
Affiliation(s)
- Long Lu
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
- Key Lab of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsCollege of Crop SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wei Wei
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
| | - Jian‐Jun Tao
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
| | - Xiang Lu
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
| | - Xiao‐Hua Bian
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
| | - Yang Hu
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Tong Cheng
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Cui‐Cui Yin
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
| | - Wan‐Ke Zhang
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
| | - Shou‐Yi Chen
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
| | - Jin‐Song Zhang
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
24
|
Ito N, Sakamoto T, Matsunaga S. Components of the Nuclear Pore Complex are Rising Stars in the Formation of a Subnuclear Platform of Chromatin Organization beyond Their Structural Role as a Nuclear Gate. CYTOLOGIA 2021. [DOI: 10.1508/cytologia.86.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nanami Ito
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science
| | - Takuya Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science
| | | |
Collapse
|
25
|
Epigenetic control of abiotic stress signaling in plants. Genes Genomics 2021; 44:267-278. [PMID: 34515950 DOI: 10.1007/s13258-021-01163-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Although plants may be regularly exposed to various abiotic stresses, including drought, salt, cold, heat, heavy metals, and UV-B throughout their lives, it is not possible to actively escape from such stresses due to the immobile nature of plants. To overcome adverse environmental stresses, plants have developed adaptive systems that allow appropriate responses to diverse environmental cues; such responses can be achieved by fine-tuning or controlling genetic and epigenetic regulatory systems. Epigenetic mechanisms such as DNA or histone modifications and modulation of chromatin accessibility have been shown to regulate the expression of stress-responsive genes in struggles against abiotic stresses. OBJECTIVE Herein, the current progress in elucidating the epigenetic regulation of abiotic stress signaling in plants has been summarized in order to further understand the systems plants utilize to effectively respond to abiotic stresses. METHODS This review focuses on the action mechanisms of various components that epigenetically regulate plant abiotic stress responses, mainly in terms of DNA methylation, histone methylation/acetylation, and chromatin remodeling. CONCLUSIONS This review can be considered a basis for further research into understanding the epigenetic control system for abiotic stress responses in plants. Moreover, the knowledge of such systems can be effectively applied in developing novel methods to generate abiotic stress resistant crops.
Collapse
|
26
|
Hereme R, Galleguillos C, Morales-Navarro S, Molina-Montenegro MA. What if the cold days return? Epigenetic mechanisms in plants to cold tolerance. PLANTA 2021; 254:46. [PMID: 34370110 DOI: 10.1007/s00425-021-03694-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The epigenetic could be an important, but seldom assessed, mechanisms in plants inhabiting cold ecosystems. Thus, this review could help to fill a gap in the current literature. Low temperatures are one of the most critical environmental conditions that negatively affect the growth, development, and geographic distribution of plants. Exposure to low temperatures results in a suit of physiological, biochemical and molecular modifications through the reprogramming of the expression of genes and transcription factors. Scientific evidence shows that the average annual temperature has increased in recent years worldwide, with cold ecosystems (polar and high mountain) being among the most sensitive to these changes. However, scientific evidence also indicates that there would be specific events of low temperatures, due it is highly relevant to know the capacity for adaptation, regulation and epigenetic memory in the face of these events, by plants. Epigenetic regulation has been described to play an important role in the face of environmental stimuli, especially in response to abiotic stress. Several studies on epigenetic mechanisms have focused on responses to stress as drought and/or salinity; however, there is a gap in the current literature considering those related to low temperatures. In this review, we focus on systematizing the information published to date, related to the regulation of epigenetic mechanisms such as DNA methylation, histone modification, and non-coding RNA-dependent silencing mechanisms, in the face of plant´s stress due to low temperatures. Finally, we present a schematic model about the potential responses by plants taking in count their epigenetic memory; considering a global warming scenario and with the presence or absence of extreme specific events of low temperatures.
Collapse
Affiliation(s)
- Rasme Hereme
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Talca, Chile
| | | | | | - Marco A Molina-Montenegro
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Talca, Chile.
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Coquimbo, Chile.
- Centro de Investigaciones y Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
27
|
Han SH, Kim JY, Lee JH, Park CM. Safeguarding genome integrity under heat stress in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab355. [PMID: 34343307 DOI: 10.1093/jxb/erab355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Heat stress adversely affects an array of molecular and cellular events in plant cells, such as denaturation of protein and lipid molecules and malformation of cellular membranes and cytoskeleton networks. Genome organization and DNA integrity are also disturbed under heat stress, and accordingly, plants have evolved sophisticated adaptive mechanisms that either protect their genomes from deleterious heat-induced damages or stimulate genome restoration responses. In particular, it is emerging that DNA damage responses are a critical defense process that underlies the acquirement of thermotolerance in plants, during which molecular players constituting the DNA repair machinery are rapidly activated. In recent years, thermotolerance genes that mediate the maintenance of genome integrity or trigger DNA repair responses have been functionally characterized in various plant species. Furthermore, accumulating evidence supports that genome integrity is safeguarded through multiple layers of thermoinduced protection routes in plant cells, including transcriptome adjustment, orchestration of RNA metabolism, protein homeostasis, and chromatin reorganization. In this review, we summarize topical progresses and research trends in understanding how plants cope with heat stress to secure genome intactness. We focus on molecular regulatory mechanisms by which plant genomes are secured against the DNA-damaging effects of heat stress and DNA damages are effectively repaired. We will also explore the practical interface between heat stress response and securing genome integrity in view of developing biotechnological ways of improving thermotolerance in crop species under global climate changes, a worldwide ecological concern in agriculture.
