1
|
Kurotani KI, Shinozaki D, Okada K, Tabata R, Kawakatsu Y, Sugita R, Utsugi Y, Okayasu K, Mori M, Tanoi K, Goto Y, Sato M, Toyooka K, Yoshimoto K, Notaguchi M. Autophagy is induced during plant grafting to promote wound healing. Nat Commun 2025; 16:3483. [PMID: 40216774 PMCID: PMC11992148 DOI: 10.1038/s41467-025-58519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
Grafting is an agricultural technique that joins tissues from different plants to obtain useful rootstock traits. However, cellular processes involved in joint tissue repair remain poorly understood. We analyzed Nicotiana benthamiana (Nb) and Arabidopsis thaliana (At) interfamily heterografting as a high-stress model and At homografting as a low-stress model. Transmission electron micrographs reveal the formation of autophagic structures in cells near the graft boundary over a long period in Nb/At interfamily grafts and in a short period of a few days in At homografts. Using a GFP-ATG8 marker line, the autophagosomes were observed in the cells near the graft boundary, especially on the scion side, where nutrient depletion occurred. Grafting of At autophagy-defective mutants decreases grafting success rates and post-grafting growth. NbATG5 knockdown suppresses graft establishment in Nb/At interfamily heterografts. Moreover, At autophagy-defective mutants show reduced callus formation directed to wounds under the nutrient-deficient conditions. These results suggest that autophagy is induced during grafting, promoting callus formation and contributing to tissue connectivity.
Collapse
Affiliation(s)
- Ken-Ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Daiki Shinozaki
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, Kawasaki, Japan
| | - Kentaro Okada
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Ryo Tabata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yaichi Kawakatsu
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Ryohei Sugita
- Isotope Facility for Agricultural Education and Research, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Radioisotope Research Center, Nagoya University, Nagoya, Japan
| | - Yuki Utsugi
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Koji Okayasu
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Moe Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Keitaro Tanoi
- Isotope Facility for Agricultural Education and Research, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yumi Goto
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Mayuko Sato
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | | | - Kohki Yoshimoto
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan.
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan.
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan.
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, China.
| |
Collapse
|
2
|
Yang Q, He Z, Zheng C, He R, Chen Y, Zhuo R, Qiu W. Genome-Wide Identification and Comprehensive Analysis of the GARP Transcription Factor Superfamily in Populus deltoides. Genes (Basel) 2025; 16:322. [PMID: 40149473 PMCID: PMC11942272 DOI: 10.3390/genes16030322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: The GARP transcription factor superfamily is crucial for plant growth, development, and stress responses. This study systematically identified and analyzed the GARP family genes in Populus deltoides to explore their roles in plant development and abiotic stress responses. Methods: A total of 58 PdGARP genes were identified using bioinformatics tools. Their physicochemical properties, genomic locations, conserved motifs, gene structures, and phylogenetic relationships were analyzed. Expression patterns under phosphorus and nitrogen deficiency, as well as tissue-specific expression, were investigated using RT-qPCR. Transgenic RNAi lines were generated to validate the function of GLK genes in chlorophyll biosynthesis. Results: The 58 PdGARP genes were classified into five subfamilies based on their evolutionary relationships and protein sequence similarity. Segmental duplication was found to be the primary driver of the PdGARP family's expansion. Cis-regulatory elements (CREs) related to light, hormones, and abiotic stresses were identified in the promoters of PdGARP genes. Differential expression patterns were observed for NIGT1/HRS1/HHO and PHR/PHL subfamily members under phosphorus and nitrogen deficiency, indicating their involvement in stress responses. KAN subfamily members exhibited tissue-specific expression, particularly in leaves. Structural analysis of the GLK subfamily revealed conserved α-helices, extended chains, and irregular coils. Transgenic RNAi lines targeting GLK genes showed significant reductions in chlorophyll and carotenoid content. Conclusions: This study provides a comprehensive analysis of the GARP transcription factor superfamily in P. deltoides, highlighting their potential roles in nutrient signaling and stress response pathways. The findings lay the foundation for further functional studies of PdGARP genes and their application in stress-resistant breeding of poplar.
Collapse
Affiliation(s)
- Qin Yang
- Key Laboratory of Three Gorges Regional Plant Genetic & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang 443002, China; (Q.Y.); (Z.H.); (R.H.)
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (C.Z.); (R.Z.)
| | - Zhengquan He
- Key Laboratory of Three Gorges Regional Plant Genetic & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang 443002, China; (Q.Y.); (Z.H.); (R.H.)
| | - Chenjia Zheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (C.Z.); (R.Z.)
- School of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Ruoyu He
- Key Laboratory of Three Gorges Regional Plant Genetic & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang 443002, China; (Q.Y.); (Z.H.); (R.H.)
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (C.Z.); (R.Z.)
| | - Yu Chen
- Agricultural Technology Extension Centre of Dongtai, Yancheng 224200, China;
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (C.Z.); (R.Z.)
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (C.Z.); (R.Z.)
| |
Collapse
|
3
|
Monden K, Otomaru D, Suzuki T, Nakagawa T, Hachiya T. Arabidopsis root-type ferredoxin:NADP(H) oxidoreductases are crucial for root growth and ferredoxin-dependent processes. Biochem Biophys Res Commun 2025; 751:151448. [PMID: 39919391 DOI: 10.1016/j.bbrc.2025.151448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/09/2025]
Abstract
Root-type ferredoxin:NADP(H) oxidoreductase (RFNR) is believed to reduce ferredoxin using NADPH in nonphotosynthetic tissues, facilitating ferredoxin-dependent biological processes. However, the physiological functions of RFNR remain unclear due to the difficulty in obtaining mutants lacking redundant RFNR isoproteins. The present study successfully generated Arabidopsis homozygous rnfr1;2 double mutants by traditional crossing and selection. However, they displayed severely stunted roots, challenging subsequent growth and abundant seed recovery. Notably, grafted plants combining mutant scions with wild-type rootstocks exhibited normal growth and produced abundant mutant seeds. Growth analysis employing reciprocal grafts with the wild-type and mutant plants showed that primary root growth was inhibited only when the rootstock was derived from the mutants. Meanwhile, the absence of RFNR1 and 2 in the scion had no apparent impact on shoot and root growth. Root transcriptome analysis revealed that RFNR1 and 2 deficiency upregulated genes encoding ferredoxin-dependent enzymes and root-type ferredoxin, leading to genome-wide reprogramming associated with cell walls, lipids, photosynthesis, secondary metabolism, and biotic/abiotic stress responses. Thus, Arabidopsis RFNR1 and 2 are crucial for root growth and various ferredoxin-dependent biological processes.
Collapse
Affiliation(s)
- Kota Monden
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane, 690-8504, Japan
| | - Daisuke Otomaru
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane, 690-8504, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Tsuyoshi Nakagawa
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane, 690-8504, Japan
| | - Takushi Hachiya
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane, 690-8504, Japan.
| |
Collapse
|
4
|
Yang M, Sakuraba Y, Yanagisawa S. Down-regulation of the rice HRS1 HOMOLOG3 transcriptional repressor gene due to N deficiency directly co-activates ammonium and phosphate transporter genes. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:461-477. [PMID: 39470443 PMCID: PMC11714757 DOI: 10.1093/jxb/erae440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/29/2024] [Indexed: 10/30/2024]
Abstract
Rice HRS1 HOMOLOG3 (OsHHO3) acts as a transcriptional repressor of AMMONIUM TRANSPORTER1 (OsAMT1) genes in rice; thus, reduced OsHHO3 expression in nitrogen (N)-deficient environments promotes ammonium uptake. In this study, we show that OsHHO3 also functions as a repressor of a specific subset of phosphate (Pi) transporter (PT) genes involved in the uptake and root-to-shoot translocation of Pi, including OsPT2, OsPT4, and OsPHO1;1. Disruption of OsHHO3 increased Pi uptake and Pi contents in shoots and roots, while overexpression of OsHHO3 caused the opposite effects. Furthermore, phosphorus (P) deficiency slightly decreased OsHHO3 expression, up-regulating a specific subset of PT genes. However, N deficiency was more effective than P deficiency in suppressing OsHHO3 expression in roots, and unlike N deficiency-dependent activation of PT genes under the control of OsHHO3, the P deficiency-dependent activation of OsAMT1 genes was minimal. Interestingly, the simultaneous deficiency of both N and P promoted the OsHHO3-regulated expression of PT genes more significantly than the deficiency of either N or P, but diminished the expression of genes regulated by OsPHR2, a master regulator of Pi starvation-responsive transcriptional activation. Phenotypic analysis revealed that the inactivation and overexpression of OsHHO3 improved and reduced plant growth, respectively, under N-deficient and P-deficient conditions. These results indicate that OsHHO3 regulates a specific subset of PT genes independently of OsPHR2-mediated regulation and plays a critical role in the adaptation to diverse N and P environments.
Collapse
Affiliation(s)
- Mailun Yang
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuhito Sakuraba
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
5
|
Jiang D, Xu L, Wen W. A novel transcription factor CsSNACA2 plays a pivotal role within nitrogen assimilation in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17198. [PMID: 39661731 DOI: 10.1111/tpj.17198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
Tea (Camellia sinensis) is a globally renowned economic crop, with organs such as leaves and buds utilized for consumption. As a perennial foliage crop, tea plants have high-nitrogen consumption and demand but exhibit relatively low nitrogen use efficiency. Exploring the genetic factors involved in nitrogen assimilation in tea plants could lead to improvements in both tea yield and quality. Here, we first conducted transcriptome sequencing on two tissues (roots and young leaves) under two different nitrate levels (0.2 and 2.5 mm KNO3) and at six time points (0, 15, and 45 min; 2 and 6 h and 2 days). Differential gene expression patterns were observed for several genes that exhibited altered expression at 2 h. Clustering and enrichment analyses, along with co-expression network construction, provided evidence for the crucial involvement of CsSNACA2 in nitrogen assimilation. CsSNACA2 overexpression elicited pronounced phenotypic changes in nitrogen-deficient plants. Furthermore, CsSNACA2 suppressed the expression of CsNR (encoding nitrate reductase) and CsCLCa (encoding aNO 3 - /H+ exchanger). Moreover, CsSNACA2 served as a downstream target of CsSPL6.1. In addition, we characterized Csi-miR156e and Csi-miR156k, which directly cleave CsSPL6.1. This study identified a transcription factor module participating in nitrogen assimilation in tea plants, providing a genetic foundation for future innovations in tea cultivar improvement. These results broaden our understanding of the genetic mechanisms governing nitrogen assimilation in dicotyledonous plants.
Collapse
Affiliation(s)
- Deyuan Jiang
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Li Xu
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Weiwei Wen
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
6
|
Yue L, Liu M, Liao J, Zhang K, Wu WH, Wang Y. CPK28-mediated phosphorylation enhances nitrate transport activity of NRT2.1 during nitrogen deprivation. THE NEW PHYTOLOGIST 2025; 245:249-262. [PMID: 39487627 DOI: 10.1111/nph.20236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024]
Abstract
Nitrate (NO3 -) serves as the primary inorganic nitrogen source assimilated by most terrestrial plants. The acquisition of nitrate from the soil is facilitated by NITRATE TRANSPORTERS (NRTs), with NRT2.1 being the key high-affinity nitrate transporter. The activity of NRT2.1, which has multiple potential phosphorylation sites, is intricately regulated under various physiological conditions. Here, we discovered that CALCIUM-DEPENDENT PROTEIN KINASE 28 (CPK28) positively regulates nitrate uptake under nitrogen deprivation conditions. We found CPK28 as the kinase targeted by immunoprecipitation followed by mass spectrometry and examined the in-planta phosphorylation status of NRT2.1 in cpk28 mutant plants by employing quantitative MS-based phosphoproteomics. Through a combination of in vitro phosphorylation experiment and immunoblotting using phospho-specific antibody, we successfully demonstrated that CPK28 specifically phosphorylates NRT2.1 at Ser21. Functional analysis conducted in Xenopus oocytes revealed that co-expression of CPK28 significantly enhanced high-affinity nitrate uptake of NRT2.1. Further investigation using transgenic plants showed that the phosphomimic variant NRT2.1S21E, but not the nonphosphorylatable variant NRT2.1S21A, fully restored high-affinity 15NO3 - uptake ability in both nrt2.1 and cpk28 mutant backgrounds. This study clarifies that the kinase activity of CPK28 is promoted during nitrogen deprivation conditions. These significant findings provide valuable insights into the intricate regulatory mechanisms that govern nitrate-demand adaptation.
