1
|
Mallén-Ponce MJ, Quintero-Moreno AM, Gámez-Arcas S, Grossman AR, Pérez-Pérez ME, Crespo JL. Dihydroxyacetone phosphate generated in the chloroplast mediates the activation of TOR by CO 2 and light. SCIENCE ADVANCES 2025; 11:eadu1240. [PMID: 40249806 PMCID: PMC12007574 DOI: 10.1126/sciadv.adu1240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/12/2025] [Indexed: 04/20/2025]
Abstract
Light and CO2 assimilation activate the target of rapamycin (TOR) kinase in photosynthetic cells, but how these signals are transmitted to TOR is unknown. Using the green alga Chlamydomonas reinhardtii as a model system, we identified dihydroxyacetone phosphate (DHAP) as the key metabolite regulating TOR in response to carbon and light cues. Metabolomic analyses of synchronized cells revealed that DHAP levels change more than any other metabolite between dark- and light-grown cells and that the addition of the DHAP precursor, dihydroxyacetone (DHA), was sufficient to activate TOR in the dark. We also demonstrated that TOR was insensitive to light or inorganic carbon but not to exogenous DHA in a Chlamydomonas mutant defective in the export of DHAP from the chloroplast. Our results provide a metabolic basis for the mode of TOR control by light and inorganic carbon and indicate that cytoplasmic DHAP is an important metabolic regulator of TOR.
Collapse
Affiliation(s)
- Manuel J. Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-Universidad de Sevilla), 41092 Sevilla, Spain
| | | | - Samuel Gámez-Arcas
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-Universidad de Sevilla), 41092 Sevilla, Spain
| | - Arthur R. Grossman
- Biosphere Sciences & Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
- Biology Department, Stanford University, Stanford, CA 94305, USA
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-Universidad de Sevilla), 41092 Sevilla, Spain
| | - José L. Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-Universidad de Sevilla), 41092 Sevilla, Spain
| |
Collapse
|
2
|
Zhang Z, Li Y, Yang S, Wen S, Zhu H, Zhou H. Target of Rapamycin is a crucial regulator of photosynthesis and nutrient metabolism partitioning in Nannochloropsis gaditana. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:21. [PMID: 39987130 PMCID: PMC11847340 DOI: 10.1186/s13068-025-02617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/03/2025] [Indexed: 02/24/2025]
Abstract
Utilizing microalgae as "photosynthetic cell factories" for compound production holds significant potential for sustainable carbon neutrality. However, the inherent inefficiency of algal photosynthesis, a limiting factor for productivity, represents a critical area for enhancement. Among the key regulatory mechanisms, the Target of Rapamycin (TOR), essential for cell growth regulation and known for its conserved structure across eukaryotes, remains underexplored in Nannochloropsis gaditana. In this study, we identified conserved component of the TOR complex in N. gaditana. Rapamycin (RAP) effectively inhibited photosynthetic growth and enhanced lipid accumulation in N. gaditana, as demonstrated by sensitivity tests. Transcriptomic analysis revealed that NgTOR modulates multiple intracellular metabolic and signaling pathways. Specifically, genes associated with photosynthesis and chlorophyll synthesis were significantly down-regulated following NgTOR inhibition. Additionally, genes involved in carbon metabolism, the TCA cycle, and amino acid biosynthesis were markedly reduced, while those related to lipid metabolism were up-regulated, resulting in stunted cell growth and increased lipid accumulation. Furthermore, blocking photosynthesis with DCMU significantly reduced the transcriptional activity of TOR-related complexes, highlighting a bidirectional regulatory interaction. These findings underscore the pivotal role of the TOR signaling pathway in regulating photosynthesis, carbon metabolism, and lipid metabolism in N. gaditana, setting the stage for further studies on photosynthetic autotrophy and lipid metabolic pathways in this species.
Collapse
Affiliation(s)
- Zhengying Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361000, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361000, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361000, China
| | - Yanyan Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361000, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361000, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361000, China
| | - Shu Yang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361000, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361000, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361000, China
| | - Shuting Wen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361000, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361000, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361000, China
| | - Hongmei Zhu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361000, China
| | - Hantao Zhou
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361000, China.
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361000, China.
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361000, China.
| |
Collapse
|
3
|
Bedera-García R, García-Gómez ME, Personat JM, Couso I. Inositol polyphosphates regulate resilient mechanisms in the green alga Chlamydomonas reinhardtii to adapt to extreme nutrient conditions. PHYSIOLOGIA PLANTARUM 2025; 177:e70089. [PMID: 39868659 DOI: 10.1111/ppl.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
In the context of climate changing environments, microalgae can be excellent organisms to understand molecular mechanisms that activate survival strategies under stress. Chlamydomonas reinhardtii signalling mutants are extremely useful to decipher which strategies photosynthetic organisms use to cope with changeable environments. The mutant vip1-1 has an altered profile of pyroinositol polyphosphates (PP-InsPs), which are signalling molecules present in all eukaryotes and have been connected to P signalling in other organisms including plants, but their implications in other nutrient signalling are still under evaluation. In this study, we conducted prolonged starvation in WT and vip1-1 Chlamydomonas cells. After N and P had been consumed, they showed important differences in the levels of chlorophyll, photosystem II (PSII) activity and ultrastructural morphology, including differences in the cell size and cell division. Metabolomic analysis under these conditions revealed an overall decrease in different organic compounds such as amino acids, including arginine and its precursors and tryptophan, which is considered a signalling molecule itself in plants. In addition, we observed significant differences in RNA levels of genes related to N assimilation that are under the control of the NIT2 transcription factor. These data are of important relevance in understanding the signalling role of PP-InsPs in nutrient sensing, especially regarding N, which has not directly been connected to these molecules in green organisms before. Additionally, the PP-InsPs regulation over cell size and photosynthesis supports novel strategies for the generation of resilient strains, expanding the biotechnological applications of green microalgae.
Collapse
Affiliation(s)
- Rodrigo Bedera-García
- Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - María Elena García-Gómez
- Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - José María Personat
- Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Inmaculada Couso
- Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Seville, Spain
| |
Collapse
|
4
|
Zhang Z, Yang S, Li Y, Xie D, Chen G, Ren J, Zhu H, Zhou H. NgLst8 Coactivates TOR Signaling to Activate Photosynthetic Growth in Nannochloropsis gaditana. Microorganisms 2024; 12:2574. [PMID: 39770776 PMCID: PMC11678606 DOI: 10.3390/microorganisms12122574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The target of rapamycin (TOR) serves as a central regulator of cell growth, coordinating anabolic and catabolic processes in response to nutrient availability, growth factors, and energy supply. Activation of TOR has been shown to promote photosynthesis, growth, and development in yeast, animals, and plants. In this study, the complete cDNA sequence of the Lst8 gene was obtained from Nannochloropsis gaditana. The structure of N. gaditana LST8 comprises a typical WD40 repeat sequence, exhibiting high sequence similarity to several known LST8 proteins. By overexpressing the Lst8 gene in N. gaditana, we constructed the NgLst8 transgenic algal strain and measured its photosynthetic activity and growth. We observed that an increase in LST8 abundance promotes the expression of TOR-related kinase, thereby enhancing photosynthetic growth. Transcriptome analysis further elucidated the response mechanism of elevated Lst8 abundance in relation to photosynthesis. Our findings indicate that increased Lst8 expression activates ABC transporter proteins and the MAPK signaling pathway, which regulate the transmembrane transport of sugars and other metabolites, integrate photosynthesis, sugar metabolism, and energy signaling, and modulate energy metabolism in algal cells through interactions with the TOR signaling pathway.
