1
|
Mallén-Ponce MJ, Quintero-Moreno AM, Gámez-Arcas S, Grossman AR, Pérez-Pérez ME, Crespo JL. Dihydroxyacetone phosphate generated in the chloroplast mediates the activation of TOR by CO 2 and light. SCIENCE ADVANCES 2025; 11:eadu1240. [PMID: 40249806 PMCID: PMC12007574 DOI: 10.1126/sciadv.adu1240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/12/2025] [Indexed: 04/20/2025]
Abstract
Light and CO2 assimilation activate the target of rapamycin (TOR) kinase in photosynthetic cells, but how these signals are transmitted to TOR is unknown. Using the green alga Chlamydomonas reinhardtii as a model system, we identified dihydroxyacetone phosphate (DHAP) as the key metabolite regulating TOR in response to carbon and light cues. Metabolomic analyses of synchronized cells revealed that DHAP levels change more than any other metabolite between dark- and light-grown cells and that the addition of the DHAP precursor, dihydroxyacetone (DHA), was sufficient to activate TOR in the dark. We also demonstrated that TOR was insensitive to light or inorganic carbon but not to exogenous DHA in a Chlamydomonas mutant defective in the export of DHAP from the chloroplast. Our results provide a metabolic basis for the mode of TOR control by light and inorganic carbon and indicate that cytoplasmic DHAP is an important metabolic regulator of TOR.
Collapse
Affiliation(s)
- Manuel J. Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-Universidad de Sevilla), 41092 Sevilla, Spain
| | | | - Samuel Gámez-Arcas
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-Universidad de Sevilla), 41092 Sevilla, Spain
| | - Arthur R. Grossman
- Biosphere Sciences & Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
- Biology Department, Stanford University, Stanford, CA 94305, USA
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-Universidad de Sevilla), 41092 Sevilla, Spain
| | - José L. Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-Universidad de Sevilla), 41092 Sevilla, Spain
| |
Collapse
|
2
|
Shen S, Pan L, Li J, Wang J, Ahmad I, Liu H, Bai Y, Kang B, Yin J, Gao Y, Lu Y, Wang X. The Involvement of Amino Acid Metabolism in the Mechanisms of Salt Tolerance Adaptation in Medicago sativa and Medicago truncatula. PLANTS (BASEL, SWITZERLAND) 2025; 14:929. [PMID: 40265823 PMCID: PMC11945280 DOI: 10.3390/plants14060929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 04/24/2025]
Abstract
Amino acid metabolism constitutes a major metabolic pathway in plants, playing an important role in the modulation of plant responses to stress. In this study, we investigated the amino acid metabolism responses of M. sativa (Medicago sativa L.) and M. truncatula (Medicago truncatula L.) plants under salt stress using transcriptomic and proteomic approaches to elucidate their salt stress tolerance mechanisms in relation to the regulation of amino acid homeostasis. Transcriptome and proteome sequencing followed by Kyoto Gene and Genome Encyclopedia enrichment analysis revealed 34 differentially expressed genes and 45 differentially expressed proteins involved in valine, leucine, and isoleucine degradation, tyrosine metabolism, and glutathione metabolism. Significant differences were observed in the expression of glutathione S-transferase (GST) within the glutathione metabolic pathway between M. sativa and M. truncatula. The induction of valine, leucine, and isoleucine metabolism, aldehyde dehydrogenases (ALDHs), and alanine-glyoxylate aminotransferases (AGXTs), involved in intracellular reactive oxygen species scavenging, also significantly differed under salt stress. Significant differences were identified in the expression of tyrosine decarboxylases (TDCs) involved in tyrosine metabolism, which are responsible for tyramine biosynthesis and can enhance plant tolerance to salt stress. This study delved into the effects of amino acid metabolism on the salt tolerance mechanisms of M. sativa and M. truncatula, which is crucial in guiding the future breeding of salt-tolerant alfalfa varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiaoshan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (L.P.); (J.L.); (J.W.); (I.A.); (H.L.); (Y.B.); (B.K.); (J.Y.); (Y.G.); (Y.L.)
| |
Collapse
|
3
|
Yang L, Zhang R, Zhang H, Yang Y, Fu L. TOR Mediates Stress Responses Through Global Regulation of Metabolome in Plants. Int J Mol Sci 2025; 26:2095. [PMID: 40076716 PMCID: PMC11900525 DOI: 10.3390/ijms26052095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
The target of rapamycin (TOR) kinase is an evolutionarily conserved atypical Ser/Thr protein kinase present in yeasts, plants, and mammals. In plants, TOR acts as a central signaling hub, playing a pivotal role in the precise orchestration of growth and development. Extensive studies have underscored its significant role in these processes. Recent research has further elucidated TOR's multifaceted roles in plant stress adaptation. Furthermore, mounting evidence indicates TOR's role in mediating the plant metabolome. In this review, we will discuss recent findings on the involvement of TOR signaling in plant adaptation to various abiotic and biotic stresses, with a specific focus on TOR-regulated metabolome reprogramming in response to different stresses.
Collapse
Affiliation(s)
- Lin Yang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Y.); (R.Z.); (H.Z.); (Y.Y.)
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ran Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Y.); (R.Z.); (H.Z.); (Y.Y.)
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huan Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Y.); (R.Z.); (H.Z.); (Y.Y.)
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingyu Yang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Y.); (R.Z.); (H.Z.); (Y.Y.)
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liwen Fu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Y.); (R.Z.); (H.Z.); (Y.Y.)
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
de Oliveira LP, de Jesus Pereira JP, Navarro BV, Martins MCM, Riaño-Pachón DM, Buckeridge MS. Bioinformatic insights into sugar signaling pathways in sugarcane growth. Sci Rep 2024; 14:24935. [PMID: 39438542 PMCID: PMC11496834 DOI: 10.1038/s41598-024-75220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
The SnRK1, hexokinase, and TORC1 (TOR, LST8, RAPTOR) are three pivotal kinases at the core of sugar level sensing, significantly impacting plant metabolism and development. We retrieved and analyzed protein sequences of these three kinase pathways from seven sugarcane transcriptome and genome datasets, identifying protein domains, phylogenetic relationships, sequence ancestry, and in silico expression levels. Additionally, we predicted HXK subcellular localization and assessed its enzymatic activity in sugarcane leaves and culms along development in the field. We retrieved 11 TOR, 23 RAPTOR, 55 LST8, 95 SnRK1α, 98 HXK, and 14 HXK-like putative full-length sequences containing all the conserved domains. Most of these transcripts seem to share a common origin with the three ancestral species of sugarcane: Saccharum officinarum, Saccharum spontaneum, and Saccharum barberi. We accessed the expression profile of sequences from one sugarcane transcriptome. We found the highest enzymatic activity of HXK in culms in the first month, which, at this stage, provides carbon (sucrose) and nitrogen (amino acids) for initial plant development. Our approach places novel sugar sensing sequences that work as a guideline for further research into the underlying signaling mechanisms and biotechnology applications in sugarcane.
Collapse
Affiliation(s)
- Lauana Pereira de Oliveira
- Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência E Tecnologia Do Bioetanol, São Paulo, Brazil
| | - João Pedro de Jesus Pereira
- Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência E Tecnologia Do Bioetanol, São Paulo, Brazil
| | - Bruno Viana Navarro
- Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência E Tecnologia Do Bioetanol, São Paulo, Brazil
| | - Marina C M Martins
- Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência E Tecnologia Do Bioetanol, São Paulo, Brazil
| | - Diego Mauricio Riaño-Pachón
- Laboratório de Biologia Computacional, Evolutiva e de Sistemas, Centro de Energia Nuclear Na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
- Instituto Nacional de Ciência E Tecnologia Do Bioetanol, São Paulo, Brazil
| | - Marcos Silveira Buckeridge
- Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
- Instituto Nacional de Ciência E Tecnologia Do Bioetanol, São Paulo, Brazil.
| |
Collapse
|
5
|
Persyn F, Smagghe W, Eeckhout D, Mertens T, Smorscek T, De Winne N, Persiau G, Van De Slijke E, Crepin N, Gadeyne A, Van Leene J, De Jaeger G. A Nitrogen-specific Interactome Analysis Sheds Light on the Role of the SnRK1 and TOR Kinases in Plant Nitrogen Signaling. Mol Cell Proteomics 2024; 23:100842. [PMID: 39307424 PMCID: PMC11526089 DOI: 10.1016/j.mcpro.2024.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 10/18/2024] Open
Abstract
Nitrogen (N) is of utmost importance for plant growth and development. Multiple studies have shown that N signaling is tightly coupled with carbon (C) levels, but the interplay between C/N metabolism and growth remains largely an enigma. Nonetheless, the protein kinases Sucrose Non-fermenting 1 (SNF1)-Related Kinase 1 (SnRK1) and Target Of Rapamycin (TOR), two ancient central metabolic regulators, are emerging as key integrators that link C/N status with growth. Despite their pivotal importance, the exact mechanisms behind the sensing of N status and its integration with C availability to drive metabolic decisions are largely unknown. Especially for SnRK1, it is not clear how this kinase responds to altered N levels. Therefore, we first monitored N-dependent SnRK1 kinase activity with an in vivo Separation of Phase-based Activity Reporter of Kinase (SPARK) sensor, revealing a contrasting N-dependency in Arabidopsis thaliana (Arabidopsis) shoot and root tissues. Next, using affinity purification (AP) and proximity labeling (PL) coupled to mass spectrometry (MS) experiments, we constructed a comprehensive SnRK1 and TOR interactome in Arabidopsis cell cultures during N-starved and N-repleted growth conditions. To broaden our understanding of the N-specificity of the TOR/SnRK1 signaling events, the resulting network was compared to corresponding C-related networks, identifying a large number of novel, N-specific interactors. Moreover, through integration of N-dependent transcriptome and phosphoproteome data, we were able to pinpoint additional N-dependent network components, highlighting for instance SnRK1 regulatory proteins that might function at the crosstalk of C/N signaling. Finally, confirmation of known and identification of novel SnRK1 interactors, such as Inositol-Requiring 1 (IRE1A) and the RAB GTPase RAB18, indicate that SnRK1, present at the ER, is involved in N signaling and autophagy induction.
