1
|
Thiébaut N, Sarthou M, Richtmann L, Pergament Persson D, Ranjan A, Schloesser M, Boutet S, Rezende L, Clemens S, Verbruggen N, Hanikenne M. Specific redox and iron homeostasis responses in the root tip of Arabidopsis upon zinc excess. THE NEW PHYTOLOGIST 2025; 246:1796-1815. [PMID: 40165747 DOI: 10.1111/nph.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
Zinc (Zn) excess negatively impacts primary root growth in Arabidopsis thaliana. Yet, the effects of Zn excess on specific growth processes in the root tip (RT) remain largely unexplored. Transcriptomics, ionomics, and metabolomics were used to examine the specific impact of Zn excess on the RT compared with the remaining root (RR). Zn excess exposure resulted in a shortened root apical meristem and elongation zone, with differentiation initiating closer to the tip of the root. Zn accumulated at a lower concentration in the RT than in the RR. This pattern was associated with lower expression of Zn homeostasis and iron (Fe) deficiency response genes. A distinct distribution of Zn and Fe in RT and RR was highlighted by laser ablation inductively coupled plasma-mass spectrometry analysis. Specialized tryptophan (Trp)-derived metabolism genes, typically associated with redox and biotic stress responses, were specifically upregulated in the RT upon Zn excess, among those Phytoalexin Deficient 3 (PAD3) encoding the last enzyme of camalexin synthesis. In the roots of wild-type seedlings, camalexin concentration increased by sixfold upon Zn excess, and a pad3 mutant displayed increased Zn sensitivity and an altered ionome. Our results indicate that distinct redox and iron homeostasis mechanisms are key elements of the response to Zn excess in the RT.
Collapse
Affiliation(s)
- Noémie Thiébaut
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000, Liège, Belgium
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Manon Sarthou
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000, Liège, Belgium
| | - Ludwig Richtmann
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
- Department of Plant Physiology and Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95440, Bayreuth, Germany
| | - Daniel Pergament Persson
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Alok Ranjan
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| | - Marie Schloesser
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000, Liège, Belgium
| | - Stéphanie Boutet
- INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, 78000, Versailles, France
| | - Lucas Rezende
- Hedera-22 SA, Boulevard du Rectorat 27b, B-4000, Liège, Belgium
| | - Stephan Clemens
- Department of Plant Physiology and Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95440, Bayreuth, Germany
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000, Liège, Belgium
| |
Collapse
|
2
|
Li S, Ling R, Wu X, Liu L, Zhang H, Xuan L. The role of multiple C2 domain and transmembrane region proteins in mediating tomato development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112511. [PMID: 40216259 DOI: 10.1016/j.plantsci.2025.112511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Multiple C2 domain and transmembrane region proteins (MCTPs) are an evolutionarily conserved family involved in protein trafficking and signal transduction. Although several investigations have demonstrated that MCTPs play crucial roles in plant growth and development, their specific biological functions within tomatoes (Solanum lycopersicum L.) remain predominantly mysterious. In this study, we identify and characterize 14 SlMCTP genes derived from tomatoes. Chromosome mapping, gene structure, phylogenetic connections, and subcellular localization are presented herein. Meanwhile, the varied expression patterns of SlMCTPs within different tissues and under diverse hormonal and NaCl treatment conditions are revealed. Moreover, we find that SlMCTP10, SlMCTP11, and SlMCTP12, which belong to the same clade, display high expression levels at the main stem apex, suggesting their potential functions in shoot development. Furthermore, we knock out the SlMCTP10 gene in tomato using CRISPR-Cas9. The Slmctp10 seedlings exhibit defects in shoot meristem development, manifested by abnormal cotyledons and shorter internodes. Together, our findings offer fundamental insights into the SlMCTP family and uncover the role of SlMCTP proteins in regulating shoot meristem development in tomato plants.
Collapse
Affiliation(s)
- Siyi Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Ribin Ling
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuexia Wu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Lu Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Lijie Xuan
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Xiao Y, Deng S, Huang T, Li Z, Zhang H, Wang K, Akihiro T, Jia C, Lin F, Xu H. Knockout of OsPHT4;4 enhances thiamethoxam accumulation in rice stems for improved brown planthopper control. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109910. [PMID: 40239259 DOI: 10.1016/j.plaphy.2025.109910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
The phosphate transporter PHT4 plays a crucial role in nutrient transport within plants. In addition to this fundamental functions, PHT4 may also participate in the uptake and translocation of other compounds, such as ascorbate. However, only a few studies have characterized the functional roles of PHT4. In this study, we identified and functionally characterized the role of the phosphate transporter OsPHT4;4 in thiamethoxam (THX) uptake and transport in rice. Heterologous expression experiments in yeast and Xenopus laevis oocytes (X. laevis oocytes) demonstrated that OsPHT4;4 significantly enhanced THX accumulation in cells. The OsPHT4; 4 proteins contained 11 transmembrane helices and localized primarily to the plasma membrane (PM) and chloroplast envelope. Knockout of OsPHT4;4 reduced the efficiency of THX translocation from stems to leaves, resulting in significant THX accumulation in the stems, which enhanced control of the brown planthopper (BPH), but had no effect on root-to-stem translocation. In contrast, overexpression of OsPHT4;4 increased THX translocation to the leaves, reduced THX accumulation in the stems, and thereby weakened the pest control effect on BPH. Our results indicate that OsPHT4;4 plays a key role in the specific distribution of THX, contributing to pest management while also affecting plant growth. These findings provide a foundation for optimizing pesticide usage in crop management by balancing pest control effectiveness and plant health.
Collapse
Affiliation(s)
- Yuyan Xiao
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, 512005, Shaoguan, China
| | - Shuqi Deng
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Tinghong Huang
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Zepu Li
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Hanlin Zhang
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Keyi Wang
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Takashi Akihiro
- Faculty of Life and Environmental Science, Shimane University, Shimane, 690-8504, Japan
| | - Chunsheng Jia
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, 512005, Shaoguan, China
| | - Fei Lin
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Hanhong Xu
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Chen S, Li F, Ouyang W, Chen S, Luo S, Liu J, Li G, Lin Z, Liu YG, Xie X. Time-course transcriptome and chromatin accessibility analyses reveal the dynamic transcriptional regulation shaping spikelet hull size. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70141. [PMID: 40204676 DOI: 10.1111/tpj.70141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/24/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025]
Abstract
The grains of rice (Oryza sativa) are enclosed by a spikelet hull comprising the lemma and palea. Development of the spikelet hull determines the storage capacity of the grain, thus affecting grain yield and quality. Although multiple signaling pathways controlling grain size have been identified, the transcriptional regulatory mechanisms underlying grain development remain limited. Here, we used RNA-seq and ATAC-seq to characterize the transcription and chromatin accessibility dynamics during the development of spikelet hulls. A time-course analysis showed that more than half of the genes were sequentially expressed during hull development and that the accessibility of most open chromatin regions (OCRs) changed moderately, although some regions positively or negatively affected the expression of their closest genes. We revealed a crucial role of GROWTH-REGULATING FACTORs in shaping grain size by influencing multiple metabolic and signaling pathways, and a coordinated transcriptional regulation in response to auxin and cytokinin signaling. We also demonstrated the function of SCL6-IIb, a member of the GRAS family transcription factors, in regulating grain size, with SCL6-IIb expression being activated by SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 18 (OsSPL18). When we edited the DNA sequences within OCRs upstream of the start codon of BRASSINAZOLE-RESISTANT 1 (BZR1) and SCL6-IIb, we generated multiple mutant lines with longer grains. These findings offer a comprehensive overview of the cis-regulatory landscape involved in forming grain capacity and a valuable resource for exploring the regulatory network behind grain development.
Collapse
Affiliation(s)
- Shaotong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Fuquan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Weizhi Ouyang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuifu Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Sanyang Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianhong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Gufeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhansheng Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
5
|
Chakraborty R, Rehman RU, Siddiqui MW, Liu H, Seth CS. Phytohormones: Heart of plants' signaling network under biotic, abiotic, and climate change stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109839. [PMID: 40194506 DOI: 10.1016/j.plaphy.2025.109839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/06/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025]
Abstract
Industrialization has made the world increasingly unstable, subjecting plants to various constraints. As a consequence, plants are constantly experiencing biological, environmental, and climatic constraints, necessitating defense mechanisms to ensure their survival. Plants are vulnerable to various biotic factors, including insects, pathogens (bacterial, fungal, viral, and nematodes), weeds, and herbivores. They also face different abiotic and climate change challenges such as drought (regulated by genes like GH3, DREB, ZIFL1;3, etc), salinity, heavy metals, metalloids, ultraviolet radiations (UV), ozone (O3), low and high temperature (chilling/cold/freezing/heat), carbon dioxide (CO2), chlorofluorocarbons (CFCs), and flooding/hypoxia/anoxia. Different transcriptional factors, such as KNOX1, PYK10, and NRP1, regulate these abiotic and climate change stresses. Different phytohormones such as auxin (regulated by components AUX/IAA3, PIN, indole-glucosinolate, indole-3-acetaldoxine), gibberellin (key elements involved in the synthesis and signaling such as DELLA, GA3ox, RhHB1), cytokinin (signaling through ARR5), ethylene (involved transcription factors like AP2/ERF), abscisic acid (signaling regulated through SnRK2), salicylic acid, jasmonic acid (regulated by JAZ1/TIFYIOA), brassinosteroids, nitric oxide, and strigolactones (synthetic precursor being GR24) control plants' maturation in normal and stressed conditions by regulating various metabolic and physiological plant activities. Phytohormonal interactions and their synergy are often assessed by different techniques and assays such as CRISPR/Cas9, ELISA, RIA, luciferase, GAL4, and mEmerald GFP. Their synthesis and signaling are regulated by various genes (such as YUCCA1, YUCCA5, GA3ox, etc), transporters (PIN, such as PIN, ABCB, NPF, etc), and receptors (such as PLY4, PLY5, BZR1/BES1, MYC2, etc) and have different precursors such as L-arginine, L-tryptophan, phenylalanine, linolenic acid, S-adenosylmethionine, geranylgeranyl diphosphate. This review comprehensively analyses the breakthrough in phytohormones and their signaling in regulating plants' growth and maturation. Their significance in combating the biotic, abiotic, and climate change stresses, improving stress adaptation to identify novel strategies enhancing plant resilience, sustainable agriculture, and ensuring food security.
Collapse
Affiliation(s)
- Ritika Chakraborty
- Department of Botany, University of Delhi, New Delhi, 110007, Delhi, India.
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Post-Harvest Technology, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India.
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China.
| | | |
Collapse
|
6
|
Aydin A, Yerlikaya BA, Yerlikaya S, Yilmaz NN, Kavas M. CRISPR-mediated mutation of cytokinin signaling genes (SlHP2 and SlHP3) in tomato: Morphological, physiological, and molecular characterization. THE PLANT GENOME 2025; 18:e20542. [PMID: 39779650 PMCID: PMC11711121 DOI: 10.1002/tpg2.20542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 01/11/2025]
Abstract
Synergistic and antagonistic relationships between cytokinins and other plant growth regulators are important in response to changing environmental conditions. Our study aimed to determine the functions of SlHP2 and SlHP3, two members of cytokinin signaling in tomato, in drought stress response using CRISPR/Cas9-mediated mutagenesis. Ten distinct genome-edited lines were generated via Agrobacterium tumefaciens-mediated gene transfer and confirmed through Sanger sequencing. Stress experiments were conducted with two of these lines (slhp2,3-10 and slhp2,3-11), which harbored homozygous mutations in both genes. The responses of two lines carrying homozygous mutations in both genes under polyethylene glycol (PEG)-induced stress were examined using morphological, physiological, biochemical, and molecular methods. The genome-edited lines demonstrated enhanced water retention, reduced stomatal density, and less oxidative damage compared to the wild-type plants under PEG-induced stress. Moreover, the slhp2,3 double mutant plants exhibited improved root growth, showcasing their superior drought tolerance over wild-type plants by accessing deeper water sources and maintaining hydration in water-limited environments. To investigate the involvement of cytokinin signaling regulators and genes associated with stomatal formation and differentiation, the expression of genes (Speechless [SPCH], FAMA, MUTE, TMM, HB25, HB31, RR6, RR7, and Solyc02g080860) was assessed. The results revealed that all regulators were downregulated, with SPCH, TMM, RR7, and RR6 showing significant reductions under PEG-induced stress. These results emphasize the promise of utilizing CRISPR/Cas9 to target cytokinin signaling pathways, enhancing drought tolerance in tomatoes through improvements in water retention and root growth, along with a reduction in stomatal density and malondialdehyde content.