Collapse
Affiliation(s)
- Lindi Yue
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Mengyuan Liu
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100097, China
| | - Jiahui Liao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kaina Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yang Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Uragami T, Kiba T, Kojima M, Takebayashi Y, Tozawa Y, Hayashi Y, Kinoshita T, Sakakibara H. The cytokinin efflux transporter ABCC4 participates in Arabidopsis root system development. PLANT PHYSIOLOGY 2024; 197:kiae628. [PMID: 39719052 PMCID: PMC11668331 DOI: 10.1093/plphys/kiae628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/30/2024] [Indexed: 12/26/2024]
Abstract
The directional and sequential flow of cytokinin in plants is organized by a complex network of transporters. Genes involved in several aspects of cytokinin transport have been characterized; however, much of the elaborate system remains elusive. In this study, we used a transient expression system in tobacco (Nicotiana benthamiana) leaves to screen Arabidopsis (Arabidopsis thaliana) transporter genes and isolated ATP-BINDING CASSETTE TRANSPORTER C4 (ABCC4). Validation through drug-induced expression in Arabidopsis and heterologous expression in budding yeast revealed that ABCC4 effluxes the active form of cytokinins. During the seedling stage, ABCC4 was highly expressed in roots, and its expression was upregulated in response to cytokinin application. Loss-of-function mutants of ABCC4 displayed enhanced primary root elongation, similar to mutants impaired in cytokinin biosynthesis or signaling, that was suppressed by exogenous trans-zeatin treatment. In contrast, overexpression of the gene led to suppression of root elongation. These results suggest that ABCC4 plays a role in the efflux of active cytokinin, thereby contributing to root growth regulation. Additionally, cytokinin-dependent enlargement of stomatal aperture was impaired in the loss-of-function and overexpression lines. Our findings contribute to unraveling the many complexities of cytokinin flow and enhance our understanding of the regulatory mechanisms underlying root system development and stomatal opening in plants.
Collapse
Affiliation(s)
- Takuya Uragami
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Takatoshi Kiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Yuki Hayashi
- Graduate School of Science and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Toshinori Kinoshita
- Graduate School of Science and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
8
|
Nedelyaeva OI, Khramov DE, Balnokin YV, Volkov VS. Functional and Molecular Characterization of Plant Nitrate Transporters Belonging to NPF (NRT1/PTR) 6 Subfamily. Int J Mol Sci 2024; 25:13648. [PMID: 39769409 PMCID: PMC11677463 DOI: 10.3390/ijms252413648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Plant nitrate transporters in the NPF (NRT1) family are characterized by multifunctionality and their involvement in a number of physiological processes. The proteins in this family have been identified in many monocotyledonous and dicotyledonous species: a bioinformatic analysis predicts from 20 to 139 members in the plant genomes sequenced so far, including mosses. Plant NPFs are phylogenetically related to proton-coupled oligopeptide transporters, which are evolutionally conserved in all kingdoms of life apart from Archaea. The phylogenetic analysis of the plant NPF family is based on the amino acid sequences present in databases; an analysis identified a separate NPF6 clade (subfamily) with the first plant nitrate transporters studied at the molecular level. The available information proves that proteins of the NPF6 clade play key roles not only in the supply of nitrate and its allocation within different parts of plants but also in the transport of chloride, amino acids, ammonium, and plant hormones such as auxins and ABA. Moreover, members of the NPF6 family participate in the perception of nitrate and ammonium, signaling, plant responses to different abiotic stresses, and the development of tolerance to these stresses and contribute to the structure of the root-soil microbiome composition. The available information allows us to conclude that NPF6 genes are among the promising targets for engineering/editing to increase the productivity of crops and their tolerance to stresses. The present review summarizes the available published data and our own results on members of the NPF6 clade of nitrate transporters, especially under salinity; we outline their molecular, structural, and functional characteristics and suggest potential lines for future research.
Collapse
Affiliation(s)
| | | | | | - Vadim S. Volkov
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia; (D.E.K.); (Y.V.B.)
| |
Collapse
|
9
|
Zhang S, Deng R, Liu J, Luo D, Hu M, Huang S, Jiang M, Du J, Jin T, Liu D, Li Y, Khan M, Wang S, Wang X. Phosphorylation of the transcription factor SlBIML1 by SlBIN2 kinases delays flowering in tomato. PLANT PHYSIOLOGY 2024; 196:2583-2598. [PMID: 39288195 DOI: 10.1093/plphys/kiae489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024]
Abstract
Brassinosteroids (BRs) are well known for their important role in the regulation of plant growth and development. Plants with deficiency in BR signaling show delayed plant development and exhibit late flowering phenotypes. However, the precise mechanisms involved in this process require investigation. In this study, we cloned homologs of BRASSINOSTEROID-INSENSITIVE 2 (SlBIN2), the GSK3-like protein kinase in tomato (Solanum lycopersicum). We characterized growth-related processes and phenotypic changes in the transgenic lines and found that SlBIN2 transgenic lines have delayed development and slow growing phenotypes. SlBIN2s work redundantly to negatively regulate BR signaling in tomato. Furthermore, the transcription factor SlBIN2.1-INTERACTING MYB-LIKE 1 (SlBIML1) was identified as a downstream substrate of SlBIN2s that SlBIN2s interact with and phosphorylate to synergistically regulate tomato developmental processes. Specifically, SlBIN2s modulated protein stability of SlBIML1 by phosphorylating multiple amino acid residues, including the sites Thr266 and Thr280. This study reveals a branch of the BR signaling pathway that regulates the vegetative growth phase and delays floral transition in tomato without the feedback affecting BR signaling. This information enriches our understanding of the downstream transduction pathway of BR signaling and provides potential targets for adjusting tomato flowering time.
Collapse
Affiliation(s)
- Siwei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rui Deng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianwei Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200000, China
| | - Dan Luo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Miaomiao Hu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuhua Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Department of Science and Technology of Shaanxi Province, Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Meng Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia Du
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tong Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dehai Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuchao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Maqsood Khan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shufen Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaofeng Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
10
|
Du Y, Gong J, Dou Z, Zheng W, Sun R, Gao S. Genome-wide identification and expression analysis of phosphate-sensing SPX proteins in oats. Front Genet 2024; 15:1469704. [PMID: 39634271 PMCID: PMC11614802 DOI: 10.3389/fgene.2024.1469704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Phosphorus is indispensable to plant growth and development. Soil phosphorus deficiency poses a substantial constraint on crop yield. SPXs play pivotal roles in phosphate transport and absorption in plants. Yet, the functions of SPXs of oat (Avena sativa L.) under abiotic stresses remain unclear. In this study, we conducted a genome-wide analysis of 169 SPXs from hexaploid oat and five closely related plant species. All homologous AsSPXs were found to arise from duplication events and depict a strong purifying selection. Subcellular localization prediction revealed that AsSPXs were mainly located on the plasma membrane. Seventeen cis-acting elements, predominantly comprising light-, low temperature-, abscisic acid-, and drought-responsive elements, were dispersed in the promoter regions of AsSPXs. Analysis of cis-regulatory elements, protein-protein interaction networks, and qRT-PCR showed that AsSPXs are not solely involved in phosphorus starvation response but also in various stress responses. Notably, AsSPX18-5D (AVESA.00001b.r3.5Dg0002895) exerted pivotal roles in conferring resistance against low phosphorus, salt, and ABA treatments. Our study aimed to explore important stress-resistant genes in oat. Our results could provide a basis for future studies on the evolution and functions of the AsSPX gene family and a crucial foundation for comprehending how oat responds to environmental stresses.
Collapse
Affiliation(s)
- Yinke Du
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
| | - Jie Gong
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
| | - Ziyi Dou
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Wei Zheng
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Renwei Sun
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Laboratory of Plant Breeding and Genetics, Department of Agricultural and Environmental Biology, The University of Tokyo, Tokyo, Japan
| | - Shiqing Gao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
| |
Collapse
|
11
|
Yu S, Zuo H, Li P, Lu L, Li J, Zhou Z, Zhao S, Huang J, Liu Z, Zhu M, Zhao J. Strigolactones Regulate Secondary Metabolism and Nitrogen/Phosphate Signaling in Tea Plants via Transcriptional Reprogramming and Hormonal Interactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25860-25878. [PMID: 39520368 DOI: 10.1021/acs.jafc.4c05100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Strigolactones (SLs) are known to regulate plant architecture formation, nitrogen (N) and phosphorus (P) responses, and secondary metabolism, but their effects in tea plants remain unclear. We demonstrated that the application of a bioactive SL analogue GR24 either to tea roots or leaves initially stimulated but later inhibited catechins, theanine, and caffeine biosynthesis. GR24 treatment also promoted the accumulation of flavonols and insoluble proanthocyanidins in a time- and dose-dependent manner. GR24 influenced flavonoid and theanine biosynthesis genes, such as up-regulating CsTT2c, CsMYB12, and CsbZIP1, modulating N-responsive and assimilation genes (CsNRT1,1, CsGSI/TS1, CsHRS1, CsPHR1, CsNLA1, and CsLBD37/38/39), and repressing N/P transport and signaling genes (CsPHO2, CsPHT1s, CsNRT2,2, CsHHO1, and CsWRKY38). GR24-induced changes in secondary metabolites were also observed in the leaves of tea plants. GR24-regulated CsLBD37a interacted with CsTT8a and CsTT2c, repressing catechins biosynthesis by interrupting MBW complex formation. GR24 regulated caffeine biosynthesis and regulator genes CsS40 and CsNAC7 and may thereby suppress caffeine production. GR24 altered the transcriptomic profiles of multiple hormone biosynthesis and signaling genes that potentially regulate tea characteristic metabolism and N/P signaling. This study provides new insights into SL-induced transcriptional reprogramming that leads to changes in N/P nutrition, secondary metabolism, and hormone signaling in tea plants.
Collapse
Affiliation(s)
- Shuwei Yu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Tea Research institute, Shandong Academy of Agricultural Sciences, Jinan 250000, China
| | - Hao Zuo
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Ping Li
- College of Tea Sciences, Institute of Plant Health & Medicine, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Litang Lu
- College of Tea Sciences, Institute of Plant Health & Medicine, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Zhi Zhou
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Shancen Zhao
- Beijing Life Science Academy, Beijing 102200, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - MingZhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jian Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
12
|
Mishra S, Levengood H, Fan J, Zhang C. Plants Under Stress: Exploring Physiological and Molecular Responses to Nitrogen and Phosphorus Deficiency. PLANTS (BASEL, SWITZERLAND) 2024; 13:3144. [PMID: 39599353 PMCID: PMC11597474 DOI: 10.3390/plants13223144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Nitrogen (N) and phosphorus (P) are essential mineral macronutrients critical for plant structure and function. Both contribute to processes ranging from cellular integrity to signal transduction. Since plants require these nutrients in high concentrations, replenishing them in soil often involves chemical fertilizers. However, the main source of P, rock phosphate, is non-renewable and in decline. N, second only to carbon, oxygen, and hydrogen in plant requirements, is vital for synthesizing proteins, nucleic acids, and plant pigments. Although N is available to plants through biological fixation or fertilizer application, the frequent application of N is not a sustainable solution due to environmental concerns like groundwater contamination and eutrophication. Plants have developed sophisticated mechanisms to adapt to nutrient deficiencies, such as changes in root architecture, local signaling, and long-distance signaling through the phloem. A dual deficiency of N and P is common in the field. In addition to individual N and P deficiency responses, this review also highlights some of the most recent discoveries in the responses of plants to the combined N and P deficiencies. Understanding the molecular and physiological responses in plants to mineral deficiency will help implement strategies to produce plants with high mineral use efficiency, leading to the reduced application of fertilizers, decreased mineral runoff, and improved environment.