Collapse
Affiliation(s)
- Shin-Hee Han
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
28
|
Su L, Liu S, Liu X, Zhang B, Li M, Zeng L, Li L. Transcriptome profiling reveals histone deacetylase 1 gene overexpression improves flavonoid, isoflavonoid, and phenylpropanoid metabolism in Arachis hypogaea hairy roots. PeerJ 2021; 9:e10976. [PMID: 33777524 PMCID: PMC7977374 DOI: 10.7717/peerj.10976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/29/2021] [Indexed: 11/20/2022] Open
Abstract
Background The peanut (Arachis hypogaea) is a crop plant of high economic importance, but the epigenetic regulation of its root growth and development has not received sufficient attention. Research on Arabidopsis thaliana has shown that histone deacetylases (HDACs) are involved in cell growth, cell differentiation, and stress response. Few studies have focused on the role of HDACs in the root development of other plants, particularly crop plants. In earlier studies, we found large accumulations of A. hypogaea histone deacetylase 1 (AhHDA1) mRNA in peanut roots. However, we did not explore the role of AhHDA1 in peanut root development. Methods In this paper, we investigated the role of the peanut AhHDA1 gene and focused on the effect of altered AhHDA1 expression in hairy roots at both the phenotypic and transcriptional levels. We analyzed the transformation of A. hypogaea hairy roots using Agrobacterium rhizogenes and RNA sequencing to identify differentially expressed genes that were assigned to specific metabolic pathways. Transgenic hairy roots were used as experimental material to analyze the downstream genes expression and histone acetylation levels. To thoroughly understand AhHDA1 function, we also simultaneously screened the AhHDA1-interacting proteins using a yeast two-hybrid system. Results AhHDA1-overexpressing hairy roots were growth-retarded after 20 d in vitro cultivation, and they had a greater accumulation of superoxide anions and hydrogen peroxide than the control and RNAi groups. AhHDA1 overexpression in hairy roots accelerated flux through various secondary synthetic metabolic pathways, as well as inhibited the primary metabolism process. AhHDA1 overexpression also caused a significant upregulation of genes encoding the critical enzyme chalcone synthase (Araip.B8TJ0, CHS) in the flavonoid biosynthesis pathway, hydroxyisoflavanone synthase (Araip.0P3RJ) in the isoflavonoid biosynthesis pathway, and caffeoyl-CoA O-methyltransferase (Aradu.M62BY, CCoAOMT) in the phenylpropanoid biosynthesis pathway. In contrast, ferredoxin 1 (Araip.327XS), the polypeptide of the oxygen-evolving complex of photosystem II (Araip.N6ZTJ), and ribulose bisphosphate carboxylase (Aradu.5IY98) in the photosynthetic pathway were significantly downregulated by AhHDA1 overexpression. The expression levels of these genes had a positive correlation with histone acetylation levels. Conclusion Our results revealed that the relationship between altered gene metabolism activities and AhHDA1 overexpression was mainly reflected in flavonoid, isoflavonoid, and phenylpropanoid metabolism. AhHDA1 overexpression retarded the growth of transgenic hairy roots and may be associated with cell metabolism status. Future studies should focus on the function of AhHDA1-interacting proteins and their effect on root development.
Collapse
Affiliation(s)
- Liangchen Su
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou, Guangdong, China.,Department of Bioengineering, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Shuai Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou, Guangdong, China
| | - Xing Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou, Guangdong, China
| | - Baihong Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou, Guangdong, China
| | - Meijuan Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou, Guangdong, China
| | - Lidan Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou, Guangdong, China
| | - Ling Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
CRISPR/Cas9-Mediated Knockout of HOS1 Reveals Its Role in the Regulation of Secondary Metabolism in Arabidopsis thaliana. PLANTS 2021; 10:plants10010104. [PMID: 33419060 PMCID: PMC7825447 DOI: 10.3390/plants10010104] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 11/17/2022]
Abstract
In Arabidopsis, the RING finger-containing E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1) functions as a main regulator of the cold signaling. In this study, CRISPR/Cas9-mediated targeted mutagenesis of the HOS1 gene in the first exon was performed. DNA sequencing showed that frameshift indels introduced by genome editing of HOS1 resulted in the appearance of premature stop codons, disrupting the open reading frame. Obtained hos1Cas9 mutant plants were compared with the SALK T-DNA insertion mutant, line hos1-3, in terms of their tolerance to abiotic stresses, accumulation of secondary metabolites and expression levels of genes participating in these processes. Upon exposure to cold stress, enhanced tolerance and expression of cold-responsive genes were observed in both hos1-3 and hos1Cas9 plants. The hos1 mutation caused changes in the synthesis of phytoalexins in transformed cells. The content of glucosinolates (GSLs) was down-regulated by 1.5-times, while flavonol glycosides were up-regulated by 1.2 to 4.2 times in transgenic plants. The transcript abundance of the corresponding MYB and bHLH transcription factors, which are responsible for the regulation of secondary metabolism in Arabidopsis, were also altered. Our data suggest a relationship between HOS1-regulated downstream signaling and phytoalexin biosynthesis.
Collapse
|
30
|
Lüdke D, Rohmann PFW, Wiermer M. Nucleocytoplasmic Communication in Healthy and Diseased Plant Tissues. FRONTIERS IN PLANT SCIENCE 2021; 12:719453. [PMID: 34394173 PMCID: PMC8357054 DOI: 10.3389/fpls.2021.719453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/09/2021] [Indexed: 05/16/2023]
Abstract
The double membrane of the nuclear envelope (NE) constitutes a selective compartment barrier that separates nuclear from cytoplasmic processes. Plant viability and responses to a changing environment depend on the spatial communication between both compartments. This communication is based on the bidirectional exchange of proteins and RNAs and is regulated by a sophisticated transport machinery. Macromolecular traffic across the NE depends on nuclear transport receptors (NTRs) that mediate nuclear import (i.e. importins) or export (i.e. exportins), as well as on nuclear pore complexes (NPCs) that are composed of nucleoporin proteins (NUPs) and span the NE. In this review, we provide an overview of plant NPC- and NTR-directed cargo transport and we consider transport independent functions of NPCs and NE-associated proteins in regulating plant developmental processes and responses to environmental stresses.