Collapse
Affiliation(s)
- Zhengying Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (S.Y.); (Y.L.); (D.X.); (G.C.); (J.R.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| | - Shu Yang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (S.Y.); (Y.L.); (D.X.); (G.C.); (J.R.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| | - Yanyan Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (S.Y.); (Y.L.); (D.X.); (G.C.); (J.R.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| | - Dian Xie
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (S.Y.); (Y.L.); (D.X.); (G.C.); (J.R.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| | - Guobin Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (S.Y.); (Y.L.); (D.X.); (G.C.); (J.R.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| | - Jiaxu Ren
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (S.Y.); (Y.L.); (D.X.); (G.C.); (J.R.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| | - Hongmei Zhu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
| | - Hantao Zhou
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (S.Y.); (Y.L.); (D.X.); (G.C.); (J.R.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| |
Collapse
|
5
|
Laude J, Scarsini M, Nef C, Bowler C. Evolutionary conservation and metabolic significance of autophagy in algae. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230368. [PMID: 39343016 PMCID: PMC11449223 DOI: 10.1098/rstb.2023.0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Autophagy is a highly conserved 'self-digesting' mechanism used in eukaryotes to degrade and recycle cellular components by enclosing them in a double membrane compartment and delivering them to lytic organelles (lysosomes or vacuoles). Extensive studies in plants have revealed how autophagy is intricately linked to essential aspects of metabolism and growth, in both normal and stress conditions, including cellular and organelle homeostasis, nutrient recycling, development, responses to biotic and abiotic stresses, senescence and cell death. However, knowledge regarding autophagic processes in other photosynthetic organisms remains limited. In this review, we attempt to summarize the current understanding of autophagy in algae from a metabolic, molecular and evolutionary perspective. We focus on the composition and conservation of the autophagy molecular machinery in eukaryotes and discuss the role of autophagy in metabolic regulation, cellular homeostasis and stress adaptation in algae. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Juliette Laude
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris , Paris 75005, France
- Université Paris Saclay , Gif-sur-Yvette 91190, France
| | - Matteo Scarsini
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris , Paris 75005, France
| | - Charlotte Nef
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris , Paris 75005, France
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris , Paris 75005, France
| |
Collapse
|
6
|
Gupta S, Kaur R, Upadhyay A, Chauhan A, Tripathi V. Unveiling the secrets of abiotic stress tolerance in plants through molecular and hormonal insights. 3 Biotech 2024; 14:252. [PMID: 39345964 PMCID: PMC11427653 DOI: 10.1007/s13205-024-04083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Phytohormones are signaling substances that control essential elements of growth, development, and reactions to environmental stress. Drought, salt, heat, cold, and floods are a few examples of abiotic factors that have a significant impact on plant development and survival. Complex sensing, signaling, and stress response systems are needed for adaptation and tolerance to such pressures. Abscisic acid (ABA) is a key phytohormone that regulates stress responses. It interacts with the jasmonic acid (JA) and salicylic acid (SA) signaling pathways to direct resources toward reducing the impacts of abiotic stressors rather than fighting against pathogens. Under exposure to nanoparticles, the plant growth hormones also function as molecules that regulate stress and are known to be involved in a variety of signaling cascades. Reactive oxygen species (ROS) are detected in excess while under stress, and nanoparticles can control their formation. Understanding the way these many signaling pathways interact in plants will tremendously help breeders create food crops that can survive in deteriorating environmental circumstances brought on by climate change and that can sustain or even improve crop production. Recent studies have demonstrated that phytohormones, such as the traditional auxins, cytokinins, ethylene, and gibberellins, as well as more recent members like brassinosteroids, jasmonates, and strigolactones, may prove to be significant metabolic engineering targets for creating crop plants that are resistant to abiotic stress. In this review, we address recent developments in current understanding regarding the way various plant hormones regulate plant responses to abiotic stress and highlight instances of hormonal communication between plants during abiotic stress signaling. We also discuss new insights into plant gene and growth regulation mechanisms during stress, phytohormone engineering, nanotechnological crosstalk of phytohormones, and Plant Growth-Promoting Rhizobacteria's Regulatory Powers (PGPR) via the involvement of phytohormones.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Rasanpreet Kaur
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Anshu Upadhyay
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Arjun Chauhan
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Vishal Tripathi
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002 Uttarakhand India
| |
Collapse
|
7
|
Foresi N, De Marco MA, Del Castello F, Ramirez L, Nejamkin A, Calo G, Grimsley N, Correa-Aragunde N, Martínez-Noël GMA. The tiny giant of the sea, Ostreococcus's unique adaptations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108661. [PMID: 38735153 DOI: 10.1016/j.plaphy.2024.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Ostreococcus spp. are unicellular organisms with one of the simplest cellular organizations. The sequencing of the genomes of different Ostreococcus species has reinforced this status since Ostreococcus tauri has one most compact nuclear genomes among eukaryotic organisms. Despite this, it has retained a number of genes, setting it apart from other organisms with similar small genomes. Ostreococcus spp. feature a substantial number of selenocysteine-containing proteins, which, due to their higher catalytic activity compared to their selenium-lacking counterparts, may require a reduced quantity of proteins. Notably, O. tauri encodes several ammonium transporter genes, that may provide it with a competitive edge for acquiring nitrogen (N). This characteristic makes it an intriguing model for studying the efficient use of N in eukaryotes. Under conditions of low N availability, O. tauri utilizes N from abundant proteins or amino acids, such as L-arginine, similar to higher plants. However, the presence of a nitric oxide synthase (L-arg substrate) sheds light on a new metabolic pathway for L-arg in algae. The metabolic adaptations of O. tauri to day and night cycles offer valuable insights into carbon and iron metabolic configuration. O. tauri has evolved novel strategies to optimize iron uptake, lacking the classic components of the iron absorption mechanism. Overall, the cellular and genetic characteristics of Ostreococcus contribute to its evolutionary success, making it an excellent model for studying the physiological and genetic aspects of how green algae have adapted to the marine environment. Furthermore, given its potential for lipid accumulation and its marine habitat, it may represent a promising avenue for third-generation biofuels.
Collapse
Affiliation(s)
- Noelia Foresi
- Instituto de Investigaciones Biológicas-UNMdP-CONICET, Mar del Plata, Argentina.
| | - María Agustina De Marco
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET-FIBA, Mar del Plata, Argentina
| | | | - Leonor Ramirez
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
| | - Andres Nejamkin
- Instituto de Investigaciones Biológicas-UNMdP-CONICET, Mar del Plata, Argentina
| | - Gonzalo Calo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET-FIBA, Mar del Plata, Argentina
| | - Nigel Grimsley
- CNRS, LBBM, Sorbonne Université OOB, 1 Avenue de Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | | | - Giselle M A Martínez-Noël
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET-FIBA, Mar del Plata, Argentina.
| |
Collapse
|
8
|
Puga MI, Poza-Carrión C, Martinez-Hevia I, Perez-Liens L, Paz-Ares J. Recent advances in research on phosphate starvation signaling in plants. JOURNAL OF PLANT RESEARCH 2024; 137:315-330. [PMID: 38668956 PMCID: PMC11081996 DOI: 10.1007/s10265-024-01545-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Phosphorus is indispensable for plant growth and development, with its status crucial for determining crop productivity. Plants have evolved various biochemical, morphological, and developmental responses to thrive under conditions of low P availability, as inorganic phosphate (Pi), the primary form of P uptake, is often insoluble in soils. Over the past 25 years, extensive research has focused on understanding these responses, collectively forming the Pi starvation response system. This effort has not only expanded our knowledge of strategies to cope with Pi starvation (PS) but also confirmed their adaptive significance. Moreover, it has identified and characterized numerous components of the intricate regulatory network governing P homeostasis. This review emphasizes recent advances in PS signaling, particularly highlighting the physiological importance of local PS signaling in inhibiting primary root growth and uncovering the role of TORC1 signaling in this process. Additionally, advancements in understanding shoot-root Pi allocation and a novel technique for studying Pi distribution in plants are discussed. Furthermore, emerging data on the regulation of plant-microorganism interactions by the PS regulatory system, crosstalk between the signaling pathways of phosphate starvation, phytohormones and immunity, and recent studies on natural variation in Pi homeostasis are addressed.
Collapse
Affiliation(s)
- María Isabel Puga
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain
| | - César Poza-Carrión
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain
| | - Iris Martinez-Hevia
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain
| | - Laura Perez-Liens
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain
| | - Javier Paz-Ares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain.
| |
Collapse
|
9
|
Rabeh K, Oubohssaine M, Hnini M. TOR in plants: Multidimensional regulators of plant growth and signaling pathways. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154186. [PMID: 38330538 DOI: 10.1016/j.jplph.2024.154186] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Target Of Rapamycin (TOR) represents a ubiquitous kinase complex that has emerged as a central regulator of cell growth and metabolism in nearly all eukaryotic organisms. TOR is an evolutionarily conserved protein kinase, functioning as a central signaling hub that integrates diverse internal and external cues to regulate a multitude of biological processes. These processes collectively exert significant influence on plant growth, development, nutrient assimilation, photosynthesis, fruit ripening, and interactions with microorganisms. Within the plant domain, the TOR complex comprises three integral components: TOR, RAPTOR, and LST8. This comprehensive review provides insights into various facets of the TOR protein, encompassing its origin, structure, function, and the regulatory and signaling pathways operative in photosynthetic organisms. Additionally, we explore future perspectives related to this pivotal protein kinase.
Collapse
Affiliation(s)
- Karim Rabeh
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco.
| | - Malika Oubohssaine
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
10
|
DeLoose M, Clúa J, Cho H, Zheng L, Masmoudi K, Desnos T, Krouk G, Nussaume L, Poirier Y, Rouached H. Recent advances in unraveling the mystery of combined nutrient stress in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1764-1780. [PMID: 37921230 DOI: 10.1111/tpj.16511] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
Efficiently regulating growth to adapt to varying resource availability is crucial for organisms, including plants. In particular, the acquisition of essential nutrients is vital for plant development, as a shortage of just one nutrient can significantly decrease crop yield. However, plants constantly experience fluctuations in the presence of multiple essential mineral nutrients, leading to combined nutrient stress conditions. Unfortunately, our understanding of how plants perceive and respond to these multiple stresses remains limited. Unlocking this mystery could provide valuable insights and help enhance plant nutrition strategies. This review focuses specifically on the regulation of phosphorous homeostasis in plants, with a primary emphasis on recent studies that have shed light on the intricate interactions between phosphorous and other essential elements, such as nitrogen, iron, and zinc, as well as non-essential elements like aluminum and sodium. By summarizing and consolidating these findings, this review aims to contribute to a better understanding of how plants respond to and cope with combined nutrient stress.