Collapse
Affiliation(s)
| | | | | | - Cankui Zhang
- Department of Agronomy and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA; (S.M.); (H.L.); (J.F.)
| |
Collapse
|
13
|
Chen Z, Yu Z, Liu T, Yao X, Zhang S, Hu Y, Luo M, Wan Y, Lu L. CsSPX3-CsPHL7-CsGS1/CsTS1 module mediated Pi-regulated negatively theanine biosynthesis in tea ( Camellia sinensis). HORTICULTURE RESEARCH 2024; 11:uhae242. [PMID: 39534409 PMCID: PMC11554760 DOI: 10.1093/hr/uhae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024]
Abstract
Phosphorus (P) is the macronutrients essential for the development and growth of plants, but how external inorganic phosphate (Pi) level and signaling affect tea plant growth and characteristic secondary metabolite biosynthesis are not understood. Theanine is major secondary metabolites, and its contents largely determine tea favor and nutrition qualities. Here, we found theanine contents in tea leaves and roots declined as Pi concentration increased in tea plants after Pi feeding. The transcriptome analysis of global gene expression in tea leaves under Pi feeding suggested a wide range of genes involved in Pi/N transport and responses were altered. Among them, CsSPX3 and CsPHL7 transcript levels in response to Pi feeding to tea plants, their expression patterns were generally opposite to these of major theanine biosynthesis genes, indicating possible regulatory correlations. Biochemical analyses showed that CsSPX3 interacted with CsPHL7, and CsPHL7 negatively regulated theanine biosynthesis genes CsGS1 and CsTS1. Meanwhile, VIGS and transient overexpression systems in tea plants verified the functions of CsSPX3 and CsPHL7 in mediating Pi-feeding-repressed theanine biosynthesis. This study offers fresh insights into the regulatory mechanism underlying Pi repression of theanine biosynthesis, and the CsSPX3-CsPHL7-CsGS1/CsTS1 module plays a role in high Pi inhibition of theanine production in tea leaves. It has an instructional significance for guiding the high-quality tea production in tea garden fertilization.
Collapse
Affiliation(s)
- Zhouzhuoer Chen
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, China
| | - Zhixun Yu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, China
| | - TingTing Liu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, China
| | - Xinzhuan Yao
- College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Shiyu Zhang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, China
| | - Yilan Hu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, China
| | - Mingyuan Luo
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, China
| | - Yue Wan
- Huaneng Clean Energy Research Institute, Beijing 102209, China
| | - Litang Lu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
14
|
Zhou M, Li Y, Yao XL, Zhang J, Liu S, Cao HR, Bai S, Chen CQ, Zhang DX, Xu A, Lei JN, Mao QZ, Zhou Y, Duanmu DQ, Guan YF, Chen ZC. Inorganic nitrogen inhibits symbiotic nitrogen fixation through blocking NRAMP2-mediated iron delivery in soybean nodules. Nat Commun 2024; 15:8946. [PMID: 39414817 PMCID: PMC11484902 DOI: 10.1038/s41467-024-53325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Symbiotic nitrogen fixation (SNF) in legume-rhizobia serves as a sustainable source of nitrogen (N) in agriculture. However, the addition of inorganic N fertilizers significantly inhibits SNF, and the underlying mechanisms remain not-well understood. Here, we report that inorganic N disrupts iron (Fe) homeostasis in soybean nodules, leading to a decrease in SNF efficiency. This disruption is attributed to the inhibition of the Fe transporter genes Natural Resistance-Associated Macrophage Protein 2a and 2b (GmNRAMP2a&2b) by inorganic N. GmNRAMP2a&2b are predominantly localized at the tonoplast of uninfected nodule tissues, affecting Fe transfer to infected cells and consequently, modulating SNF efficiency. In addition, we identified a pair of N-signal regulators, nitrogen-regulated GARP-type transcription factors 1a and 1b (GmNIGT1a&1b), that negatively regulate the expression of GmNRAMP2a&2b, which establishes a link between N signaling and Fe homeostasis in nodules. Our findings reveal a plausible mechanism by which soybean adjusts SNF efficiency through Fe allocation in response to fluctuating inorganic N conditions, offering valuable insights for optimizing N and Fe management in legume-based agricultural systems.
Collapse
Affiliation(s)
- Min Zhou
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Li
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Lei Yao
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Zhang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Liu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong-Rui Cao
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuang Bai
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chun-Qu Chen
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dan-Xun Zhang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ao Xu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jia-Ning Lei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Qian-Zhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yu Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - De-Qiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Yue-Feng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China.
| | - Zhi-Chang Chen
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
15
|
Sigalas PP, Bennett T, Buchner P, Thomas SG, Jamois F, Arkoun M, Yvin JC, Bennett MJ, Hawkesford MJ. At the crossroads: strigolactones mediate changes in cytokinin synthesis and signalling in response to nitrogen limitation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:139-158. [PMID: 39136678 DOI: 10.1111/tpj.16976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/27/2024]
Abstract
Strigolactones (SLs) are key regulators of shoot growth and responses to environmental stimuli. Numerous studies have indicated that nitrogen (N) limitation induces SL biosynthesis, suggesting that SLs may play a pivotal role in coordinating systemic responses to N availability, but this idea has not been clearly demonstrated. Here, we generated triple knockout mutants in the SL synthesis gene TaDWARF17 (TaD17) in bread wheat and investigated their phenotypic and transcriptional responses under N limitation, aiming to elucidate the role of SLs in the adaptation to N limitation. Tad17 mutants display typical SL mutant phenotypes, and fail to adapt their shoot growth appropriately to N. Despite exhibiting an increased tillering phenotype, Tad17 mutants continued to respond to N limitation by reducing tiller number, suggesting that SLs are not the sole regulators of tillering in response to N availability. RNA-seq analysis of basal nodes revealed that the loss of D17 significantly altered the transcriptional response of N-responsive genes, including changes in the expression profiles of key N response master regulators. Crucially, our findings suggest that SLs are required for the transcriptional downregulation of cytokinin (CK) synthesis and signalling in response to N limitation. Collectively, our results suggest that SLs are essential for the appropriate morphological and transcriptional adaptation to N limitation in wheat, and that the repressive effect of SLs on shoot growth is partly mediated by their repression of CK synthesis.
Collapse
Affiliation(s)
| | - Tom Bennett
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter Buchner
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | | | - Frank Jamois
- Laboratoire de Physico-Chimie et Bioanalytique, Centre Mondial d'Innovation of Roullier Group, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Mustapha Arkoun
- Plant Nutrition R&D Department, Centre Mondial d'Innovation of Roullier Group, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Jean-Claude Yvin
- Plant Nutrition R&D Department, Centre Mondial d'Innovation of Roullier Group, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Malcolm J Bennett
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | | |
Collapse
|
16
|
Maeda AE, Matsuo H, Muranaka T, Nakamichi N. Cold-induced degradation of core clock proteins implements temperature compensation in the Arabidopsis circadian clock. SCIENCE ADVANCES 2024; 10:eadq0187. [PMID: 39331704 PMCID: PMC11430399 DOI: 10.1126/sciadv.adq0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
The period of circadian clocks is maintained at close to 24 hours over a broad range of physiological temperatures due to temperature compensation of period length. Here, we show that the quantitative control of the core clock proteins TIMING OF CAB EXPRESSION 1 [TOC1; also known as PSEUDO-RESPONSE REGULATOR 1 (PRR1)] and PRR5 is crucial for temperature compensation in Arabidopsis thaliana. The prr5 toc1 double mutant has a shortened period at higher temperatures, resulting in weak temperature compensation. Low ambient temperature reduces amounts of PRR5 and TOC1. In low-temperature conditions, PRR5 and TOC1 interact with LOV KELCH PROTEIN 2 (LKP2), a component of the E3 ubiquitin ligase Skp, Cullin, F-box (SCF) complex. The lkp2 mutations attenuate low temperature-induced decrease of PRR5 and TOC1, and the mutants display longer period only at lower temperatures. Our findings reveal that the circadian clock maintains its period length despite ambient temperature fluctuations through temperature- and LKP2-dependent control of PRR5 and TOC1 abundance.
Collapse
Affiliation(s)
- Akari E. Maeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Hiromi Matsuo
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Tomoaki Muranaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Norihito Nakamichi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
17
|
Yang Y, Liang Y, Wang C, Wang Y. MicroRNAs as potent regulators in nitrogen and phosphorus signaling transduction and their applications. STRESS BIOLOGY 2024; 4:38. [PMID: 39264517 PMCID: PMC11393275 DOI: 10.1007/s44154-024-00181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/18/2024] [Indexed: 09/13/2024]
Abstract
Nitrogen (N) and phosphorus (Pi) are essential macronutrients that affect plant growth and development by influencing the molecular, metabolic, biochemical, and physiological responses at the local and whole levels in plants. N and Pi stresses suppress the physiological activities of plants, resulting in agricultural productivity losses and severely threatening food security. Accordingly, plants have elaborated diverse strategies to cope with N and Pi stresses through maintaining N and Pi homeostasis. MicroRNAs (miRNAs) as potent regulators fine-tune N and Pi signaling transduction that are distinct and indivisible from each other. Specific signals, such as noncoding RNAs (ncRNAs), interact with miRNAs and add to the complexity of regulation. Elucidation of the mechanisms by which miRNAs regulate N and Pi signaling transduction aids in the breeding of plants with strong tolerance to N and Pi stresses and high N and Pi use efficiency by fine-tuning MIR genes or miRNAs. However, to date, there has been no detailed and systematic introduction and comparison of the functions of miRNAs in N and Pi signaling transduction from the perspective of miRNAs and their applications. Here, we summarized and discussed current advances in the involvement of miRNAs in N and Pi signaling transduction and highlighted that fine-tuning the MIR genes or miRNAs involved in maintaining N and Pi homeostasis might provide valuable sights for sustainable agriculture.
Collapse
Affiliation(s)
- Yuzhang Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanting Liang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
18
|
Sakuraba Y, Yang M, Yanagisawa S. HASTY-mediated miRNA dynamics modulate nitrogen starvation-induced leaf senescence in Arabidopsis. Nat Commun 2024; 15:7913. [PMID: 39256370 PMCID: PMC11387735 DOI: 10.1038/s41467-024-52339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Nitrogen (N) deficiency responses are essential for plant survival and reproduction. Here, via an expression genome-wide association study (eGWAS), we reveal a mechanism that regulates microRNA (miRNA) dynamics necessary for N deficiency responses in Arabidopsis. Differential expression levels of three NAC transcription factor (TF) genes involved in leaf N deficiency responses among Arabidopsis accessions are most significantly associated with polymorphisms in HASTY (HST), which encodes an importin/exportin family protein responsible for the generation of mature miRNAs. HST acts as a negative regulator of N deficiency-induced leaf senescence, and the disruption and overexpression of HST differently modifies miRNA dynamics in response to N deficiency, altering levels of miRNAs targeting transcripts. Interestingly, N deficiency prevents the interaction of HST with HST-interacting proteins, DCL1 and RAN1, and some miRNAs. This suggests that HST-mediated regulation of miRNA dynamics collectively controls regulations mediated by multiple N deficiency response-associated NAC TFs, thereby being central to the N deficiency response network.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Mailun Yang
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shuichi Yanagisawa
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
19
|
Wu Q, Xu J, Zhao Y, Wang Y, Zhou L, Ning L, Shabala S, Zhao H. Transcription factor ZmEREB97 regulates nitrate uptake in maize (Zea mays) roots. PLANT PHYSIOLOGY 2024; 196:535-550. [PMID: 38743701 PMCID: PMC11376383 DOI: 10.1093/plphys/kiae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
Maize (Zea mays L.) has very strong requirements for nitrogen. However, the molecular mechanisms underlying the regulations of nitrogen uptake and translocation in this species are not fully understood. Here, we report that an APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ZmEREB97 functions as an important regulator in the N signaling network in maize. Predominantly expressed and accumulated in main root and lateral root primordia, ZmEREB97 rapidly responded to nitrate treatment. By overlapping the analyses of differentially expressed genes and conducting a DAP-seq assay, we identified 1,446 potential target genes of ZmEREB97. Among these, 764 genes were coregulated in 2 lines of zmereb97 mutants. Loss of function of ZmEREB97 substantially weakened plant growth under both hydroponic and soil conditions. Physiological characterization of zmereb97 mutant plants demonstrated that reduced biomass and grain yield were both associated with reduced nitrate influx, decreased nitrate content, and less N accumulation. We further demonstrated that ZmEREB97 directly targets and regulates the expression of 6 ZmNRT genes by binding to the GCC-box-related sequences in gene promoters. Collectively, these data suggest that ZmEREB97 is a major positive regulator of the nitrate response and that it plays an important role in optimizing nitrate uptake, offering a target for improvement of nitrogen use efficiency in crops.
