1
|
Kunta S, Dahan Y, Torgeman S, Chory J, Burko Y. Species-specific PHYTOCHROME-INTERACTING FACTOR utilization in the plant morphogenetic response to environmental stimuli. THE PLANT CELL 2025; 37:koaf048. [PMID: 40085779 PMCID: PMC12070396 DOI: 10.1093/plcell/koaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/12/2025] [Indexed: 03/16/2025]
Abstract
PHYTOCHROME-INTERACTING FACTORs (PIFs) regulate growth-related gene expression in response to environmental conditions. Among their diverse functions in regulating signal responses, PIFs play an important role in thermomorphogenesis (the response to increased ambient temperature) and in the shade avoidance response. While numerous studies have examined the varied roles of PIFs in Arabidopsis (Arabidopsis thaliana), their roles in crop plants remain poorly investigated. This study delves into the conservation of PIFs activity among species by examining their functions in tomato (Solanum lycopersicum) and comparing them to known PIF functions in Arabidopsis using single and higher-order mutants of tomato PIF genes (SlPIFs). We demonstrate that, in contrast to Arabidopsis, PIFs are not required for thermomorphogenesis-induced stem elongation in tomato. In addition, whereas Arabidopsis PIF8 has a minor effect on plant growth, tomato SlPIF8a plays a key role in the low red/far-red (R/FR) response. In contrast, SlPIF4 and SlPIF7s play minor roles in this process. We also investigated the tissue-specific low R/FR response in tomato seedlings and demonstrate that the aboveground organs exhibit a conserved response to low R/FR, which is regulated by SlPIFs. Our findings provide insights into PIF-mediated responses in crop plants, which may guide future breeding strategies to enhance yield under high planting densities.
Collapse
Affiliation(s)
- Srinivas Kunta
- The Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Yardena Dahan
- The Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Shai Torgeman
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Joanne Chory
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yogev Burko
- The Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| |
Collapse
|
2
|
Cho S, Choi G. Phytochrome B regulates cortical microtubule arrangement to control cotyledon polar expansion by repressing LONGIFOLIAs. PLANT PHYSIOLOGY 2025; 198:kiaf162. [PMID: 40272438 DOI: 10.1093/plphys/kiaf162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
Light promotes the expansion and controls the directionality of expansion in cotyledons, transforming small oval cotyledons into larger orbicular shapes. However, the cellular basis underlying this polar expansion remains unclear. We report that cotyledon polar expansion in Arabidopsis (Arabidopsis thaliana) is primarily associated with the polar expansion of pavement cells, rather than with polar cell proliferation. Phytochrome B (phyB) promotes this polar expansion by inhibiting PHYTOCHROME INTERACTING FACTORs (PIFs), which normally suppress expansion and inversely regulate its directionality. PIFs exert their control over directionality partly through the activation of their target genes, LONGIFOLIAs (LNGs). At the cellular level, phyB decreases the number of transversely arranged cortical microtubules, while increasing the number of longitudinally arranged microtubules. This phyB-induced change in microtubule arrangement would strengthen transverse expansion while weakening longitudinal expansion. In contrast, PIFs regulate microtubule arrangements in the opposite manner. Downstream of the phyB-PIF pathway, LNGs preferentially increase transversely arranged cortical microtubules. Overall, our data support that the regulation of cortical microtubule orientation by the phyB-PIF-LNG pathway underlies how phyB weakens longitudinal expansion relative to transverse expansion while promoting pavement cell expansion to make orbicular cotyledons in the light.
Collapse
Affiliation(s)
- Sangwon Cho
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| |
Collapse
|
3
|
Li L, van de Kaa Y, van der Krabben L, Pierik R, Kajala K. Effect of Low Red-to-Far-Red Light on Stem Elongation and Pith Cell Development in Dicots. PLANT DIRECT 2025; 9:e70072. [PMID: 40242792 PMCID: PMC11999800 DOI: 10.1002/pld3.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/06/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
In dense canopies, light becomes a limiting factor for plant growth. Many plants respond to neighbor cues by growing taller to improve light capture, a phenomenon known as the shade avoidance syndrome (SAS). The major neighbor detection is via enrichment of far-red (FR) light that leads to a low red:far-red light ratio (R:FR), suppressing phytochrome activity. In tomato, low R:FR induces elongation of the internodes, but study into the role of different cell types in this response has remained limited. We characterized changes in cellular anatomy of the tomato internode in response to low R:FR and its accompanying changes in gene expression. We observed changes to the pith traits, including increases in pith layer number, pith cell diameter, and longitudinal cell length. We profiled the transcriptome in the entire internodes and in the hand-dissected pith in the central cylinder of the internode in response to low R:FR treatment and identified transcription factors (TFs) of interest that were upregulated in the central cylinder, mostly GATA, TCP, and bZIPs. We then characterized FR responses in eight dicotyledonous species. Significant pith elongation was observed in species that exhibited a strong internode elongation response. The FR-responsive expression of homologs of target GATA, TCP, and bZIP TFs in the central cylinder was conserved within the Solanaceae family. Overall, we discovered central cylinder gene expression patterns in SAS that are distinct from those of the entire internode, suggesting that some responses are unique and likely specific to vascular cell types such as pith. These patterns were conserved with close relatives of tomato but not in other dicot families we sampled, indicating that different molecular mechanisms drive FR responses in different dicots.
Collapse
Affiliation(s)
- Linge Li
- Experimental & Computational Plant DevelopmentInstitute of Environmental Biology, Utrecht UniversityUtrechtThe Netherlands
- Current Affiliation: Dalian Yuanyi Technology Co., LtdDalianLiaoningChina
| | - Yorrit van de Kaa
- Experimental & Computational Plant DevelopmentInstitute of Environmental Biology, Utrecht UniversityUtrechtThe Netherlands
| | - Lotte van der Krabben
- Experimental & Computational Plant DevelopmentInstitute of Environmental Biology, Utrecht UniversityUtrechtThe Netherlands
| | - Ronald Pierik
- Experimental & Computational Plant DevelopmentInstitute of Environmental Biology, Utrecht UniversityUtrechtThe Netherlands
- Current Affiliation: Laboratory of Molecular BiologyWageningen University & ResearchWageningenThe Netherlands
| | - Kaisa Kajala
- Experimental & Computational Plant DevelopmentInstitute of Environmental Biology, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
4
|
Roig‐Villanova I, Torres‐Montilla S, López‐Ortiz E, Di Marzo M, Sánchez‐García Á, Esteve‐Codina A, Gómez‐Cadenas A, Martínez‐García JF. Plant proximity reduces seed yield in Arabidopsis plants by decreasing the number of ovule primordia. PHYSIOLOGIA PLANTARUM 2025; 177:e70220. [PMID: 40241247 PMCID: PMC12003759 DOI: 10.1111/ppl.70220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/17/2025] [Indexed: 04/18/2025]
Abstract
Proximity of vegetation, which is influenced by planting density, significantly impacts plant development. In Arabidopsis thaliana, it is well established that simulated shade, which mimics the proximity of other plants, triggers hypocotyl and petiole elongation, accelerates flowering and suppresses axillary bud growth. Although there is evidence that simulated shade affects reproduction beyond accelerating flowering, its impact on the development of reproductive tissues after plant architecture establishment (i.e., once flowering has begun) remains poorly explored. Here, we report that simulated shade promotes silique and pedicel elongation while reducing seed production, primarily by decreasing ovule number formation. Shade perception triggers rapid changes in gene expression in reproductive tissues, with some genes showing tissue-specific responses and others being induced in both seedlings and reproductive tissues, highlighting a conserved core of shade-responsive genes associated with light perception, photosynthesis and hormone regulation. However, while shade-induced elongation responses occur rapidly, reduction in ovule number requires prolonged shade exposure, suggesting distinct regulatory pathways for these responses. These findings shed light on the complex interplay between common (e.g., elongation and core gene expression) and tissue-specific responses (e.g., ovule formation and specialized gene expression) to shade, contributing to the developmental plasticity of Arabidopsis. Furthermore, they enhance our understanding of how external signals, indicative of vegetation proximity, can modulate seed production, a genetically determined process.
Collapse
Affiliation(s)
- Irma Roig‐Villanova
- Centre for Research in Agricultural Genomics (CRAG), CSIC‐IRTA‐UAB‐UBCerdanyola del VallèsBarcelonaSpain
- Serra Húnter Fellow. Department of Agri‐Food Engineering and BiotechnologyBarcelona School of Agri‐Food and Biosystems EngineeringCastelldefelsSpain
| | - Salvador Torres‐Montilla
- Institute for Plant Molecular and Cell Biology (IBMCP)CSIC ‐ Universitat Politècnica de ValènciaValènciaSpain
- Present address:
Plant Molecular Genetics Department, Centro Nacional de Biotecnologia‐CSIC (CNB‐CSIC)MadridSpain
| | - Estefanía López‐Ortiz
- Centre for Research in Agricultural Genomics (CRAG), CSIC‐IRTA‐UAB‐UBCerdanyola del VallèsBarcelonaSpain
- Present address:
Molecular Plant BreedingInstitute of Agricultural SciencesZürichZurichSwitzerland
| | - Maurizio Di Marzo
- Centre for Research in Agricultural Genomics (CRAG), CSIC‐IRTA‐UAB‐UBCerdanyola del VallèsBarcelonaSpain
- Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly
| | - Ángela Sánchez‐García
- Institute for Plant Molecular and Cell Biology (IBMCP)CSIC ‐ Universitat Politècnica de ValènciaValènciaSpain
| | - Anna Esteve‐Codina
- Centro Nacional de Análisis Genómico (CNAG)Barcelona, Spain, and Universitat de Barcelona (UB)BarcelonaSpain
| | - Aurelio Gómez‐Cadenas
- Departament de Biologia, Bioquimica i Ciències NaturalsUniversitat Jaume I (UJI)Castelló de la PlanaSpain
| | - Jaume F. Martínez‐García
- Centre for Research in Agricultural Genomics (CRAG), CSIC‐IRTA‐UAB‐UBCerdanyola del VallèsBarcelonaSpain
- Institute for Plant Molecular and Cell Biology (IBMCP)CSIC ‐ Universitat Politècnica de ValènciaValènciaSpain
| |
Collapse
|
5
|
Gou C, Li J, Chen B, Cheng G, Zheng Z, Peng H, El-Sappah AH. Genome wide identification of Dof transcription factors in Carmine radish reveals RsDof33 role in cadmium stress and anthocyanin biosynthesis. Sci Rep 2025; 15:4766. [PMID: 39922841 PMCID: PMC11807106 DOI: 10.1038/s41598-025-88308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/28/2025] [Indexed: 02/10/2025] Open
Abstract
Carmine radish (Raphanus sativus L.) is cultivated in Fuling, Chongqing, for its red color. Dof-TFs are critical in regulating plant growth, development, stress responses, and signal transduction.This work comprehensively examined the structure, evolution, and expression of the carmine radish Dof gene and its behavior under cadmium (Cd) stress. The radish genome has 59 RsDofs, which are divided into nine clusters (A: 8, B1: 10, B2: 10, C1: 3, C2.1: 5, C2.2: 4, C3: 11, D1: 4, and D2: 4). Phylogenetic tree analysis revealed significant Dof gene family resemblance between Arabidopsis thaliana and Brassica napus. Perhaps segment duplication resulted in RsDof gene family expansion. Cd stress-induced RsDof expression patterns were studied using an RNA-seq atlas and qRT-PCR. The majority of RsDofs were tissue-specific and Cd-sensitive. The involvement of RsDof genes in Cd stress response and anthocyanin synthesis was verified using qRT-PCR. RsDof33 is involved in Cd stress response and anthocyanin synthesis. A. thaliana overexpressed the recombinant fusion protein RsDof33-GFP, which was localized to the nucleus, resulting in fewer rosette leaves, delayed flowering, and higher anthocyanin concentration. RsDof33-expressing plants had significantly higher transcript levels of the auxin biosynthetic genes YUCCA (AtYUC2), auxin efflux carrier (AtPIN4), and AtKNAT2, which are involved in leaf shape development, as well as AtPAL, AtCHS, AtCHI, AtDFR, AtLDOX, and AtUF3GT. These findings indicate that RsDofs are critical to plant development and stress responses.
Collapse
Affiliation(s)
- Caiming Gou
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan, China.
| | - Jia Li
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Bo Chen
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Guoting Cheng
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants On the Loess Plateau, College of Life Sciences, 'Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Zhangfei Zheng
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350000, Fujian, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, Haidian, China
| | - Hua Peng
- Research Center for Tourism Agriculture Development, Sichuan Tourism College, Chengdu, 610100, Sichuan, China
| | - Ahmed H El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan, China.