Collapse
Affiliation(s)
- Megan DeLoose
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Joaquin Clúa
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Huikyong Cho
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu Dhabi, United Arab Emirates
| | - Thierry Desnos
- Aix Marseille Univ, CEA, CNRS, BIAM, EBMP, UMR7265, Cité des énergies, 13115, Saint-Paul-lez-Durance, France
| | - Gabriel Krouk
- IPSiM, Univ. Montpellier, CNRS, INRAE, Montpellier, France
| | - Laurent Nussaume
- Aix Marseille Univ, CEA, CNRS, BIAM, EBMP, UMR7265, Cité des énergies, 13115, Saint-Paul-lez-Durance, France
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Hatem Rouached
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
11
|
Zhang Z, Zhong Z, Xiong Y. Sailing in complex nutrient signaling networks: Where I am, where to go, and how to go? MOLECULAR PLANT 2023; 16:1635-1660. [PMID: 37740490 DOI: 10.1016/j.molp.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
To ensure survival and promote growth, sessile plants have developed intricate internal signaling networks tailored in diverse cells and organs with both shared and specialized functions that respond to various internal and external cues. A fascinating question arises: how can a plant cell or organ diagnose the spatial and temporal information it is experiencing to know "where I am," and then is able to make the accurate specific responses to decide "where to go" and "how to go," despite the absence of neuronal systems found in mammals. Drawing inspiration from recent comprehensive investigations into diverse nutrient signaling pathways in plants, this review focuses on the interactive nutrient signaling networks mediated by various nutrient sensors and transducers. We assess and illustrate examples of how cells and organs exhibit specific responses to changing spatial and temporal information within these interactive plant nutrient networks. In addition, we elucidate the underlying mechanisms by which plants employ posttranslational modification codes to integrate different upstream nutrient signals, thereby conferring response specificities to the signaling hub proteins. Furthermore, we discuss recent breakthrough studies that demonstrate the potential of modulating nutrient sensing and signaling as promising strategies to enhance crop yield, even with reduced fertilizer application.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhaochen Zhong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Xiong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
12
|
Slocombe SP, Zúñiga-Burgos T, Chu L, Mehrshahi P, Davey MP, Smith AG, Camargo-Valero MA, Baker A. Overexpression of PSR1 in Chlamydomonas reinhardtii induces luxury phosphorus uptake. FRONTIERS IN PLANT SCIENCE 2023; 14:1208168. [PMID: 37575910 PMCID: PMC10413257 DOI: 10.3389/fpls.2023.1208168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 08/15/2023]
Abstract
Remediation using micro-algae offers an attractive solution to environmental phosphate (PO4 3-) pollution. However, for maximum efficiency, pre-conditioning of algae to induce 'luxury phosphorus (P) uptake' is needed. To replicate this process, we targeted the global regulator PSR1 (Myb transcription factor: Phosphate Starvation Response 1) for over-expression in algae. Manipulating a single gene (PSR1) drove uptake of both PO4 3- and a Mg2+ counter-ion leading to increased PolyP granule size, raising P levels 4-fold to 8% dry cell weight, and accelerated removal of PO4 3- from the medium. Examination of the gene expression profile showed that the P-starvation response was mimicked under P-replete conditions, switching on luxury uptake. Hyper-accumulation of P depended on a feed-forward mechanism, where a small set of 'Class I' P-transporter genes were activated despite abundant external PO4 3- levels. The transporters drove a reduction in external PO4 3- levels, permitting more genes to be expressed (Class II), leading to more P-uptake. Our data pointed toward a PSR1-independent mechanism for detection of external PO4 3- which suppressed Class II genes. This model provided a plausible mechanism for P-overplus where prior P-starvation elevates PSR1 and on P-resupply causes luxury P-uptake. This is because the Class I genes, which include P-transporter genes, are not suppressed by the excess PO4 3-. Taken together, these discoveries facilitate a bio-circular approach of recycling nutrients from wastewater back to agriculture.
Collapse
Affiliation(s)
- Stephen P. Slocombe
- School of Molecular and Cellular Biology, Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Tatiana Zúñiga-Burgos
- School of Molecular and Cellular Biology, Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, United Kingdom
| | - Lili Chu
- School of Molecular and Cellular Biology, Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Payam Mehrshahi
- Department of Plant Sciences, Cambridge University, Cambridge, United Kingdom
| | - Matthew P. Davey
- Department of Plant Sciences, Cambridge University, Cambridge, United Kingdom
| | - Alison G. Smith
- Department of Plant Sciences, Cambridge University, Cambridge, United Kingdom
| | - Miller Alonso Camargo-Valero
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, United Kingdom
- Departamento de Ingeniería Química, Universidad Nacional de Colombia, Manizales, Colombia
| | - Alison Baker
- School of Molecular and Cellular Biology, Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
13
|
Chiu CY, Lung HF, Chou WC, Lin LY, Chow HX, Kuo YH, Chien PS, Chiou TJ, Liu TY. Autophagy-Mediated Phosphate Homeostasis in Arabidopsis Involves Modulation of Phosphate Transporters. PLANT & CELL PHYSIOLOGY 2023; 64:519-535. [PMID: 36943363 DOI: 10.1093/pcp/pcad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 05/17/2023]
Abstract
Autophagy in plants is regulated by diverse signaling cascades in response to environmental changes. Fine-tuning of its activity is critical for the maintenance of cellular homeostasis under basal and stressed conditions. In this study, we compared the Arabidopsis autophagy-related (ATG) system transcriptionally under inorganic phosphate (Pi) deficiency versus nitrogen deficiency and showed that most ATG genes are only moderately upregulated by Pi starvation, with relatively stronger induction of AtATG8f and AtATG8h among the AtATG8 family. We found that Pi shortage increased the formation of GFP-ATG8f-labeled autophagic structures and the autophagic flux in the differential zone of the Arabidopsis root. However, the proteolytic cleavage of GFP-ATG8f and the vacuolar degradation of endogenous ATG8 proteins indicated that Pi limitation does not drastically alter the autophagic flux in the whole roots, implying a cell type-dependent regulation of autophagic activities. At the organismal level, the Arabidopsis atg mutants exhibited decreased shoot Pi concentrations and smaller meristem sizes under Pi sufficiency. Under Pi limitation, these mutants showed enhanced Pi uptake and impaired root cell division and expansion. Despite a reduced steady-state level of several PHOSPHATE TRANSPORTER 1s (PHT1s) in the atg root, cycloheximide treatment analysis suggested that the protein stability of PHT1;1/2/3 is comparable in the Pi-replete wild type and atg5-1. By contrast, the degradation of PHT1;1/2/3 is enhanced in the Pi-deplete atg5-1. Our findings reveal that both basal autophagy and Pi starvation-induced autophagy are required for the maintenance of Pi homeostasis and may modulate the expression of PHT1s through different mechanisms.
Collapse
Affiliation(s)
- Chang-Yi Chiu
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd., East Dist., Hsinchu 30013, Taiwan
| | - Hui-Fang Lung
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd., East Dist., Hsinchu 30013, Taiwan
| | - Wen-Chun Chou
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd., East Dist., Hsinchu 30013, Taiwan
| | - Li-Yen Lin
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd., East Dist., Hsinchu 30013, Taiwan
| | - Hong-Xuan Chow
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd., East Dist., Hsinchu 30013, Taiwan
| | - Yu-Hao Kuo
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd., East Dist., Hsinchu 30013, Taiwan
| | - Pei-Shan Chien
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Yin Liu
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd., East Dist., Hsinchu 30013, Taiwan
- Department of Life Science, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd., East Dist., Hsinchu 30013, Taiwan
| |
Collapse
|
14
|
Chen Q, Qu M, Chen Q, Meng X, Fan H. Phosphoproteomics analysis of the effect of target of rapamycin kinase inhibition on Cucumis sativus in response to Podosphaera xanthii. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107641. [PMID: 36940522 DOI: 10.1016/j.plaphy.2023.107641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Target of rapamycin (TOR) kinase is a conserved sensor of cell growth in yeasts, plants, and mammals. Despite the extensive research on the TOR complex in various biological processes, large-scale phosphoproteomics analysis of TOR phosphorylation events upon environmental stress are scarce. Powdery mildew caused by Podosphaera xanthii poses a major threat to the quality and yield of cucumber (Cucumis sativus L.). Previous studies concluded that TOR participated in abiotic and biotic stress responses. Hence, studying the underlying mechanism of TOR-P. xanthii infection is particularly important. In this study, we performed a quantitative phosphoproteomics studies of Cucumis against P. xanthii attack under AZD-8055 (TOR inhibitor) pretreatment. A total of 3384 phosphopeptides were identified from the 1699 phosphoproteins. The Motif-X analysis showed high sensitivity and specificity of serine sites under AZD-8055-treatment or P. xanthii stress, and TOR exhibited a unique preference for proline at +1 position and glycine at -1 position to enhance the phosphorylation response to P. xanthii. The functional analysis suggested that the unique responses were attributed to proteins related to plant hormone signaling, mitogen-activated protein kinase cascade signaling, phosphatidylinositol signaling system, and circadian rhythm; and calcium signaling- and defense response-related proteins. Our results provided rich resources for understanding the molecular mechanism of how the TOR kinase controlled plant growth and stress adaptation.
