1
|
Zhao QP, Miao BL, Zhu JD, Li XK, Fu XL, Han MY, Wu QQ, Niu QH, Zhang X, Zhao X. Sec24C Participates in Cuticular Wax Transport by Facilitating Plasma Membrane Localization of ABCG5. PLANT, CELL & ENVIRONMENT 2025; 48:3012-3026. [PMID: 39676447 DOI: 10.1111/pce.15320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Cuticular waxes synthesised in the endoplasmic reticulum of epidermal cells must be exported to the outer surface of the epidermis to fulfil their barrier function. Beyond transmembrane trafficking mediated by ABC transporters, little is known about the movement of wax molecules. In this study, we characterise a mutant named sugar-associated vitrified 1 (sav1), which exhibits a vitrified phenotype and displays a reduced root length when cultivated on sugar-free medium. The mutation in SAV1, which encodes the protein Sec. 24C, leads to ultrastructural alterations in cuticle membranes, decreased deposition of epicuticular wax crystals, and modifications in the chemical composition of very-long-chain fatty acids in cuticular waxes. SAV1 is a membrane protein and expressed during the early stages of seedling development. The defective phenotype of sav1-1 in sugar-free medium resembles that of abcg5, which encodes an ATP-BINDING CASSETTE TRANSPORTER subfamily G 5 (ABCG5) protein involved in cuticle layer formation. Further investigations reveal that SAV1 interacts with ABCG5, influencing the membrane localisation of ABCG5. Collectively, our results suggest that SAV1 plays a critical role in wax transport by altering the subcellular localisation of ABCG5.
Collapse
Affiliation(s)
- Qing-Ping Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- College of Life Science, Nanyang Normal University, Nanyang, China
| | - Bai-Ling Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jin-Dong Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xing-Kun Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiang-Lin Fu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Meng-Yuan Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qi-Qi Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiu-Hong Niu
- College of Life Science, Nanyang Normal University, Nanyang, China
| | - Xiao Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiang Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
2
|
Thiébaut N, Sarthou M, Richtmann L, Pergament Persson D, Ranjan A, Schloesser M, Boutet S, Rezende L, Clemens S, Verbruggen N, Hanikenne M. Specific redox and iron homeostasis responses in the root tip of Arabidopsis upon zinc excess. THE NEW PHYTOLOGIST 2025; 246:1796-1815. [PMID: 40165747 DOI: 10.1111/nph.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
Zinc (Zn) excess negatively impacts primary root growth in Arabidopsis thaliana. Yet, the effects of Zn excess on specific growth processes in the root tip (RT) remain largely unexplored. Transcriptomics, ionomics, and metabolomics were used to examine the specific impact of Zn excess on the RT compared with the remaining root (RR). Zn excess exposure resulted in a shortened root apical meristem and elongation zone, with differentiation initiating closer to the tip of the root. Zn accumulated at a lower concentration in the RT than in the RR. This pattern was associated with lower expression of Zn homeostasis and iron (Fe) deficiency response genes. A distinct distribution of Zn and Fe in RT and RR was highlighted by laser ablation inductively coupled plasma-mass spectrometry analysis. Specialized tryptophan (Trp)-derived metabolism genes, typically associated with redox and biotic stress responses, were specifically upregulated in the RT upon Zn excess, among those Phytoalexin Deficient 3 (PAD3) encoding the last enzyme of camalexin synthesis. In the roots of wild-type seedlings, camalexin concentration increased by sixfold upon Zn excess, and a pad3 mutant displayed increased Zn sensitivity and an altered ionome. Our results indicate that distinct redox and iron homeostasis mechanisms are key elements of the response to Zn excess in the RT.
Collapse
Affiliation(s)
- Noémie Thiébaut
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000, Liège, Belgium
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Manon Sarthou
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000, Liège, Belgium
| | - Ludwig Richtmann
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
- Department of Plant Physiology and Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95440, Bayreuth, Germany
| | - Daniel Pergament Persson
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Alok Ranjan
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| | - Marie Schloesser
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000, Liège, Belgium
| | - Stéphanie Boutet
- INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, 78000, Versailles, France
| | - Lucas Rezende
- Hedera-22 SA, Boulevard du Rectorat 27b, B-4000, Liège, Belgium
| | - Stephan Clemens
- Department of Plant Physiology and Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95440, Bayreuth, Germany
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000, Liège, Belgium
| |
Collapse
|
3
|
Zhao S, Dong G, Liu C, Ding Y, Ma Y, Ma X, Yang X, Liu L, Hou B. Two pathogen-inducible UDP-glycosyltransferases, UGT73C3 and UGT73C4, catalyze the glycosylation of pinoresinol to promote plant immunity in Arabidopsis. PLANT COMMUNICATIONS 2025; 6:101261. [PMID: 39861946 PMCID: PMC12010377 DOI: 10.1016/j.xplc.2025.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 12/02/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom, regulating many metabolic processes by transferring sugar moieties onto various small molecules. However, their physiological significance in plants remains largely unknown. Here, we reveal the functions and mechanisms of two Arabidopsis UGT genes, UGT73C3 and UGT73C4, which are strongly induced by Pseudomonas syringae pv. tomato (Pst) DC3000. Overexpression of these genes significantly enhanced plant immune response, whereas their loss of function in double mutants led to increased sensitivity to pathogen infections. However, single mutants showed no obvious alteration in pathogen resistance. To further investigate the regulatory mechanisms of UGT73C3/C4 in plant immunity, we conducted comprehensive secondary metabolome analyses and glycoside quantification. Overexpression lines accumulated higher levels of pinoresinol diglucosides than wild-type plants, both before and after Pst DC3000 treatment, whereas double mutants accumulated lower levels. Furthermore, in vitro and in vivo experiments demonstrated that UGT73C3 and UGT73C4 can glycosylate pinoresinol to form pinoresinol monoglucoside and diglucoside. Moreover, pinoresinol glycosylation promotes the plant immune response by increasing reactive oxygen species production and callose deposition. Additionally, the transcription factor HB34 was found to activate UGT73C3 and UGT73C4 transcription and play a key role in plant immunity. Overall, this study reveals a novel pathway in which UGT73C3/C4-mediated pinoresinol glycosylation, regulated by HB34, enhances the plant immune response.
Collapse
Affiliation(s)
- Shuman Zhao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Guangrui Dong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Chonglin Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yi Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yuqing Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xinmei Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xianqin Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Lijing Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bingkai Hou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
4
|
Sultan E, Pati D, Kumar S, Sahu BB. Arabidopsis METHYLENETETRAHYDROFOLATE REDUCTASE 2 functions independently of PENETRATION 2 during primary immunity against rice blast. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1032-1048. [PMID: 39450434 DOI: 10.1093/jxb/erae435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Non-host resistance (NHR) is the most durable and robust form of innate immunity, with a surge of interest in its role in crop improvement. Of the NHR genes identified against rice blast, a devastating disease caused by Magnaporthe oryzae, Arabidopsis PEN2 is indispensable for pre-penetration resistance to M. oryzae, while a consortium of genes orchestrates post-penetration resistance via lesser known mechanisms. We identified M. oryzae-susceptible mosA (mthfr2 pen2-3) from a randomly mutagenized Arabidopsis pen2-3 population using forward genetics. Analysis of T-DNA-inserted mthfr2 lines and pen2-3-complemented mosA lines revealed that MTHFR2-dependent resistance to M. oryzae is independent of PEN2. MTHFR2-defective plants exhibited higher accumulation of reactive oxygen species and expression of salicylic acid-dependent defense markers. MTHFR2-ligand docking revealed that A55V non-synonymous substitution in mosA altered ligand binding efficiency. This further affected the metabolomic profile of mosA, effectively allowing in vitro germination and development of M. oryzae conidia. Moreover, the loss-of-function mutation in mthfr2 (involved in the 1C metabolic pathway) potentiated mosA immunity against Pst DC3000. In conclusion, our findings showed that MTHFR2 is a positive modulator of NHR against M. oryzae. This work documents another layer of conserved yet divergent metabolomic defense in Arabidopsis regulated by folate-mediated 1C metabolism that has the potential to revolutionize crop improvement.
Collapse
Affiliation(s)
- Eram Sultan
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Debasish Pati
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Sanjeev Kumar
- Indian Agricultural Statistics Research Institute (ICAR-IASRI), Library Avenue, Pusa, New Delhi 110012, India
| | - Binod Bihari Sahu
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| |
Collapse
|
5
|
Zhang Y, Tang M, Zhang Y, Cheng Q, Liu L, Chen W, Xie J, Cheng J, Fu Y, Li B, Jiang D, Yu X. An enhancer-promoter-transcription factor module orchestrates plant immune homeostasis by constraining camalexin biosynthesis. MOLECULAR PLANT 2025; 18:95-113. [PMID: 39628054 DOI: 10.1016/j.molp.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/08/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
Effective plant defense against pathogens relies on highly coordinated regulation of immune gene expression. Enhancers, as cis-regulatory elements, are indispensable determinants of dynamic gene regulation, but the molecular functions in plant immunity are not well understood. In this study, we identified a novel enhancer, CORE PATTERN-INDUCED ENHANCER 35 (CPIE35), which is rapidly activated upon pathogenic elicitation and negatively regulates antifungal resistance through modulating WRKY15 expression. During immune activation, CPIE35 activates the transcription of WRKY15 by forming chromatin loops with the promoter of WRKY15 in a WRKY18/40/60-, WRKY33-, and MYC2-dependent manner. WRKY15 directly binds to the promoters of PAD3 and GSTU4, suppressing their expression and leading to reduced camalexin synthesis and resistance. Interestingly, CPIE35 region is evolutionarily conserved among Brassicaceae plants, and the CPIE35-WRKY15 module exerts similar functions in Brassica napus to negatively regulate antifungal resistance. Our work reveals the "enhancer-promoter-transcription factor" regulatory mechanism in maintenance of immune homeostasis, highlighting the importance and conserved role of enhancers in fine-tuning immune gene expression in plants.
Collapse
Affiliation(s)
- Ying Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Meng Tang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Yi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Qinglin Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Lijiang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Wei Chen
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bo Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
6
|
Chen Y, Zhang J. Multiple functions and regulatory networks of WRKY33 and its orthologs. Gene 2024; 931:148899. [PMID: 39209179 DOI: 10.1016/j.gene.2024.148899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Arabidopsis thaliana WRKY33 is currently one of the most studied members of the Group I WRKY transcription factor family. Research has confirmed that WRKY33 is involved in the regulation of various biological and abiotic stresses and occupies a central position in the regulatory network. The functional studies of orthologous genes of WRKY33 from other species are also receiving increasing attention. In this article, we summarized thirty-eight orthologous genes of AtWKRY33 from twenty-five different species. Their phylogenetic relationship and conserved WRKY domain were analyzed and compared. Similar to AtWKRY33, the well-studied orthologous gene members from rice and tomato also have multiple functions. In addition to playing important regulatory roles in responding to their specific pathogens, they are also involved in regulating various abiotic stresses and development. AtWKRY33 exerts its multiple functions through a complex regulatory network. Upstream transcription factors or other regulatory factors activate or inhibit the expression of AtWKRY33 at the chromatin and transcriptional levels. Interacting proteins affect the transcriptional activity of AtWKRY33 through phosphorylation, ubiquitination, SUMOylation, competition, or cooperation. The downstream genes are diverse and include three major categories: transcription factors, synthesis, metabolism, and signal transduction of various hormones, and disease resistance genes. In the regulatory network of AtWRKY33 orthologs, many conserved regulatory characteristics have been discovered, such as self-activation and phosphorylation by MAP kinases. This can provide a comparative reference for further studying the functions of other orthologous genes of AtWKRY33.