Collapse
Affiliation(s)
- Abdullah Aydin
- Department of Agricultural Biotechnology, Faculty of AgricultureOndokuz Mayis UniversitySamsunTurkey
| | - Bayram Ali Yerlikaya
- Department of Agricultural Biotechnology, Faculty of AgricultureOndokuz Mayis UniversitySamsunTurkey
| | - Seher Yerlikaya
- Department of Agricultural Biotechnology, Faculty of AgricultureOndokuz Mayis UniversitySamsunTurkey
| | - Nisa Nur Yilmaz
- Department of Agricultural Biotechnology, Faculty of AgricultureOndokuz Mayis UniversitySamsunTurkey
| | - Musa Kavas
- Department of Agricultural Biotechnology, Faculty of AgricultureOndokuz Mayis UniversitySamsunTurkey
| |
Collapse
|
7
|
Fu R, Zhang M, Wei F, Lin M, Fang J, Wang R, Li Y, Chen J, Sun L, Qi X. RNA-Seq Analysis Reveals Potential Genes Involved in Plant Growth Regulator-Induced Ovary Development in Male Kiwifruit ( Actinidia eriantha). PLANTS (BASEL, SWITZERLAND) 2025; 14:703. [PMID: 40099584 PMCID: PMC11902103 DOI: 10.3390/plants14050703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Kiwifruit is a dioecious woody liana fruit tree, and the non-fruitfulness of male plants leads to a great deal of blindness in the selection of male plants in crossbreeding. In this study, we induced the development of male plant ovary by externally applying plant growth regulators (PGRs) and performed histological observation, phytohormone content determination and transcriptome analysis on the abortive ovary of the male kiwifruit (Con), the ovary of the female kiwifruit (Fem) and the PGR-induced developing ovary of the male kiwifruit (PT). Histological analysis showed that the Con ovary was devoid of ovules and the carpels were atrophied, the Fem ovary had ovules and the PT ovary was devoid of ovules, but the carpels developed normally and were not atrophied. Endogenous phytohormone content measurements displayed higher levels of trans-zeatin (tZT) in PT and Fem than Con, and lower levels of gibberellin (GA3) and abscisic acid (ABA) than Con. Transcriptome analysis revealed significant differences in many key genes in the cytokinin and auxin pathways, which were consistent with the results of phytohormone content measurements. Meanwhile, the genes related to carpel development, SPT (DTZ79_04g03580) and SK41 (DTZ79_19g04340), were highly expressed in PT, suggesting that they may play a key role in PGR-induced development of the ovary in male kiwifruit. These results provide information for elucidating the potential regulatory network of PGR-induced ovary development in male flowers and contribute to further identification of valuable target genes.
Collapse
Affiliation(s)
- Rong Fu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (R.F.); (F.W.)
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
| | - Min Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
| | - Feng Wei
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (R.F.); (F.W.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Miaomiao Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
| | - Jinbao Fang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
| | - Ran Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
| | - Yukuo Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Jinyong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
| | - Leiming Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
- Chuxiong Yunguo Agriculture Technology Research Institute, Chuxiong 675000, China
| | - Xiujuan Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.Z.); (M.L.); (J.F.); (R.W.); (Y.L.); (J.C.)
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| |
Collapse
|
8
|
Zhang S, Wang S, Zhang B, Yang S, Wang J. Different concentrations of carbon nanotubes promote or inhibit organogenesis of Arabidopsis explants by regulating endogenous hormone homeostasis. PLANTA 2025; 261:55. [PMID: 39922983 DOI: 10.1007/s00425-025-04633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025]
Abstract
MAIN CONCLUSION Carbon nanotubes concentration modulates endogenous hormone balance, influencing callogenesis and organogenesis efficiency, with potential for optimizing plant transformation programs. A unique feature of plant somatic cells is their remarkable ability to regenerate new organs and even an entire plant in vitro. In this work, we investigated how an important group of environmental factors, carbon nanotubes (CNTs) (both single-walled nanotubes as SWCNTs and multi-walled nanotubes as MWCNTs), affect the regenerative capacity of plants and the underlying molecular mechanisms. Our data show that both the induction of pluripotent callus from Arabidopsis root explants and the frequency of de novo shoot regeneration were influenced by the concentration, but not the type of CNTs. Raman analyses show that CNTs can be transported and accumulate in the callus tissue and in the newly formed seedlings. The contrasting effects of CNTs at 0.1 mg L-1 and 50 mg L-1 were reflected not only in the concentrations of endogenous auxin and trans-zeatin (tZT), but also in the changes in the expression levels of positive cell cycle regulators and transcriptional regulators that control callus pluripotency and the establishment of shoot apical meristem (SAM). Since most existing plant transformation strategies involve the conversion of dedifferentiated calli into regenerated plantlets and are very time consuming and inefficient, this work suggests that CNTs could be used as an additive to optimize plant micropropagation and genetic engineering systems by modulating hormone balance and stimulating the intrinsic totipotency of plants, thus overcoming organogenic recalcitrance.
Collapse
Affiliation(s)
- Sainan Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| | - Shuaiqi Wang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| | - Bing Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| | - Shaohui Yang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| | - Jiehua Wang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
9
|
Wang T, Li X, Yu H, Zhang H, Xie Z, Gong Q. Inhibition of mitochondrial energy production leads to reorganization of the plant endomembrane system. PLANT PHYSIOLOGY 2025; 197:kiaf033. [PMID: 39874275 DOI: 10.1093/plphys/kiaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/30/2025]
Abstract
Mitochondria have generated the bulk of ATP to fuel cellular activities, including membrane trafficking, since the beginning of eukaryogenesis. How inhibition of mitochondrial energy production will affect the form and function of the endomembrane system and whether such changes are specific in today's cells remain unclear. Here, we treated Arabidopsis thaliana with antimycin A (AA), a potent inhibitor of the mitochondrial electron transport chain (mETC), as well as other mETC inhibitors and an uncoupler. We investigated the effects of AA on different endomembrane organelles connected by vesicle trafficking via anterograde and retrograde routes that heavily rely on ATP and GTP provision for SNARE and RAB/GEF function, respectively, in root cells. Similar to previous reports, AA inhibited root growth mainly by shortening the elongation zone (EZ) in an energy- and auxin-dependent way. We found that PIN-FORMED 2 (PIN2) and REQUIRES HIGH BORON 1 (BOR1), key proteins for EZ establishment and cell expansion, undergo accelerated endocytosis and accumulate at enlarged multivesicular bodies (MVBs) after AA treatment. Such accumulation is consistent with the observation that the central vacuole becomes fragmented and spherical and that the Arabidopsis Rab7 homolog RABG3f, a master regulator of MVB and vacuolar function, localizes to the tonoplast, likely in a GTP-bound form. We further examined organelles and vesicle populations along the secretory pathway and found that the Golgi apparatus-in particular, the endoplasmic reticulum-Golgi intermediate compartment (ERGIC)-cannot be maintained when mETC is inhibited. Our findings reveal the importance and specific impact of mitochondrial energy production on endomembrane homeostasis.
Collapse
Affiliation(s)
- Taotao Wang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xinjing Li
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hongying Yu
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Heng Zhang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
10
|
Schaefer PE, Tabaldi LA, Müller TM, Ribeiro LP, Martin TN. Development of maize under different pH values, humidity and presence of Azospirillum brasilense. BRAZ J BIOL 2025; 84:e287643. [PMID: 39907340 DOI: 10.1590/1519-6984.287643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/11/2024] [Indexed: 02/06/2025] Open
Abstract
Abiotic factors play a crucial role in the productivity of agricultural systems, and stress resulting from these factors can significantly restrict crop yields. To address this challenge, the use of tools capable of mitigating adverse effects, such as growth-promoting bacteria, is essential. This study aimed to investigate the growth of maize plants inoculated or not with Azospirillum brasilense, subjected to variations in soil pH and moisture. Two experiments were conducted under controlled conditions, in which maize plants inoculated with A. brasilense were subjected to variations in (i) soil moisture (100, 75, 50, and 25% of field capacity) and (ii) hydrogenic potential (pH 4.5; 5.5; 5.0; 6.0; and 6.5). It was observed that low moisture favored root growth but limited the development of leaves and stems of maize plants at the V4 phenological stage. The increased root development provided by A. brasilense under conditions of water restriction resulted in a reduction in water use efficiency by the leaves. Additionally, more acidic and/or alkaline pH levels also reduced the dry mass of roots and aboveground parts, as well as the carboxylation efficiency of rubisco, but increased water use efficiency (At 25% FC water deficit, WUE increased by 9.5% in rhizobacterium-treated seeds and by 16% in the control). Inoculation with A. brasilense promoted greater development of maize plants, as evidenced by increased volume, root length, and leaf area. Although maize plants showed better initial development without water restriction and in soil with a pH of 5.9, A. brasilense allowed maize plant growth even at pH 5.1, without significant adverse impacts.
Collapse
Affiliation(s)
- P E Schaefer
- Universidade Federal de Santa Maria - UFSM, Departamento de Fitotecnia, Santa Maria, RS, Brasil
| | - L A Tabaldi
- Universidade Federal de Santa Maria - UFSM, Departamento de Biologia, Santa Maria, RS, Brasil
| | - T M Müller
- Universidade Federal de Santa Maria - UFSM, Departamento de Fitotecnia, Santa Maria, RS, Brasil
| | - L P Ribeiro
- Universidade Federal de Santa Maria - UFSM, Departamento de Fitotecnia, Santa Maria, RS, Brasil
| | - T N Martin
- Universidade Federal de Santa Maria - UFSM, Departamento de Fitotecnia, Santa Maria, RS, Brasil
| |
Collapse
|
11
|
Großkinsky DK, Molin EM, Bosetto F, Edelsbrunner K, Oravec M, Večeřová K, Tříska J, Roitsch T. Structure-function relation of cytokinins determines their differential efficiency in mediating tobacco resistance against Pseudomonas syringae. PHYSIOLOGIA PLANTARUM 2025; 177:e70028. [PMID: 39727031 DOI: 10.1111/ppl.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
The classic plant growth-promoting phytohormone cytokinin has been identified and established as a mediator of pathogen resistance in different plant species. However, the resistance effect of structurally different cytokinins appears to vary and may regulate diverse mechanisms to establish resistance. Hence, we comparatively analysed the impact of six different adenine- and phenylurea-type cytokinins on the well-established pathosystem Nicotiana tabacum-Pseudomonas syringae. The efficiency of resistance effects was evaluated based on impacts on the host plant defence response by scoring infection symptoms and the direct impact on the pathogen by assessment of proliferation in planta. To identify common and cytokinin-specific components involved in resistance effects, transcriptome profiling and targeted metabolomics were conducted in leaves treated with the different cytokinins. We observed clearly different potentials of the tested cytokinins in either suppressing infection symptoms or pathogen proliferation. Gene regulation and metabolite analyses revealed cytokinin-type specific impacts on defence components, such as salicylic acid and related signalling, expression of PR proteins, and regulation of specialised metabolism. Cytokinins also strongly affected plant cell physiological parameters, such as a remarkable decrease in amino acid pools. Hence, this study provides comparative information on the efficiency of diverse cytokinins in mediating resistance in one well-studied pathosystem and insights into the specific regulation of resistance effects mediated by different cytokinin molecules. This is particularly relevant for studies on the function of cytokinins or other phytohormones and compounds interacting with cytokinin activities in the context of pathogen infections and other stress scenarios, considering the diverse cytokinins present in plants.