Collapse
Affiliation(s)
- Qiumin Chen
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Mengqi Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qinglei Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biology and Genetic Improvement of Fruit Vegetables of Shenyang, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biology and Genetic Improvement of Fruit Vegetables of Shenyang, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
15
|
Helliwell KE. Emerging trends in nitrogen and phosphorus signalling in photosynthetic eukaryotes. TRENDS IN PLANT SCIENCE 2023; 28:344-358. [PMID: 36372648 DOI: 10.1016/j.tplants.2022.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) and nitrogen (N) are the major nutrients that constrain plant and algal growth in nature. Recent advances in understanding nutrient signalling mechanisms of these organisms have revealed molecular attributes to optimise N and P acquisition. This has illuminated the importance of interplay between N and P regulatory networks, highlighting a need to study synergistic interactions rather than single-nutrient effects. Emerging insights of nutrient signalling in polyphyletic model plants and algae hint that, although core P-starvation signalling components are conserved, distinct mechanisms for P (and N) sensing have arisen. Here, the N and P signalling mechanisms of diverse photosynthetic eukaryotes are examined, drawing parallels and differences between taxa. Future directions to understand their molecular basis, evolution, and ecology are proposed.
Collapse
Affiliation(s)
- Katherine E Helliwell
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK; Marine Biological Association, Citadel Hill, Plymouth PL1 2PB, UK.
| |
Collapse
|
16
|
Mallén-Ponce MJ, Pérez-Pérez ME, Crespo JL. Deciphering the function and evolution of the target of rapamycin signaling pathway in microalgae. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6993-7005. [PMID: 35710309 PMCID: PMC9664231 DOI: 10.1093/jxb/erac264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Microalgae constitute a highly diverse group of photosynthetic microorganisms that are widely distributed on Earth. The rich diversity of microalgae arose from endosymbiotic events that took place early in the evolution of eukaryotes and gave rise to multiple lineages including green algae, the ancestors of land plants. In addition to their fundamental role as the primary source of marine and freshwater food chains, microalgae are essential producers of oxygen on the planet and a major biotechnological target for sustainable biofuel production and CO2 mitigation. Microalgae integrate light and nutrient signals to regulate cell growth. Recent studies identified the target of rapamycin (TOR) kinase as a central regulator of cell growth and a nutrient sensor in microalgae. TOR promotes protein synthesis and regulates processes that are induced under nutrient stress such as autophagy and the accumulation of triacylglycerol and starch. A detailed analysis of representative genomes from the entire microalgal lineage revealed that the highly conserved central components of the TOR pathway are likely to have been present in the last eukaryotic common ancestor, and the loss of specific TOR signaling elements at an early stage in the evolution of microalgae. Here we examine the evolutionary conservation of TOR signaling components in diverse microalgae and discuss recent progress of this signaling pathway in these organisms.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
17
|
Meng Y, Zhang N, Li J, Shen X, Sheen J, Xiong Y. TOR kinase, a GPS in the complex nutrient and hormonal signaling networks to guide plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7041-7054. [PMID: 35781569 PMCID: PMC9664236 DOI: 10.1093/jxb/erac282] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/24/2022] [Indexed: 06/01/2023]
Abstract
To survive and sustain growth, sessile plants have developed sophisticated internal signalling networks that respond to various external and internal cues. Despite the central roles of nutrient and hormone signaling in plant growth and development, how hormone-driven processes coordinate with metabolic status remains largely enigmatic. Target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates energy, nutrients, growth factors, hormones, and stress signals to promote growth in all eukaryotes. Inspired by recent comprehensive systems, chemical, genetic, and genomic studies on TOR in plants, this review discusses a potential role of TOR as a 'global positioning system' that directs plant growth and developmental programs both temporally and spatially by integrating dynamic information in the complex nutrient and hormonal signaling networks. We further evaluate and depict the possible functional and mechanistic models for how a single protein kinase, TOR, is able to recognize, integrate, and even distinguish a plethora of positive and negative input signals to execute appropriate and distinct downstream biological processes via multiple partners and effectors.
Collapse
Affiliation(s)
| | | | - Jiatian Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Haixia Institute of Science and Technology, Plant Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuehong Shen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Haixia Institute of Science and Technology, Plant Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
18
|
Henriques R, Calderan-Rodrigues MJ, Luis Crespo J, Baena-González E, Caldana C. Growing of the TOR world. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6987-6992. [PMID: 36377640 PMCID: PMC9664224 DOI: 10.1093/jxb/erac401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Rossana Henriques
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, T23 TK30, Ireland
- Environmental Research Institute, Lee Road, Cork, T23 XE10, Ireland
| | | | - José Luis Crespo
- Instituto de Bioquimica Vegetal y Fotosintesis, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad de Sevilla, Sevilla, Spain
| | - Elena Baena-González
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal and GREEN-IT Bioresources for Sustainability, ITQB-NOVA, 2780-157 Oeiras, Portugal
| | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
19
|
Yu Y, Zhong Z, Ma L, Xiang C, Chen J, Huang XY, Xu P, Xiong Y. Sulfate-TOR signaling controls transcriptional reprogramming for shoot apex activation. THE NEW PHYTOLOGIST 2022; 236:1326-1338. [PMID: 36028982 DOI: 10.1111/nph.18441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Plants play a primary role for the global sulfur cycle in the earth ecosystems by reduction of inorganic sulfate from the soil to organic sulfur-containing compounds. How plants sense and transduce the sulfate availability to mediate their growth remains largely unclear. The target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator of nutrient sensing and metabolic signaling to control cell proliferation and growth in all eukaryotes. By tissue-specific Western blotting and RNA-sequencing analysis, we investigated sulfate-TOR signal pathway in regulating shoot apex development. Here, we report that inorganic sulfate exhibits high potency activating TOR and cell proliferation to promote true leaf development in Arabidopsis in a glucose-energy parallel pathway. Genetic and metabolite analyses suggest that this sulfate activation of TOR is independent from the sulfate-assimilation process and glucose-energy signaling. Significantly, tissue specific transcriptome analyses uncover previously unknown sulfate-orchestrating genes involved in DNA replication, cell proliferation and various secondary metabolism pathways, which largely depends on TOR signaling. Systematic comparison between the sulfate- and glucose-TOR controlled transcriptome further reveals that TOR kinase, as the central growth integrator, responds to different nutrient signals to control both shared and unique transcriptome networks, therefore, precisely modulates plant proliferation, growth and stress responses.
Collapse
Affiliation(s)
- Yongdong Yu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhaochen Zhong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liuyin Ma
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chengbin Xiang
- Division of Life Sciences and Medicine, Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, 230027, China
| | - Jie Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yan Xiong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
20
|
Mallén-Ponce MJ, Pérez-Pérez ME, Crespo JL. Analyzing the impact of autotrophic and heterotrophic metabolism on the nutrient regulation of TOR. THE NEW PHYTOLOGIST 2022; 236:1261-1266. [PMID: 36052700 DOI: 10.1111/nph.18450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The target of rapamycin (TOR) protein kinase is a master regulator of cell growth in all eukaryotes, from unicellular yeast and algae to multicellular animals and plants. Target of rapamycin balances the synthesis and degradation of proteins, lipids, carbohydrates and nucleic acids in response to nutrients, growth factors and cellular energy to promote cell growth. Among nutrients, amino acids (AAs) and glucose are central regulators of TOR activity in evolutionary distant eukaryotes such as mammals, plants and algae. However, these organisms obtain the nutrients through totally different metabolic processes. Although photosynthetic eukaryotes can use atmospheric CO2 as the sole carbon (C) source for all reactions in the cell, heterotrophic organisms get nutrients from other sources of organic C including glucose. Here, we discuss the impact of autotrophic and heterotrophic metabolism on the nutrient regulation of TOR, focusing on the role of AAs and C sources upstream of this signaling pathway.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, 41092, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, 41092, Spain
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, 41092, Spain
| |
Collapse
|
21
|
Caló G, De Marco MA, Salerno GL, Martínez-Noël GMA. TOR signaling in the green picoalga Ostreococcus tauri. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111390. [PMID: 35868347 DOI: 10.1016/j.plantsci.2022.111390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/29/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Target of rapamycin (TOR) is a master regulator that controls growth and metabolism by integrating external and internal signals. Although there was a great progress in the study of TOR in plants and in the model alga Chlamydomonas, scarce data are available in other green algae. Thus, in this work we studied TOR signaling in Ostreococcus tauri, the smallest free-living eukaryote described to date. This picoalga is particularly important because it has a key site at the base of the green lineage and is part of the marine phytoplankton, contributing to global photosynthesis. We investigated OtTOR complex in silico and experimentally, by using first- and second-generation TOR inhibitors, such as rapamycin and PP242. We analyzed the effect of TOR down-regulation on cell growth and on the accumulation of carbon reserves. The results showed that O. tauri responds to TOR inhibitors more similarly to plants than to Chlamydomonas, being PP242 a valuable tool to study this pathway. Besides, Ottor expression analysis revealed that the kinase is dynamically regulated under nutritional stress. Our data indicate that TOR signaling is conserved in O. tauri and we propose this alga as a good and simple model for studying TOR kinase and its regulation.