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
6
|
Gautrat P, Matton SEA, Oskam L, Shetty SS, van der Velde KJ, Pierik R. Lights, location, action: shade avoidance signalling over spatial scales. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:695-711. [PMID: 38767295 PMCID: PMC11805592 DOI: 10.1093/jxb/erae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Plants growing in dense vegetation need to flexibly position their photosynthetic organs to ensure optimal light capture in a competitive environment. They do so through a suite of developmental responses referred to as the shade avoidance syndrome. Below ground, root development is also adjusted in response to above-ground neighbour proximity. Canopies are dynamic and complex environments with heterogeneous light cues in the far-red, red, blue, and UV spectrum, which can be perceived by photoreceptors in spatially separated plant tissues. Molecular regulation of plant architecture adjustment via PHYTOCHROME-INTERACTING FACTOR transcription factors and growth-related hormones such as auxin, gibberellic acid, brassinosteroids, and abscisic acid were historically studied without much attention to spatial or tissue-specific context. Recent developments and technologies have, however, sparked strong interest in spatially explicit understanding of shade avoidance regulation. Other environmental factors such as temperature and nutrient availability interact with the molecular shade avoidance regulation network, often depending on the spatial location of the signals, and the responding organs. Here, we review recent advances in how plants respond to heterogeneous light cues and integrate these with other environmental signals.
Collapse
Affiliation(s)
- Pierre Gautrat
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Sanne E A Matton
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Lisa Oskam
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Experimental and Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Siddhant S Shetty
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Kyra J van der Velde
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Experimental and Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
7
|
Sellaro R, Durand M, Aphalo PJ, Casal JJ. Making the most of canopy light: shade avoidance under a fluctuating spectrum and irradiance. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:712-729. [PMID: 39101508 PMCID: PMC11805590 DOI: 10.1093/jxb/erae334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/08/2024] [Indexed: 08/06/2024]
Abstract
In the field, plants face constantly changing light conditions caused by both atmospheric effects and neighbouring vegetation. This interplay creates a complex, fluctuating light environment within plant canopies. Shade-intolerant species rely on light cues from competitors to trigger shade avoidance responses, ensuring access to light for photosynthesis. While research often uses controlled growth chambers with steady light to study shade avoidance responses, the influence of light fluctuations in real-world settings remains unclear. This review examines the dynamic light environments found in woodlands, grasslands, and crops. We explore how plants respond to some fluctuations but not others, analyse the potential reasons for these differences, and discuss the possible molecular mechanisms regulating this sensitivity. We propose that studying shade avoidance responses under fluctuating light conditions offers a valuable tool to explore the intricate regulatory network behind them.
Collapse
Affiliation(s)
- Romina Sellaro
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
| | - Maxime Durand
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pedro J Aphalo
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jorge J Casal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| |
Collapse
|
8
|
Lee N, Hwang DY, Lee HG, Hwang H, Kang HW, Lee W, Choi MG, Ahn YJ, Lim C, Kim JI, Kwon M, Kim ST, Paek NC, Cho H, Sohn KH, Seo PJ, Song YH. ASYMMETRIC LEAVES1 promotes leaf hyponasty in Arabidopsis by light-mediated auxin signaling. PLANT PHYSIOLOGY 2024; 197:kiae550. [PMID: 39418078 DOI: 10.1093/plphys/kiae550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
In plants, balancing growth and environmental responses is crucial for maximizing fitness. Close proximity among plants and canopy shade, which negatively impacts reproduction, elicits morphological adjustments such as hypocotyl growth and leaf hyponasty, mainly through changes in light quality and auxin levels. However, how auxin, synthesized from a shaded leaf blade, distally induces elongation of hypocotyl and petiole cells remains to be elucidated. We demonstrated that ASYMMETRIC LEAVES1 (AS1) promotes leaf hyponasty through the regulation of auxin biosynthesis, polar auxin transport, and auxin signaling genes in Arabidopsis (Arabidopsis thaliana). AS1 overexpression leads to elongation of the abaxial petiole cells with auxin accumulation in the petiole, resulting in hyponastic growth, which is abolished by the application of an auxin transport inhibitor to the leaf blade. In addition, the as1 mutant exhibits reduced hypocotyl growth under shade conditions. We observed that AS1 protein accumulates in the nucleus in response to shade or far-red light. Chromatin immunoprecipitation analysis identified the association of AS1 with the promoters of YUCCA8 (YUC8) and INDOLE-3-ACETIC ACID INDUCIBLE 19 (IAA19). In addition, AS1 forms complexes with PHYTOCHROME-INTERACTING FACTORs in the nucleus and synergistically induces YUC8 and IAA19 expression. Our findings suggest that AS1 plays a crucial role in facilitating phenotypic plasticity to the surroundings by connecting light and phytohormone action.
Collapse
Affiliation(s)
- Nayoung Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju 52828, Korea
| | - Dae Yeon Hwang
- Department of Life Sciences, Ajou University, Suwon 16499, Korea
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Hyeona Hwang
- Department of Industrial Plant Science and Technology, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Hye Won Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Wonbok Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Min Gi Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Ye Jin Ahn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673Korea
| | - Chaemyeong Lim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Korea
| | - Jeong-Il Kim
- Department of Biotechnology, Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea
| | - Moonhyuk Kwon
- Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju 52828, Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea
- Anti-aging Bio Cell factory Regional Leading Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
| | - Nam-Chon Paek
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyunwoo Cho
- Department of Industrial Plant Science and Technology, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Kee Hoon Sohn
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| | - Pil Joon Seo
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Young Hun Song
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
9
|
Yang X, Ma Y, Chen J, Huang M, Qi M, Han N, Bian H, Qiu T, Yan Q, Wang J. Sextuple knockouts of a highly conserved and coexpressed AUXIN/INDOLE-3-ACETIC ACID gene set confer shade avoidance-like responses in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:4483-4497. [PMID: 39012193 DOI: 10.1111/pce.15039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024]
Abstract
AUXIN/INDOLE-3-ACETIC ACIDs are transcriptional repressors for auxin signalling. Aux/IAAs of Arabidopsis thaliana display some functional redundancy. The IAA3/SHY2 clade (IAA1, IAA2, IAA3 and IAA4) show strong sequence similarity, but no higher-order mutants have been reported. Here, through CRISPR/Cas9 genome editing, we generated loss-of-function iaa1/2/3/4 mutants. The quadruple mutants only exhibited a weak phenotype. Thus, we additionally knocked out IAA7/AXR2 and IAA16, which are coexpressed with IAA1/2/3/4. Remarkably, under white light control conditions, the iaa1/2/3/4/7/16 mutants exhibited a shade avoidance-like phenotype with over-elongated hypocotyls and petioles and hyponastic leaves. The sextuple mutants were highly sensitive to low light intensity, and the hypocotyl cells of the mutants were excessively elongated. Transcriptome profiling and qRT-PCR analyses revealed that the sextuple mutation upregulated IAA19/MSG2 and IAA29, two shared shade/auxin signalling targets. Besides, genes encoding cell wall-remodelling proteins and shade-responsive transcription regulators were upregulated. Using dual-luciferase reporter assays, we verified that IAA2/IAA7 targeted the promoters of cell wall-remodelling genes to inhibit their transcription. Our work indicates that the IAA1/2/3/4/7/16 gene set is required for the optimal integration of auxin and shade signalling. The mutants generated here should be valuable for exploring the complex interactions among signal sensors, transcription activators and transcription repressors during hormone/environmental responses.
Collapse
Affiliation(s)
- Xinxing Yang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yuan Ma
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jie Chen
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Minhua Huang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Mengyuan Qi
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ning Han
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hongwu Bian
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Qingfeng Yan
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Junhui Wang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Do BH, Nguyen NH. H2A.Z removal mediates the activation of genes accounting for cell elongation under light and temperature stress. PLANT CELL REPORTS 2024; 43:286. [PMID: 39562374 DOI: 10.1007/s00299-024-03366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024]
Abstract
KEY MESSAGE The histone variant H2A.Z is crucial for the expression of genes involved in cell elongation under elevated temperatures and shade. Its removal facilitates the activation of these genes, particularly through the activities of PHYTOCHROME INTERACTING FACTORs (PIFs) and the SWR1-related INOSITOL REQUIRING 80 (INO80) complex. Arabidopsis seedlings exhibit rapid elongation of hypocotyls and cotyledon petioles in response to environmental stresses, namely elevated temperatures and shade. These phenotypic alterations are regulated by various phytohormones, notably auxin. Under these stress conditions, auxin biosynthesis is swiftly induced in the cotyledons and transported to the hypocotyls, where it stimulates cell elongation. The histone variant H2A.Z plays a pivotal role in this regulatory mechanism. H2A.Z affects the transcription of numerous genes, particularly those activated by the mentioned environmental stresses. Recent studies highlighted that the eviction of H2A.Z from gene bodies is crucial for the activation of genes, especially auxin biosynthetic and responsive genes, under conditions of elevated temperature and shade. Additionally, experimental evidence suggests that PHYTOCHROME INTERACTING FACTORs (PIFs) can recruit the SWR1-related INOSITOL REQUIRING 80 (INO80) complex to remove H2A.Z from targeted loci, thereby activating gene transcription in response to these environmental stresses. This review provides a comprehensive overview of the regulatory role of H2A.Z, emphasizing how its eviction from gene loci is instrumental in the activation of stress-responsive genes under elevated temperature and shade conditions.
Collapse
Affiliation(s)
- Bich Hang Do
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
11
|
Pastor-Andreu P, Moreno-Romero J, Urdin-Bravo M, Palau-Rodriguez J, Paulisic S, Kastanaki E, Vives-Peris V, Gomez-Cadenas A, Esteve-Codina A, Martín-Mur B, Rodríguez-Villalón A, Martínez-García JF. Temporal and spatial frameworks supporting plant responses to vegetation proximity. PLANT PHYSIOLOGY 2024; 196:2048-2063. [PMID: 39140970 PMCID: PMC11531833 DOI: 10.1093/plphys/kiae417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024]
Abstract
After the perception of vegetation proximity by phytochrome photoreceptors, shade-avoider plants initiate a set of responses known as the shade avoidance syndrome (SAS). Shade perception by the phytochrome B (phyB) photoreceptor unleashes the PHYTOCHROME INTERACTING FACTORs and initiates SAS responses. In Arabidopsis (Arabidopsis thaliana) seedlings, shade perception involves rapid and massive changes in gene expression, increases auxin production, and promotes hypocotyl elongation. Other components, such as phyA and ELONGATED HYPOCOTYL 5, also participate in the shade regulation of the hypocotyl elongation response by repressing it. However, why and how so many regulators with either positive or negative activities modulate the same response remains unclear. Our physiological, genetic, cellular, and transcriptomic analyses showed that (i) these components are organized into 2 main branches or modules and (ii) the connection between them is dynamic and changes with the time of shade exposure. We propose a model for the regulation of shade-induced hypocotyl elongation in which the temporal and spatial functional importance of the various SAS regulators analyzed here helps to explain the coexistence of differentiated regulatory branches with overlapping activities.
Collapse
Affiliation(s)
- Pedro Pastor-Andreu
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
| | - Jordi Moreno-Romero
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-UPV, València 46022, Spain
- Departament de Bioquimica I Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Mikel Urdin-Bravo
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-UPV, València 46022, Spain
| | - Julia Palau-Rodriguez
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-UPV, València 46022, Spain
| | - Sandi Paulisic
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
| | - Elizabeth Kastanaki
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, Zurich CH-8092, Switzerland
| | - Vicente Vives-Peris
- Departament de Biologia, Bioquimica I Ciències Naturals, Universitat Jaume I, Castelló de la Plana 12071, Spain
| | - Aurelio Gomez-Cadenas
- Departament de Biologia, Bioquimica I Ciències Naturals, Universitat Jaume I, Castelló de la Plana 12071, Spain
| | - Anna Esteve-Codina
- Functional Genomics Team, Centro Nacional de Análisis Genómico (CNAG), Universitat de Barcelona, Barcelona 08028, Spain
| | - Beatriz Martín-Mur
- Functional Genomics Team, Centro Nacional de Análisis Genómico (CNAG), Universitat de Barcelona, Barcelona 08028, Spain
| | - Antía Rodríguez-Villalón
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, Zurich CH-8092, Switzerland
| | - Jaume F Martínez-García
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-UPV, València 46022, Spain
| |
Collapse
|
12
|
Iglesias MJ, Costigliolo Rojas C, Bianchimano L, Legris M, Schön J, Gergoff Grozeff GE, Bartoli CG, Blázquez MA, Alabadí D, Zurbriggen MD, Casal JJ. Shade-induced ROS/NO reinforce COP1-mediated diffuse cell growth. Proc Natl Acad Sci U S A 2024; 121:e2320187121. [PMID: 39382994 PMCID: PMC11494356 DOI: 10.1073/pnas.2320187121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/08/2024] [Indexed: 10/11/2024] Open
Abstract
Canopy shade enhances the activity of PHYTOCHROME INTERACTING FACTORs (PIFs) to boost auxin synthesis in the cotyledons. Auxin, together with local PIFs and their positive regulator CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), promotes hypocotyl growth to facilitate access to light. Whether shade alters the cellular redox status thereby affecting growth responses, remains unexplored. Here, we show that, under shade, high auxin levels increased reactive oxygen species and nitric oxide accumulation in the hypocotyl of Arabidopsis. This nitroxidative environment favored the promotion of hypocotyl growth by COP1 under shade. We demonstrate that COP1 is S-nitrosylated, particularly under shade. Impairing this redox regulation enhanced COP1 degradation by the proteasome and diminished the capacity of COP1 to interact with target proteins and to promote hypocotyl growth. Disabling this regulation also generated transversal asymmetries in hypocotyl growth, indicating poor coordination among different cells, which resulted in random hypocotyl bending and predictably low ability to compete with neighbors. These findings highlight the significance of redox signaling in the control of diffuse growth during shade avoidance.