Collapse
Affiliation(s)
- Freya Persyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wouter Smagghe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Toon Mertens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Thomas Smorscek
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nathalie Crepin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Astrid Gadeyne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
6
|
Vijayan J, Alvarez S, Naldrett MJ, Morse W, Maliva A, Wase N, Riekhof WR. Nitrogen starvation leads to TOR kinase-mediated downregulation of fatty acid synthesis in the algae Chlorella sorokiniana and Chlamydomonas reinhardtii. BMC PLANT BIOLOGY 2024; 24:753. [PMID: 39107711 PMCID: PMC11302099 DOI: 10.1186/s12870-024-05408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND When subject to stress conditions such as nutrient limitation microalgae accumulate triacylglycerol (TAG). Fatty acid, a substrate for TAG synthesis is derived from de novo synthesis or by membrane remodeling. The model industrial alga Chlorellasorokiniana accumulates TAG and other storage compounds under nitrogen (N)-limited growth. Molecular mechanisms underlying these processes are still to be elucidated. RESULT Previously we used transcriptomics to explore the regulation of TAG synthesis in C. sorokiniana. Surprisingly, our analysis showed that the expression of several key genes encoding enzymes involved in plastidic fatty acid synthesis are significantly repressed. Metabolic labeling with radiolabeled acetate showed that de novo fatty acid synthesis is indeed downregulated under N-limitation. Likewise, inhibition of the Target of Rapamycin kinase (TOR), a key regulator of metabolism and growth, decreased fatty acid synthesis. We compared the changes in proteins and phosphoprotein abundance using a proteomics and phosphoproteomics approach in C. sorokiniana cells under N-limitation or TOR inhibition and found extensive overlap between the N-limited and TOR-inhibited conditions. We also identified changes in the phosphorylation status of TOR complex proteins, TOR-kinase, and RAPTOR, under N-limitation. This indicates that TOR signaling is altered in a nitrogen-dependent manner. We find that TOR-mediated metabolic remodeling of fatty acid synthesis under N-limitation is conserved in the chlorophyte algae Chlorella sorokiniana and Chlamydomonas reinhardtii. CONCLUSION Our results indicate that under N-limitation there is significant metabolic remodeling, including fatty acid synthesis, mediated by TOR signaling. This process is conserved across chlorophyte algae. Using proteomic and phosphoproteomic analysis, we show that N-limitation affects TOR signaling and this in-turn affects the metabolic status of the cells. This study presents a link between N-limitation, TOR signaling and fatty acid synthesis in green-lineage.
Collapse
Affiliation(s)
- Jithesh Vijayan
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Michael J Naldrett
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Wyatt Morse
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amanda Maliva
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Wayne R Riekhof
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
7
|
Liao HS, Lee KT, Chung YH, Chen SZ, Hung YJ, Hsieh MH. Glutamine induces lateral root initiation, stress responses, and disease resistance in Arabidopsis. PLANT PHYSIOLOGY 2024; 195:2289-2308. [PMID: 38466723 DOI: 10.1093/plphys/kiae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024]
Abstract
The production of glutamine (Gln) from NO3- and NH4+ requires ATP, reducing power, and carbon skeletons. Plants may redirect these resources to other physiological processes using Gln directly. However, feeding Gln as the sole nitrogen (N) source has complex effects on plants. Under optimal concentrations, Arabidopsis (Arabidopsis thaliana) seedlings grown on Gln have similar primary root lengths, more lateral roots, smaller leaves, and higher amounts of amino acids and proteins compared to those grown on NH4NO3. While high levels of Gln accumulate in Arabidopsis seedlings grown on Gln, the expression of GLUTAMINE SYNTHETASE1;1 (GLN1;1), GLN1;2, and GLN1;3 encoding cytosolic GS1 increases and expression of GLN2 encoding chloroplastic GS2 decreases. These results suggest that Gln has distinct effects on regulating GLN1 and GLN2 gene expression. Notably, Arabidopsis seedlings grown on Gln have an unexpected gene expression profile. Compared with NH4NO3, which activates growth-promoting genes, Gln preferentially induces stress- and defense-responsive genes. Consistent with the gene expression data, exogenous treatment with Gln enhances disease resistance in Arabidopsis. The induction of Gln-responsive genes, including PATHOGENESIS-RELATED1, SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1, WRKY54, and WALL ASSOCIATED KINASE1, is compromised in salicylic acid (SA) biosynthetic and signaling mutants under Gln treatments. Together, these results suggest that Gln may partly interact with the SA pathway to trigger plant immunity.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Soon-Ziet Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Jie Hung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
8
|
Artins A, Martins MCM, Meyer C, Fernie AR, Caldana C. Sensing and regulation of C and N metabolism - novel features and mechanisms of the TOR and SnRK1 signaling pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1268-1280. [PMID: 38349940 DOI: 10.1111/tpj.16684] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
Carbon (C) and nitrogen (N) metabolisms are tightly integrated to allow proper plant growth and development. Photosynthesis is dependent on N invested in chlorophylls, enzymes, and structural components of the photosynthetic machinery, while N uptake and assimilation rely on ATP, reducing equivalents, and C-skeletons provided by photosynthesis. The direct connection between N availability and photosynthetic efficiency allows the synthesis of precursors for all metabolites and building blocks in plants. Thus, the capacity to sense and respond to sudden changes in C and N availability is crucial for plant survival and is mediated by complex yet efficient signaling pathways such as TARGET OF RAPAMYCIN (TOR) and SUCROSE-NON-FERMENTING-1-RELATED PROTEIN KINASE 1 (SnRK1). In this review, we present recent advances in mechanisms involved in sensing C and N status as well as identifying current gaps in our understanding. We finally attempt to provide new perspectives and hypotheses on the interconnection of diverse signaling pathways that will allow us to understand the integration and orchestration of the major players governing the regulation of the CN balance.
Collapse
Affiliation(s)
- Anthony Artins
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Marina C M Martins
- in Press - Scientific Consulting and Communication Services, 05089-030, São Paulo, São Paulo, Brazil
| | - Christian Meyer
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Camila Caldana
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| |
Collapse
|
9
|
Xu F, Su T, Zhang X, Qiu L, Yang X, Koizuka N, Arimura S, Hu Z, Zhang M, Yang J. Editing of ORF138 restores fertility of Ogura cytoplasmic male sterile broccoli via mitoTALENs. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1325-1334. [PMID: 38213067 PMCID: PMC11022808 DOI: 10.1111/pbi.14268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/03/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
Cytoplasmic male sterility (CMS), encoded by the mitochondrial open reading frames (ORFs), has long been used to economically produce crop hybrids. However, the utilization of CMS also hinders the exploitation of sterility and fertility variation in the absence of a restorer line, which in turn narrows the genetic background and reduces biodiversity. Here, we used a mitochondrial targeted transcription activator-like effector nuclease (mitoTALENs) to knock out ORF138 from the Ogura CMS broccoli hybrid. The knockout was confirmed by the amplification and re-sequencing read mapping to the mitochondrial genome. As a result, knockout of ORF138 restored the fertility of the CMS hybrid, and simultaneously manifested a cold-sensitive male sterility. ORF138 depletion is stably inherited to the next generation, allowing for direct use in the breeding process. In addition, we proposed a highly reliable and cost-effective toolkit to accelerate the life cycle of fertile lines from CMS-derived broccoli hybrids. By applying the k-mean clustering and interaction network analysis, we identified the central gene networks involved in the fertility restoration and cold-sensitive male sterility. Our study enables mitochondrial genome editing via mitoTALENs in Brassicaceae vegetable crops and provides evidence that the sex production machinery and its temperature-responsive ability are regulated by the mitochondria.
Collapse
Affiliation(s)
- Fengyuan Xu
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanyaChina
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Tongbing Su
- Beijing Vegetable Research CenterBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Xiaochen Zhang
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanyaChina
| | - Lei Qiu
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | - Xiaodong Yang
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | | | - Shin‐ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Zhongyuan Hu
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanyaChina
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable ScienceZhejiang UniversityHangzhouChina
- Key Laboratory of Horticultural Plant Growth and DevelopmentMinistry of Agriculture and Rural AffairsHangzhouChina
| | - Mingfang Zhang
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanyaChina
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable ScienceZhejiang UniversityHangzhouChina
- Key Laboratory of Horticultural Plant Growth and DevelopmentMinistry of Agriculture and Rural AffairsHangzhouChina
| | - Jinghua Yang
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanyaChina
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable ScienceZhejiang UniversityHangzhouChina
- Key Laboratory of Horticultural Plant Growth and DevelopmentMinistry of Agriculture and Rural AffairsHangzhouChina
| |
Collapse
|
10
|
Rabeh K, Oubohssaine M, Hnini M. TOR in plants: Multidimensional regulators of plant growth and signaling pathways. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154186. [PMID: 38330538 DOI: 10.1016/j.jplph.2024.154186] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Target Of Rapamycin (TOR) represents a ubiquitous kinase complex that has emerged as a central regulator of cell growth and metabolism in nearly all eukaryotic organisms. TOR is an evolutionarily conserved protein kinase, functioning as a central signaling hub that integrates diverse internal and external cues to regulate a multitude of biological processes. These processes collectively exert significant influence on plant growth, development, nutrient assimilation, photosynthesis, fruit ripening, and interactions with microorganisms. Within the plant domain, the TOR complex comprises three integral components: TOR, RAPTOR, and LST8. This comprehensive review provides insights into various facets of the TOR protein, encompassing its origin, structure, function, and the regulatory and signaling pathways operative in photosynthetic organisms. Additionally, we explore future perspectives related to this pivotal protein kinase.
Collapse
Affiliation(s)
- Karim Rabeh
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco.
| | - Malika Oubohssaine
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
11
|
Canal MV, Mansilla N, Gras DE, Ibarra A, Figueroa CM, Gonzalez DH, Welchen E. Cytochrome c levels affect the TOR pathway to regulate growth and metabolism under energy-deficient conditions. THE NEW PHYTOLOGIST 2024; 241:2039-2058. [PMID: 38191763 DOI: 10.1111/nph.19506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Mitochondrial function is essential for plant growth, but the mechanisms involved in adjusting growth and metabolism to changes in mitochondrial energy production are not fully understood. We studied plants with reduced expression of CYTC-1, one of two genes encoding the respiratory chain component cytochrome c (CYTc) in Arabidopsis, to understand how mitochondria communicate their status to coordinate metabolism and growth. Plants with CYTc deficiency show decreased mitochondrial membrane potential and lower ATP content, even when carbon sources are present. They also exhibit higher free amino acid content, induced autophagy, and increased resistance to nutritional stress caused by prolonged darkness, similar to plants with triggered starvation signals. CYTc deficiency affects target of rapamycin (TOR)-pathway activation, reducing S6 kinase (S6K) and RPS6A phosphorylation, as well as total S6K protein levels due to increased protein degradation via proteasome and autophagy. TOR overexpression restores growth and other parameters affected in cytc-1 mutants, even if mitochondrial membrane potential and ATP levels remain low. We propose that CYTc-deficient plants coordinate their metabolism and energy availability by reducing TOR-pathway activation as a preventive signal to adjust growth in anticipation of energy exhaustion, thus providing a mechanism by which changes in mitochondrial activity are transduced to the rest of the cell.