Collapse
Affiliation(s)
- Gonzalo Caló
- INBIOTEC, Vieytes, 3103, 7600 Mar del Plata, Argentina; FIBA, Vieytes 3103, 7600 Mar del Plata, Argentina
| | - María Agustina De Marco
- INBIOTEC, Vieytes, 3103, 7600 Mar del Plata, Argentina; FIBA, Vieytes 3103, 7600 Mar del Plata, Argentina
| | | | | |
Collapse
|
22
|
García MJ, Angulo M, Lucena C, Pérez-Vicente R, Romera FJ. To grow or not to grow under nutrient scarcity: Target of rapamycin-ethylene is the question. FRONTIERS IN PLANT SCIENCE 2022; 13:968665. [PMID: 36035680 PMCID: PMC9412941 DOI: 10.3389/fpls.2022.968665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
To cope with nutrient scarcity, plants generally follow two main complementary strategies. On the one hand, they can slow down growing, mainly shoot growth, to diminish the demand of nutrients. We can call this strategy as "stop growing." On the other hand, plants can develop different physiological and morphological responses, mainly in their roots, aimed to facilitate the acquisition of nutrients. We can call this second strategy as "searching for nutrients." Both strategies are compatible and can function simultaneously but the interconnection between them is not yet well-known. In relation to the "stop growing" strategy, it is known that the TOR (Target Of Rapamycin) system is a central regulator of growth in response to nutrients in eukaryotic cells. TOR is a protein complex with kinase activity that promotes protein synthesis and growth while some SnRK (Sucrose non-fermenting 1-Related protein Kinases) and GCN (General Control Non-derepressible) kinases act antagonistically. It is also known that some SnRKs and GCNs are activated by nutrient deficiencies while TOR is active under nutrient sufficiency. In relation to the "searching for nutrients" strategy, it is known that the plant hormone ethylene participates in the activation of many nutrient deficiency responses. In this Mini Review, we discuss the possible role of ethylene as the hub connecting the "stop growing" strategy and the "searching for nutrients" strategy since very recent results also suggest a clear relationship of ethylene with the TOR system.
Collapse
Affiliation(s)
- María José García
- Department of Agronomy, (DAUCO-María de Maeztu Unit of Excellence), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Macarena Angulo
- Department of Agronomy, (DAUCO-María de Maeztu Unit of Excellence), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Carlos Lucena
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Francisco Javier Romera
- Department of Agronomy, (DAUCO-María de Maeztu Unit of Excellence), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
23
|
Jamsheer K M, Jindal S, Sharma M, Awasthi P, S S, Sharma M, Mannully CT, Laxmi A. A negative feedback loop of TOR signaling balances growth and stress-response trade-offs in plants. Cell Rep 2022; 39:110631. [PMID: 35385724 DOI: 10.1016/j.celrep.2022.110631] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/26/2021] [Accepted: 03/16/2022] [Indexed: 12/20/2022] Open
Abstract
TOR kinase is a central coordinator of nutrient-dependent growth in eukaryotes. Maintaining optimal TOR signaling is critical for the normal development of organisms. In this study, we describe a negative feedback loop of TOR signaling helping in the adaptability of plants in changing environmental conditions. Using an interdisciplinary approach, we show that the plant-specific zinc finger protein FLZ8 acts as a regulator of TOR signaling in Arabidopsis. In sugar sufficiency, TOR-dependent and -independent histone modifications upregulate the expression of FLZ8. FLZ8 negatively regulates TOR signaling by promoting antagonistic SnRK1α1 signaling and bridging the interaction of SnRK1α1 with RAPTOR1B, a crucial accessory protein of TOR. This negative feedback loop moderates the TOR-growth signaling axis in the favorable condition and helps in the activation of stress signaling in unfavorable conditions, establishing its importance in the adaptability of plants.
Collapse
Affiliation(s)
- Muhammed Jamsheer K
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Sunita Jindal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mohan Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prakhar Awasthi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sreejath S
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Manvi Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
24
|
Srinivasan AR, Tran TT, Bonini NM. Loss of miR-34 in Drosophila dysregulates protein translation and protein turnover in the aging brain. Aging Cell 2022; 21:e13559. [PMID: 35166006 PMCID: PMC8920459 DOI: 10.1111/acel.13559] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
Aging is a risk factor for neurodegenerative disease, but precise mechanisms that influence this relationship are still under investigation. Work in Drosophila melanogaster identified the microRNA miR‐34 as a modifier of aging and neurodegeneration in the brain. MiR‐34 mutants present aspects of early aging, including reduced lifespan, neurodegeneration, and a buildup of the repressive histone mark H3K27me3. To better understand how miR‐34 regulated pathways contribute to age‐associated phenotypes in the brain, here we transcriptionally profiled the miR‐34 mutant brain. This identified that genes associated with translation are dysregulated in the miR‐34 mutant. The brains of these animals show increased translation activity, accumulation of protein aggregation markers, and altered autophagy activity. To determine if altered H3K27me3 was responsible for this proteostasis dysregulation, we studied the effects of increased H3K27me3 by mutating the histone demethylase Utx. Reduced Utx activity enhanced neurodegeneration and mimicked the protein accumulation seen in miR‐34 mutant brains. However, unlike the miR‐34 mutant, Utx mutant brains did not show similar altered autophagy or translation activity, suggesting that additional miR‐34‐targeted pathways are involved. Transcriptional analysis of predicted miR‐34 targets identified Lst8, a subunit of Tor Complex 1 (TORC1), as a potential target. We confirmed that miR‐34 regulates the 3’ UTR of Lst8 and identified several additional predicted miR‐34 targets that may be critical for maintaining proteostasis and brain health. Together, these results present novel understanding of the brain and the role of the conserved miRNA miR‐34 in impacting proteostasis in the brain with age.
Collapse
Affiliation(s)
| | - Tracy T. Tran
- Department of Biology University of Pennsylvania Philadelphia Pennsylvania USA
| | - Nancy M. Bonini
- Department of Biology University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
25
|
Abstract
The target of rapamycin (TOR) kinase is a master regulator that integrates nutrient signals to promote cell growth in all eukaryotes. It is well established that amino acids and glucose are major regulators of TOR signaling in yeast and metazoan, but whether and how TOR responds to carbon availability in photosynthetic organisms is less understood. In this study, we showed that photosynthetic assimilation of CO2 by the Calvin-Benson-Bassham (CBB) cycle regulates TOR activity in the model single-celled microalga Chlamydomonas reinhardtii Stimulation of CO2 fixation boosted TOR activity, whereas inhibition of the CBB cycle and photosynthesis down-regulated TOR. We uncovered a tight link between TOR activity and the endogenous level of a set of amino acids including Ala, Glu, Gln, Leu, and Val through the modulation of CO2 fixation and the use of amino acid synthesis inhibitors. Moreover, the finding that the Chlamydomonas starch-deficient mutant sta6 displayed disproportionate TOR activity and high levels of most amino acids, particularly Gln, further connected carbon assimilation and amino acids to TOR signaling. Thus, our results showed that CO2 fixation regulates TOR signaling, likely through the synthesis of key amino acids.