Collapse
Affiliation(s)
- Qi Wu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jinyan Xu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yingdi Zhao
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuancong Wang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ling Zhou
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lihua Ning
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
- Department of Horticulture and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Han Zhao
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Germplasm Innovation in Downstream of Huaihe River, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| |
Collapse
|
20
|
Takagi H, Ito S, Shim JS, Kubota A, Hempton AK, Lee N, Suzuki T, Yang C, Nolan CT, Bubb KL, Alexandre CM, Kurihara D, Sato Y, Tada Y, Kiba T, Pruneda-Paz JL, Queitsch C, Cuperus JT, Imaizumi T. A florigen-expressing subpopulation of companion cells expresses other small proteins and reveals a nitrogen-sensitive FT repressor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608367. [PMID: 39229231 PMCID: PMC11370445 DOI: 10.1101/2024.08.17.608367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The precise onset of flowering is crucial to ensure successful plant reproduction. The gene FLOWERING LOCUS T (FT) encodes florigen, a mobile signal produced in leaves that initiates flowering at the shoot apical meristem. In response to seasonal changes, FT is induced in phloem companion cells located in distal leaf regions. Thus far, a detailed molecular characterization of the FT-expressing cells has been lacking. Here, we used bulk nuclei RNA-seq and single nuclei RNA (snRNA)-seq to investigate gene expression in FT-expressing cells and other phloem companion cells. Our bulk nuclei RNA-seq demonstrated that FT-expressing cells in cotyledons and in true leaves differed transcriptionally. Within the true leaves, our snRNA-seq analysis revealed that companion cells with high FT expression form a unique cluster in which many genes involved in ATP biosynthesis are highly upregulated. The cluster also expresses other genes encoding small proteins, including the flowering and stem growth inducer FPF1-LIKE PROTEIN 1 (FLP1) and the anti-florigen BROTHER OF FT AND TFL1 (BFT). In addition, we found that the promoters of FT and the genes co-expressed with FT in the cluster were enriched for the consensus binding motifs of NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1). Overexpression of the paralogous NIGT1.2 and NIGT1.4 repressed FT expression and significantly delayed flowering under nitrogen-rich conditions, consistent with NIGT1s acting as nitrogen-dependent FT repressors. Taken together, our results demonstrate that major FT-expressing cells show a distinct expression profile that suggests that these cells may produce multiple systemic signals to regulate plant growth and development.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Shogo Ito
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Jae Sung Shim
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, South Korea
| | - Akane Kubota
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Division of Biological Science, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Andrew K. Hempton
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Nayoung Lee
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, 52828, South Korea
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501, Japan
| | - Chansie Yang
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Christine T. Nolan
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Kerry L. Bubb
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
| | - Cristina M. Alexandre
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, 464-8601, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| | - Yasuomi Tada
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Takatoshi Kiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Jose L. Pruneda-Paz
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, 98195, USA
| | - Josh T. Cuperus
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, 98195, USA
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| |
Collapse
|
21
|
Zhang X, Zhang Q, Gao N, Liu M, Zhang C, Luo J, Sun Y, Feng Y. Nitrate transporters and mechanisms of nitrate signal transduction in Arabidopsis and rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14486. [PMID: 39187436 DOI: 10.1111/ppl.14486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
Nitrate (NO3 -) is a significant inorganic nitrogen source in soil, playing a crucial role in influencing crop productivity. As sessile organisms, plants have evolved complex mechanisms for nitrate uptake and response to varying soil levels. Recent advancements have enhanced our understanding of nitrate uptake and signaling pathways. This mini-review offers a comparative analysis of nitrate uptake mechanisms in Arabidopsis and rice. It also examines nitrate signal transduction, highlighting the roles of AtNRT1.1 and AtNLP7 as nitrate receptors and elucidating the OsNRT1.1B-OsSPX4-OsNLP3 cascade. Additionally, it investigates nuclear transcriptional networks that regulate nitrate-responsive genes, controlled by various transcription factors (TFs) crucial for plant development. By integrating these findings, we highlight mechanisms that may help to enhance crop nitrogen utilization.
Collapse
Affiliation(s)
- Xiaojia Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Qian Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Na Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Mingchao Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Chang Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Jiajun Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Yibo Sun
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Yulong Feng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| |
Collapse
|
22
|
Cassan O, Lecellier CH, Martin A, Bréhélin L, Lèbre S. Optimizing data integration improves gene regulatory network inference in Arabidopsis thaliana. Bioinformatics 2024; 40:btae415. [PMID: 38913855 PMCID: PMC11227367 DOI: 10.1093/bioinformatics/btae415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024] Open
Abstract
MOTIVATIONS Gene regulatory networks (GRNs) are traditionally inferred from gene expression profiles monitoring a specific condition or treatment. In the last decade, integrative strategies have successfully emerged to guide GRN inference from gene expression with complementary prior data. However, datasets used as prior information and validation gold standards are often related and limited to a subset of genes. This lack of complete and independent evaluation calls for new criteria to robustly estimate the optimal intensity of prior data integration in the inference process. RESULTS We address this issue for two regression-based GRN inference models, a weighted random forest (weigthedRF) and a generalized linear model estimated under a weighted LASSO penalty with stability selection (weightedLASSO). These approaches are applied to data from the root response to nitrate induction in Arabidopsis thaliana. For each gene, we measure how the integration of transcription factor binding motifs influences model prediction. We propose a new approach, DIOgene, that uses model prediction error and a simulated null hypothesis in order to optimize data integration strength in a hypothesis-driven, gene-specific manner. This integration scheme reveals a strong diversity of optimal integration intensities between genes, and offers good performance in minimizing prediction error as well as retrieving experimental interactions. Experimental results show that DIOgene compares favorably against state-of-the-art approaches and allows to recover master regulators of nitrate induction. AVAILABILITY AND IMPLEMENTATION The R code and notebooks demonstrating the use of the proposed approaches are available in the repository https://github.com/OceaneCsn/integrative_GRN_N_induction.
Collapse
Affiliation(s)
- Océane Cassan
- LIRMM, Univ Montpellier, CNRS, Montpellier, 34095, France
| | - Charles-Henri Lecellier
- LIRMM, Univ Montpellier, CNRS, Montpellier, 34095, France
- IGMM, Univ Montpellier, CNRS, Montpellier, 34090, France
| | - Antoine Martin
- IPSIM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060, Montpellier, France
| | | | - Sophie Lèbre
- LIRMM, Univ Montpellier, CNRS, Montpellier, 34095, France
- IMAG, Univ Montpellier, CNRS, Montpellier, 34090, France
- Université Paul-Valéry-Montpellier 3, Montpellier, 34090, France
| |
Collapse
|
23
|
Li J, Zhang Y, Zhang W. Biochemical mechanisms underlying iron plaque-mediated phosphorus accumulation and uptake in rice roots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172331. [PMID: 38608879 DOI: 10.1016/j.scitotenv.2024.172331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
The iron oxyhydroxides of iron plaque on the surface of rice root are crucial for the uptake of nutrition elements, especially phosphorus (P), but the effects of iron oxyhydroxides of iron plaque on the accumulation and uptake of P remain largely unknown. In this study, we investigated the regulatory mechanism of iron plaque on P uptake in rice via hydroponics of whole plant and simulation of iron oxyhydroxides-coated suspension cells in rice. The hydroponic experiment results showed that the presence of iron plaque increased the P content in rice shoots. The simulation experiment results further confirmed that after iron plaque coating, the P contents in the whole cell and on the cell wall were significantly increased from 5.16 mg/g and 2.73 mg/g to 8.85 mg/g and 5.27 mg/g, respectively. In addition, our data also showed that iron plaque coating led to an increase in cell surface potentials from -380 ± 40 mV to -200 ± 30 mV, thus promoting the adsorption of more P. Taken together, this study demonstrated that the iron plaque coating increased the surface potential of the cells, thus enhancing cellular P enrichment, eventually promoting P efficient adsorption in rice. Deciphering these regulatory mechanisms provide an insight into P biogeochemical cycling at the soil-plant interface and offer theoretical basis and practical references for the improvement of P bioavailability in rice production.
Collapse
Affiliation(s)
- Jianguo Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yi Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
24
|
Shen D, Wippel K, Remmel S, Zhang Y, Kuertoes N, Neumann U, Kopriva S, Andersen TG. The Arabidopsis SGN3/GSO1 receptor kinase integrates soil nitrogen status into shoot development. EMBO J 2024; 43:2486-2505. [PMID: 38698215 PMCID: PMC11183077 DOI: 10.1038/s44318-024-00107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
The Casparian strip is a barrier in the endodermal cell walls of plants that allows the selective uptake of nutrients and water. In the model plant Arabidopsis thaliana, its development and establishment are under the control of a receptor-ligand mechanism termed the Schengen pathway. This pathway facilitates barrier formation and activates downstream compensatory responses in case of dysfunction. However, due to a very tight functional association with the Casparian strip, other potential signaling functions of the Schengen pathway remain obscure. In this work, we created a MYB36-dependent synthetic positive feedback loop that drives Casparian strip formation independently of Schengen-induced signaling. We evaluated this by subjecting plants in which the Schengen pathway has been uncoupled from barrier formation, as well as a number of established barrier-mutant plants, to agar-based and soil conditions that mimic agricultural settings. Under the latter conditions, the Schengen pathway is necessary for the establishment of nitrogen-deficiency responses in shoots. These data highlight Schengen signaling as an essential hub for the adaptive integration of signaling from the rhizosphere to aboveground tissues.
Collapse
Affiliation(s)
- Defeng Shen
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Kathrin Wippel
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Simone Remmel
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Yuanyuan Zhang
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Noah Kuertoes
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Stanislav Kopriva
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Tonni Grube Andersen
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany.
| |
Collapse
|
25
|
Zhuo M, Sakuraba Y, Yanagisawa S. Dof1.7 and NIGT1 transcription factors mediate multilayered transcriptional regulation for different expression patterns of NITRATE TRANSPORTER2 genes under nitrogen deficiency stress. THE NEW PHYTOLOGIST 2024; 242:2132-2147. [PMID: 38523242 DOI: 10.1111/nph.19695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Elucidating the mechanisms regulating nitrogen (N) deficiency responses in plants is of great agricultural importance. Previous studies revealed that decreased expression of NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR1 (NIGT1) transcriptional repressor genes upon N deficiency is involved in N deficiency-inducible gene expression in Arabidopsis thaliana. However, our knowledge of the mechanisms controlling N deficiency-induced changes in gene expression is still limited. Through the identification of Dof1.7 as a direct target of NIGT1 repressors and a novel N deficiency response-related transcriptional activator gene, we here show that NIGT1 and Dof1.7 transcription factors (TFs) differentially regulate N deficiency-inducible expression of three high-affinity nitrate transporter genes, NRT2.1, NRT2.4, and NRT2.5, which are responsible for most of the soil nitrate uptake activity of Arabidopsis plants under N-deficient conditions. Unlike NIGT1 repressors, which directly suppress NRT2.1, NRT2.4, and NRT2.5 under N-sufficient conditions, Dof1.7 directly activated only NRT2.5 but indirectly and moderately activated NRT2.1 and NRT2.4 under N-deficient conditions, probably by indirectly decreasing NIGT1 expression. Thus, Dof1.7 converted passive transcriptional activation into active and potent transcriptional activation, further differentially enhancing the expression of NRT2 genes. These findings clarify the mechanism underlying different expression patterns of NRT2 genes upon N deficiency, suggesting that time-dependent multilayered transcriptional regulation generates complicated expression patterns of N deficiency-inducible genes.