Collapse
Affiliation(s)
- Yanhong Chen
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Jian Zhang
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China
| |
Collapse
|
7
|
Wang X, Yu W, Yuan Q, Chen X, He Y, Zhou J, Xun Q, Wang G, Li J, Meng X. The pathogen-induced peptide CEP14 is perceived by the receptor-like kinase CEPR2 to promote systemic disease resistance in Arabidopsis. PLANT PHYSIOLOGY 2024; 197:kiae549. [PMID: 39412292 DOI: 10.1093/plphys/kiae549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/19/2024] [Indexed: 12/24/2024]
Abstract
Secreted plant peptides that trigger cellular signaling are crucial for plant growth, development, and adaptive responses to environmental stresses. In Arabidopsis (Arabidopsis thaliana), the C-TERMINALLY ENCODED PEPTIDE (CEP) family is a class of secreted signaling peptides that is phylogenetically divided into 2 groups: group I (CEP1-CEP12) and group II (CEP13-CEP15). Several group I CEP peptides regulate root architecture and nitrogen starvation responses, whereas the biological activity and roles of group II CEPs remain unknown. Here, we report that a group II CEP peptide, CEP14, functions as a pathogen-induced elicitor of Arabidopsis immunity. In response to infection by the bacterial pathogen Pseudomonas syringae, CEP14 expression was highly induced via the salicylic acid pathway in Arabidopsis leaves and roots. In the absence of a pathogen attack, treatment of Arabidopsis plants with synthetic CEP14 peptides was sufficient to trigger immune responses. Genetic and biochemical analyses demonstrated that the receptor-like kinase CEP RECEPTOR 2 (CEPR2) perceives CEP14 to trigger plant immunity. The SOMATIC EMBRYOGENESIS RECEPTOR KINASES (SERKs) BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) and SERK4 also participated in CEP14 perception by forming CEP14-induced complexes with CEPR2. Overexpression of CEP14 largely enhanced Arabidopsis resistance to P. syringae, while CEP14 or CEPR2 mutation significantly attenuated Arabidopsis systemic resistance to P. syringae. Taken together, our data reveal that the pathogen-induced CEP14 peptide, which is perceived by the CEPR2-BAK1/SERK4 receptor complexes, acts as an endogenous elicitor to promote systemic disease resistance in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wenlong Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qin Yuan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xinyu Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yunxia He
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jinggeng Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qingqing Xun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guodong Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xiangzong Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
8
|
Zhang Y, Chen G, Zang Y, Bhavani S, Bai B, Liu W, Zhao M, Cheng Y, Li S, Chen W, Yan W, Mao H, Su H, Singh RP, Lagudah E, Li Q, Lan C. Lr34/Yr18/Sr57/Pm38 confers broad-spectrum resistance to fungal diseases via sinapyl alcohol transport for cell wall lignification in wheat. PLANT COMMUNICATIONS 2024; 5:101077. [PMID: 39233441 PMCID: PMC11671766 DOI: 10.1016/j.xplc.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/26/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
The widely recognized pleiotropic adult plant resistance gene Lr34 encodes an ATP-binding cassette transporter and plays an important role in breeding wheat for enhanced resistance to multiple fungal diseases. Despite its significance, the mechanisms underlying Lr34-mediated pathogen defense remain largely unknown. Our study demonstrates that wheat lines carrying the Lr34res allele exhibit thicker cell walls and enhanced resistance to fungal penetration compared to those without Lr34res. Transcriptome and metabolite profiling revealed that the lignin biosynthetic pathway is suppressed in lr34 mutants, indicating a disruption in cell wall lignification. Additionally, we discovered that lr34 mutant lines are hypersensitive to sinapyl alcohol, a major monolignol crucial for cell wall lignification. Yeast accumulation and efflux assays confirmed that the LR34 protein functions as a sinapyl alcohol transporter. Both genetic and virus-induced gene silencing experiments demonstrated that the disease resistance conferred by Lr34 can be enhanced by incorporating the TaCOMT-3B gene, which is responsible for the biosynthesis of sinapyl alcohol. Collectively, our findings provide novel insights into the role of Lr34 in disease resistance through mediating sinapyl alcohol transport and cell wall deposition, and highlight the synergistic effect of TaCOMT-3B and Lr34 against multiple fungal pathogens by mediating cell wall lignification in adult wheat plants.
Collapse
Affiliation(s)
- Yichen Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Guang Chen
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Yiming Zang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera, México-Veracruz, El Batán, Texcoco CP 56237E do, de México, Mexico
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou City, Gansu Province 730070, China
| | - Wei Liu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Miaomiao Zhao
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Yikeng Cheng
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Shunda Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Wei Chen
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Wenhao Yan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Hailiang Mao
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Handong Su
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Ravi P Singh
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China; International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera, México-Veracruz, El Batán, Texcoco CP 56237E do, de México, Mexico
| | - Evans Lagudah
- CSIRO Agriculture & Food, Canberra, ACT 2601, Australia
| | - Qiang Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China.
| | - Caixia Lan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China.
| |
Collapse
|
9
|
Wang Q, Li X, Li Z, Sun Q, Li C, Zhao X, Shan S. Molecular characterization of Pleiotropic Drug Resistance (PDR) genes involved in tolerance of cadmium in peanut (Arachis hypogaea L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117324. [PMID: 39546864 DOI: 10.1016/j.ecoenv.2024.117324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/13/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Peanut (Arachis hypogaea L.) is one of the most important oil crops worldwide. Cadmium (Cd), a heavy metal that is nonessential and toxic, has the potential to significantly impacted the quality and safety of peanut. Despite the known importance of Pleiotropic Drug Resistance (PDR) genes in heavy metal accumulation and transport in plants, there is a lack of comprehensive research on the systematic identification and functional characterization of AhPDRs in peanut. In this study, a total of 38 AhPDR genes were discovered within the peanut genome. Among these, AhPDR24, AhPDR30, and AhPDR33 displayed notable variations in expression levels in response to Cd stress. Particularly noteworthy was the observation that AhPDR33, localized in the plasma membrane, exhibited a significant increase in expression (approximately 3.8-fold) and heightened promoter activity (approximately 4.1-fold) following exposure to Cd (75 μM CdCl2). Furthermore, the study found that the overexpression of AhPDR33 in Arabidopsis resulted in increased root elongation and decreased Cd accumulation (approximately 0.42-fold) compared to wild-type plants. This suggests that AhPDR33 may have a beneficial role in facilitating Cd efflux and tolerance in plants. Additionally, transient silencing of AhPDR33 in peanut demonstrated its positive regulation of Cd tolerance through the promotion of reactive oxygen species (ROS) scavenging and membrane permeability reduction. These findings contribute to the understanding of the molecular mechanisms involved in AhPDR33-mediated Cd tolerance and detoxification in peanut. Furthermore, this study provides comprehensive information to understand the AhPDR gene family, its features, and its expression, which will hold a promising utility as an excellent candidate in the genetic improvement of peanut Cd stress tolerance.
Collapse
Affiliation(s)
- Qi Wang
- Shandong Peanut Research Institute, Qingdao 266100, China.
| | - Xiaoxu Li
- Beijing Life Science Academy, Beijing 102200, China; Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410014, China.
| | - Zhiyuan Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266100, China.
| | - Quanxi Sun
- Shandong Peanut Research Institute, Qingdao 266100, China.
| | - Chunjuan Li
- Shandong Peanut Research Institute, Qingdao 266100, China.
| | - Xiaobo Zhao
- Shandong Peanut Research Institute, Qingdao 266100, China.
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao 266100, China.
| |
Collapse
|
10
|
Pale M, Pérez-Torres CA, Arenas-Huertero C, Villafán E, Sánchez-Rangel D, Ibarra-Laclette E. Genome-Wide Transcriptional Response of Avocado to Fusarium sp. Infection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2886. [PMID: 39458832 PMCID: PMC11511450 DOI: 10.3390/plants13202886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
The avocado crop is relevant for its economic importance and because of its unique evolutionary history. However, there is a lack of information regarding the molecular processes during the defense response against fungal pathogens. Therefore, using a genome-wide approach in this work, we investigated the transcriptional response of the Mexican horticultural race of avocado (Persea americana var. drymifolia), including miRNAs profile and their possible targets. For that, we established an avocado-Fusarium hydroponic pathosystem and studied the response for 21 days. To guarantee robustness in the analysis, first, we improved the avocado genome assembly available for this variety, resulting in 822.49 Mbp in length with 36,200 gene models. Then, using an RNA-seq approach, we identified 13,778 genes differentially expressed in response to the Fusarium infection. According to their expression profile across time, these genes can be clustered into six groups, each associated with specific biological processes. Regarding non-coding RNAs, 8 of the 57 mature miRNAs identified in the avocado genome are responsive to infection caused by Fusarium, and the analysis revealed a total of 569 target genes whose transcript could be post-transcriptionally regulated. This study represents the first research in avocados to comprehensively explore the role of miRNAs in orchestrating defense responses against Fusarium spp. Also, this work provides valuable data about the genes involved in the intricate response of the avocado during fungal infection.
Collapse
Affiliation(s)
- Michel Pale
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| | - Claudia-Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
- Investigador por México-CONAHCYT en el Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico
| | - Catalina Arenas-Huertero
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78295, San Luis Potosí, Mexico;
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| | - Diana Sánchez-Rangel
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
- Investigador por México-CONAHCYT en el Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| |
Collapse
|
11
|
Huang LJ, Zhang J, Lin Z, Yu P, Lu M, Li N. The AP2/ERF transcription factor ORA59 regulates ethylene-induced phytoalexin synthesis through modulation of an acyltransferase gene expression. J Cell Physiol 2024; 239:e30935. [PMID: 36538653 DOI: 10.1002/jcp.30935] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The gaseous ethylene (ET) and the oxylipin-derived jasmonic acid (JA) in plants jointly regulate an arsenal of pathogen responsive genes involved in defending against necrotrophic pathogens. The APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factor ORA59 is a major positive regulator of the ET/JA-mediated defense pathway in Arabidopsis thaliana. The Arabidopsis agmatine coumaroyltransferase (AtACT) catalyzes the formation of hydroxycinnamic acid amides (HCAAs) which are effective toxic antimicrobial substances known as phytoalexins and play an important role in plant defense response. However, induction and regulation of AtACT gene expression and HCAAs synthesis in plants remain less understood. Through gene coexpression network analysis, we identified a list of GCC-box cis-element containing genes that were coexpressed with ORA59 under diverse biotic stress conditions and might be potential downstream targets of this AP2/ERF-domain transcription factor. Particularly, ORA59 directly binds to AtACT gene promoter via the GCC-boxes and activates AtACT gene expression. The ET precursor 1-aminocyclopropane-1-carboxylic acid (ACC)-treatment significantly induces AtACT gene expression. Both ORA59 and members of the class II TGA transcription factors are indispensable for ACC-induced AtACT expression. Interestingly, the expression of AtACT is also subject to the signaling crosstalk of the salicylic acid- and ET/JA-mediated defense response pathways. In addition, we found that genes of the phenylpropanoid metabolism pathway were specifically induced by Botrytis cinerea. Taking together, these evidence suggest that the ET/JA signaling pathway activate the expression of AtACT to increase antimicrobial HCAAs production through the transcription factor ORA59 in response to the infection of necrotrophic plant pathogens.
Collapse
Affiliation(s)
- Li-Jun Huang
- Laboratory of Forest Genetics and Plant Breeding, College of Forestry, Central South University of Forestry and Technology, Hunan, China
| | - Jiayi Zhang
- Laboratory of Forest Genetics and Plant Breeding, College of Forestry, Central South University of Forestry and Technology, Hunan, China
| | - Zeng Lin
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Hunan, China
| | - Peiyao Yu
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Hunan, China
| | - Mengzhu Lu
- Laboratory of Forest Genetics and Plant Breeding, College of Forestry, Central South University of Forestry and Technology, Hunan, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A and F University, Zhejiang, China
| | - Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Hunan, China
- Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Hunan, China
| |
Collapse
|
12
|
Zimmerman JA, Verboonen B, Harrison Hanson AP, Arballo LR, Brusslan JA. Arabidopsis apoplast TET8 positively correlates to leaf senescence, and tet3tet8 double mutants are delayed in leaf senescence. PLANT DIRECT 2024; 8:e70006. [PMID: 39323734 PMCID: PMC11422175 DOI: 10.1002/pld3.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
Extracellular vesicles (EVs) are membrane-bound exosomes secreted into the apoplast. Two distinct populations of EVs have been described in Arabidopsis: PEN1-associated and TET8-associated. We previously noted early leaf senescence in the pen1 single and pen1pen3 double mutant. Both PEN1 and PEN3 are abundant in EV proteomes suggesting that EVs might regulate leaf senescence in soil-grown plants. We observed that TET8 is more abundant in the apoplast of early senescing pen1 and pen1pen3 mutant rosettes and in older wild-type (WT) rosettes. The increase in apoplast TET8 in the pen1 mutant did not correspond to increased TET8 mRNA levels. In addition, apoplast TET8 was more abundant in the early leaf senescence myb59 mutant, meaning the increase in apoplast TET8 protein during leaf senescence is not dependent on pen1 or pen3. Genetic analysis showed a significant delay in leaf senescence in tet3tet8 double mutants after 6 weeks of growth suggesting that these two tetraspanin paralogs operate additively and are positive regulators of leaf senescence. This is opposite of the effect of pen1 and pen1pen3 mutants that show early senescence and suggest PEN1 to be a negative regulator of leaf senescence. Our work provides initial support that apoplast-localized TET8 in combination with TET3 positively regulates age-related leaf senescence in soil-grown Arabidopsis plants.