Collapse
|
26
|
Couso I, Smythers AL, Ford MM, Umen JG, Crespo JL, Hicks LM. Inositol polyphosphates and target of rapamycin kinase signalling govern photosystem II protein phosphorylation and photosynthetic function under light stress in Chlamydomonas. THE NEW PHYTOLOGIST 2021; 232:2011-2025. [PMID: 34529857 DOI: 10.1111/nph.17741] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/09/2021] [Indexed: 05/28/2023]
Abstract
Stress and nutrient availability influence cell proliferation through complex intracellular signalling networks. In a previous study it was found that pyro-inositol polyphosphates (InsP7 and InsP8 ) produced by VIP1 kinase, and target of rapamycin (TOR) kinase signalling interacted synergistically to control cell growth and lipid metabolism in the green alga Chlamydomonas reinhardtii. However, the relationship between InsPs and TOR was not completely elucidated. We used an in vivo assay for TOR activity together with global proteomic and phosphoproteomic analyses to assess differences between wild-type and vip1-1 in the presence and absence of rapamycin. We found that TOR signalling is more severely affected by the inhibitor rapamycin in a vip1-1 mutant compared with wild-type, indicating that InsP7 and InsP8 produced by VIP1 act independently but also coordinately with TOR. Additionally, among hundreds of differentially phosphorylated peptides detected, an enrichment for photosynthesis-related proteins was observed, particularly photosystem II proteins. The significance of these results was underscored by the finding that vip1-1 strains show multiple defects in photosynthetic physiology that were exacerbated under high light conditions. These results suggest a novel role for inositol pyrophosphates and TOR signalling in coordinating photosystem phosphorylation patterns in Chlamydomonas cells in response to light stress and possibly other stresses.
Collapse
Affiliation(s)
- Inmaculada Couso
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Avda. Américo Vespucio, 49, Sevilla, 41092, Spain
| | - Amanda L Smythers
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Megan M Ford
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - James G Umen
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Avda. Américo Vespucio, 49, Sevilla, 41092, Spain
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
27
|
Smythers AL, Iannetta AA, Hicks LM. Crosslinking mass spectrometry unveils novel interactions and structural distinctions in the model green alga Chlamydomonas reinhardtii. Mol Omics 2021; 17:917-928. [PMID: 34499065 DOI: 10.1039/d1mo00197c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interactomics is an emerging field that seeks to identify both transient and complex-bound protein interactions that are essential for metabolic functions. Crosslinking mass spectrometry (XL-MS) has enabled untargeted global analysis of these protein networks, permitting largescale simultaneous analysis of protein structure and interactions. Increased commercial availability of highly specific, cell permeable crosslinkers has propelled the study of these critical interactions forward, with the development of MS-cleavable crosslinkers further increasing confidence in identifications. Herein, the global interactome of the unicellular alga Chlamydomonas reinhardtii was analyzed via XL-MS by implementing the MS-cleavable disuccinimidyl sulfoxide (DSSO) crosslinker and enriching for crosslinks using strong cation exchange chromatography. Gentle lysis via repeated freeze-thaw cycles facilitated in vitro analysis of 157 protein-protein crosslinks (interlinks) and 612 peptides linked to peptides of the same protein (intralinks) at 1% FDR throughout the C. reinhardtii proteome. The interlinks confirmed known protein relationships across the cytosol and chloroplast, including coverage on 42% and 38% of the small and large ribosomal subunits, respectively. Of the 157 identified interlinks, 92% represent the first empirical evidence of interaction observed in C. reinhardtii. Several of these crosslinks point to novel associations between proteins, including the identification of a previously uncharacterized Mg-chelatase associated protein (Cre11.g477733.t1.2) bound to seven distinct lysines on Mg-chelatase (Cre06.g306300.t1.2). Additionally, the observed intralinks facilitated characterization of novel protein structures across the C. reinhardtii proteome. Together, these data establish a framework of protein-protein interactions that can be further explored to facilitate understanding of the dynamic protein landscape in C. reinhardtii.
Collapse
Affiliation(s)
- Amanda L Smythers
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan Laboratories, 125 South Road, CB#3290, Chapel Hill, NC 27599-3290, USA.
| | - Anthony A Iannetta
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan Laboratories, 125 South Road, CB#3290, Chapel Hill, NC 27599-3290, USA.
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan Laboratories, 125 South Road, CB#3290, Chapel Hill, NC 27599-3290, USA.
| |
Collapse
|
28
|
Abstract
Nutrients are vital to life through intertwined sensing, signaling, and metabolic processes. Emerging research focuses on how distinct nutrient signaling networks integrate and coordinate gene expression, metabolism, growth, and survival. We review the multifaceted roles of sugars, nitrate, and phosphate as essential plant nutrients in controlling complex molecular and cellular mechanisms of dynamic signaling networks. Key advances in central sugar and energy signaling mechanisms mediated by the evolutionarily conserved master regulators HEXOKINASE1 (HXK1), TARGET OF RAPAMYCIN (TOR), and SNF1-RELATED PROTEIN KINASE1 (SNRK1) are discussed. Significant progress in primary nitrate sensing, calcium signaling, transcriptome analysis, and root-shoot communication to shape plant biomass and architecture are elaborated. Discoveries on intracellular and extracellular phosphate signaling and the intimate connections with nitrate and sugar signaling are examined. This review highlights the dynamic nutrient, energy, growth, and stress signaling networks that orchestrate systemwide transcriptional, translational, and metabolic reprogramming, modulate growth and developmental programs, and respond to environmental cues. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lei Li
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA; ,
| | - Kun-Hsiang Liu
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA; , .,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, and Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China
| | - Jen Sheen
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA; ,
| |
Collapse
|
29
|
Grinko A, Alqoubaili R, Lapina T, Ermilova E. Truncated hemoglobin 2 modulates phosphorus deficiency response by controlling of gene expression in nitric oxide-dependent pathway in Chlamydomonas reinhardtii. PLANTA 2021; 254:39. [PMID: 34319485 DOI: 10.1007/s00425-021-03691-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Truncated hemoglobin 2 is involved in fine-tuning of PSR1-regulated gene expression during phosphorus deprivation. Truncated hemoglobins form a large family found in all domains of life. However, a majority of physiological functions of these proteins remain to be elucidated. In the model alga Chlamydomonas reinhardtii, macro-nutritional deprivation is known to elevate truncated hemoglobin 2 (THB2). This study investigated the role of THB2 in the regulation of a subset of phosphorus (P) limitation-responsive genes in cells suffering from P-deficiency. Underexpression of THB2 in amiTHB2 strains resulted in downregulation of a suite of P deprivation-induced genes encoding proteins with different subcellular location and functions (e.g., PHOX, LHCSR3.1, LHCSR3.2, PTB2, and PTB5). Moreover, our results provided primary evidence that the soluble guanylate cyclase 12 gene (CYG12) is a component of the P deprivation regulation. Furthermore, the transcription of PSR1 gene for the most critical regulator in the acclimation process under P restriction was repressed by nitric oxide (NO). Collectively, the results indicated a tight regulatory link between the THB2-controlled NO levels and PSR1-dependent induction of several P deprivation responsive genes with various roles in cells during P-limitation.
Collapse
Affiliation(s)
- Alexandra Grinko
- Biological Faculty, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Reem Alqoubaili
- Biological Faculty, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Tatiana Lapina
- Biological Faculty, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Elena Ermilova
- Biological Faculty, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia.
| |
Collapse
|
30
|
Busche M, Scarpin MR, Hnasko R, Brunkard JO. TOR coordinates nucleotide availability with ribosome biogenesis in plants. THE PLANT CELL 2021; 33:1615-1632. [PMID: 33793860 PMCID: PMC8254494 DOI: 10.1093/plcell/koab043] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 01/29/2021] [Indexed: 05/10/2023]
Abstract
TARGET OF RAPAMYCIN (TOR) is a conserved eukaryotic Ser/Thr protein kinase that coordinates growth and metabolism with nutrient availability. We conducted a medium-throughput functional genetic screen to discover essential genes that promote TOR activity in plants, and identified a critical regulatory enzyme, cytosolic phosphoribosyl pyrophosphate (PRPP) synthetase (PRS4). PRS4 synthesizes cytosolic PRPP, a key upstream metabolite in nucleotide synthesis and salvage pathways. We found that prs4 knockouts are embryo-lethal in Arabidopsis thaliana, and that silencing PRS4 expression in Nicotiana benthamiana causes pleiotropic developmental phenotypes, including dwarfism, aberrant leaf shape, and delayed flowering. Transcriptomic analysis revealed that ribosome biogenesis is among the most strongly repressed processes in prs4 knockdowns. Building on these results, we discovered that TOR activity is inhibited by chemical or genetic disruption of nucleotide biosynthesis, but that this effect can be reversed by supplying plants with nucleobases. Finally, we show that TOR transcriptionally promotes nucleotide biosynthesis to support the demands of ribosomal RNA synthesis. We propose that TOR coordinates ribosome biogenesis with nucleotide availability in plants to maintain metabolic homeostasis and support growth.
Collapse
Affiliation(s)
- Michael Busche
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA 94710, USA
| | - M Regina Scarpin
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA 94710, USA
| | - Robert Hnasko
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Pacific West Area, USDA Agricultural Research Service, Albany, CA 94710,USA
| | - Jacob O Brunkard
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA 94710, USA
| |
Collapse
|
31
|
A Tour of TOR Complex Signaling in Plants. Trends Biochem Sci 2020; 46:417-428. [PMID: 33309324 DOI: 10.1016/j.tibs.2020.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 01/07/2023]
Abstract
To identify the appropriate times for growth and development, organisms must sense and process information about the availability of nutrients, energy status, and environmental cues. For sessile eukaryotes such as plants, integrating such information can be critical in life or death decisions. For nearly 30 years, the conserved phosphatidylinositol 3-kinase-related protein kinases (PIKKs) target of rapamycin (TOR) has been established as a central hub for integrating external and internal metabolic cues. Despite the functional conservation across eukaryotes, the TOR complex has evolved specific functional and mechanistic features in plants. Here, we present recent findings on the plant TOR complex that highlight the conserved and unique nature of this critical growth regulator and its role in multiple aspects of plant life.