Collapse
Affiliation(s)
- Mengna Zhuo
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuhito Sakuraba
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shuichi Yanagisawa
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
26
|
Fang X, Yang D, Deng L, Zhang Y, Lin Z, Zhou J, Chen Z, Ma X, Guo M, Lu Z, Ma L. Phosphorus uptake, transport, and signaling in woody and model plants. FORESTRY RESEARCH 2024; 4:e017. [PMID: 39524430 PMCID: PMC11524236 DOI: 10.48130/forres-0024-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 11/16/2024]
Abstract
Phosphorus (P), a critical macronutrient for plant growth and reproduction, is primarily acquired and translocated in the form of inorganic phosphate (Pi) by roots. Pi deficiency is widespread in many natural ecosystems, including forest plantations, due to its slow movement and easy fixation in soils. Plants have evolved complex and delicate regulation mechanisms on molecular and physiological levels to cope with Pi deficiency. Over the past two decades, extensive research has been performed to decipher the underlying molecular mechanisms that regulate the Pi starvation responses (PSR) in plants. This review highlights the prospects of Pi uptake, transport, and signaling in woody plants based on the backbone of model and crop plants. In addition, this review also highlights the interactions between phosphorus and other mineral nutrients such as Nitrogen (N) and Iron (Fe). Finally, this review discusses the challenges and potential future directions of Pi research in woody plants, including characterizing the woody-specific regulatory mechanisms of Pi signaling and evaluating the regulatory roles of Pi on woody-specific traits such as wood formation and ultimately generating high Phosphorus Use Efficiency (PUE) woody plants.
Collapse
Affiliation(s)
- Xingyan Fang
- Center for Genomics, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| | - Deming Yang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong Province, PR China
| | - Lichuan Deng
- Center for Genomics, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| | - Yaxin Zhang
- College of Landscape Architecture, Guangdong Eco-engineering Polytechinic, Guangzhou 510520, Guangdong Province, PR China
| | - Zhiyong Lin
- Fujian Academy of Forestry, Fuzhou 350012, Fujian Province, PR China
| | - Jingjing Zhou
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Zhichang Chen
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| | - Xiangqing Ma
- Center for Genomics, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| | - Meina Guo
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Zhaohua Lu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong Province, PR China
| | - Liuyin Ma
- Center for Genomics, School of Future Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, PR China
| |
Collapse
|
27
|
Nussaume L, Kanno S. Reviewing impacts of biotic and abiotic stresses on the regulation of phosphate homeostasis in plants. JOURNAL OF PLANT RESEARCH 2024; 137:297-306. [PMID: 38517656 DOI: 10.1007/s10265-024-01533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/07/2024] [Indexed: 03/24/2024]
Abstract
Adapting to varying phosphate levels in the environment is vital for plant growth. The PHR1 phosphate starvation response transcription factor family, along with SPX inhibitors, plays a pivotal role in plant phosphate responses. However, this regulatory hub intricately links with diverse biotic and abiotic signaling pathways, as outlined in this review. Understanding these intricate networks is crucial, not only on a fundamental level but also for practical applications, such as enhancing sustainable agriculture and optimizing fertilizer efficiency. This comprehensive review explores the multifaceted connections between phosphate homeostasis and environmental stressors, including various biotic factors, such as symbiotic mycorrhizal associations and beneficial root-colonizing fungi. The complex coordination between phosphate starvation responses and the immune system are explored, and the relationship between phosphate and nitrate regulation in agriculture are discussed. Overall, this review highlights the complex interactions governing phosphate homeostasis in plants, emphasizing its importance for sustainable agriculture and nutrient management to contribute to environmental conservation.
Collapse
Affiliation(s)
- Laurent Nussaume
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint‑Paul Lez Durance, France.
| | - Satomi Kanno
- Institute for Advanced Research, Nagoya University, 1-1-1, Furocho, Chikusaku, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
28
|
Singh K, Gupta S, Singh AP. Review: Nutrient-nutrient interactions governing underground plant adaptation strategies in a heterogeneous environment. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112024. [PMID: 38325661 DOI: 10.1016/j.plantsci.2024.112024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/20/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Plant growth relies on the mineral nutrients present in the rhizosphere. The distribution of nutrients in soils varies depending on their mobility and capacity to bind with soil particles. Consequently, plants often encounter either low or high levels of nutrients in the rhizosphere. Plant roots are the essential organs that sense changes in soil mineral content, leading to the activation of signaling pathways associated with the adjustment of plant architecture and metabolic responses. During differential availability of minerals in the rhizosphere, plants trigger adaptation strategies such as cellular remobilization of minerals, secretion of organic molecules, and the attenuation or enhancement of root growth to balance nutrient uptake. The interdependency, availability, and uptake of minerals, such as phosphorus (P), iron (Fe), zinc (Zn), potassium (K), nitrogen (N) forms, nitrate (NO3-), and ammonium (NH4+), modulate the root architecture and metabolic functioning of plants. Here, we summarized the interactions of major nutrients (N, P, K, Fe, Zn) in shaping root architecture, physiological responses, genetic components involved, and address the current challenges associated with nutrient-nutrient interactions. Furthermore, we discuss the major gaps and opportunities in the field for developing plants with improved nutrient uptake and use efficiency for sustainable agriculture.
Collapse
Affiliation(s)
- Kratika Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shreya Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Amar Pal Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India.
| |
Collapse
|
29
|
Ohama N, Yanagisawa S. Role of GARP family transcription factors in the regulatory network for nitrogen and phosphorus acquisition. JOURNAL OF PLANT RESEARCH 2024; 137:331-341. [PMID: 38190030 PMCID: PMC11082045 DOI: 10.1007/s10265-023-01513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024]
Abstract
The GARP (Golden2, ARR-B, Psr1) family proteins with a conserved DNA-binding domain, called the B-motif, are plant-specific transcription factors involved in the regulation of various physiological processes. The GARP family proteins are divided into members that function as monomeric transcription factors, and members that function as transcription factors in the dimeric form, owing to the presence of a coiled-coil dimerization domain. Recent studies revealed that the dimer-forming GARP family members, which are further divided into the PHR1 and NIGT1 subfamilies, play critical roles in the regulation of phosphorus (P) and nitrogen (N) acquisition. In this review, we present a general overview of the GARP family proteins and discuss how several members of the PHR1 and NIGT1 subfamilies are involved in the coordinated acquisition of P and N in response to changes in environmental nutrient conditions, while mainly focusing on the recent findings that enhance our knowledge of the roles of PHR1 and NIGT1 in phosphate starvation signaling and nitrate signaling.
Collapse
Affiliation(s)
- Naohiko Ohama
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shuichi Yanagisawa
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
30
|
Jing Y, Shen C, Li W, Peng L, Hu M, Zhang Y, Zhao X, Teng W, Tong Y, He X. TaLBD41 interacts with TaNAC2 to regulate nitrogen uptake and metabolism in response to nitrate availability. THE NEW PHYTOLOGIST 2024; 242:641-657. [PMID: 38379453 DOI: 10.1111/nph.19579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
Nitrate is the main source of nitrogen (N) available to plants and also is a signal that triggers complex regulation of transcriptional networks to modulate a wide variety of physiological and developmental responses in plants. How plants adapt to soil nitrate fluctuations is a complex process involving a fine-tuned response to nitrate provision and N starvation, the molecular mechanisms of which remain largely uncharted. Here, we report that the wheat transcription factor TaLBD41 interacts with the nitrate-inducible transcription factor TaNAC2 and is repressed by nitrate provision. Electrophoretic mobility shift assay and dual-luciferase system show that the TaLBD41-NAC2 interaction confers homeostatic coordination of nitrate uptake, reduction, and assimilation by competitively binding to TaNRT2.1, TaNR1.2, and TaNADH-GOGAT. Knockdown of TaLBD41 expression enhances N uptake and assimilation, increases spike number, grain yield, and nitrogen harvest index under different N supply conditions. We also identified an elite haplotype of TaLBD41-2B associated with increased spike number and grain yield. Our study uncovers a novel mechanism underlying the interaction between two transcription factors in mediating wheat adaptation to nitrate availability by antagonistically regulating nitrate uptake and assimilation, providing a potential target for designing varieties with efficient N use in wheat (Triticum aestivum).
Collapse
Affiliation(s)
- Yanfu Jing
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuncai Shen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Li
- Yazhouwan National Laboratory, Sanya, 572024, China
| | - Lei Peng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyun Hu
- The Institute for Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Yingjun Zhang
- The Institute for Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Xueqiang Zhao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan Teng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiping Tong
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
31
|
Wang X, Wei C, Huang H, Kang J, Long R, Chen L, Li M, Yang Q. The GARP family transcription factor MtHHO3 negatively regulates salt tolerance in Medicago truncatula. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108542. [PMID: 38531119 DOI: 10.1016/j.plaphy.2024.108542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/31/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024]
Abstract
High salinity is one of the detrimental environmental factors restricting plant growth and crop production throughout the world. This study demonstrated that the GARP family transcription factor MtHHO3 is involved in response to salt stress and abscisic acid (ABA) signaling in Medicago truncatula. The transcription of MtHHO3 was repressed by salt, osmotic stress, and ABA treatment. The seed germination assay showed that, overexpression of MtHHO3 in Arabidopsis thaliana caused hypersensitivity to salt and osmotic stress, but increased resistance to ABA inhibition. Overexpression of MtHHO3 in M. truncatula resulted in decreased tolerance of salinity, while loss-of-function mutants mthho3-1 and mthho3-2 were more resistant to salt stress compared with wild-type plants. qRT-PCR analyses showed that MtHHO3 downregulated the expression of genes in stress and ABA responsive pathways. We further demonstrated that MtHHO3 repressed the transcription of the pathogenesis-related gene MtPR2 by binding to its promoter. Overall, these results indicate that MtHHO3 negatively regulates salt stress response in plants and deepen our understanding of the role of the GARP subfamily transcription factors in modulating salt stress and ABA signaling.
Collapse
Affiliation(s)
- Xue Wang
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China.
| | - Chunxue Wei
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Hongmei Huang
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Junmei Kang
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Ruicai Long
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Lin Chen
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Mingna Li
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China
| | - Qingchuan Yang
- Institute of Animal Science, The Chinese Academy of Agricultural Sciences, Beijing, 10019, China.
| |
Collapse
|
32
|
DeLoose M, Clúa J, Cho H, Zheng L, Masmoudi K, Desnos T, Krouk G, Nussaume L, Poirier Y, Rouached H. Recent advances in unraveling the mystery of combined nutrient stress in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1764-1780. [PMID: 37921230 DOI: 10.1111/tpj.16511] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
Efficiently regulating growth to adapt to varying resource availability is crucial for organisms, including plants. In particular, the acquisition of essential nutrients is vital for plant development, as a shortage of just one nutrient can significantly decrease crop yield. However, plants constantly experience fluctuations in the presence of multiple essential mineral nutrients, leading to combined nutrient stress conditions. Unfortunately, our understanding of how plants perceive and respond to these multiple stresses remains limited. Unlocking this mystery could provide valuable insights and help enhance plant nutrition strategies. This review focuses specifically on the regulation of phosphorous homeostasis in plants, with a primary emphasis on recent studies that have shed light on the intricate interactions between phosphorous and other essential elements, such as nitrogen, iron, and zinc, as well as non-essential elements like aluminum and sodium. By summarizing and consolidating these findings, this review aims to contribute to a better understanding of how plants respond to and cope with combined nutrient stress.