Collapse
Affiliation(s)
- María Victoria Canal
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Agustín Ibarra
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| |
Collapse
|
12
|
Li W, Liu J, Li Z, Ye R, Chen W, Huang Y, Yuan Y, Zhang Y, Hu H, Zheng P, Fang Z, Tao Z, Song S, Pan R, Zhang J, Tu J, Sheen J, Du H. Mitigating growth-stress tradeoffs via elevated TOR signaling in rice. MOLECULAR PLANT 2024; 17:240-257. [PMID: 38053337 PMCID: PMC11271712 DOI: 10.1016/j.molp.2023.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
Rice production accounts for approximately half of the freshwater resources utilized in agriculture, resulting in greenhouse gas emissions such as methane (CH4) from flooded paddy fields. To address this challenge, environmentally friendly and cost-effective water-saving techniques have become widely adopted in rice cultivation. However, the implementation of water-saving treatments (WSTs) in paddy-field rice has been associated with a substantial yield loss of up to 50% as well as a reduction in nitrogen use efficiency (NUE). In this study, we discovered that the target of rapamycin (TOR) signaling pathway is compromised in rice under WST. Polysome profiling-coupled transcriptome sequencing (polysome-seq) analysis unveiled a substantial reduction in global translation in response to WST associated with the downregulation of TOR activity. Molecular, biochemical, and genetic analyses revealed new insights into the impact of the positive TOR-S6K-RPS6 and negative TOR-MAF1 modules on translation repression under WST. Intriguingly, ammonium exhibited a greater ability to alleviate growth constraints under WST by enhancing TOR signaling, which simultaneously promoted uptake and utilization of ammonium and nitrogen allocation. We further demonstrated that TOR modulates the ammonium transporter AMT1;1 as well as the amino acid permease APP1 and dipeptide transporter NPF7.3 at the translational level through the 5' untranslated region. Collectively, these findings reveal that enhancing TOR signaling could mitigate rice yield penalty due to WST by regulating the processes involved in protein synthesis and NUE. Our study will contribute to the breeding of new rice varieties with increased water and fertilizer utilization efficiency.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Jiaqi Liu
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Zeqi Li
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Ruiqiang Ye
- National Key Laboratory of Plant Molecular Genetics, CAS, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenzhen Chen
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Yuqing Huang
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Yue Yuan
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Yi Zhang
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Huayi Hu
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Peng Zheng
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Zhongming Fang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
| | - Zeng Tao
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Shiyong Song
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Ronghui Pan
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jumim Tu
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Jen Sheen
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Hao Du
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| |
Collapse
|
13
|
Sena F, Monza J, Signorelli S. Determination of Free Proline in Plants. Methods Mol Biol 2024; 2798:183-194. [PMID: 38587743 DOI: 10.1007/978-1-0716-3826-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Proline metabolism has been associated with the induction of reactive oxygen species (ROS), antioxidant enzymes, and the control of cellular redox status. Moreover, proline accumulation is a highly evolutionarily conserved response to diverse abiotic stresses in plants. Thus, proline quantification has been helpful in abiotic stress research as a stress marker. The need for a reliable, fast, and simple method to detect proline in plant tissues is a powerful resource to imply the physiological status of plants under abiotic stress. This chapter summarizes the main strategies for proline extraction and quantification, highlighting their limitations and advantages, and recommends and details a specific protocol for proline extraction and quantification. The chapter provides a friendly version of this protocol with notes useful for researchers to perform the protocol.
Collapse
Affiliation(s)
- Florencia Sena
- Food and Plant Biology group, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
- Laboratory of Apicomplexan Biology, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Jorge Monza
- Food and Plant Biology group, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Santiago Signorelli
- Food and Plant Biology group, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay.
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
14
|
Dellero Y, Berardocco S, Bouchereau A. U- 13C-glucose incorporation into source leaves of Brassica napus highlights light-dependent regulations of metabolic fluxes within central carbon metabolism. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154162. [PMID: 38103478 DOI: 10.1016/j.jplph.2023.154162] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Plant central carbon metabolism comprises several important metabolic pathways acting together to support plant growth and yield establishment. Despite the emergence of 13C-based dynamic approaches, the regulation of metabolic fluxes between light and dark conditions has not yet received sufficient attention for agronomically relevant plants. Here, we investigated the impact of light/dark conditions on carbon allocation processes within central carbon metabolism of Brassica napus after U-13C-glucose incorporation into leaf discs. Leaf gas-exchanges and metabolite contents were weakly impacted by the leaf disc method and the incorporation of glucose. 13C-analysis by GC-MS showed that U-13C-glucose was converted to fructose for de novo biosynthesis of sucrose at similar rates in both light and dark conditions. However, light conditions led to a reduced commitment of glycolytic carbons towards respiratory substrates (pyruvate, alanine, malate) and TCA cycle intermediates compared to dark conditions. Analysis of 13C-enrichment at the isotopologue level and metabolic pathway isotopic tracing reconstructions identified the contribution of multiple pathways to serine biosynthesis in light and dark conditions. However, the direct contribution of the glucose-6-phosphate shunt to serine biosynthesis was not observed. Our results also provided isotopic evidences for an active metabolic connection between the TCA cycle, glycolysis and photorespiration in light conditions through a rapid reallocation of TCA cycle decarboxylations back to the TCA cycle through photorespiration and glycolysis. Altogether, these results suggest the active coordination of core metabolic pathways across multiple compartments to reorganize C-flux modes.
Collapse
Affiliation(s)
- Younès Dellero
- INRAE, Université Rennes, Institut Agro, IGEPP-UMR1349, P2M2-MetaboHUB, Le Rheu, 35653, France.
| | - Solenne Berardocco
- INRAE, Université Rennes, Institut Agro, IGEPP-UMR1349, P2M2-MetaboHUB, Le Rheu, 35653, France
| | - Alain Bouchereau
- INRAE, Université Rennes, Institut Agro, IGEPP-UMR1349, P2M2-MetaboHUB, Le Rheu, 35653, France
| |
Collapse
|
15
|
Lopez LE, Pacheco JM, Estevez JM. The exception to the rule? TORC1 triggers growth under low nutrient environments. TRENDS IN PLANT SCIENCE 2024; 29:13-15. [PMID: 37848359 DOI: 10.1016/j.tplants.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Eukaryotic cells' proliferation and growth are controlled by the target of rapamycin kinase (TOR). TOR usually activates in favorable energy and nutritional circumstances. This is challenged by recent research, suggesting that plant cells optimized for nutrient absorption in low nutritional conditions may activate the TOR pathway in a polarized manner.
Collapse
Affiliation(s)
- Leonel E Lopez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Javier Martinez Pacheco
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; Plant Molecular and Cellular Biology Laboratory and Integrative Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile; Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile; Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile.
| |
Collapse
|
16
|
Li KL, Xue H, Tang RJ, Luan S. TORC pathway intersects with a calcium sensor kinase network to regulate potassium sensing in Arabidopsis. Proc Natl Acad Sci U S A 2023; 120:e2316011120. [PMID: 37967217 PMCID: PMC10665801 DOI: 10.1073/pnas.2316011120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/02/2023] [Indexed: 11/17/2023] Open
Abstract
Potassium (K) is an essential macronutrient for plant growth, and its availability in the soil varies widely, requiring plants to respond and adapt to the changing K nutrient status. We show here that plant growth rate is closely correlated with K status in the medium, and this K-dependent growth is mediated by the highly conserved nutrient sensor, target of rapamycin (TOR). Further study connected the TOR complex (TORC) pathway with a low-K response signaling network consisting of calcineurin B-like proteins (CBL) and CBL-interacting kinases (CIPK). Under high K conditions, TORC is rapidly activated and shut down the CBL-CIPK low-K response pathway through regulatory-associated protein of TOR (RAPTOR)-CIPK interaction. In contrast, low-K status activates CBL-CIPK modules that in turn inhibit TORC by phosphorylating RAPTOR, leading to dissociation and thus inactivation of the TORC. The reciprocal regulation of the TORC and CBL-CIPK modules orchestrates plant response and adaptation to K nutrient status in the environment.
Collapse
Affiliation(s)
- Kun-Lun Li
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| | - Hui Xue
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| | - Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| |
Collapse
|
17
|
Zhang Z, Zhong Z, Xiong Y. Sailing in complex nutrient signaling networks: Where I am, where to go, and how to go? MOLECULAR PLANT 2023; 16:1635-1660. [PMID: 37740490 DOI: 10.1016/j.molp.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
To ensure survival and promote growth, sessile plants have developed intricate internal signaling networks tailored in diverse cells and organs with both shared and specialized functions that respond to various internal and external cues. A fascinating question arises: how can a plant cell or organ diagnose the spatial and temporal information it is experiencing to know "where I am," and then is able to make the accurate specific responses to decide "where to go" and "how to go," despite the absence of neuronal systems found in mammals. Drawing inspiration from recent comprehensive investigations into diverse nutrient signaling pathways in plants, this review focuses on the interactive nutrient signaling networks mediated by various nutrient sensors and transducers. We assess and illustrate examples of how cells and organs exhibit specific responses to changing spatial and temporal information within these interactive plant nutrient networks. In addition, we elucidate the underlying mechanisms by which plants employ posttranslational modification codes to integrate different upstream nutrient signals, thereby conferring response specificities to the signaling hub proteins. Furthermore, we discuss recent breakthrough studies that demonstrate the potential of modulating nutrient sensing and signaling as promising strategies to enhance crop yield, even with reduced fertilizer application.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhaochen Zhong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Xiong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
18
|
Liu Y, Wu P, Li B, Wang W, Zhu B. Phosphoribosyltransferases and Their Roles in Plant Development and Abiotic Stress Response. Int J Mol Sci 2023; 24:11828. [PMID: 37511586 PMCID: PMC10380321 DOI: 10.3390/ijms241411828] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Glycosylation is a widespread glycosyl modification that regulates gene expression and metabolite bioactivity in all life processes of plants. Phosphoribosylation is a special glycosyl modification catalyzed by phosphoribosyltransferase (PRTase), which functions as a key step in the biosynthesis pathway of purine and pyrimidine nucleotides, histidine, tryptophan, and coenzyme NAD(P)+ to control the production of these essential metabolites. Studies in the past decades have reported that PRTases are indispensable for plant survival and thriving, whereas the complicated physiological role of PRTases in plant life and their crosstalk is not well understood. Here, we comprehensively overview and critically discuss the recent findings on PRTases, including their classification, as well as the function and crosstalk in regulating plant development, abiotic stress response, and the balance of growth and stress responses. This review aims to increase the understanding of the role of plant PRTase and also contribute to future research on the trade-off between plant growth and stress response.
