1
|
Bellande K, Roujol D, Chourré J, Le Gall S, Martinez Y, Jauneau A, Arico D, Mithöfer A, Burlat V, Jamet E, Canut H. Receptor kinase LecRK-I.9 regulates cell wall remodelling during lateral root formation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1718-1734. [PMID: 39724305 DOI: 10.1093/jxb/erae520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
Assembling and remodelling the cell wall is essential for plant development. Cell wall dynamics are controlled by cell wall proteins, polysaccharide biosynthesis, and a variety of sensor and receptor systems. LecRK-I.9, an Arabidopsis thaliana plasma membrane-localized lectin receptor kinase, was previously shown to be involved in cell wall-plasma membrane contacts and to play roles in plant-pathogen interactions, but until now its role in development was not known. LecRK-I.9 is transcribed at a high level in root tissues including the pericycle. Comparative transcript profiling of a loss-of-function mutant versus the wild type identified LecRK-I.9 as a regulator of cell wall metabolism. Consistently, lecrk-I.9 mutants displayed an increased pectin methylesterification level correlated with decreased pectin methylesterase and increased polygalacturonase activities. Also, LecRK-I.9 negatively impacted lateral root development through the direct or indirect regulation of genes encoding (i) cell wall remodelling proteins during early events of lateral root initiation, and (ii) cell wall signalling peptides (CLE2 and CLE4) repressing lateral root emergence and growth. Furthermore, low nitrate reduced LecRK-I.9 expression in roots, particularly in the lateral root emergence zone: even in these conditions, the control of CLE2 and CLE4 expression is maintained. Altogether, the results show that LecRK-I.9 is a key player in negatively regulating both pre-branch site formation and lateral root emergence.
Collapse
Affiliation(s)
- Kevin Bellande
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, F-31320, Auzeville-Tolosane, France
- Laboratory of Cell and Molecular Biology, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000 Neuchâtel, Switzerland and IPSiM, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - David Roujol
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, F-31320, Auzeville-Tolosane, France
| | - Josiane Chourré
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, F-31320, Auzeville-Tolosane, France
| | - Sophie Le Gall
- INRAE, UR1268 BIA, F-44300 Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, F-44300 Nantes, France
| | - Yves Martinez
- Plateforme Imagerie FRAIB-TRI, CNRS, Université de Toulouse, UPS, F-31320, Auzeville-Tolosane, France
| | - Alain Jauneau
- Plateforme Imagerie FRAIB-TRI, CNRS, Université de Toulouse, UPS, F-31320, Auzeville-Tolosane, France
| | - Denise Arico
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, F-31320, Auzeville-Tolosane, France
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCBL, Lyon, France
| | - Axel Mithöfer
- Research Group Plant Defense Physiology; Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, F-31320, Auzeville-Tolosane, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, F-31320, Auzeville-Tolosane, France
| | - Hervé Canut
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, F-31320, Auzeville-Tolosane, France
| |
Collapse
|
2
|
Lyapina I, Ganaeva D, Rogozhin EA, Ryabukhina EV, Ryazantsev DY, Lazarev V, Alieva SE, Mamaeva A, Fesenko I. Comparative analysis of small secreted peptide signaling during defense response: insights from vascular and non-vascular plants. PHYSIOLOGIA PLANTARUM 2025; 177:e70147. [PMID: 40079373 DOI: 10.1111/ppl.70147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/15/2025]
Abstract
Small secreted peptides (SSPs) play an important role in modulating immune responses in all land plants. However, the evolution of stress peptide signaling in different plant phyla remains poorly understood. Here, we compared the expression of SSP genes in the pathogen-induced transcriptomes of vascular and non-vascular plants. We found 13, 19, 15, and 28 SSP families that were differentially expressed during infection in Physcomitrium patens, Zea mays, Brassica napus, and Solanum tuberosum, respectively. A comparative study of peptide motifs and predicted three-dimensional structures confirmed the similarity of SSPs across the examined plant species. In both vascular and non-vascular plants. However, only the RALF peptide family was differentially regulated under infection. We also found that EPFL peptides, which are involved in growth and development processes in angiosperms, were differentially regulated in P. patens in response to pathogen infection. The search for novel immune-specific peptides revealed a family of PSY-like peptides that are differentially regulated during infection in P. patens. The treatment with synthetic tyrosine-modified and non-modified PSY, and PSY-like peptides, as well as recombinant EPFL and MEG, validated their roles in the immune response and growth regulation. Thus, our study showed the complex nature of SSP signaling and shed light on the regulation of SSPs in different plant lineages during infection.
Collapse
Affiliation(s)
- Irina Lyapina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Daria Ganaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Eugene A Rogozhin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- All-Russian Institute for Plant Protection, Pushkin, Russia
| | | | | | - Vassili Lazarev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Sabina E Alieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Anna Mamaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | |
Collapse
|
3
|
Gong A, Dong Y, Xu S, Mu Y, Li X, Li C, Liang Q, Liu JN, Wang C, Yang KQ, Fang H. Multi-omics analysis reveals the allelic variation in JrWDRC2A9 and JrGPIAP conferring resistance against anthracnose (Colletotrichum gloeosporioides) in walnut (Juglans regia). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17254. [PMID: 39911012 DOI: 10.1111/tpj.17254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/24/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025]
Abstract
Walnut anthracnose induced by Colletotrichum gloeosporioides is a devastating disease that seriously threatens walnut cultivation. Screening novel resistance genes and exploring the molecular mechanisms are essential for disease-resistant genetic improvement of walnut. We conducted a genome-wide association studies of disease resistance traits based on the relative resistance index and single nucleotide polymorphisms (SNPs) obtained from 182 resequenced walnut accessions and 10 loci and corresponding candidate genes associated with resistance against C. gloeosporioides were identified. Then, through combined transcriptome analysis during C. gloeosporioides infection and qRT-PCR, we identified JrWDRC2A9 in SNP Chr13_36265784 loci and JrGPIAP in SNP Chr07_10106470 loci as two walnut anthracnose resistance genes. The validation of the disease resistance function of transgenic strains indicated that both JrWDRC2A9 and JrGPIAP promote walnut resistance to anthracnose. SNP Chr13_36265784 (A>G) is located in the coding region of JrWDRC2A9 causing a glutamine (JrWDRC2A9HapI) to arginine (JrWDRC2A9HapII). Allelic variation in the WD domain attenuates JrWDRC2A9-mediated resistance against C. gloeosporioides and the binding affinity of JrWDRC2A9 for JrTLP1. On the contrary, the allelic variation caused by SNP Chr07_10106470 (T>G) increased the walnut accessions resistance to C. gloeosporioides by promoting the expression level of JrGPIAP. Functional genomics revealed that JrGPIAP binds to the promoter of JrPR1L and activates its transcription, which is strengthened by the interaction between JrGPIAP and JrEMP24. These findings reveal the allelic variation in JrWDRC2A9 and JrGPIAP conferring resistance against C. gloeosporioides, providing a genetic basis for walnut disease resistance breeding in the future.
Collapse
Affiliation(s)
- Andi Gong
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian, Shandong, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, Shandong, 271018, China
| | - Shengyi Xu
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yutian Mu
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xichen Li
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chunyu Li
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Qiang Liang
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian, Shandong, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, Shandong, 271018, China
| | - Jian Ning Liu
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian, Shandong, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, Shandong, 271018, China
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian, Shandong, 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, Shandong, 271018, China
| |
Collapse
|
4
|
Wei R, Ma L, Ma S, Xu L, Ma T, Ma Y, Cheng Z, Dang J, Li S, Chai Q. Intrinsic Mechanism of CaCl 2 Alleviation of H 2O 2 Inhibition of Pea Primary Root Gravitropism. Int J Mol Sci 2024; 25:8613. [PMID: 39201298 PMCID: PMC11354692 DOI: 10.3390/ijms25168613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Normal root growth is essential for the plant uptake of soil nutrients and water. However, exogenous H2O2 inhibits the gravitropic growth of pea primary roots. It has been shown that CaCl2 application can alleviate H2O2 inhibition, but the exact alleviation mechanism is not clear. Therefore, the present study was carried out by combining the transcriptome and metabolome with a view to investigate in depth the mechanism of action of exogenous CaCl2 to alleviate the inhibition of pea primordial root gravitropism by H2O2. The results showed that the addition of CaCl2 (10 mmol·L-1) under H2O2 stress (150 mmol·L-1) significantly increased the H2O2 and starch content, decreased peroxidase (POD) activity, and reduced the accumulation of sugar metabolites and lignin in pea primary roots. Down-regulated genes regulating peroxidase, respiratory burst oxidase, and lignin synthesis up-regulated PGM1, a key gene for starch synthesis, and activated the calcium and phytohormone signaling pathways. In summary, 10 mmol·L-1 CaCl2 could alleviate H2O2 stress by modulating the oxidative stress response, signal transduction, and starch and lignin accumulation within pea primary roots, thereby promoting root gravitropism. This provides new insights into the mechanism by which CaCl2 promotes the gravitropism of pea primary roots under H2O2 treatment.
Collapse
Affiliation(s)
- Ruonan Wei
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Lei Ma
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaoying Ma
- Laboratory and Site Management Center, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ling Xu
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Tingfeng Ma
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Yantong Ma
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Zhen Cheng
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Junhong Dang
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Sheng Li
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
- State Key Laboratory of Arid-land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiang Chai
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Arid-land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
5
|
Liu L, Liu X, Bai Z, Tanveer M, Zhang Y, Chen W, Shabala S, Huang L. Small but powerful: RALF peptides in plant adaptive and developmental responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112085. [PMID: 38588983 DOI: 10.1016/j.plantsci.2024.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Plants live in a highly dynamic environment and require to rapidly respond to a plethora of environmental stimuli, so that to maintain their optimal growth and development. A small plant peptide, rapid alkalization factor (RALF), can rapidly increase the pH value of the extracellular matrix in plant cells. RALFs always function with its corresponding receptors. Mechanistically, effective amount of RALF is induced and released at the critical period of plant growth and development or under different external environmental factors. Recent studies also highlighted the role of RALF peptides as important regulators in plant intercellular communications, as well as their operation in signal perception and as ligands for different receptor kinases on the surface of the plasma membrane, to integrate various environmental cues. In this context, understanding the fine-print of above processes may be essential to solve the problems of crop adaptation to various harsh environments under current climate trends scenarios, by genetic means. This paper summarizes the current knowledge about the structure and diversity of RALF peptides and their roles in plant development and response to stresses, highlighting unanswered questions and problems to be solved.
Collapse
Affiliation(s)
- Lining Liu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Xing Liu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Zhenkun Bai
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Mohsin Tanveer
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Yujing Zhang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Wenjie Chen
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China; School of Biological Science, University of Western Australia, Crawley, Perth, Australia.
| | - Liping Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China.
| |
Collapse
|
6
|
Gong Q, Wang C, Fan W, Li S, Zhang H, Huang Z, Liu X, Ma Z, Wang Y, Zhang B. RsRbohD1 Plays a Significant Role in ROS Production during Radish Pithiness Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:1386. [PMID: 38794456 PMCID: PMC11125187 DOI: 10.3390/plants13101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Pithiness is one of the physiological diseases of radishes, which is accompanied by the accumulation of reactive oxygen species (ROS) during the sponging of parenchyma tissue in the fleshy roots. A respiratory burst oxidase homolog (Rboh, also known as NADPH oxidase) is a key enzyme that catalyzes the production of ROS in plants. To understand the role of Rboh genes in radish pithiness, herein, 10 RsRboh gene families were identified in the genome of Raphanus sativus using Blastp and Hmmer searching methods and were subjected to basic functional analyses such as phylogenetic tree construction, chromosomal localization, conserved structural domain analysis, and promoter element prediction. The expression profiles of RsRbohs in five stages (Pithiness grade = 0, 1, 2, 3, 4, respectively) of radish pithiness were analyzed. The results showed that 10 RsRbohs expressed different levels during the development of radish pithiness. Except for RsRbohB and RsRbohE, the expression of other members increased and reached the peak at the P2 (Pithiness grade = 2) stage, among which RsRbohD1 showed the highest transcripts. Then, the expression of 40 genes related to RsRbohD1 and pithiness were analyzed. These results can provide a theoretical basis for improving pithiness tolerance in radishes.