Collapse
Affiliation(s)
- Dominik K Großkinsky
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Tulln a. d. Donau, Austria
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Eva M Molin
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Tulln a. d. Donau, Austria
| | - Federico Bosetto
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Kerstin Edelsbrunner
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Michal Oravec
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Kristýna Večeřová
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jan Tříska
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
12
|
Kawaguchi K, Notaguchi M, Okayasu K, Sawai Y, Kojima M, Takebayashi Y, Sakakibara H, Otagaki S, Matsumoto S, Shiratake K. Plant hormone profiling of scion and rootstock incision sites and intra- and inter-family graft junctions in Nicotiana benthamiana. PLANT SIGNALING & BEHAVIOR 2024; 19:2331358. [PMID: 38513064 PMCID: PMC10962582 DOI: 10.1080/15592324.2024.2331358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/07/2024] [Indexed: 03/23/2024]
Abstract
Many previous studies have suggested that various plant hormones play essential roles in the grafting process. In this study, to understand the plant hormones that accumulate in the graft junctions, whether these are supplied from the scion or rootstock, and how these hormones play a role in the grafting process, we performed a hormonome analysis that accumulated in the incision site of the upper plants from the incision as "ungrafted scion" and lower plants from the incision as "ungrafted rootstock" in Nicotiana benthamiana. The results revealed that indole-3-acetic acid (IAA) and gibberellic acid (GA), which regulate cell division; abscisic acid (ABA) and jasmonic acid (JA), which regulate xylem formation; cytokinin (CK), which regulates callus formation, show different accumulation patterns in the incision sites of the ungrafted scion and rootstock. In addition, to try discussing the differences in the degree and speed of each event during the grafting process between intra- and inter-family grafting by determining the concentration and accumulation timing of plant hormones in the graft junctions, we performed hormonome analysis of graft junctions of intra-family grafted plants with N. benthamiana as scion and Solanum lycopersicum as rootstock (Nb/Sl) and inter-family grafted plants with N. benthamiana as scion and Arabidopsis thaliana as rootstock (Nb/At), using the ability of Nicotiana species to graft with many plant species. The results revealed that ABA and CK showed different accumulation timings; IAA, JA, and salicylic acid (SA) showed similar accumulation timings, while different accumulated concentrations in the graft junctions of Nb/Sl and Nb/At. This information is important for understanding the molecular mechanisms of plant hormones in the grafting process and the differences in molecular mechanisms between intra- and inter-family grafting.
Collapse
Affiliation(s)
- Kohei Kawaguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Michitaka Notaguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Koji Okayasu
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yu Sawai
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Plant Productivity Systems Research Group, Yokohama, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Plant Productivity Systems Research Group, Yokohama, Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- RIKEN Center for Sustainable Resource Science, Plant Productivity Systems Research Group, Yokohama, Japan
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shogo Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
13
|
Uragami T, Kiba T, Kojima M, Takebayashi Y, Tozawa Y, Hayashi Y, Kinoshita T, Sakakibara H. The cytokinin efflux transporter ABCC4 participates in Arabidopsis root system development. PLANT PHYSIOLOGY 2024; 197:kiae628. [PMID: 39719052 PMCID: PMC11668331 DOI: 10.1093/plphys/kiae628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/30/2024] [Indexed: 12/26/2024]
Abstract
The directional and sequential flow of cytokinin in plants is organized by a complex network of transporters. Genes involved in several aspects of cytokinin transport have been characterized; however, much of the elaborate system remains elusive. In this study, we used a transient expression system in tobacco (Nicotiana benthamiana) leaves to screen Arabidopsis (Arabidopsis thaliana) transporter genes and isolated ATP-BINDING CASSETTE TRANSPORTER C4 (ABCC4). Validation through drug-induced expression in Arabidopsis and heterologous expression in budding yeast revealed that ABCC4 effluxes the active form of cytokinins. During the seedling stage, ABCC4 was highly expressed in roots, and its expression was upregulated in response to cytokinin application. Loss-of-function mutants of ABCC4 displayed enhanced primary root elongation, similar to mutants impaired in cytokinin biosynthesis or signaling, that was suppressed by exogenous trans-zeatin treatment. In contrast, overexpression of the gene led to suppression of root elongation. These results suggest that ABCC4 plays a role in the efflux of active cytokinin, thereby contributing to root growth regulation. Additionally, cytokinin-dependent enlargement of stomatal aperture was impaired in the loss-of-function and overexpression lines. Our findings contribute to unraveling the many complexities of cytokinin flow and enhance our understanding of the regulatory mechanisms underlying root system development and stomatal opening in plants.
Collapse
Affiliation(s)
- Takuya Uragami
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Takatoshi Kiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Yuki Hayashi
- Graduate School of Science and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Toshinori Kinoshita
- Graduate School of Science and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
14
|
Wang G, Wu Z, Sun B. KNUCKLES regulates floral meristem termination by controlling auxin distribution and cytokinin activity. THE PLANT CELL 2024; 37:koae312. [PMID: 39576002 DOI: 10.1093/plcell/koae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024]
Abstract
The termination of floral meristem (FM) activity is essential for the normal development of reproductive floral organs. During this process, KNUCKLES (KNU), a C2H2-type zinc finger protein, crucially regulates FM termination by directly repressing the expression of both the stem cell identity gene WUSCHEL (WUS) and the stem cell marker gene CLAVATA3 (CLV3) to abolish the WUS-CLV3 feedback loop required for FM maintenance. In addition, phytohormones auxin and cytokinin are involved in FM regulation. However, whether KNU modulates auxin and cytokinin activities for FM determinacy control remains unclear. Here, we show that the auxin distribution and the cytokinin activity mediated by KNU in Arabidopsis (Arabidopsis thaliana) promote the termination of FM during stage 6 of flower development. Mutation of KNU leads to altered distribution of auxin and cytokinin in the FM of a stage 6 floral bud. Moreover, KNU directly represses the auxin transporter gene PIN-FORMED1 (PIN1) and the cytokinin biosynthesis gene ISOPENTENYLTRANSFERASE7 (IPT7) via mediating H3K27me3 deposition on these 2 loci to regulate auxin and cytokinin activities. Our study presents a molecular regulatory network that elucidates how the transcriptional repressor KNU integrates and modulates the activities of auxin and cytokinin, thus securing the timed FM termination.
Collapse
Affiliation(s)
- Guangling Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhiyue Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bo Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Kong S, Zhu M, Scarpin MR, Pan D, Jia L, Martinez RE, Alamos S, Vadde BVL, Garcia HG, Qian SB, Brunkard JO, Roeder AHK. DRMY1 promotes robust morphogenesis in Arabidopsis by sustaining the translation of cytokinin-signaling inhibitor proteins. Dev Cell 2024; 59:3141-3160.e7. [PMID: 39305905 PMCID: PMC11614703 DOI: 10.1016/j.devcel.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
Robustness is the invariant development of phenotype despite environmental changes and genetic perturbations. In the Arabidopsis flower bud, four sepals robustly initiate and grow to a constant size to enclose and protect the inner floral organs. We previously characterized the mutant development-related myb-like 1 (drmy1), where 3-5 sepals initiate variably and grow to different sizes, compromising their protective function. The molecular mechanism underlying this loss of robustness was unclear. Here, we show that drmy1 has reduced TARGET OF RAPAMYCIN (TOR) activity, ribosomal content, and translation. Translation reduction decreases the protein level of ARABIDOPSIS RESPONSE REGULATOR7 (ARR7) and ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6), two cytokinin-signaling inhibitors that are normally rapidly produced before sepal initiation. The resultant upregulation of cytokinin signaling disrupts robust auxin patterning and sepal initiation. Our work shows that the homeostasis of translation, a ubiquitous cellular process, is crucial for the robust spatiotemporal patterning of organogenesis.
Collapse
Affiliation(s)
- Shuyao Kong
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Mingyuan Zhu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - M Regina Scarpin
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - David Pan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Longfei Jia
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ryan E Martinez
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Simon Alamos
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Batthula Vijaya Lakshmi Vadde
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hernan G Garcia
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA; Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jacob O Brunkard
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
16
|
Wang F, Zhang H, Liu H, Wu C, Wan Y, Zhu L, Yang J, Cai P, Chen J, Ge T. Combating wheat yellow mosaic virus through microbial interactions and hormone pathway modulations. MICROBIOME 2024; 12:200. [PMID: 39407339 PMCID: PMC11481568 DOI: 10.1186/s40168-024-01911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/17/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND The rhizosphere microbiome is critical for promoting plant growth and mitigating soil-borne pathogens. However, its role in fighting soil-borne virus-induced diseases, such as wheat yellow mosaic virus (WYMV) transmitted by Polymyxa graminis zoospores, remains largely underexplored. In this study, we hypothesized that during viral infections, plant microbiomes engage in critical interactions with plants, with key microbes playing vital roles in maintaining plant health. Our research aimed to identify microbial taxa that not only suppress the disease but also boost wheat yield by using a blend of techniques, including field surveys, yield assessments, high-throughput sequencing of plant and soil microbiomes, microbial isolation, hydroponic experiments, and transcriptome sequencing. RESULTS We found that, compared with roots and leaves, the rhizosphere microbiome showed a better performance in predicting wheat yield and the prevalence of P. graminis and WYMV across the three WYMV-impacted regions in China. Using machine learning, we found that healthy rhizospheres were marked with potentially beneficial microorganisms, such as Sphingomonas and Allorhizobium-Neorhizobium-Parararhizobium-Rhizobium, whereas diseased rhizospheres were associated with a higher prevalence of potential pathogens, such as Bipolaris and Fusicolla. Structural equation modeling showed that these biomarkers both directly and indirectly impacted wheat yield by modulating the rhizosphere microbiome and P. graminis abundance. Upon re-introduction of two key healthy rhizosphere biomarkers, Sphingomonas azotifigens and Rhizobium deserti, into the rhizosphere, wheat growth and health were enhanced. This was attributed to the up-regulation of auxin and cytokinin signaling pathways and the regulation of jasmonic acid and salicylic acid pathways during infections. CONCLUSIONS Overall, our study revealed the critical role of the rhizosphere microbiome in combating soil-borne viral diseases, with specific rhizosphere microbes playing key roles in this process. Video Abstract.
Collapse
Affiliation(s)
- Fangyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Haoqing Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
| | - Chuanfa Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yi Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lifei Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Peng Cai
- National Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
17
|
Bilotta S, Éthier G, Laliberté AC, Goulet MC, Martel M, Michaud D, Pepin S. Synergetic light and cytokinin treatments mitigate the recombinant protein yield depression induced by high-density cultivation of hydroponically-grown Nicotiana benthamiana. Biotechnol Bioeng 2024; 121:3319-3328. [PMID: 39382055 DOI: 10.1002/bit.28781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 10/10/2024]
Abstract
Plant molecular farming is currently operating a transition from soil-based cultures toward hydroponic systems. In this study, we designed a whole-plant NFT (nutrient film technique) platform for the transient expression of influenza virus-like particles harboring hemagglutinin H1 proteins in Nicotiana benthamiana. In particular, we examined the effects of plant density during the post-infiltration expression phase on plant growth and H1 yield in relation to the daily light integral (DLI) received by the crop and the exogenous application of 6-BAP cytokinin (CK). We expected from previous work that high DLI and CK treatments would stimulate the development of highly productive leaves on axillary (secondary) stems and thereby improve the H1 yield at the whole-plant scale. Increasing plant density from 35.7 to 61 plants m-2 during the post-infiltration phase significantly decreased the proportion of axillary leaf biomass by 30% and H1 yield per plant by 39%, resulting in no additional yield gain on a whole-crop area basis. Adding CK to the recirculated nutrient solution decreased the harvested leaf biomass by 31% and did not enhance the relative proportion of S leaves of the plants as previously reported with foliar CK application. There was a 36% increase in H1 yield when doubling the DLI from 14 to 28 mol m-2 s-1, and up to 71% yield gain when combining such an increase in DLI with the hydroponic CK treatment. Contrary to our expectations, leaves located on the main stem, particularly those from the upper half of the plant (i.e., eighth leaf and above), contributed about 80% of total H1 yield. Our study highlights the significantly different phenotype (~30% less secondary leaf biomass) and divergent responses to light and CK treatments of NFT-grown N. benthamiana plants compared to previous studies conducted on potted plants.
