1
|
Doll NM, Nowack MK. Endosperm cell death: roles and regulation in angiosperms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4346-4359. [PMID: 38364847 PMCID: PMC7616292 DOI: 10.1093/jxb/erae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Double fertilization in angiosperms results in the formation of a second zygote, the fertilized endosperm. Unlike its embryo sibling, the endosperm is a transient structure that eventually undergoes developmentally controlled programmed cell death (PCD) at specific time points of seed development or germination. The nature of endosperm PCD exhibits a considerable diversity, both across different angiosperm taxa and within distinct endosperm tissues. In endosperm-less species, PCD might cause central cell degeneration as a mechanism preventing the formation of a fertilized endosperm. In most other angiosperms, embryo growth necessitates the elimination of surrounding endosperm cells. Nevertheless, complete elimination of the endosperm is rare and, in most cases, specific endosperm tissues persist. In mature seeds, these persisting cells may be dead, such as the starchy endosperm in cereals, or remain alive to die only during germination, like the cereal aleurone or the endosperm of castor beans. In this review, we explore current knowledge surrounding the cellular, molecular, and genetic aspects of endosperm PCD, and the influence environmental stresses have on PCD processes. Overall, this review provides an exhaustive overview of endosperm PCD processes in angiosperms, shedding light on its diverse mechanisms and its significance in seed development and seedling establishment.
Collapse
Affiliation(s)
- Nicolas M. Doll
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center of Plant Systems Biology, Ghent 9052, Belgium
| | - Moritz K. Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center of Plant Systems Biology, Ghent 9052, Belgium
| |
Collapse
|
2
|
Lu S, Xiao F. Small Peptides: Orchestrators of Plant Growth and Developmental Processes. Int J Mol Sci 2024; 25:7627. [PMID: 39062870 PMCID: PMC11276966 DOI: 10.3390/ijms25147627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Small peptides (SPs), ranging from 5 to 100 amino acids, play integral roles in plants due to their diverse functions. Despite their low abundance and small molecular weight, SPs intricately regulate critical aspects of plant life, including cell division, growth, differentiation, flowering, fruiting, maturation, and stress responses. As vital mediators of intercellular signaling, SPs have garnered significant attention in plant biology research. This comprehensive review delves into SPs' structure, classification, and identification, providing a detailed understanding of their significance. Additionally, we summarize recent findings on the biological functions and signaling pathways of prominent SPs that regulate plant growth and development. This review also offers a perspective on future research directions in peptide signaling pathways.
Collapse
Affiliation(s)
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| |
Collapse
|
3
|
Gazzarrini S, Song L. LAFL Factors in Seed Development and Phase Transitions. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:459-488. [PMID: 38657282 DOI: 10.1146/annurev-arplant-070623-111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Development is a chain reaction in which one event leads to another until the completion of a life cycle. Phase transitions are milestone events in the cycle of life. LEAFY COTYLEDON1 (LEC1), ABA INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 proteins, collectively known as LAFL, are master transcription factors (TFs) regulating seed and other developmental processes. Since the initial characterization of the LAFL genes, more than three decades of active research has generated tremendous amounts of knowledge about these TFs, whose roles in seed development and germination have been comprehensively reviewed. Recent advances in cell biology with genetic and genomic tools have allowed the characterization of the LAFL regulatory networks in previously challenging tissues at a higher throughput and resolution in reference species and crops. In this review, we provide a holistic perspective by integrating advances at the epigenetic, transcriptional, posttranscriptional, and protein levels to exemplify the spatiotemporal regulation of the LAFL networks in Arabidopsis seed development and phase transitions, and we briefly discuss the evolution of these TF networks.
Collapse
Affiliation(s)
- Sonia Gazzarrini
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada;
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
4
|
Florez-Rueda AM, Miguel CM, Figueiredo DD. Comparative transcriptomics of seed nourishing tissues: uncovering conserved and divergent pathways in seed plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1134-1157. [PMID: 38709819 DOI: 10.1111/tpj.16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
The evolutionary and ecological success of spermatophytes is intrinsically linked to the seed habit, which provides a protective environment for the initial development of the new generation. This environment includes an ephemeral nourishing tissue that supports embryo growth. In gymnosperms this tissue originates from the asexual proliferation of the maternal megagametophyte, while in angiosperms it is a product of fertilization, and is called the endosperm. The emergence of these nourishing tissues is of profound evolutionary value, and they are also food staples for most of the world's population. Here, using Orthofinder to infer orthologue genes among newly generated and previously published datasets, we provide a comparative transcriptomic analysis of seed nourishing tissues from species of several angiosperm clades, including those of early diverging lineages, as well as of one gymnosperm. Our results show that, although the structure and composition of seed nourishing tissues has seen significant divergence along evolution, there are signatures that are conserved throughout the phylogeny. Conversely, we identified processes that are specific to species within the clades studied, and thus illustrate their functional divergence. With this, we aimed to provide a foundation for future studies on the evolutionary history of seed nourishing structures, as well as a resource for gene discovery in future functional studies.
Collapse
Affiliation(s)
- Ana Marcela Florez-Rueda
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
- University of Potsdam, Karl-Liebknechts-Str. 24-25, Haus 26, 14476, Potsdam, Germany
| | - Célia M Miguel
- Faculty of Sciences, Biosystems and Integrative Sciences Institute (BioISI), University of Lisbon, Lisboa, Portugal
| | - Duarte D Figueiredo
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
5
|
Pečenková T, Potocký M, Stegmann M. More than meets the eye: knowns and unknowns of the trafficking of small secreted proteins in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3713-3730. [PMID: 38693754 DOI: 10.1093/jxb/erae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/01/2024] [Indexed: 05/03/2024]
Abstract
Small proteins represent a significant portion of the cargo transported through plant secretory pathways, playing crucial roles in developmental processes, fertilization, and responses to environmental stresses. Despite the importance of small secreted proteins, substantial knowledge gaps persist regarding the regulatory mechanisms governing their trafficking along the secretory pathway, and their ultimate localization or destination. To address these gaps, we conducted a comprehensive literature review, focusing particularly on trafficking and localization of Arabidopsis small secreted proteins with potential biochemical and/or signaling roles in the extracellular space, typically those within the size range of 101-200 amino acids. Our investigation reveals that while at least six members of the 21 mentioned families have a confirmed extracellular localization, eight exhibit intracellular localization, including cytoplasmic, nuclear, and chloroplastic locations, despite the presence of N-terminal signal peptides. Further investigation into the trafficking and secretion mechanisms of small protein cargo could not only deepen our understanding of plant cell biology and physiology but also provide a foundation for genetic manipulation strategies leading to more efficient plant cultivation.
Collapse
Affiliation(s)
- Tamara Pečenková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Stegmann
- Technical University Munich, School of Life Sciences, Phytopathology, Emil-Ramann-Str. 2, 85354 Freising, Germany
| |
Collapse
|
6
|
Lu YT, Loue-Manifel J, Bollier N, Gadient P, De Winter F, Carella P, Hoguin A, Grey-Switzman S, Marnas H, Simon F, Copin A, Fischer S, de Leau E, Schornack S, Nishihama R, Kohchi T, Depège Fargeix N, Ingram G, Nowack MK, Goodrich J. Convergent evolution of water-conducting cells in Marchantia recruited the ZHOUPI gene promoting cell wall reinforcement and programmed cell death. Curr Biol 2024; 34:793-807.e7. [PMID: 38295796 DOI: 10.1016/j.cub.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
A key adaptation of plants to life on land is the formation of water-conducting cells (WCCs) for efficient long-distance water transport. Based on morphological analyses it is thought that WCCs have evolved independently on multiple occasions. For example, WCCs have been lost in all but a few lineages of bryophytes but, strikingly, within the liverworts a derived group, the complex thalloids, has evolved a novel externalized water-conducting tissue composed of reinforced, hollow cells termed pegged rhizoids. Here, we show that pegged rhizoid differentiation in Marchantia polymorpha is controlled by orthologs of the ZHOUPI and ICE bHLH transcription factors required for endosperm cell death in Arabidopsis seeds. By contrast, pegged rhizoid development was not affected by disruption of MpNAC5, the Marchantia ortholog of the VND genes that control WCC formation in flowering plants. We characterize the rapid, genetically controlled programmed cell death process that pegged rhizoids undergo to terminate cellular differentiation and identify a corresponding upregulation of conserved putative plant cell death effector genes. Lastly, we show that ectopic expression of MpZOU1 increases production of pegged rhizoids and enhances drought tolerance. Our results support that pegged rhizoids evolved independently of other WCCs. We suggest that elements of the genetic control of developmental cell death are conserved throughout land plants and that the ZHOUPI/ICE regulatory module has been independently recruited to promote cell wall modification and programmed cell death in liverwort rhizoids and in the endosperm of flowering plant seed.