Collapse
Affiliation(s)
- Jayde A. Zimmerman
- Southern California Coastal Water Research ProjectCosta MesaCaliforniaUSA
| | | | | | - Luis R. Arballo
- California State University, Long BeachLong BeachCaliforniaUSA
| | - Judy A. Brusslan
- Department of Biological SciencesCalifornia State University, Long BeachLong BeachCaliforniaUSA
| |
Collapse
|
13
|
Sullivan KA, Miller JI, Townsend A, Morgan M, Lane M, Pavicic M, Shah M, Cashman M, Jacobson DA. MENTOR: Multiplex Embedding of Networks for Team-Based Omics Research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603821. [PMID: 39091782 PMCID: PMC11291001 DOI: 10.1101/2024.07.17.603821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
While the proliferation of data-driven omics technologies has continued to accelerate, methods of identifying relationships among large-scale changes from omics experiments have stagnated. It is therefore imperative to develop methods that can identify key mechanisms among one or more omics experiments in order to advance biological discovery. To solve this problem, here we describe the network-based algorithm MENTOR - Multiplex Embedding of Networks for Team-Based Omics Research. We demonstrate MENTOR's utility as a supervised learning approach to successfully partition a gene set containing multiple ontological functions into their respective functions. Subsequently, we used MENTOR as an unsupervised learning approach to identify important biological functions pertaining to the host genetic architectures in Populus trichocarpa associated with microbial abundance of multiple taxa. Moreover, as open source software designed with scientific teams in mind, we demonstrate the ability to use the output of MENTOR to facilitate distributed interpretation of omics experiments.
Collapse
Affiliation(s)
- Kyle A. Sullivan
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - J. Izaak Miller
- Office of Innovative Technologies, University of Tennessee-Knoxville, Knoxville, TN
| | - Alice Townsend
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee-Knoxville, Knoxville, TN
| | - Mallory Morgan
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Matthew Lane
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee-Knoxville, Knoxville, TN
| | - Mirko Pavicic
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Manesh Shah
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mikaela Cashman
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel A. Jacobson
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
14
|
Jaskolowski A, Poirier Y. Phosphate deficiency increases plant susceptibility to Botrytis cinerea infection by inducing the abscisic acid pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:828-843. [PMID: 38804074 DOI: 10.1111/tpj.16800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/18/2024] [Indexed: 05/29/2024]
Abstract
Plants have evolved finely regulated defense systems to counter biotic and abiotic threats. In the natural environment, plants are typically challenged by simultaneous stresses and, amid such conditions, crosstalk between the activated signaling pathways becomes evident, ultimately altering the outcome of the defense response. As an example of combined biotic and abiotic stresses, inorganic phosphate (Pi) deficiency, common in natural and agricultural environments, can occur along with attack by the fungus Botrytis cinerea, a devastating necrotrophic generalist pathogen responsible for massive crop losses. We report that Pi deficiency in Arabidopsis thaliana increases its susceptibility to infection by B. cinerea by influencing the early stages of pathogen infection, namely spore adhesion and germination on the leaf surface. Remarkably, Pi-deficient plants are more susceptible to B. cinerea despite displaying the appropriate activation of the jasmonic acid and ethylene signaling pathways, as well as producing secondary defense metabolites and reactive oxygen species. Conversely, the callose deposition in response to B. cinerea infection is compromised under Pi-deficient conditions. The levels of abscisic acid (ABA) are increased in Pi-deficient plants, and the heightened susceptibility to B. cinerea observed under Pi deficiency can be reverted by blocking ABA biosynthesis. Furthermore, high level of leaf ABA induced by overexpression of NCED6 in Pi-sufficient plants also resulted in greater susceptibility to B. cinerea infection associated with increased spore adhesion and germination, and reduced callose deposition. Our findings reveal a link between the enhanced accumulation of ABA induced by Pi deficiency and an increased sensitivity to B. cinerea infection.
Collapse
Affiliation(s)
- Aime Jaskolowski
- Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
15
|
Yang R, Yang Y, Yuan Y, Zhang B, Liu T, Shao Z, Li Y, Yang P, An J, Cao Y. MsABCG1, ATP-Binding Cassette G transporter from Medicago Sativa, improves drought tolerance in transgenic Nicotiana Tabacum. PHYSIOLOGIA PLANTARUM 2024; 176:e14446. [PMID: 39092508 DOI: 10.1111/ppl.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Drought has a devastating impact, presenting a formidable challenge to agricultural productivity and global food security. Among the numerous ABC transporter proteins found in plants, the ABCG transporters play a crucial role in plant responses to abiotic stress. In Medicago sativa, the function of ABCG transporters remains elusive. Here, we report that MsABCG1, a WBC-type transporter highly conserved in legumes, is critical for the response to drought in alfalfa. MsABCG1 is localized on the plasma membrane, with the highest expression observed in roots under normal conditions, and its expression is induced by drought, NaCl and ABA signalling. In transgenic tobacco, overexpression of MsABCG1 enhanced drought tolerance, evidenced by increased osmotic regulatory substances and reduced lipid peroxidation. Additionally, drought stress resulted in reduced ABA accumulation in tobacco overexpressing MsABCG1, demonstrating that overexpression of MsABCG1 enhanced drought tolerance was not via an ABA-dependent pathway. Furthermore, transgenic tobacco exhibited increased stomatal density and reduced stomatal aperture under drought stress, indicating that MsABCG1 has the potential to participate in stomatal regulation during drought stress. In summary, these findings suggest that MsABCG1 significantly enhances drought tolerance in plants and provides a foundation for developing efficient drought-resistance strategies in crops.
Collapse
Affiliation(s)
- Rongchen Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yeyan Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yinying Yuan
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Benzhong Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Ting Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Zitong Shao
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yuanying Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Jie An
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yuman Cao
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
16
|
Han J, Liu CX, Liu J, Wang CR, Wang SC, Miao G. AGC kinases OXI1 and AGC2-2 regulate camalexin secretion and disease resistance by phosphorylating transporter PDR6. PLANT PHYSIOLOGY 2024; 195:1835-1850. [PMID: 38535832 DOI: 10.1093/plphys/kiae186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/28/2024] [Indexed: 06/30/2024]
Abstract
Plant transporters regulating the distribution of secondary metabolites play critical roles in defending against pathogens, insects, and interacting with beneficial microbes. The phosphorylation of these transporters can alter their activity, stability, and intracellular protein trafficking. However, the regulatory mechanism underlying this modification remains elusive. In this study, we discovered two orthologs of mammalian PKA, PKG, and PKC (AGC) kinases, oxidative signal-inducible 1 (OXI1) and its closest homologue, AGC subclass 2 member 2 (AGC2-2; 75% amino acid sequence identity with OXI1), associated with the extracellular secretion of camalexin and Arabidopsis (Arabidopsis thaliana) resistance to Pseudomonas syringae, and Botrytis cinerea. These kinases can undergo in vitro kinase reactions with three pleiotropic drug resistance (PDR) transporters: PDR6, PDR8, and PDR12. Moreover, our investigation confirmed PDR6 interaction with OXI1 and AGC2-2. By performing LC-MS/MS and parallel reaction monitoring, we identified the phosphorylation sites on PDR6 targeted by these kinases. Notably, chitin-induced PDR6 phosphorylation at specific residues, namely S31, S33, S827, and T832. Additional insights emerged by expressing dephosphorylated PDR6 variants in a pdr6 mutant background, revealing that the target residues S31, S33, and S827 promote PDR6 efflux activity, while T832 potentially contributes to PDR6 stability within the plasma membrane. The findings of this study elucidate partial mechanisms involved in the activity regulation of PDR-type transporters, providing valuable insights for their potential application in future plant breeding endeavors.
Collapse
Affiliation(s)
- Juan Han
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Institute of Digital Ecology and Health, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Chang-Xin Liu
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Jian Liu
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Cheng-Run Wang
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Shun-Chang Wang
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Guopeng Miao
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China
| |
Collapse
|
17
|
Bulasag AS, Ashida A, Miura A, Pring S, Kuroyanagi T, Camagna M, Tanaka A, Sato I, Chiba S, Ojika M, Takemoto D. Botrytis cinerea detoxifies the sesquiterpenoid phytoalexin rishitin through multiple metabolizing pathways. Fungal Genet Biol 2024; 172:103895. [PMID: 38679292 DOI: 10.1016/j.fgb.2024.103895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Botrytis cinerea is a necrotrophic pathogen that infects across a broad range of plant hosts, including high-impact crop species. Its generalist necrotrophic behavior stems from its ability to detoxify structurally diverse phytoalexins. The current study aims to provide evidence of the ability of B. cinerea to tolerate the sesquiterpenoid phytoalexin rishitin, which is produced by potato and tomato. While the growth of potato pathogens Phytophthora infestans (late blight) and Alternaria solani (early blight) was severely inhibited by rishitin, B. cinerea was tolerant to rishitin. After incubation of rishitin with the mycelia of B. cinerea, it was metabolized to at least six oxidized forms. Structural analysis of these purified rishitin metabolites revealed a variety of oxidative metabolism including hydroxylation at C7 or C12, ketone formation at C5, and dihydroxylation at the 10,11-olefin. Six rishitin metabolites showed reduced toxicity to P. infestans and A. solani, indicating that B. cinerea has at least 5 distinct enzymatic reactions to detoxify rishitin. Four host-specialized phytopathogenic Botrytis species, namely B. elliptica, B. allii, B. squamosa, and B. tulipae also had at least a partial ability to metabolize rishitin as B. cinerea, but their metabolic capacity was significantly weaker than that of B. cinerea. These results suggest that the ability of B. cinerea to rapidly metabolize rishitin through multiple detoxification mechanisms could be critical for its pathogenicity in potato and tomato.
Collapse
Affiliation(s)
- Abriel Salaria Bulasag
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan; College of Arts and Sciences, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - Akira Ashida
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Atsushi Miura
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Sreynich Pring
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Teruhiko Kuroyanagi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Maurizio Camagna
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Ikuo Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Makoto Ojika
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| |
Collapse
|
18
|
Zimmerman JA, Verboonen B, Harrison Hanson AP, Brusslan JA. Arabidopsis Apoplast TET8 Positively Correlates to Leaf Senescence and tet3tet8 Double Mutants are Delayed in Leaf Senescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593620. [PMID: 38798530 PMCID: PMC11118556 DOI: 10.1101/2024.05.10.593620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Extracellular vesicles (EVs) are membrane-bound exosomes secreted into the apoplast. Two distinct populations of EVs have been described in Arabidopsis: PEN1-associated and TET8-associated. We previously noted early leaf senescence in the pen1 single and pen1pen3 double mutant. Both PEN1 and PEN3 are abundant in EV proteomes suggesting EVs might regulate leaf senescence in soil-grown plants. We observed that TET8 is more abundant in the apoplast of early senescing pen1 and pen1pen3 mutant rosettes and in older WT rosettes. The increase in apoplast TET8 in the pen1 mutant did not correspond to increased TET8 mRNA levels. In addition, apoplast TET8 was more abundant in the early leaf senescence myb59 mutant, meaning the increase in apoplast TET8 protein during leaf senescence is not dependent on pen1 or pen3 . Genetic analysis showed a significant delay in leaf senescence in tet3tet8 double mutants after six weeks of growth suggesting that these two tetraspanin paralogs operate additively and are positive regulators of leaf senescence. This is opposite of the effect of pen1 and pen1pen3 mutants that show early senescence and suggest PEN1 to be a negative regulator of leaf senescence. Our work provides initial support that PEN1-associated EVs and TET8-associated EVs may have opposite effects on soil-grown plants undergoing age-related leaf senescence.