Collapse
Affiliation(s)
- Megan DeLoose
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Joaquin Clúa
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Huikyong Cho
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu Dhabi, United Arab Emirates
| | - Thierry Desnos
- Aix Marseille Univ, CEA, CNRS, BIAM, EBMP, UMR7265, Cité des énergies, 13115, Saint-Paul-lez-Durance, France
| | - Gabriel Krouk
- IPSiM, Univ. Montpellier, CNRS, INRAE, Montpellier, France
| | - Laurent Nussaume
- Aix Marseille Univ, CEA, CNRS, BIAM, EBMP, UMR7265, Cité des énergies, 13115, Saint-Paul-lez-Durance, France
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Hatem Rouached
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
33
|
Kumar V, Majee A, Patwal P, Sairem B, Sane AP, Sane VA. A GARP transcription factor SlGCC positively regulates lateral root development in tomato via auxin-ethylene interplay. PLANTA 2024; 259:55. [PMID: 38300324 DOI: 10.1007/s00425-023-04325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024]
Abstract
MAIN CONCLUSION SlGCC, a GARP transcription factor, functions as a root-related transcriptional repressor. SlGCC synchronizes auxin and ethylene signaling involving SlPIN3 and SlIAA3 as intermediate targets sketching a molecular map for lateral root development in tomato. The root system is crucial for growth and development of plants as it performs basic functions such as providing mechanical support, nutrients and water uptake, pathogen resistance and responds to various stresses. SlGCC, a GARP family transcription factor (TF), exhibited predominant expression in age-dependent (initial to mature stages) tomato root. SlGCC is a transcriptional repressor and is regulated at a transcriptional and translational level by auxin and ethylene. Auxin and ethylene mediated SlGCC protein stability is governed via proteasome degradation pathway during lateral root (LR) growth development. SlGCC over-expressor (OE) and under-expressed (UE) tomato transgenic lines demonstrate its role in LR development. This study is an attempt to unravel the vital role of SlGCC in regulating tomato LR architecture.
Collapse
Affiliation(s)
- Vinod Kumar
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Adity Majee
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pooja Patwal
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Babythoihoi Sairem
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aniruddha P Sane
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vidhu A Sane
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
34
|
Wang Y, Li P, Zhu Y, Shang Y, Wu Z, Tao Y, Wang H, Li D, Zhang C. Transcriptome Profiling Reveals the Gene Network Responding to Low Nitrogen Stress in Wheat. PLANTS (BASEL, SWITZERLAND) 2024; 13:371. [PMID: 38337903 PMCID: PMC10856819 DOI: 10.3390/plants13030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
As one of the essential nutrients for plants, nitrogen (N) has a major impact on the yield and quality of wheat worldwide. Due to chemical fertilizer pollution, it has become increasingly important to improve crop yield by increasing N use efficiency (NUE). Therefore, understanding the response mechanisms to low N (LN) stress is essential for the regulation of NUE in wheat. In this study, LN stress significantly accelerated wheat root growth, but inhibited shoot growth. Further transcriptome analysis showed that 8468 differentially expressed genes (DEGs) responded to LN stress. The roots and shoots displayed opposite response patterns, of which the majority of DEGs in roots were up-regulated (66.15%; 2955/4467), but the majority of DEGs in shoots were down-regulated (71.62%; 3274/4565). GO and KEGG analyses showed that nitrate reductase activity, nitrate assimilation, and N metabolism were significantly enriched in both the roots and shoots. Transcription factor (TF) and protein kinase analysis showed that genes such as MYB-related (38/38 genes) may function in a tissue-specific manner to respond to LN stress. Moreover, 20 out of 107 N signaling homologous genes were differentially expressed in wheat. A total of 47 transcriptome datasets were used for weighted gene co-expression network analysis (17,840 genes), and five TFs were identified as the potential hub regulatory genes involved in the response to LN stress in wheat. Our findings provide insight into the functional mechanisms in response to LN stress and five candidate regulatory genes in wheat. These results will provide a basis for further research on promoting NUE in wheat.
Collapse
Affiliation(s)
- Yiwei Wang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Pengfeng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yiwang Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Yuping Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Yongfu Tao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Dongxi Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Cuijun Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| |
Collapse
|
35
|
Seo JS, Kim SH, Shim JS, Um T, Oh N, Park T, Kim YS, Oh SJ, Kim JK. The rice NUCLEAR FACTOR-YA5 and MICRORNA169a module promotes nitrogen utilization during nitrogen deficiency. PLANT PHYSIOLOGY 2023; 194:491-510. [PMID: 37723121 PMCID: PMC10756765 DOI: 10.1093/plphys/kiad504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023]
Abstract
Nitrogen (N) is essential for plant growth and development. Therefore, understanding its utilization is essential for improving crop productivity. However, much remains to be learned about plant N sensing and signaling. Here, rice (Oryza sativa) NUCLEAR FACTOR-YA5 (OsNF-YA5) expression was tightly regulated by N status and induced under N-deficient conditions. Overexpression (OE) of OsNF-YA5 in rice resulted in increased chlorophyll levels and delayed senescence compared to control plants under normal N conditions. Agronomic traits were significantly improved in OE plants and impaired in knockout mutants under N-deficient conditions. Using a dexamethasone-inducible system, we identified the putative targets of OsNF-YA5 that include amino acid, nitrate/peptide transporters, and NITRATE TRANSPORTER 1.1A (OsNRT1.1A), which functions as a key transporter in rice. OsNF-YA5 directly enhanced OsNRT1.1A expression and N uptake rate under N-deficient conditions. Besides, overexpression of OsNF-YA5 also enhanced the expression of GLUTAMINE SYNTHETASE 1/2 (GS1/2) and GLUTAMINE OXOGLUTARATE AMINOTRANSFERASE 1/2 (GOGAT1/2), increasing free amino acid contents under N-deficient conditions. Osa-miR169a expression showed an opposite pattern with OsNF-YA5 depending on N status. Further analysis revealed that osa-miR169a negatively regulates OsNF-YA5 expression and N utilization, demonstrating that an OsNF-YA5/osa-miR169a module tightly regulates rice N utilization for adaptation to N status.
Collapse
Affiliation(s)
- Jun Sung Seo
- GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Sung Hwan Kim
- Crop Biotechnology Institute, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Jae Sung Shim
- GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Taeyoung Um
- GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Nuri Oh
- Crop Biotechnology Institute, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Taehyeon Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Youn Shic Kim
- GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Se-Jun Oh
- LaSemilla Co. Ltd., Pyeongchang 25354, Korea
| | - Ju-Kon Kim
- GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
- Crop Biotechnology Institute, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
- LaSemilla Co. Ltd., Pyeongchang 25354, Korea
| |
Collapse
|
36
|
Julian R, Patrick RM, Li Y. Organ-specific characteristics govern the relationship between histone code dynamics and transcriptional reprogramming during nitrogen response in tomato. Commun Biol 2023; 6:1225. [PMID: 38044380 PMCID: PMC10694154 DOI: 10.1038/s42003-023-05601-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/17/2023] [Indexed: 12/05/2023] Open
Abstract
Environmental stimuli trigger rapid transcriptional reprogramming of gene networks. These responses occur in the context of the local chromatin landscape, but the contribution of organ-specific dynamic chromatin modifications in responses to external signals remains largely unexplored. We treated tomato seedlings with a supply of nitrate and measured the genome-wide changes of four histone marks, the permissive marks H3K27ac, H3K4me3, and H3K36me3 and repressive mark H3K27me3, in shoots and roots separately, as well as H3K9me2 in shoots. Dynamic and organ-specific histone acetylation and methylation were observed at functionally relevant gene loci. Integration of transcriptomic and epigenomic datasets generated from the same organ revealed largely syngenetic relations between changes in transcript levels and histone modifications, with the exception of H3K27me3 in shoots, where an increased level of this repressive mark is observed at genes activated by nitrate. Application of a machine learning approach revealed organ-specific rules regarding the importance of individual histone marks, as H3K36me3 is the most successful mark in predicting gene regulation events in shoots, while H3K4me3 is the strongest individual predictor in roots. Our integrated study substantiates a view that during plant environmental responses, the relationships between histone code dynamics and gene regulation are highly dependent on organ-specific contexts.
Collapse
Affiliation(s)
- Russell Julian
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Ryan M Patrick
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Ying Li
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
37
|
Ueda Y, Yanagisawa S. Transcription factor module NLP-NIGT1 fine-tunes NITRATE TRANSPORTER2.1 expression. PLANT PHYSIOLOGY 2023; 193:2865-2879. [PMID: 37595050 PMCID: PMC10663117 DOI: 10.1093/plphys/kiad458] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/12/2023] [Accepted: 07/22/2023] [Indexed: 08/20/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) high-affinity NITRATE TRANSPORTER2.1 (NRT2.1) plays a dominant role in the uptake of nitrate, the most important nitrogen (N) source for most terrestrial plants. The nitrate-inducible expression of NRT2.1 is regulated by NIN-LIKE PROTEIN (NLP) family transcriptional activators and NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR1 (NIGT1) family transcriptional repressors. Phosphorus (P) availability also affects the expression of NRT2.1 because the PHOSPHATE STARVATION RESPONSE1 transcriptional activator activates NIGT1 genes in P-deficient environments. Here, we show a biology-based mathematical understanding of the complex regulation of NRT2.1 expression by multiple transcription factors using 2 different approaches: a microplate-based assay for the real-time measurement of temporal changes in NRT2.1 promoter activity under different nutritional conditions, and an ordinary differential equation (ODE)-based mathematical modeling of the NLP- and NIGT1-regulated expression patterns of NRT2.1. Both approaches consistently reveal that NIGT1 stabilizes the amplitude of NRT2.1 expression under a wide range of nitrate concentrations. Furthermore, the ODE model suggests that parameters such as the synthesis rate of NIGT1 mRNA and NIGT1 proteins and the affinity of NIGT1 proteins for the NRT2.1 promoter substantially influence the temporal expression patterns of NRT2.1 in response to nitrate. These results suggest that the NLP-NIGT1 feedforward loop allows a precise control of nitrate uptake. Hence, this study paves the way for understanding the complex regulation of nutrient acquisition in plants, thus facilitating engineered nutrient uptake and plant response patterns using synthetic biology approaches.
Collapse
Affiliation(s)
- Yoshiaki Ueda
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Ohwashi 1-1, Tsukuba, Ibaraki 305-8686, Japan
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
38
|
Kun Yuan, Zhang H, Yu C, Luo N, Yan J, Zheng S, Hu Q, Zhang D, Kou L, Meng X, Jing Y, Chen M, Ban X, Yan Z, Lu Z, Wu J, Zhao Y, Liang Y, Wang Y, Xiong G, Chu J, Wang E, Li J, Wang B. Low phosphorus promotes NSP1-NSP2 heterodimerization to enhance strigolactone biosynthesis and regulate shoot and root architecture in rice. MOLECULAR PLANT 2023; 16:1811-1831. [PMID: 37794682 DOI: 10.1016/j.molp.2023.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/18/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
Phosphorus is an essential macronutrient for plant development and metabolism, and plants have evolved ingenious mechanisms to overcome phosphate (Pi) starvation. However, the molecular mechanisms underlying the regulation of shoot and root architecture by low phosphorus conditions and the coordinated utilization of Pi and nitrogen remain largely unclear. Here, we show that Nodulation Signaling Pathway 1 (NSP1) and NSP2 regulate rice tiller number by promoting the biosynthesis of strigolactones (SLs), a class of phytohormones with fundamental effects on plant architecture and environmental responses. We found that NSP1 and NSP2 are induced by Oryza sativa PHOSPHATE STARVATION RESPONSE2 (OsPHR2) in response to low-Pi stress and form a complex to directly bind the promoters of SL biosynthesis genes, thus markedly increasing SL biosynthesis in rice. Interestingly, the NSP1/2-SL signaling module represses the expression of CROWN ROOTLESS 1 (CRL1), a newly identified early SL-responsive gene in roots, to restrain lateral root density under Pi deficiency. We also demonstrated that GR244DO treatment under normal conditions inhibits the expression of OsNRTs and OsAMTs to suppress nitrogen absorption but enhances the expression of OsPTs to promote Pi absorption, thus facilitating the balance between nitrogen and phosphorus uptake in rice. Importantly, we found that NSP1p:NSP1 and NSP2p:NSP2 transgenic plants show improved agronomic traits and grain yield under low- and medium-phosphorus conditions. Taken together, these results revealed a novel regulatory mechanism of SL biosynthesis and signaling in response to Pi starvation, providing genetic resources for improving plant architecture and nutrient-use efficiency in low-Pi environments.