Collapse
Affiliation(s)
- Daniel Lüdke
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Philipp F. W. Rohmann
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
- Molecular Biology of Plant-Microbe Interactions Research Group, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
- *Correspondence: Marcel Wiermer,
| |
Collapse
|
31
|
Song Y, Jia Z, Hou Y, Ma X, Li L, Jin X, An L. Roles of DNA Methylation in Cold Priming in Tartary Buckwheat. FRONTIERS IN PLANT SCIENCE 2020; 11:608540. [PMID: 33365044 PMCID: PMC7750358 DOI: 10.3389/fpls.2020.608540] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/23/2020] [Indexed: 05/04/2023]
Abstract
Plants experience a wide array of environmental stimuli, some of which are frequent occurrences of cold weather, which have priming effects on agricultural production and agronomic traits. DNA methylation may act as an epigenetic regulator for the cold response of Tartary buckwheat (Fagopyrum tataricum). Combined with long-term field observation and laboratory experiments, comparative phenome, methylome, and transcriptome analyses were performed to investigate the potential epigenetic contributions for the cold priming of Tartary buckwheat variety Dingku1. Tartary buckwheat cv. Dingku1 exhibited low-temperature resistance. Single-base resolution maps of the DNA methylome were generated, and a global loss of DNA methylation was observed during cold responding in Dingku1. These sites with differential methylation levels were predominant in the intergenic regions. Several hundred genes had different DNA methylation patterns and expressions in different cold treatments (cold memory and cold shock), such as CuAO, RPB1, and DHE1. The application of a DNA methylation inhibitor caused a change of the free lysine content, suggesting that DNA methylation can affect metabolite accumulation for Tartary buckwheat cold responses. The results of the present study suggest important roles of DNA methylation in regulating cold response and forming agronomic traits in Tartary buckwheat.
Collapse
Affiliation(s)
- Yuan Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhifeng Jia
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Yukang Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiang Ma
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Lizhen Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xing Jin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
32
|
Han SH, Park YJ, Park CM. HOS1 activates DNA repair systems to enhance plant thermotolerance. NATURE PLANTS 2020; 6:1439-1446. [PMID: 33199892 DOI: 10.1038/s41477-020-00809-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/16/2020] [Indexed: 05/16/2023]
Abstract
Plants possess an astonishing capability of effectively adapting to a wide range of temperatures, ranging from freezing to near-boiling temperatures1,2. Yet, heat is a critical obstacle to plant survival. The deleterious effects of heat shock on cell function include misfolding of cellular proteins, disruption of cytoskeletons and membranes, and disordering of RNA metabolism and genome integrity3-5. Plants stimulate diverse heat shock response pathways in response to abrupt temperature increases. While it is known that stressful high temperatures disturb genome integrity by causing nucleotide modifications and strand breakages or impeding DNA repair6, it is largely unexplored how plants cope with heat-induced DNA damages. Here, we demonstrated that high expression of osmotically reponsive genes 1 (HOS1) induces thermotolerance by activating DNA repair components. Thermotolerance and DNA repair capacity were substantially reduced in HOS1-deficient mutants, in which thermal induction of genes encoding DNA repair systems, such as the DNA helicase RECQ2, was markedly decreased. Notably, HOS1 proteins were thermostabilized in a heat shock factor A1/heat shock protein 90 (HSP90)-dependent manner. Our data indicate that the thermoresponsive HSP90-HOS1-RECQ2 module contributes to sustaining genome integrity during the acquisition of thermotolerance, providing a distinct molecular link between DNA repair and thermotolerance.
Collapse
Affiliation(s)
- Shin-Hee Han
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|
33
|
de Rooij PGH, Perrella G, Kaiserli E, van Zanten M. The diverse and unanticipated roles of histone deacetylase 9 in coordinating plant development and environmental acclimation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6211-6225. [PMID: 32687569 PMCID: PMC7586748 DOI: 10.1093/jxb/eraa335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/15/2020] [Indexed: 05/04/2023]
Abstract
Plants tightly control gene transcription to adapt to environmental conditions and steer growth and development. Different types of epigenetic modifications are instrumental in these processes. In recent years, an important role for the chromatin-modifying RPD3/HDA1 class I HDAC HISTONE DEACETYLASE 9 (HDA9) emerged in the regulation of a multitude of plant traits and responses. HDACs are widely considered transcriptional repressors and are typically part of multiprotein complexes containing co-repressors, DNA, and histone-binding proteins. By catalyzing the removal of acetyl groups from lysine residues of histone protein tails, HDA9 negatively controls gene expression in many cases, in concert with interacting proteins such as POWERDRESS (PWR), HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 15 (HOS15), WRKY53, ELONGATED HYPOCOTYL 5 (HY5), ABA INSENSITIVE 4 (ABI4), and EARLY FLOWERING 3 (ELF3). However, HDA9 activity has also been directly linked to transcriptional activation. In addition, following the recent breakthrough discovery of mutual negative feedback regulation between HDA9 and its interacting WRKY-domain transcription factor WRKY53, swift progress in gaining understanding of the biology of HDA9 is expected. In this review, we summarize knowledge on this intriguing versatile-and long under-rated-protein and propose novel leads to further unravel HDA9-governed molecular networks underlying plant development and environmental biology.