Collapse
Affiliation(s)
- María José Iglesias
- Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires1405, Argentina
- Departamento de Fisiología, Biología Molecular y Celular and Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires, Buenos Aires1428, Argentina
| | - Cecilia Costigliolo Rojas
- Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires1405, Argentina
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientίficas, Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Luciana Bianchimano
- Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires1405, Argentina
| | - Martina Legris
- Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires1405, Argentina
| | - Jonas Schön
- Institute of Synthetic Biology and Cluster of Excellence in Plant Sciences, University of Düsseldorf, Düsseldorf40225, Germany
| | - Gustavo Esteban Gergoff Grozeff
- Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, La Plata1900, Argentina
| | - Carlos Guillermo Bartoli
- Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, La Plata1900, Argentina
| | - Miguel A. Blázquez
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientίficas, Universidad Politécnica de Valencia, Valencia46022, Spain
| | - David Alabadí
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientίficas, Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Matias D. Zurbriggen
- Institute of Synthetic Biology and Cluster of Excellence in Plant Sciences, University of Düsseldorf, Düsseldorf40225, Germany
| | - Jorge J. Casal
- Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires1405, Argentina
- Facultad de Agronomía, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Universidad de Buenos Aires, Buenos Aires1417, Argentina
| |
Collapse
|
13
|
Gautrat P, Buti S, Romanowski A, Lammers M, Matton SEA, Buijs G, Pierik R. Phytochrome-dependent responsiveness to root-derived cytokinins enables coordinated elongation responses to combined light and nitrate cues. Nat Commun 2024; 15:8489. [PMID: 39353942 PMCID: PMC11445486 DOI: 10.1038/s41467-024-52828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Plants growing at high densities can detect competitors through changes in the composition of light reflected by neighbours. In response to this far-red-enriched light, plants elicit adaptive shade avoidance responses for light capture, but these need to be balanced against other input signals, such as nutrient availability. Here, we investigated how Arabidopsis integrates shade and nitrate signalling. We unveiled that nitrate modulates shade avoidance via a previously unknown shade response pathway that involves root-derived trans-zeatin (tZ) signal and the BEE1 transcription factor as an integrator of light and cytokinin signalling. Under nitrate-sufficient conditions, tZ promotes hypocotyl elongation specifically in the presence of supplemental far-red light. This occurs via PIF transcription factors-dependent inhibition of type-A ARRs cytokinin response inhibitors. Our data thus reveal how plants co-regulate responses to shade cues with root-derived information about nutrient availability, and how they restrict responses to this information to specific light conditions in the shoot.
Collapse
Affiliation(s)
- Pierre Gautrat
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands.
| | - Sara Buti
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Andrés Romanowski
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Michiel Lammers
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Sanne E A Matton
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Guido Buijs
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
14
|
Cheng Q, Zeng Y, Huang S, Yang C, Xie Y, Shen WH, Li L. PHYTOCHROME-INTERACTING FACTOR 7 and RELATIVE OF EARLY FLOWERING 6 act in shade avoidance memory in Arabidopsis. Nat Commun 2024; 15:8032. [PMID: 39271649 PMCID: PMC11399251 DOI: 10.1038/s41467-024-51834-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Shade avoidance helps plants maximize their access to light for growth under crowding. It is unknown, however, whether a priming shade avoidance mechanism exists that allows plants to respond more effectively to successive shade conditions. Here, we show that the shade-intolerant plant Arabidopsis can remember a first experienced shade event and respond more efficiently to the next event on hypocotyl elongation. The transcriptional regulator PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) and the histone H3K27-demethylase RELATIVE OF EARLY FLOWERING 6 (REF6) are identified as being required for this shade avoidance memory. RNA-sequencing analysis reveals that shade induction of shade-memory-related genes is impaired in the pif7 and ref6 mutants. Based on the analyses of enrichments of H3K27me3, REF6 and PIF7, we find that priming shade treatment induces PIF7 accumulation, which further recruits REF6 to demethylate H3K27me3 on the chromatin of certain shade-memory-related genes, leading to a state poised for their transcription. Upon a second shade treatment, enhanced shade-mediated inductions of these genes result in stronger hypocotyl growth responses. We conclude that the transcriptional memory mediated by epigenetic modification plays a key role in the ability of primed plants to remember previously experienced shade and acquire enhanced responses to recurring shade conditions.
Collapse
Affiliation(s)
- Qican Cheng
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yue Zeng
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Sha Huang
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Chuanwei Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Xie
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Lin Li
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
15
|
Li L, Wonder J, Helming T, van Asselt G, Pantazopoulou CK, van de Kaa Y, Kohlen W, Pierik R, Kajala K. Evaluation of the roles of brassinosteroid, gibberellin and auxin for tomato internode elongation in response to low red:far-red light. PHYSIOLOGIA PLANTARUM 2024; 176:e14558. [PMID: 39360434 DOI: 10.1111/ppl.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
In this study, we explore the interplay between the plant hormones gibberellins (GA), brassinosteroids (BR), and Indole-3-Acetic Acid (IAA) in their collective impact on plant shade avoidance elongation under varying light conditions. We focus particularly on low Red:Far-red (R:FR) light conditions achieved by supplementing the background light with FR. We characterized the tomato internode response to low R:FR and, with RNA-seq analysis, we were able to identify some of the potential regulatory hormonal pathways. Through a series of exogenous pharmacological modulations of GA, IAA, and BR, we demonstrate that GA and BR are sufficient but also necessary for inducing stem elongation under low R:FR light conditions. Intriguingly, while IAA alone shows limited effects, its combination with GA yields significant elongation, suggesting a nuanced hormonal balance. Furthermore, we unveil the complex interplay of these hormones under light with low R:FR, where the suppression of one hormone's effect can be compensated by the others. This study provides insights into the hormonal mechanisms governing plant adaptation to light, highlighting the intricate and adaptable nature of plant growth responses. Our findings have far-reaching implications for agricultural practices, offering potential strategies for optimizing plant growth and productivity in various lighting environments.
Collapse
Affiliation(s)
- Linge Li
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Jesse Wonder
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ticho Helming
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Gijs van Asselt
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Chrysoula K Pantazopoulou
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Yorrit van de Kaa
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Wouter Kohlen
- Laboratory of Cell and Developmental Biology, Cluster Plant Developmental Biology, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Ronald Pierik
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Kaisa Kajala
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
16
|
García-López IJ, Vélez-Ramírez AI, Gillmor CS, Fernandez-Valverde SL. lncRNAs involved in the Shade Avoidance Syndrome (SAS) in Arabidopsis thaliana. BMC Genomics 2024; 25:802. [PMID: 39183275 PMCID: PMC11346216 DOI: 10.1186/s12864-024-10718-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Plant long non-coding RNAs (lncRNAs) have important regulatory roles in responses to various biotic and abiotic stresses, including light quality. However, no lncRNAs have been specifically linked to the Shade Avoidance Response (SAS). RESULTS To better understand the involvement of lncRNAs in shade avoidance, we examined RNA-seq libraries for lncRNAs with the potential to function in the neighbor proximity phenomenon in Arabidopsis thaliana (A. thaliana). Using transcriptomes generated from seedlings exposed to high and low red/far-red (R/FR) light conditions, we identified 13 lncRNA genes differentially expressed in cotyledons and 138 in hypocotyls. To infer possible functions for these lncRNAs, we used a 'guilt-by-association' approach to identify genes co-expressed with lncRNAs in a weighted gene co-expression network. Of 34 co-expression modules, 10 showed biological functions related to differential growth. We identified three potential lncRNAs co-regulated with genes related to SAS. T-DNA insertions in two of these lncRNAs were correlated with morphological differences in seedling responses to increased FR light, supporting our strategy for computational identification of lncRNAs involved in SAS. CONCLUSIONS Using a computational approach, we identified multiple lncRNAs in Arabidopsis involved in SAS. T-DNA insertions caused altered phenotypes under low R/FR light, suggesting functional roles in shade avoidance. Further experiments are needed to determine the specific mechanisms of these lncRNAs in SAS.
Collapse
Affiliation(s)
| | - Aarón I Vélez-Ramírez
- Laboratorio de Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, León, 37684, Guanajuato, México
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, León, Guanajuato, 37684, México
| | - C Stewart Gillmor
- Unidad de Genómica Avanzada, Cinvestav, Irapuato, 36824, Guanajuato, México.
| | - Selene L Fernandez-Valverde
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
- UNSW RNA Institute, The University of New South Wales, Sydney, NSW, 2052, Australia.
- Evolution & Ecology Research Centre, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
17
|
Huber M, de Boer HJ, Romanowski A, van Veen H, Buti S, Kahlon PS, van der Meijden J, Koch J, Pierik R. Far-red light enrichment affects gene expression and architecture as well as growth and photosynthesis in rice. PLANT, CELL & ENVIRONMENT 2024; 47:2936-2953. [PMID: 38629324 DOI: 10.1111/pce.14909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 07/12/2024]
Abstract
Plants use light as a resource and signal. Photons within the 400-700 nm waveband are considered photosynthetically active. Far-red photons (FR, 700-800 nm) are used by plants to detect nearby vegetation and elicit the shade avoidance syndrome. In addition, FR photons have also been shown to contribute to photosynthesis, but knowledge about these dual effects remains scarce. Here, we study shoot-architectural and photosynthetic responses to supplemental FR light during the photoperiod in several rice varieties. We observed that FR enrichment only mildly affected the rice transcriptome and shoot architecture as compared to established model species, whereas leaf formation, tillering and biomass accumulation were clearly promoted. Consistent with this growth promotion, we found that CO2-fixation in supplemental FR was strongly enhanced, especially in plants acclimated to FR-enriched conditions as compared to control conditions. This growth promotion dominates the effects of FR photons on shoot development and architecture. When substituting FR enrichment with an end-of-day FR pulse, this prevented photosynthesis-promoting effects and elicited shade avoidance responses. We conclude that FR photons can have a dual role, where effects depend on the environmental context: in addition to being an environmental signal, they are also a potent source of harvestable energy.
Collapse
Affiliation(s)
- Martina Huber
- Plant-Environment Signalling, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Hugo Jan de Boer
- Copernicus Institute of Sustainable Development, Department of Environmental Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Andrés Romanowski
- Plant-Environment Signalling, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Hans van Veen
- Plant-Environment Signalling, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Plant Stress Resilience, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Sara Buti
- Plant-Environment Signalling, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Parvinderdeep S Kahlon
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Jannes van der Meijden
- Plant-Environment Signalling, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jeroen Koch
- Plant-Environment Signalling, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Plant-Environment Signalling, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
18
|
Choi IKY, Chaturvedi AK, Sng BJR, Vu KV, Jang IC. Organ-specific transcriptional regulation by HFR1 and HY5 in response to shade in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1430639. [PMID: 39145190 PMCID: PMC11322348 DOI: 10.3389/fpls.2024.1430639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
Light is crucial for plants and serves as a signal for modulating their growth. Under shade, where red to far-red light ratio is low, plants exhibit shade avoidance responses (SAR). LONG HYPOCOTYL IN FAR-RED 1 (HFR1) and ELONGATED HYPOCOTYL 5 (HY5) are known to be negative regulators of SAR and physically interact with one another. However, transcriptional regulatory network underlying SAR by these two transcription factors has not been explored. Here, we performed organ-specific transcriptome analyses of Arabidopsis thaliana hfr1-5, hy5-215 and hfr1hy5 to identify genes that are co-regulated by HFR1 and HY5 in hypocotyls and cotyledons. Genes co-regulated by HFR1 and HY5 were enriched in various processes related to cell wall modification and chlorophyll biosynthesis in hypocotyls. Phytohormone (abscisic acid and jasmonic acid) and light responses were significantly regulated by HFR1 and HY5 in both organs, though it is more prominent under shade in cotyledons. HFR1 and HY5 also differentially regulate the expression of the cell wall-related genes for xyloglucan endotransglucosylase/hydrolase, expansin, arabinogalactan protein and class III peroxidase depending on the organs. Furthermore, HFR1 and HY5 cooperatively regulated hypocotyl responsiveness to shade through auxin metabolism. Together, our study illustrates the importance of the HFR1-HY5 module in regulating organ-specific shade responses in Arabidopsis.