Collapse
Affiliation(s)
- Kun Yuan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoji Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Nan Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jijun Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Zheng
- University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qingliang Hu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dahan Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liquan Kou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhui Jing
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingjiang Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinwei Ban
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongyun Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zefu Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Liang
- College of Life Sciences, Shandong Agriculture University, Tai'an, Shandong 271018, China
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Shandong Agriculture University, Tai'an, Shandong 271018, China
| | - Guosheng Xiong
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ertao Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Yazhouwan National Laboratory, Sanya, Hainan 572024, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
39
|
Feng Y, Zhao Y, Ma Y, Liu D, Shi H. Single-cell transcriptome analyses reveal cellular and molecular responses to low nitrogen in burley tobacco leaves. PHYSIOLOGIA PLANTARUM 2023; 175:e14118. [PMID: 38148214 DOI: 10.1111/ppl.14118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
Tobacco (Nicotiana tabacum) is cultivated and consumed worldwide. It requires great amounts of nitrogen (N) to achieve the best yield and quality. With a view to sustainable and environmentally friendly agriculture, developing new genotypes with high productivity under low N conditions is an important approach. It is unclear how genes in tobacco are expressed at the cellular level and the precise mechanisms by which cells respond to environmental stress, especially in the case of low N. Here, we characterized the transcriptomes in tobacco leaves grown in normal and low-N conditions by performing scRNA-seq. We identified 10 cell types with 17 transcriptionally distinct cell clusters with the assistance of marker genes and constructed the first single-cell atlas of tobacco leaves. Distinct gene expression patterns of cell clusters were observed under low-N conditions, and the mesophyll cells were the most important responsive cell type and displayed heterogene responses among its three subtypes. Pseudo-time trajectory analysis revealed low-N stress decelerates the differentiation towards mesophyll cells. In combination with scRNA-seq, WGCNA, and bulk RNA-seq results, we found that genes involved in porphyrin metabolism, nitrogen metabolism, carbon fixation, photosynthesis, and photosynthesis-antenna pathway play an essential role in response to low N. Moreover, we identified COL16, GATA24, MYB73, and GLK1 as key TFs in the regulation of N-responsive genes. Collectively, our findings are the first observation of the cellular and molecular responses of tobacco leaves under low N stress and lay the cornerstone for future tobacco scRNA-seq investigations.
Collapse
Affiliation(s)
- Yuqing Feng
- College of Tobacco, Henan Agricultural University, Zhengzhou, Henan, P.R.China
| | - Yuanyuan Zhao
- College of Tobacco, Henan Agricultural University, Zhengzhou, Henan, P.R.China
| | - Yanjun Ma
- Technology Center, Shanghai Tobacco Group Beijing Cigarette Factory Co., Ltd, Beijing, China
| | - Deshui Liu
- Technology Center, Shanghai Tobacco Group Beijing Cigarette Factory Co., Ltd, Beijing, China
| | - Hongzhi Shi
- College of Tobacco, Henan Agricultural University, Zhengzhou, Henan, P.R.China
| |
Collapse
|
40
|
Asad MAU, Guan X, Zhou L, Qian Z, Yan Z, Cheng F. Involvement of plant signaling network and cell metabolic homeostasis in nitrogen deficiency-induced early leaf senescence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111855. [PMID: 37678563 DOI: 10.1016/j.plantsci.2023.111855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Nitrogen (N) is a basic building block that plays an essential role in the maintenance of normal plant growth and its metabolic functions through complex regulatory networks. Such the N metabolic network comprises a series of transcription factors (TFs), with the coordinated actions of phytohormone and sugar signaling to sustain cell homeostasis. The fluctuating N concentration in plant tissues alters the sensitivity of several signaling pathways to stressful environments and regulates the senescent-associated changes in cellular structure and metabolic process. Here, we review recent advances in the interaction between N assimilation and carbon metabolism in response to N deficiency and its regulation to the nutrient remobilization from source to sink during leaf senescence. The regulatory networks of N and sugar signaling for N deficiency-induced leaf senescence is further discussed to explain the effects of N deficiency on chloroplast disassembly, reactive oxygen species (ROS) burst, asparagine metabolism, sugar transport, autophagy process, Ca2+ signaling, circadian clock response, brassinazole-resistant 1 (BZRI), and other stress cell signaling. A comprehensive understanding for the metabolic mechanism and regulatory network underlying N deficiency-induced leaf senescence may provide a theoretical guide to optimize the source-sink relationship during grain filling for the achievement of high yield by a selection of crop cultivars with the properly prolonged lifespan of functional leaves and/or by appropriate agronomic managements.
Collapse
Affiliation(s)
- Muhammad Asad Ullah Asad
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xianyue Guan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lujian Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhao Qian
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Zhang Yan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fangmin Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing, China.
| |
Collapse
|
41
|
Liu K, Sakuraba Y, Ohtsuki N, Yang M, Ueda Y, Yanagisawa S. CRISPR/Cas9-mediated elimination of OsHHO3, a transcriptional repressor of three AMMONIUM TRANSPORTER1 genes, improves nitrogen use efficiency in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2169-2172. [PMID: 37615478 PMCID: PMC10579704 DOI: 10.1111/pbi.14167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Affiliation(s)
- Kexin Liu
- Agro‐Biotechnology Research CenterGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yasuhito Sakuraba
- Agro‐Biotechnology Research CenterGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Namie Ohtsuki
- Agro‐Biotechnology Research CenterGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Mailun Yang
- Agro‐Biotechnology Research CenterGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yoshiaki Ueda
- Agro‐Biotechnology Research CenterGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Shuichi Yanagisawa
- Agro‐Biotechnology Research CenterGraduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
42
|
Shi Y, Liu D, He Y, Tang J, Chen H, Gong P, Luo JS, Zhang Z. CHLORIDE CHANNEL-b mediates vacuolar nitrate efflux to improve low nitrogen adaptation in Arabidopsis. PLANT PHYSIOLOGY 2023; 193:1987-2002. [PMID: 37527482 DOI: 10.1093/plphys/kiad438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/15/2023] [Accepted: 07/02/2023] [Indexed: 08/03/2023]
Abstract
The vacuole is an important organelle for nitrate storage, and the reuse of vacuolar nitrate under nitrate starvation helps plants adapt to low-nitrate environments. CHLORIDE CHANNEL-b (CLC-b) in the vacuolar membrane is a nitrate transporter; however, its regulation and effects on nitrate efflux have not been established. Here, we evaluated CLC-b expression and its effects on physiological parameters under low nitrate conditions. CLC-b expression increased significantly in the roots of wild-type Arabidopsis (Arabidopsis thaliana) Col-0 under nitrate starvation. Under low nitrate, clcb mutants showed reductions in chlorophyll content and xylem sap nitrate concentration, shoot/root nitrate ratios, shoot/root total N ratios, and biomass. CLC-b-overexpression yielded opposite phenotypes and increased nitrogen use efficiency. CLC-b mutants showed elevated chlorate tolerance and an increased proportion of vacuolar nitrate relative to the total protoplast nitrate content as compared to the wild type. Yeast 1-hybrid, EMSA, and chromatin immunoprecipitation (ChIP) experiments showed that HRS1 HOMOLOG2 (HHO2), the expression of which is downregulated under low nitrate, binds directly to the promoter of CLC-b. clcb/hho2 double mutants and HHO2-overexpressing clcb plants had similar phenotypes under low nitrate to those of clcb single mutants. Thus, CLC-b mediates vacuolar nitrate efflux and is negatively regulated by HHO2, providing a theoretical basis for improving plant adaptability to low nitrate.
Collapse
Affiliation(s)
- Yujiao Shi
- College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Dong Liu
- College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Yiqi He
- College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Jing Tang
- College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Haifei Chen
- College of Resources, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha 410128, China
| | - Pan Gong
- College of Resources, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha 410128, China
| | - Jin-Song Luo
- College of Resources, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha 410128, China
| | - Zhenhua Zhang
- College of Resources, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha 410128, China
| |
Collapse
|
43
|
Hu Y, Zeng L, Lv X, Guo J, Li X, Zhang X, Wang D, Wang J, Bi J, Julkowska MM, Li B. NIGT1.4 maintains primary root elongation in response to salt stress through induction of ERF1 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:173-186. [PMID: 37366219 DOI: 10.1111/tpj.16369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Plants employ various molecular mechanisms to maintain primary root elongation upon salt stress. Identification of key functional genes, therein, is important for improving crop salt tolerance. Through analyzing natural variation of the primary root length of Arabidopsis natural population under salt stress, we identified NIGT1.4, encoding an MYB transcription factor, as a novel contributor to maintained root growth under salt stress. Using both T-DNA knockout and functional complementation, NIGT1.4 was confirmed to have a role in promoting primary root growth in response to salt stress. The expression of NIGT1.4 in the root was shown induced by NaCl treatments in an ABA-dependent manner. SnRK2.2 and 2.3 were shown to interact with and phosphorylate NIGT1.4 individually. The growth of the primary root of snrk2.2/2.3/2.6 triple mutant was shown sensitive to salt stress, which was similar to nigt1.4 plants. Using DNA affinity purification sequencing, ERF1, a known positive regulator for primary root elongation and salt tolerance, was identified as a target gene for NIGT1.4. The transcriptional induction of ERF1 by salt stress was shown absent in nigt1.4 background. NIGT1.4 was also confirmed to bind to the promoter region of ERF1 by yeast one-hybrid experiment and to induce the expression of ERF1 by dual-luciferase analysis. All data support the notion that salt- and ABA-elicited NIGT1.4 induces the expression of ERF1 to regulate downstream functional genes that contribute to maintained primary root elongation. NIGT1.4-ERF1, therefore, acts as a signaling node linking regulators for stress resilience and root growth, providing new insights for breeding salt-tolerant crops.
Collapse
Affiliation(s)
- Yunfei Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Li Zeng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Xiaodong Lv
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Junhua Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Xiaoyan Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Xiaohua Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Dan Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Jingya Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Jinlong Bi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | | | - Bo Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| |
Collapse
|
44
|
Zhang Y, Zhang Q, Guo M, Wang X, Li T, Wu Q, Li L, Yi K, Ruan W. NIGT1 represses plant growth and mitigates phosphate starvation signaling to balance the growth response tradeoff in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1874-1889. [PMID: 37096648 DOI: 10.1111/jipb.13496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Inorganic phosphate (Pi) availability is an important factor which affects the growth and yield of crops, thus an appropriate and effective response to Pi fluctuation is critical. However, how crops orchestrate Pi signaling and growth under Pi starvation conditions to optimize the growth defense tradeoff remains unclear. Here we show that a Pi starvation-induced transcription factor NIGT1 (NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1) controls plant growth and prevents a hyper-response to Pi starvation by directly repressing the expression of growth-related and Pi-signaling genes to achieve a balance between growth and response under a varying Pi environment. NIGT1 directly binds to the promoters of Pi starvation signaling marker genes, like IPS1, miR827, and SPX2, under Pi-deficient conditions to mitigate the Pi-starvation responsive (PSR). It also directly represses the expression of vacuolar Pi efflux transporter genes VPE1/2 to regulate plant Pi homeostasis. We further demonstrate that NIGT1 constrains shoot growth by repressing the expression of growth-related regulatory genes, including brassinolide signal transduction master regulator BZR1, cell division regulator CYCB1;1, and DNA replication regulator PSF3. Our findings reveal the function of NIGT1 in orchestrating plant growth and Pi starvation signaling, and also provide evidence that NIGT1 acts as a safeguard to avoid hyper-response during Pi starvation stress in rice.