Collapse
|
19
|
Hawk TE, Piya S, Sultana MS, Zadegan SB, Shipp S, Coffey N, McBride NB, Rice JH, Hewezi T. Soybean MKK2 establishes intricate signalling pathways to regulate soybean response to cyst nematode infection. MOLECULAR PLANT PATHOLOGY 2024; 25:e13461. [PMID: 38695657 PMCID: PMC11064803 DOI: 10.1111/mpp.13461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
Mitogen-activated protein kinase (MPK) cascades play central signalling roles in plant immunity and stress response. The soybean orthologue of MPK kinase2 (GmMKK2) was recently identified as a potential signalling node whose expression is upregulated in the feeding site induced by soybean cyst nematode (SCN, Heterodera glycines). To investigate the role of GmMKK2 in soybean-SCN interactions, we overexpressed a catabolically inactive variant referred to as kinase-dead variant (KD-GmMKK2) using transgenic hairy roots. KD-GmMKK2 overexpression caused significant reduction in soybean susceptibility to SCN, while overexpression of the wild-type variant (WT-GmMKK2) exhibited no effect on susceptibility. Transcriptome analysis indicated that KD-GmMKK2 overexpressing plants are primed for SCN resistance via constitutive activation of defence signalling, particularly those related to chitin, respiratory burst, hydrogen peroxide and salicylic acid. Phosphoproteomic profiling of the WT-GmMKK2 and KD-GmMKK2 root samples upon SCN infection resulted in the identification of 391 potential targets of GmMKK2. These targets are involved in a broad range of biological processes, including defence signalling, vesicle fusion, chromatin remodelling and nuclear organization among others. Furthermore, GmMKK2 mediates phosphorylation of numerous transcriptional and translational regulators, pointing to the presence of signalling shortcuts besides the canonical MAPK cascades to initiate downstream signalling that eventually regulates gene expression and translation initiation. Finally, the functional requirement of specific phosphorylation sites for soybean response to SCN infection was validated by overexpressing phospho-mimic and phospho-dead variants of two differentially phosphorylated proteins SUN1 and IDD4. Together, our analyses identify GmMKK2 impacts on signalling modules that regulate soybean response to SCN infection.
Collapse
Affiliation(s)
- Tracy E. Hawk
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Sarbottam Piya
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | | | | | - Sarah Shipp
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Nicole Coffey
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Natalie B. McBride
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - John H. Rice
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Tarek Hewezi
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| |
Collapse
|
20
|
Li W, Wang M, Liu Y, Zhan Q, Jing R, Song A, Zhao S, Wang L, Jiang J, Chen S, Chen F, Guan Z. A pattern for the early, middle, and late phase of tea chrysanthemum response to Fusarium oxysporum. PHYSIOLOGIA PLANTARUM 2024; 176:e14373. [PMID: 38894555 DOI: 10.1111/ppl.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/17/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024]
Abstract
Chrysanthemum morifolium is cultivated worldwide and has high ornamental, tea, and medicinal value. With the increasing area of chrysanthemum cultivation and years of continuous cropping, Fusarium wilt disease frequently occurs in various production areas, seriously affecting the quality and yield and causing huge economic losses. However, the molecular response mechanism of Fusarium wilt infection remains unclear, which limits the molecular breeding process for disease resistance in chrysanthemums. In the present study, we analyzed the molecular response mechanisms of 'Huangju,' one of the tea chrysanthemum cultivars severely infested with Fusarium wilt in the field at the early, middle, and late phases of F. oxysporum infestation. 'Huangju' responded to the infestation mainly through galactose metabolism, plant-pathogen interaction, auxin, abscisic acid, and ethylene signalling in the early phase; galactose metabolism, plant-pathogen interaction, auxin, salicylic acid signal, and certain transcription factors (e.g., CmWRKY48) in the middle phase; and galactose metabolism in the late phase. Notably, the galactose metabolism was important in the early, middle, and late phases of 'Huangju' response to F. oxysporum. Meanwhile, the phytohormone auxin was involved in the early and middle responses. Furthermore, silencing of CmWRKY48 in 'Huangju' resulted in resistance to F. oxysporum. Our results revealed a new molecular pattern for chrysanthemum in response to Fusarium wilt in the early, middle, and late phases, providing a foundation for the molecular breeding of chrysanthemum for disease resistance.
Collapse
Affiliation(s)
- Wenjie Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mengqi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qingling Zhan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ruyue Jing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shuang Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Zhang Y, Zhang W, Liu Y, Zheng Y, Nie X, Wu Q, Yu W, Wang Y, Wang X, Fang K, Qin L, Xing Y. GWAS identifies two important genes involved in Chinese chestnut weight and leaf length regulation. PLANT PHYSIOLOGY 2024; 194:2387-2399. [PMID: 38114094 DOI: 10.1093/plphys/kiad674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
There are many factors that affect the yield of Chinese chestnut (Castanea mollissima), with single nut weight (SNW) being one of the most important. Leaf length is also related to Chinese chestnut yield. However, the genetic architecture and gene function associated with Chinese chestnut nut yield have not been fully explored. In this study, we performed genotyping by sequencing 151 Chinese chestnut cultivars, followed by a genome-wide association study (GWAS) on six horticultural traits. First, we analyzed the phylogeny of the Chinese chestnut and found that the Chinese chestnut cultivars divided into two ecotypes, a northern and southern cultivar group. Differences between the cultivated populations were found in the pathways of plant growth and adaptation to the environment. In the selected regions, we also found interesting tandemly arrayed genes that may influence Chinese chestnut traits and environmental adaptability. To further investigate which horticultural traits were selected, we performed a GWAS using six horticultural traits from 151 cultivars. Forty-five loci that strongly associated with horticultural traits were identified, and six genes highly associated with these traits were screened. In addition, a candidate gene associated with SNW, APETALA2 (CmAP2), and another candidate gene associated with leaf length (LL), CRYPTOCHROME INTERACTING BASIC HELIX-LOOP-HELIX 1 (CmCIB1), were verified in Chinese chestnut and Arabidopsis (Arabidopsis thaliana). Our results showed that CmAP2 affected SNW by negatively regulating cell size. CmCIB1 regulated the elongation of new shoots and leaves by inducing cell elongation, potentially affecting photosynthesis. This study provided valuable information and insights for Chinese chestnut breeding research.
Collapse
Affiliation(s)
- Yu Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Weiwei Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yang Liu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yi Zheng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| | - Xinghua Nie
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Qinyi Wu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Wenjie Yu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yafeng Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xuefeng Wang
- Longtan Forestry Station, Liyang Bureau of Natural Resources and Planning, Liyang, Jiangsu 213300, China
| | - Kefeng Fang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Ling Qin
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yu Xing
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
22
|
Coca-Ruiz V, Aleu J, Collado IG. Comparing Fungal Sensitivity to Isothiocyanate Products on Different Botrytis spp. PLANTS (BASEL, SWITZERLAND) 2024; 13:756. [PMID: 38592765 PMCID: PMC10974099 DOI: 10.3390/plants13060756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/10/2024]
Abstract
Glucosinolates, the main secondary metabolites accumulated in cruciferous flora, have a major impact on fortifying plant immunity against diverse pathogens. Although Botrytis cinerea exhibits varying sensitivity to these compounds, current research has yet to fully understand the intricate mechanisms governing its response to glucosinolates. Different species of the genus Botrytis were exposed to glucosinolate-derived isothiocyanates, revealing that B. fabae, B. deweyae, and B. convolute, species with the mfsG transporter gene (Bcin06g00026) not detected with PCR, were more sensitive to isothiocyanates than Botrytis species containing that gene, such as B. cinerea, B. pseudocinerea, and B. byssoidea. This finding was further corroborated by the inability of species with the mfsG gene not detected with PCR to infect plants with a high concentration of glucosinolate-derived isothiocyanates. These results challenge established correlations, revealing varying aggressiveness on different plant substrates. An expression analysis highlighted the gene's induction in the presence of isothiocyanate, and a bioinformatic investigation identified homologous genes in other Botrytis species. Our study underscored the importance of advanced biotechnology to help understand these proteins and thus offer innovative solutions for agriculture.
Collapse
Affiliation(s)
- Víctor Coca-Ruiz
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Cádiz, Spain;
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, 11510 Cádiz, Spain
| | - Josefina Aleu
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Cádiz, Spain;
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, 11510 Cádiz, Spain
| | - Isidro G. Collado
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Cádiz, Spain;
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, 11510 Cádiz, Spain
| |
Collapse
|
23
|
Ojeda-Rivera JO, Ulloa M, Pérez-Zavala FG, Nájera-González HR, Roberts PA, Yong-Villalobos L, Yadav H, Chávez Montes RA, Herrera-Estrella L, Lopez-Arredondo D. Enhanced phenylpropanoid metabolism underlies resistance to Fusarium oxysporum f. sp. vasinfectum race 4 infection in the cotton cultivar Pima-S6 ( Gossypium barbadense L.). Front Genet 2024; 14:1271200. [PMID: 38259617 PMCID: PMC10800685 DOI: 10.3389/fgene.2023.1271200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Fusarium oxysporum f. sp. vasinfectum (FOV) race 4 (FOV4) is a highly pathogenic soil-borne fungus responsible for Fusarium wilt in cotton (Gossypium spp.) and represents a continuing threat to cotton production in the southwest states of the United States, including California, New Mexico, and Texas. Pima (G. barbadense L.) cotton, which is highly valued for its fiber quality, has been shown to be more susceptible to this pathogen than Upland (G. hirsutum L.) cotton. Still, some Pima cultivars present resistance to FOV4 infection. Methods: To gain insights into the FOV4-resistance mechanism, we performed comparative transcriptional and metabolomic analyses between FOV4-susceptible and FOV4-resistant Pima cotton entries. FOV4-resistant Pima-S6 and FOV4-susceptible Pima S-7 and Pima 3-79 cotton plants were infected with FOV4 in the greenhouse, and the roots harvested 11 days post-infection for further analysis. Results: We found that an enhanced root phenylpropanoid metabolism in the resistant Pima-S6 cultivar determines FOV4-resistance. Gene-ontology enrichment of phenylpropanoid biosynthesis and metabolism categories correlated with the accumulation of secondary metabolites in Pima-S6 roots. Specifically, we found esculetin, a coumarin, an inhibitor of Fusarium's growth, accumulated in the roots of Pima-S6 even under non-infected conditions. Genes related to the phenylpropanoid biosynthesis and metabolism, including phenylalanine ammonia-lyase 2 (PAL2) and pleiotropic drug resistance 12 (PDR12) transporter, were found to be upregulated in Pima-S6 roots. Discussion: Our results highlight an essential role for the phenylpropanoid synthesis pathway in FOV4 resistance in Pima-S6 cotton. These genes represent attractive research prospects for FOV4-disease resistance and breeding approaches of other cotton cultivars of economic relevance.
Collapse
Affiliation(s)
- Jonathan Odilón Ojeda-Rivera
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, United States
| | - Mauricio Ulloa
- Plant Stress and Germplasm Development Research, U.S. Department of Agriculture-Agricultural Research Service, Plains Area, Cropping Systems Research Laboratory, Lubbock, TX, United States
| | - Francisco G. Pérez-Zavala
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, United States
| | - Héctor-Rogelio Nájera-González
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, United States
| | - Philip A. Roberts
- Department of Nematology, University of California, Riverside, CA, United States
| | - Lenin Yong-Villalobos
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, United States
| | - Himanshu Yadav
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, United States
| | - Ricardo A. Chávez Montes
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, United States
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, United States
- Unidad de Genomica Avanzada/Langebio, Centro de Investigacion y de Estudios Avanzados, Irapuato, Guanajuato, Mexico
| | - Damar Lopez-Arredondo
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
24
|
Li ZJ, Tang SY, Gao HS, Ren JY, Xu PL, Dong WP, Zheng Y, Yang W, Yu YY, Guo JH, Luo YM, Niu DD, Jiang CH. Plant growth-promoting rhizobacterium Bacillus cereus AR156 induced systemic resistance against multiple pathogens by priming of camalexin synthesis. PLANT, CELL & ENVIRONMENT 2024; 47:337-353. [PMID: 37775913 DOI: 10.1111/pce.14729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/04/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
Phytoalexins play a crucial role in plant immunity. However, the mechanism of how phytoalexin is primed by beneficial microorganisms against broad-spectrum pathogens remains elusive. This study showed that Bacillus cereus AR156 could trigger ISR against broad-spectrum disease. RNA-sequencing and camalexin content assays showed that AR156-triggered ISR can prime the accumulation of camalexin synthesis and secretion-related genes. Moreover, it was found that AR156-triggered ISR elevates camalexin accumulation by increasing the expression of camalexin synthesis genes upon pathogen infection. We observed that the priming of camalexin accumulation by AR156 was abolished in cyp71a13 and pad3 mutants. Further investigations reveal that in the wrky33 mutant, the ability of AR156 to prime camalexin accumulation is abolished, and the mediated ISR against the three pathogens is significantly compromised. Furthermore, PEN3 and PDR12, acting as camalexin transporters, participate in AR156-induced ISR against broad-spectrum pathogens differently. In addition, salicylic acid and JA/ET signalling pathways participate in AR156-primed camalexin synthesis to resist pathogens in different forms depending on the pathogen. In summary, B. cereus AR156 triggers ISR against Botrytis cinerea, Pst DC3000 and Phytophthora capsici by priming camalexin synthesis. Our study provides deeper insights into the significant role of camalexin for AR156-induced ISR against broad-spectrum pathogens.