Collapse
Affiliation(s)
- Ye Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peiwen Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bowen Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Weihao Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Benzhong Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
19
|
Yang X, Zhao SP, Xi HL. Physiological response mechanism of alfalfa seedlings roots to typical explosive cyclotrimethylene trinitramine (RDX). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107756. [PMID: 37216824 DOI: 10.1016/j.plaphy.2023.107756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
This study explored the physiological response mechanism of alfalfa seedlings roots to a typical explosive, cyclotrimethylenetrinitramine (RDX), so as to improve the efficiency of phytoremediation. The response of plants to different levels of RDX were analyzed from the perspectives of mineral nutrition and metabolic networks. Exposure to RDX at 10-40 mg L-1 had no significant effect on root morphology, but the plant roots significantly accumulated RDX in solution (17.6-40.9%). A 40 mg L-1 RDX exposure induced cell gap expansion and disrupted root mineral metabolism, The key response elements, P, Cu, and Mg, were significantly increased by 1.60-1.66, 1.74-1.90, and 1.85-2.50 times, respectively. The 40 mg L-1 RDX exposure also significantly disturbed root basal metabolism, resulting in a total of 197 differentially expressed metabolites (DEMs). The main response metabolites were lipids and lipid-like molecules, and the key physiological response pathways were arginine biosynthesis and aminoacyl-tRNA biosynthesis. A total of 19 DEMs in root metabolic pathways, including L-arginine, L-asparagine, and ornithine, were significantly responsive to RDX exposure. The physiological response mechanism of roots to RDX therefore involve mineral nutrition and metabolic networks and are of great significance for improving phytoremediation efficiency.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - San-Ping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Hai-Ling Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
20
|
Yuxiao Z, Guo Y, Xinhua S. Comprehensive insight into an amino acid metabolic network in postharvest horticultural products: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37066732 DOI: 10.1002/jsfa.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Amino acid (AA) metabolism plays a vital role in the central metabolism of plants. In addition to protein biosynthesis, AAs are involved in secondary metabolite biosynthesis, signal transduction, stress response, defense against pathogens, flavor formation, and so on. Besides these functions, AAs can be degraded into precursors or intermediates of the tricarboxylic acid cycle to substitute respiratory substrates and restore energy homeostasis, as well as directly acting as signal molecules or be involved in the regulation of plant signals to delay senescence of postharvest horticultural products (PHPs). AA metabolism and its role in plants growth have been clarified; however, only a few studies about their roles exist concerning the postharvest preservation of fruit and vegetables. This study reviews the potential functions of various AAs by comparing the difference in AA metabolism at the postharvest stage and then discusses the crosstalk of AA metabolism and energy metabolism, the target of rapamycin/sucrose nonfermenting-related kinase 1 signaling and secondary metabolism. Finally, the roles and effect mechanism of several exogenous AAs in the preservation of PHPs are highlighted. This review provides a comprehensive insight into the AA metabolism network in PHPs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhang Yuxiao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zi'bo, China
| | - Yanyin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zi'bo, China
| | - Song Xinhua
- College of Life Science, Shandong University of Technology, Zi'bo, China
| |
Collapse
|
21
|
Ingargiola C, Jéhanno I, Forzani C, Marmagne A, Broutin J, Clément G, Leprince AS, Meyer C. The Arabidopsis Target of Rapamycin (TOR) kinase regulates ammonium assimilation and glutamine metabolism. PLANT PHYSIOLOGY 2023:kiad216. [PMID: 37042394 DOI: 10.1093/plphys/kiad216] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
In eukaryotes, Target of Rapamycin (TOR) is a well conserved kinase that controls cell metabolism and growth in response to nutrients and environmental factors. Nitrogen (N) is an essential element for plants, and TOR functions as a crucial N and amino acid sensor in animals and yeast. However, knowledge on the connections between TOR and the overall N metabolism and assimilation in plants is still limited. In this study, we investigated the regulation of TOR in Arabidopsis (Arabidopsis thaliana) by the N source as well as the impact of TOR deficiency on N metabolism. Inhibition of TOR globally decreased ammonium uptake while triggering a massive accumulation of amino acids, such as Gln, but also of polyamines. Consistently, TOR complex mutants were hypersensitive to Gln. We also showed that the glutamine synthetase inhibitor glufosinate abolishes Gln accumulation resulting from TOR inhibition and improves the growth of TOR complex mutants. These results suggest that a high level of Gln contributes to the reduction in plant growth resulting from TOR inhibition. Glutamine synthetase activity was reduced by TOR inhibition while the enzyme amount increased. In conclusion, our findings show that the TOR pathway is intimately connected to N metabolism and that a decrease in TOR activity results in glutamine synthetase-dependent Gln and amino acid accumulation.
Collapse
Affiliation(s)
- Camille Ingargiola
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Isabelle Jéhanno
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Céline Forzani
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Anne Marmagne
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Justine Broutin
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Anne-Sophie Leprince
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
- Faculté des Sciences et d'Ingénierie, Sorbonne Université, UFR 927, 4 Place Jussieu, 75252 Paris, France
| | - Christian Meyer
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
22
|
Bulut M, Alseekh S, Fernie AR. Natural variation of respiration-related traits in plants. PLANT PHYSIOLOGY 2023; 191:2120-2132. [PMID: 36546766 PMCID: PMC10069898 DOI: 10.1093/plphys/kiac593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Plant respiration is one of the greatest global metabolic fluxes, but rates of respiration vary massively both within different cell types as well as between different individuals and different species. Whilst this is well known, few studies have detailed population-level variation of respiration until recently. The last 20 years have seen a renaissance in studies of natural variance. In this review, we describe how experimental breeding populations and collections of large populations of accessions can be used to determine the genetic architecture of plant traits. We further detail how these approaches have been used to study the rate of respiration per se as well as traits that are intimately associated with respiration. The review highlights specific breakthroughs in these areas but also concludes that the approach should be more widely adopted in the study of respiration per se as opposed to the more frequently studied respiration-related traits.
Collapse
Affiliation(s)
- Mustafa Bulut
- Department of Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Saleh Alseekh
- Department of Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Center for Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | | |
Collapse
|
23
|
O’Leary BM, Scafaro AP, York LM. High-throughput, dynamic, multi-dimensional: an expanding repertoire of plant respiration measurements. PLANT PHYSIOLOGY 2023; 191:2070-2083. [PMID: 36638140 PMCID: PMC10069890 DOI: 10.1093/plphys/kiac580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
A recent burst of technological innovation and adaptation has greatly improved our ability to capture respiration rate data from plant sources. At the tissue level, several independent respiration measurement options are now available, each with distinct advantages and suitability, including high-throughput sampling capacity. These advancements facilitate the inclusion of respiration rate data into large-scale biological studies such as genetic screens, ecological surveys, crop breeding trials, and multi-omics molecular studies. As a result, our understanding of the correlations of respiration with other biological and biochemical measurements is rapidly increasing. Difficult questions persist concerning the interpretation and utilization of respiration data; concepts such as allocation of respiration to growth versus maintenance, the unnecessary or inefficient use of carbon and energy by respiration, and predictions of future respiration rates in response to environmental change are all insufficiently grounded in empirical data. However, we emphasize that new experimental designs involving novel combinations of respiration rate data with other measurements will flesh-out our current theories of respiration. Furthermore, dynamic recordings of respiration rate, which have long been used at the scale of mitochondria, are increasingly being used at larger scales of size and time to reflect processes of cellular signal transduction and physiological response to the environment. We also highlight how respiratory methods are being better adapted to different plant tissues including roots and seeds, which have been somewhat neglected historically.
Collapse
Affiliation(s)
- Brendan M O’Leary
- Saskatoon Research and Development Centre, Agriculture and Agri-food Canada, Saskatoon S7N 0X2, Canada
| | - Andrew P Scafaro
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Larry M York
- Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
24
|
McDonald AE. Unique opportunities for future research on the alternative oxidase of plants. PLANT PHYSIOLOGY 2023; 191:2084-2092. [PMID: 36472529 PMCID: PMC10069896 DOI: 10.1093/plphys/kiac555] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Alternative oxidase (AOX) is a terminal oxidase present in the electron transport system of all plants examined to date that plays an important role in the responses to abiotic and biotic stresses. Due to recent advances in cell and tissue culture, genetic engineering, and bioinformatic resources for nonmodel plants, it is now possible to study AOX in a broader diversity of species to investigate the full taxonomic distribution of AOX in plants. Additional functions of AOX should be investigated in thermogenic, carnivorous, and parasitic plants with atypical life histories. Recent methodological improvements in oxygen sensing, clustered regularly interspaced short palindromic repeats technology, and protein biochemistry will allow for considerable advancement on questions that have been long standing in the field due to experimental limitations. The role of AOX in secondary metabolism and mitochondrial metabolic pathways should also be examined due to recent discoveries in analogous systems in other organelles and fungi.
Collapse
Affiliation(s)
- Allison E McDonald
- Department of Biology, Wilfrid Laurier University, 75 University Ave. W., N2L 3C5 Waterloo, Ontario, Canada
| |
Collapse
|
25
|
Le XH, Millar AH. The diversity of substrates for plant respiration and how to optimize their use. PLANT PHYSIOLOGY 2023; 191:2133-2149. [PMID: 36573332 PMCID: PMC10069909 DOI: 10.1093/plphys/kiac599] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Plant respiration is a foundational biological process with the potential to be optimized to improve crop yield. To understand and manipulate the outputs of respiration, the inputs of respiration-respiratory substrates-need to be probed in detail. Mitochondria house substrate catabolic pathways and respiratory machinery, so transport into and out of these organelles plays an important role in committing substrates to respiration. The large number of mitochondrial carriers and catabolic pathways that remain unidentified hinder this process and lead to confusion about the identity of direct and indirect respiratory substrates in plants. The sources and usage of respiratory substrates vary and are increasing found to be highly regulated based on cellular processes and environmental factors. This review covers the use of direct respiratory substrates following transport through mitochondrial carriers and catabolism under normal and stressed conditions. We suggest the introduction of enzymes not currently found in plant mitochondria to enable serine and acetate to be direct respiratory substrates in plants. We also compare respiratory substrates by assessing energetic yields, availability in cells, and their full or partial oxidation during cell catabolism. This information can assist in decisions to use synthetic biology approaches to alter the range of respiratory substrates in plants. As a result, respiration could be optimized by introducing, improving, or controlling specific mitochondrial transporters and mitochondrial catabolic pathways.
Collapse
Affiliation(s)
- Xuyen H Le
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - A Harvey Millar
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| |
Collapse
|
26
|
Li H, Feng B, Li J, Fu W, Wang W, Chen T, Liu L, Wu Z, Peng S, Tao L, Fu G. RGA1 alleviates low-light-repressed pollen tube elongation by improving the metabolism and allocation of sugars and energy. PLANT, CELL & ENVIRONMENT 2023; 46:1363-1383. [PMID: 36658612 DOI: 10.1111/pce.14547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Low-light stress compromises photosynthetic and energy efficiency and leads to spikelet sterility; however, the effect of low-light stress on pollen tube elongation in the pistil remains poorly understood. The gene RGA1, which encodes a Gα-subunit of the heterotrimeric G-protein, enhanced low-light tolerance at anthesis by preventing the cessation of pollen tube elongation in the pistil of rice plants. In this process, marked increases in the activities of acid invertase (INV), sucrose synthase (SUS) and mitochondrial respiratory electron transport chain complexes, as well as the relative expression levels of SUTs (sucrose transporter), SWEETs (sugars will eventually be exported transporters), SUSs, INVs, CINs (cell-wall INV 1), SnRK1A (sucrose-nonfermenting 1-related kinase 1) and SnRK1B, were observed in OE-1 plants. Accordingly, notable increases in contents of ATP and ATPase were presented in OE-1 plants under low-light conditions, while they were decreased in d1 plants. Importantly, INV and ATPase activators (sucrose and Na2 SO3 , respectively) increased spikelet fertility by improving the energy status in the pistil under low-light conditions, and the ATPase inhibitor Na2 VO4 induced spikelet sterility and decreased ATPase activity. These results suggest that RGA1 could alleviate the low-light stress-induced impairment of pollen tube elongation to increase spikelet fertility by promoting sucrose unloading in the pistil and improving the metabolism and allocation of energy.