Collapse
Affiliation(s)
- Qiong Gong
- College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China; (Q.G.); (S.L.)
| | - Chaonan Wang
- Tianjin Academy of Agricultural Sciences, Vegetable Research Institute, Tianjin 300381, China; (C.W.); (Z.H.); (X.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
| | - Weiqiang Fan
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
- Tianjin Kernel Agricultural Science and Technology Co., Ltd., Vegetable Research Institute, Tianjin 300381, China
| | - Shuiling Li
- College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China; (Q.G.); (S.L.)
| | - Hong Zhang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
- Tianjin Kernel Agricultural Science and Technology Co., Ltd., Vegetable Research Institute, Tianjin 300381, China
| | - Zhiyin Huang
- Tianjin Academy of Agricultural Sciences, Vegetable Research Institute, Tianjin 300381, China; (C.W.); (Z.H.); (X.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
| | - Xiaohui Liu
- Tianjin Academy of Agricultural Sciences, Vegetable Research Institute, Tianjin 300381, China; (C.W.); (Z.H.); (X.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
| | - Ziyun Ma
- College of Life Sciences, Tianjin Normal University, Tianjin 300387, China;
| | - Yong Wang
- College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China; (Q.G.); (S.L.)
| | - Bin Zhang
- Tianjin Academy of Agricultural Sciences, Vegetable Research Institute, Tianjin 300381, China; (C.W.); (Z.H.); (X.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (W.F.); (H.Z.)
| |
Collapse
|
7
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Kaur H, Teulon JM, Godon C, Desnos T, Chen SWW, Pellequer JL. Correlation between plant cell wall stiffening and root extension arrest phenotype in the combined abiotic stress of Fe and Al. PLANT, CELL & ENVIRONMENT 2024; 47:574-584. [PMID: 37876357 DOI: 10.1111/pce.14744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/01/2023] [Accepted: 10/15/2023] [Indexed: 10/26/2023]
Abstract
The plasticity and growth of plant cell walls (CWs) remain poorly understood at the molecular level. In this work, we used atomic force microscopy (AFM) to observe elastic responses of the root transition zone of 4-day-old Arabidopsis thaliana wild-type and almt1-mutant seedlings grown under Fe or Al stresses. Elastic parameters were deduced from force-distance curve measurements using the trimechanic-3PCS framework. The presence of single metal species Fe2+ or Al3+ at 10 µM exerts no noticeable effect on the root growth compared with the control conditions. On the contrary, a mix of both the metal ions produced a strong root-extension arrest concomitant with significant increase of CW stiffness. Raising the concentration of either Fe2+ or Al3+ to 20 µM, no root-extension arrest was observed; nevertheless, an increase in root stiffness occurred. In the presence of both the metal ions at 10 µM, root-extension arrest was not observed in the almt1 mutant, which substantially abolishes the ability to exude malate. Our results indicate that the combination of Fe2+ and Al3+ with exuded malate is crucial for both CW stiffening and root-extension arrest. However, stiffness increase induced by single Fe2+ or Al3+ is not sufficient for arresting root growth in our experimental conditions.
Collapse
Affiliation(s)
| | | | - Christian Godon
- Aix Marseille Université, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, Cadarache, France
| | - Thierry Desnos
- Aix Marseille Université, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, Cadarache, France
| | - Shu-Wen W Chen
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Rue Cyprien Jullin, Vinay, France
| | | |
Collapse
|
9
|
Pascual-Morales E, Jiménez-Chávez P, Olivares-Grajales JE, Sarmiento-López L, García-Niño WR, López-López A, Goodwin PH, Palacios-Martínez J, Chávez-Martínez AI, Cárdenas L. Role of a LORELEI- like gene from Phaseolus vulgaris during a mutualistic interaction with Rhizobium tropici. PLoS One 2023; 18:e0294334. [PMID: 38060483 PMCID: PMC10703324 DOI: 10.1371/journal.pone.0294334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/29/2023] [Indexed: 12/18/2023] Open
Abstract
Reactive oxygen species (ROS), produced by NADPH oxidases known as RBOHs in plants, play a key role in plant development, biotic and abiotic stress responses, hormone signaling, and reproduction. Among the subfamily of receptor-like kinases referred to as CrRLK, there is FERONIA (FER), a regulator of RBOHs, and FER requires a GPI-modified membrane protein produced by LORELEI (LRE) or LORELEI-like proteins (LLG) to reach the plasma membrane and generate ROS. In Arabidopsis, AtLLG1 is involved in interactions with microbes as AtLLG1 interacts with the flagellin receptor (FLS2) to trigger the innate immune response, but the role of LLGs in mutualistic interactions has not been examined. In this study, two Phaseolus vulgaris LLG genes were identified, PvLLG2 that was expressed in floral tissue and PvLLG1 that was expressed in vegetative tissue. Transcripts of PvLLG1 increased during rhizobial nodule formation peaking during the early period of well-developed nodules. Also, P. vulgaris roots expressing pPvLLG1:GFP-GUS showed that this promoter was highly active during rhizobium infections, and very similar to the subcellular localization using a construct pLLG1::PvLLG1-Neon. Compared to control plants, PvLLG1 silenced plants had less superoxide (O2-) at the root tip and elongation zone, spotty hydrogen peroxide (H2O2) in the elongation root zone, and significantly reduced root hair length, nodule number and nitrogen fixation. Unlike control plants, PvLLG1 overexpressing plants showed superoxide beyond the nodule meristem, and significantly increased nodule number and nodule diameter. PvLLG1 appears to play a key role during this mutualistic interaction, possibly due to the regulation of the production and distribution of ROS in roots.
Collapse
Affiliation(s)
- Edgar Pascual-Morales
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Pamela Jiménez-Chávez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Juan E. Olivares-Grajales
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Luis Sarmiento-López
- Departamento de Biociencias y Agrotecnología, Centro de Investigación en Química Aplicada, Saltillo, Coahuila, México
| | - Wylly R. García-Niño
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Aline López-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Paul H. Goodwin
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Janet Palacios-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Ana I. Chávez-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
10
|
Kohorn BD, Yang N, Weinstock M, Asper G, Ball I, Rajiv D. Golgi ELMO1 binds QUA1, QUA2, GAUT9, and ELMO4 and is required for pectin accumulation in Arabidopsis. PLoS One 2023; 18:e0293961. [PMID: 37939087 PMCID: PMC10631678 DOI: 10.1371/journal.pone.0293961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023] Open
Abstract
Pectin and its modification influence the plasticity and strength of the plant cell wall controlling cell adhesion, size, shape, and pathogen resistance. The Golgi membrane anchored QUA1, QUA2, and GAUT9 Golgi enzymes synthesize and esterify pectin, which is then secreted and selectively de-esterified to potentiate structure influencing crosslinks in the cell wall. Mutations in members of the family of non-enzymatic ELMO Golgi membrane proteins lead to a reduction of pectin levels, cell adhesion, and hypocotyl tensile strength. Results from immunoprecipitation of Golgi protein complexes reveal that ELMO1-GFP is associated with pectin biosynthesis and modifying enzymes QUA1, QUA2, and GAUT9. In a yeast two and three hybrid assay, ELMO1 can bind directly to QUA1, GAUT9 or ELMO4, but QUA1, QUA2 or GAUT9 do not bind to each other. A yeast 3 hybrid assay provides evidence that ELMO1 can mediate the binding of QUA1 and QUA2. Taken together, these results indicate that the 20 kDa ELMO1 serves to facilitate some aspect of pectin synthesis and modification that leads to sufficient accumulation to allow cell adhesion, and we speculate that ELMOs help to scaffold key enzymes in this process.
Collapse
Affiliation(s)
- Bruce D. Kohorn
- Department of Biology, Bowdoin College, Brunswick, ME, United States of America
| | - Nuoya Yang
- Department of Biology, Bowdoin College, Brunswick, ME, United States of America
| | - Margaret Weinstock
- Department of Biology, Bowdoin College, Brunswick, ME, United States of America
| | - Garrison Asper
- Department of Biology, Bowdoin College, Brunswick, ME, United States of America
| | - Isabel Ball
- Department of Biology, Bowdoin College, Brunswick, ME, United States of America
| | - Devaki Rajiv
- Department of Biology, Bowdoin College, Brunswick, ME, United States of America
| |
Collapse
|
11
|
Xiong T, Ye F, Chen J, Chen Y, Zhang Z. Peptide signaling in anther development and pollen-stigma interactions. Gene 2023; 865:147328. [PMID: 36870426 DOI: 10.1016/j.gene.2023.147328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Polypeptides play irreplaceable roles in cell-cell communication by binding to receptor-like kinases. Various types of peptide-receptor-like kinase-mediated signaling have been identified in anther development and male-female interactions in flowering plants. Here, we provide a comprehensive summary of the biological functions and signaling pathways of peptides and receptors involved in anther development, self-incompatibility, pollen tube growth and pollen tube guidance.
Collapse
Affiliation(s)
- Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Fan Ye
- College of International Education, Xinyang Normal University, Xinyang, China
| | - Jiahui Chen
- College of International Education, Xinyang Normal University, Xinyang, China
| | - Yurui Chen
- College of International Education, Xinyang Normal University, Xinyang, China
| | - Zaibao Zhang
- College of Life Science, Xinyang Normal University, Xinyang, China.
| |
Collapse
|
12
|
Cell Wall Integrity Signaling in Fruit Ripening. Int J Mol Sci 2023; 24:ijms24044054. [PMID: 36835462 PMCID: PMC9961072 DOI: 10.3390/ijms24044054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/04/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Plant cell walls are essential structures for plant growth and development as well as plant adaptation to environmental stresses. Thus, plants have evolved signaling mechanisms to monitor the changes in the cell wall structure, triggering compensatory changes to sustain cell wall integrity (CWI). CWI signaling can be initiated in response to environmental and developmental signals. However, while environmental stress-associated CWI signaling has been extensively studied and reviewed, less attention has been paid to CWI signaling in relation to plant growth and development under normal conditions. Fleshy fruit development and ripening is a unique process in which dramatic alternations occur in cell wall architecture. Emerging evidence suggests that CWI signaling plays a pivotal role in fruit ripening. In this review, we summarize and discuss the CWI signaling in relation to fruit ripening, which will include cell wall fragment signaling, calcium signaling, and NO signaling, as well as Receptor-Like Protein Kinase (RLKs) signaling with an emphasis on the signaling of FERONIA and THESEUS, two members of RLKs that may act as potential CWI sensors in the modulation of hormonal signal origination and transduction in fruit development and ripening.