Collapse
Affiliation(s)
- Zi-Jie Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Shu-Ya Tang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Hong-Shan Gao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Jin-Yao Ren
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Pei-Ling Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Wen-Pan Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Ying Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Wei Yang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huai'an, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, China
| | - Yi-Yang Yu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Jian-Hua Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Yu-Ming Luo
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huai'an, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, China
| | - Dong-Dong Niu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huai'an, China
| | - Chun-Hao Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huai'an, China
| |
Collapse
|
25
|
Zhang X, Ma Y, Lai D, He M, Zhang X, Zhang W, Ji M, Zhu Y, Wang Y, Liu L, Xu L. RsPDR8, a member of ABCG subfamily, plays a positive role in regulating cadmium efflux and tolerance in radish (Raphanus sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108149. [PMID: 37939545 DOI: 10.1016/j.plaphy.2023.108149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Radish (Raphanus sativus L.) is one of the most vital root vegetable crops worldwide. Cadmium (Cd), a non-essential and toxic heavy metal, can dramatically restrict radish taproot quality and safety. Although the Peiotrpic Drug Resistance (PDR) genes play crucial roles in heavy metal accumulation and transport in plants, the systematic identification and functional characterization of RsPDRs remain largely unexplored in radish. Herein, a total of 19 RsPDR genes were identified from the radish genome. A few RsPDRs, including RsPDR1, RsPDR8 and RsPDR12, showed significant differential expression under Cd and lead (Pb) stress in the 'NAU-YH' genotype. Interestingly, the plasma membrane-localized RsPDR8 exhibited significantly up-regulated expression and enhanced promoter activity under Cd exposure. Ectopic expression of RsPDR8 conferred Cd tolerance via reducing Cd accumulation in yeast cells. Moreover, the transient transformation of RsPDR8 revealed that it positively regulated Cd tolerance by promoting ROS scavenging and enhancing membrane permeability in radish. In addition, overexpression of RsPDR8 increased root elongation but deceased Cd accumulation compared with the WT plants in Arabidopsis, demonstrating that it could play a positive role in mediating Cd efflux and tolerance in plants. Together, these results would facilitate deciphering the molecular mechanism underlying RsPDR8-mediated Cd tolerance and detoxification in radish.
Collapse
Affiliation(s)
- Xinyu Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yingfei Ma
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Deqiang Lai
- Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, 061001, PR China
| | - Min He
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaoli Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Weilan Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Mingmei Ji
- Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, 061001, PR China
| | - Yuelin Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, PR China
| | - Liang Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
26
|
Derbyshire MC, Raffaele S. Till death do us pair: Co-evolution of plant-necrotroph interactions. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102457. [PMID: 37852141 DOI: 10.1016/j.pbi.2023.102457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 10/20/2023]
Abstract
Plants use programmed cell death as a potent defense response against biotrophic pathogens that require living host cells to thrive. However, cell death can promote infection by necrotrophic pathogens. This discrepancy creates specific co-evolutionary dynamics in the interaction between plants and necrotrophs. Necrotrophic pathogens produce diverse cell death-inducing effectors that act redundantly on several plant targets and sometimes suppress plant immune responses as an additional function. Plants use surface receptors that recognize necrotrophic effectors to increase quantitative disease resistance, some of which evolved independently in several plant lineages. Co-evolution has shaped molecular mechanisms involved in plant-necrotroph interactions into robust systems, relying on degenerate and multifunctional modules, general-purpose components, and compartmentalized functioning.
Collapse
Affiliation(s)
- Mark C Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Sylvain Raffaele
- Université de Toulouse, INRAE, CNRS, Laboratoire des Interactions Plantes Micro-organismes Environnement (LIPME), 31326, Castanet-Tolosan, France.
| |
Collapse
|
27
|
Hawk TE, Piya S, Zadegan SB, Li P, Rice JH, Hewezi T. The soybean immune receptor GmBIR1 regulates host transcriptome, spliceome, and immunity during cyst nematode infection. THE NEW PHYTOLOGIST 2023; 239:2335-2352. [PMID: 37337845 DOI: 10.1111/nph.19087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
BAK1-INTERACTING RECEPTOR LIKE KINASE1 (BIR1) is a negative regulator of various aspects of disease resistance and immune responses. Here, we investigated the functional role of soybean (Glycine max) BIR1 (GmBIR1) during soybean interaction with soybean cyst nematode (SCN, Heterodera glycines) and the molecular mechanism through which GmBIR1 regulates plant immunity. Overexpression of wild-type variant of GmBIR1 (WT-GmBIR1) using transgenic soybean hairy roots significantly increased soybean susceptibility to SCN, whereas overexpression of kinase-dead variant (KD-GmBIR1) significantly increased plant resistance. Transcriptome analysis revealed that genes oppositely regulated in WT-GmBIR1 and KD-GmBIR1 upon SCN infection were enriched primarily in defense and immunity-related functions. Quantitative phosphoproteomic analysis identified 208 proteins as putative substrates of the GmBIR1 signaling pathway, 114 of which were differentially phosphorylated upon SCN infection. In addition, the phosphoproteomic data pointed to a role of the GmBIR1 signaling pathway in regulating alternative pre-mRNA splicing. Genome-wide analysis of splicing events provided compelling evidence supporting a role of the GmBIR1 signaling pathway in establishing alternative splicing during SCN infection. Our results provide novel mechanistic insights into the function of the GmBIR1 signaling pathway in regulating soybean transcriptome and spliceome via differential phosphorylation of splicing factors and regulation of splicing events of pre-mRNA decay- and spliceosome-related genes.
Collapse
Affiliation(s)
- Tracy E Hawk
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sobhan Bahrami Zadegan
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Peitong Li
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - John H Rice
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
28
|
Zhang XM, Li JT, Xia Y, Shi XQ, Liu XL, Tang M, Tang J, Sun W, Yi Y. Early and Late Transcriptomic and Metabolomic Responses of Rhododendron 'Xiaotaohong' Petals to Infection with Alternaria sp. Int J Mol Sci 2023; 24:12695. [PMID: 37628875 PMCID: PMC10454523 DOI: 10.3390/ijms241612695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, petal blight disease caused by pathogens has become increasingly epidemic in Rhododendron. Breeding disease-resistant rhododendron is considered to be a more environmentally friendly strategy than is the use of chemical reagents. In this study, we aimed to investigate the response mechanisms of rhododendron varieties to petal blight, using transcriptomics and metabolomics analyses. Specifically, we monitored changes in gene expression and metabolite accumulation in Rhododendron 'Xiaotaohong' petals infected with the Alternaria sp. strain (MR-9). The infection of MR-9 led to the development of petal blight and induced significant changes in gene transcription. Differentially expressed genes (DEGs) were predominantly enriched in the plant-pathogen interaction pathway. These DEGs were involved in carrying out stress responses, with genes associated with H2O2 production being up-regulated during the early and late stages of infection. Correspondingly, H2O2 accumulation was detected in the vicinity of the blight lesions. In addition, defense-related genes, including PR and FRK, exhibited significant up-regulated expression during the infection by MR-9. In the late stage of the infection, we also observed significant changes in differentially abundant metabolites (DAMs), including flavonoids, alkaloids, phenols, and terpenes. Notably, the levels of euscaphic acid, ganoderol A, (-)-cinchonidine, and theophylline in infected petals were 21.8, 8.5, 4.5, and 4.3 times higher, respectively, compared to the control. Our results suggest that H2O2, defense-related genes, and DAM accumulation are involved in the complex response mechanisms of Rhododendron 'Xiaotaohong' petals to MR-9 infection. These insights provide a deeper understanding of the pathogenesis of petal blight disease and may have practical implications for developing disease-resistant rhododendron varieties.
Collapse
Affiliation(s)
- Xi-Min Zhang
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- Key Laboratory of Environment Friendly Management on Alpine Rhododendron Diseases and Pests of Institutions of Higher Learning in Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Jie-Ting Li
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Ying Xia
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Xiao-Qian Shi
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Xian-Lun Liu
- Key Laboratory of Environment Friendly Management on Alpine Rhododendron Diseases and Pests of Institutions of Higher Learning in Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Ming Tang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China
| | - Jing Tang
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Wei Sun
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China;
| | - Yin Yi
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China; (J.-T.L.); (Y.X.); (X.-Q.S.); (J.T.); (W.S.); (Y.Y.)
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
29
|
Xiao Z, Huang G, Lu D. A MAPK signaling cascade regulates the fusaric acid-induced cell death in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154049. [PMID: 37423042 DOI: 10.1016/j.jplph.2023.154049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
Mycotoxin contamination of foods and feeds is a global problem. Fusaric acid (FA) is a mycotoxin produced by Fusarium species that are phytopathogens of many economically important plant species. FA can cause programmed cell death (PCD) in several plant species. However, the signaling mechanisms of FA-induced cell death in plants are largely unknown. Here we showed that FA induced cell death in the model plant Arabidopsis thaliana, and MPK3/6 phosphorylation was triggered by FA in Arabidopsis. Both the acid nature and the radical of FA are required for its activity in inducing MPK3/6 activation and cell death. Expression of the constitutively active MKK5DD resulted in the activation of MPK3/6 and promoted the FA-induced cell death. Our work demonstrates that the MKK5-MPK3/6 cascade positively regulates FA-induced cell death in Arabidopsis and also provides insight into the mechanisms of how cell death is induced by FA in plants.
Collapse
Affiliation(s)
- Zejun Xiao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guozhong Huang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
| | - Dongping Lu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
30
|
Szűcs Z, Plaszkó T, Bódor E, Csoma H, Ács-Szabó L, Kiss-Szikszai A, Vasas G, Gonda S. Antifungal Activity of Glucosinolate-Derived Nitriles and Their Synergistic Activity with Glucosinolate-Derived Isothiocyanates Distinguishes Various Taxa of Brassicaceae Endophytes and Soil Fungi. PLANTS (BASEL, SWITZERLAND) 2023; 12:2741. [PMID: 37514355 PMCID: PMC10383044 DOI: 10.3390/plants12142741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
The glucosinolates of Brassicaceae plants are converted into bioactive isothiocyanates and other volatiles during a challenge by pathogens and other biotic stressors. However, the role of alternative downstream products with weaker potency (e.g., nitriles) is far from being fully understood. This study tested the possible synergistic antifungal interaction between various glucosinolate-derived nitriles and 2-phenylethyl isothiocyanate (PEITC) on 45 fungal strains, including endophytes from horseradish roots (Brassicaceae) and soil fungi, using an airtight system enabling the accurate study of extremely volatile antifungal agents. The median minimal inhibitory concentrations (MICs) were 1.28, 6.10, 27.00 and 49.72 mM for 1H-indole-3-acetonitrile (IAN), 3-phenylpropanenitrile (PPN), 4-(methylsulfanyl)-butanenitrile (MSBN) and 3-butenenitrile (BN, = allyl cyanide), respectively. Thus, nitriles were considerably weaker antifungal agents compared to PEITC with a median MIC of 0.04 mM. For the same nitriles, the median fractional inhibitory concentration indices (FICIs) of the combinations were 0.562, 0.531, 0.562 and 0.625, respectively. Altogether, 47.7%, 56.8%, 50.0% and 27.3% of tested fungal strains showed a synergistic antifungal activity (FICI ≤ 0.5) for the nitrile-isothiocyanate combinations, respectively. Hypocreales strains showed the least sensitivity towards the GSL decomposition products and their combinations. The mean MIC values for PEITC showed 0.0679 ± 0.0358, 0.0400 ± 0.0214, 0.0319 ± 0.0087 and 0.0178 ± 0.0171 mM for Hypocreales, Eurotiales, Glomerellales and Pleosporales, respectively. In addition, nitriles, especially IAN, also showed significant differences. For the same fungi, the median FICI values fell in the ranges of 0.61-0.67, 0.52-0.61, 0.40-0.50 and 0.48-0.67, respectively, depending on the nitrile. Our results suggest that glucosinolate-derived nitriles may enhance isothiocyanate antifungal activity and that they may play an active role in shaping the plant microbiome and contribute to the filtering of microbes by plants.