Collapse
Affiliation(s)
- Ian Kin Yuen Choi
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Amit Kumar Chaturvedi
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Benny Jian Rong Sng
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Kien Van Vu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Martínez-Vasallo C, Cole B, Pérez-Alemany J, Ortiz-Ramírez CI, Gallego-Bartolomé J, Chory J, Kay SA, Nohales MA. GIGANTEA adjusts the response to shade at dusk by directly impinging on PHYTOCHROME INTERACTING FACTOR 7 function. Proc Natl Acad Sci U S A 2024; 121:e2315778121. [PMID: 39012827 PMCID: PMC11287147 DOI: 10.1073/pnas.2315778121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/11/2024] [Indexed: 07/18/2024] Open
Abstract
For plants adapted to bright light, a decrease in the amount of light received can be detrimental to their growth and survival. Consequently, in response to shade from surrounding vegetation, they initiate a suite of molecular and morphological changes known as the shade avoidance response through which stems and petioles elongate in search for light. Under sunlight-night cycles, the plant's responsiveness to shade varies across the day, being maximal at dusk time. While a role for the circadian clock in this regulation has long been proposed, mechanistic understanding of how it is achieved is incomplete. Here, we show that the clock component GIGANTEA (GI) directly interacts with the transcriptional regulator PHYTOCHROME INTERACTING FACTOR 7 (PIF7), a key player in the response to shade. GI represses PIF7 transcriptional activity and the expression of its target genes in response to shade, thereby fine-tuning the magnitude of the response to limiting light conditions. We find that under light/dark cycles, this function of GI is required to adequately modulate the gating of the response to shade at dusk. Importantly, we also show that this circuit primarily operates in epidermal cells, highlighting the relevance of tissue-specific clock-output connections for the regulation of plant development in resonance with the environment.
Collapse
Affiliation(s)
- Carlos Martínez-Vasallo
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientίficas–Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Benjamin Cole
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Jaime Pérez-Alemany
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientίficas–Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Clara I. Ortiz-Ramírez
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientίficas–Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Javier Gallego-Bartolomé
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientίficas–Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Joanne Chory
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
- HHMI, La Jolla, CA92037
| | - Steve A. Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Maria A. Nohales
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientίficas–Universidad Politécnica de Valencia, Valencia46022, Spain
| |
Collapse
|
20
|
Krahmer J, Fankhauser C. Environmental Control of Hypocotyl Elongation. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:489-519. [PMID: 38012051 DOI: 10.1146/annurev-arplant-062923-023852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The hypocotyl is the embryonic stem connecting the primary root to the cotyledons. Hypocotyl length varies tremendously depending on the conditions. This developmental plasticity and the simplicity of the organ explain its success as a model for growth regulation. Light and temperature are prominent growth-controlling cues, using shared signaling elements. Mechanisms controlling hypocotyl elongation in etiolated seedlings reaching the light differ from those in photoautotrophic seedlings. However, many common growth regulators intervene in both situations. Multiple photoreceptors including phytochromes, which also respond to temperature, control the activity of several transcription factors, thereby eliciting rapid transcriptional reprogramming. Hypocotyl growth often depends on sensing in green tissues and interorgan communication comprising auxin. Hypocotyl auxin, in conjunction with other hormones, determines epidermal cell elongation. Plants facing cues with opposite effects on growth control hypocotyl elongation through intricate mechanisms. We discuss the status of the field and end by highlighting open questions.
Collapse
Affiliation(s)
- Johanna Krahmer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland;
- Current affiliation: Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark;
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland;
| |
Collapse
|
21
|
Saura-Sánchez M, Gomez-Ocampo G, Pereyra ME, Barraza CE, Rossi AH, Córdoba JP, Botto JF. B-Box transcription factor BBX28 requires CONSTITUTIVE PHOTOMORPHOGENESIS1 to induce shade-avoidance response in Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 195:2443-2455. [PMID: 38620015 DOI: 10.1093/plphys/kiae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024]
Abstract
Shade avoidance syndrome is an important adaptive strategy. Under shade, major transcriptional rearrangements underlie the reallocation of resources to elongate vegetative structures and redefine the plant architecture to compete for photosynthesis. BBX28 is a B-box transcription factor involved in seedling de-etiolation and flowering in Arabidopsis (Arabidopsis thaliana), but its function in shade-avoidance response is completely unknown. Here, we studied the function of BBX28 using two mutant and two transgenic lines of Arabidopsis exposed to white light and simulated shade conditions. We found that BBX28 promotes hypocotyl growth under shade through the phytochrome system by perceiving the reduction of red photons but not the reduction of photosynthetically active radiation or blue photons. We demonstrated that hypocotyl growth under shade is sustained by the protein accumulation of BBX28 in the nuclei in a CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1)-dependent manner at the end of the photoperiod. BBX28 up-regulates the expression of transcription factor- and auxin-related genes, thereby promoting hypocotyl growth under prolonged shade. Overall, our results suggest the role of BBX28 in COP1 signaling to sustain the shade-avoidance response and extend the well-known participation of other members of BBX transcription factors for fine-tuning plant growth under shade.
Collapse
Affiliation(s)
- Maite Saura-Sánchez
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (FEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriel Gomez-Ocampo
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (FEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Matías Ezequiel Pereyra
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (FEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Carla Eliana Barraza
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (FEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrés H Rossi
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Juan P Córdoba
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Javier Francisco Botto
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (FEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
22
|
Zhou C, Gu X, Li J, Su X, Chen S, Tang J, Chen L, Cai N, Xu Y. Physiological Characteristics and Transcriptomic Responses of Pinus yunnanensis Lateral Branching to Different Shading Environments. PLANTS (BASEL, SWITZERLAND) 2024; 13:1588. [PMID: 38931020 PMCID: PMC11207258 DOI: 10.3390/plants13121588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Pinus yunnanensis is an important component of China's economic development and forest ecosystems. The growth of P. yunnanensis seedlings experienced a slow growth phase, which led to a long seedling cultivation period. However, asexual reproduction can ensure the stable inheritance of the superior traits of the mother tree and also shorten the breeding cycle. The quantity and quality of branching significantly impact the cutting reproduction of P. yunnanensis, and a shaded environment affects lateral branching growth, development, and photosynthesis. Nonetheless, the physiological characteristics and the level of the transcriptome that underlie the growth of lateral branches of P. yunnanensis under shade conditions are still unclear. In our experiment, we subjected annual P. yunnanensis seedlings to varying shade intensities (0%, 25%, 50%, 75%) and studied the effects of shading on growth, physiological and biochemical changes, and gene expression in branching. Results from this study show that shading reduces biomass production by inhibiting the branching ability of P. yunnanensis seedlings. Due to the regulatory and protective roles of osmotically active substances against environmental stress, the contents of soluble sugars, soluble proteins, photosynthetic pigments, and enzyme activities exhibit varying responses to different shading treatments. Under shading treatment, the contents of phytohormones were altered. Additionally, genes associated with phytohormone signaling and photosynthetic pathways exhibited differential expression. This study established a theoretical foundation for shading regulation of P. yunnanensis lateral branch growth and provides scientific evidence for the management of cutting orchards.
Collapse
Affiliation(s)
- Chiyu Zhou
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Xuesha Gu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Jiangfei Li
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Xin Su
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Shi Chen
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Junrong Tang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Lin Chen
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Nianhui Cai
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Yulan Xu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (C.Z.); (X.G.); (J.L.); (X.S.); (S.C.); (J.T.); (L.C.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
23
|
Sénéchal F, Robinson S, Van Schaik E, Trévisan M, Saxena P, Reinhardt D, Fankhauser C. Pectin methylesterification state and cell wall mechanical properties contribute to neighbor proximity-induced hypocotyl growth in Arabidopsis. PLANT DIRECT 2024; 8:e584. [PMID: 38646567 PMCID: PMC11033045 DOI: 10.1002/pld3.584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/25/2024] [Accepted: 03/24/2024] [Indexed: 04/23/2024]
Abstract
Plants growing with neighbors compete for light and consequently increase the growth of their vegetative organs to enhance access to sunlight. This response, called shade avoidance syndrome (SAS), involves photoreceptors such as phytochromes as well as phytochrome interacting factors (PIFs), which regulate the expression of growth-mediating genes. Numerous cell wall-related genes belong to the putative targets of PIFs, and the importance of cell wall modifications for enabling growth was extensively shown in developmental models such as dark-grown hypocotyl. However, the contribution of the cell wall in the growth of de-etiolated seedlings regulated by shade cues remains poorly established. Through analyses of mechanical and biochemical properties of the cell wall coupled with transcriptomic analysis of cell wall-related genes from previously published data, we provide evidence suggesting that cell wall modifications are important for neighbor proximity-induced elongation. Further analysis using loss-of-function mutants impaired in the synthesis and remodeling of the main cell wall polymers corroborated this. We focused on the cgr2cgr3 double mutant that is defective in methylesterification of homogalacturonan (HG)-type pectins. By following hypocotyl growth kinetically and spatially and analyzing the mechanical and biochemical properties of cell walls, we found that methylesterification of HG-type pectins was required to enable global cell wall modifications underlying neighbor proximity-induced hypocotyl growth. Collectively, our work suggests that plant competition for light induces changes in the expression of numerous cell wall genes to enable modifications in biochemical and mechanical properties of cell walls that contribute to neighbor proximity-induced growth.
Collapse
Affiliation(s)
- Fabien Sénéchal
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode BuildingUniversity of LausanneLausanneSwitzerland
- Present address:
UMR INRAE 1158 BioEcoAgro, Plant Biology and InnovationUniversity of Picardie Jules VerneAmiensFrance
| | - Sarah Robinson
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Present address:
The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | - Evert Van Schaik
- Department of BiologyUniversity of FribourgFribourgSwitzerland
- Present address:
University of Applied Sciences LeidenLeidenNetherlands
| | - Martine Trévisan
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode BuildingUniversity of LausanneLausanneSwitzerland
| | - Prashant Saxena
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode BuildingUniversity of LausanneLausanneSwitzerland
- Present address:
James Watt School of EngineeringUniversity of GlasgowGlasgowUK
| | | | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode BuildingUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
24
|
Han R, Ma L, Terzaghi W, Guo Y, Li J. Molecular mechanisms underlying coordinated responses of plants to shade and environmental stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1893-1913. [PMID: 38289877 DOI: 10.1111/tpj.16653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Shade avoidance syndrome (SAS) is triggered by a low ratio of red (R) to far-red (FR) light (R/FR ratio), which is caused by neighbor detection and/or canopy shade. In order to compete for the limited light, plants elongate hypocotyls and petioles by deactivating phytochrome B (phyB), a major R light photoreceptor, thus releasing its inhibition of the growth-promoting transcription factors PHYTOCHROME-INTERACTING FACTORs. Under natural conditions, plants must cope with abiotic stresses such as drought, soil salinity, and extreme temperatures, and biotic stresses such as pathogens and pests. Plants have evolved sophisticated mechanisms to simultaneously deal with multiple environmental stresses. In this review, we will summarize recent major advances in our understanding of how plants coordinately respond to shade and environmental stresses, and will also discuss the important questions for future research. A deep understanding of how plants synergistically respond to shade together with abiotic and biotic stresses will facilitate the design and breeding of new crop varieties with enhanced tolerance to high-density planting and environmental stresses.
Collapse
Affiliation(s)
- Run Han
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, 18766, USA
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| |
Collapse
|
25
|
Favre P, van Schaik E, Schorderet M, Yerly F, Reinhardt D. Regulation of tissue growth in plants - A mathematical modeling study on shade avoidance response in Arabidopsis hypocotyls. FRONTIERS IN PLANT SCIENCE 2024; 15:1285655. [PMID: 38486850 PMCID: PMC10938469 DOI: 10.3389/fpls.2024.1285655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024]
Abstract
Introduction Plant growth is a plastic phenomenon controlled both by endogenous genetic programs and by environmental cues. The embryonic stem, the hypocotyl, is an ideal model system for the quantitative study of growth due to its relatively simple geometry and cellular organization, and to its essentially unidirectional growth pattern. The hypocotyl of Arabidopsis thaliana has been studied particularly well at the molecular-genetic level and at the cellular level, and it is the model of choice for analysis of the shade avoidance syndrome (SAS), a growth reaction that allows plants to compete with neighboring plants for light. During SAS, hypocotyl growth is controlled primarily by the growth hormone auxin, which stimulates cell expansion without the involvement of cell division. Methods We assessed hypocotyl growth at cellular resolution in Arabidopsis mutants defective in auxin transport and biosynthesis and we designed a mathematical auxin transport model based on known polar and non-polar auxin transporters (ABCB1, ABCB19, and PINs) and on factors that control auxin homeostasis in the hypocotyl. In addition, we introduced into the model biophysical properties of the cell types based on precise cell wall measurements. Results and Discussion Our model can generate the observed cellular growth patterns based on auxin distribution along the hypocotyl resulting from production in the cotyledons, transport along the hypocotyl, and general turnover of auxin. These principles, which resemble the features of mathematical models of animal morphogen gradients, allow to generate robust shallow auxin gradients as they are expected to exist in tissues that exhibit quantitative auxin-driven tissue growth, as opposed to the sharp auxin maxima generated by patterning mechanisms in plant development.