Collapse
|
13
|
Sipahi H, Whyte TD, Ma G, Berkowitz G. Genome-Wide Identification and Expression Analysis of Wall-Associated Kinase (WAK) Gene Family in Cannabis sativa L. PLANTS (BASEL, SWITZERLAND) 2022; 11:2703. [PMID: 36297727 PMCID: PMC9609219 DOI: 10.3390/plants11202703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Wall-associated kinases (WAKs) are receptors that bind pectin or small pectic fragments in the cell wall and play roles in cell elongation and pathogen response. In the Cannabis sativa (Cs) genome, 53 CsWAK/CsWAKL (WAK-like) protein family members were identified and characterized; their amino acid lengths and molecular weights varied from 582 to 983, and from 65.6 to 108.8 kDa, respectively. They were classified into four main groups by a phylogenetic tree. Out of the 53 identified CsWAK/CsWAKL genes, 23 CsWAK/CsWAKL genes were unevenly distributed among six chromosomes. Two pairs of genes on chromosomes 4 and 7 have undergone duplication. The number of introns and exons among CsWAK/CsWAKL genes ranged from 1 to 6 and from 2 to 7, respectively. The promoter regions of 23 CsWAKs/CsWAKLs possessed diverse cis-regulatory elements that are involved in light, development, environmental stress, and hormone responsiveness. The expression profiles indicated that our candidate genes (CsWAK1, CsWAK4, CsWAK7, CsWAKL1, and CsWAKL7) are expressed in leaf tissue. These genes exhibit different expression patterns than their homologs in other plant species. These initial findings are useful resources for further research work on the potential roles of CsWAK/CsWAKL in cellular signalling during development, environmental stress conditions, and hormone treatments.
Collapse
Affiliation(s)
- Hülya Sipahi
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Eskişehir Osmangazi, Eskişehir 26160, Türkiye
| | - Terik Djabeng Whyte
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Eskişehir Osmangazi, Eskişehir 26160, Türkiye
| | - Gang Ma
- Agricultural Biotechnology Laboratory, Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| | - Gerald Berkowitz
- Agricultural Biotechnology Laboratory, Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
14
|
Luo X, Wang L, Fu Y, Liu Q, Chen G, Liu Y, He W, Gao A, Xu J, Deng H, Xing J. FERONIA-like receptor 1-mediated calcium ion homeostasis is involved in the immune response. FRONTIERS IN PLANT SCIENCE 2022; 13:934195. [PMID: 36212313 PMCID: PMC9539441 DOI: 10.3389/fpls.2022.934195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
Calcium (Ca2+) is the most abundant divalent cation in plants, and cellular levels of Ca2+, which functions as a nutrient and secondary messenger, play a critical role in plant immunity. In the present study, we found that FERONIA-like receptor 1 (FLR1) positively regulates Magnaporthe oryzae resistance and that expression of FLR1 is strongly induced in response to Ca2+ deficiency. In addition, the Ca content in the shoots of flr1 was lower than that in wild-type, and the M. oryzae-sensitive phenotype of the flr1 mutant was not rescued by exogenous application of Ca2+. Moreover, RNA sequencing revealed 2,697 differentially expressed genes (DEGs) in the flr1 mutant compared with wild-type, and some of these DEGs are involved in cellular metal ion homeostasis and transition metal ion homeostasis. Changes in expression of overlapping genes between the flr1 mutant and in plants under low-Ca2+ treatment were consistent in terms of direction, indicating that FLR1 is involved in Ca2+ homeostasis. In summary, we detected FLR1-mediated resistance to M. oryzae, a phenomenon associated with Ca2+ homeostasis.
Collapse
Affiliation(s)
- Xiao Luo
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Crops Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Long Wang
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Crops Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yuefeng Fu
- Yueyang Academy of Agricultural Sciences, Yueyang, China
| | - Qiqi Liu
- Yueyang Academy of Agricultural Sciences, Yueyang, China
| | - Ge Chen
- Yueyang Academy of Agricultural Sciences, Yueyang, China
| | - Yue Liu
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Crops Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Wei He
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
| | - Aijun Gao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Crops Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jingbo Xu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Crops Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Huafeng Deng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Crops Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Junjie Xing
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Crops Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
15
|
Chen R, Sun P, Zhong G, Wang W, Tang D. The RECEPTOR-LIKE PROTEIN53 immune complex associates with LLG1 to positively regulate plant immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1833-1846. [PMID: 35796320 DOI: 10.1111/jipb.13327] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Pattern recognition receptors (PRRs) sense ligands in pattern-triggered immunity (PTI). Plant PRRs include numerous receptor-like proteins (RLPs), but many RLPs remain functionally uncharacterized. Here, we examine an Arabidopsis thaliana RLP, RLP53, which positively regulates immune signaling. Our forward genetic screen for suppressors of enhanced disease resistance1 (edr1) identified a point mutation in RLP53 that fully suppresses disease resistance and mildew-induced cell death in edr1 mutants. The rlp53 mutants showed enhanced susceptibility to virulent pathogens, including fungi, oomycetes, and bacteria, indicating that RLP53 is important for plant immunity. The ectodomain of RLP53 contains leucine-rich repeat (LRR) motifs. RLP53 constitutively associates with the LRR receptor-like kinase SUPPRESSOR OF BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE (BAK1)-INTERACTING RECEPTOR KINASE1 (SOBIR1) and interacts with the co-receptor BAK1 in a pathogen-induced manner. The double mutation sobir1-12 bak1-5 suppresses edr1-mediated disease resistance, suggesting that EDR1 negatively regulates PTI modulated by the RLP53-SOBIR1-BAK1 complex. Moreover, the glycosylphosphatidylinositol (GPI)-anchored protein LORELEI-LIKE GPI-ANCHORED PROTEIN1 (LLG1) interacts with RLP53 and mediates RLP53 accumulation in the plasma membrane. We thus uncovered the role of a novel RLP and its associated immune complex in plant defense responses and revealed a potential new mechanism underlying regulation of RLP immune function by a GPI-anchored protein.
Collapse
Affiliation(s)
- Renjie Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pengwei Sun
- Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guitao Zhong
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
16
|
Moreau H, Zimmermann SD, Gaillard I, Paris N. pH biosensing in the plant apoplast-a focus on root cell elongation. PLANT PHYSIOLOGY 2021; 187:504-514. [PMID: 35237817 PMCID: PMC8491080 DOI: 10.1093/plphys/kiab313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/19/2021] [Indexed: 05/24/2023]
Abstract
The pH parameter of soil plays a key role for plant nutrition as it is affecting the availability of minerals and consequently determines plant growth. Although the mechanisms by which root perceive the external pH is still unknown, the impact of external pH on tissue growth has been widely studied especially in hypocotyl and root. Thanks to technological development of cell imaging and fluorescent sensors, we can now monitor pH in real time with at subcellular definition. In this focus, fluorescent dye-based, as well as genetically-encoded pH indicators are discussed especially with respect to their ability to monitor acidic pH in the context of primary root. The notion of apoplastic subdomains is discussed and suggestions are made to develop fluorescent indicators for pH values below 5.0.
Collapse
Affiliation(s)
- Hortense Moreau
- BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | | | - Isabelle Gaillard
- BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - Nadine Paris
- BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
17
|
Borassi C, Sede AR, Mecchia MA, Mangano S, Marzol E, Denita-Juarez SP, Salgado Salter JD, Velasquez SM, Muschietti JP, Estevez JM. Proline-rich extensin-like receptor kinases PERK5 and PERK12 are involved in pollen tube growth. FEBS Lett 2021; 595:2593-2607. [PMID: 34427925 DOI: 10.1002/1873-3468.14185] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/17/2021] [Accepted: 08/18/2021] [Indexed: 11/06/2022]
Abstract
Proline-rich extensin-like receptor kinases (PERKs) belong to the hydroxyproline-rich glycoprotein (HRGP) superfamily known to be involved in many plant developmental processes. Here, we characterized two pollen-expressed PERKs from Arabidopsis thaliana, PERK5 and PERK12. Pollen tube growth was impaired in single and double perk5-1 perk12-1 loss of function mutants, with an impact on seed production. When the segregation was analysed, a male gametophytic defect was found, indicating that perk5-1 and perk12-1 mutants carry deficient pollen transmission. Furthermore, perk5-1 perk12-1 displayed an excessive accumulation of pectins and cellulose at the cell wall of the pollen tubes. Our results indicate that PERK5 and PERK12 are necessary for proper pollen tube growth, highlighting their role in cell wall assembly and reactive oxygen species homeostasis.
Collapse
Affiliation(s)
- Cecilia Borassi
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-UBA CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Ana R Sede
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Martín A Mecchia
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Silvina Mangano
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-UBA CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Eliana Marzol
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Silvina P Denita-Juarez
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-UBA CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Juan D Salgado Salter
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-UBA CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | | | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Buenos Aires, Argentina.,Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE-UBA CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.,Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello and ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
18
|
Kohorn BD, Greed BE, Mouille G, Verger S, Kohorn SL. Effects of Arabidopsis wall associated kinase mutations on ESMERALDA1 and elicitor induced ROS. PLoS One 2021; 16:e0251922. [PMID: 34015001 PMCID: PMC8136723 DOI: 10.1371/journal.pone.0251922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022] Open
Abstract
Angiosperm cell adhesion is dependent on interactions between pectin polysaccharides which make up a significant portion of the plant cell wall. Cell adhesion in Arabidopsis may also be regulated through a pectin-related signaling cascade mediated by a putative O-fucosyltransferase ESMERALDA1 (ESMD1), and the Epidermal Growth Factor (EGF) domains of the pectin binding Wall associated Kinases (WAKs) are a primary candidate substrate for ESMD1 activity. Genetic interactions between WAKs and ESMD1 were examined using a dominant hyperactive allele of WAK2, WAK2cTAP, and a mutant of the putative O-fucosyltransferase ESMD1. WAK2cTAP expression results in a dwarf phenotype and activation of the stress response and reactive oxygen species (ROS) production, while esmd1 is a suppressor of a pectin deficiency induced loss of adhesion. Here we find that esmd1 suppresses the WAK2cTAP dwarf and stress response phenotype, including ROS accumulation and gene expression. Additional analysis suggests that mutations of the potential WAK EGF O-fucosylation site also abate the WAK2cTAP phenotype, yet only evidence for an N-linked but not O-linked sugar addition can be found. Moreover, a WAK locus deletion allele has no effect on the ability of esmd1 to suppress an adhesion deficiency, indicating WAKs and their modification are not a required component of the potential ESMD1 signaling mechanism involved in the control of cell adhesion. The WAK locus deletion does however affect the induction of ROS but not the transcriptional response induced by the elicitors Flagellin, Chitin and oligogalacturonides (OGs).