Collapse
Affiliation(s)
- Stefano Bilotta
- Department of Plant Sciences, Laval University, Québec, Canada
| | - Gilbert Éthier
- Department of Plant Sciences, Laval University, Québec, Canada
| | | | | | | | | | - Steeve Pepin
- Department of Soils and Agri-Food Engineering, Laval University, Québec, Canada
| |
Collapse
|
18
|
Liu Y, Xue L, Wang Z, Che X, Deng L, Xie W, Guo W. Comparative analysis of element and hormone content in zygotic embryos of Pinus elliottii and P. elliottii × P. caribaea. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154359. [PMID: 39332320 DOI: 10.1016/j.jplph.2024.154359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Somatic embryogenesis is a crucial method for achieving clonal forestry in conifers. Understanding the development of zygotic embryos is essential not only for enhancing the efficiency and quality of somatic embryogenesis, but also for advancing forestry breeding programs. This study investigated dynamic changes of element and hormone contents during ZE development of Pinus elliottii and its hybrid P. elliottii × P. caribaea. Significant differences in embryo development speed among different clones were observed. Elemental analysis was conducted using inductively coupled plasma mass spectrometry (ICP-MS) and identified 68 elements, including major, minor, and beneficial elements. In both species, the contents of potassium (K), calcium (Ca), iron (Fe), boron (B) and five beneficial elements decreased during early ZE development, while phosphorus (P) and copper (Cu) increased. Significantly higher levels of K, Ca and Fe at the initial stage, and sulfur (S) and nickel (Ni) decreased at later stages were detected in P. elliottii than in the hybrid. For the other elements, except for very few significant differences at certain stages, most differences between the two species did not reach a significant level. The contents of endogenous hormones were determined and different accumulation patterns were detected in most hormones between the two species, except abscisic acid (ABA) which simultaneously decreased with developments by stage 8. Significant differences were found in indole-3-acetic acid (IAA) contents at most stages between species, while higher levels of total cytokinin (CK) at each stage were detected in the hybrid in comparison with those in P. elliottii. As a result, lower IAA to CK ratios in the hybrid than in P. elliottii. Methyl jasmonate (JA-me) and gibberellin A3 (GA3) contents showed a similar pattern and exhibited an M-shaped fluctuation in the hybrid. Furthermore, JA-me, GA3, gibberellin A4 (GA4) and brassinolide (BR) showed significantly higher levels in the hybrid than in P. elliottii. K-means clustering and correlation analyses were used to explore relationships between elements and hormones during embryo development, revealing complex interplay in both species. These data indicate different requirement in element and hormone contents for embryogenesis and suggest species-specific media composition for each step in somatic embryogenesis. The findings provide insights into their developmental processes and informing future research and applications in somatic embryogenesis and forestry breeding.
Collapse
Affiliation(s)
- Yang Liu
- Guangdong Academy of Forestry, Guangzhou, 510520, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, China
| | - Lei Xue
- Guangdong Academy of Forestry, Guangzhou, 510520, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, China
| | - Zhe Wang
- Guangdong Academy of Forestry, Guangzhou, 510520, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, China
| | - Xiaoliang Che
- Guangdong Academy of Forestry, Guangzhou, 510520, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, China
| | - Leping Deng
- Taishan Hongling Seed Orchard, Taishan, Guangdong, 529200, China
| | - Wei Xie
- Taishan Hongling Seed Orchard, Taishan, Guangdong, 529200, China
| | - Wenbing Guo
- Guangdong Academy of Forestry, Guangzhou, 510520, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, China.
| |
Collapse
|
19
|
Rudolf J, Tomovicova L, Panzarova K, Fajkus J, Hejatko J, Skalak J. Epigenetics and plant hormone dynamics: a functional and methodological perspective. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5267-5294. [PMID: 38373206 PMCID: PMC11389840 DOI: 10.1093/jxb/erae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Plant hormones, pivotal regulators of plant growth, development, and response to environmental cues, have recently emerged as central modulators of epigenetic processes governing gene expression and phenotypic plasticity. This review addresses the complex interplay between plant hormones and epigenetic mechanisms, highlighting the diverse methodologies that have been harnessed to decipher these intricate relationships. We present a comprehensive overview to understand how phytohormones orchestrate epigenetic modifications, shaping plant adaptation and survival strategies. Conversely, we explore how epigenetic regulators ensure hormonal balance and regulate the signalling pathways of key plant hormones. Furthermore, our investigation includes a search for novel genes that are regulated by plant hormones under the control of epigenetic processes. Our review offers a contemporary overview of the epigenetic-plant hormone crosstalk, emphasizing its significance in plant growth, development, and potential agronomical applications.
Collapse
Affiliation(s)
- Jiri Rudolf
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Lucia Tomovicova
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Klara Panzarova
- Photon Systems Instruments, Prumyslova 470, CZ-664 24 Drasov, Czech Republic
| | - Jiri Fajkus
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Jan Hejatko
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Jan Skalak
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| |
Collapse
|
20
|
Haile AT, Kovi MR, Johnsen SS, Hvoslef-Eide T, Tesfaye B, Rognli OA. Limited genetic diversity found among genotypes of the Entada landrace ( Ensete ventricosum, (Welw.) Chessman) from Ethiopia. FRONTIERS IN PLANT SCIENCE 2024; 15:1336461. [PMID: 39315368 PMCID: PMC11416936 DOI: 10.3389/fpls.2024.1336461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/12/2024] [Indexed: 09/25/2024]
Abstract
The Entada landrace of enset (Ensete ventricosum (Welw.) Chessman) is probably the most unique indigenous crop in Ethiopia, being maintained and utilized by the Ari people in the South of Ethiopia. Here we describe genetic diversity, selection signatures and relationship of Entada with cultivated and wild enset using 117 Entada genotypes collected from three Entada growing regions in Ethiopia (Sidama, South and North Ari). A total number of 1,617 high-quality SNP markers, obtained from ddRAD-sequences, were used for the diversity studies. Phylogenetic analysis detected a clear distinction between cultivated enset, Entada and wild enset with Entada forming a completely separated clade. However, extremely short branch lengths among the Entada genotypes indicate very little molecular evolution in the Entada lineages. Observed and expected heterozygosities were high, 0.73 and 0.50, respectively. Overall, our results strongly indicate that the Entada genotypes we have studied originated from one or a few clonal lineages that have been propagated and spread among farmers as clones. Prolonged clonal propagation of heterozygous genotypes from a single or few founding lineages has led to populations with very little or no diversity between genotypes, and high heterozygosity within genotypes. Signatures of directional selection were identified at eight loci based on an FST outlier analysis. Four candidate genes detected are involved in axillary shoot growth and might be involved in controlling natural sucker formation in Entada.
Collapse
Affiliation(s)
- Alye Tefera Haile
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
- School of Plant and Horticultural Science, College of Agriculture, Hawassa University, Hawassa, Ethiopia
| | - Mallikarjuna Rao Kovi
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Sylvia Sagen Johnsen
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Trine Hvoslef-Eide
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Bizuayehu Tesfaye
- School of Plant and Horticultural Science, College of Agriculture, Hawassa University, Hawassa, Ethiopia
| | - Odd Arne Rognli
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
21
|
Derbyshire MC, Newman TE, Thomas WJW, Batley J, Edwards D. The complex relationship between disease resistance and yield in crops. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2612-2623. [PMID: 38743906 PMCID: PMC11331782 DOI: 10.1111/pbi.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/03/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
In plants, growth and defence are controlled by many molecular pathways that are antagonistic to one another. This results in a 'growth-defence trade-off', where plants temporarily reduce growth in response to pests or diseases. Due to this antagonism, genetic variants that improve resistance often reduce growth and vice versa. Therefore, in natural populations, the most disease resistant individuals are often the slowest growing. In crops, slow growth may translate into a yield penalty, but resistance is essential for protecting yield in the presence of disease. Therefore, plant breeders must balance these traits to ensure optimal yield potential and yield stability. In crops, both qualitative and quantitative disease resistance are often linked with genetic variants that cause yield penalties, but this is not always the case. Furthermore, both crop yield and disease resistance are complex traits influenced by many aspects of the plant's physiology, morphology and environment, and the relationship between the molecular growth-defence trade-off and disease resistance-yield antagonism is not well-understood. In this article, we highlight research from the last 2 years on the molecular mechanistic basis of the antagonism between defence and growth. We then discuss the interaction between disease resistance and crop yield from a breeding perspective, outlining the complexity and nuances of this relationship and where research can aid practical methods for simultaneous improvement of yield potential and disease resistance.
Collapse
Affiliation(s)
- Mark C. Derbyshire
- Centre for Crop and Disease ManagementCurtin UniversityPerthWestern AustraliaAustralia
| | - Toby E. Newman
- Centre for Crop and Disease ManagementCurtin UniversityPerthWestern AustraliaAustralia
| | - William J. W. Thomas
- Centre for Applied Bioinformatics and School of Biological ScienceUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Jacqueline Batley
- Centre for Applied Bioinformatics and School of Biological ScienceUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - David Edwards
- Centre for Applied Bioinformatics and School of Biological ScienceUniversity of Western AustraliaPerthWestern AustraliaAustralia
| |
Collapse
|
22
|
Singh Rawat S, Laxmi A. Light at the end of the tunnel: integrating signaling pathways in the coordination of lateral root development. Biochem Soc Trans 2024; 52:1895-1908. [PMID: 39171690 DOI: 10.1042/bst20240049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Root system architecture (RSA) encompasses a range of physical root attributes, including the lateral roots (LRs), root hairs and adventitious roots, in addition to the primary or main root. This overall structure is a crucial trait for efficient water and mineral capture alongside providing anchorage to the plant in the soil and is vital for plant productivity and fitness. RSA dynamics are dependent upon various environmental cues such as light, soil pH, water, mineral nutrition and the belowground microbiome. Among these factors, light signaling through HY5 significantly influences the flexibility of RSA by controlling different signaling pathways that converge at photoreceptors-mediated signaling, also present in the 'hidden half'. Furthermore, several phytohormones also drive the formation and emergence of LRs and are critical to harmonize intra and extracellular stimuli in this regard. This review endeavors to elucidate the impact of these interactions on RSA, with particular emphasis on LR development and to enhance our understanding of the fundamental mechanisms governing the light-regulation of LR growth and physiology.
Collapse
Affiliation(s)
- Sanjay Singh Rawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
23
|
Yan Z, Hou J, Leng B, Yao G, Ma C, Sun Y, Zhang F, Mu C, Liu X. Genome-Wide Investigation of the CRF Gene Family in Maize and Functional Analysis of ZmCRF9 in Response to Multiple Abiotic Stresses. Int J Mol Sci 2024; 25:7650. [PMID: 39062894 PMCID: PMC11276700 DOI: 10.3390/ijms25147650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The cytokinin response factors (CRFs) are pivotal players in regulating plant growth, development, and responses to diverse stresses. Despite their significance, comprehensive information on CRF genes in the primary food crop, maize, remains scarce. In this study, a genome-wide analysis of CRF genes in maize was conducted, resulting in the identification of 12 members. Subsequently, we assessed the chromosomal locations, gene duplication events, evolutionary relationships, conserved motifs, and gene structures of all ZmCRF members. Analysis of ZmCRF promoter regions indicated the presence of cis-regulatory elements associated with plant growth regulation, hormone response, and various abiotic stress responses. The expression patterns of maize CRF genes, presented in heatmaps, exhibited distinctive patterns of tissue specificity and responsiveness to multiple abiotic stresses. qRT-PCR experiments were conducted on six selected genes and confirmed the involvement of ZmCRF genes in the plant's adaptive responses to diverse environmental challenges. In addition, ZmCRF9 was demonstrated to positively regulate cold and salt tolerance. Ultimately, we explored the putative interaction partners of ZmCRF proteins. In summary, this systematic overview and deep investigation of ZmCRF9 provides a solid foundation for further exploration into how these genes contribute to the complex interplay of plant growth, development, and responses to stress.
Collapse
Affiliation(s)
- Zhenwei Yan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Jing Hou
- School of Agriculture, Ludong University, Yantai 264001, China;
| | - Bingying Leng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Guoqi Yao
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan 250300, China;
| | - Yue Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China;
| | - Fajun Zhang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Chunhua Mu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| | - Xia Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (B.L.); (G.Y.); (C.M.)
| |
Collapse
|
24
|
Moore S, Jervis G, Topping JF, Chen C, Liu J, Lindsey K. A predictive model for ethylene-mediated auxin and cytokinin patterning in the Arabidopsis root. PLANT COMMUNICATIONS 2024; 5:100886. [PMID: 38504522 PMCID: PMC11287175 DOI: 10.1016/j.xplc.2024.100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/25/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
The interaction between auxin and cytokinin is important in many aspects of plant development. Experimental measurements of both auxin and cytokinin concentration and reporter gene expression clearly show the coexistence of auxin and cytokinin concentration patterning in Arabidopsis root development. However, in the context of crosstalk among auxin, cytokinin, and ethylene, little is known about how auxin and cytokinin concentration patterns simultaneously emerge and how they regulate each other in the Arabidopsis root. This work utilizes a wide range of experimental observations to propose a mechanism for simultaneous patterning of auxin and cytokinin concentrations. In addition to revealing the regulatory relationships between auxin and cytokinin, this mechanism shows that ethylene signaling is an important factor in achieving simultaneous auxin and cytokinin patterning, while also predicting other experimental observations. Combining the mechanism with a realistic in silico root model reproduces experimental observations of both auxin and cytokinin patterning. Predictions made by the mechanism can be compared with a variety of experimental observations, including those obtained by our group and other independent experiments reported by other groups. Examples of these predictions include patterning of auxin biosynthesis rate, changes in PIN1 and PIN2 patterns in pin3,4,7 mutants, changes in cytokinin patterning in the pls mutant, PLS patterning, and various trends in different mutants. This research reveals a plausible mechanism for simultaneous patterning of auxin and cytokinin concentrations in Arabidopsis root development and suggests a key role for ethylene pattern integration.