Collapse
Affiliation(s)
- Patrick Favre
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Evert van Schaik
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Florence Yerly
- Haute école d’ingénierie et d’architecture Fribourg, Haute Ecole Spécialisée de Suisse Occidentale (HES-SO), University of Applied Sciences and Arts of Western Switzerland, Fribourg, Switzerland
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
26
|
Mammarella MF, Lucero L, Hussain N, Muñoz‐Lopez A, Huang Y, Ferrero L, Fernandez‐Milmanda GL, Manavella P, Benhamed M, Crespi M, Ballare CL, Gutiérrez Marcos J, Cubas P, Ariel F. Long noncoding RNA-mediated epigenetic regulation of auxin-related genes controls shade avoidance syndrome in Arabidopsis. EMBO J 2023; 42:e113941. [PMID: 38054357 PMCID: PMC10711646 DOI: 10.15252/embj.2023113941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023] Open
Abstract
The long noncoding RNA (lncRNA) AUXIN-REGULATED PROMOTER LOOP (APOLO) recognizes a subset of target loci across the Arabidopsis thaliana genome by forming RNA-DNA hybrids (R-loops) and modulating local three-dimensional chromatin conformation. Here, we show that APOLO regulates shade avoidance syndrome by dynamically modulating expression of key factors. In response to far-red (FR) light, expression of APOLO anti-correlates with that of its target BRANCHED1 (BRC1), a master regulator of shoot branching in Arabidopsis thaliana. APOLO deregulation results in BRC1 transcriptional repression and an increase in the number of branches. Accumulation of APOLO transcription fine-tunes the formation of a repressive chromatin loop encompassing the BRC1 promoter, which normally occurs only in leaves and in a late response to far-red light treatment in axillary buds. In addition, our data reveal that APOLO participates in leaf hyponasty, in agreement with its previously reported role in the control of auxin homeostasis through direct modulation of auxin synthesis gene YUCCA2, and auxin efflux genes PID and WAG2. We show that direct application of APOLO RNA to leaves results in a rapid increase in auxin signaling that is associated with changes in the plant response to far-red light. Collectively, our data support the view that lncRNAs coordinate shade avoidance syndrome in A. thaliana, and reveal their potential as exogenous bioactive molecules. Deploying exogenous RNAs that modulate plant-environment interactions may therefore become a new tool for sustainable agriculture.
Collapse
Affiliation(s)
| | - Leandro Lucero
- Instituto de Agrobiotecnología del Litoral, CONICETUniversidad Nacional del LitoralSanta FeArgentina
| | | | - Aitor Muñoz‐Lopez
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología‐CSICCampus Universidad Autónoma de MadridMadridSpain
| | - Ying Huang
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRAUniversité Evry, Université Paris‐SaclayOrsayFrance
- Institute of Plant Sciences Paris‐Saclay IPS2Université de ParisOrsayFrance
| | - Lucia Ferrero
- Instituto de Agrobiotecnología del Litoral, CONICETUniversidad Nacional del LitoralSanta FeArgentina
| | - Guadalupe L Fernandez‐Milmanda
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad de Buenos AiresBuenos AiresArgentina
| | - Pablo Manavella
- Instituto de Agrobiotecnología del Litoral, CONICETUniversidad Nacional del LitoralSanta FeArgentina
| | - Moussa Benhamed
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRAUniversité Evry, Université Paris‐SaclayOrsayFrance
- Institute of Plant Sciences Paris‐Saclay IPS2Université de ParisOrsayFrance
| | - Martin Crespi
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRAUniversité Evry, Université Paris‐SaclayOrsayFrance
- Institute of Plant Sciences Paris‐Saclay IPS2Université de ParisOrsayFrance
| | - Carlos L Ballare
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Biotecnológicas (IIBIO), CONICETUniversidad Nacional de San MartínBuenos AiresArgentina
| | | | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología‐CSICCampus Universidad Autónoma de MadridMadridSpain
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICETUniversidad Nacional del LitoralSanta FeArgentina
| |
Collapse
|
27
|
Bianchimano L, De Luca MB, Borniego MB, Iglesias MJ, Casal JJ. Temperature regulation of auxin-related gene expression and its implications for plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7015-7033. [PMID: 37422862 DOI: 10.1093/jxb/erad265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Twenty-five years ago, a seminal paper demonstrated that warm temperatures increase auxin levels to promote hypocotyl growth in Arabidopsis thaliana. Here we highlight recent advances in auxin-mediated thermomorphogenesis and identify unanswered questions. In the warmth, PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF7 bind the YUCCA8 gene promoter and, in concert with histone modifications, enhance its expression to increase auxin synthesis in the cotyledons. Once transported to the hypocotyl, auxin promotes cell elongation. The meta-analysis of expression of auxin-related genes in seedlings exposed to temperatures ranging from cold to hot shows complex patterns of response. Changes in auxin only partially account for these responses. The expression of many SMALL AUXIN UP RNA (SAUR) genes reaches a maximum in the warmth, decreasing towards both temperature extremes in correlation with the rate of hypocotyl growth. Warm temperatures enhance primary root growth, the response requires auxin, and the hormone levels increase in the root tip but the impacts on cell division and cell expansion are not clear. A deeper understanding of auxin-mediated temperature control of plant architecture is necessary to face the challenge of global warming.
Collapse
Affiliation(s)
- Luciana Bianchimano
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - María Belén De Luca
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - María Belén Borniego
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - María José Iglesias
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires C1428EHA, Argentina
| | - Jorge J Casal
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| |
Collapse
|
28
|
Nguyen NH, Sng BJR, Chin HJ, Choi IKY, Yeo HC, Jang IC. HISTONE DEACETYLASE 9 promotes hypocotyl-specific auxin response under shade. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:804-822. [PMID: 37522556 DOI: 10.1111/tpj.16410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Vegetative shade causes an array of morphological changes in plants called shade avoidance syndrome, which includes hypocotyl and petiole elongation, leaf hyponasty, reduced leaf growth, early flowering and rapid senescence. Here, we show that loss-of-function mutations in HISTONE DEACETYLASE 9 (HDA9) attenuated the shade-induced hypocotyl elongation in Arabidopsis. However, the hda9 cotyledons and petioles under shade were not significantly different from those in wild-type, suggesting a specific function of HDA9 in hypocotyl elongation in response to shade. HDA9 expression levels were stable under shade and its protein was ubiquitously detected in cotyledon, hypocotyl and root. Organ-specific transcriptome analysis unraveled that shade induced a set of auxin-responsive genes, such as SMALL AUXIN UPREGULATED RNAs (SAURs) and AUXIN/INDOLE-3-ACETIC ACIDs (AUX/IAAs) and their induction was impaired in hda9-1 hypocotyls. In addition, HDA9 binding to loci of SAUR15/65, IAA5/6/19 and ACS4 was increased under shade. The genetic and organ-specific gene expression analyses further revealed that HDA9 may cooperate with PHYTOCHROME-INTERACTING FACTOR 4/7 in the regulation of shade-induced hypocotyl elongation. Furthermore, HDA9 and PIF7 proteins were found to interact together and thus it is suggested that PIF7 may recruit HDA9 to regulate the shade/auxin responsive genes in response to shade. Overall, our study unravels that HDA9 can work as one component of a hypocotyl-specific transcriptional regulatory machinery that activates the auxin response at the hypocotyl leading to the elongation of this organ under shade.
Collapse
Affiliation(s)
- Nguyen Hoai Nguyen
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - Benny Jian Rong Sng
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Hui Jun Chin
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - Ian Kin Yuen Choi
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Hock Chuan Yeo
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
29
|
Sun R, Okabe M, Miyazaki S, Ishida T, Mashiguchi K, Inoue K, Yoshitake Y, Yamaoka S, Nishihama R, Kawaide H, Nakajima M, Yamaguchi S, Kohchi T. Biosynthesis of gibberellin-related compounds modulates far-red light responses in the liverwort Marchantia polymorpha. THE PLANT CELL 2023; 35:4111-4132. [PMID: 37597168 PMCID: PMC10615216 DOI: 10.1093/plcell/koad216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/21/2023]
Abstract
Gibberellins (GAs) are key phytohormones that regulate growth, development, and environmental responses in angiosperms. From an evolutionary perspective, all major steps of GA biosynthesis are conserved among vascular plants, while GA biosynthesis intermediates such as ent-kaurenoic acid (KA) are also produced by bryophytes. Here, we show that in the liverwort Marchantia polymorpha, KA and GA12 are synthesized by evolutionarily conserved enzymes, which are required for developmental responses to far-red light (FR). Under FR-enriched conditions, mutants of various biosynthesis enzymes consistently exhibited altered thallus growth allometry, delayed initiation of gametogenesis, and abnormal morphology of gamete-bearing structures (gametangiophores). By chemical treatments and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses, we confirmed that these phenotypes were caused by the deficiency of some GA-related compounds derived from KA, but not bioactive GAs from vascular plants. Transcriptome analysis showed that FR enrichment induced the up-regulation of genes related to stress responses and secondary metabolism in M. polymorpha, which was largely dependent on the biosynthesis of GA-related compounds. Due to the lack of canonical GA receptors in bryophytes, we hypothesize that GA-related compounds are commonly synthesized in land plants but were co-opted independently to regulate responses to light quality change in different plant lineages during the past 450 million years of evolution.
Collapse
Affiliation(s)
- Rui Sun
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502,Japan
| | - Maiko Okabe
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502,Japan
| | - Sho Miyazaki
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, 183-8509,Japan
| | - Toshiaki Ishida
- Institute for Chemical Research, Kyoto University, Uji 611-0011,Japan
| | | | - Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502,Japan
| | | | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502,Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502,Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510,Japan
| | - Hiroshi Kawaide
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509,Japan
| | - Masatoshi Nakajima
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657,Japan
| | | | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502,Japan
| |
Collapse
|
30
|
Wong C, Alabadí D, Blázquez MA. Spatial regulation of plant hormone action. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6089-6103. [PMID: 37401809 PMCID: PMC10575700 DOI: 10.1093/jxb/erad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Although many plant cell types are capable of producing hormones, and plant hormones can in most cases act in the same cells in which they are produced, they also act as signaling molecules that coordinate physiological responses between different parts of the plant, indicating that their action is subject to spatial regulation. Numerous publications have reported that all levels of plant hormonal pathways, namely metabolism, transport, and perception/signal transduction, can help determine the spatial ranges of hormone action. For example, polar auxin transport or localized auxin biosynthesis contribute to creating a differential hormone accumulation across tissues that is instrumental for specific growth and developmental responses. On the other hand, tissue specificity of cytokinin actions has been proposed to be regulated by mechanisms operating at the signaling stages. Here, we review and discuss current knowledge about the contribution of the three levels mentioned above in providing spatial specificity to plant hormone action. We also explore how new technological developments, such as plant hormone sensors based on FRET (fluorescence resonance energy transfer) or single-cell RNA-seq, can provide an unprecedented level of resolution in defining the spatial domains of plant hormone action and its dynamics.
Collapse
Affiliation(s)
- Cynthia Wong
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| |
Collapse
|
31
|
Gómez-Ocampo G, Cascales J, Medina-Fraga AL, Ploschuk EL, Mantese AI, Crocco CD, Matsusaka D, Sánchez DH, Botto JF. Transcriptomic and physiological shade avoidance responses in potato (Solanum tuberosum) plants. PHYSIOLOGIA PLANTARUM 2023; 175:e13991. [PMID: 37616016 DOI: 10.1111/ppl.13991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
Plants detect competitors in shaded environments by perceiving a reduction in photosynthetically active radiation (PAR) and the reduction between the red and far-red light (R:FR) ratio and blue photons. These light signals are detected by phytochromes and cryptochromes, which trigger shade avoidance responses such as shoot and petiole elongation and lead to increased susceptibility to pathogen attack. We studied morphological, anatomical, and photosynthesis differences in potato plants (Solanum tuberosum var. Spunta) exposed to sunlight or simulated shade in a greenhouse. We found that simulated shade strongly induced stem and internode elongation with a higher production of free auxin in stems and a lower production of tubers. The mesophyll thickness of the upper leaves of plants grown in simulated shade was lower, but the epidermis was wider compared with the leaves of plants cultivated in sunlight. In addition, the photosynthesis rate was lower in the upper leaves exposed to nonsaturated irradiances and higher in the basal leaves at saturated irradiances compared with control plants. RNA-seq analysis showed that 146 and 155 genes were up- and downregulated by shade, respectively. By quantitative reverse transcription polymerase chain reaction, we confirmed that FLOWERING LOCUS T (FT), WRKY-like, and PAR1b were induced, while FLAVONOL 4-SULFOTRANSFERASE was repressed under shade. In shaded plants, leaves and tubers were more susceptible to the necrotrophic fungus Botrytis cinerea attack. Overall, our work demonstrates configurational changes between growth and defense decisions in potato plants cultivated in simulated shade.