Collapse
Affiliation(s)
- Peter G H de Rooij
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Giorgio Perrella
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- ENEA - Trisaia Research Centre 75026, Rotondella (Matera), Italy
| | - Eirini Kaiserli
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan, CH Utrecht, The Netherlands
- Correspondence:
| |
Collapse
|
34
|
Zhang C, An N, Jia P, Zhang W, Liang J, Zhang X, Zhou H, Ma W, Han M, Xing L, Ren X. Genomic identification and expression analysis of nuclear pore proteins in Malus domestica. Sci Rep 2020; 10:17426. [PMID: 33060661 PMCID: PMC7566457 DOI: 10.1038/s41598-020-74171-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022] Open
Abstract
The nuclear pore complex (NPC), comprised of individual nucleoporin (Nup) proteins, controls nucleo-cytoplasmic transport of RNA and protein, and is important for regulating plant growth and development. However, there are no reports on this complex in fruit tree species. In this study, we identified 38 apple Nups and named them based on the known Arabidopsis thaliana homologs. We also completed bioinformatics analyses of the intron and exon structural data for apple Nups. The proteins encoded by the apple Nups lacked a universally conserved domain. Moreover, a phylogenetic analysis separated the apple and A. thaliana Nups into three groups. The phylogenetic tree indicated that MdNup54 and MdNup62 are most closely related to genes in other Rosaceae species. To characterize the 38 candidate Malus domestica Nups, we measured their stage-specific expression levels. Our tests revealed these proteins were differentially expressed among diverse tissues. We analyzed the expression levels of seven apple Nups in response to an indole-3-acetic acid (IAA) treatment. The phytohormone treatment significantly inhibited apple flowering. A qRT-PCR analysis proved that an IAA treatment significantly inhibited the expression of these seven genes. A preliminary study regarding two members of the Nup62 subcomplex, MdNup54 and MdNup62, confirmed these two proteins can interact with each other. A yeast two-hybrid assay verified that MdNup54 can interact with MdKNAT4 and MdKNAT6. On the basis of the study results, we identified apple NPC and predicted its structure and function. The data generated in this investigation provide important reference material for follow-up research.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Na An
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Peng Jia
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Wei Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jiayan Liang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Xu Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Hua Zhou
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Wenchun Ma
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, China.
| | - Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, China.
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, China.
| |
Collapse
|
35
|
Hepworth J, Antoniou-Kourounioti RL, Berggren K, Selga C, Tudor EH, Yates B, Cox D, Collier Harris BR, Irwin JA, Howard M, Säll T, Holm S, Dean C. Natural variation in autumn expression is the major adaptive determinant distinguishing Arabidopsis FLC haplotypes. eLife 2020; 9:57671. [PMID: 32902380 PMCID: PMC7518893 DOI: 10.7554/elife.57671] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022] Open
Abstract
In Arabidopsis thaliana, winter is registered during vernalization through the temperature-dependent repression and epigenetic silencing of floral repressor FLOWERING LOCUS C (FLC). Natural Arabidopsis accessions show considerable variation in vernalization. However, which aspect of the FLC repression mechanism is most important for adaptation to different environments is unclear. By analysing FLC dynamics in natural variants and mutants throughout winter in three field sites, we find that autumnal FLC expression, rather than epigenetic silencing, is the major variable conferred by the distinct Arabidopsis FLChaplotypes. This variation influences flowering responses of Arabidopsis accessions resulting in an interplay between promotion and delay of flowering in different climates to balance survival and, through a post-vernalization effect, reproductive output. These data reveal how expression variation through non-coding cis variation at FLC has enabled Arabidopsis accessions to adapt to different climatic conditions and year-on-year fluctuations.
Collapse
Affiliation(s)
- Jo Hepworth
- Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | | | - Kristina Berggren
- Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden
| | - Catja Selga
- Department of Biology, Lund University, Lund, Sweden
| | - Eleri H Tudor
- Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Bryony Yates
- Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Deborah Cox
- Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | | | - Judith A Irwin
- Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Torbjörn Säll
- Department of Biology, Lund University, Lund, Sweden
| | - Svante Holm
- Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden
| | - Caroline Dean
- Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
36
|
Fernández-Jiménez N, Pradillo M. The role of the nuclear envelope in the regulation of chromatin dynamics during cell division. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5148-5159. [PMID: 32589712 DOI: 10.1093/jxb/eraa299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
The nuclear envelope delineates the eukaryotic cell nucleus. The membrane system of the nuclear envelope consists of an outer nuclear membrane and an inner nuclear membrane separated by a perinuclear space. It serves as more than just a static barrier, since it regulates the communication between the nucleoplasm and the cytoplasm and provides the anchoring points where chromatin is attached. Fewer nuclear envelope proteins have been identified in plants in comparison with animals and yeasts. Here, we review the current state of knowledge of the nuclear envelope in plants, focusing on its role as a chromatin organizer and regulator of gene expression, as well as on the modifications that it undergoes to be efficiently disassembled and reassembled with each cell division. Advances in knowledge concerning the mitotic role of some nuclear envelope constituents are also presented. In addition, we summarize recent progress on the contribution of the nuclear envelope elements to telomere tethering and chromosome dynamics during the meiotic division in different plant species.
Collapse
Affiliation(s)
- Nadia Fernández-Jiménez
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
37
|
Li C, Liu L, Teo ZWN, Shen L, Yu H. Nucleoporin 160 Regulates Flowering through Anchoring HOS1 for Destabilizing CO in Arabidopsis. PLANT COMMUNICATIONS 2020; 1:100033. [PMID: 33367234 PMCID: PMC7748013 DOI: 10.1016/j.xplc.2020.100033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 05/26/2023]
Abstract
Nuclear pore complexes (NPCs), which comprise multiple copies of nucleoporins (Nups), are large protein assemblies embedded in the nuclear envelope connecting the nucleus and cytoplasm. Although it has been known that Nups affect flowering in Arabidopsis, the underlying mechanisms are poorly understood. Here, we show that loss of function of Nucleoporin 160 (Nup160) leads to increased abundance of CONSTANS (CO) protein and the resulting upregulation of FLOWERING LOCUS T (FT) specifically in the morning. We demonstrate that Nup160 regulates CO protein stability through affecting NPC localization of an E3-ubiquitin ligase, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1), which destabilizes CO protein in the morning period. Taken together, these results provide a mechanistic understanding of Nup function in the transition from vegetative to reproductive growth, suggesting that deposition of HOS1 at NPCs by Nup160 is essential for preventing precocious flowering in response to photoperiod in Arabidopsis.