Collapse
Affiliation(s)
- Simon Moore
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - George Jervis
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Jennifer F Topping
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Chunli Chen
- Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junli Liu
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
25
|
Alghamdi AK, Parween S, Hirt H, Saad MM. Unraveling the genomic secrets of Tritonibacter mobilis AK171: a plant growth-promoting bacterium isolated from Avicennia marina. BMC Genomics 2024; 25:672. [PMID: 38969999 PMCID: PMC11225332 DOI: 10.1186/s12864-024-10555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
The scarcity of freshwater resources resulting in a significant yield loss presents a pressing challenge in agriculture. To address this issue, utilizing abundantly available saline water could offer a smart solution. In this study, we demonstrate that the genome sequence rhizosphere bacterium Tritonibacter mobilis AK171, a halophilic marine bacterium recognized for its ability to thrive in saline and waterlogged environments, isolated from mangroves, has the remarkable ability to enable plant growth using saline irrigation. AK171 is characterized as rod-shaped cells, displays agile movement in free-living conditions, and adopts a rosette arrangement in static media. Moreover, The qualitative evaluation of PGP traits showed that AK171 could produce siderophores and IAA but could not solubilize phosphate nor produce hydrolytic enzymes it exhibits a remarkable tolerance to high temperatures and salinity. In this study, we conducted a comprehensive genome sequence analysis of T. mobilis AK171 to unravel the genetic mechanisms underlying its plant growth-promoting abilities in such challenging conditions. Our analysis revealed diverse genes and pathways involved in the bacterium's adaptation to salinity and waterlogging stress. Notably, T. mobilis AK171 exhibited a high level of tolerance to salinity and waterlogging through the activation of stress-responsive genes and the production of specific enzymes and metabolites. Additionally, we identified genes associated with biofilm formation, indicating its potential role in establishing symbiotic relationships with host plants. Furthermore, our analysis unveiled the presence of genes responsible for synthesizing antimicrobial compounds, including tropodithietic acid (TDA), which can effectively control phytopathogens. This genomic insight into T. mobilis AK171 provides valuable information for understanding the molecular basis of plant-microbial interactions in saline and waterlogged environments. It offers potential applications for sustainable agriculture in challenging conditions.
Collapse
Affiliation(s)
- Amal Khalaf Alghamdi
- DARWIN21, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sabiha Parween
- DARWIN21, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Max Perutz Laboratories, University of Vienna, Vienna, Austria.
| | - Maged M Saad
- DARWIN21, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
26
|
Ma Y, Chang W, Li Y, Xu J, Song Y, Yao X, Wang L, Sun Y, Guo L, Zhang H, Liu X. Plant cuticles repress organ initiation and development during skotomorphogenesis in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100850. [PMID: 38409782 PMCID: PMC11211553 DOI: 10.1016/j.xplc.2024.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/11/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
After germination in the dark, plants produce a shoot apical hook and closed cotyledons to protect the quiescent shoot apical meristem (SAM), which is critical for seedling survival during skotomorphogenesis. The factors that coordinate these processes, particularly SAM repression, remain enigmatic. Plant cuticles, multilayered structures of lipid components on the outermost surface of the aerial epidermis of all land plants, provide protection against desiccation and external environmental stresses. Whether and how cuticles regulate plant development are still unclear. Here, we demonstrate that mutants of BODYGUARD1 (BDG1) and long-chain acyl-CoA synthetase2 (LACS2), key genes involved in cutin biosynthesis, produce a short hypocotyl with an opened apical hook and cotyledons in which the SAM is activated during skotomorphogenesis. Light signaling represses expression of BDG1 and LACS2, as well as cutin biosynthesis. Transcriptome analysis revealed that cuticles are critical for skotomorphogenesis, particularly for the development and function of chloroplasts. Genetic and molecular analyses showed that decreased HOOKLESS1 expression results in apical hook opening in the mutants. When hypoxia-induced expression of LITTLE ZIPPER2 at the SAM promotes organ initiation in the mutants, the de-repressed expression of cell-cycle genes and the cytokinin response induce the growth of true leaves. Our results reveal previously unrecognized developmental functions of the plant cuticle during skotomorphogenesis and demonstrate a mechanism by which light initiates photomorphogenesis through dynamic regulation of cuticle synthesis to induce coordinated and systemic changes in organ development and growth during the skotomorphogenesis-to-photomorphogenesis transition.
Collapse
Affiliation(s)
- Yuru Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Wenwen Chang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yongpeng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Jiahui Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yongli Song
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Xinmiao Yao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Lei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yu Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Lin Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Hao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
27
|
Zarbakhsh S, Shahsavar AR, Soltani M. Optimizing PGRs for in vitro shoot proliferation of pomegranate with bayesian-tuned ensemble stacking regression and NSGA-II: a comparative evaluation of machine learning models. PLANT METHODS 2024; 20:82. [PMID: 38822411 PMCID: PMC11143642 DOI: 10.1186/s13007-024-01211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND The process of optimizing in vitro shoot proliferation is a complicated task, as it is influenced by interactions of many factors as well as genotype. This study investigated the role of various concentrations of plant growth regulators (zeatin and gibberellic acid) in the successful in vitro shoot proliferation of three Punica granatum cultivars ('Faroogh', 'Atabaki' and 'Shirineshahvar'). Also, the utility of five Machine Learning (ML) algorithms-Support Vector Regression (SVR), Random Forest (RF), Extreme Gradient Boosting (XGB), Ensemble Stacking Regression (ESR) and Elastic Net Multivariate Linear Regression (ENMLR)-as modeling tools were evaluated on in vitro multiplication of pomegranate. A new automatic hyperparameter optimization method named Adaptive Tree Pazen Estimator (ATPE) was developed to tune the hyperparameters. The performance of the models was evaluated and compared using statistical indicators (MAE, RMSE, RRMSE, MAPE, R and R2), while a specific Global Performance Indicator (GPI) was introduced to rank the models based on a single parameter. Moreover, Non‑dominated Sorting Genetic Algorithm‑II (NSGA‑II) was employed to optimize the selected prediction model. RESULTS The results demonstrated that the ESR algorithm exhibited higher predictive accuracy in comparison to other ML algorithms. The ESR model was subsequently introduced for optimization by NSGA‑II. ESR-NSGA‑II revealed that the highest proliferation rate (3.47, 3.84, and 3.22), shoot length (2.74, 3.32, and 1.86 cm), leave number (18.18, 19.76, and 18.77), and explant survival (84.21%, 85.49%, and 56.39%) could be achieved with a medium containing 0.750, 0.654, and 0.705 mg/L zeatin, and 0.50, 0.329, and 0.347 mg/L gibberellic acid in the 'Atabaki', 'Faroogh', and 'Shirineshahvar' cultivars, respectively. CONCLUSIONS This study demonstrates that the 'Shirineshahvar' cultivar exhibited lower shoot proliferation success compared to the other cultivars. The results indicated the good performance of ESR-NSGA-II in modeling and optimizing in vitro propagation. ESR-NSGA-II can be applied as an up-to-date and reliable computational tool for future studies in plant in vitro culture.
Collapse
Affiliation(s)
- Saeedeh Zarbakhsh
- Department of Horticultural Science, College of Agriculture, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Reza Shahsavar
- Department of Horticultural Science, College of Agriculture, Faculty of Agriculture, Shiraz University, Shiraz, Iran.
| | | |
Collapse
|
28
|
Kong S, Zhu M, Scarpin MR, Pan D, Jia L, Martinez RE, Alamos S, Vadde BVL, Garcia HG, Qian SB, Brunkard JO, Roeder AHK. DRMY1 promotes robust morphogenesis by sustaining the translation of cytokinin signaling inhibitor proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.07.536060. [PMID: 37066395 PMCID: PMC10104159 DOI: 10.1101/2023.04.07.536060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Robustness is the invariant development of phenotype despite environmental changes and genetic perturbations. In the Arabidopsis flower bud, four sepals robustly initiate and grow to constant size to enclose and protect the inner floral organs. We previously characterized the mutant development related myb-like1 ( drmy1 ), where 3-5 sepals initiate variably and grow to different sizes, compromising their protective function. The molecular mechanism underlying this loss of robustness was unclear. Here, we show that drmy1 has reduced TARGET OF RAPAMYCIN (TOR) activity, ribosomal content, and translation. Translation reduction decreases the protein level of ARABIDOPSIS RESPONSE REGULATOR7 (ARR7) and ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6), two cytokinin signaling inhibitors that are normally rapidly produced before sepal initiation. The resultant upregulation of cytokinin signaling disrupts robust auxin patterning and sepal initiation. Our work shows that the homeostasis of translation, a ubiquitous cellular process, is crucial for the robust spatiotemporal patterning of organogenesis.
Collapse
|
29
|
Argueso CT, Kieber JJ. Cytokinin: From autoclaved DNA to two-component signaling. THE PLANT CELL 2024; 36:1429-1450. [PMID: 38163638 PMCID: PMC11062471 DOI: 10.1093/plcell/koad327] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 01/03/2024]
Abstract
Since its first identification in the 1950s as a regulator of cell division, cytokinin has been linked to many physiological processes in plants, spanning growth and development and various responses to the environment. Studies from the last two and one-half decades have revealed the pathways underlying the biosynthesis and metabolism of cytokinin and have elucidated the mechanisms of its perception and signaling, which reflects an ancient signaling system evolved from two-component elements in bacteria. Mutants in the genes encoding elements involved in these processes have helped refine our understanding of cytokinin functions in plants. Further, recent advances have provided insight into the mechanisms of intracellular and long-distance cytokinin transport and the identification of several proteins that operate downstream of cytokinin signaling. Here, we review these processes through a historical lens, providing an overview of cytokinin metabolism, transport, signaling, and functions in higher plants.
Collapse
Affiliation(s)
- Cristiana T Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
30
|
Blume-Werry G, Semenchuk P, Ljung K, Milbau A, Novak O, Olofsson J, Brunoni F. In situ seasonal patterns of root auxin concentrations and meristem length in an arctic sedge. THE NEW PHYTOLOGIST 2024; 242:988-999. [PMID: 38375943 DOI: 10.1111/nph.19616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024]
Abstract
Seasonal dynamics of root growth play an important role in large-scale ecosystem processes; they are largely governed by growth regulatory compounds and influenced by environmental conditions. Yet, our knowledge about physiological drivers of root growth is mostly limited to laboratory-based studies on model plant species. We sampled root tips of Eriophorum vaginatum and analyzed their auxin concentrations and meristem lengths biweekly over a growing season in situ in a subarctic peatland, both in surface soil and at the permafrost thawfront. Auxin concentrations were almost five times higher in surface than in thawfront soils and increased over the season, especially at the thawfront. Surprisingly, meristem length showed an opposite pattern and was almost double in thawfront compared with surface soils. Meristem length increased from peak to late season in the surface soils but decreased at the thawfront. Our study of in situ seasonal dynamics in root physiological parameters illustrates the potential for physiological methods to be applied in ecological studies and emphasizes the importance of in situ measurements. The strong effect of root location and the unexpected opposite patterns of meristem length and auxin concentrations likely show that auxin actively governs root growth to ensure a high potential for nutrient uptake at the thawfront.