Collapse
Affiliation(s)
- Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Healthcare Industry Institute, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Plaszkó
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Eszter Bódor
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Hajnalka Csoma
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Hungary
| | - Lajos Ács-Szabó
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Kiss-Szikszai
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| |
Collapse
|
31
|
He Y, He X, Wang X, Hao M, Gao J, Wang Y, Yang ZN, Meng X. An EPFL peptide signaling pathway promotes stamen elongation via enhancing filament cell proliferation to ensure successful self-pollination in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 238:1045-1058. [PMID: 36772858 DOI: 10.1111/nph.18806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Proper stamen filament elongation is essential for plant self-pollination and reproduction. Several phytohormones such as jasmonate and gibberellin play important roles in controlling filament elongation, but other endogenous signals involved in this developmental process remain unknown. We report here that three EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family peptides, EPFL4, EPFL5 and EPFL6, act redundantly to promote stamen filament elongation via enhancing filament cell proliferation in Arabidopsis thaliana. Knockout of EPFL4-6 genes led to shortened filaments due to defective filament cell proliferation, resulting in pollination failure and male sterility. Further genetic and biochemical analyses indicated that the ERECTA family and the SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) family RLKs form receptor complexes to perceive EPFL4-6 peptides and promote filament cell proliferation. Moreover, based on both loss- and gain-of-function genetic analyses, the mitogen-activated protein kinase cascade MKK4/MKK5-MPK6 was shown to function downstream of EPFL4-6 to positively regulate cell proliferation in stamen filaments. Together, this study reveals that an EPFL peptide signaling pathway composed of the EPFL4-6 peptide ligands, the ERECTA-SERK receptor complexes and the downstream MKK4/MKK5-MPK6 cascade promotes stamen filament elongation via enhancing filament cell proliferation to ensure successful self-pollination and normal fertility in Arabidopsis.
Collapse
Affiliation(s)
- Yunxia He
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiaomeng He
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiaoyang Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Mengyue Hao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiale Gao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yangxiayu Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiangzong Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
32
|
Aryal B, Xia J, Hu Z, Stumpe M, Tsering T, Liu J, Huynh J, Fukao Y, Glöckner N, Huang HY, Sáncho-Andrés G, Pakula K, Ziegler J, Gorzolka K, Zwiewka M, Nodzynski T, Harter K, Sánchez-Rodríguez C, Jasiński M, Rosahl S, Geisler MM. An LRR receptor kinase controls ABC transporter substrate preferences during plant growth-defense decisions. Curr Biol 2023; 33:2008-2023.e8. [PMID: 37146609 DOI: 10.1016/j.cub.2023.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/27/2023] [Accepted: 04/13/2023] [Indexed: 05/07/2023]
Abstract
The exporter of the auxin precursor indole-3-butyric acid (IBA), ABCG36/PDR8/PEN3, from the model plant Arabidopsis has recently been proposed to also function in the transport of the phytoalexin camalexin. Based on these bonafide substrates, it has been suggested that ABCG36 functions at the interface between growth and defense. Here, we provide evidence that ABCG36 catalyzes the direct, ATP-dependent export of camalexin across the plasma membrane. We identify the leucine-rich repeat receptor kinase, QIAN SHOU KINASE1 (QSK1), as a functional kinase that physically interacts with and phosphorylates ABCG36. Phosphorylation of ABCG36 by QSK1 unilaterally represses IBA export, allowing camalexin export by ABCG36 conferring pathogen resistance. As a consequence, phospho-dead mutants of ABCG36, as well as qsk1 and abcg36 alleles, are hypersensitive to infection with the root pathogen Fusarium oxysporum, caused by elevated fungal progression. Our findings indicate a direct regulatory circuit between a receptor kinase and an ABC transporter that functions to control transporter substrate preference during plant growth and defense balance decisions.
Collapse
Affiliation(s)
- Bibek Aryal
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jian Xia
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Zehan Hu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Tashi Tsering
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jie Liu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - John Huynh
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Yoichiro Fukao
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Nina Glöckner
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Hsin-Yao Huang
- Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Gloria Sáncho-Andrés
- Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Konrad Pakula
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznań, Poland; NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Joerg Ziegler
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Karin Gorzolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics Masaryk University, CEITEC MU Kamenice 5, Building A26, 625 00 Brno, Czech Republic
| | - Tomasz Nodzynski
- Mendel Centre for Plant Genomics and Proteomics Masaryk University, CEITEC MU Kamenice 5, Building A26, 625 00 Brno, Czech Republic
| | - Klaus Harter
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | | | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznań, Poland; Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Sabine Rosahl
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Markus M Geisler
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
33
|
Shen Y, Wang J, Shaw RK, Sheng X, Yu H, Branca F, Gu H. Comparative Transcriptome and Targeted Metabolome Profiling Unravel the Key Role of Phenylpropanoid and Glucosinolate Pathways in Defense against Alternaria brassicicola in Broccoli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6499-6510. [PMID: 37061924 DOI: 10.1021/acs.jafc.2c08486] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Alternaria brassicicola (Ab) can cause a major yield and quality-limiting disease of Brassica oleracea called black spot, and the genetic resources conferring complete resistance against Ab have not been identified to date. Here, comparative transcriptome and targeted metabolome analysis were performed utilizing a newly identified resistant (R) line and a broccoli susceptible (S) line at 6, 24, and 72 h post-inoculation (hpi). Kyoto encyclopedia of genes and genomes pathway enrichment and the weighted gene co-expression network analyses showed that the phenylpropanoid pathway regulates the resistance to Ab in broccoli. One metabolite, cinnamic acid, was significantly upregulated in the Ab_inoculated R line compared with the mock treatment but no significant difference in the S line, indicating that the cinnamic acid may cause the resistance difference between R and S lines. Our results also revealed that three indolic glucosinolates of I3G, 4MI3G, and 1MI3G were significantly increased in the Ab_inoculated R line compared with the mock treatment, and some related genes were differentially expressed between the R and S lines. These results provided new insights into the mechanism of Ab defense in B. oleracea and have laid a theoretical foundation for effectively utilizing resistant germplasm resources in broccoli breeding.
Collapse
Affiliation(s)
- Yusen Shen
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiansheng Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ranjan K Shaw
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoguang Sheng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huifang Yu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ferdinando Branca
- Department of Agriculture, Food and Environment, University of Catania, Catania 95123, Italy
| | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
34
|
Pakuła K, Sequeiros-Borja C, Biała-Leonhard W, Pawela A, Banasiak J, Bailly A, Radom M, Geisler M, Brezovsky J, Jasiński M. Restriction of access to the central cavity is a major contributor to substrate selectivity in plant ABCG transporters. Cell Mol Life Sci 2023; 80:105. [PMID: 36952129 PMCID: PMC10036432 DOI: 10.1007/s00018-023-04751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Abstract
ABCG46 of the legume Medicago truncatula is an ABC-type transporter responsible for highly selective translocation of the phenylpropanoids, 4-coumarate, and liquiritigenin, over the plasma membrane. To investigate molecular determinants of the observed substrate selectivity, we applied a combination of phylogenetic and biochemical analyses, AlphaFold2 structure prediction, molecular dynamics simulations, and mutagenesis. We discovered an unusually narrow transient access path to the central cavity of MtABCG46 that constitutes an initial filter responsible for the selective translocation of phenylpropanoids through a lipid bilayer. Furthermore, we identified remote residue F562 as pivotal for maintaining the stability of this filter. The determination of individual amino acids that impact the selective transport of specialized metabolites may provide new opportunities associated with ABCGs being of interest, in many biological scenarios.
Collapse
Affiliation(s)
- Konrad Pakuła
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznan, Poland
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614, Poznan, Poland
| | - Carlos Sequeiros-Borja
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
- International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Wanda Biała-Leonhard
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Aleksandra Pawela
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Joanna Banasiak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Marcin Radom
- Department of Structural Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z.Noskowskiego12/14, 61-704, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland
| | - Markus Geisler
- Department of Biology, University of Fribourg, Chem. du Musée 10, 1700, Fribourg, Switzerland
| | - Jan Brezovsky
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
- International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland.
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznan, Poland.
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632, Poznan, Poland.
| |
Collapse
|
35
|
Tian J, Wang L, Hui S, Yang D, He Y, Yuan M. Cadmium accumulation regulated by a rice heavy-metal importer is harmful for host plant and leaf bacteria. J Adv Res 2023; 45:43-57. [PMID: 35640876 PMCID: PMC10006513 DOI: 10.1016/j.jare.2022.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/07/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022] Open
Abstract
INTRODUCTION Cadmium (Cd), one of the major toxic heavy metals, causes severe deleterious effects on all living organisms from prokaryotes to eukaryotes. Cadmium deposition affects bacterial diversity and bacterial population in soil. Cadmium accumulation in plants is mainly controlled by transporters and the resulting Cd enrichment gives rise to phytotoxicity. OBJECTIVE This study aimed to mine transporters that control Cd import or accumulation in rice and uncover the underlying mechanisms that how accumulated Cd poses risks to host plant and leaf bacteria. METHODS RNA-seq analysis, histochemical assays, and elemental quantification were carried out to reveal the biological roles of OsABCG43 for Cd import. Pathogen inoculation, IC50 value, and bacterial virulence assays were conducted to disclose the effects of Cd on leaf bacteria. RESULTS OsABCG43 is characterized as a Cd importer controlling Cd accumulation in rice. OsABCG43 was induced under Cd stress and specifically expressed in the vasculature of leaves and roots. Overexpression of OsABCG43 caused Cd accumulation which inhibits photosynthesis and development and alters the antioxidant system, resulting in phytotoxicity. Moreover, overexpression of OsABCG43 resulted in retarded plant growth and enhanced rice sensitivity to Cd stress. Numerous differentially expressed genes were identified via RNA-seq analysis between the OsABCG43-overexpressing plants and wild type, which functioned in Cd or reactive oxygen species (ROS) homeostasis. In addition, OsABCG43 transcripts were induced by leaf bacteria Xanthomonas oryzae pv. oryzicola (Xoc) and X. oryzae pv. oryzae (Xoo). The enriched Cd directly impaired the formation of virulence factors for the leaf bacteria, preventing colonization or proliferation of Xoc or Xoo in rice leaves. CONCLUSION This work reveals that OsABCG43 is expressed specifically in the vascular and plasma membrane-localized OsABCG43 functions as a Cd importer. OsABCG43-mediated import of Cd is harmful for both rice and the corresponding leaf bacteria.
Collapse
Affiliation(s)
- Jingjing Tian
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Li Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shugang Hui
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
36
|
Yun HS, Sul WJ, Chung HS, Lee JH, Kwon C. Secretory membrane traffic in plant-microbe interactions. THE NEW PHYTOLOGIST 2023; 237:53-59. [PMID: 36089820 DOI: 10.1111/nph.18470] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant defense responses include the extracellular release of defense-related molecules, such as pathogenesis-related proteins and secondary metabolites, as well as cell wall materials. This primarily depends on the trafficking of secretory vesicles to the plasma membrane, where they discharge their contents into the apoplastic space via soluble N-ethylmaleimide sensitive factor attachment protein receptor-assisted exocytosis. However, some pathogenic and symbiotic microbes have developed strategies to manipulate host plant exocytic pathways. Here, we discuss the mechanisms by which plant exocytic pathways function in immunity and how microbes have evolved to manipulate those pathways.