Collapse
Affiliation(s)
- Gabriel Gómez-Ocampo
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jimena Cascales
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana L Medina-Fraga
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Edmundo L Ploschuk
- Cátedra de Cultivos Industriales, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Anita I Mantese
- Cátedra de Botánica General, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlos D Crocco
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniel Matsusaka
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego H Sánchez
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Javier F Botto
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
32
|
Saura-Sánchez M, Chiriotto TS, Cascales J, Gómez-Ocampo G, Hernández-García J, Li Z, Pruneda-Paz JL, Blázquez MA, Botto JF. BBX24 Interacts with JAZ3 to Promote Growth by Reducing DELLA Activity in Shade Avoidance. PLANT & CELL PHYSIOLOGY 2023; 64:474-485. [PMID: 36715091 DOI: 10.1093/pcp/pcad011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 05/17/2023]
Abstract
Shade avoidance syndrome (SAS) is a strategy of major adaptive significance and typically includes elongation of the stem and petiole, leaf hyponasty, reduced branching and phototropic orientation of the plant shoot toward canopy gaps. Both cryptochrome 1 and phytochrome B (phyB) are the major photoreceptors that sense the reduction in the blue light fluence rate and the low red:far-red ratio, respectively, and both light signals are associated with plant density and the resource reallocation when SAS responses are triggered. The B-box (BBX)-containing zinc finger transcription factor BBX24 has been implicated in the SAS as a regulator of DELLA activity, but this interaction does not explain all the observed BBX24-dependent regulation in shade light. Here, through a combination of transcriptional meta-analysis and large-scale identification of BBX24-interacting transcription factors, we found that JAZ3, a jasmonic acid signaling component, is a direct target of BBX24. Furthermore, we demonstrated that joint loss of BBX24 and JAZ3 function causes insensitivity to DELLA accumulation, and the defective shade-induced elongation in this mutant is rescued by loss of DELLA or phyB function. Therefore, we propose that JAZ3 is part of the regulatory network that controls the plant growth in response to shade, through a mechanism in which BBX24 and JAZ3 jointly regulate DELLA activity. Our results provide new insights into the participation of BBX24 and JA signaling in the hypocotyl shade avoidance response in Arabidopsis.
Collapse
Affiliation(s)
- Maite Saura-Sánchez
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Tai Sabrina Chiriotto
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Jimena Cascales
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Gabriel Gómez-Ocampo
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| | - Jorge Hernández-García
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, C/Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Zheng Li
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0348, USA
| | - José Luis Pruneda-Paz
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0348, USA
| | - Miguel Angel Blázquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, C/Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Javier Francisco Botto
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Ciudad Autónoma de Buenos Aires C1417DSE, Argentina
| |
Collapse
|
33
|
Li Z, Zhao T, Liu J, Li H, Liu B. Shade-Induced Leaf Senescence in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1550. [PMID: 37050176 PMCID: PMC10097262 DOI: 10.3390/plants12071550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Leaf senescence is a vital developmental process that involves the orderly breakdown of macromolecules to transfer nutrients from mature leaves to emerging and reproductive organs. This process is essential for a plant's overall fitness. Multiple internal and external factors, such as leaf age, plant hormones, stresses, and light environment, regulate the onset and progression of leaf senescence. When plants grow close to each other or are shaded, it results in significant alterations in light quantity and quality, such as a decrease in photosynthetically active radiation (PAR), a drop in red/far-red light ratios, and a reduction in blue light fluence rate, which triggers premature leaf senescence. Recently, studies have identified various components involved in light, phytohormone, and other signaling pathways that regulate the leaf senescence process in response to shade. This review summarizes the current knowledge on the molecular mechanisms that control leaf senescence induced by shade.
Collapse
Affiliation(s)
| | | | | | - Hongyu Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
34
|
Sang Q, Fan L, Liu T, Qiu Y, Du J, Mo B, Chen M, Chen X. MicroRNA156 conditions auxin sensitivity to enable growth plasticity in response to environmental changes in Arabidopsis. Nat Commun 2023; 14:1449. [PMID: 36949101 PMCID: PMC10033679 DOI: 10.1038/s41467-023-36774-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/14/2023] [Indexed: 03/24/2023] Open
Abstract
MicroRNAs (miRNAs) play diverse roles in plant development, but whether and how miRNAs participate in thermomorphogenesis remain ambiguous. Here we show that HYPONASTIC LEAVES 1 (HYL1)-a key component of miRNA biogenesis-acts downstream of the thermal regulator PHYTOCHROME INTERACTING FACTOR 4 in the temperature-dependent plasticity of hypocotyl growth in Arabidopsis. A hyl1-2 suppressor screen identified a dominant dicer-like1 allele that rescues hyl1-2's defects in miRNA biogenesis and thermoresponsive hypocotyl elongation. Genome-wide miRNA and transcriptome analysis revealed microRNA156 (miR156) and its target SQUAMOSA PROMOTER-BINDING-PROTEIN-LIKE 9 (SPL9) to be critical regulators of thermomorphogenesis. Surprisingly, perturbation of the miR156/SPL9 module disengages seedling responsiveness to warm temperatures by impeding auxin sensitivity. Moreover, miR156-dependent auxin sensitivity also operates in the shade avoidance response at lower temperatures. Thus, these results unveil the miR156/SPL9 module as a previously uncharacterized genetic circuit that enables plant growth plasticity in response to environmental temperature and light changes.
Collapse
Affiliation(s)
- Qing Sang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Lusheng Fan
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Tianxiang Liu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Yongjian Qiu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
- Department of Biology, University of Mississippi, Oxford, MS, 38677, USA
| | - Juan Du
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
35
|
Casal JJ, Fankhauser C. Shade avoidance in the context of climate change. PLANT PHYSIOLOGY 2023; 191:1475-1491. [PMID: 36617439 PMCID: PMC10022646 DOI: 10.1093/plphys/kiad004] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 05/13/2023]
Abstract
When exposed to changes in the light environment caused by neighboring vegetation, shade-avoiding plants modify their growth and/or developmental patterns to access more sunlight. In Arabidopsis (Arabidopsis thaliana), neighbor cues reduce the activity of the photosensory receptors phytochrome B (phyB) and cryptochrome 1, releasing photoreceptor repression imposed on PHYTOCHROME INTERACTING FACTORs (PIFs) and leading to transcriptional reprogramming. The phyB-PIF hub is at the core of all shade-avoidance responses, whilst other photosensory receptors and transcription factors contribute in a context-specific manner. CONSTITUTIVELY PHOTOMORPHOGENIC1 is a master regulator of this hub, indirectly stabilizing PIFs and targeting negative regulators of shade avoidance for degradation. Warm temperatures reduce the activity of phyB, which operates as a temperature sensor and further increases the activities of PIF4 and PIF7 by independent temperature sensing mechanisms. The signaling network controlling shade avoidance is not buffered against climate change; rather, it integrates information about shade, temperature, salinity, drought, and likely flooding. We, therefore, predict that climate change will exacerbate shade-induced growth responses in some regions of the planet while limiting the growth potential in others.
Collapse
Affiliation(s)
- Jorge J Casal
- Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, 1417 Buenos Aires, Argentina
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
36
|
Wang Y, Xiao Y, Sun Y, Zhang X, Du B, Turupu M, Yao Q, Gai S, Tong S, Huang J, Li T. Two B-box proteins, PavBBX6/9, positively regulate light-induced anthocyanin accumulation in sweet cherry. PLANT PHYSIOLOGY 2023:kiad137. [PMID: 36930566 DOI: 10.1093/plphys/kiad137] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Anthocyanin production in bicolored sweet cherry (Prunus avium cv. Rainier) fruit is induced by light exposure, leading to red coloration. The phytohormone abscisic acid (ABA) is essential for this process, but the regulatory relationships that link light and ABA with anthocyanin-associated coloration are currently unclear. In this study, we determined that light treatment of bicolored sweet cherry fruit increased anthocyanin accumulation and induced ABA production and that ABA participates in light-modulated anthocyanin accumulation in bicolored sweet cherry. Two B-box (BBX) genes, PavBBX6/9, were highly induced by light and ABA treatments, as was anthocyanin accumulation. The ectopic expression of PavBBX6 or PavBBX9 in Arabidopsis (Arabidopsis thaliana) increased anthocyanin biosynthesis and ABA accumulation. Overexpressing PavBBX6 or PavBBX9 in sweet cherry calli also enhanced light-induced anthocyanin biosynthesis and ABA accumulation. Additionally, transient overexpression of PavBBX6 or PavBBX9 in sweet cherry peel increased anthocyanin and ABA contents, whereas silencing either gene had the opposite effects. PavBBX6 and PavBBX9 directly bound to the G-box elements in the promoter of UDP glucose-flavonoid-3-O-glycosyltransferase (PavUFGT), a key gene for anthocyanin biosynthesis, and 9-cis-epoxycarotenoid dioxygenase 1 (PavNCED1), a key gene for ABA biosynthesis, and enhanced their activities. These results suggest that PavBBX6 and PavBBX9 positively regulate light-induced anthocyanin and ABA biosynthesis by promoting PavUFGT and PavNCED1 expression, respectively. Our study provides insights into the relationship between the light-induced ABA biosynthetic pathway and anthocyanin accumulation in bicolored sweet cherry fruit.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yuqin Xiao
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yueting Sun
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiang Zhang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bingyang Du
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Maihemuti Turupu
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qisheng Yao
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shilin Gai
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shi Tong
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jing Huang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tianhong Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
37
|
Lei L, Zhang JY, Pu D, Liu BZ, Meng XM, Shang QM, Duan YD, Zhang F, Zhang MX, Dong CJ. ABA-responsive AREB1/ABI3-1/ABI5 cascade regulates IAA oxidase gene SlDAO2 to inhibit hypocotyl elongation in tomato. PLANT, CELL & ENVIRONMENT 2023; 46:498-517. [PMID: 36369997 DOI: 10.1111/pce.14491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Hypocotyl elongation is dramatically influenced by environmental factors and phytohormones. Indole-3-acetic acid (IAA) plays a prominent role in hypocotyl elongation, whereas abscisic acid (ABA) is regarded as an inhibitor through repressing IAA synthesis and signalling. However, the regulatory role of ABA in local IAA deactivation remains largely uncharacterized. In this study, we confirmed the antagonistic interplay of ABA and IAA during the hypocotyl elongation of tomato (Solanum lycopersicum) seedlings. We identified an IAA oxidase enzyme DIOXYGENASE FOR AUXIN OXIDATION2 (SlDAO2), and its expression was induced by both external and internal ABA signals in tomato hypocotyls. Moreover, the overexpression of SlDAO2 led to a reduced sensitivity to IAA, and the knockout of SlDAO2 alleviated the inhibitory effect of ABA on hypocotyl elongation. Furthermore, an ABA-responsive regulatory SlAREB1/SlABI3-1/SlABI5 cascade was identified to act upstream of SlDAO2 and to precisely control its expression. SlAREB1 directly bound to the ABRE present in the SlDAO2 promoter to activate SlDAO2 expression, and SlABI3-1 enhanced while SlABI5 inhibited the activation ability of SlAREB1 by directly interacting with SlAREB1. Our findings revealed that ABA might induce local IAA oxidation and deactivation via SlDAO2 to modulate IAA homoeostasis and thereby repress hypocotyl elongation in tomato.
Collapse
Affiliation(s)
- Lei Lei
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jing-Ya Zhang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Dan Pu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Bing-Zhu Liu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Xian-Min Meng
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Qing-Mao Shang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Yun-Dan Duan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Meng-Xia Zhang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Chun-Juan Dong
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| |
Collapse
|
38
|
Local light signaling at the leaf tip drives remote differential petiole growth through auxin-gibberellin dynamics. Curr Biol 2023; 33:75-85.e5. [PMID: 36538931 PMCID: PMC9839380 DOI: 10.1016/j.cub.2022.11.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/16/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Although plants are immobile, many of their organs are flexible to move in response to environmental cues. In dense vegetation, plants detect neighbors through far-red light perception with their leaf tip. They respond remotely, with asymmetrical growth between the abaxial and adaxial sides of the leafstalk, the petiole. This results in upward movement that brings the leaf blades into better lit zones of the canopy. The plant hormone auxin is required for this response, but it is not understood how non-differential leaf tip-derived auxin can remotely regulate movement. Here, we show that remote signaling of far-red light promotes auxin accumulation in the abaxial petiole. This local auxin accumulation is facilitated by reinforcing an intrinsic directionality of the auxin transport protein PIN3 on the petiole endodermis, as visualized with a PIN3-GFP line. Using an auxin biosensor, we show that auxin accumulates in all cell layers from endodermis to epidermis in the abaxial petiole, upon far-red light signaling in the remote leaf tip. In the petiole, auxin elicits a response to both auxin itself as well as a second growth promoter; gibberellin. We show that this dual regulation is necessary for hyponastic leaf movement in response to light. Our data indicate that gibberellin is required to permit cell growth, whereas differential auxin accumulation determines which cells can grow. Our results reveal how plants can spatially relay information about neighbor proximity from their sensory leaf tips to the petiole base, thus driving adaptive growth.