Collapse
Affiliation(s)
- Gesche Blume-Werry
- Department of Ecology and Environmental Science, Umeå University, 901 87, Umeå, Sweden
| | - Philipp Semenchuk
- Department of Arctic Biology, UNIS - The University Centre in Svalbard, 9171, Longyearbyen, Norway
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Ann Milbau
- Department of Ecology and Environmental Science, Umeå University, 901 87, Umeå, Sweden
| | - Ondrej Novak
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - Johan Olofsson
- Department of Ecology and Environmental Science, Umeå University, 901 87, Umeå, Sweden
| | - Federica Brunoni
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| |
Collapse
|
31
|
Luna-García V, Bernal Gallardo JJ, Rethoret-Pasty M, Pasha A, Provart NJ, de Folter S. A high-resolution gene expression map of the medial and lateral domains of the gynoecium of Arabidopsis. PLANT PHYSIOLOGY 2024; 195:410-429. [PMID: 38088205 DOI: 10.1093/plphys/kiad658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/14/2023] [Indexed: 05/02/2024]
Abstract
Angiosperms are characterized by the formation of flowers, and in their inner floral whorl, one or various gynoecia are produced. These female reproductive structures are responsible for fruit and seed production, thus ensuring the reproductive competence of angiosperms. In Arabidopsis (Arabidopsis thaliana), the gynoecium is composed of two fused carpels with different tissues that need to develop and differentiate to form a mature gynoecium and thus the reproductive competence of Arabidopsis. For these reasons, they have become the object of study for floral and fruit development. However, due to the complexity of the gynoecium, specific spatio-temporal tissue expression patterns are still scarce. In this study, we used precise laser-assisted microdissection and high-throughput RNA sequencing to describe the transcriptional profiles of the medial and lateral domain tissues of the Arabidopsis gynoecium. We provide evidence that the method used is reliable and that, in addition to corroborating gene expression patterns of previously reported regulators of these tissues, we found genes whose expression dynamics point to being involved in cytokinin and auxin homeostasis and in cell cycle progression. Furthermore, based on differential gene expression analyses, we functionally characterized several genes and found that they are involved in gynoecium development. This resource is available via the Arabidopsis eFP browser and will serve the community in future studies on developmental and reproductive biology.
Collapse
Affiliation(s)
- Valentín Luna-García
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato CP 36824, Guanajuato, México
| | - Judith Jazmin Bernal Gallardo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato CP 36824, Guanajuato, México
| | - Martin Rethoret-Pasty
- Department of Cell & Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
- Polytech Nice Sophia, Université Côte d'Azur, 930 Rte des Colles, 06410 Biot, France
| | - Asher Pasha
- Department of Cell & Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - Nicholas J Provart
- Department of Cell & Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato CP 36824, Guanajuato, México
| |
Collapse
|
32
|
Kandhol N, Srivastava A, Rai P, Sharma S, Pandey S, Singh VP, Tripathi DK. Cytokinin and indole-3-acetic acid crosstalk is indispensable for silicon mediated chromium stress tolerance in roots of wheat seedlings. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133134. [PMID: 38387171 DOI: 10.1016/j.jhazmat.2023.133134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 02/24/2024]
Abstract
The rising heavy metal contamination of soils imposes toxic impacts on plants as well as other life forms. One such highly toxic and carcinogenic heavy metal is hexavalent chromium [Cr(VI)] that has been reported to prominently retard the plant growth. The present study investigated the potential of silicon (Si, 10 µM) to alleviate the toxicity of Cr(VI) (25 µM) on roots of wheat (Triticum aestivum L.) seedlings. Application of Si to Cr(VI)-stressed wheat seedlings improved their overall growth parameters. This study also reveals the involvement of two phytohormones, namely auxin and cytokinin and their crosstalk in Si-mediated mitigation of the toxic impacts of Cr(VI) in wheat seedlings. The application of cytokinin alone to wheat seedlings under Cr(VI) stress reduced the intensity of toxic effects of Cr(VI). In combination with Si, cytokinin application to Cr(VI)-stressed wheat seedlings significantly minimized the decrease induced by Cr(VI) in different parameters such as root-shoot length (10.8% and 13%, respectively), root-shoot fresh mass (11.3% and 10.1%, respectively), and total chlorophyll and carotenoids content (13.4% and 6.8%, respectively) with respect to the control. This treatment also maintained the regulation of proline metabolism (proline content, and P5CS and PDH activities), ascorbate-glutathione (AsA-GSH) cycle and nutrient homeostasis. The protective effect of Si and cytokinin against Cr(VI) stress was minimized upon supplementation of an inhibitor of polar auxin transport- 2,3,5-triiodobenzoic acid (TIBA) which suggested a potential involvement of auxin in Si and cytokinin-mediated mitigation of Cr(VI) toxicity. The exogenous addition of a natural auxin - indole-3-acetic acid (IAA) confirmed auxin is an active member of a signaling cascade along with cytokinin that aids in Si-mediated Cr(VI) toxicity alleviation as IAA application reversed the negative impacts of TIBA on wheat roots treated with Cr(VI), cytokinin and Si. The results of this research are also confirmed by the gene expression analysis conducted for nutrient transporters (Lsi1, CCaMK, MHX, SULT1 and ZIP1) and enzymes involved in the AsA-GSH cycle (APX, GR, DHAR and MDHAR). The overall results of this research indicate towards possible induction of a crosstalk between cytokinin and IAA upon Si supplementation which in turn stimulates physiological, biochemical and molecular changes to exhibit protective effects against Cr(VI) stress. Further, the information obtained suggests probable employment of Si, cytokinin and IAA alone or combined in agriculture to maintain plant productivity under Cr(VI) stress and data regarding expression of key genes can be used to develop new crop varieties with enhanced resistance against Cr(VI) stress together with its reduced load in seedlings.
Collapse
Affiliation(s)
- Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Aakriti Srivastava
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Padmaja Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | - Sangeeta Pandey
- Plant Microbe Interaction Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, University of Allahabad, Prayagraj 211002, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India.
| |
Collapse
|
33
|
Petersen M, Ebstrup E, Rodriguez E. Going through changes - the role of autophagy during reprogramming and differentiation. J Cell Sci 2024; 137:jcs261655. [PMID: 38393817 DOI: 10.1242/jcs.261655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Somatic cell reprogramming is a complex feature that allows differentiated cells to undergo fate changes into different cell types. This process, which is conserved between plants and animals, is often achieved via dedifferentiation into pluripotent stem cells, which have the ability to generate all other types of cells and tissues of a given organism. Cellular reprogramming is thus a complex process that requires extensive modification at the epigenetic and transcriptional level, unlocking cellular programs that allow cells to acquire pluripotency. In addition to alterations in the gene expression profile, cellular reprogramming requires rearrangement of the proteome, organelles and metabolism, but these changes are comparatively less studied. In this context, autophagy, a cellular catabolic process that participates in the recycling of intracellular constituents, has the capacity to affect different aspects of cellular reprogramming, including the removal of protein signatures that might hamper reprogramming, mitophagy associated with metabolic reprogramming, and the supply of energy and metabolic building blocks to cells that undergo fate changes. In this Review, we discuss advances in our understanding of the role of autophagy during cellular reprogramming by drawing comparisons between plant and animal studies, as well as highlighting aspects of the topic that warrant further research.
Collapse
Affiliation(s)
- Morten Petersen
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Elise Ebstrup
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Eleazar Rodriguez
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
34
|
Rathor P, Upadhyay P, Ullah A, Gorim LY, Thilakarathna MS. Humic acid improves wheat growth by modulating auxin and cytokinin biosynthesis pathways. AOB PLANTS 2024; 16:plae018. [PMID: 38601216 PMCID: PMC11005776 DOI: 10.1093/aobpla/plae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Humic acids have been widely used for centuries to enhance plant growth and productivity. The beneficial effects of humic acids have been attributed to different functional groups and phytohormone-like compounds enclosed in macrostructure. However, the mechanisms underlying the plant growth-promoting effects of humic acids are only partially understood. We hypothesize that the bio-stimulatory effect of humic acids is mainly due to the modulation of innate pathways of auxin and cytokinin biosynthesis in treated plants. A physiological investigation along with molecular characterization was carried out to understand the mechanism of bio-stimulatory effects of humic acid. A gene expression analysis was performed for the genes involved in auxin and cytokinin biosynthesis pathways in wheat seedlings. Furthermore, Arabidopsis thaliana transgenic lines generated by fusing the auxin-responsive DR5 and cytokinin-responsive ARR5 promoter to ß-glucuronidase (GUS) reporter were used to study the GUS expression analysis in humic acid treated seedlings. This study demonstrates that humic acid treatment improved the shoot and root growth of wheat seedlings. The expression of several genes involved in auxin (Tryptophan Aminotransferase of Arabidopsis and Gretchen Hagen 3.2) and cytokinin (Lonely Guy3) biosynthesis pathways were up-regulated in humic acid-treated seedlings compared to the control. Furthermore, GUS expression analysis showed that bioactive compounds of humic acid stimulate endogenous auxin and cytokinin-like activities. This study is the first report in which using ARR5:GUS lines we demonstrate the biostimulants activity of humic acid.
Collapse
Affiliation(s)
- Pramod Rathor
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Punita Upadhyay
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Linda Yuya Gorim
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Malinda S Thilakarathna
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
35
|
Xu Y, Ran S, Li S, Lu J, Huang W, Zheng J, Hou M, Zhong F. Genome-Wide Identification and Abiotic Stress Expression Analysis of CKX and IPT Family Genes in Cucumber ( Cucumis sativus L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:422. [PMID: 38337953 PMCID: PMC10856886 DOI: 10.3390/plants13030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Cytokinins (CKs) are among the hormones that regulate plants' growth and development, and the CKX and IPT genes, which are CK degradation and biosynthesis genes, respectively, play important roles in fine-tuning plants' cytokinin levels. However, the current research on the function of IPT and CKX in cucumber's growth, development, and response to abiotic stress is not specific enough, and their regulatory mechanisms are still unclear. In this study, we focused on the IPT and CKX genes in cucumber, analyzed the physiological and biochemical properties of their encoded proteins, and explored their expression patterns in different tissue parts and under low light, salt stress, and drought stress. Eight CsCKX and eight CsIPT genes were identified from the cucumber genome. We constructed a phylogenetic tree from the amino acid sequences and performed prediction analyses of the cis-acting elements of the CsCKX and CsIPT promoters to determine whether CsCKXs and CsIPTs are responsive to light, abiotic stress, and different hormones. We also performed expression analysis of these genes in different tissues, and we found that CsCKXs and CsIPTs were highly expressed in roots and male flowers. Thus, they are involved in the whole growth and development process of the plant. This paper provides a reference for further research on the biological functions of CsIPT and CsCKX in regulating the growth and development of cucumber and its response to abiotic stress.
Collapse
Affiliation(s)
- Yang Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (S.R.); (J.L.)
| | - Shengxiang Ran
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (S.R.); (J.L.)
| | - Shuhao Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (S.R.); (J.L.)
| | - Junyang Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (S.R.); (J.L.)
| | | | - Jingyuan Zheng
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China;
| | - Maomao Hou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (S.R.); (J.L.)
| | - Fenglin Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (S.R.); (J.L.)
| |
Collapse
|
36
|
Kean-Galeno T, Lopez-Arredondo D, Herrera-Estrella L. The Shoot Apical Meristem: An Evolutionary Molding of Higher Plants. Int J Mol Sci 2024; 25:1519. [PMID: 38338798 PMCID: PMC10855264 DOI: 10.3390/ijms25031519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The shoot apical meristem (SAM) gives rise to the aerial structure of plants by producing lateral organs and other meristems. The SAM is responsible for plant developmental patterns, thus determining plant morphology and, consequently, many agronomic traits such as the number and size of fruits and flowers and kernel yield. Our current understanding of SAM morphology and regulation is based on studies conducted mainly on some angiosperms, including economically important crops such as maize (Zea mays) and rice (Oryza sativa), and the model species Arabidopsis (Arabidopsis thaliana). However, studies in other plant species from the gymnosperms are scant, making difficult comparative analyses that help us understand SAM regulation in diverse plant species. This limitation prevents deciphering the mechanisms by which evolution gave rise to the multiple plant structures within the plant kingdom and determines the conserved mechanisms involved in SAM maintenance and operation. This review aims to integrate and analyze the current knowledge of SAM evolution by combining the morphological and molecular information recently reported from the plant kingdom.
Collapse
Affiliation(s)
- Tania Kean-Galeno
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX 79409, USA; (T.K.-G.); (D.L.-A.)
| | - Damar Lopez-Arredondo
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX 79409, USA; (T.K.-G.); (D.L.-A.)
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX 79409, USA; (T.K.-G.); (D.L.-A.)