Collapse
Affiliation(s)
- Bruce D. Kohorn
- Department of Biology, Bowdoin College, Brunswick, Maine, United States of America
- * E-mail:
| | - Bridgid E. Greed
- Department of Biology, Bowdoin College, Brunswick, Maine, United States of America
| | - Gregory Mouille
- IJPB, INRAE, AgroParisTech, Université Paris-Saclay, RD10, Versailles Cedex, France
| | - Stéphane Verger
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Susan L. Kohorn
- Department of Biology, Bowdoin College, Brunswick, Maine, United States of America
| |
Collapse
|
19
|
Kohorn BD, Zorensky FDH, Dexter-Meldrum J, Chabout S, Mouille G, Kohorn S. Mutation of an Arabidopsis Golgi membrane protein ELMO1 reduces cell adhesion. Development 2021; 148:268319. [PMID: 34015094 DOI: 10.1242/dev.199420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/16/2021] [Indexed: 11/20/2022]
Abstract
Plant growth, morphogenesis and development involve cellular adhesion, a process dependent on the composition and structure of the extracellular matrix or cell wall. Pectin in the cell wall is thought to play an essential role in adhesion, and its modification and cleavage are suggested to be highly regulated so as to change adhesive properties. To increase our understanding of plant cell adhesion, a population of ethyl methanesulfonate-mutagenized Arabidopsis were screened for hypocotyl adhesion defects using the pectin binding dye Ruthenium Red that penetrates defective but not wild-type (WT) hypocotyl cell walls. Genomic sequencing was used to identify a mutant allele of ELMO1 which encodes a 20 kDa Golgi membrane protein that has no predicted enzymatic domains. ELMO1 colocalizes with several Golgi markers and elmo1-/- plants can be rescued by an ELMO1-GFP fusion. elmo1-/- exhibits reduced mannose content relative to WT but no other cell wall changes and can be rescued to WT phenotype by mutants in ESMERALDA1, which also suppresses other adhesion mutants. elmo1 describes a previously unidentified role for the ELMO1 protein in plant cell adhesion.
Collapse
Affiliation(s)
| | | | | | - Salem Chabout
- IJPB, INRAE, AgroParisTech, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Gregory Mouille
- IJPB, INRAE, AgroParisTech, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Susan Kohorn
- Department of Biology, Bowdoin College, ME 04011, USA
| |
Collapse
|
20
|
Kumar V, Donev EN, Barbut FR, Kushwah S, Mannapperuma C, Urbancsok J, Mellerowicz EJ. Genome-Wide Identification of Populus Malectin/Malectin-Like Domain-Containing Proteins and Expression Analyses Reveal Novel Candidates for Signaling and Regulation of Wood Development. FRONTIERS IN PLANT SCIENCE 2020; 11:588846. [PMID: 33414796 PMCID: PMC7783096 DOI: 10.3389/fpls.2020.588846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/18/2020] [Indexed: 05/21/2023]
Abstract
Malectin domain (MD) is a ligand-binding protein motif of pro- and eukaryotes. It is particularly abundant in Viridiplantae, where it occurs as either a single (MD, PF11721) or tandemly duplicated domain (PF12819) called malectin-like domain (MLD). In herbaceous plants, MD- or MLD-containing proteins (MD proteins) are known to regulate development, reproduction, and resistance to various stresses. However, their functions in woody plants have not yet been studied. To unravel their potential role in wood development, we carried out genome-wide identification of MD proteins in the model tree species black cottonwood (Populus trichocarpa), and analyzed their expression and co-expression networks. P. trichocarpa had 146 MD genes assigned to 14 different clades, two of which were specific to the genus Populus. 87% of these genes were located on chromosomes, the rest being associated with scaffolds. Based on their protein domain organization, and in agreement with the exon-intron structures, the MD genes identified here could be classified into five superclades having the following domains: leucine-rich repeat (LRR)-MD-protein kinase (PK), MLD-LRR-PK, MLD-PK (CrRLK1L), MLD-LRR, and MD-Kinesin. Whereas the majority of MD genes were highly expressed in leaves, particularly under stress conditions, eighteen showed a peak of expression during secondary wall formation in the xylem and their co-expression networks suggested signaling functions in cell wall integrity, pathogen-associated molecular patterns, calcium, ROS, and hormone pathways. Thus, P. trichocarpa MD genes having different domain organizations comprise many genes with putative foliar defense functions, some of which could be specific to Populus and related species, as well as genes with potential involvement in signaling pathways in other tissues including developing wood.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Evgeniy N. Donev
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Félix R. Barbut
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Sunita Kushwah
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Chanaka Mannapperuma
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - János Urbancsok
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Ewa J. Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
21
|
Close Temporal Relationship between Oscillating Cytosolic K + and Growth in Root Hairs of Arabidopsis. Int J Mol Sci 2020; 21:ijms21176184. [PMID: 32867067 PMCID: PMC7504304 DOI: 10.3390/ijms21176184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Root hair elongation relies on polarized cell expansion at the growing tip. As a major osmotically active ion, potassium is expected to be continuously assimilated to maintain cell turgor during hair tip growth. However, due to the lack of practicable detection methods, the dynamics and physiological role of K+ in hair growth are still unclear. In this report, we apply the small-molecule fluorescent K+ sensor NK3 in Arabidopsis root hairs for the first time. By employing NK3, oscillating cytoplasmic K+ dynamics can be resolved at the tip of growing root hairs, similar to the growth oscillation pattern. Cross-correlation analysis indicates that K+ oscillation leads the growth oscillations by approximately 1.5 s. Artificially increasing cytoplasmic K+ level showed no significant influence on hair growth rate, but led to the formation of swelling structures at the tip, an increase of cytosolic Ca2+ level and microfilament depolymerization, implying the involvement of antagonistic regulatory factors (e.g., Ca2+ signaling) in the causality between cytoplasmic K+ and hair growth. These results suggest that, in each round of oscillating root hair elongation, the oscillatory cell expansion accelerates on the heels of cytosolic K+ increment, and decelerates with the activation of antagonistic regulators, thus forming a negative feedback loop which ensures the normal growth of root hairs.
Collapse
|
22
|
Shin JS, So WM, Kim SY, Noh M, Hyoung S, Yoo KS, Shin JS. CBSX3-Trxo-2 regulates ROS generation of mitochondrial complex II (succinate dehydrogenase) in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110458. [PMID: 32234226 DOI: 10.1016/j.plantsci.2020.110458] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/31/2020] [Accepted: 02/22/2020] [Indexed: 05/16/2023]
Abstract
Despite being toxic at a high concentrations, reactive oxygen species (ROS) play a pivotal role as signaling molecules in responses to stress and regulation of plant development. The mitochondrial electron transport chain (ETC) is the major source of ROS in cells. Although the regulation of ROS in mitochondria has been well elucidated, the protein-protein interaction-based regulation of ETC members has not been well elucidated. In this study, we identified a CBS domain-containing protein, CBSX3, and found that CBSX3 activates o-type thioredoxin (Trx-o2) in mitochondria. In addition, we found that Trx-o2 interacts with SDH1, a subunit of ETC complex II. Knockdown (KD) of CBSX3 revealed anther indehiscence due to deficient lignin deposition caused by insufficient ROS accumulation, and increased expression of genes related to cell cycle and accelerated plant growth. However, in the CBSX3-overexpression plants, ROS accumulation increased, and cell cycle-related gene expression decreased, and thereby plant growth was retarded and leaf size decreased. Moreover, KD of CBSX3 and Trx-o2 conferred resistance to mitochondria ETC inhibitors in terms of ROS release. Taken together, we suggest that CBSX3-Trx-o2 is a ROS generation regulator of mitochondria in plants and plays an important role in regulating plant development and the redox system.
Collapse
Affiliation(s)
- Jin Seok Shin
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Won Mi So
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Soo Youn Kim
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea; Bionics Inc., Seongdong-gu, Seoul 04778, Republic of Korea
| | - Minsoo Noh
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sujin Hyoung
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Kyoung Shin Yoo
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeong Sheop Shin
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
23
|
Anderson CT, Kieber JJ. Dynamic Construction, Perception, and Remodeling of Plant Cell Walls. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:39-69. [PMID: 32084323 DOI: 10.1146/annurev-arplant-081519-035846] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant cell walls are dynamic structures that are synthesized by plants to provide durable coverings for the delicate cells they encase. They are made of polysaccharides, proteins, and other biomolecules and have evolved to withstand large amounts of physical force and to resist external attack by herbivores and pathogens but can in many cases expand, contract, and undergo controlled degradation and reconstruction to facilitate developmental transitions and regulate plant physiology and reproduction. Recent advances in genetics, microscopy, biochemistry, structural biology, and physical characterization methods have revealed a diverse set of mechanisms by which plant cells dynamically monitor and regulate the composition and architecture of their cell walls, but much remains to be discovered about how the nanoscale assembly of these remarkable structures underpins the majestic forms and vital ecological functions achieved by plants.
Collapse
Affiliation(s)
- Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
24
|
Dang X, Chen B, Liu F, Ren H, Liu X, Zhou J, Qin Y, Lin D. Auxin Signaling-Mediated Apoplastic pH Modification Functions in Petal Conical Cell Shaping. Cell Rep 2020; 30:3904-3916.e3. [DOI: 10.1016/j.celrep.2020.02.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/02/2019] [Accepted: 02/24/2020] [Indexed: 12/31/2022] Open
|
25
|
Nongpiur RC, Singla-Pareek SL, Pareek A. The quest for osmosensors in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:595-607. [PMID: 31145792 DOI: 10.1093/jxb/erz263] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/22/2019] [Indexed: 05/20/2023]
Abstract
Osmotic stress has severe effects on crop productivity. Since climate change is predicted to exacerbate this problem, the development of new crops that are tolerant to osmotic stresses, especially drought and salinity stress, is required. However, only limited success has been achieved to date, primarily because of the lack of a clear understanding of the mechanisms that facilitate osmosensing. Here, we discuss the potential mechanisms of osmosensing in plants. We highlight the roles of proteins such as receptor-like kinases, which sense stress-induced cell wall damage, mechanosensitive calcium channels, which initiate a calcium-induced stress response, and phospholipase C, a membrane-bound enzyme that is integral to osmotic stress perception. We also discuss the roles of aquaporins and membrane-bound histidine kinases, which could potentially detect changes in extracellular osmolarity in plants, as they do in prokaryotes and lower eukaryotes. These putative osmosensors have the potential to serve as master regulators of the osmotic stress response in plants and could prove to be useful targets for the selection of osmotic stress-tolerant crops.
Collapse
Affiliation(s)
- Ramsong Chantre Nongpiur
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
26
|
Loubert-Hudon A, Mazin BD, Chevalier É, Matton DP. The ScRALF3 secreted peptide is involved in sporophyte to gametophyte signalling and affects pollen mitosis I. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:13-20. [PMID: 31529608 DOI: 10.1111/plb.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Signalling events through small peptides are essential in multiple aspects of plant reproduction. The ScRALF3 Solanum chacoense Rapid Alkalinization Factor (RALF) peptide was previously shown to regulate multiple aspects of cell-cell communication between the surrounding sporophytic tissue and the female gametophyte during ovule development. We analysed the global expression pattern of ScRALF3 with GUS reporter gene under control of the ScRALF3 promoter and validated it with in situ hybridisation. To better understand the role of ScRALF3 we used three different RNA interference (RNAi) lines that reduced the expression of ScRALF3 during pollen development. Both expression methods showed the presence of ScRALF3 in different tissues, including stigma, style, vascular tissues and during stamen development. Down-regulation of ScRALF3 expression through RNAi showed drastic defects in early stages of pollen development, mainly on the first mitosis. These results suggest that the ScRALF3 secreted peptide regulates the transition from sporogenesis to gametogenesis in both male and female gametophytes.