Collapse
Affiliation(s)
- Chunying Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Lu Liu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Zhi Wei Norman Teo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Hao Yu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| |
Collapse
|
38
|
Cheng Z, Zhang X, Huang P, Huang G, Zhu J, Chen F, Miao Y, Liu L, Fu YF, Wang X. Nup96 and HOS1 Are Mutually Stabilized and Gate CONSTANS Protein Level, Conferring Long-Day Photoperiodic Flowering Regulation in Arabidopsis. THE PLANT CELL 2020; 32:374-391. [PMID: 31826964 PMCID: PMC7008479 DOI: 10.1105/tpc.19.00661] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/17/2019] [Accepted: 12/10/2019] [Indexed: 05/20/2023]
Abstract
The nuclear pore complex profoundly affects the timing of flowering; however, the underlying mechanisms are poorly understood. Here, we report that Nucleoporin96 (Nup96) acts as a negative regulator of long-day photoperiodic flowering in Arabidopsis (Arabidopsis thaliana). Through multiple approaches, we identified the E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 (HOS1) and demonstrated its interaction in vivo with Nup96. Nup96 and HOS1 mainly localize and interact on the nuclear membrane. Loss of function of Nup96 leads to destruction of HOS1 proteins without a change in their mRNA abundance, which results in overaccumulation of the key activator of long-day photoperiodic flowering, CONSTANS (CO) proteins, as previously reported in hos1 mutants. Unexpectedly, mutation of HOS1 strikingly diminishes Nup96 protein level, suggesting that Nup96 and HOS1 are mutually stabilized and thus form a novel repressive module that regulates CO protein turnover. Therefore, the nup96 and hos1 single and nup96 hos1 double mutants have highly similar early-flowering phenotypes and overlapping transcriptome changes. Together, this study reveals a repression mechanism in which the Nup96-HOS1 repressive module gates the level of CO proteins and thereby prevents precocious flowering in long-day conditions.
Collapse
Affiliation(s)
- Zhiyuan Cheng
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaomei Zhang
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Penghui Huang
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guowen Huang
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Chemical Sciences and Biological Engineering, Hunan University of Science and Technology, Yongzhou 425100, Hunan, China
| | - Jinglong Zhu
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fulu Chen
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuchen Miao
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Liangyu Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yong-Fu Fu
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xu Wang
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
39
|
Ueda M, Seki M. Histone Modifications Form Epigenetic Regulatory Networks to Regulate Abiotic Stress Response. PLANT PHYSIOLOGY 2020; 182:15-26. [PMID: 31685643 PMCID: PMC6945856 DOI: 10.1104/pp.19.00988] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/22/2019] [Indexed: 05/19/2023]
Abstract
Epigenetic modifiers such as erasers, readers, writers, and recruiters control abiotic stress response in flowering plants.
Collapse
Affiliation(s)
- Minoru Ueda
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan
| |
Collapse
|
40
|
Baier M, Bittner A, Prescher A, van Buer J. Preparing plants for improved cold tolerance by priming. PLANT, CELL & ENVIRONMENT 2019; 42:782-800. [PMID: 29974962 DOI: 10.1111/pce.13394] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 05/26/2023]
Abstract
Cold is a major stressor, which limits plant growth and development in many parts of the world, especially in the temperate climate zones. A large number of experimental studies has demonstrated that not only acclimation and entrainment but also the experience of single short stress events of various abiotic or biotic kinds (priming stress) can improve the tolerance of plants to chilling temperatures. This process, called priming, depends on a stress "memory". It does not change cold sensitivity per se but beneficially modifies the response to cold and can last for days, months, or even longer. Elicitor factors and antagonists accumulate due to increased biosynthesis or decreased degradation either during or after the priming stimulus. Comparison of priming studies investigating improved tolerance to chilling temperatures highlighted key regulatory functions of ROS/RNS and antioxidant enzymes, plant hormones, especially jasmonates, salicylates, and abscisic acid, and signalling metabolites, such as β- and γ-aminobutyric acid (BABA and GABA) and melatonin. We conclude that these elicitors and antagonists modify local and systemic cold tolerance by integration into cold-induced signalling cascades.
Collapse
Affiliation(s)
- Margarete Baier
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Andras Bittner
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Andreas Prescher
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Jörn van Buer
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| |
Collapse
|
41
|
Park HJ, Baek D, Cha JY, Liao X, Kang SH, McClung CR, Lee SY, Yun DJ, Kim WY. HOS15 Interacts with the Histone Deacetylase HDA9 and the Evening Complex to Epigenetically Regulate the Floral Activator GIGANTEA. THE PLANT CELL 2019; 31:37-51. [PMID: 30606777 PMCID: PMC6391688 DOI: 10.1105/tpc.18.00721] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/26/2018] [Accepted: 12/20/2018] [Indexed: 05/18/2023]
Abstract
In plants, seasonal inputs such as photoperiod and temperature modulate the plant's internal genetic program to regulate the timing of the developmental transition from vegetative to reproductive growth. This regulation of the floral transition involves chromatin remodeling, including covalent modification of histones. Here, we report that HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15), a WD40 repeat protein, associates with a histone deacetylase complex to repress transcription of the GIGANTEA (GI)-mediated photoperiodic flowering pathway in Arabidopsis (Arabidopsis thaliana). Loss of function of HOS15 confers early flowering under long-day conditions because elevated GI expression. LUX ARRHYTHMO (LUX), a DNA binding transcription factor and component of the Evening Complex (EC), is important for the binding of HOS15 to the GI promoter. In wild type, HOS15 associates with the EC components LUX, EARLY FLOWERING 3 (ELF3), and ELF4 and the histone deacetylase HDA9 at the GI promoter, resulting in histone deacetylation and reduced GI expression. In the hos15-2 mutant, the levels of histone acetylation are elevated at the GI promoter, resulting in increased GI expression. Our data suggest that the HOS15-EC-HDA9 histone-modifying complex regulates photoperiodic flowering via the transcriptional repression of GI.