Collapse
Affiliation(s)
- Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Korea
| | - Hoo Sun Chung
- Plant Biotechnology Research Center, Ghent University, Global Campus, Incheon, 21985, Korea
| | - Jae-Hoon Lee
- Department of Biology Education, Pusan National University, Busan, 46241, Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| |
Collapse
|
37
|
Ishida K, Noutoshi Y. The function of the plant cell wall in plant-microbe interactions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:273-284. [PMID: 36279746 DOI: 10.1016/j.plaphy.2022.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The plant cell wall is an interface of plant-microbe interactions. The ability of microbes to decompose cell wall polysaccharides contributes to microbial pathogenicity. Plants have evolved mechanisms to prevent cell wall degradation. However, the role of the cell wall in plant-microbe interactions is not well understood. Here, we discuss four functions of the plant cell wall-physical defence, storage of antimicrobial compounds, production of cell wall-derived elicitors, and provision of carbon sources-in the context of plant-microbe interactions. In addition, we discuss the four families of cell surface receptors associated with plant cell walls (malectin-like receptor kinase family, wall-associated kinase family, leucine-rich repeat receptor-like kinase family, and lysin motif receptor-like kinase family) that have been the subject of several important studies in recent years. This review summarises the findings on both plant cell wall and plant immunity, improving our understanding and may provide impetus to various researchers.
Collapse
Affiliation(s)
- Konan Ishida
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
38
|
Walker PL, Girard IJ, Becker MG, Giesbrecht S, Whyard S, Fernando WGD, de Kievit TR, Belmonte MF. Tissue-specific mRNA profiling of the Brassica napus-Sclerotinia sclerotiorum interaction uncovers novel regulators of plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6697-6710. [PMID: 35961003 DOI: 10.1093/jxb/erac333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/10/2022] [Indexed: 05/05/2023]
Abstract
White mold is caused by the fungal pathogen Sclerotinia sclerotiorum and leads to rapid and significant loss in plant yield. Among its many brassicaceous hosts, including Brassica napus (canola) and Arabidopsis, the response of individual tissue layers directly at the site of infection has yet to be explored. Using laser microdissection coupled with RNA sequencing, we profiled the epidermis, mesophyll, and vascular leaf tissue layers of B. napus in response to S. sclerotiorum. High-throughput tissue-specific mRNA sequencing increased the total number of detected transcripts compared with whole-leaf assessments and provided novel insight into the conserved and specific roles of ontogenetically distinct leaf tissue layers in response to infection. When subjected to pathogen infection, the epidermis, mesophyll, and vasculature activate both specific and shared gene sets. Putative defense genes identified through transcription factor network analysis were then screened for susceptibility against necrotrophic, hemi-biotrophic, and biotrophic pathogens. Arabidopsis deficient in PR5-like RECEPTOR KINASE (PR5K) mRNA levels were universally susceptible to all pathogens tested and were further characterized to identify putative interacting partners involved in the PR5K signaling pathway. Together, these data provide insight into the complexity of the plant defense response directly at the site of infection.
Collapse
Affiliation(s)
- Philip L Walker
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ian J Girard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Michael G Becker
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shayna Giesbrecht
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Steve Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Teresa R de Kievit
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
39
|
Wu M, Li Q, Xia G, Zhang Y, Wang F. New insights into defense responses against Verticillium dahliae infection revealed by a quantitative proteomic analysis in Arabidopsis thaliana. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:980-994. [PMID: 35908800 DOI: 10.1071/fp22006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Verticillium wilt is a highly destructive fungal disease that attacks a broad range of plants, including many major crops. However, the mechanism underlying plant immunity toward Verticillium dahliae is very complex and requires further study. By combining bioinformatics analysis and experimental validation, we investigated plant defence responses against V. dahliae infection in the model plant Arabidopsis thaliana L. A total of 301 increased and 214 decreased differentially abundant proteins (DAPs) between mock and infected wild type (WT) plants were acquired and bioinformatics analyses were then conducted and compared (increased vs decreased) in detail. In addition to the currently known mechanisms, several new clues about plant immunity against V. dahliae infection were found in this study: (1) exosome formation was dramatically induced by V. dahliae attack; (2) tryptophan-derived camalexin and cyanogenic biosynthesis were durably promoted in response to infection; and (3) various newly identified components were activated for hub immunity responses. These new clues provide valuable information that extends the current knowledge about the molecular basis of plant immunity against V. dahliae infection.
Collapse
Affiliation(s)
- Min Wu
- College of Life Sciences, Hebei University, Baoding 071002, China; and Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiulin Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang, Henan 455000, China
| | - Guixian Xia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongshan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang, Henan 455000, China
| | - Fuxin Wang
- College of Life Sciences, Hebei University, Baoding 071002, China; and Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China
| |
Collapse
|
40
|
Apoplastic and vascular defences. Essays Biochem 2022; 66:595-605. [PMID: 36062526 DOI: 10.1042/ebc20220159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/02/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022]
Abstract
The apoplast comprises the intercellular space between cell membranes, includes the xylem, and extends to the rhizoplane and the outer surfaces of the plant. The apoplast plays roles in different biological processes including plant immunity. This highly specialised space is often the first place where pathogen recognition occurs, and this then triggers the immune response. The immune response in the apoplast involves different mechanisms that restrict pathogen infection. Among these responses, secretion of different molecules like proteases, proteins related to immunity, small RNAs and secondary metabolites play important and often additive or synergistic roles. In addition, production of reactive oxygen species occurs to cause direct deleterious effects on the pathogen as well as reinforce the plant's immune response by triggering modifications to cell wall composition and providing additional defence signalling capabilities. The pool of available sugar in the apoplast also plays a role in immunity. These sugars can be manipulated by both interactors, pathogens gaining access to nutrients whilst the plant's responses restrict the pathogen's access to nutrients. In this review, we describe the latest findings in the field to highlight the importance of the apoplast in plant-pathogen interactions and plant immunity. We also indicate where new discoveries are needed.
Collapse
|
41
|
ATP-Binding Cassette G Transporters and Their Multiple Roles Especially for Male Fertility in Arabidopsis, Rice and Maize. Int J Mol Sci 2022; 23:ijms23169304. [PMID: 36012571 PMCID: PMC9409143 DOI: 10.3390/ijms23169304] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette subfamily G (ABCG) transporters are extensive in plants and play essential roles in various processes influencing plant fitness, but the research progress varies greatly among Arabidopsis, rice and maize. In this review, we present a consolidated nomenclature and characterization of the whole 51 ABCG transporters in maize, perform a phylogenetic analysis and classification of the ABCG subfamily members in maize, and summarize the latest research advances in ABCG transporters for these three plant species. ABCG transporters are involved in diverse processes in Arabidopsis and rice, such as anther and pollen development, vegetative and female organ development, abiotic and biotic stress response, and phytohormone transport, which provide useful clues for the functional investigation of ABCG transporters in maize. Finally, we discuss the current challenges and future perspectives for the identification and mechanism analysis of substrates for plant ABCG transporters. This review provides a basic framework for functional research and the potential application of ABCG transporters in multiple plants, including maize.
Collapse
|
42
|
Plaszkó T, Szűcs Z, Vasas G, Gonda S. Interactions of fungi with non-isothiocyanate products of the plant glucosinolate pathway: A review on product formation, antifungal activity, mode of action and biotransformation. PHYTOCHEMISTRY 2022; 200:113245. [PMID: 35623473 DOI: 10.1016/j.phytochem.2022.113245] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 05/05/2023]
Abstract
The glucosinolate pathway, which is present in the order Brassicales, is one of the most researched defensive natural product biosynthesis pathways. Its core molecules, the glucosinolates are broken down upon pathogen challenge or tissue damage to yield an array of natural products that may help plants defend against the stressor. Though the most widely known glucosinolate decomposition products are the antimicrobial isothiocyanates, there is a wide range of other volatile and non-volatile natural products that arise from this biosynthetic pathway. This review summarizes our current knowledge on the interaction of these much less examined, non-isothiocyanate products with fungi. It deals with compounds including (1) glucosinolates and their biosynthesis precursors; (2) glucosinolate-derived nitriles (e.g. derivatives of 1H-indole-3-acetonitrile), thiocyanates, epithionitriles and oxazolidine-2-thiones; (3) putative isothiocyanate downstream products such as raphanusamic acid, 1H-indole-3-methanol (= indole-3-carbinol) and its oligomers, 1H-indol-3-ylmethanamine and ascorbigen; (4) 1H-indole-3-acetonitrile downstream products such as 1H-indole-3-carbaldehyde (indole-3-carboxaldehyde), 1H-indole-3-carboxylic acid and their derivatives; and (5) indole phytoalexins including brassinin, cyclobrassinin and brassilexin. Herein, a literature review on the following aspects is provided: their direct antifungal activity and the proposed mechanisms of antifungal action, increased biosynthesis after fungal challenge, as well as data on their biotransformation/detoxification by fungi, including but not limited to fungal myrosinase activity.
Collapse
Affiliation(s)
- Tamás Plaszkó
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary; Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032, Debrecen, Hungary.
| | - Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary; Healthcare Industry Institute, University of Debrecen, 4032, Debrecen, Hungary.
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| | - Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| |
Collapse
|
43
|
Moormann J, Heinemann B, Hildebrandt TM. News about amino acid metabolism in plant-microbe interactions. Trends Biochem Sci 2022; 47:839-850. [PMID: 35927139 DOI: 10.1016/j.tibs.2022.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/17/2022] [Accepted: 07/06/2022] [Indexed: 01/17/2023]
Abstract
Plants constantly come into contact with a diverse mix of pathogenic and beneficial microbes. The ability to distinguish between them and to respond appropriately is essential for plant health. Here we review recent progress in understanding the role of amino acid sensing, signaling, transport, and metabolism during plant-microbe interactions. Biochemical pathways converting individual amino acids into active compounds have recently been elucidated, and comprehensive large-scale approaches have brought amino acid sensors and transporters into focus. These findings show that plant central amino acid metabolism is closely interwoven with stress signaling and defense responses at various levels. The individual biochemical mechanisms and the interconnections between the different processes are just beginning to emerge and might serve as a foundation for new plant protection strategies.
Collapse
Affiliation(s)
- Jannis Moormann
- Institute for Plant Genetics, Department of Plant Proteomics, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Björn Heinemann
- Institute for Plant Genetics, Department of Plant Proteomics, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Tatjana M Hildebrandt
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany.
| |
Collapse
|
44
|
Zhou J, Mu Q, Wang X, Zhang J, Yu H, Huang T, He Y, Dai S, Meng X. Multilayered synergistic regulation of phytoalexin biosynthesis by ethylene, jasmonate, and MAPK signaling pathways in Arabidopsis. THE PLANT CELL 2022; 34:3066-3087. [PMID: 35543483 PMCID: PMC9338818 DOI: 10.1093/plcell/koac139] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 05/03/2022] [Indexed: 05/13/2023]
Abstract
Camalexin, an indolic antimicrobial metabolite, is the major phytoalexin in Arabidopsis thaliana, and plays a crucial role in pathogen resistance. Our previous studies revealed that the Arabidopsis mitogen-activated protein kinases MPK3 and MPK6 positively regulate pathogen-induced camalexin biosynthesis via phosphoactivating the transcription factor WRKY33. Here, we report that the ethylene and jasmonate (JA) pathways act synergistically with the MPK3/MPK6-WRKY33 module at multiple levels to induce camalexin biosynthesis in Arabidopsis upon pathogen infection. The ETHYLENE RESPONSE FACTOR1 (ERF1) transcription factor integrates the ethylene and JA pathways to induce camalexin biosynthesis via directly upregulating camalexin biosynthetic genes. ERF1 also interacts with and depends on WRKY33 to upregulate camalexin biosynthetic genes, indicating that ERF1 and WRKY33 form transcriptional complexes to cooperatively activate camalexin biosynthetic genes, thereby mediating the synergy of ethylene/JA and MPK3/MPK6 signaling pathways to induce camalexin biosynthesis. Moreover, as an integrator of the ethylene and JA pathways, ERF1 also acts as a substrate of MPK3/MPK6, which phosphorylate ERF1 to increase its transactivation activity and therefore further cooperate with the ethylene/JA pathways to induce camalexin biosynthesis. Taken together, our data reveal the multilayered synergistic regulation of camalexin biosynthesis by ethylene, JA, and MPK3/MPK6 signaling pathways via ERF1 and WRKY33 transcription factors in Arabidopsis.