Collapse
Affiliation(s)
- Yen-Ting Lu
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Jeanne Loue-Manifel
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK; Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69342, France
| | | | - Philippe Gadient
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | | | - Philip Carella
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Antoine Hoguin
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Shona Grey-Switzman
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Hugo Marnas
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Francois Simon
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Alice Copin
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Shelby Fischer
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Erica de Leau
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Sebastian Schornack
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Nathalie Depège Fargeix
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69342, France
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69342, France
| | - Moritz K Nowack
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.
| | - Justin Goodrich
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
7
|
Harnvanichvech Y, Borassi C, Daghma DES, van der Kooij HM, Sprakel J, Weijers D. An elastic proteinaceous envelope encapsulates the early Arabidopsis embryo. Development 2023; 150:dev201943. [PMID: 37869985 PMCID: PMC10651100 DOI: 10.1242/dev.201943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Plant external surfaces are often covered by barriers that control the exchange of molecules, protect from pathogens and offer mechanical integrity. A key question is when and how such surface barriers are generated. Post-embryonic surfaces have well-studied barriers, including the cuticle, and it has been previously shown that the late Arabidopsis thaliana embryo is protected by an endosperm-derived sheath deposited onto a primordial cuticle. Here, we show that both cuticle and sheath are preceded by another structure during the earliest stages of embryogenesis. This structure, which we named the embryonic envelope, is tightly wrapped around the embryonic surface but can be physically detached by cell wall digestion. We show that this structure is composed primarily of extensin and arabinogalactan O-glycoproteins and lipids, which appear to form a dense and elastic crosslinked embryonic envelope. The envelope forms in cuticle-deficient mutants and in a mutant that lacks endosperm. This embryo-derived envelope is therefore distinct from previously described cuticle and sheath structures. We propose that it acts as an expandable diffusion barrier, as well as a means to mechanically confine the embryo to maintain its tensegrity during early embryogenesis.
Collapse
Affiliation(s)
- Yosapol Harnvanichvech
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| | - Cecilia Borassi
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| | - Diaa Eldin S. Daghma
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| | - Hanne M. van der Kooij
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
8
|
Doll NM, Truskina J, Ingram G. Functional and developmental convergence in the reproductive "nurse cells" of flowering plants. C R Biol 2023; 346:45-54. [PMID: 37254742 DOI: 10.5802/crbiol.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 06/01/2023]
Abstract
The successful sexual reproduction of flowering plants depends upon double fertilisation, during which pollen grains, produced within the male floral organ (the anther) deliver two sperm cells to the ovule, buried deep within the ovary, triggering the development of the embryo and the surrounding tissues of the seed. Although much attention has been given to pollen and embryo development, less has been focused on the supporting tissues surrounding these organisms as they develop, the tapetum and the endosperm. Intriguingly, despite their very different origins, these tissues appear to have converged functionally and developmentally. Here we will discuss this apparent convergence and its molecular and physiological basis.
Collapse
|
9
|
Hurst JP, Yobi A, Li A, Sato S, Clemente TE, Angelovici R, Holding DR. Large and stable genome edits at the sorghum alpha kafirin locus result in changes in chromatin accessibility and globally increased expression of genes encoding lysine enrichment. FRONTIERS IN PLANT SCIENCE 2023; 14:1116886. [PMID: 36998682 PMCID: PMC10043997 DOI: 10.3389/fpls.2023.1116886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Sorghum is a resilient and widely cultivated grain crop used for feed and food. However, it's grain is deficient in lysine, an essential amino acid. This is due to the primary seed storage proteins, the alpha-kafirins, lacking lysine. It has been observed that reductions in alpha-kafirin protein results in rebalancing of the seed proteome and a corresponding increase in non-kafirin proteins which leads to an increased lysine content. However, the mechanisms underlying proteome rebalancing are unclear. This study characterizes a previously developed gene edited sorghum line, with deletions at the alpha kafirin locus. METHODS A single consensus guide RNA leads to tandem deletion of multiple members of the gene family in addition to the small target site mutations in remaining genes. RNA-seq and ATAC-seq were utilized to identify changes in gene expression and chromatin accessibility in developing kernels in the absence of most alpha-kafirin expression. RESULTS Several differentially accessible chromatin regions and differentially expressed genes were identified. Additionally, several genes upregulated in the edited sorghum line were common with their syntenic orthologues differentially expressed in maize prolamin mutants. ATAC-seq showed enrichment of the binding motif for ZmOPAQUE 11, perhaps indicating the transcription factor's involvement in the kernel response to reduced prolamins. DISCUSSION Overall, this study provides a resource of genes and chromosomal regions which may be involved in sorghum's response to reduced seed storage proteins and the process of proteome rebalancing.
Collapse
Affiliation(s)
- J. Preston Hurst
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Abou Yobi
- School of Life Sciences, Ministry of Education, Shandong University, Jinan, China
| | - Aixia Li
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Shirley Sato
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Thomas E. Clemente
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Ruthie Angelovici
- School of Life Sciences, Ministry of Education, Shandong University, Jinan, China
| | - David R. Holding
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Biological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
10
|
Zhang B, Li YN, Wu BH, Yuan YY, Zhao ZY. Plasma Membrane-Localized Transporter MdSWEET12 Is Involved in Sucrose Unloading in Apple Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15517-15530. [PMID: 36468541 DOI: 10.1021/acs.jafc.2c05102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sugar content is an important factor determining the flavor in apple fruit. Sugar unloading is a prerequisite step for sugar accumulation. However, little is known about sugar unloading mechanisms in apple. Transcriptomic sequencing of two apple varieties, "Envy" and "Pacific Rose," with significantly different sugar content was performed. MdSWEET12a from the SWEET transporter family was differentially expressed. Further study of the MdSWEET12a showed that this plasma membrane-localized transporter protein-encoding gene was mainly expressed in sieve element-companion cells (SE-CC) in the fruit, which was positively correlated with the sucrose accumulation during the development of "Envy" apple. Consistently manipulating the gene expression through either transient overexpression or silencing significantly increased or decreased the sugar content in apple fruit, respectively. Complementary growth experiments in mutant yeast cells indicated that MdSWEET12a transported sucrose. Heterologous expression of MdSWEET12a in tomato increased the expression of genes related to sugar metabolism and transport, leading to increased sugar content. These findings underpin the involvement of MdSWEET12a in sugar unloading in apple fruit.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling 712100, Shaanxi, China
| | - Ya-Nan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling 712100, Shaanxi, China
| | - Bing-Hua Wu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Horticulture, Fujian A&F University, Fuzhou 350002, China
| | - Yang-Yang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zheng-Yang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling 712100, Shaanxi, China
| |
Collapse
|
11
|
Doll NM, Berenguer E, Truskina J, Ingram G. AtEXT3 is not essential for early embryogenesis or plant viability in Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:1629-1633. [PMID: 36052714 PMCID: PMC9826179 DOI: 10.1111/nph.18452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Nicolas Max Doll
- Laboratoire Reproduction et Développement des PlantesENS de Lyon, CNRS, INRAE, UCBLF‐69342LyonFrance
| | - Eduardo Berenguer
- Laboratoire Reproduction et Développement des PlantesENS de Lyon, CNRS, INRAE, UCBLF‐69342LyonFrance
| | - Jekaterina Truskina
- Laboratoire Reproduction et Développement des PlantesENS de Lyon, CNRS, INRAE, UCBLF‐69342LyonFrance
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des PlantesENS de Lyon, CNRS, INRAE, UCBLF‐69342LyonFrance
| |
Collapse
|
12
|
Li C, Hu F, Chen H, Zhao J. Transcriptome characteristics during cell wall formation of endosperm cellularization and embryo differentiation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:998664. [PMID: 36262665 PMCID: PMC9575994 DOI: 10.3389/fpls.2022.998664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Embryonic and endosperm development are important biological events during Arabidopsis seed development, and are controlled by dynamic changes in a range of gene expression. Nevertheless, the regulatory mechanisms of endosperm cellularization and embryo differentiation remain unclear. Here, we characterized the early embryo and endosperm development of the naa15 mutant that had abnormal embryo differentiation and incomplete endosperm cellularization compared to WT of Arabidopsis, and comparatively investigated the changes of gene expressions in WT seeds at 3, 4, and 5 days after pollination (3W, 4W, and 5W) and the white homozygous aborted naa15 seeds at 5, 6, and 7 DAP (5M, 6M, and 7M) from naa15-1/+ siliques using RNA sequencing and qPCR assays. The transcriptome analyses showed that there were 2040 and 3630 differentially expressed genes (DEGs) in 4W (at endosperm cellularization initiation stage and heart embryo stage) vs 3W (at syncytium stage and globular embryo stage), and 5W (at end of endosperm cellularization stage and torpedo embryo stage) vs 4W, respectively. The KEGG and GO analyses showed that lipid metabolic processes and transmembrane transport related to cell wall biogenesis, cell division and differentiation, the plant hormone signaling pathway, photosynthesis, and transcription regulator activity were evidently enriched in WT and naa15. The heatmap and qPCR analyses showed that auxin response genes (ARFs), auxin transport genes (PINs) cytokinin synthesis genes (LOGs), cytokinin dehydrogenase genes (CKXs), cytokinin receptor, transcription factors (MYB, bHLH, MADS-box, and ERF) were significantly downregulated in naa15 compared to WT. A series of cell wall genes annotated to xyloglucan endotransglycosylase/hydrolase, pectin methyl esterase, and pectin methyl esterase inhibitor were also identified in these DEGs. Moreover, using an immunofluorescent assay, the features of cell walls displayed that cellulose fluorescence signals in the embryo and endosperm of naa15 were significantly decreased, and the signals of low- and high- methyl esterification of pectin were also obviously decreased in the endosperm of naa15. In summary, we identified a large number of DEGs and investigated the features of cell walls during endosperm cellularization and embryonic differentiation, which provided important information on transcription and gene expression to reveal their regulatory mechanisms.