Collapse
Affiliation(s)
- Yuxin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Beijing, 100081, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Beijing, 100081, China
| | - Qianqian Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Beijing, 100081, China
| | - Meina Guo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing, 100083, China
| | - Xueqing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Beijing, 100081, China
| | - Tianjie Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Beijing, 100081, China
| | - Qingyu Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Beijing, 100081, China
| | - Lihui Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Beijing, 100081, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Beijing, 100081, China
| | - Wenyuan Ruan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Beijing, 100081, China
| |
Collapse
|
45
|
Wang F, Wang Y, Ying L, Lu H, Liu Y, Liu Y, Xu J, Wu Y, Mo X, Wu Z, Mao C. Integrated transcriptomic analysis identifies coordinated responses to nitrogen and phosphate deficiency in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1164441. [PMID: 37223782 PMCID: PMC10200874 DOI: 10.3389/fpls.2023.1164441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/15/2023] [Indexed: 05/25/2023]
Abstract
Nitrogen (N) and phosphorus (P) are two primary components of fertilizers for crop production. Coordinated acquisition and utilization of N and P are crucial for plants to achieve nutrient balance and optimal growth in a changing rhizospheric nutrient environment. However, little is known about how N and P signaling pathways are integrated. We performed transcriptomic analyses and physiological experiments to explore gene expression profiles and physiological homeostasis in the response of rice (Oryza sativa) to N and P deficiency. We revealed that N and P shortage inhibit rice growth and uptake of other nutrients. Gene Ontology (GO) analysis of differentially expressed genes (DEGs) suggested that N and Pi deficiency stimulate specific different physiological reactions and also some same physiological processes in rice. We established the transcriptional regulatory network between N and P signaling pathways based on all DEGs. We determined that the transcript levels of 763 core genes changed under both N or P starvation conditions. Among these core genes, we focused on the transcription factor gene NITRATE-INDUCIBLE, GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1) and show that its encoded protein is a positive regulator of P homeostasis and a negative regulator of N acquisition in rice. NIGT1 promoted Pi uptake but inhibited N absorption, induced the expression of Pi responsive genes PT2 and SPX1 and repressed the N responsive genes NLP1 and NRT2.1. These results provide new clues about the mechanisms underlying the interaction between plant N and P starvation responses.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Luying Ying
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hong Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yijian Liu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, Hainan, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yunrong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhongchang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, Hainan, China
| |
Collapse
|
46
|
Durand M, Brehaut V, Clement G, Kelemen Z, Macé J, Feil R, Duville G, Launay-Avon A, Roux CPL, Lunn JE, Roudier F, Krapp A. The Arabidopsis transcription factor NLP2 regulates early nitrate responses and integrates nitrate assimilation with energy and carbon skeleton supply. THE PLANT CELL 2023; 35:1429-1454. [PMID: 36752317 PMCID: PMC10118280 DOI: 10.1093/plcell/koad025] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Nitrate signaling improves plant growth under limited nitrate availability and, hence, optimal resource use for crop production. Whereas several transcriptional regulators of nitrate signaling have been identified, including the Arabidopsis thaliana transcription factor NIN-LIKE PROTEIN7 (NLP7), additional regulators are expected to fine-tune this pivotal physiological response. Here, we characterized Arabidopsis NLP2 as a top-tier transcriptional regulator of the early nitrate response gene regulatory network. NLP2 interacts with NLP7 in vivo and shares key molecular features such as nitrate-dependent nuclear localization, DNA-binding motif, and some target genes with NLP7. Genetic, genomic, and metabolic approaches revealed a specific role for NLP2 in the nitrate-dependent regulation of carbon and energy-related processes that likely influence plant growth under distinct nitrogen environments. Our findings highlight the complementarity and specificity of NLP2 and NLP7 in orchestrating a multitiered nitrate regulatory network that links nitrate assimilation with carbon and energy metabolism for efficient nitrogen use and biomass production.
Collapse
Affiliation(s)
- Mickaël Durand
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
- UMR CNRS 7267, EBI Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Virginie Brehaut
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| | - Gilles Clement
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| | - Zsolt Kelemen
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| | - Julien Macé
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Garry Duville
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| | - Alexandra Launay-Avon
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
| | - Christine Paysant-Le Roux
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - François Roudier
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Anne Krapp
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| |
Collapse
|
47
|
Dai S, Wu H, Chen H, Wang Z, Yu X, Wang L, Jia X, Qin C, Zhu Y, Yi K, Zeng H. Comparative transcriptome analyses under individual and combined nutrient starvations provide insights into N/P/K interactions in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107642. [PMID: 36989993 DOI: 10.1016/j.plaphy.2023.107642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Crops often suffer from simultaneous limitations of multiple nutrients in soils, including nitrogen (N), phosphorus (P) and potassium (K), which are three major macronutrients essential for ensuring growth and yield. Although plant responses to individual N, P, and K deficiency have been well documented, our understanding of the responses to combined nutrient deficiencies and the crosstalk between nutrient starvation responses is still limited. Here, we compared the physiological responses in rice under seven kinds of single and multiple low nutrient stress of N, P and K, and used RNA sequencing approaches to compare their transcriptome changes. A total of 13,000 genes were found to be differentially expressed under all these single and multiple low N/P/K stresses, and 66 and 174 of them were shared by all these stresses in roots and shoots, respectively. Functional enrichment analyses of the DEGs showed that a group of biological and metabolic processes were shared by these low N/P/K stresses. Comparative analyses indicated that DEGs under multiple low nutrient stress was not the simple summation of single nutrient stress. N was found to be the predominant factor affecting the transcriptome under combined nutrient stress. N, P, or K availability exhibited massive influences on the transcriptomic responses to starvation of other nutrients. Many genes involved in nutrient transport, hormone signaling, and transcriptional regulation were commonly responsive to low N/P/K stresses. Some transcription factors were predicted to regulate the expression of genes that are commonly responsive to N, P, and K starvations. These results revealed the interactions between N, P, and K starvation responses, and will be helpful for further elucidation of the molecular mechanisms underlying nutrient interactions.
Collapse
Affiliation(s)
- Senhuan Dai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Haicheng Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huiying Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zihui Wang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Yu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Long Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianqing Jia
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cheng Qin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yiyong Zhu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
48
|
Thomas M, Soriano A, O'Connor C, Crabos A, Nacry P, Thompson M, Hrabak E, Divol F, Péret B. pin2 mutant agravitropic root phenotype is conditional and nutrient-sensitive. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111606. [PMID: 36706868 DOI: 10.1016/j.plantsci.2023.111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Plants have the capacity to sense and adapt to environmental factors using the phytohormone auxin as a major regulator of tropism and development. Among these responses, gravitropism is essential for plant roots to grow downward in the search for nutrients and water. We discovered a new mutant allele of the auxin efflux transporter PIN2 that revealed that pin2 agravitropic root mutants are conditional and nutrient-sensitive. We describe that nutrient composition of the medium, rather than osmolarity, can revert the agravitropic root phenotype of pin2. Indeed, on phosphorus- and nitrogen-deprived media, the agravitropic root defect was restored independently of primary root growth levels. Slow and fast auxin responses were evaluated using DR5 and R2D2 probes, respectively, and revealed a strong modulation by nutrient composition of the culture medium. We evaluated the role of PIN and AUX auxin transporters and demonstrated that neither PIN3 nor AUX1 are involved in this process. However, we observed the ectopic expression of PIN1 in the epidermis in the pin2 mutant background associated with permissive, but not restrictive, conditions. This ectopic expression was associated with a restoration of the asymmetric accumulation of auxin necessary for the reorientation of the root according to gravity. These observations suggest a strong regulation of auxin distribution by nutrients availability, directly impacting root's ability to drive their gravitropic response.
Collapse
Affiliation(s)
- Marion Thomas
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Alexandre Soriano
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Claire O'Connor
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Amandine Crabos
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Philippe Nacry
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | | | | - Fanchon Divol
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Benjamin Péret
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
49
|
Ding Y, Yi Z, Fang Y, He K, Huang Y, Zhu H, Du A, Tan L, Zhao H, Jin Y. Improving the quality of barren rocky soil by culturing sweetpotato, with special reference to plant-microbes-soil interactions. Microbiol Res 2023; 268:127294. [PMID: 36592577 DOI: 10.1016/j.micres.2022.127294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Biological process is an effective strategy to improve soil quality in agroecosystems. Sweetpotato has long been cultivated in barren rocky soil (BRS) to improve soil fertility and obtain considerably high yield. However, how sweetpotato cultivation affects soil quality is still unclear. We cultured sweetpotato in virgin BRS, and investigated its transcriptome, rhizospheric microbial community and soil properties. A high sweetpotato yield (22.69 t.ha-1) was obtained through upregulating the expression of genes associated with stress resistance, nitrogen/phosphorus/potassium (N/P/K) uptake, and root exudates transport. Meanwhile, the rhizospheric microbial diversity in BRS increased, and the rhizospheric microbial community structure became more similar to that of fertile soil, which might benefit from the increased root exudates. Notably, the relative abundances of N-fixing and P/K-solubilizing microbes increased, and the copy number of nifH increased 6.67 times. Moreover, the activities of acid, neutral, and alkaline phosphatases increased strongly from 0.63, 0.02, and 1.15-1.58, 0.31, and 2.11 mg phenol·g-1·d-1, respectively, and total carbon, dissolved organic carbon, available N/P content also increased, while bulk density and pH of BRS decreased, indicating the enhanced soil fertility. Our study found sweetpotato cultivation improved BRS quality through shaping microbial communities, which has important guiding significance for sustainable agriculture.
Collapse
Affiliation(s)
- Yanqiang Ding
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Zhuolin Yi
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Yang Fang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Kaize He
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Yingdong Huang
- Sweetpotato Institute, Nanchong Academy of Agricultural Sciences, Nanchong 637001, China
| | - Hongqing Zhu
- Sweetpotato Institute, Nanchong Academy of Agricultural Sciences, Nanchong 637001, China
| | - Anping Du
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Li Tan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Hai Zhao
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Yanling Jin
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China.
| |
Collapse
|
50
|
Helliwell KE. Emerging trends in nitrogen and phosphorus signalling in photosynthetic eukaryotes. TRENDS IN PLANT SCIENCE 2023; 28:344-358. [PMID: 36372648 DOI: 10.1016/j.tplants.2022.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) and nitrogen (N) are the major nutrients that constrain plant and algal growth in nature. Recent advances in understanding nutrient signalling mechanisms of these organisms have revealed molecular attributes to optimise N and P acquisition. This has illuminated the importance of interplay between N and P regulatory networks, highlighting a need to study synergistic interactions rather than single-nutrient effects. Emerging insights of nutrient signalling in polyphyletic model plants and algae hint that, although core P-starvation signalling components are conserved, distinct mechanisms for P (and N) sensing have arisen. Here, the N and P signalling mechanisms of diverse photosynthetic eukaryotes are examined, drawing parallels and differences between taxa. Future directions to understand their molecular basis, evolution, and ecology are proposed.
Collapse
Affiliation(s)
- Katherine E Helliwell
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK; Marine Biological Association, Citadel Hill, Plymouth PL1 2PB, UK.
| |
Collapse
|