Collapse
Affiliation(s)
- Hee Jin Park
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, Republic of Korea
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Dongwon Baek
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Xueji Liao
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sang-Ho Kang
- International Technology Cooperation Center, Rural Development Administration, Jeonju, 54875, Republic of Korea
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
42
|
Yang C, Shen W, Chen H, Chu L, Xu Y, Zhou X, Liu C, Chen C, Zeng J, Liu J, Li Q, Gao C, Charron JB, Luo M. Characterization and subcellular localization of histone deacetylases and their roles in response to abiotic stresses in soybean. BMC PLANT BIOLOGY 2018; 18:226. [PMID: 30305032 PMCID: PMC6180487 DOI: 10.1186/s12870-018-1454-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 10/01/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Histone deacetylases (HDACs) function as key epigenetic factors in repressing the expression of genes in multiple aspects of plant growth, development and plant response to abiotic or biotic stresses. To date, the molecular function of HDACs is well described in Arabidopsis thaliana, but no systematic analysis of this gene family in soybean (Glycine max) has been reported. RESULTS In this study, 28 HDAC genes from soybean genome were identified, which were asymmetrically distributed on 12 chromosomes. Phylogenetic analysis demonstrated that GmHDACs fall into three major groups previously named RPD3/HDA1, SIR2, and HD2. Subcellular localization analysis revealed that YFP-tagged GmSRT4, GmHDT2 and GmHDT4 were predominantly localized in the nucleus, whereas GmHDA6, GmHDA13, GmHDA14 and GmHDA16 were found in both the cytoplasm and nucleus. Real-time quantitative PCR showed that GmHDA6, GmHDA13, GmHDA14, GmHDA16 and GmHDT4 were broadly expressed across plant tissues, while GmHDA8, GmSRT2, GmSRT4 and GmHDT2 showed differential expression across various tissues. Interestingly, we measured differential changes in GmHDACs transcripts accumulation in response to several abiotic cues, indicating that these epigenetic modifiers could potentially be part of a dynamic transcriptional response to stress in soybean. Finally, we show that the levels of histone marks previously reported to be associated with plant HDACs are modulated by cold and heat in this legume. CONCLUSION We have identified and classified 28 HDAC genes in soybean. Our data provides insights into the evolution of the HDAC gene family and further support the hypothesis that these genes are important for the plant responses to environmental stress.
Collapse
Affiliation(s)
- Chao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Hongfeng Chen
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Liutian Chu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yingchao Xu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaochen Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Chunmiao Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Jiahui Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Jin Liu
- Institute for Food and Bioresource Engineering, Department of Energy and Resources Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Qianfeng Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009 China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Jean-Benoit Charron
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| |
Collapse
|
43
|
Chen M, Penfield S. Feedback regulation of COOLAIR expression controls seed dormancy and flowering time. Science 2018; 360:1014-1017. [PMID: 29853684 DOI: 10.1126/science.aar7361] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/13/2018] [Indexed: 12/30/2022]
Abstract
Plants integrate seasonal signals, including temperature and day length, to optimize the timing of developmental transitions. Seasonal sensing requires the activity of two proteins, FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT), that control certain developmental transitions in plants. During reproductive development, the mother plant uses FLC and FT to modulate progeny seed dormancy in response to temperature. We found that for regulation of seed dormancy, FLC and FT function in opposite configuration to how those same genes control time to flowering. For seed dormancy, FT regulates seed dormancy through FLC gene expression and regulates chromatin state by activating antisense FLC transcription. Thus, in Arabidopsis the same genes controlled in opposite format regulate flowering time and seed dormancy in response to the temperature changes that characterize seasons.
Collapse
Affiliation(s)
- Min Chen
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
44
|
Boher P, Soler M, Sánchez A, Hoede C, Noirot C, Paiva JAP, Serra O, Figueras M. A comparative transcriptomic approach to understanding the formation of cork. PLANT MOLECULAR BIOLOGY 2018; 96:103-118. [PMID: 29143299 DOI: 10.1007/s11103-017-0682-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/08/2017] [Indexed: 05/09/2023]
Abstract
The transcriptome comparison of two oak species reveals possible candidates accounting for the exceptionally thick and pure cork oak phellem, such as those involved in secondary metabolism and phellogen activity. Cork oak, Quercus suber, differs from other Mediterranean oaks such as holm oak (Quercus ilex) by the thickness and organization of the external bark. While holm oak outer bark contains sequential periderms interspersed with dead secondary phloem (rhytidome), the cork oak outer bark only contains thick layers of phellem (cork rings) that accumulate until reaching a thickness that allows industrial uses. Here we compare the cork oak outer bark transcriptome with that of holm oak. Both transcriptomes present similitudes in their complexity, but whereas cork oak external bark is enriched with upregulated genes related to suberin, which is the main polymer responsible for the protective function of periderm, the upregulated categories of holm oak are enriched in abiotic stress and chromatin assembly. Concomitantly with the upregulation of suberin-related genes, there is also induction of regulatory and meristematic genes, whose predicted activities agree with the increased number of phellem layers found in the cork oak sample. Further transcript profiling among different cork oak tissues and conditions suggests that cork and wood share many regulatory mechanisms, probably reflecting similar ontogeny. Moreover, the analysis of transcripts accumulation during the cork growth season showed that most regulatory genes are upregulated early in the season when the cork cambium becomes active. Altogether our work provides the first transcriptome comparison between cork oak and holm oak outer bark, which unveils new regulatory candidate genes of phellem development.