Collapse
Affiliation(s)
- A Loubert-Hudon
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec, H1X 2B2, Canada
| | - B D Mazin
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec, H1X 2B2, Canada
| | - É Chevalier
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec, H1X 2B2, Canada
| | - D P Matton
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec, H1X 2B2, Canada
| |
Collapse
|
27
|
Polko JK, Kieber JJ. The Regulation of Cellulose Biosynthesis in Plants. THE PLANT CELL 2019; 31:282-296. [PMID: 30647077 PMCID: PMC6447023 DOI: 10.1105/tpc.18.00760] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Accepted: 01/09/2019] [Indexed: 05/18/2023]
Abstract
Cell walls define the shape of plant cells, controlling the extent and orientation of cell elongation, and hence organ growth. The main load-bearing component of plant cell walls is cellulose, and how plants regulate its biosynthesis during development and in response to various environmental perturbations is a central question in plant biology. Cellulose is synthesized by cellulose synthase (CESA) complexes (CSCs) that are assembled in the Golgi apparatus and then delivered to the plasma membrane (PM), where they actively synthesize cellulose. CSCs travel along cortical microtubule paths that define the orientation of synthesis of the cellulose microfibrils. CSCs recycle between the PM and various intracellular compartments, and this trafficking plays an important role in determining the level of cellulose synthesized. In this review, we summarize recent findings in CESA complex organization, CESA posttranslational modifications and trafficking, and other components that interact with CESAs. We also discuss cell wall integrity maintenance, with a focus on how this impacts cellulose biosynthesis.
Collapse
Affiliation(s)
- Joanna K Polko
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
28
|
Richter J, Watson JM, Stasnik P, Borowska M, Neuhold J, Berger M, Stolt-Bergner P, Schoft V, Hauser MT. Multiplex mutagenesis of four clustered CrRLK1L with CRISPR/Cas9 exposes their growth regulatory roles in response to metal ions. Sci Rep 2018; 8:12182. [PMID: 30111865 PMCID: PMC6093868 DOI: 10.1038/s41598-018-30711-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/06/2018] [Indexed: 01/08/2023] Open
Abstract
Resolving functions of closely linked genes is challenging or nearly impossible with classical genetic tools. Four members of the Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) family are clustered on Arabidopsis chromosome five. To resolve the potentially redundant functions of this subclass of CrRLK1Ls named MEDOS1 to 4 (MDS1 to 4), we generated a single CRISPR/Cas9 transformation vector using a Golden Gate based cloning system to target all four genes simultaneously. We introduce single mutations within and deletions between MDS genes as well as knock-outs of the whole 11 kb gene cluster. The large MDS cluster deletion was inherited in up to 25% of plants lacking the CRISPR/Cas9 construct in the T2 generation. In contrast to described phenotypes of already characterized CrRLK1L mutants, quadruple mds knock-outs were fully fertile, developed normal root hairs and trichomes and responded to pharmacological inhibition of cellulose biosynthesis similar to wildtype. Recently, we demonstrated the role of four CrRLK1L in growth adaptation to metal ion stress. Here we show the involvement of MDS genes in response to Ni2+ during hypocotyl elongation and to Cd2+ and Zn2+ during root growth. Our finding supports the model of an organ specific network of positively and negatively acting CrRLK1Ls.
Collapse
Affiliation(s)
- Julia Richter
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - James Matthew Watson
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohrgasse 3, 1030, Vienna, Austria
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohrgasse 3, 1030, Vienna, Austria
| | - Peter Stasnik
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Monika Borowska
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohrgasse 3, 1030, Vienna, Austria
| | - Jana Neuhold
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohrgasse 3, 1030, Vienna, Austria
| | - Matthias Berger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Peggy Stolt-Bergner
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohrgasse 3, 1030, Vienna, Austria
| | - Vera Schoft
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohrgasse 3, 1030, Vienna, Austria.
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
29
|
Yeats TH, Bacic A, Johnson KL. Plant glycosylphosphatidylinositol anchored proteins at the plasma membrane-cell wall nexus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:649-669. [PMID: 29667761 DOI: 10.1111/jipb.12659] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/16/2018] [Indexed: 05/17/2023]
Abstract
Approximately 1% of plant proteins are predicted to be post-translationally modified with a glycosylphosphatidylinositol (GPI) anchor that tethers the polypeptide to the outer leaflet of the plasma membrane. Whereas the synthesis and structure of GPI anchors is largely conserved across eukaryotes, the repertoire of functional domains present in the GPI-anchored proteome has diverged substantially. In plants, this includes a large fraction of the GPI-anchored proteome being further modified with plant-specific arabinogalactan (AG) O-glycans. The importance of the GPI-anchored proteome to plant development is underscored by the fact that GPI biosynthetic null mutants exhibit embryo lethality. Mutations in genes encoding specific GPI-anchored proteins (GAPs) further supports their contribution to diverse biological processes, occurring at the interface of the plasma membrane and cell wall, including signaling, cell wall metabolism, cell wall polymer cross-linking, and plasmodesmatal transport. Here, we review the literature concerning plant GPI-anchored proteins, in the context of their potential to act as molecular hubs that mediate interactions between the plasma membrane and the cell wall, and their potential to transduce the signal into the protoplast and, thereby, activate signal transduction pathways.
Collapse
Affiliation(s)
- Trevor H Yeats
- School of Integrated Plant Sciences, Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Antony Bacic
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Kim L Johnson
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
30
|
Podgórska A, Ostaszewska-Bugajska M, Tarnowska A, Burian M, Borysiuk K, Gardeström P, Szal B. Nitrogen Source Dependent Changes in Central Sugar Metabolism Maintain Cell Wall Assembly in Mitochondrial Complex I-Defective frostbite1 and Secondarily Affect Programmed Cell Death. Int J Mol Sci 2018; 19:ijms19082206. [PMID: 30060552 PMCID: PMC6121878 DOI: 10.3390/ijms19082206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
For optimal plant growth, carbon and nitrogen availability needs to be tightly coordinated. Mitochondrial perturbations related to a defect in complex I in the Arabidopsis thalianafrostbite1 (fro1) mutant, carrying a point mutation in the 8-kD Fe-S subunit of NDUFS4 protein, alter aspects of fundamental carbon metabolism, which is manifested as stunted growth. During nitrate nutrition, fro1 plants showed a dominant sugar flux toward nitrogen assimilation and energy production, whereas cellulose integration in the cell wall was restricted. However, when cultured on NH4+ as the sole nitrogen source, which typically induces developmental disorders in plants (i.e., the ammonium toxicity syndrome), fro1 showed improved growth as compared to NO3− nourishing. Higher energy availability in fro1 plants was correlated with restored cell wall assembly during NH4+ growth. To determine the relationship between mitochondrial complex I disassembly and cell wall-related processes, aspects of cell wall integrity and sugar and reactive oxygen species signaling were analyzed in fro1 plants. The responses of fro1 plants to NH4+ treatment were consistent with the inhibition of a form of programmed cell death. Resistance of fro1 plants to NH4+ toxicity coincided with an absence of necrotic lesion in plant leaves.
Collapse
Affiliation(s)
- Anna Podgórska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Monika Ostaszewska-Bugajska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Agata Tarnowska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Maria Burian
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Klaudia Borysiuk
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Per Gardeström
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden, .
| | - Bożena Szal
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
31
|
Gonneau M, Desprez T, Martin M, Doblas VG, Bacete L, Miart F, Sormani R, Hématy K, Renou J, Landrein B, Murphy E, Van De Cotte B, Vernhettes S, De Smet I, Höfte H. Receptor Kinase THESEUS1 Is a Rapid Alkalinization Factor 34 Receptor in Arabidopsis. Curr Biol 2018; 28:2452-2458.e4. [PMID: 30057301 DOI: 10.1016/j.cub.2018.05.075] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/05/2018] [Accepted: 05/24/2018] [Indexed: 10/28/2022]
Abstract
The growth of plants, like that of other walled organisms, depends on the ability of the cell wall to yield without losing its integrity. In this context, plant cells can sense the perturbation of their walls and trigger adaptive modifications in cell wall polymer interactions. Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) THESEUS1 (THE1) was previously shown in Arabidopsis to trigger growth inhibition and defense responses upon perturbation of the cell wall, but so far, neither the ligand nor the role of the receptor in normal development was known. Here, we report that THE1 is a receptor for the peptide rapid alkalinization factor (RALF) 34 and that this signaling module has a role in the fine-tuning of lateral root initiation. We also show that RALF34-THE1 signaling depends, at least for some responses, on FERONIA (FER), another RALF receptor involved in a variety of processes, including immune signaling, mechanosensing, and reproduction [1]. Together, the results show that RALF34 and THE1 are part of a signaling network that integrates information on the integrity of the cell wall with the coordination of normal morphogenesis.
Collapse
Affiliation(s)
- Martine Gonneau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Thierry Desprez
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Marjolaine Martin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Verónica G Doblas
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Laura Bacete
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Fabien Miart
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Rodnay Sormani
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Kian Hématy
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Julien Renou
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France; Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Benoit Landrein
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Evan Murphy
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Brigitte Van De Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Samantha Vernhettes
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Herman Höfte
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| |
Collapse
|
32
|
Juranić M, Tucker MR, Schultz CJ, Shirley NJ, Taylor JM, Spriggs A, Johnson SD, Bulone V, Koltunow AM. Asexual Female Gametogenesis Involves Contact with a Sexually-Fated Megaspore in Apomictic Hieracium. PLANT PHYSIOLOGY 2018; 177:1027-1049. [PMID: 29844228 PMCID: PMC6052994 DOI: 10.1104/pp.18.00342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/16/2018] [Indexed: 05/03/2023]
Abstract
Apomixis results in asexual seed formation where progeny are identical to the maternal plant. In ovules of apomictic species of the Hieracium subgenus Pilosella, meiosis of the megaspore mother cell generates four megaspores. Aposporous initial (AI) cells form during meiosis in most ovules. The sexual pathway terminates during functional megaspore (FM) differentiation, when an enlarged AI undergoes mitosis to form an aposporous female gametophyte. Then, the mitotically programmed FM dies along with the three other megaspores by unknown mechanisms. Transcriptomes of laser-dissected AIs, ovule cells, and ovaries from apomicts and AI-deficient mutants were analyzed to understand the pathways involved. The steps leading to AI mitosis and sexual pathway termination were determined using antibodies against arabinogalactan protein epitopes found to mark both sexual and aposporous female gametophyte lineages at inception. At most, four AIs differentiated near developing megaspores. The first expanding AI cell to contact the FM formed a functional AI that underwent mitosis soon after megaspore degeneration. Transcriptome analyses indicated that the enlarged, laser-captured AIs were arrested in the S/G2 phase of the cell cycle and were metabolically active. Further comparisons with AI-deficient mutants showed that AIs were enriched in transcripts encoding homologs of genes involved in, and potentially antagonistic to, known FM specification pathways. We propose that AI and FM cell contact provides cues required for AI mitosis and megaspore degeneration. Specific candidates to further interrogate AI-FM interactions were identified here and include Hieracium arabinogalactan protein family genes.