Collapse
|
39
|
Michaud O, Krahmer J, Galbier F, Lagier M, Galvão VC, Ince YÇ, Trevisan M, Knerova J, Dickinson P, Hibberd JM, Zeeman SC, Fankhauser C. Abscisic acid modulates neighbor proximity-induced leaf hyponasty in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:542-557. [PMID: 36135791 PMCID: PMC9806605 DOI: 10.1093/plphys/kiac447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/08/2022] [Indexed: 05/27/2023]
Abstract
Leaves of shade-avoiding plants such as Arabidopsis (Arabidopsis thaliana) change their growth pattern and position in response to low red to far-red ratios (LRFRs) encountered in dense plant communities. Under LRFR, transcription factors of the phytochrome-interacting factor (PIF) family are derepressed. PIFs induce auxin production, which is required for promoting leaf hyponasty, thereby favoring access to unfiltered sunlight. Abscisic acid (ABA) has also been implicated in the control of leaf hyponasty, with gene expression patterns suggesting that LRFR regulates the ABA response. Here, we show that LRFR leads to a rapid increase in ABA levels in leaves. Changes in ABA levels depend on PIFs, which regulate the expression of genes encoding isoforms of the enzyme catalyzing a rate-limiting step in ABA biosynthesis. Interestingly, ABA biosynthesis and signaling mutants have more erect leaves than wild-type Arabidopsis under white light but respond less to LRFR. Consistent with this, ABA application decreases leaf angle under white light; however, this response is inhibited under LRFR. Tissue-specific interference with ABA signaling indicates that an ABA response is required in different cell types for LRFR-induced hyponasty. Collectively, our data indicate that LRFR triggers rapid PIF-mediated ABA production. ABA plays a different role in controlling hyponasty under white light than under LRFR. Moreover, ABA exerts its activity in multiple cell types to control leaf position.
Collapse
Affiliation(s)
| | - Johanna Krahmer
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Génopode Building, Lausanne CH-1015, Switzerland
| | - Florian Galbier
- Plant Biochemistry, Department of Biology, ETH Zürich, Universität-Str. 2, CH-8092 Zürich, Switzerland
| | | | | | | | - Martine Trevisan
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Génopode Building, Lausanne CH-1015, Switzerland
| | - Jana Knerova
- Department of Plant Sciences, Downing Street, Cambridge, University of Cambridge, CB2 3EA, UK
| | - Patrick Dickinson
- Department of Plant Sciences, Downing Street, Cambridge, University of Cambridge, CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, Downing Street, Cambridge, University of Cambridge, CB2 3EA, UK
| | - Samuel C Zeeman
- Plant Biochemistry, Department of Biology, ETH Zürich, Universität-Str. 2, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
40
|
Ahres M, Pálmai T, Kovács T, Kovács L, Lacek J, Vankova R, Galiba G, Borbély P. The Effect of White Light Spectrum Modifications by Excess of Blue Light on the Frost Tolerance, Lipid- and Hormone Composition of Barley in the Early Pre-Hardening Phase. PLANTS (BASEL, SWITZERLAND) 2022; 12:40. [PMID: 36616169 PMCID: PMC9823678 DOI: 10.3390/plants12010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
It is well established that cold acclimation processes are highly influenced, apart from cold ambient temperatures, by light-dependent environmental factors. In this study we investigated whether an extra blue (B) light supplementation would be able to further improve the well-documented freezing tolerance enhancing effect of far-red (FR) enriched white (W) light. The impact of B and FR light supplementation to white light (WFRB) on hormone levels and lipid contents were determined in winter barley at moderate (15 °C) and low (5 °C) temperatures. Low R:FR ratio effectively induced frost tolerance in barley plantlets, but additional B light further enhanced frost hardiness at both temperatures. Supplementation of WFR (white light enriched with FR light) with B had a strong positive effect on abscisic acid accumulation while the suppression of salicylic acid and jasmonic acid levels were observed at low temperature which resembles the shade avoidance syndrome. We also observed clear lipidomic differences between the individual light and temperature treatments. WFRB light changed the total lipid content negatively, but monogalactosyldiacylglycerol (MGDG) content was increased, nonetheless. Our results prove that WFRB light can greatly influence phytohormone dynamics and lipid contents, which eventually leads to more efficient pre-hardening to avoid frost damage.
Collapse
Affiliation(s)
- Mohamed Ahres
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
| | - Tamás Pálmai
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
| | - Terézia Kovács
- Biological Research Centre, Institute of Plant Biology, H-6701 Szeged, Hungary
| | - László Kovács
- Biological Research Centre, Institute of Plant Biology, H-6701 Szeged, Hungary
| | - Jozef Lacek
- Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Radomira Vankova
- Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague, Czech Republic
| | - Gábor Galiba
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
- Department of Agronomy, GEORGIKON Campus, Hungarian University of Agricultural and Life Sciences, 8360 Keszthely, Hungary
| | - Péter Borbély
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
| |
Collapse
|
41
|
A combination of plasma membrane sterol biosynthesis and autophagy is required for shade-induced hypocotyl elongation. Nat Commun 2022; 13:5659. [PMID: 36216814 PMCID: PMC9550796 DOI: 10.1038/s41467-022-33384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 09/15/2022] [Indexed: 12/04/2022] Open
Abstract
Plant growth ultimately depends on fixed carbon, thus the available light for photosynthesis. Due to canopy light absorption properties, vegetative shade combines low blue (LB) light and a low red to far-red ratio (LRFR). In shade-avoiding plants, these two conditions independently trigger growth adaptations to enhance light access. However, how these conditions, differing in light quality and quantity, similarly promote hypocotyl growth remains unknown. Using RNA sequencing we show that these two features of shade trigger different transcriptional reprogramming. LB induces starvation responses, suggesting a switch to a catabolic state. Accordingly, LB promotes autophagy. In contrast, LRFR induced anabolism including expression of sterol biosynthesis genes in hypocotyls in a manner dependent on PHYTOCHROME-INTERACTING FACTORs (PIFs). Genetic analyses show that the combination of sterol biosynthesis and autophagy is essential for hypocotyl growth promotion in vegetative shade. We propose that vegetative shade enhances hypocotyl growth by combining autophagy-mediated recycling and promotion of specific lipid biosynthetic processes. Plants subject to vegetative shade receive a low quantity of blue light (LB) and a low ratio of red to far-red light (LFLR). Here the authors show that while LB induces autophagy, LFLR leads to changes in lipid metabolism, and propose that these processes may contribute to shade avoidance responses.
Collapse
|
42
|
Patitaki E, Schivre G, Zioutopoulou A, Perrella G, Bourbousse C, Barneche F, Kaiserli E. Light, chromatin, action: nuclear events regulating light signaling in Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:333-349. [PMID: 35949052 PMCID: PMC9826491 DOI: 10.1111/nph.18424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/26/2022] [Indexed: 05/31/2023]
Abstract
The plant nucleus provides a major hub for environmental signal integration at the chromatin level. Multiple light signaling pathways operate and exchange information by regulating a large repertoire of gene targets that shape plant responses to a changing environment. In addition to the established role of transcription factors in triggering photoregulated changes in gene expression, there are eminent reports on the significance of chromatin regulators and nuclear scaffold dynamics in promoting light-induced plant responses. Here, we report and discuss recent advances in chromatin-regulatory mechanisms modulating plant architecture and development in response to light, including the molecular and physiological roles of key modifications such as DNA, RNA and histone methylation, and/or acetylation. The significance of the formation of biomolecular condensates of key light signaling components is discussed and potential applications to agricultural practices overviewed.
Collapse
Affiliation(s)
- Eirini Patitaki
- School of Molecular Biosciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Geoffrey Schivre
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
- Université Paris‐SaclayOrsay91400France
| | - Anna Zioutopoulou
- School of Molecular Biosciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Giorgio Perrella
- Department of BiosciencesUniversity of MilanVia Giovanni Celoria, 2620133MilanItaly
| | - Clara Bourbousse
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
| | - Fredy Barneche
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
| | - Eirini Kaiserli
- School of Molecular Biosciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
43
|
Nagpal P, Reeves PH, Wong JH, Armengot L, Chae K, Rieveschl NB, Trinidad B, Davidsdottir V, Jain P, Gray WM, Jaillais Y, Reed JW. SAUR63 stimulates cell growth at the plasma membrane. PLoS Genet 2022; 18:e1010375. [PMID: 36121899 PMCID: PMC9522268 DOI: 10.1371/journal.pgen.1010375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/29/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
In plants, regulated cell expansion determines organ size and shape. Several members of the family of redundantly acting Small Auxin Up RNA (SAUR) proteins can stimulate plasma membrane (PM) H+-ATPase proton pumping activity by inhibiting PM-associated PP2C.D phosphatases, thereby increasing the PM electrochemical potential, acidifying the apoplast, and stimulating cell expansion. Similarly, Arabidopsis thaliana SAUR63 was able to increase growth of various organs, antagonize PP2C.D5 phosphatase, and increase H+-ATPase activity. Using a gain-of-function approach to bypass genetic redundancy, we dissected structural requirements for SAUR63 growth-promoting activity. The divergent N-terminal domain of SAUR63 has a predicted basic amphipathic α-helix and was able to drive partial PM association. Deletion of the N-terminal domain decreased PM association of a SAUR63 fusion protein, as well as decreasing protein level and eliminating growth-promoting activity. Conversely, forced PM association restored ability to promote H+-ATPase activity and cell expansion, indicating that SAUR63 is active when PM-associated. Lipid binding assays and perturbations of PM lipid composition indicate that the N-terminal domain can interact with PM anionic lipids. Mutations in the conserved SAUR domain also reduced PM association in root cells. Thus, both the N-terminal domain and the SAUR domain may cooperatively mediate the SAUR63 PM association required to promote growth. Plant organs reach their final shape and size after substantial cell expansion. Proton pumps at the plasma membrane promote cell expansion by acidifying the cell wall to loosen it, and by increasing electrochemical potential across the plasma membrane for solute uptake that maintains intracellular turgor. Plasma-membrane-associated proteins tightly regulate proton pump activity, in order for organs to grow to an appropriate extent. We have studied requirements for activity of one such regulatory protein in the model plant Arabidopsis called SAUR63. This protein is made rapidly in response to plant growth hormones, and it increases proton pump activity to promote organ growth. These activities depend on its binding to anionic lipids in the plasma membrane, and forced plasma membrane association of SAUR63 can increase growth. Many proteins in the same family are found within Arabidopsis and in all land plants, and likely differ in their affinity for the plasma membrane or in other properties. Further studies of other family members may show how such proteins regulate growth under diverse physiological contexts.
Collapse
Affiliation(s)
- Punita Nagpal
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Paul H. Reeves
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeh Haur Wong
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Laia Armengot
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Keun Chae
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nathaniel B. Rieveschl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brendan Trinidad
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Vala Davidsdottir
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Prateek Jain
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - William M. Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Jason W. Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
- * E-mail:
| |
Collapse
|
44
|
Gao H, Song W, Severing E, Vayssières A, Huettel B, Franzen R, Richter R, Chai J, Coupland G. PIF4 enhances DNA binding of CDF2 to co-regulate target gene expression and promote Arabidopsis hypocotyl cell elongation. NATURE PLANTS 2022; 8:1082-1093. [PMID: 35970973 PMCID: PMC9477738 DOI: 10.1038/s41477-022-01213-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/04/2022] [Indexed: 05/19/2023]
Abstract
How specificity is conferred within gene regulatory networks is an important problem in biology. The basic helix-loop-helix PHYTOCHROME-INTERACTING FACTORs (PIFs) and single zinc-finger CYCLING DOF FACTORs (CDFs) mediate growth responses of Arabidopsis to light and temperature. We show that these two classes of transcription factor (TF) act cooperatively. CDF2 and PIF4 are temporally and spatially co-expressed, they interact to form a protein complex and act in the same genetic pathway to promote hypocotyl cell elongation. Furthermore, PIF4 substantially strengthens genome-wide occupancy of CDF2 at a subset of its target genes. One of these, YUCCA8, encodes an auxin biosynthesis enzyme whose transcription is increased by PIF4 and CDF2 to contribute to hypocotyl elongation. The binding sites of PIF4 and CDF2 in YUCCA8 are closely spaced, and in vitro PIF4 enhances binding of CDF2. We propose that this occurs by direct protein interaction and because PIF4 binding alters DNA conformation. Thus, we define mechanisms by which PIF and CDF TFs cooperate to achieve regulatory specificity and promote cell elongation in response to light.