Collapse
Affiliation(s)
- Pau Boher
- Laboratori del Suro, Faculty of Science, Biology Department, Universitat de Girona, C/ Maria Aurèlia Campmany 40, 17003, Girona, Spain
| | - Marçal Soler
- Laboratori del Suro, Faculty of Science, Biology Department, Universitat de Girona, C/ Maria Aurèlia Campmany 40, 17003, Girona, Spain
| | - Anna Sánchez
- Laboratori del Suro, Faculty of Science, Biology Department, Universitat de Girona, C/ Maria Aurèlia Campmany 40, 17003, Girona, Spain
| | - Claire Hoede
- PF Bioinfo GenoToul, MIAT, Université de Toulouse, INRA, 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Céline Noirot
- PF Bioinfo GenoToul, MIAT, Université de Toulouse, INRA, 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Jorge Almiro Pinto Paiva
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
- Institute of Plant Genetics, Department of Integrative Plant Biology, Polish Academy of Sciences, ul. Strzeszyńska 34, 60-479, Poznan, Poland
| | - Olga Serra
- Laboratori del Suro, Faculty of Science, Biology Department, Universitat de Girona, C/ Maria Aurèlia Campmany 40, 17003, Girona, Spain
| | - Mercè Figueras
- Laboratori del Suro, Faculty of Science, Biology Department, Universitat de Girona, C/ Maria Aurèlia Campmany 40, 17003, Girona, Spain.
| |
Collapse
|
45
|
Sang S, Chen Y, Yang Q, Wang P. Arabidopsis inositol polyphosphate multikinase delays flowering time through mediating transcriptional activation of FLOWERING LOCUS C. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5787-5800. [PMID: 29161428 PMCID: PMC5854132 DOI: 10.1093/jxb/erx397] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/16/2017] [Indexed: 05/19/2023]
Abstract
Timely flowering is critical for successful reproduction and seed yield in plants. A diverse range of regulators have been found to control flowering time in response to environmental and endogenous signals. Among these regulators, FLOWERING LOCUS C (FLC) acts as a central repressor of floral transition by blocking the expression of flowering integrator genes. Here, we report that Arabidopsis inositol polyphosphate multikinase (AtIPK2β) functions in flowering time control by mediating transcriptional regulation of FLC at the chromatin level. The atipk2β mutant flowers earlier, and AtIPK2β overexpressing plants exhibit late-flowering phenotypes. Quantitative reverse transcription-PCR (qRT-PCR) revealed that AtIPK2β promotes FLC expression. We performed chromatin immunoprecipitation-qPCR (ChIP-qPCR) assays and found that AtIPK2β binds to FLC chromatin. Further analysis showed that AtIPK2β interacts with FVE, a key repressor required for epigenetic silencing of FLC. qRT-PCR, ChIP-qPCR, and genetic analysis demonstrated that AtIPK2β is involved in FVE-mediated transcriptional regulation of FLC by repressing the accumulation of FVE on FLC. Moreover, we found that AtIPK2β associates with HDA6, an interaction partner of FVE mediating FLC chromatin silencing, and attenuates HDA6 accumulation at the FLC locus. Taken together, these findings suggest that AtIPK2β negatively regulates flowering time by blocking chromatin silencing of FLC.
Collapse
Affiliation(s)
- Sihong Sang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, China
- Correspondence:
| | - Yao Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, China
| | - Qiaofeng Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, China
| | - Peng Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, China
| |
Collapse
|
46
|
Zhu Y, Wang B, Tang K, Hsu CC, Xie S, Du H, Yang Y, Tao WA, Zhu JK. An Arabidopsis Nucleoporin NUP85 modulates plant responses to ABA and salt stress. PLoS Genet 2017; 13:e1007124. [PMID: 29232718 PMCID: PMC5741264 DOI: 10.1371/journal.pgen.1007124] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/22/2017] [Accepted: 11/23/2017] [Indexed: 01/07/2023] Open
Abstract
Several nucleoporins in the nuclear pore complex (NPC) have been reported to be involved in abiotic stress responses in plants. However, the molecular mechanism of how NPC regulates abiotic stress responses, especially the expression of stress responsive genes remains poorly understood. From a forward genetics screen using an abiotic stress-responsive luciferase reporter (RD29A-LUC) in the sickle-1 (sic-1) mutant background, we identified a suppressor caused by a mutation in NUCLEOPORIN 85 (NUP85), which exhibited reduced expression of RD29A-LUC in response to ABA and salt stress. Consistently, the ABA and salinity induced expression of several stress responsive genes such as RD29A, COR15A and COR47 was significantly compromised in nup85 mutants and other nucleoporin mutants such as nup160 and hos1. Subsequently, Immunoprecipitation and mass spectrometry analysis revealed that NUP85 is potentially associated with HOS1 and other nucleoporins within the nup107-160 complex, along with several mediator subunits. We further showed that there is a direct physical interaction between MED18 and NUP85. Similar to NUP85 mutations, MED18 mutation was also found to attenuate expression of stress responsive genes. Taken together, we not only revealed the involvement of NUP85 and other nucleoporins in regulating ABA and salt stress responses, but also uncovered a potential relation between NPC and mediator complex in modulating the gene expression in plants. Nuclear pore complex (NPC) mediates the traffic between nucleus and cytoplasm. This work identified NUCLEOPORIN 85 (NUP85) as an important factor for the expression of stress-responsive luciferase reporter gene RD29A-LUC in response to ABA and salt stress from a forward genetics screen. Mutation in NUP85 and other NPC components such as NUP160 and HOS1 resulted in decreased expression of several stress responsive genes such as RD29A, COR15A and COR47. Proteomics data uncovered a list of putative NUP85 associated proteins. Furthermore, NUP85 was demonstrated to interact with MED18, a master transcriptional regulator, to control the expression of stress responsive genes. The study has added a new layer of knowledge about the diverse functions of NPC in abiotic stress responses.