Collapse
Affiliation(s)
- Hubo Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Crop Production and Physiology Center (CPPC), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Juncai Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Weimeng Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Wenting Wang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lianmeng Liu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhihai Wu
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Shaobing Peng
- Crop Production and Physiology Center (CPPC), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guanfu Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| |
Collapse
|
27
|
Pacheco JM, Song L, Kuběnová L, Ovečka M, Berdion Gabarain V, Peralta JM, Lehuedé TU, Ibeas MA, Ricardi MM, Zhu S, Shen Y, Schepetilnikov M, Ryabova LA, Alvarez JM, Gutierrez RA, Grossmann G, Šamaj J, Yu F, Estevez JM. Cell surface receptor kinase FERONIA linked to nutrient sensor TORC signaling controls root hair growth at low temperature linked to low nitrate in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 238:169-185. [PMID: 36716782 DOI: 10.1111/nph.18723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Root hairs (RH) are excellent model systems for studying cell size and polarity since they elongate several hundred-fold their original size. Their tip growth is determined both by intrinsic and environmental signals. Although nutrient availability and temperature are key factors for a sustained plant growth, the molecular mechanisms underlying their sensing and downstream signaling pathways remain unclear. We use genetics to address the roles of the cell surface receptor kinase FERONIA (FER) and the nutrient sensing TOR Complex 1 (TORC) in RH growth. We identified that low temperature (10°C) triggers a strong RH elongation response in Arabidopsis thaliana involving FER and TORC. We found that FER is required to perceive limited nutrient availability caused by low temperature. FERONIA interacts with and activates TORC-downstream components to trigger RH growth. In addition, the small GTPase Rho of plants 2 (ROP2) is also involved in this RH growth response linking FER and TOR. We also found that limited nitrogen nutrient availability can mimic the RH growth response at 10°C in a NRT1.1-dependent manner. These results uncover a molecular mechanism by which a central hub composed by FER-ROP2-TORC is involved in the control of RH elongation under low temperature and nitrogen deficiency.
Collapse
Affiliation(s)
- Javier Martínez Pacheco
- Fundación Instituto Leloir and IIBBA-CONICET, Av Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Limei Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
- Laborarory of Species Interaction and Biological Invasion, School of Life Science, Hebei University, Baoding, 071002, China
| | - Lenka Kuběnová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Miroslav Ovečka
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Victoria Berdion Gabarain
- Fundación Instituto Leloir and IIBBA-CONICET, Av Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Juan Manuel Peralta
- Fundación Instituto Leloir and IIBBA-CONICET, Av Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Tomás Urzúa Lehuedé
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186, Santiago, Chile
- ANID - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
| | - Miguel Angel Ibeas
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186, Santiago, Chile
- ANID - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
| | - Martiniano M Ricardi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Yanan Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - Mikhail Schepetilnikov
- Institut de Biologie Moléculaire des Plantes, CNRS, UPR 2357, Université de Strasbourg, 67084, Strasbourg, France
| | - Lyubov A Ryabova
- Institut de Biologie Moléculaire des Plantes, CNRS, UPR 2357, Université de Strasbourg, 67084, Strasbourg, France
| | - José M Alvarez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186, Santiago, Chile
- ANID - Millennium Institute for Integrative Biology (iBio), 7500000, Santiago, Chile
| | - Rodrigo A Gutierrez
- ANID - Millennium Institute for Integrative Biology (iBio), 7500000, Santiago, Chile
- Millennium Institute Center for Genome Regulation, 6904411, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
- Cluster of Excellence in Plant Sciences, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, China
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186, Santiago, Chile
- ANID - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
- ANID - Millennium Institute for Integrative Biology (iBio), 7500000, Santiago, Chile
| |
Collapse
|
28
|
Yuan Y, Cao F, Yuan G. Fluorescent-Dye-Labeled Amino Acids for Real-Time Imaging in Arabidopsis thaliana. Molecules 2023; 28:molecules28073126. [PMID: 37049890 PMCID: PMC10095931 DOI: 10.3390/molecules28073126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Amino acid is the main transport form of reduced nitrogen in plants. To investigate the uptake and source–sink translocation process of plants to help understand their physiological roles and transport mechanisms, we designed and synthesized three fluorescent-dye-labeled amino acids as tools to visualize amino acid transportation in Arabidopsis thaliana; these amino acids consist of amino acids linked to the fluorophore nitrobenzoxadiazole (NBD) with excellent optical properties. Furthermore, we incubated Arabidopsis thaliana with these NBD fluorescent-dye-labeled amino acids for real-time imaging along with fluorescence enhancement for 24 h. The results showed that Arabidopsis thaliana could absorb them directly from the roots to the leaves. Therefore, our fluorescent-dye-labeled amino acids provide a de novo tool and strategy for visualizing amino acid absorption and transportation in plants.
Collapse
Affiliation(s)
- Yao Yuan
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fuxiang Cao
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Guangming Yuan
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
29
|
Coppa E, Vigani G, Aref R, Savatin D, Bigini V, Hell R, Astolfi S. Differential modulation of Target of Rapamycin activity under single and combined iron and sulfur deficiency in tomato plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36976541 DOI: 10.1111/tpj.16213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Over the past few decades, a close relationship between sulfur (S) and iron (Fe) in terms of functionality and nutrition was demonstrated in the tomato. However, very little is known about the regulatory mechanisms underlying S/Fe interactions. Recently, the potential role of citrate in plant adaptation to Fe deficiency and combined S and Fe deficiency has been described. It is known that an impaired organic acid metabolism may stimulate a retrograde signal, which has been proven to be linked to the Target of Rapamycin (TOR) signaling in yeast and animal cells. Recent reports provided evidence of TOR involvement in S nutrient sensing in plants. This suggestion prompted us to investigate whether TOR may play a role in the cross-talk of signaling pathway occurring during plant adaptation to combined nutrient deficiency of Fe and S. Our results revealed that Fe deficiency elicited an increase of TOR activity associated with enhanced accumulation of citrate. In contrast, S deficiency resulted in decreased TOR activity and citrate accumulation. Interestingly, citrate accumulated in shoots of plants exposed to combined S/Fe deficiency to values between those found in Fe- and S-deficient plants, again correlated with TOR activity level. Our results suggest that citrate might be involved in establishing a link between plant response to combined S/Fe deficiency and the TOR network.
Collapse
Affiliation(s)
- Eleonora Coppa
- Department of Agriculture and Forest Sciences, University of Tuscia, via S.C. de Lellis, Viterbo, 01100, Italy
| | - Gianpiero Vigani
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Via G. Quarello 15/A, Torino, 10135, Italy
| | - Rasha Aref
- Department of Genetics, Faculty of Agriculture, Ain Shams University, 11241, Cairo, Egypt
| | - Daniel Savatin
- Department of Agriculture and Forest Sciences, University of Tuscia, via S.C. de Lellis, Viterbo, 01100, Italy
| | - Valentina Bigini
- Department of Agriculture and Forest Sciences, University of Tuscia, via S.C. de Lellis, Viterbo, 01100, Italy
| | - Ruediger Hell
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany
| | - Stefania Astolfi
- Department of Agriculture and Forest Sciences, University of Tuscia, via S.C. de Lellis, Viterbo, 01100, Italy
| |
Collapse
|
30
|
Mallén-Ponce MJ, Pérez-Pérez ME, Crespo JL. Deciphering the function and evolution of the target of rapamycin signaling pathway in microalgae. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6993-7005. [PMID: 35710309 PMCID: PMC9664231 DOI: 10.1093/jxb/erac264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Microalgae constitute a highly diverse group of photosynthetic microorganisms that are widely distributed on Earth. The rich diversity of microalgae arose from endosymbiotic events that took place early in the evolution of eukaryotes and gave rise to multiple lineages including green algae, the ancestors of land plants. In addition to their fundamental role as the primary source of marine and freshwater food chains, microalgae are essential producers of oxygen on the planet and a major biotechnological target for sustainable biofuel production and CO2 mitigation. Microalgae integrate light and nutrient signals to regulate cell growth. Recent studies identified the target of rapamycin (TOR) kinase as a central regulator of cell growth and a nutrient sensor in microalgae. TOR promotes protein synthesis and regulates processes that are induced under nutrient stress such as autophagy and the accumulation of triacylglycerol and starch. A detailed analysis of representative genomes from the entire microalgal lineage revealed that the highly conserved central components of the TOR pathway are likely to have been present in the last eukaryotic common ancestor, and the loss of specific TOR signaling elements at an early stage in the evolution of microalgae. Here we examine the evolutionary conservation of TOR signaling components in diverse microalgae and discuss recent progress of this signaling pathway in these organisms.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
31
|
Scarpin MR, Simmons CH, Brunkard JO. Translating across kingdoms: target of rapamycin promotes protein synthesis through conserved and divergent pathways in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7016-7025. [PMID: 35770874 PMCID: PMC9664230 DOI: 10.1093/jxb/erac267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
mRNA translation is the growth rate-limiting step in genome expression. Target of rapamycin (TOR) evolved a central regulatory role in eukaryotes as a signaling hub that monitors nutrient availability to maintain homeostasis and promote growth, largely by increasing the rate of translation initiation and protein synthesis. The dynamic pathways engaged by TOR to regulate translation remain debated even in well-studied yeast and mammalian models, however, despite decades of intense investigation. Recent studies have firmly established that TOR also regulates mRNA translation in plants through conserved mechanisms, such as the TOR-LARP1-5'TOP signaling axis, and through pathways specific to plants. Here, we review recent advances in our understanding of the regulation of mRNA translation in plants by TOR.
Collapse
Affiliation(s)
- M Regina Scarpin
- Laboratory of Genetics, University of Wisconsin, Madison, WI, USA
- Department of Plant and Microbial Biology, University of California, Berkeley,CA, USA
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA, USA
| | - Carl H Simmons
- Laboratory of Genetics, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
32
|
Yu Y, Zhong Z, Ma L, Xiang C, Chen J, Huang XY, Xu P, Xiong Y. Sulfate-TOR signaling controls transcriptional reprogramming for shoot apex activation. THE NEW PHYTOLOGIST 2022; 236:1326-1338. [PMID: 36028982 DOI: 10.1111/nph.18441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Plants play a primary role for the global sulfur cycle in the earth ecosystems by reduction of inorganic sulfate from the soil to organic sulfur-containing compounds. How plants sense and transduce the sulfate availability to mediate their growth remains largely unclear. The target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator of nutrient sensing and metabolic signaling to control cell proliferation and growth in all eukaryotes. By tissue-specific Western blotting and RNA-sequencing analysis, we investigated sulfate-TOR signal pathway in regulating shoot apex development. Here, we report that inorganic sulfate exhibits high potency activating TOR and cell proliferation to promote true leaf development in Arabidopsis in a glucose-energy parallel pathway. Genetic and metabolite analyses suggest that this sulfate activation of TOR is independent from the sulfate-assimilation process and glucose-energy signaling. Significantly, tissue specific transcriptome analyses uncover previously unknown sulfate-orchestrating genes involved in DNA replication, cell proliferation and various secondary metabolism pathways, which largely depends on TOR signaling. Systematic comparison between the sulfate- and glucose-TOR controlled transcriptome further reveals that TOR kinase, as the central growth integrator, responds to different nutrient signals to control both shared and unique transcriptome networks, therefore, precisely modulates plant proliferation, growth and stress responses.