Collapse
|
13
|
Shi L, Chen Y, Hong J, Shen G, Schreiber L, Cohen H, Zhang D, Aharoni A, Shi J. AtMYB31 is a wax regulator associated with reproductive development in Arabidopsis. PLANTA 2022; 256:28. [PMID: 35781548 DOI: 10.1007/s00425-022-03945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
AtMYB31, a R2R3-MYB transcription factor that modulates wax biosynthesis in reproductive tissues, is involved in seed development in Arabidopsis. R2R3-MYB transcription factors play important roles in plant development; yet, the exact role of each of them remains to be resolved. Here we report that the Arabidopsis AtMYB31 is required for wax biosynthesis in epidermis of reproductive tissues, and is involved in seed development. AtMYB31 was ubiquitously expressed in both vegetative and reproductive tissues with higher expression levels in siliques and seeds, while AtMYB31 was localized to the nucleus and cytoplasm. Loss of function of AtMYB31 reduced wax accumulation in the epidermis of silique and flower tissues, disrupted seed coat epidermal wall development and mucilage production, altered seed proanthocyanidin and polyester content. AtMYB31 could direct activate expressions of several wax biosynthetic target genes. Altogether, AtMYB31, a R2R3-MYB transcription factor, regulates seed development in Arabidopsis.
Collapse
Affiliation(s)
- Lei Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuqin Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Hong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Gaodian Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, 53115, Bonn, Germany
| | - Hagai Cohen
- Institute of Plant Sciences, Agricultural Research Organization, 7505101, Rishon LeZion, Israel
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
14
|
Abstract
In angiosperms, double fertilization triggers the concomitant development of two closely juxtaposed tissues, the embryo and the endosperm. Successful seed development and germination require constant interactions between these tissues, which occur across their common interface. The embryo-endosperm interface is a complex and poorly understood compound apoplast comprising components derived from both tissues, across which nutrients transit to fuel embryo development. Interface properties, which affect molecular diffusion and thus communication, are themselves dynamically regulated by molecular and physical dialogues between the embryo and endosperm. We review the current understanding of embryo-endosperm interactions, with a focus on the structure, properties, and function of their shared interface. Concentrating on Arabidopsis, but with reference to other species, we aim to situate recent findings within the broader context of seed physiology, developmental biology, and genetic factors such as parental conflicts over resource allocation.
Collapse
Affiliation(s)
- Nicolas M Doll
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium;
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, Université de Lyon 1, Lyon, France;
| |
Collapse
|
15
|
Cui Y, Lu X, Gou X. Receptor-like protein kinases in plant reproduction: Current understanding and future perspectives. PLANT COMMUNICATIONS 2022; 3:100273. [PMID: 35059634 PMCID: PMC8760141 DOI: 10.1016/j.xplc.2021.100273] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/09/2021] [Accepted: 12/28/2021] [Indexed: 05/30/2023]
Abstract
Reproduction is a crucial process in the life span of flowering plants, and directly affects human basic requirements in agriculture, such as grain yield and quality. Typical receptor-like protein kinases (RLKs) are a large family of membrane proteins sensing extracellular signals to regulate plant growth, development, and stress responses. In Arabidopsis thaliana and other plant species, RLK-mediated signaling pathways play essential roles in regulating the reproductive process by sensing different ligand signals. Molecular understanding of the reproductive process is vital from the perspective of controlling male and female fertility. Here, we summarize the roles of RLKs during plant reproduction at the genetic and molecular levels, including RLK-mediated floral organ development, ovule and anther development, and embryogenesis. In addition, the possible molecular regulatory patterns of those RLKs with unrevealed mechanisms during reproductive development are discussed. We also point out the thought-provoking questions raised by the research on these plant RLKs during reproduction for future investigation.
Collapse
|
16
|
Zhang H, Li X, Wang W, Li H, Cui Y, Zhu Y, Kui H, Yi J, Li J, Gou X. SERKs regulate embryonic cuticle integrity through the TWS1-GSO1/2 signaling pathway in Arabidopsis. THE NEW PHYTOLOGIST 2022; 233:313-328. [PMID: 34614228 DOI: 10.1111/nph.17775] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The embryonic cuticle integrity is critical for the embryo to separate from the neighboring endosperm. The sulfated TWISTED SEED1 (TWS1) peptide precursor generated in the embryo diffuses through gaps of the nascent cuticle to the surrounding endosperm, where it is cleaved by ABNORMAL LEAF SHAPE1 (ALE1) and becomes an active mature form. The active TWS1 is perceived by receptor-like protein kinases GASSHO1 (GSO1) and GSO2 in the embryonic epidermal cells to start the downstream signaling and guide the formation of an intact embryonic cuticle. However, the early signaling events after TWS1 is perceived by GSO1/2 are still unknown. Here, we report that serk1/2/3 embryos show cuticle defects similar to ale1, tws1, and gso1/2. Genetic and biochemical analyses were performed to dissect the signaling pathway mediated by SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASEs (SERKs) during cuticle development. SERKs function with GSO1/2 in a common pathway to monitor the integrity of the embryonic cuticle. SERKs interact with GSO1/2, which can be enhanced dramatically by TWS1. The phosphorylation levels of SERKs and GSO1/2 rely on each other and can respond to and be elevated by TWS1. Our results demonstrate that SERKs may function as coreceptors of GSO1/2 to transduce the TWS1 signal and ultimately regulate embryonic cuticle integrity.
Collapse
Affiliation(s)
- Hong Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaonan Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wenping Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huiqiang Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yanwei Cui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yafen Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hong Kui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jing Yi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
17
|
Song J, Xie X, Cui Y, Zou J. Endosperm-Embryo Communications: Recent Advances and Perspectives. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112511. [PMID: 34834874 PMCID: PMC8625250 DOI: 10.3390/plants10112511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 05/22/2023]
Abstract
Seed maturation depends on well-coordinated communications between the processes of endosperm and embryo development. The endosperm is considered to be destined to support embryo development and the timing of endosperm cellularization is critical for embryo growth. Recent findings suggest that the endosperm development and the onset of embryo maturation are two independent processes during seed development. Meanwhile, it is lately reported that several mobile regulators originating from the endosperm are needed to ensure proper embryo growth and seed maturation. In this opinion article, we highlight processes on how endosperm communicates with embryo during seed development and discuss some intriguing questions in light of the latest advancements.
Collapse
Affiliation(s)
- Jingpu Song
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK S7N 0W9, Canada;
- Correspondence:
| | - Xin Xie
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada; (X.X.); (Y.C.)
- Department of Biology, Western University, London, ON N6A 3K7, Canada
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada; (X.X.); (Y.C.)
- Department of Biology, Western University, London, ON N6A 3K7, Canada
| | - Jitao Zou
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK S7N 0W9, Canada;
| |
Collapse
|
18
|
Singer SD, Jayawardhane KN, Jiao C, Weselake RJ, Chen G. The effect of AINTEGUMENTA-LIKE 7 over-expression on seed fatty acid biosynthesis, storage oil accumulation and the transcriptome in Arabidopsis thaliana. PLANT CELL REPORTS 2021; 40:1647-1663. [PMID: 34215912 DOI: 10.1007/s00299-021-02715-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
AIL7 over-expression modulates fatty acid biosynthesis and triacylglycerol accumulation in Arabidopsis developing seeds through the transcriptional regulation of associated genes. Seed fatty acids (FAs) and triacylglycerol (TAG) contribute to many functions in plants, and seed lipids have broad food, feed and industrial applications. As a result, an enormous amount of attention has been dedicated towards uncovering the regulatory cascade responsible for the fine-tuning of the lipid biosynthetic pathway in seeds, which is regulated in part through the action of LEAFY COTYLEDON1, ABSCISSIC ACID INSENSITIVE 3, FUSCA3 and LEC2 (LAFL) transcription factors. Although AINTEGUMENTA-LIKE 7 (AIL7) is involved in meristematic function and shoot phyllotaxy, its effect in the context of lipid biosynthesis has yet to be assessed. Here, we generated AIL7 seed-specific over-expression lines and found that they exhibited significant alterations in FA composition and decreased total lipid accumulation in seeds. Seeds and seedlings from transgenic lines also exhibited morphological deviations compared to wild type. Correspondingly, RNA-Seq analysis demonstrated that the expression of many genes related to FA biosynthesis and TAG breakdown were significantly altered in developing siliques from transgenic lines compared to wild-type plants. The seed-specific over-expression of AIL7 also altered the expression profiles of many genes related to starch metabolism, photosynthesis and stress response, suggesting further roles for AIL7 in plants. These findings not only advance our understanding of the lipid biosynthetic pathway in seeds, but also provide evidence for additional functions of AIL7, which could prove valuable in downstream breeding and/or metabolic engineering endeavors.