- Unidad de Genómica Avanzada/Langebio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36821, Mexico
| |
Collapse
|
37
|
Zhou CM, Li JX, Zhang TQ, Xu ZG, Ma ML, Zhang P, Wang JW. The structure of B-ARR reveals the molecular basis of transcriptional activation by cytokinin. Proc Natl Acad Sci U S A 2024; 121:e2319335121. [PMID: 38198526 PMCID: PMC10801921 DOI: 10.1073/pnas.2319335121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The phytohormone cytokinin has various roles in plant development, including meristem maintenance, vascular differentiation, leaf senescence, and regeneration. Prior investigations have revealed that cytokinin acts via a phosphorelay similar to the two-component system by which bacteria sense and respond to external stimuli. The eventual targets of this phosphorelay are type-B ARABIDOPSIS RESPONSE REGULATORS (B-ARRs), containing the conserved N-terminal receiver domain (RD), middle DNA binding domain (DBD), and C-terminal transactivation domain. While it has been established for two decades that the phosphoryl transfer from a specific histidyl residue in ARABIDOPSIS HIS PHOSPHOTRANSFER PROTEINS (AHPs) to an aspartyl residue in the RD of B-ARRs results in a rapid transcriptional response to cytokinin, the underlying molecular basis remains unclear. In this work, we determine the crystal structures of the RD-DBD of ARR1 (ARR1RD-DBD) as well as the ARR1DBD-DNA complex from Arabidopsis. Analyses of the ARR1DBD-DNA complex have revealed the structural basis for sequence-specific recognition of the GAT trinucleotide by ARR1. In particular, comparing the ARR1RD-DBD and ARR1DBD-DNA structures reveals that unphosphorylated ARR1RD-DBD exists in a closed conformation with extensive contacts between the RD and DBD. In vitro and vivo functional assays have further suggested that phosphorylation of the RD weakens its interaction with DBD, subsequently permits the DNA binding capacity of DBD, and promotes the transcriptional activity of ARR1. Our findings thus provide mechanistic insights into phosphorelay activation of gene transcription in response to cytokinin.
Collapse
Affiliation(s)
- Chuan-Miao Zhou
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Jian-Xu Li
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai201602, China
| | - Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Miao-Lian Ma
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
- New Cornerstone Science Laboratory, Shanghai200032, China
| |
Collapse
|
38
|
Skalický V, Antoniadi I, Pěnčík A, Chamrád I, Lenobel R, Kubeš MF, Zatloukal M, Žukauskaitė A, Strnad M, Ljung K, Novák O. Fluorescence-activated multi-organelle mapping of subcellular plant hormone distribution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1825-1841. [PMID: 37682018 DOI: 10.1111/tpj.16456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
Auxins and cytokinins are two major families of phytohormones that control most aspects of plant growth, development and plasticity. Their distribution in plants has been described, but the importance of cell- and subcellular-type specific phytohormone homeostasis remains undefined. Herein, we revealed auxin and cytokinin distribution maps showing their different organelle-specific allocations within the Arabidopsis plant cell. To do so, we have developed Fluorescence-Activated multi-Organelle Sorting (FAmOS), an innovative subcellular fractionation technique based on flow cytometric principles. FAmOS allows the simultaneous sorting of four differently labelled organelles based on their individual light scatter and fluorescence parameters while ensuring hormone metabolic stability. Our data showed different subcellular distribution of auxin and cytokinins, revealing the formation of phytohormone gradients that have been suggested by the subcellular localization of auxin and cytokinin transporters, receptors and metabolic enzymes. Both hormones showed enrichment in vacuoles, while cytokinins were also accumulated in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Vladimír Skalický
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - Ioanna Antoniadi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - Ivo Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - Martin F Kubeš
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - Marek Zatloukal
- Department of Chemical Biology, Faculty of Science, Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of Science, Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| |
Collapse
|
39
|
Zenchenko AA, Savelieva EM, Drenichev MS, Romanov GA, Oslovsky VE. N 6-(5-Phenylpentan-1-yl)adenine-A New Non-competitive Receptor-Specific Anti-cytokinin. DOKL BIOCHEM BIOPHYS 2023; 513:S23-S25. [PMID: 38189887 DOI: 10.1134/s1607672923700679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 01/09/2024]
Abstract
For the first time, N6-(5-phenylpentan-1-yl)adenine, a synthetic adenine derivative with a receptor-specific anticytokinin effect, was obtained. This compound exhibits a pronounced anticytokinin effect, reducing cytokinin-induced expression of the GUS reporter gene when interacting with the cytokinin receptor CRE1/AHK4 of the model plant Arabidopsis thaliana. This effect manifests itself much weaker with the related AHK2 receptor and is not observed at all with the AHK3 receptor. We showed that N6-(5-phenylpentan-1-yl)adenine does not bind to the ligand-binding sites of the Arabidopsis cytokinin receptors, which does not allow it to be classified as a true cytokinin antagonist. Despite the currently unknown mechanism of action, this compound may find its use as a component of plant growth regulators. Like true anticytokinins, it enhances root growth of Arabidopsis seedlings, apparently suppressing the action of endogenous cytokinins on the "root" receptor CRE1/AHK4.
Collapse
Affiliation(s)
- A A Zenchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - E M Savelieva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - M S Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - G A Romanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - V E Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
40
|
Kotov AA, Kotova LM. Auxin/cytokinin antagonism in shoot development: from moss to seed plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6391-6395. [PMID: 37988175 DOI: 10.1093/jxb/erad417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
This article comments on:Cammarata J, Roeder AHK, Scanlon MJ. 2023. The ratio of auxin to cytokinin controls leaf development and meristem initiation in Physcomitrium patens. Journal of Experimental Botany 74, 6541–6550.
Collapse
Affiliation(s)
- Andrey A Kotov
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Liudmila M Kotova
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| |
Collapse
|
41
|
Jené L, Munné-Bosch S. Hormonal involvement in boosting the vegetative vigour underlying caffeine-related improvements in lentil production. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111856. [PMID: 37660891 DOI: 10.1016/j.plantsci.2023.111856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Previous studies have shown that caffeine (1,3,7-trimethylxanthine) has some potential for its use as a biostimulant ingredient for boosting lentil production at suboptimal temperatures. However, some limitations to its use include its potential side effects as an emerging contaminant and the current lack of knowledge of its mechanism of action. Here, we aimed to study the mechanisms underlying improved lentil production upon caffeine application. Greenhouse-grown plants treated with caffeine (at 10-5 M, 10-4 M, and 10-3 M) were compared to an untreated, control treatment, and both reproductive and vegetative vigour were evaluated in parallel with endogenous foliar concentrations of phytohormones, including both stress and growth-related hormones. Results showed an enhanced lentil production at the highest caffeine concentration (10-3 M) which might be attributed, at least in part, to a greater vegetative vigour. The hormonal profiling revealed a dual effect. Firstly, there was a specific increase in jasmonoyl-isoleucine (JA-Ile) in the short term, which may provide a priming effect. Secondly, abscisic acid (ABA) content kept at low levels and the active cytokinin (CK) isopentenyl adenine (2-iP) increased and persisted at high levels throughout the reproductive stage. Cytokinin-mediated effects on growth, and more specifically the high CK/ABA ratios in leaves, appeared to mediate caffeine-related effects in boosting vegetative vigour. In conclusion, caffeine emerges as a compelling alkaloid for integration into biostimulant formulations due to its favorable effect in boosting lentil production through an improvement of vegetative vigour. These outcomes appear to be modulated by phytohormones, most notably jasmonates, priming plants for improved performance under suboptimal temperatures, and cytokinins, alongside ABA and its associated ratios, collectively enhancing plant growth and reproductive vigour in challenging conditions.
Collapse
Affiliation(s)
- Laia Jené
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Spain; Institute of Nutrition and Food Safety (INSA), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
42
|
Belousova DA, Shishov VV, Arzac A, Popkova MI, Babushkina EA, Huang JG, Yang B, Vaganov EA. VS-Cambium-Developer: A New Predictive Model of Cambium Functioning under the Influence of Environmental Factors. PLANTS (BASEL, SWITZERLAND) 2023; 12:3594. [PMID: 37896057 PMCID: PMC10609909 DOI: 10.3390/plants12203594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
Climate changes influence seasonal tree-ring formation. The result is a specific cell structure dependent on internal processes and external environmental factors. One way to investigate and analyze these relationships is to apply diverse simulation models of tree-ring growth. Here, we have proposed a new version of the VS-Cambium-Developer model (VS-CD model), which simulates the cambial activity process in conifers. The VS-CD model does not require the manual year-to-year calibration of parameters over a long-term cell production reconstruction or forecast. Instead, it estimates cell production and simulates the dynamics of radial cell development within the growing seasons. Thus, a new software based on R programming technology, able to efficiently adapt to the VS model online platform, has been developed. The model was tested on indirect observations of the cambium functioning in Larix sibirica trees from southern Siberia, namely on the measured annual cell production from 1963 to 2011. The VS-CD model proves to simulate cell production accurately. The results highlighted the efficiency of the presented model and contributed to filling the gap in the simulations of cambial activity, which is critical to predicting the potential impacts of changing environmental conditions on tree growth.
Collapse
Affiliation(s)
- Daria A. Belousova
- Research Department, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | - Vladimir V. Shishov
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | - Alberto Arzac
- Institute of Ecology and Geography, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.A.); (E.A.V.)
| | | | - Elena A. Babushkina
- Khakass Technical Institute, Siberian Federal University, 655017 Abakan, Russia;
| | - Jian-Guo Huang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Bao Yang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China;
| | - Eugene A. Vaganov
- Institute of Ecology and Geography, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.A.); (E.A.V.)
| |
Collapse
|
43
|
Vrobel O, Tarkowski P. Can plant hormonomics be built on simple analysis? A review. PLANT METHODS 2023; 19:107. [PMID: 37833752 PMCID: PMC10576392 DOI: 10.1186/s13007-023-01090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
The field of plant hormonomics focuses on the qualitative and quantitative analysis of the hormone complement in plant samples, akin to other omics sciences. Plant hormones, alongside primary and secondary metabolites, govern vital processes throughout a plant's lifecycle. While active hormones have received significant attention, studying all related compounds provides valuable insights into internal processes. Conventional single-class plant hormone analysis employs thorough sample purification, short analysis and triple quadrupole tandem mass spectrometry. Conversely, comprehensive hormonomics analysis necessitates minimal purification, robust and efficient separation and better-performing mass spectrometry instruments. This review summarizes the current status of plant hormone analysis methods, focusing on sample preparation, advances in chromatographic separation and mass spectrometric detection, including a discussion on internal standard selection and the potential of derivatization. Moreover, current approaches for assessing the spatiotemporal distribution are evaluated. The review touches on the legitimacy of the term plant hormonomics by exploring the current status of methods and outlining possible future trends.
Collapse
Affiliation(s)
- Ondřej Vrobel
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic.
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic.
| |
Collapse
|
44
|
Wong C, Alabadí D, Blázquez MA. Spatial regulation of plant hormone action. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6089-6103. [PMID: 37401809 PMCID: PMC10575700 DOI: 10.1093/jxb/erad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Although many plant cell types are capable of producing hormones, and plant hormones can in most cases act in the same cells in which they are produced, they also act as signaling molecules that coordinate physiological responses between different parts of the plant, indicating that their action is subject to spatial regulation. Numerous publications have reported that all levels of plant hormonal pathways, namely metabolism, transport, and perception/signal transduction, can help determine the spatial ranges of hormone action. For example, polar auxin transport or localized auxin biosynthesis contribute to creating a differential hormone accumulation across tissues that is instrumental for specific growth and developmental responses. On the other hand, tissue specificity of cytokinin actions has been proposed to be regulated by mechanisms operating at the signaling stages. Here, we review and discuss current knowledge about the contribution of the three levels mentioned above in providing spatial specificity to plant hormone action. We also explore how new technological developments, such as plant hormone sensors based on FRET (fluorescence resonance energy transfer) or single-cell RNA-seq, can provide an unprecedented level of resolution in defining the spatial domains of plant hormone action and its dynamics.
Collapse
Affiliation(s)
- Cynthia Wong
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| |
Collapse
|
45
|
Li L, Sun X, Yu W, Gui M, Qiu Y, Tang M, Tian H, Liang G. Comparative transcriptome analysis of high- and low-embryogenic Hevea brasiliensis genotypes reveals involvement of phytohormones in somatic embryogenesis. BMC PLANT BIOLOGY 2023; 23:489. [PMID: 37828441 PMCID: PMC10571474 DOI: 10.1186/s12870-023-04432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Rubber plant (Hevea brasiliensis) is one of the major sources of latex. Somatic embryogenesis (SE) is a promising alterative to its propagation by grafting and seed. Phytohormones have been shown to influence SE in different plant species. However, limited knowledge is available on the role of phytohormones in SE in Hevea. The anther cultures of two Hevea genotypes (Yunyan 73477-YT and Reken 628-RT) with contrasting SE rate were established and four stages i.e., anthers (h), anther induced callus (y), callus differentiation state (f), and somatic embryos (p) were studied. UPLC-ESI-MS/MS and transcriptome analyses were used to study phytohormone accumulation and related expression changes in biosynthesis and signaling genes. RESULTS YT showed higher callus induction rate than RT. Of the two genotypes, only YT exhibited successful SE. Auxins, cytokinins (CKs), abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), gibberellins (GAs), and ethylene (ETH) were detected in the two genotypes. Indole-3-acetic acid (IAA), CKs, ABA, and ETH had notable differences in the studied stages of the two genotypes. The differentially expressed genes identified in treatment comparisons were majorly enriched in MAPK and phytohormone signaling, biosynthesis of secondary metabolites, and metabolic pathways. The expression changes in IAA, CK, ABA, and ETH biosynthesis and signaling genes confirmed the differential accumulation of respective phytohormones in the two genotypes. CONCLUSION These results suggest potential roles of phytohormones in SE in Hevea.