Collapse
Affiliation(s)
- Yongdong Yu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhaochen Zhong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liuyin Ma
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chengbin Xiang
- Division of Life Sciences and Medicine, Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, 230027, China
| | - Jie Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yan Xiong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
33
|
Mallén-Ponce MJ, Pérez-Pérez ME, Crespo JL. Analyzing the impact of autotrophic and heterotrophic metabolism on the nutrient regulation of TOR. THE NEW PHYTOLOGIST 2022; 236:1261-1266. [PMID: 36052700 DOI: 10.1111/nph.18450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The target of rapamycin (TOR) protein kinase is a master regulator of cell growth in all eukaryotes, from unicellular yeast and algae to multicellular animals and plants. Target of rapamycin balances the synthesis and degradation of proteins, lipids, carbohydrates and nucleic acids in response to nutrients, growth factors and cellular energy to promote cell growth. Among nutrients, amino acids (AAs) and glucose are central regulators of TOR activity in evolutionary distant eukaryotes such as mammals, plants and algae. However, these organisms obtain the nutrients through totally different metabolic processes. Although photosynthetic eukaryotes can use atmospheric CO2 as the sole carbon (C) source for all reactions in the cell, heterotrophic organisms get nutrients from other sources of organic C including glucose. Here, we discuss the impact of autotrophic and heterotrophic metabolism on the nutrient regulation of TOR, focusing on the role of AAs and C sources upstream of this signaling pathway.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, 41092, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, 41092, Spain
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, 41092, Spain
| |
Collapse
|
34
|
Zhang Y, Xing H, Wang H, Yu L, Yang Z, Meng X, Hu P, Fan H, Yu Y, Cui N. SlMYC2 interacted with the SlTOR promoter and mediated JA signaling to regulate growth and fruit quality in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1013445. [PMID: 36388521 PMCID: PMC9647163 DOI: 10.3389/fpls.2022.1013445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Tomato (Solanum lycopersicum) is a major vegetable crop cultivated worldwide. The regulation of tomato growth and fruit quality has long been a popular research topic. MYC2 is a key regulator of the interaction between jasmonic acid (JA) signaling and other signaling pathways, and MYC2 can integrate the interaction between JA signaling and other hormone signals to regulate plant growth and development. TOR signaling is also an essential regulator of plant growth and development. However, it is unclear whether MYC2 can integrate JA signaling and TOR signaling during growth and development in tomato. Here, MeJA treatment and SlMYC2 overexpression inhibited the growth and development of tomato seedlings and photosynthesis, but increased the sugar-acid ratio and the contents of lycopene, carotenoid, soluble sugar, total phenol and flavonoids, indicating that JA signaling inhibited the growth of tomato seedlings and altered fruit quality. When TOR signaling was inhibited by RAP, the JA content increased, and the growth and photosynthesis of tomato seedlings decreased, indicating that TOR signaling positively regulated the growth and development of tomato seedlings. Further yeast one-hybrid assays showed that SlMYC2 could bind directly to the SlTOR promoter. Based on GUS staining analysis, SlMYC2 regulated the transcription of SlTOR, indicating that SlMYC2 mediated the interaction between JA and TOR signaling by acting on the promoter of SlTOR. This study provides a new strategy and some theoretical basis for tomato breeding.
Collapse
Affiliation(s)
- Yujiao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hongyun Xing
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Haoran Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lan Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Zhi Yang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Pengpeng Hu
- Department of Foreign Language Teaching, Shenyang Agricultural University, Shenyang, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
35
|
Wu T, Xia J, Ge F, Qiu H, Tian L, Liu X, Liu R, Jiang A, Zhu J, Shi L, Yu H, Zhao M, Ren A. Target of Rapamycin Mediated Ornithine Decarboxylase Antizyme Modulate Intracellular Putrescine and Ganoderic Acid Content in Ganoderma lucidum. Microbiol Spectr 2022; 10:e0163322. [PMID: 36125287 PMCID: PMC9604110 DOI: 10.1128/spectrum.01633-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/02/2022] [Indexed: 12/31/2022] Open
Abstract
Putrescine (Put) has been shown to play an important regulatory role in cell growth in organisms. As the primary center regulating the homeostasis of polyamine (PA) content, ornithine decarboxylase antizyme (AZ) can regulate PA content through feedback. Nevertheless, the regulatory mechanism of Put is poorly understood in fungi. Here, our analysis showed that GlAZ had a modulate effect on intracellular Put content by interacting with ornithine decarboxylase (ODC) proteins and reducing its intracellular protein levels. In addition, GlAZ upregulated the metabolic pathway of ganoderic acid (GA) biosynthesis in Ganoderma lucidum by modulating the intracellular Put content. However, a target of rapamycin (TOR) was found to promote the accumulation of intracellular Put after the GlTOR inhibitor Rap was added exogenously, and unbiased analyses demonstrated that GlTOR may promote Put production through its inhibitory effect on the level of GlAZ protein in GlTOR-GlAZ-cosilenced strains. The effect of TOR on fungal secondary metabolism was further explored, and the content of GA in the GlTOR-silenced strain after the exogenous addition of the inhibitor Rap was significantly increased compared with that in the untreated wild-type (WT) strain. Silencing of TOR in the GlTOR-silenced strains caused an increase in GA content, which returned to the WT state after replenishing Put. Moreover, the content of GA in GlTOR-GlAZ-cosilenced strains was also not different from that in the WT strain. Consequently, these results strongly indicate that GlTOR affects G. lucidum GA biosynthesis via GlAZ. IMPORTANCE Research on antizyme (AZ) in fungi has focused on the mechanism by which AZ inhibits ornithine decarboxylase (ODC). Moreover, there are existing reports on the regulation of AZ protein translation by TOR. However, little is known about the mechanisms that influence AZ in fungal secondary metabolism. Here, both intracellular Put content and GA biosynthesis in G. lucidum were shown to be regulated through protein interactions between GlAZ and GlODC. Furthermore, exploration of upstream regulators of GlAZ suggested that GlAZ was regulated by the upstream protein GlTOR, which affected intracellular Put levels and ganoderic acid (GA) biosynthesis. The results of our work contribute to the understanding of the upstream regulation of Put and provide new insights into PA regulatory systems and secondary metabolism in fungi.
Collapse
Affiliation(s)
- Tao Wu
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
- Sanya Institute of Nanjing Agricultural University, Hainan, People’s Republic of China
| | - Jiale Xia
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Feng Ge
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Hao Qiu
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Li Tian
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Xiaotian Liu
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Rui Liu
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Ailiang Jiang
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Jing Zhu
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Liang Shi
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Hanshou Yu
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Mingwen Zhao
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Ang Ren
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
- Sanya Institute of Nanjing Agricultural University, Hainan, People’s Republic of China
- Institute of Biology, Guizhou Academy of Sciences, Guizhou, People’s Republic of China
| |
Collapse
|
36
|
Dong Y, Aref R, Forieri I, Schiel D, Leemhuis W, Meyer C, Hell R, Wirtz M. The plant TOR kinase tunes autophagy and meristem activity for nutrient stress-induced developmental plasticity. THE PLANT CELL 2022; 34:3814-3829. [PMID: 35792878 PMCID: PMC9516127 DOI: 10.1093/plcell/koac201] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/29/2022] [Indexed: 05/26/2023]
Abstract
Plants, unlike animals, respond to environmental challenges with comprehensive developmental transitions that allow them to cope with these stresses. Here we discovered that antagonistic activation of the Target of Rapamycin (TOR) kinase in Arabidopsis thaliana roots and shoots is essential for the nutrient deprivation-induced increase in the root-to-shoot ratio to improve foraging for mineral ions. We demonstrate that sulfate limitation-induced downregulation of TOR in shoots activates autophagy, resulting in enhanced carbon allocation to the root. The allocation of carbon to the roots is facilitated by the specific upregulation of the sucrose-transporter genes SWEET11/12 in shoots. SWEET11/12 activation is indispensable for enabling sucrose to act as a carbon source for growth and as a signal for tuning root apical meristem activity via glucose-TOR signaling. The sugar-stimulated TOR activity in the root suppresses autophagy and maintains root apical meristem activity to support root growth to enhance mining for new sulfate resources in the soil. We provide direct evidence that the organ-specific regulation of autophagy is essential for the increased root-to-shoot ratio in response to sulfur limitation. These findings uncover how sulfur limitation controls the central sensor kinase TOR to enable nutrient recycling for stress-induced morphological adaptation of the plant body.
Collapse
Affiliation(s)
- Yihan Dong
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Rasha Aref
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ilaria Forieri
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - David Schiel
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Wiebke Leemhuis
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Christian Meyer
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | | | | |
Collapse
|
37
|
The TOR complex controls ATP levels to regulate actin cytoskeleton dynamics in Arabidopsis. Proc Natl Acad Sci U S A 2022; 119:e2122969119. [PMID: 36095209 PMCID: PMC9499549 DOI: 10.1073/pnas.2122969119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells must overcome energy shortage, and the ability to do so determines their fate. The ability of cells to coordinate their cellular activities and energy status is therefore important for all living organisms. One of the major energy drains in eukaryotic cells is the constant turnover of the actin cytoskeleton, which consumes ATP during the cycle of polymerization and depolymerization. We report that the TOR complex, a master regulatory hub that integrates cellular energy information to coordinate cell growth and metabolism, controls cellular ATP levels in plant cells. We further elucidate that low ATP levels cause reduced actin dynamics in plant cells. These findings provide insight into how plant cells handle low energy situations. Energy is essential for all cellular functions in a living organism. How cells coordinate their physiological processes with energy status and availability is thus an important question. The turnover of actin cytoskeleton between its monomeric and filamentous forms is a major energy drain in eukaryotic cells. However, how actin dynamics are regulated by ATP levels remain largely unknown in plant cells. Here, we observed that seedlings with impaired functions of target of rapamycin complex 1 (TORC1), either by mutation of the key component, RAPTOR1B, or inhibition of TOR activity by specific inhibitors, displayed reduced sensitivity to actin cytoskeleton disruptors compared to their controls. Consistently, actin filament dynamics, but not organization, were suppressed in TORC1-impaired cells. Subcellular localization analysis and quantification of ATP concentration demonstrated that RAPTOR1B localized at cytoplasm and mitochondria and that ATP levels were significantly reduced in TORC1-impaired plants. Further pharmacologic experiments showed that the inhibition of mitochondrial functions led to phenotypes mimicking those observed in raptor1b mutants at the level of both plant growth and actin dynamics. Exogenous feeding of adenine could partially restore ATP levels and actin dynamics in TORC1-deficient plants. Thus, these data support an important role for TORC1 in coordinating ATP homeostasis and actin dynamics in plant cells.