Collapse
Affiliation(s)
- Stacy D Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada.
| | - Kethmi N Jayawardhane
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
19
|
Fujita S. CASPARIAN STRIP INTEGRITY FACTOR (CIF) family peptides - regulator of plant extracellular barriers. Peptides 2021; 143:170599. [PMID: 34174383 DOI: 10.1016/j.peptides.2021.170599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/24/2021] [Accepted: 06/18/2021] [Indexed: 01/17/2023]
Abstract
In multicellular organisms, water and most of the small molecules, such as nutrients, toxic substances, and signaling compounds, move freely through extracellular spaces, depending on their biochemical nature. To restrict the simple diffusion of small molecules, multicellular organisms have evolved extracellular barriers across specific tissue layers, such as tight junctions in the animal epithelium. Similar extracellular barriers are also generated in plants through the accumulation of hydrophobic chemicals, such as lignin or cutin, although the detailed molecular mechanisms underlying this process remain elusive. Here, I summarize recent advances in extracellular barrier formation in plants by focusing mainly on CASPARIAN STRIP INTEGRITY FACTOR (CIF) family peptides, which trigger the spatially precise deposition of designated cell wall components, enabling plants to establish transcellular barrier networks correctly. The genome of Arabidopsis thaliana, a model plant species, harbors five CIF genes, which encode propeptides which are processed into small secreted peptides of 21-24 amino acids. Sulfation of tyrosine residues in CIF peptides ensures their full bioactivity and high-affinity binding to their receptors SCHENGEN3/GASSHO1 (SGN3/GSO1) and GSO2 in vitro. Additionally, in vivo analysis shows that physical restriction of CIF peptide diffusion and the subcellular localization of a signaling module and expression patterns of a peptide processing enzyme specify the location of signal activation. Thus, the CIF peptide family provides fascinating models for understanding mature peptide biogenesis and spatially limited signal activation with small diffusive molecules.
Collapse
Affiliation(s)
- Satoshi Fujita
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
20
|
Pedroza-Garcia JA, Eekhout T, Achon I, Nisa MU, Coussens G, Vercauteren I, Van den Daele H, Pauwels L, Van Lijsebettens M, Raynaud C, De Veylder L. Maize ATR safeguards genome stability during kernel development to prevent early endosperm endocycle onset and cell death. THE PLANT CELL 2021; 33:2662-2684. [PMID: 34086963 PMCID: PMC8408457 DOI: 10.1093/plcell/koab158] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/31/2021] [Indexed: 05/06/2023]
Abstract
The ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) kinases coordinate the DNA damage response. The roles described for Arabidopsis thaliana ATR and ATM are assumed to be conserved over other plant species, but molecular evidence is scarce. Here, we demonstrate that the functions of ATR and ATM are only partially conserved between Arabidopsis and maize (Zea mays). In both species, ATR and ATM play a key role in DNA repair and cell cycle checkpoint activation, but whereas Arabidopsis plants do not suffer from the absence of ATR under control growth conditions, maize mutant plants accumulate replication defects, likely due to their large genome size. Moreover, contrarily to Arabidopsis, maize ATM deficiency does not trigger meiotic defects, whereas the ATR kinase appears to be crucial for the maternal fertility. Strikingly, ATR is required to repress premature endocycle onset and cell death in the maize endosperm. Its absence results in a reduction of kernel size, protein and starch content, and a stochastic death of kernels, a process being counteracted by ATM. Additionally, while Arabidopsis atr atm double mutants are viable, no such mutants could be obtained for maize. Therefore, our data highlight that the mechanisms maintaining genome integrity may be more important for vegetative and reproductive development than previously anticipated.
Collapse
Affiliation(s)
- Jose Antonio Pedroza-Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ignacio Achon
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Maher-Un Nisa
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, Paris University, Sorbonne Paris-Cite, University of Paris-Saclay, 91405, Orsay, France
| | - Griet Coussens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Hilde Van den Daele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, Paris University, Sorbonne Paris-Cite, University of Paris-Saclay, 91405, Orsay, France
| | | |
Collapse
|
21
|
Dai D, Ma Z, Song R. Maize endosperm development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:613-627. [PMID: 33448626 DOI: 10.1111/jipb.13069] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 05/22/2023]
Abstract
Recent breakthroughs in transcriptome analysis and gene characterization have provided valuable resources and information about the maize endosperm developmental program. The high temporal-resolution transcriptome analysis has yielded unprecedented access to information about the genetic control of seed development. Detailed spatial transcriptome analysis using laser-capture microdissection has revealed the expression patterns of specific populations of genes in the four major endosperm compartments: the basal endosperm transfer layer (BETL), aleurone layer (AL), starchy endosperm (SE), and embryo-surrounding region (ESR). Although the overall picture of the transcriptional regulatory network of endosperm development remains fragmentary, there have been some exciting advances, such as the identification of OPAQUE11 (O11) as a central hub of the maize endosperm regulatory network connecting endosperm development, nutrient metabolism, and stress responses, and the discovery that the endosperm adjacent to scutellum (EAS) serves as a dynamic interface for endosperm-embryo crosstalk. In addition, several genes that function in BETL development, AL differentiation, and the endosperm cell cycle have been identified, such as ZmSWEET4c, Thk1, and Dek15, respectively. Here, we focus on current advances in understanding the molecular factors involved in BETL, AL, SE, ESR, and EAS development, including the specific transcriptional regulatory networks that function in each compartment during endosperm development.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
22
|
Demonsais L, Utz‐Pugin A, Loubéry S, Lopez‐Molina L. Identification of tannic cell walls at the outer surface of the endosperm upon Arabidopsis seed coat rupture. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:567-580. [PMID: 32985026 PMCID: PMC7702108 DOI: 10.1111/tpj.14994] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/26/2020] [Accepted: 09/11/2020] [Indexed: 05/02/2023]
Abstract
The seed coat is specialized dead tissue protecting the plant embryo from mechanical and oxidative damage. Tannins, a type of flavonoids, are antioxidants known to accumulate in the Arabidopsis seed coat and transparent testa mutant seeds, deficient in flavonoid synthesis, exhibit low viability. However, their precise contribution to seed coat architecture and biophysics remains evasive. A seed coat cuticle, covering the endosperm outer surface and arising from the seed coat inner integument 1 cell layer was, intriguingly, previously shown to be more permeable in transparent testa mutants deficient not in cuticular component synthesis, but rather in flavonoid synthesis. Investigating the role of flavonoids in cuticle permeability led us to identify periclinal inner integument 1 tannic cell walls being attached, together with the cuticle, to the endosperm surface upon seed coat rupture. Hence, inner integument 1 tannic cell walls and the cuticle form two fused layers present at the surface of the exposed endosperm upon seed coat rupture, regulating its permeability. Their potential physiological role during seed germination is discussed.
Collapse
Affiliation(s)
- Lara Demonsais
- Department of Botany and Plant BiologyUniversity of GenevaGenevaSwitzerland
| | - Anne Utz‐Pugin
- Department of Botany and Plant BiologyUniversity of GenevaGenevaSwitzerland
| | - Sylvain Loubéry
- Department of Botany and Plant BiologyUniversity of GenevaGenevaSwitzerland
| | - Luis Lopez‐Molina
- Department of Botany and Plant BiologyUniversity of GenevaGenevaSwitzerland
- Institute of Genetics and Genomics in Geneva (iGE3)University of GenevaGenevaSwitzerland
| |
Collapse
|
23
|
Kazaz S, Barthole G, Domergue F, Ettaki H, To A, Vasselon D, De Vos D, Belcram K, Lepiniec L, Baud S. Differential Activation of Partially Redundant Δ9 Stearoyl-ACP Desaturase Genes Is Critical for Omega-9 Monounsaturated Fatty Acid Biosynthesis During Seed Development in Arabidopsis. THE PLANT CELL 2020; 32:3613-3637. [PMID: 32958563 PMCID: PMC7610281 DOI: 10.1105/tpc.20.00554] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 05/20/2023]
Abstract
The spatiotemporal pattern of deposition, final amount, and relative abundance of oleic acid (cis-ω-9 C18:1) and its derivatives in the different lipid fractions of the seed of Arabidopsis (Arabidopsis thaliana) indicates that omega-9 monoenes are synthesized at high rates in this organ. Accordingly, we observed that four Δ9 stearoyl-ACP desaturase (SAD)-coding genes (FATTY ACID BIOSYNTHESIS2 [FAB2], ACYL-ACYL CARRIER PROTEIN5 [AAD5], AAD1, and AAD6) are transcriptionally induced in seeds. We established that the three most highly expressed ones are directly activated by the WRINKLED1 transcription factor. We characterized a collection of 30 simple, double, triple, and quadruple mutants affected in SAD-coding genes and thereby revealed the functions of these desaturases throughout seed development. Production of oleic acid by FAB2 and AAD5 appears to be critical at the onset of embryo morphogenesis. Double homozygous plants from crossing fab2 and aad5 could never be obtained, and further investigations revealed that the double mutation results in the arrest of embryo development before the globular stage. During later stages of seed development, these two SADs, together with AAD1, participate in the elaboration of the embryonic cuticle, a barrier essential for embryo-endosperm separation during the phase of invasive embryo growth through the endosperm. This study also demonstrates that the four desaturases redundantly contribute to storage lipid production during the maturation phase.