Collapse
Affiliation(s)
- Ling Li
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Xiaolong Sun
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Wencai Yu
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Mingchun Gui
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Yanfen Qiu
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Min Tang
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Hai Tian
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Guoping Liang
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China.
| |
Collapse
|
46
|
Wang X, Mäkilä R, Mähönen AP. From procambium patterning to cambium activation and maintenance in the Arabidopsis root. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102404. [PMID: 37352651 DOI: 10.1016/j.pbi.2023.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 05/20/2023] [Indexed: 06/25/2023]
Abstract
In addition to primary growth, which elongates the plant body, many plant species also undergo secondary growth to thicken their body. During primary vascular development, a subset of the vascular cells, called procambium and pericycle, remain undifferentiated to later gain vascular cambium and cork cambium identity, respectively. These two cambia are the lateral meristems providing secondary growth. The vascular cambium produces secondary xylem and phloem, which give plants mechanical support and transport capacity. Cork cambium produces a protective layer called cork. In this review, we focus on recent advances in understanding the formation of procambium and its gradual maturation to active cambium in the Arabidopsis thaliana root.
Collapse
Affiliation(s)
- Xin Wang
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Riikka Mäkilä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Ari Pekka Mähönen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
47
|
Kojima M, Makita N, Miyata K, Yoshino M, Iwase A, Ohashi M, Surjana A, Kudo T, Takeda-Kamiya N, Toyooka K, Miyao A, Hirochika H, Ando T, Shomura A, Yano M, Yamamoto T, Hobo T, Sakakibara H. A cell wall-localized cytokinin/purine riboside nucleosidase is involved in apoplastic cytokinin metabolism in Oryza sativa. Proc Natl Acad Sci U S A 2023; 120:e2217708120. [PMID: 37639600 PMCID: PMC10483608 DOI: 10.1073/pnas.2217708120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 07/18/2023] [Indexed: 08/31/2023] Open
Abstract
In the final step of cytokinin biosynthesis, the main pathway is the elimination of a ribose-phosphate moiety from the cytokinin nucleotide precursor by phosphoribohydrolase, an enzyme encoded by a gene named LONELY GUY (LOG). This reaction accounts for most of the cytokinin supply needed for regulating plant growth and development. In contrast, the LOG-independent pathway, in which dephosphorylation and deribosylation sequentially occur, is also thought to play a role in cytokinin biosynthesis, but the gene entity and physiological contribution have been elusive. In this study, we profiled the phytohormone content of chromosome segment substitution lines of Oryza sativa and searched for genes affecting the endogenous levels of cytokinin ribosides by quantitative trait loci analysis. Our approach identified a gene encoding an enzyme that catalyzes the deribosylation of cytokinin nucleoside precursors and other purine nucleosides. The cytokinin/purine riboside nucleosidase 1 (CPN1) we identified is a cell wall-localized protein. Loss-of-function mutations (cpn1) were created by inserting a Tos17-retrotransposon that altered the cytokinin composition in seedling shoots and leaf apoplastic fluid. The cpn1 mutation also abolished cytokinin riboside nucleosidase activity in leaf extracts and attenuated the trans-zeatin riboside-responsive expression of cytokinin marker genes. Grain yield of the mutants declined due to altered panicle morphology under field-grown conditions. These results suggest that the cell wall-localized LOG-independent cytokinin activating pathway catalyzed by CPN1 plays a role in cytokinin control of rice growth. Our finding broadens our spatial perspective of the cytokinin metabolic system.
Collapse
Affiliation(s)
- Mikiko Kojima
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama230-0045, Japan
| | - Nobue Makita
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama230-0045, Japan
| | - Kazuki Miyata
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya464-8601, Japan
| | - Mika Yoshino
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya464-8601, Japan
| | - Akira Iwase
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama230-0045, Japan
| | - Miwa Ohashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya464-8601, Japan
| | - Alicia Surjana
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya464-8601, Japan
| | - Toru Kudo
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama230-0045, Japan
| | | | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama230-0045, Japan
| | - Akio Miyao
- National Institute of Agrobiological Sciences, Tsukuba305-8602, Japan
- Institute of Crop Science, National Agricultural and Food Research Organization, Tsukuba305-8518, Japan
| | | | - Tsuyu Ando
- National Institute of Agrobiological Sciences, Tsukuba305-8602, Japan
- Institute of Crop Science, National Agricultural and Food Research Organization, Tsukuba305-8518, Japan
- Institute of Society for Techno-innovation of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki305-0854, Japan
| | - Ayahiko Shomura
- National Institute of Agrobiological Sciences, Tsukuba305-8602, Japan
- Institute of Crop Science, National Agricultural and Food Research Organization, Tsukuba305-8518, Japan
- Institute of Society for Techno-innovation of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki305-0854, Japan
| | - Masahiro Yano
- National Institute of Agrobiological Sciences, Tsukuba305-8602, Japan
- Institute of Crop Science, National Agricultural and Food Research Organization, Tsukuba305-8518, Japan
| | - Toshio Yamamoto
- National Institute of Agrobiological Sciences, Tsukuba305-8602, Japan
- Institute of Crop Science, National Agricultural and Food Research Organization, Tsukuba305-8518, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki710-0046, Japan
| | - Tokunori Hobo
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya464-8601, Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama230-0045, Japan
| |
Collapse
|
48
|
Tong N, Shu Q, Wang B, Peng L, Liu Z. Histology, physiology, and transcriptomic and metabolomic profiling reveal the developmental dynamics of annual shoots in tree peonies ( Paeonia suffruticosa Andr.). HORTICULTURE RESEARCH 2023; 10:uhad152. [PMID: 37701456 PMCID: PMC10493643 DOI: 10.1093/hr/uhad152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/23/2023] [Indexed: 09/14/2023]
Abstract
The development of tree peony annual shoots is characterized by "withering", which is related to whether there are bud points in the leaf axillaries of annual shoots. However, the mechanism of "withering" in tree peony is still unclear. In this study, Paeonia ostii 'Fengdan' and P. suffruticosa 'Luoyanghong' were used to investigate dynamic changes of annual shoots through anatomy, physiology, transcriptome, and metabolome. The results demonstrated that the developmental dynamics of annual shoots of the two cultivars were comparable. The withering degree of P. suffruticosa 'Luoyanghong' was higher than that of P. ostii 'Fengdan', and their upper internodes of annual flowering shoots had a lower degree of lignin deposition, cellulose, C/N ratio, showing no obvious sclerenchyma, than the bottom ones and the whole internodes of vegetative shoot, which resulted in the "withering" of upper internodes. A total of 36 phytohormone metabolites were detected, of which 33 and 31 were detected in P. ostii 'Fengdan' and P. suffruticosa 'Luoyanghong', respectively. In addition, 302 and 240 differentially expressed genes related to lignin biosynthesis, carbon and nitrogen metabolism, plant hormone signal transduction, and zeatin biosynthesis were screened from the two cultivars. Furtherly, 36 structural genes and 40 transcription factors associated with the development of annual shoots were highly co-expressed, and eight hub genes involved in this developmental process were identified. Consequently, this study explained the developmental dynamic on the varied annual shoots through multi-omics, providing a theoretical foundation for germplasm innovation and the mechanized harvesting of tree peony annual shoots.
Collapse
Affiliation(s)
- Ningning Tong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyan Shu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Baichen Wang
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Liping Peng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zheng'an Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
49
|
Zuo Z, Roux ME, Chevalier JR, Dagdas YF, Yamashino T, Højgaard SD, Knight E, Østergaard L, Rodriguez E, Petersen M. The mRNA decapping machinery targets LBD3/ASL9 to mediate apical hook and lateral root development. Life Sci Alliance 2023; 6:e202302090. [PMID: 37385753 PMCID: PMC10310928 DOI: 10.26508/lsa.202302090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Multicellular organisms perceive and transduce multiple cues to optimize development. Key transcription factors drive developmental changes, but RNA processing also contributes to tissue development. Here, we report that multiple decapping deficient mutants share developmental defects in apical hook, primary and lateral root growth. More specifically, LATERAL ORGAN BOUNDARIES DOMAIN 3 (LBD3)/ASYMMETRIC LEAVES 2-LIKE 9 (ASL9) transcripts accumulate in decapping deficient plants and can be found in complexes with decapping components. Accumulation of ASL9 inhibits apical hook and lateral root formation. Interestingly, exogenous auxin application restores lateral roots formation in both ASL9 over-expressors and mRNA decay-deficient mutants. Likewise, mutations in the cytokinin transcription factors type-B ARABIDOPSIS RESPONSE REGULATORS (B-ARRs) ARR10 and ARR12 restore the developmental defects caused by over-accumulation of capped ASL9 transcript upon ASL9 overexpression. Most importantly, loss-of-function of asl9 partially restores apical hook and lateral root formation in both dcp5-1 and pat triple decapping deficient mutants. Thus, the mRNA decay machinery directly targets ASL9 transcripts for decay, possibly to interfere with cytokinin/auxin responses, during development.
Collapse
Affiliation(s)
- Zhangli Zuo
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Milena E Roux
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan R Chevalier
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Yasin F Dagdas
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Takafumi Yamashino
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Nagoya, Japan
| | - Søren D Højgaard
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Knight
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Lars Østergaard
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Eleazar Rodriguez
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Khan S, Ambika, Rani K, Sharma S, Kumar A, Singh S, Thapliyal M, Rawat P, Thakur A, Pandey S, Thapliyal A, Pal M, Singh Y. Rhizobacterial mediated interactions in Curcuma longa for plant growth and enhanced crop productivity: a systematic review. FRONTIERS IN PLANT SCIENCE 2023; 14:1231676. [PMID: 37692412 PMCID: PMC10484415 DOI: 10.3389/fpls.2023.1231676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/21/2023] [Indexed: 09/12/2023]
Abstract
Turmeric (Curcuma longa L.), a significant commercial crop of the Indian subcontinent is widely used as a condiment, natural dye, and as a cure for different ailments. Various bioactive compounds such as turmerones and curcuminoids have been isolated from C. longa that have shown remarkable medicinal activity against various ailments. However, reduced soil fertility, climatic variations, rapid urbanization, and enhanced food demand, pose a multifaceted challenge to the current agricultural practices of C. longa. Plant growth-promoting microbes play a vital role in plant growth and development by regulating primary and secondary metabolite production. Rhizospheric associations are complex species-specific interconnections of different microbiota with a plant that sustain soil health and promote plant growth through nutrient acquisition, nitrogen fixation, phosphate availability, phytohormone production, and antimicrobial activities. An elaborative study of microbiota associated with the roots of C. longa is essential for rhizospheric engineering as there is a huge potential to develop novel products based on microbial consortium formulations and elicitors to improve plant health, stress tolerance, and the production of secondary metabolites such as curcumin. Primarily, the purpose of this review is to implicate the rhizospheric microbial flora as probiotics influencing overall C. longa health, development, and survival for an increase in biomass, enhanced yield of secondary metabolites, and sustainable crop production.
Collapse
Affiliation(s)
- Sonam Khan
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | - Ambika
- Forest Pathology Discipline, Forest Protection Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Komal Rani
- Genetics and Tree Improvement Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Sushant Sharma
- Genetics and Tree Improvement Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Abhishek Kumar
- Forest Ecology and Climate Change Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Seema Singh
- Forest Pathology Discipline, Forest Protection Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Madhu Thapliyal
- Department of Zoology, Ram Chandra Uniyal Government Post Graduate College College, Uttarkashi, India
| | - Pramod Rawat
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | - Ajay Thakur
- Genetics and Tree Improvement Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Shailesh Pandey
- Forest Pathology Discipline, Forest Protection Division, ICFRE-Forest Research Institute, Dehradun, India
| | - Ashish Thapliyal
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun, India
| | - Manoj Pal
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun, India
| | - Yashaswi Singh
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| |
Collapse
|