Collapse
Affiliation(s)
- Yingfang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States of America
- * E-mail: (YZ); (JKZ)
| | - Bangshing Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States of America
| | - Kai Tang
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States of America
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States of America
| | - Shaojun Xie
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States of America
| | - Hai Du
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States of America
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yuting Yang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States of America
- Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University Fuzhou, Fuzhou, China
| | - Weiguo Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States of America
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States of America
- * E-mail: (YZ); (JKZ)
| |
Collapse
|
47
|
Ma X, Zhang B, Liu C, Tong B, Guan T, Xia D. Expression of a populus histone deacetylase gene 84KHDA903 in tobacco enhances drought tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 265:1-11. [PMID: 29223330 DOI: 10.1016/j.plantsci.2017.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/21/2017] [Accepted: 09/12/2017] [Indexed: 05/07/2023]
Abstract
Histone deacetylases (HDACs) play a key role in regulating plant growth, development and stress responses. However, functions of HDACs in woody plants are largely unknown. In this study, a novel gene encoding a RPD3/HDA1-type histone deacetylase was cloned from 84K poplar (Populus alba×Populus glandulosa) and designated as 84KHDA903. The 84KHDA903 encodes a protein composed of 500 amino acid residues, which contains a conserved HDAC domain. Transient expression of 84KHDA903 in onion epidermal cells suggested that it was exclusively localized in nucleus. The 84KHDA903 exhibited different expression patterns under drought, salt and ABA treatments. The expression of 84KHDA903 was responsive to drought and ABA but not to salt. To understand the function of 84KHDA903 in stress responses, the 84KHDA903 gene was transformed into tobacco. The expression of 84KHDA903 in tobacco increased the tolerance of transgenic seeds to mannitol but not to salt. In adult stage, the 84KHDA903-expressing tobacco exhibited drought tolerance and showed strong capacity to recover after drought. During the recovery period, the stress-responsive genes including NtDREB4, NtDREB3 and NtLEA5 were induced to be highly expressed in the 84KHDA903 transgenic plants in contrast to wild-type plants. Taken together, for the first time, we reported a RPD3/HDA1-type histone deacetylase from poplar, 84KHDA903, which acted as a positive regulator in drought stress responses.
Collapse
Affiliation(s)
- Xujun Ma
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin 150040, China.
| | - Bing Zhang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin 150040, China
| | - Chunjuan Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin 150040, China
| | - Botong Tong
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin 150040, China
| | - Tao Guan
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin 150040, China
| | - Dean Xia
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
48
|
Bloomer RH, Dean C. Fine-tuning timing: natural variation informs the mechanistic basis of the switch to flowering in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5439-5452. [PMID: 28992087 DOI: 10.1093/jxb/erx270] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The evolution of diverse life history strategies has allowed Arabidopsis thaliana to adapt to worldwide locations, spanning a range of latitudinal and environmental conditions. Arabidopsis thaliana accessions are either vernalization-requiring winter annuals or rapid cyclers, with extensive natural variation in vernalization requirement and response. Genetic and molecular analysis of this variation has enhanced our understanding of the mechanisms involved in life history determination, with translation to both natural and crop systems in the Brassicaceae and beyond.
Collapse
Affiliation(s)
- R H Bloomer
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - C Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
49
|
Lee JH, Jung JH, Park CM. Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis. THE PLANT CELL 2017; 29:2817-2830. [PMID: 29070509 PMCID: PMC5728130 DOI: 10.1105/tpc.17.00371] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/06/2017] [Accepted: 10/24/2017] [Indexed: 05/20/2023]
Abstract
Stomata are epidermal openings that facilitate plant-atmosphere gas exchange during photosynthesis, respiration, and water evaporation. Stomatal differentiation and patterning are spatially and temporally regulated by the master regulators SPEECHLESS (SPCH), MUTE, and FAMA, which constitute a central gene regulatory network along with Inducer of CBF Expression (ICE) transcription factors for this developmental process. Stomatal development is also profoundly influenced by environmental conditions, such as light, temperature, and humidity. Light induces stomatal development, and various photoreceptors modulate this response. However, it is unknown how light is functionally linked with the master regulatory network. Here, we demonstrate that, under dark conditions, the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) degrades ICE proteins through ubiquitination pathways in leaf abaxial epidermal cells in Arabidopsis thaliana Accordingly, the ICE proteins accumulate in the nuclei of leaf abaxial epidermal cells in COP1-defective mutants, which constitutively produce stomata. Notably, light in the blue, red, and far-red wavelength ranges suppresses the COP1-mediated degradation of the ICE proteins to induce stomatal development. These observations indicate that light is directly linked with the ICE-directed signaling module, via the COP1-mediated protein surveillance system, in the modulation of stomatal development.
Collapse
Affiliation(s)
- Jae-Hyung Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jae-Hoon Jung
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
50
|
Ezer D, Shepherd SJK, Brestovitsky A, Dickinson P, Cortijo S, Charoensawan V, Box MS, Biswas S, Jaeger KE, Wigge PA. The G-Box Transcriptional Regulatory Code in Arabidopsis. PLANT PHYSIOLOGY 2017; 175:628-640. [PMID: 28864470 PMCID: PMC5619884 DOI: 10.1104/pp.17.01086] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/30/2017] [Indexed: 05/19/2023]
Abstract
Plants have significantly more transcription factor (TF) families than animals and fungi, and plant TF families tend to contain more genes; these expansions are linked to adaptation to environmental stressors. Many TF family members bind to similar or identical sequence motifs, such as G-boxes (CACGTG), so it is difficult to predict regulatory relationships. We determined that the flanking sequences near G-boxes help determine in vitro specificity but that this is insufficient to predict the transcription pattern of genes near G-boxes. Therefore, we constructed a gene regulatory network that identifies the set of bZIPs and bHLHs that are most predictive of the expression of genes downstream of perfect G-boxes. This network accurately predicts transcriptional patterns and reconstructs known regulatory subnetworks. Finally, we present Ara-BOX-cis (araboxcis.org), a Web site that provides interactive visualizations of the G-box regulatory network, a useful resource for generating predictions for gene regulatory relations.
Collapse
Affiliation(s)
- Daphne Ezer
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Samuel J K Shepherd
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Anna Brestovitsky
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Patrick Dickinson
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Sandra Cortijo
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Varodom Charoensawan
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
- Department of Biochemistry, Faculty of Science, and Integrative Computational BioScience Center, Mahidol University, Bangkok 10400, Thailand
| | - Mathew S Box
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Surojit Biswas
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Katja E Jaeger
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Philip A Wigge
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|