Collapse
Affiliation(s)
- Sami Kazaz
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Guillaume Barthole
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Frédéric Domergue
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33882 Villenave d'Ornon, France
- CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, 33882 Villenave d'Ornon, France
| | - Hasna Ettaki
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Alexandra To
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Damien Vasselon
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Delphine De Vos
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Katia Belcram
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Sébastien Baud
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
24
|
Cai Y. Lipid Synthesis and Beyond: SAD Fatty Acid Desaturases Contribute to Seed Development. THE PLANT CELL 2020; 32:3386-3387. [PMID: 32972975 PMCID: PMC7610298 DOI: 10.1105/tpc.20.00792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Yingqi Cai
- Biology DepartmentBrookhaven National LaboratoryUpton, New York
| |
Collapse
|
25
|
Abstract
Development encapsulates the morphogenesis of an organism from a single fertilized cell to a functional adult. A critical part of development is the specification of organ forms. Beyond the molecular control of morphogenesis, shape in essence entails structural constraints and thus mechanics. Revisiting recent results in biophysics and development, and comparing animal and plant model systems, we derive key overarching principles behind the formation of organs across kingdoms. In particular, we highlight how growing organs are active rather than passive systems and how such behavior plays a role in shaping the organ. We discuss the importance of considering different scales in understanding how organs form. Such an integrative view of organ development generates new questions while calling for more cross-fertilization between scientific fields and model system communities.
Collapse
Affiliation(s)
- O Hamant
- Laboratoire de Reproduction et Développement des Plantes, École normale supérieure (ENS) de Lyon, Université Claude Bernard Lyon (UCBL), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), CNRS, Université de Lyon, 69364 Lyon, France;
| | - T E Saunders
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore 117411; .,Institute of Molecular and Cell Biology, A*Star, Proteos, Singapore 138673
| |
Collapse
|
26
|
Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L. An Updated Overview on the Regulation of Seed Germination. PLANTS 2020; 9:plants9060703. [PMID: 32492790 PMCID: PMC7356954 DOI: 10.3390/plants9060703] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
The ability of a seed to germinate and establish a plant at the right time of year is of vital importance from an ecological and economical point of view. Due to the fragility of these early growth stages, their swiftness and robustness will impact later developmental stages and crop yield. These traits are modulated by a continuous interaction between the genetic makeup of the plant and the environment from seed production to germination stages. In this review, we have summarized the established knowledge on the control of seed germination from a molecular and a genetic perspective. This serves as a “backbone” to integrate the latest developments in the field. These include the link of germination to events occurring in the mother plant influenced by the environment, the impact of changes in the chromatin landscape, the discovery of new players and new insights related to well-known master regulators. Finally, results from recent studies on hormone transport, signaling, and biophysical and mechanical tissue properties are underscoring the relevance of tissue-specific regulation and the interplay of signals in this crucial developmental process.
Collapse
|
27
|
Meinke DW. Genome-wide identification of EMBRYO-DEFECTIVE (EMB) genes required for growth and development in Arabidopsis. THE NEW PHYTOLOGIST 2020; 226:306-325. [PMID: 31334862 DOI: 10.1111/nph.16071] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/10/2019] [Indexed: 05/20/2023]
Abstract
With the emergence of high-throughput methods in plant biology, the importance of long-term projects characterized by incremental advances involving multiple laboratories can sometimes be overlooked. Here, I highlight my 40-year effort to isolate and characterize the most common class of mutants encountered in Arabidopsis (Arabidopsis thaliana): those defective in embryo development. I present an updated dataset of 510 EMBRYO-DEFECTIVE (EMB) genes identified throughout the Arabidopsis community; include important details on 2200 emb mutants and 241 pigment-defective embryo (pde) mutants analyzed in my laboratory; provide curated datasets with key features and publication links for each EMB gene identified; revisit past estimates of 500-1000 total EMB genes in Arabidopsis; document 83 double mutant combinations reported to disrupt embryo development; emphasize the importance of following established nomenclature guidelines and acknowledging allele history in research publications; and consider how best to extend community-based curation and screening efforts to approach saturation for this diverse class of mutants in the future. Continued advances in identifying EMB genes and characterizing their loss-of-function mutant alleles are needed to understand genotype-to-phenotype relationships in Arabidopsis on a broad scale, and to document the contributions of large numbers of essential genes to plant growth and development.
Collapse
Affiliation(s)
- David W Meinke
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
28
|
Doll NM, Bovio S, Gaiti A, Marsollier AC, Chamot S, Moussu S, Widiez T, Ingram G. The Endosperm-Derived Embryo Sheath Is an Anti-adhesive Structure that Facilitates Cotyledon Emergence during Germination in Arabidopsis. Curr Biol 2020; 30:909-915.e4. [PMID: 32155415 DOI: 10.1016/j.cub.2019.12.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/04/2019] [Accepted: 12/18/2019] [Indexed: 11/30/2022]
Abstract
Germination sensu stricto in Arabidopsis involves seed-coat and endosperm rupture by the emerging seedling root. Subsequently, the cotyledons emerge rapidly from the extra-embryonic tissues of the seed, allowing autotrophic seedling establishment [1, 2]. Seedling survival depends upon the presence of an intact seedling cuticle that prevents dehydration, which has hitherto been assumed to form the interface between the newly germinated seedling and its environment [3-5]. Here, we show that in Arabidopsis, this is not the case. The primary interface between the emerging seedling and its environment is formed by an extra-cuticular endosperm-derived glycoprotein-rich structure called the sheath, which is maintained as a continuous layer at seedling surfaces during germination and becomes fragmented as cotyledons expand. Mutants lacking an endosperm-specific cysteine-rich peptide (KERBEROS [KRS]) show a complete loss of sheath production [6]. Although krs mutants have no defects in germination sensu stricto, they show delayed cotyledon emergence, a defect not observed in seedlings with defects in cuticle biosynthesis. Biophysical analyses reveal that the surfaces of wild-type cotyledons show minimal adhesion to silica beads in an aqueous environment at cotyledon emergence but that adhesion increases as cotyledons expand. In contrast, krs mutant cotyledons show enhanced adhesion at germination. Mutants with defects in cuticle biosynthesis, but no sheath defects, show a similar adhesion profile to wild-type seedlings at germination. We propose that the sheath reduces the adhesiveness of the cotyledon surface under the humid conditions necessary for seed germination and thus promotes seed-coat shedding and rapid seedling establishment.
Collapse
Affiliation(s)
- Nicolas M Doll
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Simone Bovio
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Angelo Gaiti
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Anne-Charlotte Marsollier
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Sophy Chamot
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Steven Moussu
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Thomas Widiez
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France.
| |
Collapse
|
29
|
Doll NM, Royek S, Fujita S, Okuda S, Chamot S, Stintzi A, Widiez T, Hothorn M, Schaller A, Geldner N, Ingram G. A two-way molecular dialogue between embryo and endosperm is required for seed development. Science 2020; 367:431-435. [PMID: 31974252 DOI: 10.1126/science.aaz4131] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2023]
Abstract
The plant embryonic cuticle is a hydrophobic barrier deposited de novo by the embryo during seed development. At germination, it protects the seedling from water loss and is, thus, critical for survival. Embryonic cuticle formation is controlled by a signaling pathway involving the ABNORMAL LEAF SHAPE1 subtilase and the two GASSHO receptor-like kinases. We show that a sulfated peptide, TWISTED SEED1 (TWS1), acts as a GASSHO ligand. Cuticle surveillance depends on the action of the subtilase, which, unlike the TWS1 precursor and the GASSHO receptors, is not produced in the embryo but in the neighboring endosperm. Subtilase-mediated processing of the embryo-derived TWS1 precursor releases the active peptide, triggering GASSHO-dependent cuticle reinforcement in the embryo. Thus, a bidirectional molecular dialogue between embryo and endosperm safeguards cuticle integrity before germination.