Collapse
Affiliation(s)
- Martina Juranić
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Urrbrae, South Australia 5064, Australia
| | - Matthew R Tucker
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia
| | - Carolyn J Schultz
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia
| | - Neil J Shirley
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia
- Australian Research Council Centre of Excellence in Plant Cell Walls, Wine Innovation Central, University of Adelaide, Urrbrae, South Australia 5064, Australia
| | - Jennifer M Taylor
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Black Mountain Laboratories, Black Mountain, Australian Capital Territory 2601, Australia
| | - Andrew Spriggs
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Black Mountain Laboratories, Black Mountain, Australian Capital Territory 2601, Australia
| | - Susan D Johnson
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Urrbrae, South Australia 5064, Australia
| | - Vincent Bulone
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia
- Australian Research Council Centre of Excellence in Plant Cell Walls, Wine Innovation Central, University of Adelaide, Urrbrae, South Australia 5064, Australia
| | - Anna M Koltunow
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Urrbrae, South Australia 5064, Australia
| |
Collapse
|
33
|
Byrt CS, Munns R, Burton RA, Gilliham M, Wege S. Root cell wall solutions for crop plants in saline soils. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:47-55. [PMID: 29606216 DOI: 10.1016/j.plantsci.2017.12.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/28/2017] [Accepted: 12/27/2017] [Indexed: 05/05/2023]
Abstract
The root growth of most crop plants is inhibited by soil salinity. Roots respond by modulating metabolism, gene expression and protein activity, which results in changes in cell wall composition, transport processes, cell size and shape, and root architecture. Here, we focus on the effects of salt stress on cell wall modifying enzymes, cellulose microfibril orientation and non-cellulosic polysaccharide deposition in root elongation zones, as important determinants of inhibition of root elongation, and highlight cell wall changes linked to tolerance to salt stressed and water limited roots. Salt stress induces changes in the wall composition of specific root cell types, including the increased deposition of lignin and suberin in endodermal and exodermal cells. These changes can benefit the plant by preventing water loss and altering ion transport pathways. We suggest that binding of Na+ ions to cell wall components might influence the passage of Na+ and that Na+ can influence the binding of other ions and hinder the function of pectin during cell growth. Naturally occurring differences in cell wall structure may provide new resources for breeding crops that are more salt tolerant.
Collapse
Affiliation(s)
- Caitlin S Byrt
- Plant Transport and Signalling Group, Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia. http://twitter.com/BotanicGeek
| | - Rana Munns
- ARC Centre of Excellence in Plant Energy Biology, and School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Rachel A Burton
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Matthew Gilliham
- Plant Transport and Signalling Group, Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Stefanie Wege
- Plant Transport and Signalling Group, Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
34
|
Schoenaers S, Balcerowicz D, Breen G, Hill K, Zdanio M, Mouille G, Holman TJ, Oh J, Wilson MH, Nikonorova N, Vu LD, De Smet I, Swarup R, De Vos WH, Pintelon I, Adriaensen D, Grierson C, Bennett MJ, Vissenberg K. The Auxin-Regulated CrRLK1L Kinase ERULUS Controls Cell Wall Composition during Root Hair Tip Growth. Curr Biol 2018; 28:722-732.e6. [PMID: 29478854 DOI: 10.1016/j.cub.2018.01.050] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/10/2017] [Accepted: 01/18/2018] [Indexed: 01/07/2023]
Abstract
Root hairs facilitate a plant's ability to acquire soil anchorage and nutrients. Root hair growth is regulated by the plant hormone auxin and dependent on localized synthesis, secretion, and modification of the root hair tip cell wall. However, the exact cell wall regulators in root hairs controlled by auxin have yet to be determined. In this study, we describe the characterization of ERULUS (ERU), an auxin-induced Arabidopsis receptor-like kinase, whose expression is directly regulated by ARF7 and ARF19 transcription factors. ERU belongs to the Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE (CrRLK1L) subfamily of putative cell wall sensor proteins. Imaging of a fluorescent fusion protein revealed that ERU is localized to the apical root hair plasma membrane. ERU regulates cell wall composition in root hairs and modulates pectin dynamics through negative control of pectin methylesterase (PME) activity. Mutant eru (-/-) root hairs accumulate de-esterified homogalacturonan and exhibit aberrant pectin Ca2+-binding site oscillations and increased PME activity. Up to 80% of the eru root hair phenotype is rescued by pharmacological supplementation with a PME-inhibiting catechin extract. ERU transcription is altered in specific cell wall-related root hair mutants, suggesting that it is a target for feedback regulation. Loss of ERU alters the phosphorylation status of FERONIA and H+-ATPases 1/2, regulators of apoplastic pH. Furthermore, H+-ATPases 1/2 and ERU are differentially phosphorylated in response to auxin. We conclude that ERULUS is a key auxin-controlled regulator of cell wall composition and pectin dynamics during root hair tip growth.
Collapse
Affiliation(s)
- Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Daria Balcerowicz
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Gordon Breen
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | - Kristine Hill
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Malgorzata Zdanio
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, UMR1318 INRA/AgroParisTech, ERL3559 CNRS, Saclay Plant Sciences, Route de St Cyr, 78026 Versailles, France
| | - Tara J Holman
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Jaesung Oh
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Michael H Wilson
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Natalia Nikonorova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ranjan Swarup
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Cell Systems Group, Department of Molecular Biotechnology, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Claire Grierson
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Plant Biochemistry & Biotechnology Lab, Department of Agriculture, Technological Educational Institute of Crete, Stavromenos PC 71410, Heraklion, Crete, Greece.
| |
Collapse
|
35
|
Schnepf V, Vlot AC, Kugler K, Hückelhoven R. Barley susceptibility factor RACB modulates transcript levels of signalling protein genes in compatible interaction with Blumeria graminis f.sp. hordei. MOLECULAR PLANT PATHOLOGY 2018; 19:393-404. [PMID: 28026097 PMCID: PMC6638053 DOI: 10.1111/mpp.12531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 05/30/2023]
Abstract
RHO (rat sarcoma homologue) GTPases (guanosine triphosphatases) are regulators of downstream transcriptional responses of eukaryotes to intracellular and extracellular stimuli. For plants, little is known about the function of Rho-like GTPases [called RACs (rat sarcoma-related C botulinum substrate) or ROPs (RHO of plants)] in transcriptional reprogramming of cells. However, in plant hormone response and innate immunity, RAC/ROP proteins influence gene expression patterns. The barley RAC/ROP RACB is required for full susceptibility of barley to the powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh). We compared the transcriptomes of barley plants either silenced for RACB or over-expressing constitutively activated RACB with and without inoculation with Bgh. This revealed a large overlap of the barley transcriptome during the early response to Bgh and during the over-expression of constitutively activated RACB. Global pathway analyses and stringent analyses of differentially expressed genes suggested that RACB influences, amongst others, the expression of signalling receptor kinases. Transient induced gene silencing of RACB-regulated signalling genes (a leucine-rich repeat protein, a leucine-rich repeat receptor-like kinase and an S-domain SD1-receptor-like kinase) suggested that they might be involved in RACB-modulated susceptibility to powdery mildew. We discuss the function of RACB in regulating the transcriptional responses of susceptible barley to Bgh.
Collapse
Affiliation(s)
- Vera Schnepf
- Phytopathology, School of Life Sciences WeihenstephanTechnical University of MunichFreisingD‐85354Germany
| | - A. Corina Vlot
- Helmholtz Zentrum Muenchen, Department of Environmental SciencesInstitute of Biochemical Plant PathologyNeuherbergD‐85764Germany
| | - Karl Kugler
- Helmholtz Zentrum MuenchenPlant Genome and Systems BiologyNeuherbergD‐85764Germany
| | - Ralph Hückelhoven
- Phytopathology, School of Life Sciences WeihenstephanTechnical University of MunichFreisingD‐85354Germany
| |
Collapse
|
36
|
Arsuffi G, Braybrook SA. Acid growth: an ongoing trip. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:137-146. [PMID: 29211894 DOI: 10.1093/jxb/erx390] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
Since its first formulation almost 50 years ago, acid growth has had a chequered past complicated by utilization of diverse species and organs for testing alongside necessary but coarse methodology. Within the past 25 years, we have gained new insights into the molecular mechanisms behind the transduction of the signal auxin into the reality of an apoplastic pH shift as well as the effect on cell wall mechanics and the biochemical players within the wall contributing to the resultant growth. In this review, we begin by discussing the historical work and its complications, move on to the modern work and its addition to acid growth, which we finally summarize in an updated model which includes new postulations and questions.
Collapse
|
37
|
Richter J, Ploderer M, Mongelard G, Gutierrez L, Hauser MT. Role of CrRLK1L Cell Wall Sensors HERCULES1 and 2, THESEUS1, and FERONIA in Growth Adaptation Triggered by Heavy Metals and Trace Elements. FRONTIERS IN PLANT SCIENCE 2017; 8:1554. [PMID: 28936224 PMCID: PMC5594065 DOI: 10.3389/fpls.2017.01554] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/25/2017] [Indexed: 05/23/2023]
Abstract
Cell walls are not only a protective barrier surrounding protoplasts but serve as signaling platform between the extracellular environment and the intracellular physiology. Ions of heavy metals and trace elements, summarized to metal ions, bind to cell wall components, trigger their modification and provoke growth responses. To examine if metal ions trigger cell wall sensing receptor like kinases (RLKs) of the Catharanthus roseus RLK1-like (CrRLK1L) family we employed a molecular genetic approach. Quantitative transcription analyses show that HERCULES1 (HERK1), THESEUS1 (THE1), and FERONIA (FER) were differently regulated by cadmium (Cd), nickel (Ni), and lead (Pb). Growth responses were quantified for roots and etiolated hypocotyls of related mutants and overexpressors on Cd, copper (Cu), Ni, Pb, and zinc (Zn) and revealed a complex pattern of gene specific, overlapping and antagonistic responses. Root growth was often inversely affected to hypocotyl elongation. For example, both HERK genes seem to negatively regulate hypocotyl elongation upon Cd, Ni, Zn, and Pb while they support root growth on Cd, Cu, and Ni. The different THE1 alleles exhibited a similar effect between roots and hypocotyls on Ni, where the loss-of-function mutant was more tolerant while the gain of function mutants were hypersensitive indicating that THE1 is mediating Ni specific inhibition of hypocotyl elongation in the dark. In contrast hypocotyl elongation of the knock-out mutant, fer-4, was hypersensitive to Ni but exhibited a higher tolerance to Cd, Cu, Pb, and Zn. These data indicate an antagonistic action between THE1 and FER in relation to hypocotyl elongation upon excess of Ni. FERs function as receptor for rapid alkalinization factors (RALFs) was tested with the indicator bromocresol purple. While fer-4 roots strongly acidified control and metal ion containing media, the etiolated hypocotyls alkalized the media which is consistent with the already shorter hypocotyl of fer-4. No other CrRLK1L mutant exhibited this phenotype except of the THE1:GFP overexpressor on Ni suggesting that THE1 might be involved in Ni induced and hypocotyl specific RALF signaling and growth regulating pathway. Overall, our findings establish a molecular link between metal ion stress, growth and the cell wall integrity sensors of the CrRLK1L family.
Collapse
Affiliation(s)
- Julia Richter
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, ViennaVienna, Austria
| | - Marie Ploderer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, ViennaVienna, Austria
| | - Gaëlle Mongelard
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules VerneAmiens, France
| | - Laurent Gutierrez
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules VerneAmiens, France
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, ViennaVienna, Austria
| |
Collapse
|
38
|
Podgórska A, Burian M, Gieczewska K, Ostaszewska-Bugajska M, Zebrowski J, Solecka D, Szal B. Altered Cell Wall Plasticity Can Restrict Plant Growth under Ammonium Nutrition. FRONTIERS IN PLANT SCIENCE 2017; 8:1344. [PMID: 28848567 PMCID: PMC5554365 DOI: 10.3389/fpls.2017.01344] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/18/2017] [Indexed: 05/08/2023]
Abstract
Plants mainly utilize inorganic forms of nitrogen (N), such as nitrate (NO3-) and ammonium (NH4+). However, the composition of the N source is important, because excess of NH4+ promotes morphological disorders. Plants cultured on NH4+ as the sole N source exhibit serious growth inhibition, commonly referred to as "ammonium toxicity syndrome." NH4+-mediated suppression of growth may be attributable to both repression of cell elongation and reduction of cell division. The precondition for cell enlargement is the expansion of the cell wall, which requires the loosening of the cell wall polymers. Therefore, to understand how NH4+ nutrition may trigger growth retardation in plants, properties of their cell walls were analyzed. We found that Arabidopsis thaliana using NH4+ as the sole N source has smaller cells with relatively thicker cell walls. Moreover, cellulose, which is the main load-bearing polysaccharide revealed a denser assembly of microfibrils. Consequently, the leaf blade tissue showed elevated tensile strength and indicated higher cell wall stiffness. These changes might be related to changes in polysaccharide and ion content of cell walls. Further, NH4+ toxicity was associated with altered activities of cell wall modifying proteins. The lower activity and/or expression of pectin hydrolyzing enzymes and expansins might limit cell wall expansion. Additionally, the higher activity of cell wall peroxidases can lead to higher cross-linking of cell wall polymers. Overall, the NH4+-mediated inhibition of growth is related to a more rigid cell wall structure, which limits expansion of cells. The changes in cell wall composition were also indicated by decreased expression of Feronia, a receptor-like kinase involved in the control of cell wall extension.