Collapse
|
32
|
Mugume Y, Kazibwe Z, Bassham DC. Target of Rapamycin in Control of Autophagy: Puppet Master and Signal Integrator. Int J Mol Sci 2020; 21:ijms21218259. [PMID: 33158137 PMCID: PMC7672647 DOI: 10.3390/ijms21218259] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
The target of rapamycin (TOR) is an evolutionarily-conserved serine/threonine kinase that senses and integrates signals from the environment to coordinate developmental and metabolic processes. TOR senses nutrients, hormones, metabolites, and stress signals to promote cell and organ growth when conditions are favorable. However, TOR is inhibited when conditions are unfavorable, promoting catabolic processes such as autophagy. Autophagy is a macromolecular degradation pathway by which cells degrade and recycle cytoplasmic materials. TOR negatively regulates autophagy through phosphorylation of ATG13, preventing activation of the autophagy-initiating ATG1-ATG13 kinase complex. Here we review TOR complex composition and function in photosynthetic and non-photosynthetic organisms. We also review recent developments in the identification of upstream TOR activators and downstream effectors of TOR. Finally, we discuss recent developments in our understanding of the regulation of autophagy by TOR in photosynthetic organisms.
Collapse
|
33
|
Boycheva Woltering S, Isono E. Knowing When to Self-Eat - Fine-Tuning Autophagy Through ATG8 Iso-forms in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:579875. [PMID: 33224169 PMCID: PMC7669990 DOI: 10.3389/fpls.2020.579875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Autophagy is a catabolic process that takes place under both normal and adverse conditions and is important for the degradation of various organelles and proteins that are no longer needed. Thus, it can be viewed as both a constitutive recycling machinery and an adaptation mechanism. Increase in the activity of autophagy can be caused by multiple biotic and abiotic stress factors. Though intensive research in the past decade has elucidated many molecular details of plant autophagy, the mechanisms of induction and regulation of the process remain understudied. Here, we discuss the role of ATG8 proteins in autophagic signaling and regulation with an emphasis on the significance of ATG8 diversification for adapting autophagy to the changing needs of plants.
Collapse
Affiliation(s)
- Svetlana Boycheva Woltering
- Department of Biology, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | - Erika Isono
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
34
|
Ingargiola C, Turqueto Duarte G, Robaglia C, Leprince AS, Meyer C. The Plant Target of Rapamycin: A Conduc TOR of Nutrition and Metabolism in Photosynthetic Organisms. Genes (Basel) 2020; 11:genes11111285. [PMID: 33138108 PMCID: PMC7694126 DOI: 10.3390/genes11111285] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Living organisms possess many mechanisms to sense nutrients and favorable conditions, which allow them to grow and develop. Photosynthetic organisms are very diverse, from green unicellular algae to multicellular flowering plants, but most of them are sessile and thus unable to escape from the biotic and abiotic stresses they experience. The Target of Rapamycin (TOR) signaling pathway is conserved in all eukaryotes and acts as a central regulatory hub between growth and extrinsic factors, such as nutrients or stress. However, relatively little is known about the regulations and roles of this pathway in plants and algae. Although some features of the TOR pathway seem to have been highly conserved throughout evolution, others clearly differ in plants, perhaps reflecting adaptations to different lifestyles and the rewiring of this primordial signaling module to adapt to specific requirements. Indeed, TOR is involved in plant responses to a vast array of signals including nutrients, hormones, light, stresses or pathogens. In this review, we will summarize recent studies that address the regulations of TOR by nutrients in photosynthetic organisms, and the roles of TOR in controlling important metabolic pathways, highlighting similarities and differences with the other eukaryotes.
Collapse
Affiliation(s)
- Camille Ingargiola
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (C.I.); (G.T.D.); (A.-S.L.)
| | - Gustavo Turqueto Duarte
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (C.I.); (G.T.D.); (A.-S.L.)
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Christophe Robaglia
- Laboratoire de Génétique et Biophysique des Plantes, Faculté des Sciences de Luminy, UMR 7265, CEA, CNRS, BIAM, Aix Marseille Université, 13009 Marseille, France;
| | - Anne-Sophie Leprince
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (C.I.); (G.T.D.); (A.-S.L.)
- Faculté des Sciences et d’Ingénierie, Sorbonne Université, UFR 927, 4 Place Jussieu, 75252 Paris, France
| | - Christian Meyer
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (C.I.); (G.T.D.); (A.-S.L.)
- Correspondence:
| |
Collapse
|
35
|
Slocombe SP, Zúñiga-Burgos T, Chu L, Wood NJ, Camargo-Valero MA, Baker A. Fixing the Broken Phosphorus Cycle: Wastewater Remediation by Microalgal Polyphosphates. FRONTIERS IN PLANT SCIENCE 2020; 11:982. [PMID: 32695134 PMCID: PMC7339613 DOI: 10.3389/fpls.2020.00982] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/16/2020] [Indexed: 05/06/2023]
Abstract
Phosphorus (P), in the form of phosphate derived from either inorganic (Pi) or organic (Po) forms is an essential macronutrient for all life. P undergoes a biogeochemical cycle within the environment, but anthropogenic redistribution through inefficient agricultural practice and inadequate nutrient recovery at wastewater treatment works have resulted in a sustained transfer of P from rock deposits to land and aquatic environments. Our present and near future supply of P is primarily mined from rock P reserves in a limited number of geographical regions. To help ensure that this resource is adequate for humanity's food security, an energy-efficient means of recovering P from waste and recycling it for agriculture is required. This will also help to address excess discharge to water bodies and the resulting eutrophication. Microalgae possess the advantage of polymeric inorganic polyphosphate (PolyP) storage which can potentially operate simultaneously with remediation of waste nitrogen and phosphorus streams and flue gases (CO2, SOx, and NOx). Having high productivity in photoautotrophic, mixotrophic or heterotrophic growth modes, they can be harnessed in wastewater remediation strategies for biofuel production either directly (biodiesel) or in conjunction with anaerobic digestion (biogas) or dark fermentation (biohydrogen). Regulation of algal P uptake, storage, and mobilization is intertwined with the cellular status of other macronutrients (e.g., nitrogen and sulphur) in addition to the manufacture of other storage products (e.g., carbohydrate and lipids) or macromolecules (e.g., cell wall). A greater understanding of controlling factors in this complex interaction is required to facilitate and improve P control, recovery, and reuse from waste streams. The best understood algal genetic model is Chlamydomonas reinhardtii in terms of utility and shared resources. It also displays mixotrophic growth and advantageously, species of this genus are often found growing in wastewater treatment plants. In this review, we focus primarily on the molecular and genetic aspects of PolyP production or turnover and place this knowledge in the context of wastewater remediation and highlight developments and challenges in this field.
Collapse
Affiliation(s)
- Stephen P. Slocombe
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Tatiana Zúñiga-Burgos
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, United Kingdom
| | - Lili Chu
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Nicola J. Wood
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Centre for Doctoral Training in Bioenergy, School of Chemical and Process Engineering, University of Leeds, Leeds, United Kingdom
| | - Miller Alonso Camargo-Valero
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, United Kingdom
- Departamento de Ingeniería Química, Universidad Nacional de Colombia, Manizales, Colombia
| | - Alison Baker
- Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
36
|
Fu L, Wang P, Xiong Y. Target of Rapamycin Signaling in Plant Stress Responses. PLANT PHYSIOLOGY 2020; 182:1613-1623. [PMID: 31949028 PMCID: PMC7140942 DOI: 10.1104/pp.19.01214] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/21/2019] [Indexed: 05/05/2023]
Abstract
Target of Rapamycin (TOR) is an atypical Ser/Thr protein kinase that is evolutionally conserved among yeasts, plants, and mammals. In plants, TOR signaling functions as a central hub to integrate different kinds of nutrient, energy, hormone, and environmental signals. TOR thereby orchestrates every stage of plant life, from embryogenesis, meristem activation, root, and leaf growth to flowering, senescence, and life span determination. Besides its essential role in the control of plant growth and development, recent research has also shed light on its multifaceted roles in plant environmental stress responses. Here, we review recent findings on the involvement of TOR signaling in plant adaptation to nutrient deficiency and various abiotic stresses. We also discuss the mechanisms underlying how plants cope with such unfavorable conditions via TOR-abscisic acid crosstalk and TOR-mediated autophagy, both of which play crucial roles in plant stress responses. Until now, little was known about the upstream regulators and downstream effectors of TOR in plant stress responses. We propose that the Snf1-related protein kinase-TOR axis plays a role in sensing various stress signals, and predict the key downstream effectors based on recent high-throughput proteomic analyses.