Collapse
Affiliation(s)
- N M Doll
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - S Royek
- Department of Plant Physiology and Biochemistry, University of Hohenheim, 70599 Stuttgart, Germany
| | - S Fujita
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - S Okuda
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - S Chamot
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - A Stintzi
- Department of Plant Physiology and Biochemistry, University of Hohenheim, 70599 Stuttgart, Germany
| | - T Widiez
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - M Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - A Schaller
- Department of Plant Physiology and Biochemistry, University of Hohenheim, 70599 Stuttgart, Germany
| | - N Geldner
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - G Ingram
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France.
| |
Collapse
|
30
|
Ingram GC. Family plot: the impact of the endosperm and other extra-embryonic seed tissues on angiosperm zygotic embryogenesis. F1000Res 2020; 9. [PMID: 32055398 PMCID: PMC6961419 DOI: 10.12688/f1000research.21527.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2020] [Indexed: 12/22/2022] Open
Abstract
The zygotic embryos of angiosperms develop buried deep within seeds and surrounded by two main extra-embryonic tissues: the maternally derived seed coat tissues and the zygotic endosperm. Generally, these tissues are considered to play an important role in nurturing the developing embryo by acting as conduits for maternally derived nutrients. They are also critical for key seed traits (dormancy establishment and control, longevity, and physical resistance) and thus for seed and seedling survival. However, recent studies have highlighted the fact that extra-embryonic tissues in the seed also physically and metabolically limit embryonic development and that unique mechanisms may have evolved to overcome specific developmental and genetic constraints associated with the seed habit in angiosperms. The aim of this review is to illustrate how these studies have begun to reveal the highly complex physical and physiological relationship between extra-embryonic tissues and the developing embryo. Where possible I focus on Arabidopsis because of space constraints, but other systems will be cited where relevant.
Collapse
Affiliation(s)
- Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| |
Collapse
|
31
|
Wang S, Yokosho K, Guo R, Whelan J, Ruan YL, Ma JF, Shou H. The Soybean Sugar Transporter GmSWEET15 Mediates Sucrose Export from Endosperm to Early Embryo. PLANT PHYSIOLOGY 2019; 180:2133-2141. [PMID: 31221732 PMCID: PMC6670074 DOI: 10.1104/pp.19.00641] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/12/2019] [Indexed: 05/07/2023]
Abstract
Soybean (Glycine max) seed is primarily composed of a mature embryo that provides a major source of protein and oil for humans and other animals. Early in development, the tiny embryos grow rapidly and acquire large quantities of sugars from the liquid endosperm of developing seeds. An insufficient supply of nutrients from the endosperm to the embryo results in severe seed abortion and yield reduction. Hence, an understanding of the molecular basis and regulation of assimilate partitioning involved in early embryo development is important for improving soybean seed yield and quality. Here, we used expression profiling analysis to show that two paralogous sugar transporter genes from the SWEET (Sugars Will Eventually be Exported Transporter) family, GmSWEET15a and GmSWEET15b, were highly expressed in developing soybean seeds. In situ hybridization and quantitative real-time PCR showed that both genes were mainly expressed in the endosperm at the cotyledon stage. GmSWEET15b showed both efflux and influx activities for sucrose in Xenopus oocytes. In Arabidopsis (Arabidopsis thaliana), knockout of three AtSWEET alleles is required to see a defective, but not lethal, embryo phenotype, whereas knockout of both GmSWEET15 genes in soybean caused retarded embryo development and endosperm persistence, resulting in severe seed abortion. In addition, the embryo sugar content of the soybean knockout mutants was greatly reduced. These results demonstrate that the plasma membrane sugar transporter, GmSWEET15, is essential for embryo development in soybean by mediating Suc export from the endosperm to the embryo early in seed development.
Collapse
Affiliation(s)
- Shoudong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Kengo Yokosho
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046 Japan
| | - Runze Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Victoria 3086, Australia
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046 Japan
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
32
|
Navarro JA, Sanchez-Navarro JA, Pallas V. Key checkpoints in the movement of plant viruses through the host. Adv Virus Res 2019; 104:1-64. [PMID: 31439146 DOI: 10.1016/bs.aivir.2019.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant viruses cannot exploit any of the membrane fusion-based routes of entry described for animal viruses. In addition, one of the distinctive structures of plant cells, the cell wall, acts as the first barrier against the invasion of pathogens. To overcome the rigidity of the cell wall, plant viruses normally take advantage of the way of life of different biological vectors. Alternatively, the physical damage caused by environmental stresses can facilitate virus entry. Once inside the cell and taking advantage of the characteristic symplastic continuity of plant cells, viruses need to remodel and/or modify the restricted pore size of the plasmodesmata (channels that connect plant cells). In a successful interaction for the virus, it can reach the vascular tissue to systematically invade the plant. The connections between the different cell types in this path are not designed to allow the passage of molecules with the complexity of viruses. During this process, viruses face different cell barriers that must be overcome to reach the distal parts of the plant. In this review, we highlight the current knowledge about how plant RNA viruses enter plant cells, move between them to reach vascular cells and overcome the different physical and cellular barriers that the phloem imposes. Finally, we update the current research on cellular organelles as key regulator checkpoints in the long-distance movement of plant viruses.
Collapse
Affiliation(s)
- Jose A Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Jesus A Sanchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| |
Collapse
|
33
|
Coen O, Lu J, Xu W, De Vos D, Péchoux C, Domergue F, Grain D, Lepiniec L, Magnani E. Deposition of a cutin apoplastic barrier separating seed maternal and zygotic tissues. BMC PLANT BIOLOGY 2019; 19:304. [PMID: 31291882 PMCID: PMC6617593 DOI: 10.1186/s12870-019-1877-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/09/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND In flowering plants, proper seed development is achieved through the constant interplay of fertilization products, embryo and endosperm, and maternal tissues. Communication between these compartments is supposed to be tightly regulated at their interfaces. Here, we characterize the deposition pattern of an apoplastic lipid barrier between the maternal inner integument and fertilization products in Arabidopsis thaliana seeds. RESULTS We demonstrate that an apoplastic lipid barrier is first deposited by the ovule inner integument and undergoes de novo cutin deposition following central cell fertilization and relief of the FERTILIZATION INDEPENDENT SEED Polycomb group repressive mechanism. In addition, we show that the WIP zinc-finger TRANSPARENT TESTA 1 and the MADS-Box TRANSPARENT TESTA 16 transcription factors act maternally to promote its deposition by regulating cuticle biosynthetic pathways. Finally, mutant analyses indicate that this apoplastic barrier allows correct embryo sliding along the seed coat. CONCLUSIONS Our results revealed that the deposition of a cutin apoplastic barrier between seed maternal and zygotic tissues is part of the seed coat developmental program.
Collapse
Affiliation(s)
- Olivier Coen
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
- École Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, bat 360, 91405 Orsay Cedex, France
| | - Jing Lu
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
- École Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, bat 360, 91405 Orsay Cedex, France
| | - Wenjia Xu
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| | - Delphine De Vos
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| | - Christine Péchoux
- INRA, Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Cedex, 78352 Jouy-en-Josas, France
| | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, University of Bordeaux, UMR 5200, CNRS /, 71 av. E. Bourleaux, CS 20032, 33140 Villenave d’Ornon, France
| | - Damaris Grain
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| | - Enrico Magnani
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026 Versailles Cedex, France
| |
Collapse
|
34
|
Nonogaki H. Seed germination and dormancy: The classic story, new puzzles, and evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:541-563. [PMID: 30565406 DOI: 10.1111/jipb.12762] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/17/2018] [Indexed: 05/18/2023]
Abstract
This review highlights recent progresses in seed germination and dormancy research. Research on the weakening of the endosperm during germination, which is almost a classic theme in seed biology, was resumed by α-xylosidase studies. Strong genetic evidence was presented to suggest that the quality control of xyloglucan biosynthesis in the endosperm (and the embryo) plays a critical role in germination. Further analyses on the endosperm and the adjacent layers have suggested that the cutin coat in the endosperm-testa interphase negatively affects germination while the endosperm-embryo interphase produces a sheath that facilitates germination. These progresses significantly advanced our understanding of seed germination mechanisms. A breakthrough in dormancy research, on the other hand, revealed the unique abscisic acid signaling pathway that is regulated by DELAY OF GERMINATION1 (DOG1). The detailed analysis of DOG1 expression uncovered the intriguing story of reciprocal regulation of the sense-antisense pair, which generated new questions. Recent studies also suggested that the DOG1 function is not limited to dormancy but extended through general seed maturation, which provokes questions about the evolution of DOG1 family proteins. Seed biology is becoming more exciting with the classic stories being revitalized and new puzzles emerging from the frontier.