Collapse
Affiliation(s)
- Anna Podgórska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Maria Burian
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Katarzyna Gieczewska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Monika Ostaszewska-Bugajska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Jacek Zebrowski
- Department of Plant Physiology, Institute of Biotechnology and Basic Science, University of RzeszówKolbuszowa, Poland
| | - Danuta Solecka
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of WarsawWarsaw, Poland
| | - Bożena Szal
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of WarsawWarsaw, Poland
| |
Collapse
|
39
|
Thynne E, Saur IML, Simbaqueba J, Ogilvie HA, Gonzalez‐Cendales Y, Mead O, Taranto A, Catanzariti A, McDonald MC, Schwessinger B, Jones DA, Rathjen JP, Solomon PS. Fungal phytopathogens encode functional homologues of plant rapid alkalinization factor (RALF) peptides. MOLECULAR PLANT PATHOLOGY 2017; 18:811-824. [PMID: 27291634 PMCID: PMC6638259 DOI: 10.1111/mpp.12444] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 05/19/2023]
Abstract
In this article, we describe the presence of genes encoding close homologues of an endogenous plant peptide, rapid alkalinization factor (RALF), within the genomes of 26 species of phytopathogenic fungi. Members of the RALF family are key growth factors in plants, and the sequence of the RALF active region is well conserved between plant and fungal proteins. RALF1-like sequences were observed in most cases; however, RALF27-like sequences were present in the Sphaerulina musiva and Septoria populicola genomes. These two species are pathogens of poplar and, interestingly, the closest relative to their respective RALF genes is a poplar RALF27-like sequence. RALF peptides control cellular expansion during plant development, but were originally defined on the basis of their ability to induce rapid alkalinization in tobacco cell cultures. To test whether the fungal RALF peptides were biologically active in plants, we synthesized RALF peptides corresponding to those encoded by two sequenced genomes of the tomato pathogen Fusarium oxysporum f. sp. lycopersici. One of these peptides inhibited the growth of tomato seedlings and elicited responses in tomato and Nicotiana benthamiana typical of endogenous plant RALF peptides (reactive oxygen species burst, induced alkalinization and mitogen-activated protein kinase activation). Gene expression analysis confirmed that a RALF-encoding gene in F. oxysporum f. sp. lycopersici was expressed during infection on tomato. However, a subsequent reverse genetics approach revealed that the RALF peptide was not required by F. oxysporum f. sp. lycopersici for infection on tomato roots. This study has demonstrated the presence of functionally active RALF peptides encoded within phytopathogens that harbour an as yet undetermined role in plant-pathogen interactions.
Collapse
Affiliation(s)
- Elisha Thynne
- Plant Sciences DivisionThe Australian National UniversityCanberra2601Australia
| | - Isabel M. L. Saur
- Plant Sciences DivisionThe Australian National UniversityCanberra2601Australia
| | - Jaime Simbaqueba
- Plant Sciences DivisionThe Australian National UniversityCanberra2601Australia
| | - Huw A. Ogilvie
- Evolution, Ecology and Genetics Division, Research School of BiologyThe Australian National UniversityCanberra2601Australia
- Computational Evolution Group, The University of AucklandAuckland1142New Zealand
| | | | - Oliver Mead
- Plant Sciences DivisionThe Australian National UniversityCanberra2601Australia
| | - Adam Taranto
- Plant Sciences DivisionThe Australian National UniversityCanberra2601Australia
| | | | - Megan C. McDonald
- Plant Sciences DivisionThe Australian National UniversityCanberra2601Australia
| | | | - David A. Jones
- Plant Sciences DivisionThe Australian National UniversityCanberra2601Australia
| | - John P. Rathjen
- Plant Sciences DivisionThe Australian National UniversityCanberra2601Australia
| | - Peter S. Solomon
- Plant Sciences DivisionThe Australian National UniversityCanberra2601Australia
| |
Collapse
|
40
|
Plant cell wall signalling and receptor-like kinases. Biochem J 2017; 474:471-492. [PMID: 28159895 DOI: 10.1042/bcj20160238] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
Abstract
Communication between the extracellular matrix and the cell interior is essential for all organisms as intrinsic and extrinsic cues have to be integrated to co-ordinate development, growth, and behaviour. This applies in particular to plants, the growth and shape of which is governed by deposition and remodelling of the cell wall, a rigid, yet dynamic, extracellular network. It is thus generally assumed that cell wall surveillance pathways exist to monitor the state of the wall and, if needed, elicit compensatory responses such as altered expression of cell wall remodelling and biosynthesis genes. Here, I highlight recent advances in the field of cell wall signalling in plants, with emphasis on the role of plasma membrane receptor-like kinase complexes. In addition, possible roles for cell wall-mediated signalling beyond the maintenance of cell wall integrity are discussed.
Collapse
|
41
|
Paniagua C, Bilkova A, Jackson P, Dabravolski S, Riber W, Didi V, Houser J, Gigli-Bisceglia N, Wimmerova M, Budínská E, Hamann T, Hejatko J. Dirigent proteins in plants: modulating cell wall metabolism during abiotic and biotic stress exposure. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3287-3301. [PMID: 28472349 DOI: 10.1093/jxb/erx141] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Dirigent (DIR) proteins were found to mediate regio- and stereoselectivity of bimolecular phenoxy radical coupling during lignan biosynthesis. Here we summarize the current knowledge of the importance of DIR proteins in lignan and lignin biosynthesis and highlight their possible importance in plant development. We focus on the still rather enigmatic Arabidopsis DIR gene family, discussing the few members with known functional importance. We comment on recent discoveries describing the detailed structure of two DIR proteins with implications in the mechanism of DIR-mediated catalysis. Further, we summarize the ample evidence for stress-induced dirigent gene expression, suggesting the role of DIRs in adaptive responses. In the second part of our work, we present a preliminary bioinformatics-based characterization of the AtDIR family. The phylogenetic analysis of AtDIRs complemented by comparison with DIR proteins of mostly known function from other species allowed us to suggest possible roles for several members of this family and identify interesting AtDIR targets for further study. Finally, based on the available metadata and our in silico analysis of AtDIR promoters, we hypothesize about the existence of specific transcriptional controls for individual AtDIR genes and implicate them in various stress responses, hormonal regulations, and developmental processes.
Collapse
Affiliation(s)
- Candelas Paniagua
- Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants, CEITEC-Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Anna Bilkova
- Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants, CEITEC-Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Phil Jackson
- Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants, CEITEC-Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Siarhei Dabravolski
- Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants, CEITEC-Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Willi Riber
- Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants, CEITEC-Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Vojtech Didi
- Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants, CEITEC-Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Josef Houser
- Glycobiochemistry, CEITEC-Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Nora Gigli-Bisceglia
- Department of Biology, Norwegian University of Science and Technology 5, Hogskoleringen, N-7491 Trondheim, Norway
| | - Michaela Wimmerova
- Glycobiochemistry, CEITEC-Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Eva Budínská
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Thorsten Hamann
- Department of Biology, Norwegian University of Science and Technology 5, Hogskoleringen, N-7491 Trondheim, Norway
| | - Jan Hejatko
- Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants, CEITEC-Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| |
Collapse
|
42
|
Biological function analysis of the phosphorylation sites for Arabidopsis CAP1. Sci Bull (Beijing) 2017; 62:761-763. [PMID: 36659270 DOI: 10.1016/j.scib.2017.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 01/21/2023]
|
43
|
Schepetilnikov M, Ryabova LA. Auxin Signaling in Regulation of Plant Translation Reinitiation. FRONTIERS IN PLANT SCIENCE 2017; 8:1014. [PMID: 28659957 PMCID: PMC5469914 DOI: 10.3389/fpls.2017.01014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/26/2017] [Indexed: 05/03/2023]
Abstract
The mRNA translation machinery directs protein production, and thus cell growth, according to prevailing cellular and environmental conditions. The target of rapamycin (TOR) signaling pathway-a major growth-related pathway-plays a pivotal role in optimizing protein synthesis in mammals, while its deregulation triggers uncontrolled cell proliferation and the development of severe diseases. In plants, several signaling pathways sensitive to environmental changes, hormones, and pathogens have been implicated in post-transcriptional control, and thus far phytohormones have attracted most attention as TOR upstream regulators in plants. Recent data have suggested that the coordinated actions of the phytohormone auxin, Rho-like small GTPases (ROPs) from plants, and TOR signaling contribute to translation regulation of mRNAs that harbor upstream open reading frames (uORFs) within their 5'-untranslated regions (5'-UTRs). This review will summarize recent advances in translational regulation of a specific set of uORF-containing mRNAs that encode regulatory proteins-transcription factors, protein kinases and other cellular controllers-and how their control can impact plant growth and development.
Collapse
Affiliation(s)
- Mikhail Schepetilnikov
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de StrasbourgStrasbourg, France
| | - Lyubov A. Ryabova
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de StrasbourgStrasbourg, France
| |
Collapse
|
44
|
The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PLoS Genet 2017; 13:e1006832. [PMID: 28604776 PMCID: PMC5484538 DOI: 10.1371/journal.pgen.1006832] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 06/26/2017] [Accepted: 05/22/2017] [Indexed: 11/19/2022] Open
Abstract
Plants actively perceive and respond to perturbations in their cell walls which arise during growth, biotic and abiotic stresses. However, few components involved in plant cell wall integrity sensing have been described to date. Using a reverse-genetic approach, we identified the Arabidopsis thaliana leucine-rich repeat receptor kinase MIK2 as an important regulator of cell wall damage responses triggered upon cellulose biosynthesis inhibition. Indeed, loss-of-function mik2 alleles are strongly affected in immune marker gene expression, jasmonic acid production and lignin deposition. MIK2 has both overlapping and distinct functions with THE1, a malectin-like receptor kinase previously proposed as cell wall integrity sensor. In addition, mik2 mutant plants exhibit enhanced leftward root skewing when grown on vertical plates. Notably, natural variation in MIK2 (also named LRR-KISS) has been correlated recently to mild salt stress tolerance, which we could confirm using our insertional alleles. Strikingly, both the increased root skewing and salt stress sensitivity phenotypes observed in the mik2 mutant are dependent on THE1. Finally, we found that MIK2 is required for resistance to the fungal root pathogen Fusarium oxysporum. Together, our data identify MIK2 as a novel component in cell wall integrity sensing and suggest that MIK2 is a nexus linking cell wall integrity sensing to growth and environmental cues. Plants are constantly exposed to external stresses of biotic and abiotic nature, as well as internal stresses, resulting from growth and mechanical tension. Feedback information about the integrity of the cell wall can enable the plant to perceive such stresses, and respond adequately. Plants are known to perceive signals from their environment through receptor kinases at the plant cell surface. Here, we reveal that the Arabidopsis thaliana receptor kinase MIK2 regulates responses to cell wall perturbation. Moreover, we find that MIK2 controls root growth angle, modulates cell wall structure in the root tip, contributes to salt stress tolerance, and is required for resistance against a root-infecting pathogen. Our data suggest that MIK2 is involved in sensing cell wall perturbations in plants, whereby it allows the plant to cope with a diverse range of environmental stresses. These data provide an important step forward in our understanding of the mechanisms plants deploy to sense internal and external danger.