Collapse
Affiliation(s)
- He Gao
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Wen Song
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Edouard Severing
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Alice Vayssières
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bruno Huettel
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Rainer Franzen
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - René Richter
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jijie Chai
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - George Coupland
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
45
|
Transcriptomic Analysis Reveals the Correlation between End-of-Day Far Red Light and Chilling Stress in Setaria viridis. Genes (Basel) 2022; 13:genes13091565. [PMID: 36140734 PMCID: PMC9498584 DOI: 10.3390/genes13091565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Low temperature and end-of-day far-red (EOD-FR) light signaling are two key factors limiting plant production and geographical location worldwide. However, the transcriptional dynamics of EOD-FR light conditions during chilling stress remain poorly understood. Here, we performed a comparative RNA-Seq-based approach to identify differentially expressed genes (DEGs) related to EOD-FR and chilling stress in Setaria viridis. A total of 7911, 324, and 13431 DEGs that responded to low temperature, EOD-FR and these two stresses were detected, respectively. Further DEGs analysis revealed that EOD-FR may enhance cold tolerance in plants by regulating the expression of genes related to cold tolerance. The result of weighted gene coexpression network analysis (WGCNA) using 13431 nonredundant DEGs exhibited 15 different gene network modules. Interestingly, a CO-like transcription factor named BBX2 was highly expressed under EOD-FR or chilling conditions. Furthermore, we could detect more expression levels when EOD-FR and chilling stress co-existed. Our dataset provides a valuable resource for the regulatory network involved in EOD-FR signaling and chilling tolerance in C4 plants.
Collapse
|
46
|
PIF7 is a master regulator of thermomorphogenesis in shade. Nat Commun 2022; 13:4942. [PMID: 36038577 PMCID: PMC9424238 DOI: 10.1038/s41467-022-32585-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/06/2022] [Indexed: 11/26/2022] Open
Abstract
The size of plant organs is highly responsive to environmental conditions. The plant’s embryonic stem, or hypocotyl, displays phenotypic plasticity, in response to light and temperature. The hypocotyl of shade avoiding species elongates to outcompete neighboring plants and secure access to sunlight. Similar elongation occurs in high temperature. However, it is poorly understood how environmental light and temperature cues interact to effect plant growth. We found that shade combined with warm temperature produces a synergistic hypocotyl growth response that dependent on PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) and auxin. This unique but agriculturally relevant scenario was almost totally independent on PIF4 activity. We show that warm temperature is sufficient to promote PIF7 DNA binding but not transcriptional activation and we demonstrate that additional, unknown factor/s must be working downstream of the phyB-PIF-auxin module. Our findings will improve the predictions of how plants will respond to increased ambient temperatures when grown at high density. Plant hypocotyl elongation response to light and temperature. Here the authors show that shade combined with warm temperature synergistically enhances the hypocotyl growth response via the PIF7 transcription factor, auxin, and as yet unknown factor.
Collapse
|
47
|
Corona-Gomez JA, Coss-Navarrete EL, Garcia-Lopez IJ, Klapproth C, Pérez-Patiño JA, Fernandez-Valverde SL. Transcriptome-guided annotation and functional classification of long non-coding RNAs in Arabidopsis thaliana. Sci Rep 2022; 12:14063. [PMID: 35982083 PMCID: PMC9388643 DOI: 10.1038/s41598-022-18254-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a prominent class of eukaryotic regulatory genes. Despite the numerous available transcriptomic datasets, the annotation of plant lncRNAs remains based on dated annotations that have been historically carried over. We present a substantially improved annotation of Arabidopsis thaliana lncRNAs, generated by integrating 224 transcriptomes in multiple tissues, conditions, and developmental stages. We annotate 6764 lncRNA genes, including 3772 that are novel. We characterize their tissue expression patterns and find 1425 lncRNAs are co-expressed with coding genes, with enriched functional categories such as chloroplast organization, photosynthesis, RNA regulation, transcription, and root development. This improved transcription-guided annotation constitutes a valuable resource for studying lncRNAs and the biological processes they may regulate.
Collapse
Affiliation(s)
| | | | | | - Christopher Klapproth
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center of Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany.,ScaDS.AI Leipzig (Center for Scalable Data Analytics and Artificial Intelligence), Humboldstrasse 25, 04105, Leipzig, Germany
| | | | | |
Collapse
|
48
|
Yuan HY, Caron CT, Vandenberg A, Bett KE. RNA-Seq and Gene Ontology Analysis Reveal Differences Associated With Low R/FR-Induced Shade Responses in Cultivated Lentil and a Wild Relative. Front Genet 2022; 13:891702. [PMID: 35795209 PMCID: PMC9251359 DOI: 10.3389/fgene.2022.891702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/06/2022] [Indexed: 12/01/2022] Open
Abstract
Lentil is an important pulse crop not only because of its high nutrient value but also because of its ecological advantage in a sustainable agricultural system. Our previous work showed that the cultivated lentil and wild lentil germplasm respond differently to light environments, especially to low R/FR-induced shade conditions. Little is known about how cultivated and wild lentils respond to shade at the level of gene expression and function. In this study, transcriptomic profiling of a cultivated lentil (Lupa, L. culinaris) and a wild lentil (BGE 016880, L. orientalis) at several growth stages is presented. De novo transcriptomes were assembled for both genotypes, and differential gene expression analysis and gene ontology enrichment analysis were performed. The transcriptomic resources generated in this study provide fundamental information regarding biological processes and genes associated with shade responses in lentils. BGE 016880 and Lupa shared a high similarity in their transcriptomes; however, differential gene expression profiles were not consistent between these two genotypes. The wild lentil BGE 016880 had more differentially expressed genes than the cultivated lentil Lupa. Upregulation of genes involved in gibberellin, brassinosteroid, and auxin synthesis and signaling pathways, as well as cell wall modification, in both genotypes explains their similarity in stem elongation response under the shade. Genes involved in jasmonic acid and flavonoid biosynthesis pathways were downregulated in BGE 016880 only, and biological processes involved in defense responses were significantly enriched in the wild lentil BGE 016880 only. Downregulation of WRKY and MYB transcription factors could contribute to the reduced defense response in BGE 016880 but not in Lupa under shade conditions. A better understanding of shade responses of pulse crop species and their wild relatives will play an important role in developing genetic strategies for crop improvement in response to changes in light environments.
Collapse
Affiliation(s)
- Hai Ying Yuan
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Aquatic and Crop Resource Development Research Center, National Research Council of Canada, Saskatoon, SK, Canada
| | - Carolyn T. Caron
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Albert Vandenberg
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kirstin E. Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Kirstin E. Bett,
| |
Collapse
|
49
|
Bouré N, Peaucelle A, Goussot M, Adroher B, Soubigou-Taconnat L, Borrega N, Biot E, Tariq Z, Martin-Magniette ML, Pautot V, Laufs P, Arnaud N. A cell wall-associated gene network shapes leaf boundary domains. Development 2022; 149:275600. [DOI: 10.1242/dev.200359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/29/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Boundary domains delimit and organize organ growth throughout plant development almost relentlessly, building plant architecture and morphogenesis. Boundary domains display reduced growth and orchestrate development of adjacent tissues in a non-cell-autonomous manner. How these two functions are achieved remains elusive despite the identification of several boundary-specific genes. Here, we show using morphometrics at the organ and cellular levels that leaf boundary domain development requires SPINDLY (SPY), an O-fucosyltransferase, to act as cell growth repressor. Furthermore, we show that SPY acts redundantly with the CUP-SHAPED COTYLEDON transcription factors (CUC2 and CUC3), which are major determinants of boundaries development. Accordingly, at the molecular level CUC2 and SPY repress a common set of genes involved in cell wall loosening, providing a molecular framework for the growth repression associated with boundary domains. Atomic force microscopy confirmed that young leaf boundary domain cells have stiffer cell walls than marginal outgrowth. This differential cell wall stiffness was reduced in spy mutant plants. Taken together, our data reveal a concealed CUC2 cell wall-associated gene network linking tissue patterning with cell growth and mechanics.
Collapse
Affiliation(s)
- Nathalie Bouré
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB) 1 , 78000 Versailles , France
- Université Paris-Saclay 2 , 91405 Orsay , France
| | - Alexis Peaucelle
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB) 1 , 78000 Versailles , France
| | - Magali Goussot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB) 1 , 78000 Versailles , France
| | - Bernard Adroher
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB) 1 , 78000 Versailles , France
| | - Ludivine Soubigou-Taconnat
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2) 3 , 91405 Orsay , France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2) 4 , 91405 Orsay , France
| | - Néro Borrega
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB) 1 , 78000 Versailles , France
| | - Eric Biot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB) 1 , 78000 Versailles , France
| | - Zakia Tariq
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2) 3 , 91405 Orsay , France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2) 4 , 91405 Orsay , France
| | - Marie-Laure Martin-Magniette
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2) 3 , 91405 Orsay , France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2) 4 , 91405 Orsay , France
| | - Véronique Pautot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB) 1 , 78000 Versailles , France
| | - Patrick Laufs
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB) 1 , 78000 Versailles , France
| | - Nicolas Arnaud
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB) 1 , 78000 Versailles , France
| |
Collapse
|
50
|
Yavari N, Gazestani VH, Wu BS, MacPherson S, Kushalappa A, Lefsrud MG. Comparative proteomics analysis of Arabidopsis thaliana response to light-emitting diode of narrow wavelength 450 nm, 595 nm, and 650 nm. J Proteomics 2022; 265:104635. [PMID: 35659537 DOI: 10.1016/j.jprot.2022.104635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022]
Abstract
Incident light is a central modulator of plant growth and development. However, there are still open questions surrounding wavelength-specific plant proteomic responses. Here we applied tandem mass tag based quantitative proteomics technology to acquire an in-depth view of proteome changes in Arabidopsis thaliana response to narrow wavelength blue (B; 450 nm), amber (A; 595 nm), or red (R; 650 nm) light treatments. A total of 16,707 proteins were identified with 9120 proteins quantified across all three light treatments in three biological replicates. This enabled examination of changes in the abundance for proteins with low abundance and important regulatory roles including transcription factors and hormone signaling. Importantly, 18% (1631 proteins) of the A. thaliana proteome is differentially abundant in response to narrow wavelength lights, and changes in proteome correlate well with different morphologies exhibited by plants. To showcase the usefulness of this resource, data were placed in the context of more than thirty published datasets, providing orthogonal validation and further insights into light-specific biological pathways, including Systemic Acquired Resistance and Shade Avoidance Syndrome. This high-resolution resource for A. thaliana provides baseline data and a tool for defining molecular mechanisms that control fundamental aspects of plant response to changing light conditions, with implications in plant development and adaptation. SIGNIFICANCE: Understanding of molecular mechanisms involved in wavelength-specific response of plant is question of widespread interest both to basic researchers and to those interested in applying such knowledge to the engineering of novel proteins, as well as targeted lighting systems. Here we sought to generate a high-resolution labeling proteomic profile of plant leaves, based on exposure to specific narrow-wavelength lights. Although changes in plant physiology in response to light spectral composition is well documented, there is limited knowledge on the roles of specific light wavelengths and their impact. Most previous studies have utilized relatively broad wavebands in their experiments. These multi-wavelengths lights function in a complex signaling network, which provide major challenges in inference of wavelength-specific molecular processes that underly the plant response. Besides, most studies have compared the effect of blue and red wavelengths comparing with FL, as control. As FL light consists the mixed spectra composition of both red and blue as well as numerous other wavelengths, comparing undeniably results in inconsistent and overlapping responses that will hamper effects to elucidate the plant response to specific wavelengths [1, 2]. Monitoring plant proteome response to specific wavelengths and further compare the changes to one another, rather than comparing plants proteome to FL, is thus necessary to gain the clear insights to specific underlying biological pathways and their effect consequences in plant response. Here, we employed narrow wavelength LED lights in our design to eliminate the potential overlap in molecular responses by ensuring non-overlapping wavelengths in the light treatments. We further applied TMT-labeling technology to gain a high-resolution view on the associates of proteome changes. Our proteomics data provides an in-depth coverage suitable for system-wide analyses, providing deep insights on plant physiological processes particularly because of the tremendous increase in the amount of identified proteins which outreach the other biological data.
Collapse
Affiliation(s)
- Nafiseh Yavari
- Department of Bioresource Engineering, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-De-Bellevue, Quebec, Canada; Department of Electro-Chemistry Engineering, Dexcom, Inc., 6340 Sequence Dr., San Diego, CA, USA.
| | - Vahid H Gazestani
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 75 Ames Street, Cambridge, MA, USA
| | - Bo-Sen Wu
- Department of Bioresource Engineering, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-De-Bellevue, Quebec, Canada
| | - Sarah MacPherson
- Department of Bioresource Engineering, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-De-Bellevue, Quebec, Canada
| | - Ajjamada Kushalappa
- Department of Plant Science, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-De-Bellevue, Quebec, Canada
| | - Mark G Lefsrud
- Department of Bioresource Engineering, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-De-Bellevue, Quebec, Canada
| |
Collapse
|