Collapse
|
35
|
Creff A, Brocard L, Joubès J, Taconnat L, Doll NM, Marsollier AC, Pascal S, Galletti R, Boeuf S, Moussu S, Widiez T, Domergue F, Ingram G. A stress-response-related inter-compartmental signalling pathway regulates embryonic cuticle integrity in Arabidopsis. PLoS Genet 2019; 15:e1007847. [PMID: 30998684 PMCID: PMC6490923 DOI: 10.1371/journal.pgen.1007847] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/30/2019] [Accepted: 03/07/2019] [Indexed: 11/25/2022] Open
Abstract
The embryonic cuticle is necessary for normal seed development and seedling establishment in Arabidopsis. Although mutants with defective embryonic cuticles have been identified, neither the deposition of cuticle material, nor its regulation, has been described during embryogenesis. Here we use electron microscopy, cuticle staining and permeability assays to show that cuticle deposition initiates de novo in patches on globular embryos. By combining these techniques with genetics and gene expression analysis, we show that successful patch coalescence to form a continuous cuticle requires a signalling involving the endosperm-specific subtilisin protease ALE1 and the receptor kinases GSO1 and GSO2, which are expressed in the developing embryonic epidermis. Transcriptome analysis shows that this pathway regulates stress-related gene expression in seeds. Consistent with these findings we show genetically, and through activity analysis, that the stress-associated MPK6 protein acts downstream of GSO1 and GSO2 in the developing embryo. We propose that a stress-related signalling pathway has been hijacked in some angiosperm seeds through the recruitment of endosperm-specific components. Our work reveals the presence of an inter-compartmental dialogue between the endosperm and embryo that ensures the formation of an intact and functional cuticle around the developing embryo through an “auto-immune” type interaction. Plant embryogenesis occurs deep within the tissues of the developing seed, and leads to the production of the mature embryo. In Arabidopsis and many other plant species embryo-derive structure (such as the cotyledons) are suddenly exposed to environmental stresses such as low humidity. In these species the embryonic cuticle provides a primary defence against environmental stress, and particularly dehydration, at germination. The formation of an intact and functional cuticle during embryogenesis is thus of key importance for seedling survival. Our work shows that a signalling pathway involving receptor-kinases expressed in the embryo epidermis, and a protease expressed in the endosperm tissue surrounding the embryo, is critical for ensuring the production of an intact cuticle. Furthermore, we show that a component of stress-related MAP-Kinase signalling in plants acts downstream in this pathway, possibly to mediate transcriptional responses characteristic of responses to stress. We propose that plants have redeployed a signalling pathway associated with stress resistance to ensure the formation of an intact embryonic cuticle prior to germination, and thus ensure seedling survival at germination.
Collapse
Affiliation(s)
- Audrey Creff
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
| | - Lysiane Brocard
- Pôle d'Imagerie du Végétal, UMS3420-Université de Bordeaux, CNRS, INSERM, Domaine de la Grande Ferrade, Villenave d'Ornon, France
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, UMR 5200 Université de Bordeaux, Villenave d'Ornon, France
| | - Ludivine Taconnat
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 0rsay, France
| | - Nicolas M. Doll
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
| | - Anne-Charlotte Marsollier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
| | - Stéphanie Pascal
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, Villenave d'Ornon, France
| | - Roberta Galletti
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
| | - Sophy Boeuf
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
| | - Steven Moussu
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
| | - Thomas Widiez
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
| | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, Villenave d'Ornon, France
- * E-mail: (FD); (GI)
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRA, Lyon, France
- * E-mail: (FD); (GI)
| |
Collapse
|
36
|
MacGregor DR, Zhang N, Iwasaki M, Chen M, Dave A, Lopez‐Molina L, Penfield S. ICE1 and ZOU determine the depth of primary seed dormancy in Arabidopsis independently of their role in endosperm development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:277-290. [PMID: 30570804 PMCID: PMC6900779 DOI: 10.1111/tpj.14211] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/20/2018] [Accepted: 12/12/2018] [Indexed: 05/06/2023]
Abstract
Seed dormancy is a widespread and key adaptive trait that is essential for the establishment of soil seed banks and prevention of pre-harvest sprouting. Herein we demonstrate that the endosperm-expressed transcription factors ZHOUPI (ZOU) and INDUCER OF CBF EXPRESSION1 (ICE1) play a role in determining the depth of primary dormancy in Arabidopsis. We show that ice1 or zou increases seed dormancy and the double mutant has an additive phenotype. This increased dormancy is associated with increased ABA levels, and can be separated genetically from any role in endosperm maturation because loss of ABA biosynthesis or DELAY OF GERMINATION 1 reverses the dormancy phenotype without affecting the aberrant seed morphology. Consistent with these results, ice1 endosperms had an increased capacity for preventing embryo greening, a phenotype previously associated with an increase in endospermic ABA levels. Although ice1 changes the expression of many genes, including some in ABA biosynthesis, catabolism and/or signalling, only ABA INSENSITIVE 3 is significantly misregulated in ice1 mutants. We also demonstrate that ICE1 binds to and inhibits expression of ABA INSENSITIVE 3. Our data demonstrate that Arabidopsis ICE1 and ZOU determine the depth of primary dormancy during maturation independently of their effect on endosperm development.
Collapse
Affiliation(s)
- Dana R. MacGregor
- Department of Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- Present address:
Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpenden, HertfordshireAL5 2JQUK
| | - Naichao Zhang
- Department of Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Mayumi Iwasaki
- Department of Plant Biology and Institute for Genetics and Genomics in Geneva (iGE3)University of Geneva30, Quai Ernest‐Ansermet CH‐1211Geneva4Switzerland
| | - Min Chen
- Department of Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- Present address:
College of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Anuja Dave
- Department of Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Luis Lopez‐Molina
- Department of Plant Biology and Institute for Genetics and Genomics in Geneva (iGE3)University of Geneva30, Quai Ernest‐Ansermet CH‐1211Geneva4Switzerland
| | - Steven Penfield
- Department of Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
37
|
Robert HS. Molecular Communication for Coordinated Seed and Fruit Development: What Can We Learn from Auxin and Sugars? Int J Mol Sci 2019; 20:E936. [PMID: 30795528 PMCID: PMC6412287 DOI: 10.3390/ijms20040936] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/05/2023] Open
Abstract
Seed development in flowering plants is a critical part of plant life for successful reproduction. The formation of viable seeds requires the synchronous growth and development of the fruit and the three seed structures: the embryo, the endosperm, the seed coat. Molecular communication between these tissues is crucial to coordinate these developmental processes. The phytohormone auxin is a significant player in embryo, seed and fruit development. Its regulated local biosynthesis and its cell-to-cell transport capacity make of auxin the perfect candidate as a signaling molecule to coordinate the growth and development of the embryo, endosperm, seed and fruit. Moreover, newly formed seeds need nutrients and form new carbon sink, generating high sugar flow from vegetative tissues to the seeds. This review will discuss how auxin and sugars may be considered as signaling molecules to coordinate seed and fruit development.
Collapse
Affiliation(s)
- Hélène S Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic.
| |
Collapse
|
38
|
The Root Cap Cuticle: A Cell Wall Structure for Seedling Establishment and Lateral Root Formation. Cell 2019; 176:1367-1378.e8. [PMID: 30773319 DOI: 10.1016/j.cell.2019.01.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/23/2018] [Accepted: 01/02/2019] [Indexed: 11/21/2022]
Abstract
The root cap surrounding the tip of plant roots is thought to protect the delicate stem cells in the root meristem. We discovered that the first layer of root cap cells is covered by an electron-opaque cell wall modification resembling a plant cuticle. Cuticles are polyester-based protective structures considered exclusive to aerial plant organs. Mutations in cutin biosynthesis genes affect the composition and ultrastructure of this cuticular structure, confirming its cutin-like characteristics. Strikingly, targeted degradation of the root cap cuticle causes a hypersensitivity to abiotic stresses during seedling establishment. Furthermore, lateral root primordia also display a cuticle that, when defective, causes delayed outgrowth and organ deformations, suggesting that it facilitates lateral root emergence. Our results show that the previously unrecognized root cap cuticle protects the root meristem during the critical phase of seedling establishment and promotes the efficient formation of lateral roots.
Collapse
|
39
|
Baroux C, Grossniklaus U. Seeds-An evolutionary innovation underlying reproductive success in flowering plants. Curr Top Dev Biol 2018; 131:605-642. [PMID: 30612632 DOI: 10.1016/bs.ctdb.2018.11.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
"Seeds nourish, seeds unite, seeds endure, seeds defend, seeds travel," explains the science writer Thor Hanson in his book The Triumph of Seeds (2015). The seed is an ultimate product of land plant evolution. The nursing and protective organization of the seed enable a unique parental care of the progeny that has fueled seed plant radiation. Seeds promote dispersal and optimize offspring production and thus reproductive fitness through biological adaptations that integrate environmental and developmental cues. The composite structure of seeds, uniting tissues that originate from three distinct organisms, enables the partitioning of tasks during development, maturation, and storage, while a sophisticated interplay between the compartments allows the fine-tuning of embryonic growth, as well as seed maturation, dormancy, and germination. In this review, we will highlight peculiarities in the development and evolution of the different seed compartments and focus on the molecular mechanisms underlying the interactions between them.