Collapse
|
45
|
Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside? Int J Mol Sci 2017; 18:ijms18061164. [PMID: 28561754 PMCID: PMC5485988 DOI: 10.3390/ijms18061164] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 11/17/2022] Open
Abstract
Lectins are fundamental to plant life and have important roles in cell-to-cell communication; development and defence strategies. At the cell surface; lectins are present both as soluble proteins (LecPs) and as chimeric proteins: lectins are then the extracellular domains of receptor-like kinases (LecRLKs) and receptor-like proteins (LecRLPs). In this review; we first describe the domain architectures of proteins harbouring G-type; L-type; LysM and malectin carbohydrate-binding domains. We then focus on the functions of LecPs; LecRLKs and LecRLPs referring to the biological processes they are involved in and to the ligands they recognize. Together; LecPs; LecRLKs and LecRLPs constitute versatile recognition systems at the cell surface contributing to the detection of symbionts and pathogens; and/or involved in monitoring of the cell wall structure and cell growth.
Collapse
|
46
|
Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2017; 114:E4884-E4893. [PMID: 28559333 DOI: 10.1073/pnas.1613499114] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Plant cells are embedded within cell walls, which provide structural integrity, but also spatially constrain cells, and must therefore be modified to allow cellular expansion. The long-standing acid growth theory postulates that auxin triggers apoplast acidification, thereby activating cell wall-loosening enzymes that enable cell expansion in shoots. Interestingly, this model remains heavily debated in roots, because of both the complex role of auxin in plant development as well as technical limitations in investigating apoplastic pH at cellular resolution. Here, we introduce 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) as a suitable fluorescent pH indicator for assessing apoplastic pH, and thus acid growth, at a cellular resolution in Arabidopsis thaliana roots. Using HPTS, we demonstrate that cell wall acidification triggers cellular expansion, which is correlated with a preceding increase of auxin signaling. Reduction in auxin levels, perception, or signaling abolishes both the extracellular acidification and cellular expansion. These findings jointly suggest that endogenous auxin controls apoplastic acidification and the onset of cellular elongation in roots. In contrast, an endogenous or exogenous increase in auxin levels induces a transient alkalinization of the extracellular matrix, reducing cellular elongation. The receptor-like kinase FERONIA is required for this physiological process, which affects cellular root expansion during the gravitropic response. These findings pinpoint a complex, presumably concentration-dependent role for auxin in apoplastic pH regulation, steering the rate of root cell expansion and gravitropic response.
Collapse
|
47
|
Gommers CMM, Keuskamp DH, Buti S, van Veen H, Koevoets IT, Reinen E, Voesenek LACJ, Pierik R. Molecular Profiles of Contrasting Shade Response Strategies in Wild Plants: Differential Control of Immunity and Shoot Elongation. THE PLANT CELL 2017; 29:331-344. [PMID: 28138015 PMCID: PMC5354195 DOI: 10.1105/tpc.16.00790] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/10/2017] [Accepted: 01/25/2017] [Indexed: 05/06/2023]
Abstract
Plants growing at high densities elongate their shoots to reach for light, a response known as the shade avoidance syndrome (SAS). Phytochrome-mediated detection of far-red light reflection from neighboring plants activates growth-promoting molecular pathways leading to SAS However, it is unknown how plants that complete their life cycle in the forest understory and are shade tolerant prevent SAS when exposed to shade. Here, we show how two wild Geranium species from different native light environments regulate contrasting responses to light quality cues. A comparative RNA sequencing approach unveiled the molecular underpinnings of their contrasting growth responses to far-red light enrichment. It also identified differential phytochrome control of plant immunity genes and confirmed that far-red enrichment indeed contrastingly affects resistance against Botrytis cinerea between the two species. Furthermore, we identify a number of candidate regulators of differential shade avoidance. Three of these, the receptor-like kinases FERONIA and THESEUS1 and the non-DNA binding bHLH protein KIDARI, are functionally validated in Arabidopsis thaliana through gene knockout and/or overexpression studies. We propose that these components may be associated with either showing or not showing shade avoidance responses.
Collapse
Affiliation(s)
- Charlotte M M Gommers
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Diederik H Keuskamp
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Sara Buti
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Hans van Veen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Iko T Koevoets
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Emilie Reinen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Laurentius A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
48
|
Zhang Q, Jia M, Xing Y, Qin L, Li B, Jia W. Genome-Wide Identification and Expression Analysis of MRLK Family Genes Associated with Strawberry (Fragaria vesca) Fruit Ripening and Abiotic Stress Responses. PLoS One 2016; 11:e0163647. [PMID: 27685863 PMCID: PMC5042409 DOI: 10.1371/journal.pone.0163647] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/12/2016] [Indexed: 11/19/2022] Open
Abstract
Malectin-like domain-containing receptor-like kinases (MRLK) constitute a large and divergent family of proteins in plants; however, little is known about the role of MRLKs in fruit growth and development. In this study, we characterized MRLK family genes in diploid strawberry, Fragaria vesca. Based on an analysis of malectin-like domain and a search in the strawberry genome and NCBI database, we identified 62 FvMRLKs in the strawberry genome, and classified these genes into six subfamilies with distinct malectin domains in the extracellular regions of the encoded proteins. Gene expression analysis indicated that more than 80% of the FvMRLKs were expressed in various tissues, with higher levels in roots than in other organs. Thirty-three FvMRLKs were found to be expressed in fruits during the early stages of development, and over 60% of these exhibited dramatic decreases in expression during fruit growth and development. Moreover, the expression of some FvMRLKs was sensitive to both environmental and internal cues that play critical roles in regulating strawberry fruit development and ripening. Collectively, this study provides valuable insight into the FvMRLKs gene family and its role in regulating strawberry fruit development and ripening.
Collapse
Affiliation(s)
- Qing Zhang
- College of Horticulture, China Agriculture University, Beijing, China
- College of Plant Science and Technology, Beijing University of Agriculture, Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative innovation center for eco-environmental improvement with forestry and fruit trees, Beijing, China
| | - Meiru Jia
- College of Horticulture, China Agriculture University, Beijing, China
| | - Yu Xing
- College of Plant Science and Technology, Beijing University of Agriculture, Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative innovation center for eco-environmental improvement with forestry and fruit trees, Beijing, China
| | - Ling Qin
- College of Plant Science and Technology, Beijing University of Agriculture, Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative innovation center for eco-environmental improvement with forestry and fruit trees, Beijing, China
- * E-mail: (WJ); (LQ)
| | - Bingbing Li
- College of Horticulture, China Agriculture University, Beijing, China
- College of Plant Science and Technology, Beijing University of Agriculture, Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
| | - Wensuo Jia
- College of Horticulture, China Agriculture University, Beijing, China
- * E-mail: (WJ); (LQ)
| |
Collapse
|
49
|
Galindo-Trigo S, Gray JE, Smith LM. Conserved Roles of CrRLK1L Receptor-Like Kinases in Cell Expansion and Reproduction from Algae to Angiosperms. FRONTIERS IN PLANT SCIENCE 2016; 7:1269. [PMID: 27621737 PMCID: PMC5002434 DOI: 10.3389/fpls.2016.01269] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/10/2016] [Indexed: 05/20/2023]
Abstract
Receptor-like kinases (RLKs) are regulators of plant development through allowing cells to sense their extracellular environment. They facilitate detection of local endogenous signals, in addition to external biotic and abiotic stimuli. The Catharanthus roseus RLK1-like (CrRLK1L) protein kinase subfamily, which contains FERONIA, plays a central role in regulating fertilization and in cell expansion mechanisms such as cell elongation and tip growth, as well as having indirect links to plant-pathogen interactions. Several components of CrRLK1L signaling pathways have been identified, including an extracellular ligand, coreceptors, and downstream signaling elements. The presence and abundance of the CrRLK1L proteins in the plant kingdom suggest an origin within the Streptophyta lineage, with a notable increase in prevalence in the seeded land plants. Given the function of the sole CrRLK1L protein in a charophycean alga, the possibility of a conserved role in detection and/or regulation of cell wall integrity throughout the Strephtophytes is discussed. Orthologs of signaling pathway components are also present in extant representatives of non-vascular land plants and early vascular land plants including the liverwort Marchantia polymorpha, the moss Physcomitrella patens and the lycophyte Selaginella moellendorffii. Deciphering the roles in development of the CrRLK1L protein kinases in early diverging land plants will provide insights into their ancestral function, furthering our understanding of this diversified subfamily of receptors in higher plants.
Collapse
Affiliation(s)
| | - Julie E. Gray
- Department of Molecular Biology and Biotechnology, University of SheffieldSheffield, UK
| | - Lisa M. Smith
- Department of Animal and Plant Sciences, University of SheffieldSheffield, UK
| |
Collapse
|
50
|
Elsayad K, Werner S, Gallemí M, Kong J, Sánchez Guajardo ER, Zhang L, Jaillais Y, Greb T, Belkhadir Y. Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging. Sci Signal 2016; 9:rs5. [PMID: 27382028 DOI: 10.1126/scisignal.aaf6326] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrices (ECMs) are central to the advent of multicellular life, and their mechanical properties are modulated by and impinge on intracellular signaling pathways that regulate vital cellular functions. High spatial-resolution mapping of mechanical properties in live cells is, however, extremely challenging. Thus, our understanding of how signaling pathways process physiological signals to generate appropriate mechanical responses is limited. We introduce fluorescence emission-Brillouin scattering imaging (FBi), a method for the parallel and all-optical measurements of mechanical properties and fluorescence at the submicrometer scale in living organisms. Using FBi, we showed that changes in cellular hydrostatic pressure and cytoplasm viscoelasticity modulate the mechanical signatures of plant ECMs. We further established that the measured "stiffness" of plant ECMs is symmetrically patterned in hypocotyl cells undergoing directional growth. Finally, application of this method to Arabidopsis thaliana with photoreceptor mutants revealed that red and far-red light signals are essential modulators of ECM viscoelasticity. By mapping the viscoelastic signatures of a complex ECM, we provide proof of principle for the organism-wide applicability of FBi for measuring the mechanical outputs of intracellular signaling pathways. As such, our work has implications for investigations of mechanosignaling pathways and developmental biology.
Collapse
Affiliation(s)
- Kareem Elsayad
- Advanced Microscopy Facility, Vienna Biocenter Core Facilities, A-1030 Vienna, Austria.
| | - Stephanie Werner
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, A-1030 Vienna, Austria
| | - Marçal Gallemí
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, A-1030 Vienna, Austria
| | - Jixiang Kong
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, A-1030 Vienna, Austria
| | | | - Lijuan Zhang
- Advanced Microscopy Facility, Vienna Biocenter Core Facilities, A-1030 Vienna, Austria
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Thomas Greb
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, A-1030 Vienna, Austria
| | - Youssef Belkhadir
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, A-1030 Vienna, Austria.
| |
Collapse
|