Collapse
Affiliation(s)
- Jinggeng Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qiao Mu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoyang Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jun Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Haoze Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tengzhou Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yunxia He
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shaojun Dai
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | | |
Collapse
|
45
|
Xie Y, Ding M, Yin X, Wang G, Zhang B, Chen L, Ma P, Dong J. MAPKK2/4/5/7-MAPK3-JAZs modulate phenolic acid biosynthesis in Salvia miltiorrhiza. PHYTOCHEMISTRY 2022; 199:113177. [PMID: 35358599 DOI: 10.1016/j.phytochem.2022.113177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Phenolic acids are the major bioactive metabolites produced in Salvia miltiorrhiza, a traditional Chinese medicine called Danshen. Many phytohormone elicitor treatments induce phenolic acid biosynthesis, even though the underlying mechanism remains obscure. Expression pattern analysis showed that SmMAPK3 was highly expressed in leaves, and SmMAPK3 was significantly induced by salicylic acid (SA) and methyl jasmonate (JA). Bioinformatics analysis revealed that SmMAPK3 belongs to group A and contains a TEY motif in the activation loop together with three conserved regions (P-loop, C-loop and CD-domain). A previous study speculated that SmMAPK3 is likely a positive regulator in the biosynthesis of phenolic acids in S. miltiorrhiza. In this study, overexpression of SmMAPK3 increased phenolic acid biosynthetic gene expression and enhanced the accumulation of phenolic acids in S. miltiorrhiza plantlets. Yeast two-hybrid (Y2H) analysis and firefly luciferase complementation imaging (LCI) assays revealed that SmMAPKK2/4/5/7-SmMAPK3-SmJAZs form a cascade that regulates the accumulation of phenolic acids. In summary, this work deepens our understanding of the posttranscriptional regulatory mechanisms of phenolic acid biosynthesis and sheds new light on metabolic engineering in S. miltiorrhiza.
Collapse
Affiliation(s)
- Yongfeng Xie
- College of Life Sciences, Northwest A & F University, Yangling, China.
| | - Meiling Ding
- College of Life Sciences, Northwest A & F University, Yangling, China.
| | - Xuecui Yin
- College of Life Sciences, Northwest A & F University, Yangling, China.
| | - Guanfeng Wang
- College of Life Sciences, Northwest A & F University, Yangling, China.
| | - Bin Zhang
- College of Life Sciences, Northwest A & F University, Yangling, China.
| | - Lingxiang Chen
- College of Life Sciences, Northwest A & F University, Yangling, China.
| | - Pengda Ma
- College of Life Sciences, Northwest A & F University, Yangling, China.
| | - Juane Dong
- College of Life Sciences, Northwest A & F University, Yangling, China.
| |
Collapse
|
46
|
Pink H, Talbot A, Graceson A, Graham J, Higgins G, Taylor A, Jackson AC, Truco M, Michelmore R, Yao C, Gawthrop F, Pink D, Hand P, Clarkson JP, Denby K. Identification of genetic loci in lettuce mediating quantitative resistance to fungal pathogens. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2481-2500. [PMID: 35674778 PMCID: PMC9271113 DOI: 10.1007/s00122-022-04129-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
KEY MESSAGE We demonstrate genetic variation for quantitative resistance against important fungal pathogens in lettuce and its wild relatives, map loci conferring resistance and predict key molecular mechanisms using transcriptome profiling. Lactuca sativa L. (lettuce) is an important leafy vegetable crop grown and consumed globally. Chemicals are routinely used to control major pathogens, including the causal agents of grey mould (Botrytis cinerea) and lettuce drop (Sclerotinia sclerotiorum). With increasing prevalence of pathogen resistance to fungicides and environmental concerns, there is an urgent need to identify sources of genetic resistance to B. cinerea and S. sclerotiorum in lettuce. We demonstrated genetic variation for quantitative resistance to B. cinerea and S. sclerotiorum in a set of 97 diverse lettuce and wild relative accessions, and between the parents of lettuce mapping populations. Transcriptome profiling across multiple lettuce accessions enabled us to identify genes with expression correlated with resistance, predicting the importance of post-transcriptional gene regulation in the lettuce defence response. We identified five genetic loci influencing quantitative resistance in a F6 mapping population derived from a Lactuca serriola (wild relative) × lettuce cross, which each explained 5-10% of the variation. Differential gene expression analysis between the parent lines, and integration of data on correlation of gene expression and resistance in the diversity set, highlighted potential causal genes underlying the quantitative trait loci.
Collapse
Affiliation(s)
- Harry Pink
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Adam Talbot
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Abi Graceson
- Department of Agriculture and Environment, Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | - Juliane Graham
- Department of Agriculture and Environment, Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | - Gill Higgins
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Andrew Taylor
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Warwick, CV35 9EF, UK
| | - Alison C Jackson
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Warwick, CV35 9EF, UK
| | - Maria Truco
- Genome Center, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Richard Michelmore
- Genome Center, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Chenyi Yao
- A. L. Tozer Ltd., Pyports, Downside Road, Cobham, Surrey, KT11 3EH, UK
| | - Frances Gawthrop
- A. L. Tozer Ltd., Pyports, Downside Road, Cobham, Surrey, KT11 3EH, UK
| | - David Pink
- Department of Agriculture and Environment, Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | - Paul Hand
- Department of Agriculture and Environment, Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | - John P Clarkson
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Warwick, CV35 9EF, UK
| | - Katherine Denby
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK.
| |
Collapse
|
47
|
Wang X, Meng H, Tang Y, Zhang Y, He Y, Zhou J, Meng X. Phosphorylation of an ethylene response factor by MPK3/MPK6 mediates negative feedback regulation of pathogen-induced ethylene biosynthesis in Arabidopsis. J Genet Genomics 2022; 49:810-822. [PMID: 35562093 DOI: 10.1016/j.jgg.2022.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/16/2022] [Accepted: 04/16/2022] [Indexed: 11/29/2022]
Abstract
Plants under pathogen attack produce high levels of the gaseous phytohormone ethylene to induce plant defense responses via the ethylene signaling pathway. The 1-aminocyclopropane-1-carboxylate synthase (ACS) is a critical rate-limiting enzyme of ethylene biosynthesis. Transcriptional and post-translational upregulation of ACS2 and ACS6 by the mitogen-activated protein kinases MPK3 and MPK6 are previously shown to be crucial for pathogen-induced ethylene biosynthesis in Arabidopsis. Here, we report that the fungal pathogen Botrytis cinerea-induced ethylene biosynthesis in Arabidopsis is under the negative feedback regulation by ethylene signaling pathway. The ethylene response factor ERF1A is further found to act downstream of ethylene signaling to negatively regulate the B. cinerea-induced ethylene biosynthesis via indirectly suppressing the expression of ACS2 and ACS6. Interestingly, ERF1A is shown to also upregulate defensin genes directly and therefore promote Arabidopsis resistance to B. cinerea. Furthermore, ERF1A is identified to be a substrate of MPK3 and MPK6, which phosphoactivate ERF1A to enhance its functions in suppressing ethylene biosynthesis and inducing defensin gene expression. Taken together, our data reveal that ERF1A and its phosphorylation by MPK3/MPK6 not only mediate the negative-feedback regulation of the B. cinerea-induced ethylene biosynthesis, but also upregulate defensin gene expression to increase Arabidopsis resistance to B. cinerea.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Huicong Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Yuxi Tang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Yashi Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Yunxia He
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Jinggeng Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Xiangzong Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China.
| |
Collapse
|
48
|
Nguyen NH, Trotel-Aziz P, Clément C, Jeandet P, Baillieul F, Aziz A. Camalexin accumulation as a component of plant immunity during interactions with pathogens and beneficial microbes. PLANTA 2022; 255:116. [PMID: 35511374 DOI: 10.1007/s00425-022-03907-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
This review provides an overview on the role of camalexin in plant immunity taking into account various plant-pathogen and beneficial microbe interactions, regulation mechanisms and the contribution in basal and induced plant resistance. In a hostile environment, plants evolve complex and sophisticated defense mechanisms to counteract invading pathogens and herbivores. Several lines of evidence support the assumption that secondary metabolites like phytoalexins which are synthesized de novo, play an important role in plant defenses and contribute to pathogens' resistance in a wide variety of plant species. Phytoalexins are synthesized and accumulated in plants upon pathogen challenge, root colonization by beneficial microbes, following treatment with chemical elicitors or in response to abiotic stresses. Their protective properties against pathogens have been reported in various plant species as well as their contribution to human health. Phytoalexins are synthesized through activation of particular sets of genes encoding specific pathways. Camalexin (3'-thiazol-2'-yl-indole) is the primary phytoalexin produced by Arabidopsis thaliana after microbial infection or abiotic elicitation and an iconic representative of the indole phytoalexin family. The synthesis of camalexin is an integral part of cruciferous plant defense mechanisms. Although the pathway leading to camalexin has been largely elucidated, the regulatory networks that control the induction of its biosynthetic steps by pathogens with different lifestyles or by beneficial microbes remain mostly unknown. This review thus presents current knowledge regarding camalexin biosynthesis induction during plant-pathogen and beneficial microbe interactions as well as in response to microbial compounds and provides an overview on its regulation and interplay with signaling pathways. The contribution of camalexin to basal and induced plant resistance and its detoxification by some pathogens to overcome host resistance are also discussed.
Collapse
Affiliation(s)
- Ngoc Huu Nguyen
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
- Department of Plant Biology, Faculty of Agriculture and Forestry, Tay Nguyen University, 567 Le Duan, Buon Ma Thuot, Daklak, Vietnam
| | - Patricia Trotel-Aziz
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
| | - Christophe Clément
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
| | - Philippe Jeandet
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
| | - Fabienne Baillieul
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
| | - Aziz Aziz
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France.
| |
Collapse
|
49
|
Underwood W. Arabidopsis GOLD36/MVP1/ERMO3 Is Required for Powdery Mildew Penetration Resistance and Proper Targeting of the PEN3 Transporter. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:393-400. [PMID: 35147444 DOI: 10.1094/mpmi-09-21-0240-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Arabidopsis PENETRATION 3 (PEN3) ATP binding cassette (ABC) transporter contributes to penetration resistance against nonadapted powdery mildew fungi and is targeted to papillae deposited at sites of interaction with the fungus. Timely recruitment of PEN3 and other components of penetration resistance to the host-pathogen interface is important for successful defense against this biotrophic pathogen. A forward genetic screen was previously carried out to identify Arabidopsis mutants that mistarget the PEN3 transporter or fail to accumulate PEN3 at sites of attempted powdery mildew penetration. This study focuses on PEN3 mistargeting in the aberrant localization of PEN3 4 (alp4) mutant and identification of the causal gene. In the alp4 mutant, PEN3 accumulates within the endomembrane system in an apparently abnormal endoplasmic reticulum and is not exported into papillae at powdery mildew penetration sites. This targeting defect compromises defenses at the host-pathogen interface, resulting in increased penetration success by a nonadapted powdery mildew. Genetic mapping identified alp4 as an allele of GOLGI DEFECTS 36 (GOLD36), a gene encoding a GDSL-lipase/esterase family protein that is involved in maintaining normal morphology and organization of multiple endomembrane compartments. Genetic complementation confirmed that mutation in GOLD36 is responsible for the PEN3 targeting and powdery mildew penetration resistance defects in alp4. These results reinforce the importance of endomembrane trafficking in resistance to haustorium-forming phytopathogens such as powdery mildew fungi.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- William Underwood
- United States Department of Agriculture-Agricultural Research Service Sunflower & Plant Biology Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| |
Collapse
|
50
|
Halkier BA, Xu D. The ins and outs of transporters at plasma membrane and tonoplast in plant specialized metabolism. Nat Prod Rep 2022; 39:1483-1491. [PMID: 35481602 DOI: 10.1039/d2np00016d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to 2022Plants are organic chemists par excellence and produce an amazing array of diverse chemical structures. Whereas primary metabolites are essential for all living organisms and highly conserved, the specialized metabolites constitute the taxonomy-specific chemical languages that are key for fitness and survival. Allocation of plants' wide array of specialized metabolites in patterns that are fine-tuned spatiotemporally is essential for adaptation to the ever-changing environment and requires transport processes. Thus advancing our knowledge about transporters is important as also evidenced by the increasing number of transporters that control key quality traits in agriculture. In this review, we will highlight recently identified transporters and new insights related to already known transporters of plant specialized metabolites. Focus will be on the transport mechanism revealed by the biochemical characterization and how that links to its function in planta.
Collapse
Affiliation(s)
- Barbara Ann Halkier
- DynaMo Center of Excellence, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.
| | - Deyang Xu
- DynaMo Center of Excellence, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.
| |
Collapse
|