Collapse
Affiliation(s)
- Célia Baroux
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Marsollier AC, Ingram G. Getting physical: invasive growth events during plant development. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:8-17. [PMID: 29981931 DOI: 10.1016/j.pbi.2018.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 05/10/2023]
Abstract
Plant cells are enclosed in cell walls that weld them together, meaning that cells rarely change neighbours. Nonetheless, invasive growth events play critical roles in plant development and are often key hubs for the integration of environmental and/or developmental signalling. Here we review cellular processes involved in three such events: lateral root emergence, pollen tube growth through stigma and style tissues, and embryo expansion through the endosperm (Figures 1-3). We consider processes such as regulation of water fluxes and cell turgor (driving growth), cell wall modifications (e.g. cell separation) and cell death (for creating space) within these three contexts with the aim of identifying key mechanisms implicated in providing a chemical and biophysical environments permitting invasive growth events.
Collapse
Affiliation(s)
- Anne-Charlotte Marsollier
- Université de Lyon, Laboratoire Reproduction et Développement des Plantes, ENS de lyon, CNRS, INRA, 46 Allée d'Italie, 69007 Lyon, France
| | - Gwyneth Ingram
- Université de Lyon, Laboratoire Reproduction et Développement des Plantes, ENS de lyon, CNRS, INRA, 46 Allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
41
|
Sechet J, Marion-Poll A, North HM. Emerging Functions for Cell Wall Polysaccharides Accumulated during Eudicot Seed Development. PLANTS (BASEL, SWITZERLAND) 2018; 7:E81. [PMID: 30274256 PMCID: PMC6313846 DOI: 10.3390/plants7040081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 01/17/2023]
Abstract
The formation of seeds is a reproductive strategy in higher plants that enables the dispersal of offspring through time and space. Eudicot seeds comprise three main components, the embryo, the endosperm and the seed coat, where the coordinated development of each is important for the correct formation of the mature seed. In addition, the seed coat protects the quiescent progeny and can provide transport mechanisms. A key underlying process in the production of seed tissues is the formation of an extracellular matrix termed the cell wall, which is well known for its essential function in cytokinesis, directional growth and morphogenesis. The cell wall is composed of a macromolecular network of polymers where the major component is polysaccharides. The attributes of polysaccharides differ with their composition and charge, which enables dynamic remodeling of the mechanical and physical properties of the matrix by adjusting their production, modification or turnover. Accordingly, the importance of specific polysaccharides or modifications is increasingly being associated with specialized functions within seed tissues, often through the spatio-temporal accumulation or remodeling of particular polymers. Here, we review the evolution and accumulation of polysaccharides during eudicot seed development, what is known of their impact on wall architecture and the diverse roles associated with these in different seed tissues.
Collapse
Affiliation(s)
- Julien Sechet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Annie Marion-Poll
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Helen M North
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| |
Collapse
|
42
|
Feng F, Song R. O11 is multi-functional regulator in maize endosperm. PLANT SIGNALING & BEHAVIOR 2018; 13:e1451709. [PMID: 29533128 PMCID: PMC5933909 DOI: 10.1080/15592324.2018.1451709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 05/30/2023]
Abstract
As a highly developed tissue, maize endosperm accumulates nutrients abundantly and supports embryo development. In a recent study, we constructed a regulatory network centered around Opaque11 (O11). This network unified cellular development, nutrient metabolism and stress responses during endosperm development. Here we discuss the evidences that O11 might have a regulatory role in cold stress response during seed development. Furthermore, we discuss the functional divergence between maize O11 and its Arabidopsis orthologue ZHOUPI, which might explain some of the differences in endosperm development between monocotyledonous and dicotyledonous seeds.
Collapse
Affiliation(s)
- Fan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
- National Maize Improvement Center of China, China Agricultural University, Beijing, China
| |
Collapse
|
43
|
Steinbrecher T, Leubner-Metzger G. Tissue and cellular mechanics of seeds. Curr Opin Genet Dev 2018; 51:1-10. [PMID: 29571069 DOI: 10.1016/j.gde.2018.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 01/17/2023]
Abstract
Distinct plant seed/fruit structures evolved to support reproduction and dispersal in distinct environments. Appropriate biomechanical properties and interactions of the various seed compartments are indispensable to plant survival. Most seeds are dispersed in a dry state generated during seed development/maturation for which novel aspects of endosperm-embryo interaction were discovered. The various layers covering the embryo of a mature seed define the patterns of water uptake during germination. Their biomechanical weakening together with embryo cell expansion is mediated by cell wall remodelling to facilitate radicle protrusion. Recent work with different species has revealed mechanisms underpinning specific embryo growth zones. Abiotic and biotic factors were shown to release different types of seed and fruit coat-mediated constraints to water uptake and germination.
Collapse
Affiliation(s)
- Tina Steinbrecher
- School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK(1).
| | - Gerhard Leubner-Metzger
- School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK(1).
| |
Collapse
|
44
|
Dou M, Zhang Y, Yang S, Feng X. Identification of ZHOUPI Orthologs in Rice Involved in Endosperm Development and Cuticle Formation. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 29541083 PMCID: PMC5835929 DOI: 10.3389/fpls.2018.00223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The endosperm occupies most of the available space within mature rice seeds, contains abundant nutrients, and directly influences both the quality and quantity of rice production. Initial reports noted that AtZHOUPI (AtZOU) coordinates endosperm breakdown and the concomitant separation of the embryo from this structure in Arabidopsis. The results of this study show that rice genomes contain two most closely related homologs of AtZOU, OsZOU-1 and OsZOU-2; of these, OsZOU-1 expression is limited to within the endosperm where it can be detected throughout this structure 5 days after pollination (DAP). Its expression gradually decreases from seven DAP to nine DAP. The second of the two most closely related homologs, OsZOU-2, is highly expressed in leaves and stem, but is not detected in developing seeds. Heterologous expression of OsZOU-1 and OsZOU-2 in Atzou-4 mutants also revealed that OsZOU-1 partially complements the seed phenotypes of these individuals, while its counterpart, OsZOU-2, was unable to recover these phenotypes. The over-expression of OsZOU-1 severely disrupts both seed development and plant growth in transgenic rice lines, as plants in which this gene has been knocked down failed in the separation of endosperm from embryo and cuticle formation during seed development. The results of this study therefore suggest that OsZOU-1 is orthologous to the AtZOU, and regulates both endosperm development and cuticle formation in rice.
Collapse
Affiliation(s)
- Mingzhu Dou
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology (CAS), Changchun, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yaohua Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology (CAS), Changchun, China
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology (CAS), Changchun, China
- *Correspondence: Suxin Yang, Xianzhong Feng,
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology (CAS), Changchun, China
- *Correspondence: Suxin Yang, Xianzhong Feng,
| |
Collapse
|
45
|
Cruz-Valderrama JE, Jiménez-Durán K, Zúñiga-Sánchez E, Salazar-Iribe A, Márquez-Guzmán J, Gamboa-deBuen A. Degree of pectin methyl esterification in endosperm cell walls is involved in embryo bending in Arabidopsis thaliana. Biochem Biophys Res Commun 2017; 495:639-645. [PMID: 29137987 DOI: 10.1016/j.bbrc.2017.11.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 01/24/2023]
Abstract
The endosperm is a transitory structure involved in proper embryo elongation. The cell walls of mature seed endosperm are generally composed of a uniform distribution of cellulose, unesterified homogalacturonans, and arabinans. Recent studies suggest that changes in cell wall properties during endosperm development could be related to embryo growth. The degree of methyl esterification of homogalacturonans may be involved in this endosperm tissue remodelling. The relevance of the degree of homogalacturonan methyl esterification during seed development was determined by immunohistochemical analyses using a panel of probes with specificity for homogalaturonans with different degrees of methyl esterification. Low-esterified and un-esterified homogalacturonans were abundant in endosperm cells during embryo bending and were also detected in mature embryos. BIDXII (BDX) could be involved in seed development, because bdx-1 mutants had misshapen embryos. The methyl esterification pattern described for WT seeds was different during bdx-1 seed development; un-esterified homogalacturonans were scarcely present in the cell walls of endosperm in bending embryos and mature seeds. Our results suggested that the degree of methyl esterification of homogalacturonans in the endosperm cell wall may be involved in proper embryo development.
Collapse
Affiliation(s)
- José E Cruz-Valderrama
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP.04510, CDMX, Mexico
| | - Karina Jiménez-Durán
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP.04510, CDMX, Mexico
| | - Esther Zúñiga-Sánchez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP.04510, CDMX, Mexico
| | - Alexis Salazar-Iribe
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP.04510, CDMX, Mexico
| | - Judith Márquez-Guzmán
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP.04510, CDMX, Mexico
| | - Alicia Gamboa-deBuen
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP.04510, CDMX, Mexico.
| |
Collapse
|