Collapse
|
38
|
Song L, Xu G, Li T, Zhou H, Lin Q, Chen J, Wang L, Wu D, Li X, Wang L, Zhu S, Yu F. The RALF1-FERONIA complex interacts with and activates TOR signaling in response to low nutrients. MOLECULAR PLANT 2022; 15:1120-1136. [PMID: 35585790 DOI: 10.1016/j.molp.2022.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Target of rapamycin (TOR) kinase is an evolutionarily conserved major regulator of nutrient metabolism and organismal growth in eukaryotes. In plants, nutrients are remobilized and reallocated between shoots and roots under low-nutrient conditions, and nitrogen and nitrogen-related nutrients (e.g., amino acids) are key upstream signals leading to TOR activation in shoots under low-nutrient conditions. However, how these forms of nitrogen can be sensed to activate TOR in plants is still poorly understood. Here we report that the Arabidopsis receptor kinase FERONIA (FER) interacts with the TOR pathway to regulate nutrient (nitrogen and amino acid) signaling under low-nutrient conditions and exerts similar metabolic effects in response to nitrogen deficiency. We found that FER and its partner, RPM1-induced protein kinase (RIPK), interact with the TOR/RAPTOR complex to positively modulate TOR signaling activity. During this process, the receptor complex FER/RIPK phosphorylates the TOR complex component RAPTOR1B. The RALF1 peptide, a ligand of the FER/RIPK receptor complex, increases TOR activation in the young leaf by enhancing FER-TOR interactions, leading to promotion of true leaf growth in Arabidopsis under low-nutrient conditions. Furthermore, we showed that specific amino acids (e.g., Gln, Asp, and Gly) promote true leaf growth under nitrogen-deficient conditions via the FER-TOR axis. Collectively, our study reveals a mechanism by which the RALF1-FER pathway activates TOR in the plant adaptive response to low nutrients and suggests that plants prioritize nutritional stress response over RALF1-mediated inhibition of cell growth under low-nutrient conditions.
Collapse
Affiliation(s)
- Limei Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Guoyun Xu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, P. R. China
| | - Tingting Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Huina Zhou
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, P. R. China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Jia Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Long Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Dousheng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China
| | - Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, P. R. China
| | - Lifeng Wang
- State Key Laboratory of Hybrid Rice, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, P. R. China
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China.
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, P.R. China; State Key Laboratory of Hybrid Rice, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, P. R. China.
| |
Collapse
|
39
|
Marash I, Leibman‐Markus M, Gupta R, Avni A, Bar M. TOR inhibition primes immunity and pathogen resistance in tomato in a salicylic acid-dependent manner. MOLECULAR PLANT PATHOLOGY 2022; 23:1035-1047. [PMID: 35441436 PMCID: PMC9190978 DOI: 10.1111/mpp.13207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
All organisms need to sense and process information about the availability of nutrients, energy status, and environmental cues to determine the best time for growth and development. The conserved target of rapamycin (TOR) protein kinase has a central role in sensing and perceiving nutritional information. TOR connects environmental information about nutrient availability to developmental and metabolic processes to maintain cellular homeostasis. Under favourable energy conditions, TOR is activated and promotes anabolic processes such as cell division, while suppressing catabolic processes. Conversely, when nutrients are limited or environmental stresses are present, TOR is inactivated, and catabolic processes are promoted. Given the central role of TOR in regulating metabolism, several previous works have examined whether TOR is wired to plant defence. To date, the mechanisms by which TOR influences plant defence are not entirely clear. Here, we addressed this question by testing the effect of inhibiting TOR on immunity and pathogen resistance in tomato. Examining which hormonal defence pathways are influenced by TOR, we show that tomato immune responses and disease resistance to several pathogens increase on TOR inhibition, and that TOR inhibition-mediated resistance probably requires a functional salicylic acid, but not jasmonic acid, pathway. Our results support the notion that TOR is a master regulator of the development-defence switch in plants.
Collapse
Affiliation(s)
- Iftah Marash
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteBet DaganIsrael
- School of Plant Science and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Meirav Leibman‐Markus
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteBet DaganIsrael
| | - Rupali Gupta
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteBet DaganIsrael
| | - Adi Avni
- School of Plant Science and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Maya Bar
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteBet DaganIsrael
| |
Collapse
|
40
|
Haq SIU, Shang J, Xie H, Qiu QS. Roles of TOR signaling in nutrient deprivation and abiotic stress. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153716. [PMID: 35597106 DOI: 10.1016/j.jplph.2022.153716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
In living organisms, nutrient, energy, and environmental stimuli sensing and signaling are considered as the most primordial regulatory networks governing growth and development. Target of Rapamycin (TOR) is a diversified Serine/Threonine protein kinase existing in all eukaryotes that regulates distinct salient growth and developmental signaling pathways. TOR signaling acts as a central hub in plants that allows a variety of nutrients, energy, hormones, and environmental stimuli to be integrated. TOR is activated by several nutrients and promotes energy-consuming processes such as cell division, protein translation, mRNA translation and ribosome biogenesis. We summarized the recent findings on the TOR function in regulating the dynamic networks of nutrients, including sugar, sulfur, nitrogen, carbon, phosphorus, potassium, and amino acids. TOR's role in abiotic stress was discussed, in which TOR orchestrating stress signaling, including heat, cold, salt, and osmotic stress, to regulate transcriptional and metabolic reprogramming, as well as growth and development. The interconnections between TOR and SnRK1 kinase were discussed in controlling nutrient deprivation and abiotic stress.
Collapse
Affiliation(s)
- Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Jun Shang
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810000, China; Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Xining, Qinghai, 810008, China
| | - Huichun Xie
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810000, China; Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Xining, Qinghai, 810008, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China; Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810000, China.
| |
Collapse
|
41
|
Tyutereva EV, Murtuzova AV, Voitsekhovskaja OV. Autophagy and the Energy Status of Plant Cells. RUSSIAN JOURNAL OF PLANT PHYSIOLOGY 2022; 69:19. [DOI: 10.1134/s1021443722020212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 01/04/2025]
Abstract
Abstract
In plant cells the homeostatic control of energy balance involves the production and recycling of adenylates with macroergic bonds, ATP and ADP. The maintenance of anabolic processes requires the relative saturation of the adenylate pool with high energy phosphoanhydride bonds. The bulk of ATP synthesis is carried out both in mitochondria and in chloroplasts while optimal ATP levels within other cell compartments are maintained by adenylate kinases (AK). AK activity was recently found in cytosol, mitochondria, plastids and the nucleus. ATP synthesis in energy-producing organelles, as well as redistribution of nutrients among cellular compartments, requires fine-tuned regulation of ion homeostasis. A special role in energy metabolism is played by autophagy, a process of active degradation of unwanted and/or damaged cell components and macromolecules within the central lytic vacuole. So-called constitutive autophagy controls the quality of cellular contents under favorable conditions, i.e., when the cellular energy status is high. Energy depletion can lead to the activation of the pro-survival process of autophagic removal and utilization of damaged structures; the breakdown products are then used for ATP regeneration and de novo synthesis of macromolecules. Mitophagy and chlorophagy maintain the populations of healthy and functional energy-producing “stations”, preventing accumulation of defective mitochondria and chloroplasts as potential sources of dangerous reactive oxygen species. However, the increase of autophagic flux above a threshold level can lead to the execution of the vacuolar type of programmed cell death (PCD). In this case autophagy also contributes to preservation of energy through support of the outflow of nutrients from dying cells to healthy neighboring tissues. In plants, two central protein kinases, SnRK1 (Snf1-related protein kinase 1) and TOR (target of rapamycin), are responsible for the regulation of the metabolic switch between anabolic and catabolic pathways. TOR promotes the energy-demanding metabolic reactions in response to nutrient availability and simultaneously suppresses catabolism including autophagy. SnRK1, the antagonist of TOR, senses a decline in cellular energy supply and reacts by inducing autophagy through several independent pathways. Here, we provide an overview of the recent knowledge about the interplay between SnRK1 and TOR, autophagy and PCD in course of the regulation of energy balance in plants.
Collapse
|
42
|
Artins A, Caldana C. The metabolic homeostaTOR: The balance of holding on or letting grow. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102196. [PMID: 35219142 DOI: 10.1016/j.pbi.2022.102196] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Plants, as autotrophic organisms, capture light energy to convert carbon dioxide into ATP, NADPH, and sugars, which are essential for the biosynthesis of building blocks, cell proliferation, biomass accumulation, and reproductive fitness. The Target Of Rapamycin (TOR) signalling pathway is a master regulator in sensing energy and nutrients, adapting the metabolic network and cell behaviour in response to environmental resource availability. In the past years, exciting advances in this endeavour have pointed out this pathway's importance in controlling metabolic homeostasis in various biological processes and systems. In this review, we discuss these recent discoveries highlighting the need for a metabolic threshold for the proper function of this kinase complex at the cellular level and across distinct tissues and organs to control growth and development in plants.
Collapse
Affiliation(s)
- Anthony Artins
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
43
|
Wang M, Ogé L, Pérez Garcia MD, Launay-Avon A, Clément G, Le Gourrierec J, Hamama L, Sakr S. Antagonistic Effect of Sucrose Availability and Auxin on Rosa Axillary Bud Metabolism and Signaling, Based on the Transcriptomics and Metabolomics Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:830840. [PMID: 35392520 PMCID: PMC8982072 DOI: 10.3389/fpls.2022.830840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Shoot branching is crucial for successful plant development and plant response to environmental factors. Extensive investigations have revealed the involvement of an intricate regulatory network including hormones and sugars. Recent studies have demonstrated that two major systemic regulators-auxin and sugar-antagonistically regulate plant branching. However, little is known regarding the molecular mechanisms involved in this crosstalk. We carried out two complementary untargeted approaches-RNA-seq and metabolomics-on explant stem buds fed with different concentrations of auxin and sucrose resulting in dormant and non-dormant buds. Buds responded to the combined effect of auxin and sugar by massive reprogramming of the transcriptome and metabolome. The antagonistic effect of sucrose and auxin targeted several important physiological processes, including sink strength, the amino acid metabolism, the sulfate metabolism, ribosome biogenesis, the nucleic acid metabolism, and phytohormone signaling. Further experiments revealed a role of the TOR-kinase signaling pathway in bud outgrowth through at least downregulation of Rosa hybrida BRANCHED1 (RhBRC1). These new findings represent a cornerstone to further investigate the diverse molecular mechanisms that drive the integration of endogenous factors during shoot branching.