Collapse
Affiliation(s)
- Liwen Fu
- Basic Forestry and Proteomics Research Centre, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fujian Province 350002, People's Republic of China
| | - Pengcheng Wang
- Shanghai Centre for Plant Stress Biology, Chinese Academy of Sciences Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, People's Republic of China
| | - Yan Xiong
- Basic Forestry and Proteomics Research Centre, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fujian Province 350002, People's Republic of China
| |
Collapse
|
37
|
Pancha I, Chokshi K, Tanaka K, Imamura S. Microalgal Target of Rapamycin (TOR): A Central Regulatory Hub for Growth, Stress Response and Biomass Production. PLANT & CELL PHYSIOLOGY 2020; 61:675-684. [PMID: 32105317 DOI: 10.1093/pcp/pcaa023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Target of rapamycin (TOR) is an evolutionarily conserved protein kinase that plays an important role in the regulation of cell growth and the sensing of nutrient and energy status in eukaryotes. In yeasts and mammals, the roles of TOR have been very well described and various functions of TOR signaling in plant lineages have also been revealed over the past 20 years. In the case of microalgae, the functions of TOR have been primarily studied in the model green alga Chlamydomonas reinhardtii and were summarized in an earlier single review article. However, the recent development of tools for the functional analysis of TOR has helped to reveal the involvement of TOR in various functions, including autophagy, transcription, translation, accumulation of energy storage molecules, etc., in microalgae. In the present review, we discuss recent novel findings relating to TOR signaling and its roles in microalgae along with relevant information on land plants and also provide details of topics that must be addressed in future studies to reveal how TOR regulates various physiological functions in microalgae.
Collapse
Affiliation(s)
- Imran Pancha
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
- Department of Biology, SRM University-AP, Amaravati, Andhra Pradesh 522502, India
| | - Kaumeel Chokshi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
| | - Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
| |
Collapse
|
38
|
Kajikawa M, Fukuzawa H. Algal Autophagy Is Necessary for the Regulation of Carbon Metabolism Under Nutrient Deficiency. FRONTIERS IN PLANT SCIENCE 2020; 11:36. [PMID: 32117375 PMCID: PMC7012896 DOI: 10.3389/fpls.2020.00036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/13/2020] [Indexed: 05/04/2023]
Abstract
Autophagy is a mechanism to recycle intracellular constituents such as amino acids and other carbon- and nitrogen (N)-containing compounds. Although autophagy-related (ATG) genes required for autophagy are encoded by many algal genomes, their functional importance in microalgae in nutrient-deficiency has not been appraised using ATG-defective mutants. Recently, by characterization of an insertional mutant of the ATG8 encoding a ubiquitin-like protein indispensable for autophagosome formation in a green alga Chlamydomonas reinhardtii, we have provided evidence that supports the following notions. ATG8 protein is required for the degradation of lipid droplets and triacylglycerol (TAG) triggered by resupply of N to cell culture in N-deficient conditions. ATG8 protein is also necessary for starch accumulation under phosphorus-deficient conditions. Algal autophagy is not necessary for inheritance of chloroplast and mitochondrial genomes. In this review, we discuss the physiological roles of algal autophagy associated with nutrient deficiency revealed by the genetic and biochemical analyses using disruption mutants and reagents that inhibit the fatty acid biosynthesis and vacuolar H+-ATPase.
Collapse
|
39
|
Kokabi K, Gorelova O, Zorin B, Didi-Cohen S, Itkin M, Malitsky S, Solovchenko A, Boussiba S, Khozin-Goldberg I. Lipidome Remodeling and Autophagic Respose in the Arachidonic-Acid-Rich Microalga Lobosphaera incisa Under Nitrogen and Phosphorous Deprivation. FRONTIERS IN PLANT SCIENCE 2020; 11:614846. [PMID: 33329680 PMCID: PMC7728692 DOI: 10.3389/fpls.2020.614846] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/02/2020] [Indexed: 05/09/2023]
Abstract
The green microalga Lobosphaera incisa accumulates triacylglycerols (TAGs) with exceptionally high levels of long-chain polyunsaturated fatty acid (LC-PUFA) arachidonic acid (ARA) under nitrogen (N) deprivation. Phosphorous (P) deprivation induces milder changes in fatty acid composition, cell ultrastructure, and growth performance. We hypothesized that the resource-demanding biosynthesis and sequestration of ARA-rich TAG in lipid droplets (LDs) are associated with the enhancement of catabolic processes, including membrane lipid turnover and autophagic activity. Although this work focuses mainly on N deprivation, a comparative analysis of N and P deprivation responses is included. The results of lipidomic profiling showed a differential impact of N and P deprivation on the reorganization of glycerolipids. The formation of TAG under N deprivation was associated with the enhanced breakdown of chloroplast glycerolipids and the formation of lyso-lipids. N-deprived cells displayed a profound reorganization of cell ultrastructure, including internalization of cellular material into autophagic vacuoles, concomitant with the formation of LDs, while P-deprived cells showed better cellular ultrastructural integrity. The expression of the hallmark autophagy protein ATG8 and the major lipid droplet protein (MLDP) genes were coordinately upregulated, but to different extents under either N or P deprivation. The expression of the Δ5-desaturase gene, involved in the final step of ARA biosynthesis, was coordinated with ATG8 and MLDP, exclusively under N deprivation. Concanamycin A, the inhibitor of vacuolar proteolysis and autophagic flux, suppressed growth and enhanced levels of ATG8 and TAG in N-replete cells. The proportions of ARA in TAG decreased with a concomitant increase in oleic acid under both N-replete and N-deprived conditions. The photosynthetic apparatus's recovery from N deprivation was impaired in the presence of the inhibitor, along with the delayed LD degradation. The GFP-ATG8 processing assay showed the release of free GFP in N-replete and N-deprived cells, supporting the existence of autophagic flux. This study provides the first insight into the homeostatic role of autophagy in L. incisa and points to a possible metabolic link between autophagy and ARA-rich TAG biosynthesis.
Collapse
Affiliation(s)
- Kamilya Kokabi
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Olga Gorelova
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, Russia
| | - Boris Zorin
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Shoshana Didi-Cohen
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Maxim Itkin
- Metabolic Profiling Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Metabolic Profiling Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, Russia
- Institute of Natural Sciences, Derzhavin Tambov State University, Tambov, Russia
- Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| |
Collapse
|
40
|
Bertoni G. Phosphorus Sensing by LST8 Acts as a TOR Guide for Cell Growth in Chlamydomonas. THE PLANT CELL 2020; 32:7. [PMID: 31732702 PMCID: PMC6961629 DOI: 10.1105/tpc.19.00888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
41
|
Takeuchi T, Benning C. Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:292. [PMID: 31890020 PMCID: PMC6927116 DOI: 10.1186/s13068-019-1635-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/12/2019] [Indexed: 05/07/2023]
Abstract
Microalgae hold great promises as sustainable cellular factories for the production of alternative fuels, feeds, and biopharmaceuticals for human health. While the biorefinery approach for fuels along with the coproduction of high-value compounds with industrial, therapeutic, or nutraceutical applications have the potential to make algal biofuels more economically viable, a number of challenges continue to hamper algal production systems at all levels. One such hurdle includes the metabolic trade-off often observed between the increased yields of desired products, such as triacylglycerols (TAG), and the growth of an organism. Initial genetic engineering strategies to improve lipid productivity in microalgae, which focused on overproducing the enzymes involved in fatty acid and TAG biosynthesis or inactivating competing carbon (C) metabolism, have seen some successes albeit at the cost of often greatly reduced biomass. Emergent approaches that aim at modifying the dynamics of entire metabolic pathways by engineering of pertinent transcription factors or signaling networks appear to have successfully achieved a balance between growth and neutral lipid accumulation. However, the biological knowledge of key signaling networks and molecular components linking these two processes is still incomplete in photosynthetic eukaryotes, making it difficult to optimize metabolic engineering strategies for microalgae. Here, we focus on nitrogen (N) starvation of the model green microalga, Chlamydomonas reinhardtii, to present the current understanding of the nutrient-dependent switch between proliferation and quiescence, and the drastic reprogramming of metabolism that results in the storage of C compounds following N starvation. We discuss the potential components mediating the transcriptional repression of cell cycle genes and the establishment of quiescence in Chlamydomonas, and highlight the importance of signaling pathways such as those governed by the target of rapamycin (TOR) and sucrose nonfermenting-related (SnRK) kinases in the coordination of metabolic status with cellular growth. A better understanding of how the cell division cycle is regulated in response to nutrient scarcity and of the signaling pathways linking cellular growth to energy and lipid homeostasis, is essential to improve the prospects of biofuels and biomass production in microalgae.
Collapse
Affiliation(s)
- Tomomi Takeuchi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|