Collapse
Affiliation(s)
- Ming Wang
- Dryland-Technology Key Laboratory of Shandong Province, College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | - Laurent Ogé
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | | | - Alexandra Launay-Avon
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Jose Le Gourrierec
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | - Latifa Hamama
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | - Soulaiman Sakr
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| |
Collapse
|
44
|
Oh GGK, O’Leary BM, Signorelli S, Millar AH. Alternative oxidase (AOX) 1a and 1d limit proline-induced oxidative stress and aid salinity recovery in Arabidopsis. PLANT PHYSIOLOGY 2022; 188:1521-1536. [PMID: 34919733 PMCID: PMC8896607 DOI: 10.1093/plphys/kiab578] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 05/24/2023]
Abstract
Proline (Pro) catabolism and reactive oxygen species production have been linked in mammals and Caenorhabditis elegans, while increases in leaf respiration rate follow Pro exposure in plants. Here, we investigated how alternative oxidases (AOXs) of the mitochondrial electron transport chain accommodate the large, atypical flux resulting from Pro catabolism and limit oxidative stress during Pro breakdown in mature Arabidopsis (Arabidopsis thaliana) leaves. Following Pro treatment, AOX1a and AOX1d accumulate at transcript and protein levels, with AOX1d approaching the level of the typically dominant AOX1a isoform. We therefore sought to determine the function of both AOX isoforms under Pro respiring conditions. Oxygen consumption rate measurements in aox1a and aox1d leaves suggested these AOXs can functionally compensate for each other to establish enhanced AOX catalytic capacity in response to Pro. Generation of aox1a.aox1d lines showed complete loss of AOX proteins and activity upon Pro treatment, yet full respiratory induction in response to Pro remained possible via the cytochrome pathway. However, aox1a.aox1d leaves displayed symptoms of elevated oxidative stress and suffered increased oxidative damage during Pro metabolism compared to the wild-type (WT) or the single mutants. During recovery from salt stress, when relatively high rates of Pro catabolism occur naturally, photosynthetic rates in aox1a.aox1d recovered slower than in the WT or the single aox lines, showing that both AOX1a and AOX1d are beneficial for cellular metabolism during Pro drawdown following osmotic stress. This work provides physiological evidence of a beneficial role for AOX1a but also the less studied AOX1d isoform in allowing safe catabolism of alternative respiratory substrates like Pro.
Collapse
Affiliation(s)
- Glenda Guek Khim Oh
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley WA 6009, Australia
| | - Brendan M O’Leary
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley WA 6009, Australia
- Saskatoon Research and Development Centre, Agriculture and Agri-food, Saskatoon, SK S7N 0X2, Canada
| | - Santiago Signorelli
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley WA 6009, Australia
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Uruguay
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|
45
|
Amino Acid Signaling for TOR in Eukaryotes: Sensors, Transducers, and a Sustainable Agricultural fuTORe. Biomolecules 2022; 12:biom12030387. [PMID: 35327579 PMCID: PMC8945916 DOI: 10.3390/biom12030387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells monitor and regulate metabolism through the atypical protein kinase target of rapamycin (TOR) regulatory hub. TOR is activated by amino acids in animals and fungi through molecular signaling pathways that have been extensively defined in the past ten years. Very recently, several studies revealed that TOR is also acutely responsive to amino acid metabolism in plants, but the mechanisms of amino acid sensing are not yet established. In this review, we summarize these discoveries, emphasizing the diversity of amino acid sensors in human cells and highlighting pathways that are indirectly sensitive to amino acids, i.e., how TOR monitors changes in amino acid availability without a bona fide amino acid sensor. We then discuss the relevance of these model discoveries to plant biology. As plants can synthesize all proteinogenic amino acids from inorganic precursors, we focus on the possibility that TOR senses both organic metabolites and inorganic nutrients. We conclude that an evolutionary perspective on nutrient sensing by TOR benefits both agricultural and biomedical science, contributing to ongoing efforts to generate crops for a sustainable agricultural future.
Collapse
|
46
|
An H, Gan T, Tang M, Chen H. Molecular Mechanism of Overcoming Host Resistance by the Target of Rapamycin Gene in Leptographium qinlingensis. Microorganisms 2022; 10:microorganisms10030503. [PMID: 35336079 PMCID: PMC8954470 DOI: 10.3390/microorganisms10030503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Leptographium qinlingensis is a fungal symbiont of the Chinese white pine beetle (Dendroctonus armandi) and a pathogen of the Chinese white pine (Pinus armandii) that must overcome the terpenoid oleoresin defenses of host trees to invade and colonize. L. qinlingensis responds to monoterpene flow with abundant mechanisms that include the decomposing and use of these compounds as a nitrogen source. Target of Rapamycin (TOR) is an evolutionarily conserved protein kinase that plays a central role in both plants and animals through integration of nutrients, energies, hormones, growth factors and environmental inputs to control proliferation, growth and metabolism in diverse multicellular organisms. In this study, in order to explore the relationship between TOR gene and carbon sources, nitrogen sources, host nutrients and host volatiles (monoterpenoids) in L. qinlingensis, we set up eight carbon source treatments, ten nitrogen source treatments, two host nutrients and six monoterpenoids (5%, 10% and 20%) treatments, and prepared different media conditions. By measuring the biomass and growth rate of mycelium, the results revealed that, on the whole, the response of L. qinlingensis to nitrogen sources was better than carbon sources, and the fungus grew well in maltose (carbon source), (NH4)2C2O4 (inorganic nitrogen source), asparagine (organic nitrogen source) and P. armandii (host nutrient) versus other treatments. Then, by analyzing the relationship between TOR expression and different nutrients, the data showed that: (i) TOR expression exhibited negative regulation in response to carbon sources and host nutrition. (ii) The treatments of nitrogen sources and terpenoids had positively regulatory effects on TOR gene; moreover, the fungus was most sensitive to β-pinene and 3-carene. In conclusion, our findings reveal that TOR in L. qinlingensis plays a key role in the utilization of host volatiles as nutrient intake, overcoming the physical and chemical host resistances and successful colonization.
Collapse
|
47
|
Duncan O, Millar AH. Day and night isotope labelling reveal metabolic pathway specific regulation of protein synthesis rates in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:745-763. [PMID: 34997626 DOI: 10.1111/tpj.15661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Plants have a diurnal separation of metabolic fluxes and a need for differential maintenance of protein machinery in the day and night. To directly assess the output of the translation process and to estimate the ATP investment involved, the individual rates of protein synthesis and degradation of hundreds of different proteins need to be measured simultaneously. We quantified protein synthesis and degradation through pulse labelling with heavy hydrogen in Arabidopsis thaliana rosettes to allow such an assessment of ATP investment in leaf proteome homeostasis on a gene-by-gene basis. Light-harvesting complex proteins were synthesised and degraded much faster in the day (approximately 10:1), while carbon metabolism and vesicle trafficking components were translated at similar rates day or night. Few leaf proteins changed in abundance between the day and the night despite reduced protein synthesis rates at night, indicating that protein degradation rates are tightly coordinated. The data reveal how the pausing of photosystem synthesis and degradation at night allows the redirection of a decreased energy budget to a selective night-time maintenance schedule.
Collapse
Affiliation(s)
- Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, Perth, WA, Australia
- Western Australian Proteomics, The University Western Australia, Perth, WA, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, Perth, WA, Australia
- Western Australian Proteomics, The University Western Australia, Perth, WA, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
48
|
Abstract
The target of rapamycin (TOR) kinase is a master regulator that integrates nutrient signals to promote cell growth in all eukaryotes. It is well established that amino acids and glucose are major regulators of TOR signaling in yeast and metazoan, but whether and how TOR responds to carbon availability in photosynthetic organisms is less understood. In this study, we showed that photosynthetic assimilation of CO2 by the Calvin-Benson-Bassham (CBB) cycle regulates TOR activity in the model single-celled microalga Chlamydomonas reinhardtii Stimulation of CO2 fixation boosted TOR activity, whereas inhibition of the CBB cycle and photosynthesis down-regulated TOR. We uncovered a tight link between TOR activity and the endogenous level of a set of amino acids including Ala, Glu, Gln, Leu, and Val through the modulation of CO2 fixation and the use of amino acid synthesis inhibitors. Moreover, the finding that the Chlamydomonas starch-deficient mutant sta6 displayed disproportionate TOR activity and high levels of most amino acids, particularly Gln, further connected carbon assimilation and amino acids to TOR signaling. Thus, our results showed that CO2 fixation regulates TOR signaling, likely through the synthesis of key amino acids.
Collapse
|
49
|
O'Leary BM, Oh GGK, Millar AH. High-Throughput Oxygen Consumption Measurements in Leaf Tissue Using Oxygen Sensitive Fluorophores. Methods Mol Biol 2022; 2363:63-75. [PMID: 34545486 DOI: 10.1007/978-1-0716-1653-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Respiratory rate measurements are crucial assays to understand mitochondrial biochemistry as well as metabolic regulation within tissues. Several technologies currently exist that can measure plant respiratory oxygen consumption or carbon dioxide evolution rates over short durations by either isolated mitochondria or plant tissues. Here we describe recently developed alternative methods for measuring tissue oxygen consumption rates (OCRs) using systems reliant on oxygen sensitive fluorophores. The methods described have distinct experimental advantages: they can allow high-throughput and long-duration measurements; and they are particularly suited to investigating the metabolic regulation of respiration by comparing OCRs among treatments or genotypes.
Collapse
Affiliation(s)
- Brendan M O'Leary
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, WA, Australia.
| | - Glenda Guek Khim Oh
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, WA, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
50
|
Hoermiller II, Funck D, Schönewolf L, May H, Heyer AG. Cytosolic proline is required for basal freezing tolerance in Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:147-155. [PMID: 34605046 DOI: 10.1111/pce.14196] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
The amino acid proline accumulates in many plant species under abiotic stress conditions, and various protective functions have been proposed. During cold stress, however, proline content in Arabidopsis thaliana does not correlate with freezing tolerance. Freezing sensitivity of a starchless plastidic phosphoglucomutase mutant (pgm) indicated that localization of proline in the cytosol might stabilize the plasma membrane during freeze-thaw events. Here, we show that re-allocation of proline from cytosol to vacuole was similar in the pyrroline-5-carboxylate synthase 2-1 (p5cs2-1) mutant and the pgm mutant and caused similar reduction of basal freezing tolerance. In contrast, the starch excess 1-1 mutant (sex1-1) had even lower freezing tolerance than pgm but did not affect sub-cellular localization of proline. Freezing sensitivity of sex1-1 mutants affected primarily the photosynthetic electron transport and was enhanced in a sex1-1::p5cs2-1 double mutant. These findings indicate that several independent factors determine basal freezing tolerance. In a pgm::p5cs2-1 double mutant, freezing sensitivity and proline allocation to the vacuole were the same as in the parental lines, indicating that the lack of cytosolic proline was the common cause of reduced basal freezing tolerance in both mutants. We conclude that cytosolic proline is an important factor in freezing tolerance of non-acclimated plants.
Collapse
Affiliation(s)
- Imke I Hoermiller
- Department of Plant Biotechnology, University of Stuttgart, Institute of Biomaterials & Biomolecular Systems, Stuttgart, Germany
| | - Dietmar Funck
- Department of Biology, University of Konstanz, Constance, Germany
| | - Lilli Schönewolf
- Department of Plant Biotechnology, University of Stuttgart, Institute of Biomaterials & Biomolecular Systems, Stuttgart, Germany
| | - Henrik May
- Department of Plant Biotechnology, University of Stuttgart, Institute of Biomaterials & Biomolecular Systems, Stuttgart, Germany
| | - Arnd G Heyer
- Department of Plant Biotechnology, University of Stuttgart, Institute of Biomaterials & Biomolecular Systems, Stuttgart, Germany
| |
Collapse
|